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Abstract

The Information Bottleneck (IB) is a conceptual method for extracting the most compact,
yet informative, representation of a set of variables, with respect to the target. It gen-
eralizes the notion of minimal sufficient statistics from classical parametric statistics to a
broader information-theoretic sense. The IB curve defines the optimal trade-off between
representation complexity and its predictive power. Specifically, it is achieved by mini-
mizing the level of mutual information (MI) between the representation and the original
variables, subject to a minimal level of MI between the representation and the target. This
problem is shown to be in general NP hard. One important exception is the multivariate
Gaussian case, for which the Gaussian IB (GIB) is known to obtain an analytical closed
form solution, similar to Canonical Correlation Analysis (CCA). In this work we introduce
a Gaussian lower bound to the IB curve; we find an embedding of the data which maximizes
its “Gaussian part”, on which we apply the GIB. This embedding provides an efficient (and
practical) representation of any arbitrary data-set (in the IB sense), which in addition holds
the favorable properties of a Gaussian distribution. Importantly, we show that the optimal
Gaussian embedding is bounded from above by non-linear CCA. This allows a fundamen-
tal limit for our ability to Gaussianize arbitrary data-sets and solve complex problems by
linear methods.

Keywords: Information Bottleneck, Canonical Correlations, ACE, Gaussianization, Mu-
tual Information Maximization, Infomax

1. Introduction

The problem of extracting the relevant aspects of complex data is a long standing staple
in statistics and machine learning. The Information Bottleneck (IB) method, presented by
Tishby et al. (1999), approaches this problem by extending its classical notion to a broader
information-theoretic setup. Specifically, given the joint distribution of a set of explanatory
variables X and a target variable Y (which may also be of a higher dimension), the IB
method strives to find the most compressed representation of X, while preserving informa-
tion about Y . Thus, Y implicitly regulates the compression of X, so that its compressed
representation maintains a level of relevance as explanatory variables with respect to Y .
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The IB problem is formally defined as follows:

min
P (T |X)

I(X;T )

subject to I(T ;Y ) ≥ IY
(1)

where T is the compressed representation of X and the minimization is over the mapping of
X to T , defined by the conditional probability P (T |X). Here, IY is a constant parameter
that sets the level of information to be preserved between the compressed representation
and the target. Solving this problem for a range of IY values defines the IB curve –
a continuous concave curve which provides the optimal trade-off between representation
complexity (regarded as I(X;T )) and predictive power (I(T ;Y )).

The IB method showed to be a powerful tool in a variety of machine learning domains
and related areas (Slonim and Tishby, 2000; Friedman et al., 2001; Sinkkonen and Kaski,
2002; Slonim et al., 2005; Hecht et al., 2009). It is also applicable to other fields such
as neuroscience (Schneidman et al., 2001) and optimal control (Tishby and Polani, 2011).
Recently, Tishby and Zaslavsky (2015) and Shwartz-Ziv and Tishby (2017) demonstrated
its abilities in analyzing and optimizing the performance of deep neural networks.

Generally speaking, solving the IB problem (1) for an arbitrary joint distribution is not
a simple task. In the introduction of the IB method, Tishby et al. (1999) defined a set of
self-consistent equations which formulate the necessary conditions for the optimal solution
of (1). Further, they provided an iterative Arimoto– Blahut like algorithm which shows to
converge to local optimum. In general, these equations do not hold a tractable solution and
are usually approximated by different means (Slonim, 2002). An extensive attention was
given to the simpler categorical setup, where the IB curve is somewhat easier to approximate.
Here, X and Y take values on a finite set and T represents (soft and informative) clusters of
X (Slonim, 2002). Naturally, the IB problem also applies for continuous variables. In this
case, approximating the solution to the self-consistent equations is even more involved. A
special exception is the Gaussian case, where X and Y are assumed to follow a jointly normal
distribution and the Gaussian IB problem (GIB) is analytically solved by linear projections
to the canonical correlation vector space (Chechik et al., 2005). However, evaluating the
IB curve for arbitrary continuous random variables is still considered a highly complicated
task where most attempts focus on approximating or bounding it (Rey and Roth, 2012;
Chalk et al., 2016). A detailed discussion regarding currently known methods is provided
in the following section.

In this work we present a novel Gaussian lower bound to the IB curve, which applies
to all types of random variables (continuous, nominal and categorical). Our bound strives
to maximize the “jointly Gaussian part” of the data and apply the analytical GIB to it.
Specifically, we seek for two transformations, U = φ(X) and V = ψ(Y ) so that U and V
are highly correlated and “as jointly Gaussian as possible”. In addition, we ask that the
transformations preserve as much information as possible between X and Y . This way, we
maximize the portion of the data that can be explained by linear means, I(U ;V ) ≤ I(X;Y ),
specifically using the GIB.

In fact, our results go beyond the specific context of the information bottleneck. In
this work we tackle the fundamental question of linearizing non-linear problems. In other
words, we ask ourselves whether it is possible to “push” all the information in the data
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to its second moments. This problem has received a great amount of attention over the
years. For example, Schneidman et al. (2006) discuss this problem in the context of neural
networks; they provide preliminary evidence that in the vertebrate retina, weak pairwise
correlations may describe the collective (non-linear) behavior of neurons. In this work,
we provide both fundamental limits and constructive algorithms for maximizing the part
of the data that can be optimally analyzed by linear means. This basic property holds
both theoretical and practical implications, as it defines the maximal portion which allows
favorable analytical properties in many applications. Interestingly, we show that even if we
allow the transformations U = φ(X) and V = ψ(Y ) to increase the dimensions of X and Y ,
our ability to linearize the problem is still limited, and governed by the non-linear canonical
correlations (Breiman and Friedman, 1985) of the original variables.

Our suggested approach may also be viewed as an extension of the Shannon lower bound
(Cover and Thomas, 2012), for evaluating the mutual information. In his seminal work,
Shannon provided an analytical Gaussian lower bound for the generally involved rate dis-
tortion function. He showed that the rate distortion function R(D) can be bounded from
below by h(X)− 1

2 log(2πeD) where X is the compressed source, h(X) is its corresponding
deferential entropy and 1

2 log(2πeD) is the differential entropy of an independent Gaussian
noise with a maximal distortion level D. This bound holds some favorable theoretical prop-
erties (Cover and Thomas, 2012) and serves as one of the most basic tools for approximating
the rate distortion function to this very day. In this work, we use a similar rationale and
derive a Gaussian lower bound for the mutual information of two random variables, which
holds an analytical expression just like the Shannon’s bound. We then extend our result
to the entire IB curve and discuss its theoretical properties and practical considerations. A
matlab implementation of our suggested approach is publicly available at the first author’s
web-page1.

The rest of this manuscript is organized as follows: In Section 2 we review previous work
on the IB method for continuous random variables. Section 3 defines our suggested lower
bound and formulates it as an optimization problem. We then propose a set of solutions
and bounds to this problem, as we distinguish between the easier univariate case (Section
4) and the more involved multivariate case (Section 5). Finally, in Section 6 we extend our
results to the entire IB curve.

2. Related work

As discussed in the previous section, solving the IB problem for continuous variables is
in general a difficult task. A special exception is where X and Y follow a jointly normal
distribution. Chechik et al. (2005) show that in this case, the Gaussian IB problem (GIB)
is solved by a noisy linear projection, T = AX + ζ. Specifically, assume that X and Y are
of dimensions nX and nY respectively and denote the covariance matrix of X as CX while
the conditional covariance matrix of X|Y is CX|Y . Then, ζ is a Gaussian random vector
with a zero mean and a unit covariance matrix, independent of X. The matrix A is defined

1. https://sites.google.com/site/amichaipainsky/software
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as follows:

A =


[0T ; . . . ; 0T ] 0 ≤ β ≤ βC1

[a1v
T
1 ; 0T ; . . . ; 0T ] βC1 ≤ β ≤ βC2

[a1v
T
1 ; a2v

T
2 ; 0T ; . . . ; 0T ] βC2 ≤ β ≤ βC3

...
...

 . (2)

where {vT1 , vT2 , . . . , vTnx
} are the left eigenvectors of CX|Y C

−1
X , sorted by their corresponding

ascending eigenvalues λ1, . . . , λnX , βCI = 1
λi

are the critical β values, ai are defined by

ai =
√

β(1−λi)−1
λiri

. ri = vTi CXvi and 0T is an nX row vector of zeros. Notice that the critical

values β correspond to the slope of the IB curve, as they represent the Lagrange multipliers
of the IB problem.

Unfortunately, this solution is limited to jointly Gaussian random variables. In fact, it
can be shown that a closed form analytical solution (for continuous random variables) may
only exist under quite restrictive assumptions on the underlaying distribution. Moreover,
as the IB curve is so challenging to evaluate in the general case, most known attempts
either focus on extending the GIB to other distributions under varying assumptions, or
approximate the IB curve by different means.

Rey and Roth (2012) reformulate the IB problem in terms of probabilistic copulas. They
show that under a Gaussian copula assumption, an analytical solution (which extends the
GIB) applies to joint distributions with arbitrary marginals. This formulation provides
several interesting insights on the IB problem. However, its practical implications are
quite limited as the Gaussian copula assumption is very restrictive. In fact, it implicitly
requires that the joint distribution would maintain a Gaussian structure. As we show in
the following sections, this assumption makes the problem significantly easier and does not
hold in general.

Chalk et al. (2016) provide a lower bound to the IB curve by using an approximate varia-
tional scheme, analogous to variational expectation maximization. Their method relaxes the
IB problem by restricting the class of distributions, P (Y |T ) and P (T ) to a set of parametric
models. This way, the relaxed IB problem may be solved in EM-like steps; their suggested
algorithm iteratively maximizes the objective over the mappings (for fixed parameters) and
then maximize the set of parameters, for fixed mappings. Chalk et al. (2016) show that
this method can be effectively applied to “sparse” data in which X and Y are generated
by sparsely occurring latent features. However, in the general case, their suggested bound
strongly depends on the assumption that the chosen parametric models provide reasonable
approximations for the optimal distributions. This assumption is obviously quite restric-
tive. Moreover, it is usually difficult to validate, as the optimal distributions are unknown.
Kolchinsky et al. (2017) take a somewhat similar approach, as they suggest a variational
upper bound to the IB curve. The main difference between the two methods relies on the
variational approximation of objective, I(X;Y ). However, they are both prone to the same
difficulties stated above.

Alemi et al. (2016) propose an additional variational inference method to construct a
lower bound to the IB curve. Here, they re-parameterize the IB problem followed by Monte
Carlo sampling, to get an unbiased estimate of the IB objective gradient. This allows them
to apply deep neural networks in order to parameterize any given distribution. However,
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this method fails to provide guarantees on the obtained bound, as a result of the suggested
stochastic gradient descent optimization approach.

Achille and Soatto (2018) relax the bottleneck problem by introducing an additional
total correlation (TC) regularization term that strives to maximize the independence among
the components of the representation T . They show that under the assumption that the
Lagrange multipliers of the TC and MI constraints are identical, the relaxed problem may
be solved by adding auxiliary variables. However, this assumption is usually invalid, and
the suggested method fails to provide guarantees on the difference between the obtained
objective and original IB formulation.

In this work we suggest a novel lower bound to the IB curve which provides both
theoretical and practical guarantees. In addition, we introduce upper and lower bounds
to our suggested solution that are very easy to attain. This way we allow immediate
benchmarks to the IB curve using common off-the-shelf methods.

3. Problem formulation

Throughout this manuscript we use the following standard notation: underlines denote vec-
tor quantities, where their respective components are written without underlines but with
index. For example, the components of the n-dimensional vector X are X1, X2, . . . Xn. Ran-
dom variables are denoted with capital letters while their realizations are denoted with the
respective lower-case letters. The mutual information of two random variables is defined as
I(X;Y ) = h(X) +h(Y )−h(X,X) where h(X) = −

∫
X fX(x) log fX(x)dx is the differential

entropy of X and fX(x) is its probability density function.

We begin by introducing a Gaussian lower bound to the mutual information I(X;Y ).
We then extend our result to the entire IB curve.

3.1 Problem statement

Let X ∈ Rdx , Y ∈ Rdy be two multivariate random vectors with a joint cumulative distribu-
tion function (CDF) FXY (x, y) and mutual information I(X,Y ). In the following sections
we focus on bounding I(X,Y ) from below with an analytical expression. Let U = φ(X)
and V = ψ(Y ) be two transformations of X and Y , respectively. Assume that U ∈ Rdu
and V ∈ Rdv are separately normally distributed. This means that U ∼ N

(
µU , CU

)
and

V ∼ N
(
µV , CV

)
but the vector [U, V ]T is not necessarily normally distributed. This allows

us to derive the following basic inequality

I(X,Y ) ≥I(U, V ) = h(U) + h(V )− h(U, V ) ≥ (3)

h(U) + h(V )− h(U jg, V jg) =
1

2
log

( ∣∣C[U,V ]

∣∣
|CU ||CV |

)

where the first inequality follows from the Data Processing lemma (Cover and Thomas, 2012)

and the second inequality follows from
[
U jg, V jg

]T
being jointly Gaussian (jg) distributed

with the same covariance matrix as [U, V ]T , C[Ujg ,V jg ] = C[U,V ], so that h(U jg, V jg) ≥
h(U, V ) (Cover and Thomas, 2012). Notice that (3) can also be derived from an information
geometry (IG) view point, as shown by Cardoso (2003).
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Equality is attained in (3) iff I(X,Y ) = I(U, V ) (no information is lost in the trans-
formation) and U = φ(X), V = ψ(Y ) are jointly normally distributed. In other words,
in order to preserve all the information we must find φ and ψ that capture all the mutual
information, and at the same time make X and Y jointly normal. This is obviously a com-
plicated task as φ and ψ only operate on X and Y separately. Therefore, we are interested
in maximizing this lower bound as much as possible:

max
φ,ψ

log

( ∣∣C[U,V ]

∣∣
|CU ||CV |

)
subject to U = φ(X) ∼ N

(
0, CU

)
V = ψ(Y ) ∼ N

(
0, CV

) (4)

where the constraints imply that U and V are separately normally distributed random
vectors with zero means and covariance matrices CU and CV , respectively. In other words,
we would like to maximize Cardoso (2003) IG bound by applying two transformations, φ
and ψ, to the original variables. This would allow us to achieve a tighter result.

Notice that our objective is invariant to the means of U, V so they are chosen to be zero.
In addition, it is easy to show that our objective is invariant to linear transformations of
U, V . This means we can equivalently assume that CU , CV are identity covariance matrices.
As shown by Kay (1992) and others (Klami and Kaski, 2005; Chechik et al., 2005), maximiz-
ing the objective of (4) is equivalent to maximizing the canonical correlations, cov(Ui, Vi).
Therefore, our problem may be written as

max
φ,ψ

k∑
i=1

E (UiVi)

subject to U = φ(X) ∼ N (0, I)

V = ψ(Y ) ∼ N (0, I)

(5)

where k = min{du, dv}. This problem may also be viewed as a variant of the well-known
CCA problem (Hotelling, 1936), where we optimize over nonlinear transformations φ and
ψ, and impose additional normality constraints. As in CCA, this problem can be solved
iteratively by gradually finding the the optimal canonical components in each step (subject
to the normality constraint), while maintaining orthogonality with the components that
were previously found. For simplicity of the presentation we begin by solving (5) in the
univariate (1-D) case. Then, we generalize to the multivariate case. In each of these setups
we present a solution to the problem, followed by simpler upper and lower bounds.

4. The univariate case

In the univariate case we assume that dx = dy = k = 1. We seek φ, ψ such that

max
φ,ψ

ρ = E(UV )

subject to U = φ(X) ∼ N(0, 1)

V = ψ(Y ) ∼ N(0, 1).

(6)
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As a first step towards this goal, let us relax our problem by replacing the normality
constraint with simpler second order statistics constraints,

max
φ,ψ

ρ = E(UV )

subject to U = φ(X), E(U) = 0, E(U2) = 1

V = ψ(Y ), E(V ) = 0, E(V 2) = 1.

(7)

As mentioned above, this problem is a non-linear extension of CCA, which traces back to
early work by Lancaster (1963). As this problem is also a relaxed version of our original
task (6), it may serve us as an upper bound. This means that the optimum of (7), denoted
as ρub, necessarily bound from above ρ∗, the optimum of (6).

4.1 Alternation Conditional Expectation (ACE)

Breiman and Friedman (1985) show that the optimal solution to (7) is achieved by a simple
alternating conditional expectation procedure, named ACE. Assume that ψ(Y ) is fixed,
known and satistfies the constraints. Then, we optimize (7) only over φ and by Cauchy-
Schwarz inequality, we have that

E(φ(X)ψ(Y )) = Ex (φ(X)E(ψ(Y )|X)) ≤
√

var(φ(X))
√

var(E(ψ(Y )|X))

with equality iff φ(X) = c · E(ψ(Y )|X). Therefore, choosing the constant c to satisfy the

unit variance constraint we achieve φ(X) = E(ψ(Y )|X)√
var(E(ψ(Y )|X))

. In the same manner we may

fix φ(X) and attain ψ(Y ) = E(φ(X)|Y )√
var(E(φ(X)|Y ))

. These coupled equations are in fact necessary

conditions for the optimality of φ and ψ, leading to an alternating procedure in which at
each step we fix one transformation and optimize the other. Breiman and Friedman (1985)
prove that this procedure convergences to the global optimum using Hilbert space algebra.
They show that the transformations φ and ψ may be represented in a zero-mean and finite
variance Hilbert space, while the conditional expectation projection is linear, closed, and
shown to be self-adjoint and compact under mild assumptions. Then, the coupled equations
may be formulate as an eigen problem in the Hilbert space, for which there exists a unique
and optimal solution.

The following lemma defines a strict connection between the non-linear canonical cor-
relations and the Gaussinized IB problem.

Lemma 1 Let ρub be the solution to (7). If I(X;Y ) > − log
(
1− ρ2

ub

)
, then there are no

transformations φ, ψ such that U = φ(X) and V = ψ(Y ) are jointly normally distributed
and preserve all of the mutual information, I(X;Y ).

Proof Let ρ∗ be the solution to (6). As mentioned above, ρub ≥ ρ∗. Therefore, I(X;Y ) >
− log

(
1− ρ2

ub

)
> − log

(
1− ρ2

∗
)
. This means that the inequality (3) cannot be achieved

with equality. Hence, there are no transformations U = φ(X) and V = ψ(Y ) so that U and
V are jointly normal and preserve all of the mutual information, I(X;Y ).

Lemma 1 suggests that if the optimal transformations of the relaxed problem (which can be
obtained by ACE) fails to capture all the mutual information between X and Y , then there
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are no transformations that can project X and Y onto jointly normal variables without
losing information. Moreover, notice that the maximal level of correlation ρub cannot be
further increased, even if we allow U = φ(X) and V = φ(Y ) to reside in greater dimensions.
This means that Lemma 1 holds for any φ : Rdx → Rdu and ψ : Rdy → Rdv , such that
du, dv ≥ 0.

4.2 Alternating Gaussinized Conditional Expectations (AGCE)

Let us go back to our original problem, which strives to maximize the correlation between U
and V , subject to marginal normality constraints (6). Here we follow Breiman and Friedman
(1985), and suggest an alternating optimization procedure.

Let us fix ψ(Y ) and optimize (6) with respect to φ(X). As before, we can write the cor-
relation objective as E(φ(X)ψ(Y )) = Ex (φ(X)E(ψ(Y )|X)). Since E(φ(X)2) is constrained
to be equal to 1 while E

(
E(ψ(Y )|X)2

)
is fixed, maximizing Ex (φ(X)E(ψ(Y )|X)) is equiv-

alent to minimizing Ex (φ(X)− E(ψ(Y )|X))2. For simplicity, denote X̄ ≡ E(ψ(Y )|X).
Then, our optimization problem can be reformulated as

min
φ

E
(
φ(X̄)− X̄

)2
subject to X̄ ∼ FX̄

φ(X̄) ∼ N(0, 1)

(8)

where FX̄ is the (fixed) CDF of X̄ ≡ E(ψ(Y )|X). Notice that φ is necessarily a function
of X̄ alone (as opposed to X), for simple optimization considerations. Assuming that X̄
and U = φ(X̄) are two separable metric spaces such that any probability measure on X̄
(or U) is a Radon measure (i.e. they are Radon spaces), then (8) is simply an optimal
transportation problem (Monge, 1781) with a strictly convex cost function (mean square
error). We refer to φ∗(X̄) that minimizes (8) as the optimal map.

The optimal transportation problem was presented by Monge (1781) and has generated
an important branch of mathematics. The problem originally studied by Monge was the
following: assume we are given a pile of sand (in R3) and a hole that we have to completely
fill up with that sand. Clearly the pile and the hole must have the same volume and
different ways of moving the sand will give different costs of the operation. Monge wanted
to minimize the cost of this operation. Formally, the optimal transportation problem is
defined as

inf

{∫
X̄
c(X̄, φ(X̄))dµ(X̄)

∣∣∣φ∗(µ) = ν

}
where µ and ν are the probability measures of X̄ and U respectively, c(·, ·) is some cost
function and φ∗(µ) denotes the push forward of µ by the map φ. Clearly, (8) is a special
case of the optimal transportation problem where the µ = FX̄ , ν is a standard normal
distribution and the cost function is the euclidean distance between the two.

Assume that X̄ ∈ R has finite pth moments for 1 ≤ p <∞ and a strictly continuous CDF,
FX̄ (that is X̄ is a strictly continuous random variable). Then, Rachev and Rüschendorf
(1998) show that the optimal map (which minimizes (8)) is exactly φ∗(X̄) = Φ−1

N ◦ FX̄(X̄)
where Φ−1

N is the inverse CDF of a standard normal distribution. As shown by Rachev and
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Rüschendorf (1998), the optimal map is unique and achieves

E
((
φ∗(X̄)− X̄

)2)
=

∫ 1

0
(FX̄(s)− ΦN (s))2 ds. (9)

Notice that the optimal map may be generalized to the multivariate case, as discussed in
the next Section. The solution to the optimal transportation problem is in fact the “optimal
projection” of our problem (8). Further, it allows us to quantify how much we lose from
imposing the marginal normality constraint, compared with ACE’s optimal projection.

Notice that the optimal map, φ∗(X̄) = Φ−1
N ◦FX̄(X̄), is simply marginal Gaussianization

of X̄: applying X̄’s CDF to itself results in a uniformly distributed random variable, while
Φ−1
N shapes this uniform distribution into a standard normal. In other words, while the

optimal projection of ψ(Y ) on X is its conditional expectation, the optimal projection
under a normality constraint is simply a Gaussianization of the conditional expectation. The
uniqueness of the optimal map leads to the following necessary conditions for an optimal
solution to (6),

φ(X) = Φ−1
N ◦ FE(ψ(Y )|X)(E(ψ(Y )|X)) (10)

ψ(Y ) = Φ−1
N ◦ FE(φ(X)|Y )(E(φ(X)|Y )).

As in ACE, these necessary conditions imply an alternating projection algorithm, namely,
the Alternating Gaussinized Conditional Expectation (AGCE). Here, we begin by randomly
choosing a transformation that only satisfies the normality constraint ψ(Y ) ∼ N(0, 1).
Then, we iterate by fixing one of the transformation while optimizing the other, according to
(10). We terminate once E(φ(X)ψ(Y )) fails to increase, which means that we converged to a
set of transformations that satisfy the necessary conditions for optimal solution. Algorithm
1 summarizes our suggested approach. Notice that in every step of our procedure, we may
either:

1. Increase our objective value, as a result of the optimal map for (8).

2. Maintain with the same objective value and with the same transformation that was
found in of the previous iteration, as we converged to (10).

This means that our alternating method generates a monotonically increasing sequence of
objective values. Moreover, as written in Section 4, this sequence is bounded from above by
the optimal correlation given by ACE. Therefore, according to the monotone convergence
theorem, our suggested method converges to a local optimum.

Unfortunately, as opposed to ACE, our projection operator is not linear and we cannot
claim for global optimality. We see that for different random initializations we converge to
(a limited number) of local optima. Yet, AGCE provides an effective tool for finding local
maximizers of (4), which together with MCMC (Gilks, 2005) initializations (or any other
random search mechanisms) is capable of finding the global optimum.

4.3 Off-the-shelf lower bound

Although the AGCE method provides a (locally) optimal solution to (4), we would still like
to consider a simpler “off-the-shelf” mechanism that is easier to implement and gives a lower
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Algorithm 1 Alternating Gaussinized Conditional Expectations (AGCE) for the univariate
case

Require: FXY , the joint distribution function of X and Y .
Require: g : R→ R, a random mapping.
1: Set ψ(Y ) = Φ−1

N ◦ Fg(Y ) (g(Y )).

2: Set φ(X) = Φ−1
N ◦ FE(ψ(Y )|X)(E(ψ(Y )|X)).

3: Set ρ = E(φ(X)ψ(Y )).
4: Set T = 0
5: while T 6= 1 do
6: Set ψ(Y ) = Φ−1

N ◦ FE(φ(X)|Y )(E(φ(X)|Y )).

7: Set φ(X) = Φ−1
N ◦ FE(ψ(Y )|X)(E(ψ(Y )|X)).

8: if E(φ(X)ψ(Y )) ≯ ρ then
9: T = 1

10: else
11: ρ = E(φ(X)ψ(Y ))
12: end if
13: end while
14: return φ(X), ψ(Y ), ρ

bound to the best we can hope for. Here, we tackle (4) in two phases. In the first phase
we would like to maximize the correlation objective, E(UV ), subject to the relaxed second
order statistics constraints (as defined in (7)). Then, we enforce the marginal normality
constraints by simply applying separate Gaussianization to the outcome of the first phase.
In other words, we first apply ACE to increase our objective as much as possible, and then
separately Gaussianize the results to meet the normality constraints, hoping this process
does not reduce our objective “too much”. Notice that in this univariate case, separate
Gaussianization is achieved according to Theorem 2:

Theorem 2 Let X be any random variable X ∼ FX(x) and θ ∼ Unif[0, 1] be statistically
independent of it. In order to shape X to a normal distribution the following applies:

1. Assume X is a non-atomic distribution (FX(x) is strictly increasing) then

Φ−1
N ◦ FX(X) ∼ N(0, 1)

2. Assume X is discrete or a mixture probability distribution then

Φ−1
N ◦ (FX(X)− θPX(x)) ∼ N(0, 1)

The proof of this theorem can be located in Appendix 1 of (Shayevitz and Feder, 2011).
Theorem 2 implies that if X is strictly continuous then we may achieve a normal distribution
by applying Φ−1

N ◦ FX(X) to it, as discussed in the previous section. Otherwise, we shall
handle its CDF’s singularity points by randomly scattering them in a uniform manner,
followed by applying Φ−1

N to the random variable we achieved. Notice that this process
do not allow any flexibility in the Gaussianization process. However, we show that in the
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multivariate case (Section (5.3)) the equivalent process is quite flexible and allows us to
control the correlation objective.

Further, notice that this lower bound is by no means a candidate for an optimal solution
to (6), as it does not meet the necessary conditions described in (10). Yet, by finding both
an upper and lower bounds (through ACE, and then separately Gaussianizing the result
of ACE) we may immediately achieve the range in which the optimal solution necessarily
resides. Assuming this range is not too large, one may settle for a sub-optimal solution
without a need to apply AGCE at all.

4.4 Illustrative example

We now demonstrate our suggested methodology with a simple illustrative example. Let
X ∼ N(0, 1), W ∼ N(0, ε2) and Z ∼ N(µz, 1) be three normally distributed random
variables, all independent of each other. Let P be a Bernoulli distributed random variable
with a parameter 1

2 , independent of X,W and Z. Define Y as:

Y =

{
X+W P=0
Z P=1

}
.

Then, Y is a balanced Gaussian mixture with parameters

θy =
{
µ1 = 0, σ2

1 = 1 + ε2, µ2 = µz, σ
2
2 = 1

}
.

The joint probability density function of X and Y is also a balanced two-dimensional Gaus-
sian mixture with parameters

θxy =

{
µ1 =

[
0
0

]
, C1 =

[
1 1
1 1+ε2

]
, µ2 =

[
0
µz

]
, C2 = I

}
.

Let us further assume that µz is large enough, and ε2 is small enough, so that the overlap
between the two Gaussian is negligible. For example, we set µz = 10 and ε = 0.1. The
correlation between X and Y is easily shown to be ρxy =

1/2√
1+1/2ε2+1/4µz

= 0.098. The

mutual information between X and Y is defined as

I(X;Y ) = h(X) + h(Y )− h(X;Y ).

Since we assume that the Gaussians in the mixture practically do not overlap, we have that

h(Y ) =−
∫
fY (y) log fY (y)dy ≈ 1

4
log
(
2πe(1 + ε2)

)
+

1

4
log (2πe) + 1. (11)

In the same manner,

h(X,Y ) =−
∫
fX,Y (x, y) log fX,Y (x, y)dxdy ≈ (12)

1

4
log
(
(2πe)2|C1|

)
+

1

4
log
(
(2πe)2|C2|

)
+ 1.

Plugging µz = 10 and ε = 0.1 we have that

I(X;Y ) =h(X) + h(Y )− h(X;Y ) ≈ 1.66bits. (13)

11
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The scatter plot on the left of Figure 1 illustrates 10, 000 independent draws of X and
Y , where the blue circles corresponds to the “correlated samples” (P = 0) while the blue
crosses are the “noise” (P = 1).

Before we proceed to apply our suggested methods, let us first examine two bench-
mark options for separate Gaussianization. As an immediate option, we may always apply
separate Gaussianization, directly to X and Y , denoted as Ua and Va respectively. This
corresponds to Cardoso (2003) information geometry bound. Since X is already normally
distributed we may set Ua = X and only apply Gaussinization to Y . Let Va = ψ(Y ) be the
Gaussianization of Y . This means that

Va = Φ−1
N (FY (Y )) = Φ−1

N

(
ΦGM(θy)(Y )

)
where ΦGM(θy) is the cumulative distribution function a Gaussian Mixture with the param-
eters θy described above. Therefore,

ρua,va = E(XV ) =
1

2
E
(
XΦ−1

N

(
ΦGM(θy)(X +W )

))
.

Although it is not possible to obtain a closed form solution to this expectation, it may be
numerically evaluated quite easily, as X and W are independent. Assuming µz = 10 and
ε = 0.1 we get that ρua,va ≈ 0.288 and our lower bound on the mutual information, as
appears in (3), is Ig ≡ −1

2 log
(
1− ρ2

ua,va

)
≈ 0.0628bits. The middle scatter plot of Figure 1

presents this separate marginal Gaussianization of the previously drawn 10, 000 samples of
X and Y . Notice that the marginal Gaussianization is a monotonic transformation, so that
the Y samples are not being shuffled and maintain the separation between the two parts
of the mixture. While the red circles are now “half Gaussian”, the blue crosses are shaped
in a curvy manner, so that their marginal distribution (projected on the y axis) is also a
“half Gaussian”, leading to a normal marginal distribution of Y . We notice that while the
mutual information between X and Y is 1.66 bits, the lower bound attained by this naive
Gaussianization approach is close to zero. This is obviously an unsatisfactory result.

A second benchmark alternative for separate Gaussianization is to take advantage of the
Gaussian mixture properties. Since we assume that the two Gaussians of Y are practically
separable, we may distinguish between observations from the two Gaussians. Therefore, we
can simply reduce µz from the Z samples (the red circles), and normalize the observations
of X + W . This way the transformed Y becomes a Gaussian mixture of two co-centered
standard Gaussians, and no further Gaussianization is necessary. For µz = 10 and ε = 0.1,
this leads to a correlation of

ρub,vb =
1

2
E

(
1√

1 + ε2
(X +W )X

)
=

1

2

1√
1 + ε2

= 0.497 (14)

and a corresponding mutual information lower bound of Ig = 0.204 bits. However, notice
that the suggested transformation is not invertible and may cause a reduction in mutual
information. Specifically, we now have that the joint distribution of Ub = X and Vb follows
a Gaussian mixture model with parameters:

θub,vb =

{
µ1 =

[
0
0

]
, C1 =

[
1 1√

1+ε2
1√

1+ε2
1

]
, µ2 =

[
0
0

]
, C2 = I

}
.

12
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Therefore,

h(Ub, Vb) =−
∫
fUb,Vb(u, v) log (fUb,Vb(u, v)) dudv = (15)

−
∫
φGN(θub,vb )(u, v) log φGN(θub,vb )(u, v)dudv ≈ 3.1384bits

where φGN(θub,vb )(u, v) is the probability density function of a Gaussian mixture with the
parameters θub,vb described above, and the last approximation step is due to numerical
integration. This leads to I(Ub;Vb) = 0.95 bits.

To conclude, although the mutual information is reduced from 1.66 bits to 0.95 bits,
the suggested bound increased quite dramatically, from 0.0628 bits to 0.204 bits. The right
plot of Figure 1 demonstrates this customized separate Gaussianization (as it only applies
for this specific setup) to the previously sampled X and Y . Again, we emphasis that this
solution is not applicable in general, and is only feasible due to the specific nature of this
Gaussian mixture model.
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Figure 1: Univariate Gaussianization: Left: scatter of X and Y . Middle: naive separate
Gaussianization to X and Y . Right: separate Gaussianization which considers the Gaussian
Mixture model of X and Y , as described in the text.

Let us now turn to our suggested methods, as described in detail in the previous
sections. We begin by applying the ACE procedure (Section 4.1), to attain an upper
bound on our problem (6). Not surprisingly, ACE converges to a solution in which the
samples of Y that are independent of X (the ones that come from Z) are set to zero,
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while the rest are normalized to achieve an unit variance. Therefore, the resulting cor-
relation is ρub =

1/2√
1/2(1+ε2)

= 0.703. This results further implies that we can never find

a Gaussianization procedure that will capture all the information between X and Y , as
I(X;Y ) > − log

(
1− ρ2

ub

)
= 0.4917 bits, according to Lemma 1. The left scatter plot of

Figure 2 demonstrates the outcome of the ACE procedure, applied to the drawn 10, 000
samples of X and Y .

Next, we apply our suggested AGCE routine, described in Section 4.2. As discussed
above, the AGCE only converges to a local optimum. Therefore, we initialize it with sev-
eral random transformation (including the ACE solution that we just found). We notice
that the number of convergence points is very limited and results in almost similar max-
ima. The middle scatter plot of Figure 4.2 shows the best result we achieve, leading to a
correlation coefficient of 0.66 and a lower bound on a corresponding Gaussian lower bound
(3) of 0.411 bits. This result demonstrates the power of our suggested approach, as it
significantly improves the benchmarks, even compared with the Ub, Vb that considers the
separable Gaussian mixture nature of our samples.

Finally, we evaluate a lower bound for (6), as described in Section 4.3. Here, we simply
apply separate Gaussianization to the outcome of the ACE procedure. This results in
ρlb = 0.646 and a corresponding Ig = 0.389. The right scatter plot of Figure 2 shows the
Gaussianized samples the we achieve. We notice that this lower bound is not significantly
lower than AGCE, suggesting that in some cases we may settle for this less involved method.

To conclude, our suggested solution surpasses the benchmarks quite easily, as we increase
the lower bound from 0.204 bits using the custom Gaussianization procedure to 0.411 bits
using our suggested solution. We notice that all of the discussed procedures result in
joint distributions that are quite far from normal. This is not surprising, since X and Y
were highly “non-normal” to begin with. Specifically, all of the suggested procedures lose
information, compared with the original I(X;Y ) = 1.66. However, our suggested solution
minimizes this loss, and may be considered “more jointly normal” than others, in this
regards.

5. The multivariate case

Let us now consider the multivariate case where both X ∈ Rdx and Y ∈ Rdy are random
vectors with a joint CDF FX,Y . One of the fundamental differences from the univariate case
is that Gaussianizing each of these vectors (even separately) is not a simple task. In other
words, finding a transformation φ : Rdx → Rdu such that U = φ(X) is normally distributed
may be theoretically straight-forward but practically involved.

For the simplicity of the presentation, assume that X = [X1, X2]T is a two dimensional,
strictly continuous, random vector. Then, Gaussianization may be achieved in two steps:
first, apply marginal Gaussianization to X1, so that U1 = Φ−1

N ◦ FX1(X1). Then, apply
marginal Gaussianization on X2, conditioned on each possible realization of the previous
component, U2|u1 = Φ−1

N ◦FX2|U1
(X2|U1 = u1). This results in a jointly normally distributed

vector U = [U1, U2]T . While this procedure is theoretically simple, it is quite problematic
to apply in practice, as it requires Gaussianizing each and every conditional CDF. This
is obviously impossible, given a finite number of samples. Yet, it gives us a constructive
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Figure 2: Our Suggested Univariate Gaussianization Schemes: Left: upper bound by ACE.
Middle: (local) optimal solution by AGCE. Right: lower bound by separate Guassianization
to ACE.

method, assuming that all the CDF’s are known. In the following sections we shall present
several alternatives for Gaussianization in a finite sample size setup.

5.1 Upper bound by ACE

As in the univariate case, we begin our analysis by relaxing the normality constraints
with softer second order statistics constraints. This leads to an immediate multivariate
generalization of the ACE procedure:

We begin by extracting the first canonical pair, which satisfies U1 = c · E(V1|X) and
V1 = c ·E(U1|Y ). As in the univariate case, c is a normalization coefficient (the square root
of the variance of the conditional expectation), and the optimization is done by alternating
projections. Then, we shall extract the second pair of canonical components, subject to an
orthogonality constraint with the first pair. It is easy to show that if V2 is orthogonal to V1,
then U2 = c · E(V2|X) is orthogonal to U1, and obviously maximizes the correlation with
V2. Therefore, we may extract the second canonical pair by first randomly assigning a zero-
mean and unit variance V2 that is also orthogonal to V1 (by the Gram-Schmidt procedure,
for example), followed by alternating conditional expectations with respect to V2 and U2,
in the same manner as we did with the first pair. We continue this way for the rest of the
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canonical pairs. As in the univariate case, convergence to a global maximum is guaranteed
from the same Hilbert space arguments. As before, the multivariate ACE sets an upper
bound to (5) as it maximizes a relaxed version of this problem.

Lemma 3 Let U∗, V ∗ be the outcome of multivariate ACE procedure (the canonical vec-
tors). Assuming that I(X;Y ) > log

∣∣C[U∗,V ∗]

∣∣, then there are no transformations such that
U = φ(X) and V = ψ(Y ) follow a jointly normal distribution and preserve all of the mutual
information, I(X;Y ).

The proof of Lemma 3 follows exactly from the proof of Lemma 1. Here again, the mul-
tivariate ACE objective, log

∣∣C[U∗,V ∗]

∣∣, cannot be further increased by artificially inflating

the dimension of the problem. Therefore, Lemma 3 holds for any φ : Rdx → Rdu and
ψ : Rdy → Rdv , such that du, dv ≥ 0.

5.2 multivariate AGCE

As with the multivariate ACE, we propose a generalized multivariate procedure for AGCE.
We begin by extracting the first pair, in the same manner as we did in the univariate case.
That is, we find a pair U1 and V1 that satisfies

U1 = Φ−1
N ◦ FE(U1|X)(E(U1|X)) (16)

V1 = Φ−1
N ◦ FE(V1|Y )(E(V1|Y ))

by applying the alternating optimization scheme. As we proceed to the second pair, we
require that U2 is both orthogonal and jointly normally distributed with U1 (same goes for
V2 with respect to V1). This means that the second pair needs not only to be orthogonal,
but also statistically independent with the first pair. In other words, assuming V2 is fixed,
our basic projection step is

max
φ2

E (φ2(X)V2)

subject to φ2(X) ∼ N(0, 1)

φ2(X) |= φ1(X).

(17)

Let us denote a subspace X̃ ⊂ X that is statistically independent of U1 = φ1(X). Then,

the problem of maximizing E
(
φ2(X̃)V2

)
subject to φ2(X̃) ∼ N(0, 1) is again solved by the

optimal map, φ2(X̃) = Φ−1
N ◦ FE(V2|X̃)(E(V2|X̃)). Therefore, the remaining task is to find

the “best” subspace X̃ ⊂ X, so that E
(
φ2(X̃)V2

)
is maximal, when plugging the optimal

map.

Proposition 4 Let U1 = u1 be the value (realization) of U1. Let X̃ = g (X,u1) be a
subspace of X, independent of U1. If g (X,u1) is an invertible function with respect to X

given u1, then X̃ is an optimal subspace for maximizing E
(
φ2(X̃)V2

)
subject to φ2(X̃) ∼

N(0, 1).
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Proof Assume there exists a different subspace X̃
′
= g′ (X,u1) so that

max
φ′2

E
(
φ′2(X̃

′
)V2

)
> max

φ2
E
(
φ2(X̃)V2

)
subject to the normality constraint. Since g is invertible we have that X = g−1(X̃, u1).

Therefore, X̃
′
= g′

(
g−1(X̃, u1)

)
≡ f(X̃, u1). Plugging this to the inequality above leads to

max
φ′2

E
(
φ′2(f(X̃, u1))V2

)
> max

φ2
E
(
φ2(X̃)V2

)
which obviously contradicts the optimality of maximization over φ2.

Therefore, we are left with finding X̃ = g (X,u1) that is a subspace of X, independent of
U1 and invertible with respect to X given u1. For simplicity of the presentation, let us
first assume that X is univariate. Then, the function g (X,u1) = FX|U1

(X|U1 = u1) is
independent of U1 (as it holds the same (uniform) distribution, regardless to the value of
U1), and invertible given u1 (assuming that the conditional CDF’s FX|U1

(X|U1 = u1) are

continuous for every u1). Going back to the multivariate X ∈ Rdx , we may follow the same
rationale by choosing a single dx-dimensional distribution that all the conditional CDF’s,
FX|U1

will be shaped to. For simplicity we choose a dx-dimensional uniform distribution,
denoted by its CDF as Funif . Then, g∗

(
FX|U1

, u1

)
= Funif , where g∗(P, x) = Q refers to

a mapping that pushes forward the distribution P into Q, given x. Specifically, if p(w)
and q(w) are the corresponding density functions of the (absolutely continuous) CDF’s P
and Q respectively, then we know from basic probability theory that the push forward
transformation S satisfies

p(w) = q (S(w)) |JS (S(w)) |

where JS is the Jacobian operator of the map S.
To conclude, in order to construct X̃ that is independent of U1 and invertible given u1,

we need to push forward all the conditional CDF’s FX|U1
(X|U1 = u1) into a predefined

distribution (say, uniform). Then, the optimal map φ2(X̃) that maximizes E
(
φ2(X̃)V2

)
subject to φ2(X̃) ∼ N(0, 1) is given by φ2(X̃) = Φ−1

N ◦ FE(V2|X̃)(E(V2|X̃)). In the same

manner, we may find Ỹ that is independent of V1 and invertible given v1, and carry on
with the alternating projections. This process continues for all the Gaussinized canonical
components and converges to a local optimum, from the same considerations described in
the univariate case.

It is important to notice that while this procedure may be considered practically infea-
sible (as it requires estimating the conditional CDF’s), it is equivalently impractical as the
multivariate Gaussianization considered in the beginning of this section. Yet, it gives us a
local optimum for our problem, assuming that the joint probability distribution is known.

5.3 Off-the-shelf lower bound in the multivariate case

In the same manner as with the univariate case, we may apply a simple off-the-shelf lower
bound to (4) by first maximizing the objective as much as we can (using multivariate ACE)
followed by Gaussianizing the outcome vectors, hoping we do not reduce the objective
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“too much”. However, as mentioned in the beginning of Section 5, applying multivariate
Gaussianization may be practically infeasible. Therefore, we begin this section by reviewing
practical multivariate Gaussianization methodologies. Then, we use these ideas to suggest
a practical lower bound, which unlike the univariate case, is not oblivious to our objective.

5.3.1 Practical multivariate Gaussianization

The Gaussianization procedure strives to find a transformation Z = G(X) so that Z ∼
N(0, I). A reasonable a cost function for describing “how Gaussian” Z really is, may be
the Kullback Leibler divergence (KLD) between Z’s PDF, fZ(z), and a standard normal
distribution,

J(Z) = DKL

(
fZ(z)||fN (Z)

)
=

∫
Z
fZ(z) log

(
fZ(z)

fN (Z)

)
dz

where fN (Z) is the PDF of a standard normal distribution. As shown by Chen and Gopinath
(2001), J(Z) may be decomposed into

J(Z) = DKL

(
fZ(z)||

dz∏
i=1

fZi(zi)

)
+

dz∑
i=1

DKL (fZi(zi)||fN (zi)) (18)

where the first term quantifies how independent are the components of Z, and the sec-
ond term indicates how normally distributed they are. This decomposition led Chen and
Gopinath (2001) to an iterative algorithm. In each iteration, their suggested approach ap-
plies Independent Component Analysis (Hyvärinen et al., 2004), to minimize the first term,
followed by marginal Gaussianization of each component (as we describe for the univari-
ate case), to minimize the second term. Chen and Gopinath show that minimizing one
term does not effect the other, which leads to a monotonically decreasing procedure that
converges once Z is normally distributed.

Notice that the Independent Component Analysis (ICA) is a linear operator. Therefore,
if Z can be linearly decomposed into independent components, then Chen and Gopinath’s
Gaussianizion process converges in a single step. Moreover, notice that this Gaussianization
process does not require estimating the multivariate distribution. However, it does require
estimating the marginals, fZi which is considered a much easier task, in general.

A similar yet different multivariate Gaussianization approach was suggested by Laparra
et al. (2011). Here, the authors propose to replace the computationally costly ICA with a
simple random rotation matrix. This way, they abandon the effort of minimizing the first
term of (18), and only shuffle the components so that consequent marginal Gaussianization
would further decrease J(Z). Although this approach takes more iterations to converge to a
normal distribution (as in each iteration, only the second term of (18) is being minimized),
it holds several favorable properties. First, the overall run-time is dramatically shorter,
since applying random rotations is much faster then applying linear ICA. Second, it implies
a degree of freedom in choosing the rotation matrix, as the suggested random matrix is just
one example of linear shuffling of the components.

5.3.2 Bi-terminal multivariate Gaussianization

Going back to our problem, we would like to Gaussinize U∗ and V ∗, the outcomes of the
multivariate ACE procedure described above. Ideally, we would like to do so while refraining
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(as much as we can) from reducing our objective,

log

( ∣∣C[U∗,V ∗]

∣∣
|CU∗ ||CV ∗ |

)
. (19)

Following the Gaussianization procedures described in the previous section, we suggest
an iterative process, where in each iteration we apply a rotation matrix to both vectors,
followed by marginal Gaussianization to each of the components of the two vectors. It is
easy to show that (19) is invariant to full rank linear transformations. However, it may be
effected by the (non-linear) marginal Gaussianization of the components (as described in
Theorem 2). Therefore, we would like to find rotation matrices that minimize the effect of
the consequent marginal Gaussianization step. This problem is far from trivial. In fact, due
to the complicated nature of the marginal Gaussianization procedure, it is quite impossible
to minimize the effect of the marginal Gaussianization a-priori, without actually applying
it and see how it effects (19). Therefore, we suggest a stochastic search mechanism, which
allows us to construct a “reasonable” rotation matrix.

Our suggested mechanism works as follow: At each iteration we begin by drawing two
random rotation matrices R1 and R2 for the two vectors we are to Gaussianize, just like
Laparra et al. (2011). We apply marginal Gaussianization to all the components and eval-
uate our objective (19). Then, we randomly choose two dimensions and an angle, θ, and
construct a corresponding rotation matrix R̃ that rotates the space spanned by the two di-
mensions in θ degrees. We apply R̃ ·R1 to our vector, followed by marginal Gaussianization,
and again evaluate (19). If the objective increases we assign R1 = R̃ · R1. We repeat this
process a configurable number of times, for the two vectors we are to Gaussianize.

Notice that our suggested procedure applies a stochastic hill climbing (SHC) search in
each step: it randomly searches for the best rotation matrix by gradually composing “small”
rotation steps (of two dimensions and an angle), as the complete search space is practically
infinite. This procedure guarantees to converge to two multivariate normal vectors, as
shown by Laparra et al. (2011), under the reasonable assumption that R1 and R2 do not
repeatedly converge to identity matrices. Our suggested approach is described in detail in
Algorithm 2.

As we see in our experiments, the Bi-terminal Gaussianization process is superior to
naively applying a Gaussianization procedure to each of the vectors separately (as suggested
by Chen and Gopinath (2001) or Laparra et al. (2011)), in all the cases we examine.

5.4 Illustrative examples

We now examine our suggests multivariate approach in different setups. As in the univariate
case, we draw samples from a given model and bound from below the mutual information
I(X,Y ) according to (3). First, we apply the multivariate ACE procedure (Section 5.1)
to achieve an upper bound to our objective. Then, we apply separate Gaussianization to
ACE’s outcome, to attain an immediate lower bound (Section 5.3.1). Further, we tighten
this lower bound by replacing the separate Gaussianization with bi-terminal Gaussianization
to ACE’s outcome (Section 5.3.2). Since our multivariate AGCE procedure (Section 5.2) is
practically infeasible, we refrain from using it. This would be further justified later in our
results, as we see that the gap between the lower and upper bounds is relatively small. In
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Algorithm 2 Bi-terminal multivariate Gaussianization

Require: X ∈ Rdx , Y ∈ Rdy .
Require: Th, a Gaussianization convergence threshold and N , the SHC parameter.
1: Set U = X and V = Y .
2: Set JU = J(U) and JV = J(V ) according to (18).
3: while JU ≥ Th OR JV ≥ Th do
4: Draw a rotation martix R1 of dimensions dx × dx and set U∗ = R1U .
5: Draw a rotation martix R2 of dimensions dy × dy and set V ∗ = R2V .
6: Apply marginal Gaussianization to U∗ and V ∗.

7: Set ρ∗ = log

(
|C[U∗,V ∗]|
|CU∗ ||CV ∗ |

)
.

8: for all n = 1 to N do
9: Draw an angle θ.

10: Draw (without replacement) two dimensions da, db from the set {1, . . . , dx}.
11: Construct a rotation matrix R̃ from θ, da, db and set Ũ = R̃R1U .
12: Apply marginal Gaussianization to Ũ .

13: Set ρ̃ = log

( ∣∣∣C[Ũ,V ∗]

∣∣∣
|CŨ ||CV ∗ |

)
.

14: if ρ̃ > ρ∗ then
15: Set R1 = R̃R1, U∗ = Ũ and ρ∗ = ρ̃.
16: end if
17: Draw an angle θ.
18: Draw (without replacement) two dimensions da, db from the set {1, . . . , dy}.
19: Construct a rotation matrix R̃ from θ, da, db and set Ṽ = R̃R2U .
20: Apply marginal Gaussianization to Ṽ .

21: Set ρ̃ = log

( ∣∣∣C[U∗,Ṽ ]

∣∣∣
|CU∗ ||CṼ |

)
.

22: if ρ̃ > ρ then
23: Set R2 = R̃R2, V ∗ = Ṽ and ρ∗ = ρ̃.
24: end if
25: end for
26: Set U = U∗ and V = V ∗.
27: Set JU = J(U) and JV = J(V ) according to (18).
28: end while
29: return U, V , ρ∗.
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all of our experiments, our benchmark would be a direct separate Gaussianization of X and
Y , as an immediate alternative.

We begin with a simple toy example. Let X ∼ N(0, I) and W ∼ N(0, I) be independent
random vectors. Define Y = X+W , so that X and Y are jointly normally distributed. Fur-
ther, we “scramble” X and Y by applying invertible, yet non-monotonic, transformations
to each of them separately. We ask that the transformations are invertible to guaran-
tee that the (analytically derived) mutual information is preserved. We further require
non-monotonic transformations since marginal Gaussianization is invariant to monotonic
functions (see Proposition 5), which would make this experiment too easy. In this experi-
ment, we multiply all the observations in the range [−1, 1] by −1. This operation simply
mirrors these observations with respect to the origin.

Proposition 5 Let X̃ = g(X) be a monotonic transformation on X ∈ R. Then Gaussiniz-
ing X̃ is equivalent to Gaussinizing X.

Proof Let Ṽ = Φ−1
N

(
FX̃

(
X̃
))

be the Gaussianization X̃ and V = Φ−1
N (FX (X)) is the

Gaussianization of X. Assume that g is monotonically increasing. Then,

FX̃(a) = P (X̃ ≤ a) = P (g(X) ≤ a) = P (X ≤ g−1(a)).

Therefore, FX̃

(
X̃
)

= FX

(
g−1(X̃)

)
= FX(X) and Ṽ = V . An equivalent derivation holds

for the monotonically decreasing case.

Before we proceed, it is important to briefly comment on the implications of the finite
sample size in our multivariate experiments. The ACE procedure estimates conditional
expectations at each of its iterations. This estimation task is known to be quite challenging
in a finite sample size regime. Breiman and Friedman (1985) suggest a k nearest neighbor
estimator which guarantees favorable consistency properties. Unfortunately, this solution
suffers from the curse of dimensionality (Hastie et al., 2005). Therefore, as the dimension of
our problem increases, we cannot turn to ACE and have to settle for suboptimal solutions.
In our experiments, we use the kernel CCA (Lai and Fyfe, 2000) as an alternative to ACE
when the dimension size is greater than d = 5. The kernel CCA (KCCA) is a non-linear
generalization to the classical CCA which embeds the data in a high-dimensional Hilbert
space and applies CCA in that space. It is known to significantly improve the flexibility of
CCA while avoiding over-fitting of the data. Notice that other non-linear CCA extensions,
such as Deep CCA (Andrew et al., 2013) or nonparametric CCA (Michaeli et al., 2016),
may also apply as a finite sample size alternative to ACE.

We now demonstrate our suggested approach to the jointly Gaussian model discussed
above. The left plot of Figure 3 demonstrates the results we achieve for different dimension
sizes d. The black line on the top is I(X,Y ), which can be analytically derived. The red
curve with the squares at the bottom is separate Gaussianization of X and Y , which results
in a very poor lower bound to the mutual information due to the non-monotonic nature of the
transformation that we apply. The green curve with the circles is ACE, while the dashed blue
curve is separate Gaussianization of ACE. Finally, the blue line between them is bi-terminal
Gaussianization of ACE. As we can see, ACE succeeds in recovering the jointly Gaussian
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representation of X and Y , which makes further Gaussianization redundant. Unfortunately,
for d > 5 we can no longer apply ACE and turn to KCCA instead. We use a Gaussian
kernel with varying parameters to achieve the reported results. Since the KCCA attains
a suboptimal representation it is followed by Gaussianization, which further decreases our
objective. Here, we notice the improved effect of the bi-terminal Gaussianization, compared
with separate Gaussianization.

Next, we turn to a more challenging exponential model. In this model, each component
of X and W is exponentially distributed with a unit parameter, while all the components
are independent of each other. Again, we define Y = X + W so that Y is Gamma dis-
tributed. This allows us to analytically derive I(X,Y ). As before, we apply an invertible
non-monotonic transformation to each of the components of X and Y . Notice that this
time we mirror the observations in the range [0, 2] with respect to 1. We then apply a
linear rotation, so that the components are no longer independent. The plot in the middle
of Figure 3 demonstrates the results we achieve. As before, we notice that separate Gaus-
sianzation of X and Y preforms very poorly. On the other hand, ACE as well does not
succeed in maintaining the MI. This means that no Gaussianzation procedure would allow
jointly normal representation of X and Y without losing information (Lemma 3). Still, by
applying bi-terminal Gaussianization to ACE’s results we are able to capture more than
half of the information in the worst case (for d = 5, where ACE still applies). As before,
we witness a reduction of performance when turning from ACE to KCCA.

Finally, we go back to the multivariate extension of the Gaussian mixture model de-
scribed in Section 4.4 and apply our suggested procedures. Again, we witness the same
behavior described in the previous experiments. In addition, our results indicate that in
this model, the Gaussian part of the MI is significantly smaller, compared with the expo-
nential model. This further demonstrates the ability of our method to quantify how well
an arbitrary distribution may be represented as jointly normal.

6. Gaussian lower bound for the Information Bottleneck Curve

We now extended our derivation to the Information Bottleneck (IB) curve. We show that by
maximizing the Gaussian lower bound of the mutual information (3), we allow a maximiza-
tion of a Gaussian lower bound to the entire IB curve. We prove this in two steps. First,
we show that the IB curve of φ(X), ψ(Y ) bounds from below the IB curve of X and Y , for
any choice of φ, ψ (specifically, φ(X) ∼ N and ψ(Y ) ∼ N , in our case). This property is
referred to as the data processing lemma for the IB curve. Then, we show that the IB curve
of jointly normal random variables bounds from below the IB curve of separately normal
random variable. Finally, by applying the GIB (Chechik et al., 2005) to the maximally
correlated jointly normal random variables that satisfy (3), we attain the desired Gaussian
lower bound for the IB of X and Y .

Lemma 6 (data processing lemma for the IB Curve): Let (20) be the equivalent maximiza-
tion problem of the IB problem (1):

max
T

I(T (X);Y )

subject to I(T (X);X) ≤ IX .
(20)
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Figure 3: Multivariate Gaussianization experiments: The black line on the top of each plot
is I(X,Y ). The red curve with the squares at the bottom is separate Gaussianization of X
and Y . The green curve with the circles is ACE, while the dashed blue curve is separate
Gaussianization of ACE. The blue line in between is bi-terminal Gaussianization of ACE.

Denote its solution as Iβ∗ (X;Y ). Then, Iβ∗ (X;Y ) ≥ Iβ∗ (φ(X);ψ(Y )) for any φ, ψ, and with
equality iff I (X;Y ) = I (φ(X);ψ(Y )).

Proof We prove this lemma by showing that Iβ∗ (X;Y ) ≥ Iβ∗ (X;ψ(Y )) ≥ Iβ∗ (ψ(X);ψ(Y )).
We start with the first inequality. According to the data processing lemma, we have that
I(T (X);Y ) ≥ I(T (X);ψ(Y )). Notice that for convenience, we emphasize that T is indeed
a mapping of X alone. In addition, since our constraint (1) is independent of Y , we have

that Iβ∗ (X;Y ) ≥ Iβ∗ (X;ψ(Y )), as desired. Second, denote the minimizer of (1) as I∗(X;Y ).
Assume that there exists such φ that

I∗(X;Y ) > I∗(φ(X);Y ). (21)

This means that for I(T (X);Y ) ≥ IY and I(T ′(φ(X));Y ) ≥ IY we have that I(T (X);X) >
I(T ′(φ(X));φ(X)) where T and T ′ are the optimizers of (1) with respect to (X,Y ) and
(φ(X), Y ), for a given IY , respectively. Let us set T̄ ≡ T ′ ◦φ and apply this transformation
to X. Then, we have that the constraint of (1) is met, as I(T̄ (X);Y ) ≡ I(T ′(φ(X));Y ) ≥
IY . In addition, we have that

I(T̄ (X);X) ≡ I(T ′(φ(X));X) = I(T ′(φ(X));φ(X))

where the second equality follows from T ′ being independent of X, given φ(X). Therefore,
T̄ = T ′ ◦ φ is a better optimizer to (1) with respect to X and Y , then T . This contradicts
the optimality of T as a minimizer of (1), which means that the assumption in (21) is false.

Therefore, I∗(X;Y ) ≤ I∗(φ(X);Y ) which means that Iβ∗ (X;Y ) ≥ Iβ∗ (φ(X);Y ) for any Y
(specifically, φ(Y )) and our proof is concluded.
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Lemma 7 Let U and V be separately Gaussian random vectors with a joint covariance
matrix C[U,V ] (that is, U ∼ N and V ∼ N but [U, V ]T is not normally distributed). Let
U jg, V jg be two jointly normally distributed random vectors with the same covariance matrix,
C[Ujg ,V jg ] = C[U,V ]. Then, the IB curve of U jg and V jg bounds from below the IB curve of
U and V .

Proof Let
(
I(U jg;T ), I(T ;V jg)

)
be a point of the IB curve of U jg and V jg. Since U jg and

V jg are jointly normally distributed, T is necessarily a linear transformation of U jg, with
additive independent Gaussian noise (Chechik et al., 2005). Specifically, T = AU jg + ζ,
where ζ ∼ N(0, I), independent of U jg and V jg.

Further, let T ′ = AU + ζ be the same transformation, applied of U . Since U and V are
not jointly normal, the point (I(U ;T ′), I(T ′;V )) is below the IB curve of U and V . First,
notice that

I(U ;T ′) ≡ I(U ;AU + ζ) = I(U jg;AU jg + ζ) ≡ I(U jg, T )

where the second equality follows from U and U jg having the same distribution. In ad-
dition, since C[Ujg ,V jg ] = C[U,V ] we have that C[AUjg+ζ,V jg ] = C[AU+ζ,V ]. Therefore,

I(AU + ζ;V ) ≥ I(AU jg + ζ;V jg), in the same manner as the in (3). This means that

I(T ′;V ) ≥ I(T ;V jg). To conclude, we showed that for the two pairs,
(
I(U jg;T ), I(T ;V jg)

)
and (I(U ;T ′), I(T ′;V )), we have that I(U ;T ′) = I(U jg, T ) while I(T ′;V ) ≥ I(T ;V jg), as
desired.

The two theorems above guarantee that the IB curve of X and Y is bounded from
below by the IB curve of U jg and V jg, where C[Ujg ,V jg ] = C[U,V ], and U = φ(X) ∼ N , V =

ψ(Y ) ∼ N . Therefore, in order to maximize this lower bound, one needs to maximize the
correlation between U and V , subject to a normality constraint, as discussed throughout this
manuscript. Moreover, once we have found a pair of (U jg, V jg) with a maximal correlation,
we may directly apply the GIB to it, as shown by Chechik et al. (2005), to achieve the
optimal Gaussian lower bound oIB curve for X and Y .

6.1 Examples

We now demonstrate our suggested Gaussian lower bound for the IB curve in two different
setups. Here, we would like to compare our bound with the “true” IB curve, and with an
additional benchmark off-the-shelf lower bound. As discussed in Section 1, computing the
exact IB curve (for a general joint distribution) is not a simple task. This task becomes
even more complicated when dealing with continuous random variables. In fact, to the
best of our knowledge, all currently known methods provide approximated curves, which
do not claim to converge to the exact IB curve. Moreover, these methods fail to provide
any guarantees on the extent of their divergence from the true IB curve. Therefore, in our
experiments, we apply the commonly used reverse annealing technique (Slonim, 2002) in
order to approximate the “true” IB curve. The reverse annealing algorithm is initiated by
computing the mutual information between X and Y , which corresponds to extreme point
where IY →∞ on the IB curve. Then, IY is gradually decreased and the solution of the IB
problem (1) with the previous value of IY serves as a starting point to the currently solved
IY . This results in a greedy “no-regret” optimization method, which in general, fails to
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converge to the exact IB curve. However, in some special cases (such as the GIB), it can be
shown that the optimal solution for a given value of IY is, in fact, the optimal starting point
for a smaller value of IY . In the general case, it is implicitly assumed to be a reasonable
local optimization domain. Since the reverse annealing was originally designed for discrete
random variables, we apply discretization (via Gaussian quadratures) to our probability
distributions is all of our experiments.

We begin by revisiting the exponential model, described in Section 5.4. In this model, X
and W are independent exponentially distributed random variables with a unit parameter.
We define Y = X + W so that Y is Gamma distributed. As in Section 5.4 we apply an
invertible non-monotonic transformation to X and Y , to make this problem more challeng-
ing. Since approximating the IB curve is involved enough for continuous random variables,
we limit our attention to the simplest univariate case.

The plot on the left of Figure 4 demonstrates the results we achieve. The black curve
on top is the approximated IB curve, using the reverse annealing procedure. The red curve
on the bottom is a benchmark lower bound, achieved by simply applying the GIB to X
and Y , as if they were jointly Gaussian. The blue curve in the middle is our suggested
Gaussian lower bound (Section 4.2). As we can see, our suggested bound surpasses the
GIB quite remarkably. This is mainly due to the non-monotonic transformation we apply,
which makes the joint distribution highly non-Gaussian. We further notice that our bound
is quite tight for smaller IY ’s (closer to the origin) but increasingly diverges as IY increases.
The reason is that more compressed representations are more “degenerate” and are easier
to Gaussianize while maintaining reasonably high correlations.

Next, we revisit the more challenging Gaussian mixture model, described in Section 4.4.
The right plot in Figure 4 demonstrates the results we achieve. As before, we notice that
our suggested lower bound surpasses the naive benchmark, while demonstrating favorable
performance closer to the origin. Comparing the two models, we notice that the Gaussian
mixture is more difficult to bound from below using our suggested method. This result is
not surprising, given the gap in our ability to bound from below the mutual information in
these two models, as discussed in Section 5.4.

7. Discussion and conclusion

In this work we address the fundamental problem of normalizing non-Gaussian data, while
trying to avoid loss of information. This allows us to solve complex problems by linear
means, as we push information to the data’s second moments. We show that our ability to do
so is strongly governed by the non-linear canonical correlations of the data. In other words, if
the non-linear canonical coefficients of the data fail to maintain its mutual information, then
it is impossible to describe its high order dependencies just by second order statistics. This
result is of high interest to a broad variety of applications, as solving non-linear problems
by linear means is a common alternative in many scientific and engineering fields. Further,
we provide a variety of methods to quantify the minimal amount of information that may
be lost when normalizing the data. We show that in many cases, our suggested approach is
able to preserve a significant portion of the information, even for highly non-Gaussian joint
distributions. Our results improve upon Cardoso (2003) information geometry bound, as
we show that a tighter bound may be obtained by the AGCE method.
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Figure 4: Bounding the Information Bottleneck curve for Exponential and Gaussian Mixture
distributions: The black line is the approximated IB curve and the blue line is our suggested
Gaussian lower bound. The red curve is achieved by applying the GIB directly to X, Y .

It is important to mention that while our suggested approach is theoretically found, it
exhibits several practical limitation in a finite sample-size setup. This is a direct result of
our use of the ACE algorithm, which suffers from the curse of dimensionality when applied
to high-dimensional data. Therefore, we further examine different non-linear CCA methods,
which are less vulnerable to this problem. However, these methods fail to converge to the
optimal canonical coefficients.

Finally, we show that our results may be generalized to bound from below the entire
information bottleneck curve. This allows a practical alternative for different approxima-
tion methods and restrictive solutions to the involved IB problem in the continuous case.
Our experiments show that the suggested Gaussian lower bound provides a meaningful
benchmark to the IB curve, even in highly non-Gaussian setups.
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