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Abstract
Recently, fundamental conditions on the sampling patterns have been obtained for finite com-
pletability of low-rank matrices or tensors given the corresponding ranks. In this paper, we consider
the scenario where the rank is not given and we aim to approximate the unknown rank based on
the location of sampled entries and some given completion. We consider a number of data models,
including single-view matrix, multi-view matrix, CP tensor, tensor-train tensor and Tucker tensor.
For each of these data models, we provide an upper bound on the rank when an arbitrary low-rank
completion is given. We characterize these bounds both deterministically, i.e., with probability one
given that the sampling pattern satisfies certain combinatorial properties, and probabilistically, i.e.,
with high probability given that the sampling probability is above some threshold. Moreover, for
both single-view matrix and CP tensor, we are able to show that the obtained upper bound is ex-
actly equal to the unknown rank if the lowest-rank completion is given. Furthermore, we provide
numerical experiments for the case of single-view matrix, where we use nuclear norm minimiza-
tion to find a low-rank completion of the sampled data and we observe that in most of the cases the
proposed upper bound on the rank is equal to the true rank.
Keywords: Low-rank data completion, rank estimation, tensor, matrix, manifold, Tucker rank,
tensor-train rank, CP rank, multi-view matrix.

1. Introduction

Developing methods and algorithms to study large high-dimensional data is becoming more indis-
pensable as hyperspectral images and videos, product ranking datasets and other applications of big
datasets are attracting more attention recently. Moreover, in order to guarantee the same level of
efficiency in images or videos, a minor increment in dimensionality in the datasets entails a sig-
nificant increment in the amount of the data, and this fact causes modeling and also computational
challenges to analyze big high-dimensional datasets. Consequently, providing a statistically rig-
orous result requires a massive amount of data that grows exponentially with the dimension. The
low-rank data completion problem is concerned with completing a matrix or tensor given a subset
of its entries and some rank constraints. Various applications can be found in many fields includ-
ing image and signal processing (Candès et al., 2013; Ji et al., 2010), data mining (Eldén, 2007),
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network coding (Harvey et al., 2005), compressed sensing (Lim and Comon, 2010; Sidiropoulos
and Kyrillidis, 2012; Ashraphijuo et al., 2016c; Gandy et al., 2011; Ashraphijuo and Wang, 2017c;
Ashraphijuo et al., 2015), reconstructing the visual data (Liu et al., 2013), bioinformatics and sys-
tems biology (Ogundijo et al., 2017; Ogundijo et al.), fingerprinting (Liu et al., 2016), etc. There is
an extensive literature on developing various optimization methods to treat this problem including
minimizing a convex relaxation of rank (Candès and Recht, 2009; Candès and Tao, 2010; Cai et al.,
2010; Gandy et al., 2011; Ashraphijuo et al., 2016b; Ashraphijuo and Wang, 2017c), non-convex
approaches (Recht and Ré, 2013), and alternating minimization (Jain et al., 2013; Ge et al., 2016),
etc. More recently, deterministic conditions on the sampling patterns have been studied for sub-
space clustering in (Pimentel-Alarcón et al., 2016c, 2015, 2016a,b). Moreover, the fundamental
conditions on the sampling pattern that lead to different numbers of completion (unique, finite, or
infinite) for different data structures given the corresponding rank constraints have been investi-
gated in (Pimentel-Alarcón et al., 2016d; Ashraphijuo et al., 2017c; Ashraphijuo and Wang, 2017b;
Ashraphijuo et al., 2016a; Ashraphijuo and Wang, 2017a; Ashraphijuo et al., 2017d,a,b).

However, in many practical low-rank data completion problems, the rank may not be known
a priori. In this paper, we investigate this problem and we aim to approximate the rank based on
the given entries, where it is assumed that the original data is generically chosen from the manifold
corresponding to the unknown rank. The only existing work that treats this problem for a single-
view matrix data based on the sampling pattern is (Pimentel-Alarcón and Nowak, 2016), which
requires some strong assumptions including the existence of a completion whose rank r is a lower
bound on the unknown true rank r∗, i.e., r∗ ≥ r. We start by investigating the single-view matrix to
provide a new analysis that does not require such assumption and also we can extend our approach
to treat the CP rank tensor model. Moreover, we further generalize our approach to treat vector rank
data models including the multi-view matrix, the Tucker rank tensor and the tensor-train (TT) rank
tensor. For each of these data models, we obtain the upper bound on the scalar rank or component-
wise upper bound on the unknown vector rank, deterministically based on the sampling pattern and
the rank of a given completion. We also obtain such bound that holds with high probability based on
the sampling probability. Moreover, for the single-view matrix, we provide some numerical results
to show how tight our probabilistic bounds on the rank are (in terms of the sampling probability). In
particular, we used nuclear norm minimization to find a completion and demonstrate our proposed
method in obtaining a tight bound on the unknown rank.

In general, providing a completion requires much less samples than recovering the original
sampled data. The goal of this paper is to solve the fundamental problem of rank determination
for the original sampled data given an arbitrary low-rank data completion. One possible application
scenario is to improve upon the low-rank completion obtained by the convex relaxation methods.
Specifically, using convex optimization (minimization of nuclear and atomic norms or summation
of nuclear norms of matricizations and unfoldings) or any other methods in the literature, we may
be able to find a fairly low-rank “completion” of the original data, which is not necessarily equal (or
even close) to the original sampled data. Then, under some circumstances, the rank of the obtained
completion using any rank independent method can be an upper bound on the rank of the original
sampled data (and sometimes the obtained rank can be exactly equal to the rank of the original
sampled data).

We take advantage of the geometric analysis on the manifold of the corresponding data which
leads to the fundamental conditions on the sampling pattern (independent of the value of entries)
(Pimentel-Alarcón et al., 2016d; Ashraphijuo et al., 2017c; Ashraphijuo and Wang, 2017b; Ashraphi-
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juo et al., 2016a; Ashraphijuo and Wang, 2017a) such that given an arbitrary low-rank completion
we can provide a tight upper bound on the rank. To illustrate how such approximation is even pos-
sible consider the following example. Assume that an n1 × n2 rank-2 matrix is chosen generically
from the corresponding manifold. Hence, any 2×2 submatrix of this matrix is full-rank with proba-
bility one (due to the genericity assumption). Moreover, note that any 3×3 submatrix of this matrix
is not full-rank. As a result, by observing the sampled entries we can find some bounds on the
rank. Using the analysis in (Pimentel-Alarcón et al., 2016d; Ashraphijuo et al., 2017c; Ashraphijuo
and Wang, 2017b; Ashraphijuo et al., 2016a; Ashraphijuo and Wang, 2017a) on finite completablity
of the sampled data (finite number of completions) for different data models, we characterize both
deterministic and probablistic bounds on the unknown rank.

The remained of the paper is organized as follows. In Section 2, we introduce the data models
and problem statement. In Sections 3 and 4 we characterize our determintic and probablistic bounds
for scalar-rank cases (single-view matrix and CP tensor) and vector-rank cases (multi-view matrix,
Tucker tensor and TT tensor), respectively. Finally, Section 5 concludes the paper.

2. Data Models and Problem Statement

2.1 Matrix Models

2.1.1 SINGLE-VIEW MATRIX

Assume that the sampled matrix U is chosen generically from the manifold of the n1×n2 matrices
of rank r∗, where r∗ is unknown. The matrix V ∈ Rn1×r∗ is called a basis for U if each column
of U can be written as a linear combination of the columns of V. Denote Ω as the binary sampling
pattern matrix that is of the same size as U and Ω(~x) = 1 if U(~x) is observed and Ω(~x) = 0
otherwise, where ~x = (x1, x2) represents the entry corresponding to row number x1 and column
number x2. Moreover, define UΩ as the matrix obtained from sampling U according to Ω, i.e.,

UΩ(~x) =

{
U(~x) if Ω(~x) = 1,
0 if Ω(~x) = 0.

(1)

2.1.2 MULTI-VIEW MATRIX

The matrix U ∈ Rn×(n1+n2) is sampled. Denote a partition of U as U = [U1|U2] where U1 ∈
Rn×n1 and U2 ∈ Rn×n2 represent the first and second views of data, respectively. The sampling
pattern is defined as Ω = [Ω1|Ω2], where Ω1 and Ω2 represent the sampling patterns corresponding
to the first and second views of data, respectively. Assume that rank(U1) = r∗1, rank(U2) = r∗2 and
rank(U) = r∗, and also U is chosen generically from the manifold structure with above parameters.
Denote r∗ = (r∗1, r

∗
2, r
∗) which is assumed unknown.

2.2 Tensor Models

Assume that a d-way tensor U ∈ Rn1×···×nd is sampled. For the sake of simplicity in notation, define
Ni ,

(
Πi
j=1 nj

)
, N̄i ,

(
Πd
j=i+1 nj

)
and N−i , Nd

ni
. Denote Ω as the binary sampling pattern

tensor that is of the same size as U and Ω(~x) = 1 if U(~x) is observed and Ω(~x) = 0 otherwise,
where U(~x) represents an entry of tensor U with coordinate ~x = (x1, . . . , xd). Moreover, define UΩ
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as the tensor obtained from sampling U according to Ω, i.e.,

UΩ(~x) =

{
U(~x) if Ω(~x) = 1,
0 if Ω(~x) = 0.

(2)

For each subtensor U ′ of the tensor U , define NΩ(U ′) as the number of observed entries in U ′
according to the sampling pattern Ω.

Define the matrix Ũ(i) ∈ RNi×N̄i as the i-th unfolding of the tensor U , such that U(~x) =

Ũ(i)(M̃i(x1, . . . , xi), M̃−i(xi+1, . . . , xd)), where M̃i : (x1, . . . , xi) → {1, 2, . . . , Ni} and M̃−i :
(xi+1, . . . , xd)→ {1, 2, . . . , N̄i} are two bijective mappings.

Let U(i) ∈ Rni×N−i be the i-th matricization of the tensor U , such that U(~x) = U(i)(xi,Mi(x1,
. . . , xi−1, xi+1, . . . , xd)), where Mi : (x1, . . . , xi−1, xi+1, . . . , xd) → {1, 2, . . . , N−i} is a bijec-
tive mapping. Observe that for any arbitrary tensor A, the first matricization and the first unfolding
are the same, i.e., A(1) = Ã(1).

In what follows, we introduce three different tensor ranks, i.e., the CP rank, Tucker rank and TT
rank.

2.2.1 CP DECOMPOSITION

The CP rank of a tensor U , rankCP(U) = r, is defined as the minimum number r such that there
exist ali ∈ Rni for 1 ≤ i ≤ d and 1 ≤ l ≤ r, such that

U =
r∑
l=1

al1 ⊗ al2 ⊗ . . .⊗ ald, (3)

or equivalently,

U(x1, x2, . . . , xd) =
r∑
l=1

al1(x1)al2(x2) . . .ald(xd), (4)

where ⊗ denotes the tensor product (outer product) and ali(xi) denotes the xi-th entry of vector ali.
Note that al1 ⊗ al2 ⊗ . . .⊗ ald ∈ Rn1×···×nd is a rank-1 tensor, l = 1, 2, . . . , r.

2.2.2 TUCKER DECOMPOSITION

Given U ∈ Rn1×···×nd and X ∈ Rni×n′i , the product U ′ , U ×i X ∈ Rn1×···×ni−1×n′i×ni+1×···×nd

is defined as

U ′(x1, · · · , xi−1, ki, xi+1, · · · , xd) ,
ni∑
xi=1

U(x1, · · · , xi−1, xi, xi+1, · · · , xd)X(xi, ki). (5)

The Tucker rank of a tensor U is defined as rankTucker(U) = r = (m1, . . . ,md) where mi =
rank(U(i)), i.e., the rank of the i-th matricization, i = 1, . . . , d. The Tucker decomposition of U is
given by

U(~x) =

m1∑
k1=1

· · ·
md∑
kd=1

C(k1, . . . , kd)T1(k1, x1) . . .Td(kd, xd), (6)
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or in short

U = C ×di=1 Ti, (7)

where C ∈ Rm1×···×md is the core tensor and Ti ∈ Rmi×ni are d orthogonal matrices.

2.2.3 TT DECOMPOSITION

The separation or TT rank of a tensor is defined as rankTT(U) = r = (u1, . . . , ud−1) where ui =
rank(Ũ(i)), i.e., the rank of the i-th unfolding, i = 1, . . . , d − 1. Note that ui ≤ max{Ni, N̄i} in
general and also u1 is simply the conventional matrix rank when d = 2. The TT decomposition of
a tensor U is given by

U(~x) =

u1∑
k1=1

· · ·
ud−1∑
kd−1=1

U (1)(x1, k1)

(
d−1∏
i=2

U (i)(ki−1, xi, ki)

)
U (d)(kd−1, xd), (8)

or in short

U = U (1) . . .U (d), (9)

where the 3-way tensors U (i) ∈ Rui−1×ni×ui for i = 2, . . . , d− 1 and matrices U (1) ∈ Rn1×u1 and
U (d) ∈ Rud−1×nd are the components of this decomposition.

For each matrix or tensor model, we assume that the true rank of U or U is r∗ or r∗ which is
unknown, and also U or U is chosen generically from the corresponding manifold. The table below
represents the mentioned symbols in brief.

Data structure Sampled data Rank Comments
Single-view matrix U ∈ Rn1×n2 r∗ –
Multi-view matrix U = [U1|U2] ∈ Rn×(n1+n2) r∗ = (r∗1, r

∗
2, r
∗) r∗i = rank(Ui)

CP tensor U ∈ Rn1×···×nd r∗ –
Tucker tensor U ∈ Rn1×···×nd r∗ = (m∗1, . . . ,m

∗
d) m∗i = rank(U(i))

TT tensor U ∈ Rn1×···×nd r∗ = (u∗1, . . . , u
∗
d−1) u∗i = rank(Ũ(i))

2.3 Problem Statement

In this paper, we assume that there exists a full rank completion of the sampled data (i.e., the data is
not over-sampled). For each one of the above data models, we are interested in obtaining the upper
bound on the unknown scalar-rank r∗ or component-wise upper bound on the unknown vector-rank
r∗, deterministically based on the sampling pattern Ω or Ω and the rank of a given completion.
Also, we aim to provide such bound that holds with high probability based only on the sampling
probability of the entries and the rank of a given completion. Moreover, for the single-view matrix
model and CP-rank tensor model, where the rank is a scalar, we provide both deterministic and
probabilistic conditions such that the unknown rank can be exactly determined.
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3. Scalar-Rank Cases

3.1 Single-View Matrix

Previously, this problem has been treated in (Pimentel-Alarcón and Nowak, 2016), where strong
assumptions including the existence of a completion with rank r ≤ r∗ have been used. In this
section, we provide an analysis that does not require such assumption and moreover our analysis
can be extended to multi-view data and tensors in the following sections. Furthermore, we show the
tightness of our theoretical bounds via numerical examples.

Assume that U ∈ Rn1×n2 is the sampled matrix. Let P1 and P2 denote the Lebesgue measures
on Rn1×r∗ and Rr∗×n2 , respectively. In this paper, we assume that the matrix U is chosen generi-
cally from the manifold of n1×n2 matrices of rank r∗, i.e., the entries of U are drawn independently
with respect to Lebesgue measure on the corresponding manifold. Hence, the probability measures
of all statements in this subsection are P1 × P2.

3.1.1 DETERMINISTIC RANK ANALYSIS

The following condition will be used frequently in this subsection.
Condition Ar: Each column of the sampled matrix includes at least r sampled entries.
Consider an arbitrary column of the sampled matrix U (:, i), where i ∈ {1, . . . , n2}. Let li =

NΩ(U (:, i)) denote the number of observed entries in the i-th column of U. Condition Ar results
that li ≥ r.

We construct a binary valued matrix called constraint matrix Ω̆r based on Ω and a given
number r. Specifically, we construct li−r columns with binary entries based on the locations of the
observed entries in U (:, i) such that each column has exactly r+1 entries equal to one. Assume that
x1, . . . , xli are the row indices of all observed entries in this column. Let Ωi

r be the corresponding
n1 × (li − r) matrix to this column which is defined as the following: for any j ∈ {1, . . . , li − r},
the j-th column has the value 1 in rows {x1, . . . , xr, xr+j} and zeros elsewhere. Define the binary
constraint matrix as Ω̆r =

[
Ω1
r |Ω2

r . . . |Ωn2
r

]
∈ Rn1×Kr (Pimentel-Alarcón et al., 2016d), where

Kr = NΩ(U)− n2r.
Condition Br: There exists a submatrix1 Ω̆′r ∈ Rn1×K of Ω̆r such that K = n1r − r2 and for

any K ′ ∈ {1, 2, . . . ,K} and any submatrix Ω̆′′r ∈ Rn1×K′ of Ω̆′r we have

rf(Ω̆′′r)− r2 ≥ K ′, (10)

where f(Ω̆′′r) denotes the number of nonzero rows of Ω̆′′r .
Note that exhaustive enumeration is needed in order to check whether or not Condition Br

holds. Hence, the deterministic analysis cannot be used in practice for large-scale data. However, it
serves as the basis of the subsequent probabilistic analysis that will lead to a simple lower bound on
the sampling probability such that Condition Br holds with high probability, which is of practical
value.

In the following, we restate Theorem 1 in (Pimentel-Alarcón et al., 2016d) which will be used
later.

Lemma 1 With probability one, there are finitely many completions of the sampled matrix if and
only if Conditions Ar∗ and Br∗ hold.

1. Specified by a subset of rows and a subset of columns (not necessarily consecutive).
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Recall that the true rank r∗ is assumed unknown.

Definition 2 Let SΩ denote the set of all natural numbers r such that both Conditions Ar and Br
hold.

Lemma 3 There exists a number rΩ such that SΩ = {1, 2, . . . , rΩ}.

Proof Assume that 1 < r ≤ min{n1, n2} and r ∈ SΩ. It suffices to show r − 1 ∈ SΩ. By
contradiction, assume that r − 1 /∈ SΩ. Therefore, according to Lemma 1, there exist infinitely
many completions of U of rank r − 1 and there exist at most finitely many completions of U of
rank r.

Consider a rank r − 1 completion Ur−1. Note that changing one single entry (a non-observed
entry) of Ur−1, for example Ur−1(1, 1) = x, to a random number in y ∈ R changes the rank of
this matrix by at most 1 and basically since we are changing to a random number, it can be easily
seen that the rank does not decrease with probability one. Hence, the rank of the modified matrix
U′r−1 would be either r − 1 or r. Assume that the rank has been increased to r. Then, we show
there exist infinitely many completions of rank r, which contradicts the assumption. In fact, for
any value of Ur−1(1, 1) except x, this matrix would be a rank r completion. To observe this more
clearly, consider the r × r submatrix of U′r−1 whose determinant is not zero due to changing the
value of Ur−1(1, 1). It is easily observed that this submatrix includes U′r−1(1, 1) and let assume
it is U′r−1(1 : r, 1 : r), and therefore the determinant of U′r−1(2 : r, 2 : r) is a nonzero number
(otherwise the rank would not increase by changing the value of Ur−1(1, 1)). Hence, it is easy to
see that for any value of Ur−1(1, 1) except x, U′r−1 would be a rank r completion, and therefore
there exist infinitely many completions of rank r and proof is complete in this scenario.

Now, assume that changing any of the non-observed entries does not increase the rank of Ur−1.
Then, this contradicts the assumption that there exists a full rank completion of the sampled data
since there does not exist any completion of rank higher than r − 1.

The following theorem provides a relationship between the unknown rank r∗ and rΩ.

Theorem 4 With probability one, exactly one of the following statements holds
(i) r∗ ∈ SΩ = {1, 2, . . . , rΩ};
(ii) For any arbitrary completion of the sampled matrix U of rank r, we have r /∈ SΩ.

Proof Suppose that there does not exist a completion of the sampled matrix U of rank r such that
r ∈ SΩ. Therefore, it is easily verified that statement (ii) holds and statement (i) does not hold.
On the other hand, assume that there exists a completion of the sampled matrix U of rank r, where
r ∈ SΩ. Hence, statement (ii) does not hold and to complete the proof it suffices to show that with
probability one, statement (i) holds.

Observe that rΩ ∈ SΩ, and therefore Condition ArΩ holds. Hence, each column of U includes
at least rΩ + 1 observed entries. On the other hand, the existence of a completion of the sampled
matrix U of rank r ∈ SΩ results in the existence of a basis X ∈ Rn1×r such that each column
of U is a linear combination of the columns of X, and thus there exists Y ∈ Rr×n2 such that
UΩ = (XY)Ω. Hence, given X, each observed entry U(i, j) results in a degree-1 polynomial in
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terms of the entries of Y as the following

U(i, j) =
r∑
l=1

X(i, l)Y(l, j). (11)

Consider the first column of U and recall that it includes at least rΩ+1 ≥ r+1 observed entries.
The genericity of the coefficients of the above-mentioned polynomials results that using r of the
observed entries the first column of Y can be determined uniquely. This is because there exists a
unique solution for a system of r linear equations in r variables that are linearly independent. Then,
there exists at least one more observed entry besides these r observed entries in the first column of
U and it can be written as a linear combination of the r observed entries that have been used to
obtain the first column of Y. Let U(i1, 1), . . . , U(ir, 1) denote the r observed entries that have
been used to obtain the first column of Y and U(ir+1, 1) denote the other observed entry. Hence,
the existence of a completion of the sampled matrix U of rank r ∈ SΩ results in an equation as the
following

U(ir+1, 1) =

r∑
l=1

tlU(il, 1), (12)

where tl’s are constant scalars, l = 1, . . . , r. Assume that r∗ /∈ SΩ, i.e., statement (i) does not
hold. Then, note that r∗ ≥ r + 1 and U is chosen generically from the manifold of n1 × n2 rank-
r∗ matrices, and therefore an equation of the form of (12) holds with probability zero. Moreover,
according to Lemma 1 there exist at most finitely many completions of the sampled matrix of rank
r. Therefore, there exist a completion of U of rank r with probability zero, which contradicts the
initial assumption that there exists a completion of the sampled matrix U of rank r, where r ∈ SΩ.

Note that the existing work that treats the similar problem for a single-view matrix data based
on the sampling pattern is (Pimentel-Alarcón and Nowak, 2016), which requires some strong as-
sumptions including the existence of a completion whose rank r is a lower bound on the unknown
true rank r∗, i.e., r∗ ≥ r. We provide a new analysis that does not require such assumption and also
based on our new analysis, we can extend our approach to treat other data structures.

Corollary 5 Consider an arbitrary number r′ ∈ SΩ. Similar to Theorem 4, it follows that with
probability one, exactly one of the followings holds

(i) r∗ ∈ {1, 2, . . . , r′};
(ii) For any arbitrary completion of the sampled matrix U of rank r, we have r /∈ {1, 2, . . . , r′}.

As a result of Corollary 5, we have the following.

Corollary 6 Assuming that there exists a rank-r completion of the sampled matrix U such that
r ∈ SΩ, then with probability one r∗ ≤ r.

Corollary 7 Let U∗ denote an optimal solution to the following NP-hard optimization problem

minimizeU′∈Rn1×n2 rank(U′) (13)

subject to U′Ω = UΩ.
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Also, let Û denote a suboptimal solution to the above optimization problem. Then, Corollary 5
results the following statements:

(i) If rank(U∗) ∈ SΩ, then r∗ = rank(U∗) with probability one.
(ii) If rank(Û) ∈ SΩ, then r∗ ≤ rank(Û) with probability one.

Remark 8 One challenge of applying Corollary 7 or any of the other obtained deterministic results
is the computation of SΩ, which involves exhaustive enumeration to check Condition Br. Next, for
each number r, we provide a lower bound on the sampling probability in terms of r that ensures
r ∈ SΩ with high probability. Consequently, we do not need to compute SΩ but instead we can
certify the above results with high probability.

3.1.2 PROBABILISTIC RANK ANALYSIS

The following lemma is a re-statement of Theorem 3 in (Pimentel-Alarcón et al., 2016d), which
is the probabilistic version of Lemma 1.

Lemma 9 Suppose r ≤ n1
6 and that each column of the sampled matrix is observed in at least l

entries, uniformly at random and independently across entries, where

l > max
{

12 log
(n1

ε

)
+ 12, 2r

}
. (14)

Also, assume that r(n1 − r) ≤ n2. Then, with probability at least 1− ε, r ∈ SΩ.

The following lemma is taken from (Ashraphijuo et al., 2016a) and will be used to derive a
lower bound on the sampling probability that leads to the similar statement as Theorem 4 with high
probability.

Lemma 10 Consider a vector with n entries where each entry is observed with probability p
independently from the other entries. If p > p′ = k

n + 1
4
√
n

, then with probability at least(
1− exp(−

√
n

2 )
)

, more than k entries are observed.

The following proposition characterizes the probabilistic version of Theorem 4.

Proposition 11 Suppose r ≤ n1
6 , r(n1 − r) ≤ n2 and that each entry of the sampled matrix is

observed uniformly at random and independently across entries with probability p, where

p >
1

n1
max

{
12 log

(n1

ε

)
+ 12, 2r

}
+

1
4
√
n1
. (15)

Then, with probability at least (1− ε)
(

1− exp(−
√
n1

2 )
)n2

, we have r ∈ SΩ.

Proof Consider an arbitrary column of U and note that resulting from Lemma 10 the number of
observed entries at this column of U is greater than max

{
12 log

(
n1
ε

)
+ 12, 2r

}
with probability

at least
(

1− exp(−
√
n1

2 )
)

. Therefore, the number of sampled entries at each column satisfies

l > max
{

12 log
(n1

ε

)
+ 12, 2r

}
, (16)

9
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with probability at least
(

1− exp(−
√
n1

2 )
)n2

. Thus, resulting from Lemma 9 with probability at
least
(1− ε)

(
1− exp(−

√
n1

2 )
)n2

, we have r ∈ SΩ.

Finally, we have the following probabilistic version of Corollary 7.

Corollary 12 Assume that rank(U∗) ≤ n1
6 and rank(U∗)(n1 − rank(U∗)) ≤ n2 and (15) holds

for r = rank(U∗), where U∗ denotes an optimal solution to the optimization problem (13). Then,

according to Proposition 11 and Corollary 7, with probability at least (1− ε)
(

1− exp(−
√
n1

2 )
)n2

,

r∗ = rank(U∗). Similarly, assume that rank(Û) ≤ n1
6 and rank(Û)(n1 − rank(Û)) ≤ n2 and (15)

holds for r = rank(Û), where Û denotes a suboptimal solution to the optimization problem (13).

Then, with probability at least (1− ε)
(

1− exp(−
√
n1

2 )
)n2

, r∗ ≤ rank(Û).

3.1.3 NUMERICAL RESULTS

In Fig. 1 and Fig. 2, the x-axis represents the sampling probability, and the y-axis denotes the
value of r. The color scale represents the lower bound on the probability of event r ∈ SΩ. For
example, as we can observe in Fig. 1, for any r ∈ {1, . . . , 44} we have r ∈ SΩ with probability at
least 0.6 (approximately based on the color scale since the corresponding points are orange) given
that p = 0.54.

We consider the sampled matrix U ∈ R300×15000 and U ∈ R1200×240000 in Fig. 1 and Fig. 2,
respectively. In particular, for fixed values of sampling probability p and r, we first find a “small” ε
that (15) holds by trial-and-error. Then, according to Proposition 11, we conclude that with proba-
bility at least (1− ε)

(
1− exp(−

√
n1

2 )
)n2

, r ∈ SΩ.
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Figure 1: Probability of r ∈ SΩ as a function of sampling probability for U ∈ R300×15000.
The purpose of Figs. 3–6 is to show how tight our proposed upper bounds on rank can be.

Here, we first generate an n1 × n2 random matrix of a given rank r by multiplying a random
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Sampling Probability
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Figure 2: Probability of r ∈ SΩ as a function of sampling probability for U ∈ R1200×240000.

(entries are drawn according to a uniform distribution on real numbers within an interval) n1 × r
matrix and r× n2 matrix. Then, each entry of the randomly generated matrix is sampled uniformly
at random and independently across entries with some sampling probability p. Afterwards, we
apply the nuclear norm minimization method proposed in (Candes and Recht, 2012) for matrix
completion, where the non-convex objective function in (13) is relaxed by using nuclear norm,
which is the convex hull of the rank function, as follows

minimizeU′∈Rn1×n2 ‖U′‖∗ (17)

subject to U′Ω = UΩ,

where ‖U′‖∗ denotes the nuclear norm of U′. Let Û∗ denote an optimal solution to (17) and recall
that U∗ denotes an optimal solution to (13). Since (17) is a convex relaxation to (13), we conclude
that Û∗ is a suboptimal solution to (13), and therefore rank(U∗) ≤ rank(Û∗). We used the Matlab
program found online (Shabat, 2015) to solve (17).

As an example, we generate a random matrix U ∈ R300×15000 (the same size as the matrix
in Fig. 1) of rank r as described above for r ∈ {1, . . . , 50} and some values of the sampling
probability p. Then, we obtain the rank of the completion given by (17) and denote it by r′. Due
to the randomness of the sampled matrix, we repeat this procedure 5 times. We calculate the “gap”
r′−r in each of these 5 runs and denote the maximum and minimum among these 5 numbers by dmax
and dmin, respectively. Hence, dmax and dmin represent the loosest (worst) and tightest (best) gaps
between the rank obtained by (17) and rank of the original sampled matrix over 5 runs, respectively.
In Figs. 3–6, the maximum and minimum gaps are plotted as a function of rank of the matrix, for
different sampling probabilities.

We have the following observations.

• According to Fig. 1, for p = 0.54 and p = 0.58 we can ensure that the rank of any completion
is an upper bound on the rank of the sampled matrix or r∗ with probability at least 0.6 and
0.8, respectively.

11
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Figure 3: The gaps between the rank of the obtained matrix via (17) and that of the original sampled
matrix for p = 0.46.
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Figure 4: The gaps between the rank of the obtained matrix via (17) and that of the original sampled
matrix for p = 0.50.

• As we can observe in Figs. 3–6, the defined gap is always a nonnegative number, which is
consistent with previous observation that for p = 0.54 and p = 0.58 we can certify that with
high probability (≥ 0.6) the rank of any completion is an upper bound on the rank of the
sampled matrix or r∗.

• For p = 0.54 and p = 0.58 that we have theoretical results (as mentioned in the first ob-
servation) the gap obtained by (17) is very close to zero. This phenomenon (that we do not
have a rigorous justification for) shows that as soon as we can certify our proposed theoretical
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Figure 5: The gaps between the rank of the obtained matrix via (17) and that of the original sampled
matrix for p = 0.54.

0 10 20 30 40 50
0

1

2

3

4

5

6

Rank of the Sampled Matrix

G
ap

 

 

Maximum Gap

Minimum Gap

Figure 6: The gaps between the rank of the obtained matrix via (17) and that of the original sampled
matrix for p = 0.58.

results (i.e., as soon as the rank of a completion provides an upper bound on the rank of the
sampled matrix or r∗) by increasing the sampling probability, the upper bound found through
(17) becomes very tight; in some cases this bound is exactly equal to r∗ (red curves) and in
some cases this bound is almost equal to r∗ (blue curves). However, these gaps are not small
(specially blue curves) for p = 0.46 and p = 0.50 and note that according to Fig. 1, for these
values of p we cannot guarantee the bounds on the value of rank hold with high probability.
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3.2 CP-Rank Tensor

Let Pi denote the Lebesgue measures on Rni×r∗ , i = 1, . . . , d. In this subsection, we assume
that the sampled tensor U ∈ Rn1×...×nd is chosen generically from the manifold of tensors of rank
r∗ = rankCP(U) (where r∗ is unknown), or in other words, the entries of U are drawn independently
with respect to Lebesgue measure on the corresponding manifold. Hence, the probability measures
of all statements in this subsection are P1 × P2 × . . .× Pd.

Condition Ar: Each row of the d-th matricization of the sampled tensor, i.e., U(d) includes at
least r observed entries.

We construct a binary valued tensor called constraint tensor Ω̆r based on Ω and a given number
r. Consider any subtensor Y ∈ Rn1×n2×···×nd−1×1 of the tensor U . The sampled tensor U includes
nd subtensors that belong to Rn1×n2×···×nd−1×1 and let Yi for 1 ≤ i ≤ nd denote these nd subten-
sors. Define a binary valued tensor Y̆i ∈ Rn1×n2×···×nd−1×ki , where ki = NΩ(Yi)−r and its entries
are described as the following. We can look at Y̆i as ki tensors each belongs to Rn1×n2×···×nd−1×1.
For each of the mentioned ki tensors in Y̆i we set the entries corresponding to r of the observed
entries equal to 1. For each of the other ki observed entries, we pick one of the ki tensors of Y̆i and
set its corresponding entry (the same location as that specific observed entry) equal to 1 and set the
rest of the entries equal to 0. In the case that ki = 0 we simply ignore Y̆i, i.e., Y̆i = ∅

By putting together all nd tensors in dimension d, we construct a binary valued tensor Ω̆r ∈
Rn1×n2×···×nd−1×K , where K =

∑nd
i=1 ki = NΩ(U) − rnd and call it the constraint tensor.

Observe that each subtensor of Ω̆r which belongs to Rn1×n2×···×nd−1×1 includes exactly r + 1
nonzero entries. In (Ashraphijuo and Wang, 2017b), an example is given on the construction of Ω̆r.

Condition Br: Ω̆r consists a subtensor Ω̆′r ∈ Rn1×n2×···×nd−1×K such that K = r(
∑d−1

i=1 ni)−
r2 − r(d− 2) and for any K ′ ∈ {1, 2, . . . ,K} and any subtensor Ω̆′′r ∈ Rn1×n2×···×nd−1×K′ of Ω̆′r
we have

r

((
d−1∑
i=1

fi(Ω̆
′′
r)

)
−min

{
max

{
f1(Ω̆′′r), . . . , fd−1(Ω̆′′r)

}
, r
}
− (d− 2)

)
≥ K ′, (18)

where fi(Ω̆′′r) denotes the number of nonzero rows of the i-th matricization of Ω̆′′r .
The following lemma is a re-statement of Theorem 1 in (Ashraphijuo and Wang, 2017b).

Lemma 13 With probability one, there are only finitely many rank-r∗ completions of the sampled
tensor if and only if Conditions Ar∗ and Br∗ hold.

Definition 14 Let SΩ denote the set of all natural numbers r such that both Conditions Ar and Br
hold.

Lemma 15 There exists a number rΩ such that SΩ = {1, 2, . . . , rΩ}.

Proof The proof is similar to the proof of Lemma 3 since the dimension of the manifold of CP
rank-r tensors is r(

∑d
i=1 ni)− r2 − r(d− 1), which is an increasing function in r.

The following theorem gives an upper bound on the unknown rank r∗.

Theorem 16 With probability one, exactly one of the following statements holds
(i) r∗ ∈ SΩ = {1, 2, . . . , rΩ};
(ii) For any arbitrary completion of the sampled tensor U of rank r, we have r /∈ SΩ.

14
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Proof Similar to the proof of Theorem 4, it suffices to show that the assumption r∗ /∈ SΩ results
that there exists a completion of U of CP rank r, where r ∈ SΩ, with probability zero. Define
V = (V1, . . . ,Vr) as the basis of the rank-r CP decomposition of U as in (3), where Vl = al1⊗al2⊗
. . . ⊗ ald−1 ∈ Rn1×...nd−1 is a rank-1 tensor and ali is defined in (3) for 1 ≤ l ≤ r and 1 ≤ i ≤ d.
Define Y = (a1

d, . . . ,a
r
d) and V ⊗dY =

∑r
l=1 Vl⊗ald. Observe that U =

∑r
l=1 Vl⊗ald = V ⊗dY .

Observe that each row of U(d) includes at least rΩ + 1 observed entries since Condition ArΩ
holds. Moreover, the existence of a completion of the sampled tensor U of rank r ∈ SΩ results
in the existence of a basis V = (V1, . . . ,Vr) such that there exists Y = (a1

d, . . . ,a
r
d) and UΩ =

(V ⊗d Y)Ω. As a result, given V , each observed entry of U results in a degree-1 polynomial in
terms of the entries of Y as

U(~x) =
r∑
l=1

Vl(x1, . . . , xd−1)ald(xd). (19)

Note that rΩ ≥ r and each row of U(d) includes at least rΩ + 1 ≥ r + 1 observed entries.
Consider r + 1 of the observed entries of the first row of U(d) and we denote them by U(~x1), . . . ,
U(~xr+1), where the last component of the vector ~xi is equal to one, 1 ≤ i ≤ r + 1. Similar to the
proof of Theorem 4, genericity of U results in

U(~xr+1) =

r∑
l=1

tlU(~xi), (20)

where tl’s are constant scalars, l = 1, . . . , r. On the other hand, according to Lemma 13 there exist
at most finitely many completions of the sampled tensor of rank r. Therefore, there exist a com-
pletion of U of rank r with probability zero. Moreover, an equation of the form of (20) holds with
probability zero as r∗ ≥ r+ 1 and U is chosen generically from the manifold of tensors of rank-r∗.
Therefore, there exists a completion of rank r with probability zero.

Corollary 17 Consider an arbitrary number r′ ∈ SΩ. Similar to Theorem 16, it follows that with
probability one, exactly one of the followings holds

(i) r∗ ∈ {1, 2, . . . , r′};
(ii) For any arbitrary completion of the sampled tensor U of rank r, we have r /∈ {1, 2, . . . , r′}.

Corollary 18 Assuming that there exists a CP rank-r completion of the sampled tensor U such that
r ∈ SΩ, we conclude that with probability one r∗ ≤ r.

Corollary 19 Let U∗ denote an optimal solution to the following NP-hard optimization problem

minimizeU ′∈Rn1×···×nd rankCP(U ′) (21)

subject to U ′Ω = UΩ.

Assume that rankCP(U∗) ∈ SΩ. Then, Corollary 18 results that r∗ = rankCP(U∗) with probability
one.

The following lemma is Lemma 15 in (Ashraphijuo and Wang, 2017b), which is the probabilistic
version of Lemma 13 in terms of the sampling probability.

15
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Lemma 20 Assume that n1 = n2 = · · · = nd = n, d > 2, n > max{200, r(d − 2)} and r ≤ n
6 .

Moreover, assume that the sampling probability satisfies

p >
1

nd−2
max

{
27 log

(n
ε

)
+ 9 log

(
2r(d− 2)

ε

)
+ 18, 6r

}
+

1
4
√
nd−2

. (22)

Then, with probability at least (1− ε)
(

1− exp(−
√
nd−2

2 )
)n2

, we have r ∈ SΩ.

The following corollary is the probabilistic version of Corollaries 18 and 19.

Corollary 21 Assuming that there exists a CP rank-r completion of the sampled tensor U such that
the conditions given in Lemma 20 hold, with the sampling probability satisfying (22), we conclude

that with probability at least (1− ε)
(

1− exp(−
√
nd−2

2 )
)n2

we have r∗ ≤ r. Therefore, given that
(22) holds for r = rank(U∗) and U∗ denotes an optimal solution to the optimization problem (21),

with probability at least (1− ε)
(

1− exp(−
√
nd−2

2 )
)n2

we have r∗ = rank(U∗).

3.2.1 NUMERICAL RESULTS

We generate a random tensor U ∈ R8×8×8×8×8×8 of CP-rank 2 by adding two random rank-1
tensors. The color scale represents the lower bound on the probability that we can guarantee the
rank of a given completion is an upper bound on the true value of rank. Then, we solve the following
convex optimization problem for different values of the sampling probability.

minimizeU ′∈Rn1×···×nd ‖Ũ′(3)‖∗ (23)

subject to U ′Ω = UΩ.

Note that rank of any of the unfoldings of a tensor is a lower bound on the CP-rank of that tensor.
Hence, we minimize the nuclear norm of the unfolding with the possible maximum rank among
all unfoldings as Ũ(3) ∈ R512×512. Then, we use the Matlab toolbox found online “Tensorlab”
to calculate the CP-rank of the obtained tensor via solving convex program (23) (there are other
methods to calculate CP decomposition, e.g., (Pimentel-Alarcón, 2016)). In Figure 7, gap represents
the CP-rank of the solution of (23) minus the CP-rank of the original sampled tensor.

4. Vector-Rank Cases

4.1 Multi-View Matrix

Let P1 and P2 denote the Lebesgue measures on Rn×r∗1 and Rr∗1×n1 , respectively. Moreover, let P3

and P4 denote the Lebesgue measures on Rn×(r∗−r∗1) and Rr∗2×n2 , respectively. In this paper, we
assume that U is chosen generically from the manifold corresponding to rank vector (r∗1, r

∗
2, r
∗), i.e.,

the entries of U are drawn independently with respect to Lebesgue measure on the corresponding
manifold. Hence, the probability measures of all statements in this subsection are P1×P2×P3×P4.

The following Conditions will be used frequently in this subsection.
Condition Ar1,r2 : Each column of U1 and U2 include at least r1 and r2 sampled entries,

respectively.
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Figure 7: The rank gap as a function of sampling probability for U ∈ R8×8×8×8×8×8 of CP-rank 2.

We construct a binary valued matrix called constraint matrix for multi-view matrix U as
Ω̆r1,r2 = [Ω̆r1 |Ω̆r2 ], where Ω̆r1 and Ω̆r2 represent the constraint matrix for single-view matrices
U1 and U2 (defined in Section 3.1), respectively.

Condition Br1,r2,r: Ω̆r1,r2 consists a submatrix Ω̆′r1,r2 ∈ Rn×K such that K = nr− r2− r2
1 −

r2
2 + r(r1 + r2) and for any K ′ ∈ {1, 2, . . . ,K} and any submatrix Ω̆′′r1,r2 ∈ Rn×K′ of Ω̆′r1,r2 we

have

(r − r2)
(
f(Ω̆′′r1)− r1

)+
+ (r − r1)

(
f(Ω̆′′r2)− r2

)+

+(r1 + r2 − r)
(
f(Ω̆′′r1,r2)− (r1 + r2 − r)

)+
≥ K ′, (24)

where f(X) denotes the number of nonzero rows of X for any matrix X and Ω̆′′r1,r2 = [Ω̆′′r1 |Ω̆
′′
r2 ],

and also Ω̆′′r1 and Ω̆′′r2 denote the columns of Ω̆′′r1,r2 corresponding to Ω̆r1 and Ω̆r2 , respectively.
The following lemma is a re-statement of Theorem 2 in (Ashraphijuo et al., 2017c).

Lemma 22 With probability one, there are only finitely many completions of the sampled multi-view
data if and only if Conditions Ar∗1 ,r∗2 and Br∗1 ,r∗2 ,r∗ hold.

Definition 23 Denote the rank vector r = (r1, r2, r). Define the generalized inequality r′ � r as
the component-wise set of inequalities, e.g., r′1 ≤ r1, r′2 ≤ r2 and r′ ≤ r.

Definition 24 Let SΩ denote the set of all r such that both Conditions Ar1,r2 and Br1,r2,r hold.

Lemma 25 Assume r ∈ SΩ. Then, for any r′ � r, we have r′ ∈ SΩ.

Proof We consider the rank factorization of U as in (Ashraphijuo et al., 2017c) and similar to the
single-view scenario in Lemma 3 each observed entry results in a polynomial in terms of the entries
of the components of the decomposition. Note that the dimension of the manifold corresponding to
rank vector r is equal to rn+r1n1 +r2n2−r2−r2

1−r2
2 +r(r1 +r2) (Ashraphijuo et al., 2017c), and

17
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also observe that the fact that max{r1, r2} ≤ r ≤ r1+r2 ≤ min{2n, n1+n2} implies that reducing
any of the values r1, r2, and r reduces the value of rn+ r1n1 + r2n2 − r2 − r2

1 − r2
2 + r(r1 + r2).

Hence, the dimension of the manifold corresponding to rank vector r is larger than that for rank
vector r′, given r′ � r, and thus similar to the proof of Lemma 3, finite completability of data with
r results finite completability of data with r′ with probability one. Then, using Lemma 22, the proof
is complete.

The following theorem provides a relationship between the unknown rank vector r∗ and SΩ.

Theorem 26 With probability one, exactly one of the following statements holds
(i) r∗ ∈ SΩ;
(ii) For any arbitrary completion of the sampled matrix U of rank vector r, we have r /∈ SΩ.

Proof Similar to the proof of Theorem 4, suppose that there does not exist a completion of U of
rank vector r such that r ∈ SΩ. Therefore, it is easily verified that statement (ii) holds and statement
(i) does not hold. On the other hand, assume that there exists a completion of U of rank vector r,
where r ∈ SΩ. Hence, statement (ii) does not hold and to complete the proof it suffices to show that
with probability one, statement (i) holds. Similar to Theorem 4, we show that assuming r∗ /∈ SΩ,
there exists a completion of U of rank vector r, where r ∈ SΩ, with probability zero.

Since r∗ /∈ SΩ, according to Lemma 25, for any r ∈ SΩ at least one the following inequalities
holds; r1 < r∗1, r2 < r∗2 and r < r∗. Note that assuming that there exists a completion of U1

of rank r1 with probability zero results that there exists a completion of U of rank vector r with
probability zero and similar statement holds for r2 and r. Hence, in any possible scenario (r1 < r∗1
or r2 < r∗2 or r < r∗) the similar proof as in Theorem 4 (for single-view matrix) results that there
exists a completion of U of rank vector r, where r ∈ SΩ, with probability zero.

Corollary 27 Consider a subset S ′Ω of SΩ such that for any two members of SΩ that r′ � r′′ and
r′′ ∈ S ′Ω we have r′ ∈ S ′Ω. Then, with probability one, exactly one of the followings holds

(i) r∗ ∈ S ′Ω;
(ii) For any arbitrary completion of U of rank vector r, we have r /∈ S ′Ω.

Proof Note that the property in the statement of Lemma 25 holds for S ′Ω as well as SΩ. Moreover,
as S ′Ω ⊆ SΩ, for any r ∈ S ′Ω there exists at most finitely many completions of U of rank vector r,
and therefore the rest of the proof is the same as the proof of Theorem 26.

Corollary 28 Assuming that there exists a completion of U with rank vector r such that r ∈ SΩ,
then with probability one r∗ � r.

The following lemma which is a re-statement of Theorem 3 in (Ashraphijuo et al., 2017c) gives
the number of samples per column that is needed to ensure that Conditions Ar1,r2 and Br1,r2,r hold
with high probability.

18
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Lemma 29 Suppose that the following inequalities hold
n

6
≥ max{r1, r2, (r1 + r2 − r)}, (25)

n1 ≥ (r − r2)(n− r1), (26)

n2 ≥ (r − r1)(n− r2), (27)

n1 + n2 ≥ (r − r2)(n− r1) + (r − r1)(n− r2)

+ (r1 + r2 − r)(n− (r1 + r2 − r)). (28)

Moreover assume that each column of U is observed in at least l entries, uniformly at random and
independently across entries, where

l > max

{
9 log

(n
ε

)
+ 3 log

(
3 max {r − r2, r − r1, r1 + r2 − r}

ε

)
+ 6, 2r1, 2r2

}
. (29)

Then, with probability at least 1− ε, r ∈ SΩ.

The following proposition is the probabilistic version of Theorem 26 in terms of the sampling
probability instead of verifying Conditions Ar1,r2 and Br1,r2,r.

Proposition 30 Suppose that (25)-(28) hold for r and that each entry of the sampled matrix is
observed uniformly at random and independently across entries with probability p, where

p >
1

n
max

{
9 log

(n
ε

)
+ 3 log

(
3 max {r − r2, r − r1, r1 + r2 − r}

ε

)
+ 6, 2r1, 2r2

}
+

1
4
√
n
.

Then, with probability at least (1− ε)
(

1− exp(−
√
n

2 )
)n1+n2

, we have r ∈ SΩ.

Proof The proposition is easy to verify using Lemma 29 and Lemma 9 (similar to the proof for
Proposition 11).

Corollary 31 Assuming that there exists a completion of U of rank vector r such that (25)-(28) hold

and the sampling probability satisfies (30), then with probability at least (1− ε)
(

1− exp(−
√
n

2 )
)n1+n2

we have r∗ � r.

4.2 Tucker-Rank Tensor

Let Pi denote the Lebesgue measures on Rni×m∗i , i = j + 1, . . . , d, and P0 denotes the Lebesgue
measures on Rm

∗
j+1×m∗j+2×...×m∗d . In this subsection, we assume that the sampled tensor U ∈

Rn1×...×nd is chosen generically from the manifold of tensors of rank r∗ = rankTucker(U) =
(m∗j+1, . . . ,m

∗
d) (where r∗ is unknown), or in other words, the entries of U are drawn indepen-

dently with respect to Lebesgue measure on the corresponding manifold. Hence, the probability
measures of all statements in this subsection are P0 × Pj+1 × Pj+2 × . . .× Pd.

Without loss of generality assume that m∗j+1 ≥ . . . ≥ m∗d throughout this subsection. Also,
given r = (mj+1, . . . ,md), define the following function

gr(x) =
d∑

i=j+1

min

ri,
x− i−1∑

i′=j+1

ri′

+ ri. (30)
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Definition 32 For any i ∈ {j+1, . . . , d} and Si ⊆ {1, . . . , ni}, define U (Si) as a set containing the
entries of |Si| rows (corresponding to the elements of Si) of U(i). Moreover, define U (Sj+1,...,Sd) =

U (Sj+1) ∪ . . . ∪ U (Sd).

ConditionATucker
r : There exist

∑d
i=j+1 (nimi) observed entries such that for any Si ⊆ {1, . . . ,

ni} for i ∈ {j + 1, . . . , d}, U (Sj+1,...,Sd) includes at most
∑d

i=j+1|Si|mi of the mentioned
∑d

i=j+1

nimi observed entries.
LetP be a set of

∑d
i=j+1 (nimi) observed entries such that they satisfy ConditionATucker

r . Now,
we construct a (j + 1)th-order binary constraint tensor Ω̆r in some sense similar to that in Section
3.2. For any subtensor Y ∈ Rn1×n2×···×nj×1×···×1 of the tensor U , let NΩ(YP) denote the number
of sampled entries in Y that belong to P .

The sampled tensor U includes nj+1nj+2 · · ·nd subtensors that belong to Rn1×n2×···×nj×1×···×1

and we label these subtensors by Y(tj+1,...,td) where (tj+1, . . . , td) represents the coordinate of the

subtensor. Define a binary valued tensor Y̆(tj+1,···,td) ∈ Rn1×n2×···×nj×

d−j︷ ︸︸ ︷
1× . . .× 1×k, where k =

NΩ(Y(tj+1,...,td)) −NΩ(YP(tj+1,...,td)) and its entries are described as the following. We can look at

Y̆(tj+1,···,td) as k tensors each belongs to Rn1×n2×···×nj×1×···×1. For each of the mentioned k tensors
in Y̆(tj+1,···,td) we set the entries corresponding to the NΩ(YP(tj+1,...,td)) observed entries that belong

to P equal to 1. For each of the other k observed entries, we pick one of the k tensors of Y̆(tj+1,···,td)

and set its corresponding entry (the same location as that specific observed entry) equal to 1 and set
the rest of the entries equal to 0.

For the sake of simplicity in notation, we treat tensors Y̆(tj+1,···,td) as a member of Rn1×n2×···×nj×k

instead of Rn1×n2×···×nj×

d−j︷ ︸︸ ︷
1× · · · × 1×k. Now, by putting together all nj+1nj+2 · · ·nd tensors in

dimension (j + 1), we construct a binary valued tensor Ω̆r ∈ Rn1×n2×···×nj×Kj , where Kj =

NΩ(U)−
∑d

i=j+1 (nimi) and call it the constraint tensor (Ashraphijuo et al., 2016a). In (Ashraphi-
juo et al., 2016a), an example is given on the construction of Ω̆r.

Condition BTucker
r : The constraint tensor Ω̆r consists a subtensor Ω̆′r ∈ Rn1×n2×···×nj×K such

thatK =
(

Πj
i=1ni

)(
Πd
i=j+1mi

)
−
∑d

i=j+1m
2
i and for anyK ′ ∈ {1, 2, . . . ,K} and any subtensor

Ω̆′′r ∈ Rn1×n2×···×nd−1×K′ of Ω̆′r we have(
Πd
i=j+1mi

)(
fj+1(Ω̆′′r)

)
− gr

(
fj+1(Ω̆′′r)

)
≥ K ′, (31)

where fj+1(Ω̆′′r) denotes the number of nonzero columns of the (j + 1)-th matricization of Ω̆′′r .
The following lemma is a re-statement of Theorem 3 in (Ashraphijuo et al., 2016a).

Lemma 33 With probability one, there are only finitely many completions of rank r∗ of the sampled
tensor if and only if Conditions ATucker

r∗ and BTucker
r∗ hold.

Definition 34 Let SΩ denote the set of all rank vectors r such that both Conditions ATucker
r and

BTucker
r hold.

Lemma 35 Assume r ∈ SΩ. Then, for any rank vector r′ � r, we have r′ ∈ SΩ.
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Proof Note that the dimension of the manifold corresponding to r is
(

Πj
i=1ni

)(
Πd
i=j+1mi

)
+∑d

i=j+1 nimi−
∑d

i=j+1m
2
i , and thus by reducing the value ofmi0 by one (for i0 ∈ {j+1, . . . , d}),

the value of the mentioned dimension reduces by at least
(

Πj
i=1ni

)
+ni−2mi+1, which is greater

than zero since mi ≤ ni. The rest of the proof is similar to the proof of Lemma 3.

Definition 36 Define SΩ(r) as a subset of SΩ, which includes all r′ ∈ SΩ that r′ � r.

The following theorem gives a relationship between r∗ and SΩ.

Theorem 37 With probability one, exactly one of the following statements holds
(i) r∗ ∈ SΩ;
(ii) For any arbitrary completion of the sampled tensor U of rank r, we have r /∈ SΩ(r∗).

Proof Similar to the proof of Theorem 4, to complete the proof it suffices to show that the as-
sumption r∗ /∈ SΩ results that there exists a completion of U of rank r, where r ∈ SΩ(r∗), with
probability zero. Note that r ∈ SΩ(r∗) ⊆ SΩ results that Conditions ATucker

r and BTucker
r hold.

Moreover, note that r � r∗ and since r∗ /∈ SΩ we conclude that there exists i0 ∈ {j + 1, . . . , d}
such that mi0 < m∗i0 . As a result,

∑d
i=j+1 nimi <

∑d
i=j+1 nim

∗
i .

Condition BTucker
r ensures there exists at least one more observed entry (otherwise the constraint

tensor does not exist) besides the
∑d

i=j+1 nimi mentioned observed entries. Given the basis C ∈
Rn1×...×nj×mj+1×...×md as in (7), there exist

∑d
i=j+1 nimi variables in the corresponding Tucker

decomposition. However, we have
∑d

i=j+1 nimi + 1 polynomials in terms these
∑d

i=j+1 nimi

variables and therefore the last polynomials can be written as algebraic combination of the other∑d
i=j+1 nimi polynomials. This leads to a linear equation in terms of the

∑d
i=j+1 nimi + 1 cor-

responding observed entries. On the other hand, the
∑d

i=j+1 nimi observed entries satisfy the
property stated as Condition ATucker

r and it is easily verified that there exist
∑d

i=j+1 nim
∗
i entries

(observed and non-observed) satisfying Condition ATucker
r∗ such that the union of the mentioned∑d

i=j+1 nimi entries with any arbitrary other observed entry be a subset of those
∑d

i=j+1 nim
∗
i

entries. However, U is generically chosen from the manifold corresponding to r∗ and therefore a
particular linear equation in terms of the mentioned

∑d
i=j+1 nim

∗
i entries holds with probability

zero. The rest of the proof is similar to the proof of Theorem 4.

Corollary 38 Assuming that there exists a completion of U with rank vector r such that r ∈ SΩ, we
conclude that with probability one r∗ � r.

The following lemma is Corollary 2 in (Ashraphijuo et al., 2016a), which ensures that Condi-
tions ATucker

r and BTucker
r hold with high probability.

Lemma 39 Assume that
∑d

i=j+1m
2
i ≤ Πd

i=j+1mi, Πd
i=j+1ni ≥ NjΠ

d
i=j+1mi −

∑d
i=j+1m

2
i ,

Πd
i=j+1mi ≤ Nj , where Nj = Πj

i=1ni. Furthermore, assume that we observe each entry of U with
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probability p, where

p >
1

Nj

(
6 log (Nj) + 2 log

(
max

{
2
∑d

i=j+1 r
2
i

ε
,
2Πd

i=j+1ri − 2
∑d

i=j+1 r
2
i

ε

})
+ 4

)
+

1
4
√
Nj

.

Then, with probability at least (1− ε)

(
1− exp(−

√
Πj

i=1ni

2 )

)Πd
i=j+1ni

, r ∈ SΩ.

The following corollary is the probabilistic version of Theorem 37.

Corollary 40 Assuming that there exists a completion of the sampled tensor U of Tucker rank r
such that the assumptions in Lemma 39 hold and the sampling probability satisfies (32), then with

probability at least (1− ε)

(
1− exp(−

√
Πj

i=1ni

2 )

)Πd
i=j+1ni

we have r∗ � r.

4.2.1 NUMERICAL RESULTS

We generate a random tensor U ∈ R8×8×8×8×8×8 of Tucker-rank (1, 3, 3, 2, 2). The color scale
represents the lower bound on the probability that we can guarantee the rank of a given completion is
a component-wise upper bound on the true rank. Then, we solve the following convex optimization
problem for different values of the sampling probability.

minimizeU ′∈Rn1×···×nd ‖
d∑
i=1

U′(i)‖∗ (32)

subject to U ′Ω = UΩ.

Then, we calculate rank of each matricization of the tensor obtained via solving (32) to find its
Tucker-rank. In this scenario, for each component of the Tucker-rank, we find the percentage of
error via mi−m∗i

n−m∗i
× 100%, where n = 8, mi and m∗i are the i-th rank component of the obtained

tensor and original tensor, respectively. Hence, 100% error simply means that the corresponding
matricization is full rank. In Figure 8, gap represents the average of the defined error over all
components of Tucker-rank, i.e., over all matricizations.

4.3 TT-Rank Tensor

Let Pi denote the Lebesgue measures on Ru
∗
i−1×ni×u∗i , i = 1, . . . , d, where u∗0 = u∗d = 1. In

this subsection, we assume that the sampled tensor U ∈ Rn1×...×nd is chosen generically from
the manifold of tensors of rank r∗ = rankTT(U) = (u∗1, . . . , u

∗
d−1) (where r∗ is unknown), or in

other words, the entries of U are drawn independently with respect to Lebesgue measure on the
corresponding manifold. Hence, the probability measures of all statements in this subsection are
P1 × . . .× Pd.

Condition ATT
r : Each row of the d-th matricization of the sampled tensor, i.e., U(d) includes at

least ud−1 observed entries.
We construct the d-way binary valued constraint tensor Ω̆ud−1

similar to that in Section 3.2 as
the following. Consider any subtensor Y ∈ Rn1×n2×···×nd−1×1 of the tensor U . The sampled tensor
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Figure 8: The rank gap as a function of sampling probability for U ∈ R8×8×8×8×8×8 of Tucker-rank
(1, 3, 3, 2, 2).

U includes nd subtensors that belong to Rn1×n2×···×nd−1×1 and let Yi for 1 ≤ i ≤ nd denote these
nd subtensors. Define a binary valued tensor Y̆i ∈ Rn1×n2×···×nd−1×ki , where ki = NΩ(Yi)−ud−1

and its entries are described as the following. We can look at Y̆i as ki tensors each belongs to
Rn1×n2×···×nd−1×1. For each of the mentioned ki tensors in Y̆i we set the entries corresponding to
ud−1 of the observed entries equal to 1. For each of the other ki observed entries, we pick one of the
ki tensors of Y̆i and set its corresponding entry (the same location as that specific observed entry)
equal to 1 and set the rest of the entries equal to 0. In the case that ki = 0 we simply ignore Y̆i, i.e.,
Y̆i = ∅

By putting together all nd tensors in dimension d, we construct a binary valued tensor Ω̆ud−1
∈

Rn1×n2×···×nd−1×K , where K =
∑nd

i=1 ki = NΩ(U) − ud−1nd and call it the constraint tensor.
Observe that each subtensor of Ω̆ud−1

which belongs to Rn1×n2×···×nd−1×1 includes exactly ud−1+1
nonzero entries. In (Ashraphijuo and Wang, 2017a), an example is given on the construction of
Ω̆ud−1

.
Condition BTT

r : Ω̆ud−1
consists a subtensor Ω̆′ud−1

∈ Rn1×n2×···×nd−1×K such that K =
∑d−1

i=1

ui−1niui−
∑d−1

i=1 u
2
i and for anyK ′ ∈ {1, 2, . . . ,K} and any subtensor Ω̆′′ud−1

∈ Rn1×n2×···×nd−1×K′

of Ω̆′ud−1
we have

d−1∑
i=1

(
ui−1fi(Ω̆

′′
ud−1

)ui − u2
i

)+
≥ K ′, (33)

where fi(Ω̆′′ud−1
) denotes the number of nonzero rows of the i-th matricization of Ω̆′′ud−1

.
The following lemma is a re-statement of Theorem 1 in (Ashraphijuo and Wang, 2017a).

Lemma 41 With probability one, there are only finitely many completions of rank r∗ of the sampled
tensor if and only if Conditions ATT

r∗ and BTT
r∗ hold.

Definition 42 Let SΩ denote the set of all rank vectors r such that both Conditions ATT
r and BTT

r

hold.
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The following lemma will be used in Lemma 44.

Lemma 43 ui ≤ min{ui−1ni, ui+1ni+1} for 1 ≤ i ≤ d− 1.

Proof We first show that ui ≤ ui−1ni, which is easily verified for i = 1 as Ũ1 includes n1

rows and u0 = 1, and therefore assume that i > 1. Define the (d − 1)-way tensor U li ∈
Rn1×...×ni−1×ni+1×...×nd such that U li(x1, . . . , xi−1, xi+1, . . . , xd) = U(x1, . . . , xi−1, li, xi+1, . . . ,
xd) for 1 ≤ i ≤ d and 1 ≤ li ≤ ni. Also, recall that Ũli

(i−1) denotes the (i − 1)-th unfold-

ing of U li . Observe that Ũli
(i−1) is a subset of columns of matrix Ũ(i−1) (those columns that

correspond to the entries of U with the i-th component of the location equal to li). Therefore,
rank(Ũli

(i−1)) ≤ rank(Ũ(i−1)) = ui−1.

On the other hand, observe that Ũli
(i−1) is a subset of rows of Ũ(i) (those rows that corre-

spond to the entries of U with the i-th component of the location equal to li). Hence, the union
of rows of Ũli

(i−1)’s for 1 ≤ li ≤ ni constitute all rows of Ũ(i). Therefore, ui = rank(Ũ(i)) ≤∑ni
li=1 rank(Ũli

(i−1)) ≤ niui−1. Similarly, we can show that ui ≤ ui+1ni+1 to complete the proof.

Lemma 44 Assume r ∈ SΩ. Then, for any r′ � r, we have r′ ∈ SΩ.

Proof Note that the dimension of the manifold corresponding to r is
∑d

i=1 ui−1niui −
∑d−1

i=1 u
2
i .

If we reduce the value of ui by one, the value of the mentioned dimension reduces by ui−1ni +
ui+1ni+1 − 2ui + 1. According to Lemma 43, ui−1ni + ui+1ni+1 − 2ui + 1 is greater than zero,
and therefore r′ � r results that the dimension of the manifold corresponding to r is greater than
that corresponding to r′. The rest of the proof is similar to the proof of Lemma 3.

Definition 45 Define ŜΩ as the set of all rank vectors r ∈ SΩ such that there exists a rank vector
r′ ∈ SΩ with r � r′ and ud−1 < u′d−1 (instead of ud−1 ≤ u′d−1). Note that ŜΩ also satisfies the
property in Lemma 44.

Theorem 46 With probability one, exactly one of the following statements holds:
(i) r∗ ∈ ŜΩ;
(ii) For any arbitrary completion of the sampled tensor U of rank r, we have r /∈ ŜΩ.

Proof Similar to the proof of Theorem 4, to complete the proof it suffices to show that the assump-
tion r∗ /∈ ŜΩ results that there exists a completion of U of rank r, where r ∈ ŜΩ, with probability
zero. Define the multiplication U (1) . . .U (d−1) in (9) as the basis of the rank r TT decomposition of
U . Then, by considering the (d− 1)-th unfolding of U (1) . . .U (d−1) in TT decomposition we obtain
a matrix factorization of the (d− 1)-th unfolding of U . The rest of the proof is similar to the proof
of Theorem 4.

Similar to Theorem 46, we can show the following.

24



RANK DETERMINATION FOR LOW-RANK DATA COMPLETION

Corollary 47 Consider a subset Ŝ ′Ω of ŜΩ such that for any two members of ŜΩ that r′′ � r′ and
r′ ∈ Ŝ ′Ω we have r′′ ∈ Ŝ ′Ω. Then, with probability one, exactly one of the followings holds

(i) r∗ ∈ Ŝ ′Ω;
(ii) For any arbitrary completion of U of rank vector r, we have r /∈ Ŝ ′Ω.

Corollary 48 Assuming that there exists a completion of U with rank vector r such that r ∈ ŜΩ, we
conclude that with probability one r∗ � r.

The following lemma is Lemma 14 in (Ashraphijuo and Wang, 2017a), which ensures that
Conditions ATT

r and BTT
r hold with high probability.

Lemma 49 Definem =
∑d−2

k=1 uk−1uk,M = n
∑d−2

k=1 uk−1uk−
∑d−2

k=1 u
2
k and u′ = max

{
u1
u0
, . . . ,

ud−2

ud−3

}
. Assume that n1 = n2 = · · · = nd = n, n > max{m, 200} and u′ ≤ min{n6 , ud−2} hold.

Moreover, assume that the sampling probability satisfies

p >
1

nd−2
max

{
27 log

(n
ε

)
+ 9 log

(
2M

ε

)
+ 18, 6ud−2

}
+

1
4
√
nd−2

. (34)

Then, with probability at least (1− ε)
(

1− exp(−
√
nd−2

2 )
)n2

, we have r ∈ SΩ.

The following corollary is the probabilistic version of Corollary 48.

Corollary 50 Assuming that there exists a completion of the sampled tensor U of TT rank r such
that the assumptions in Lemma 49 hold and the sampling probability satisfies (34), then with prob-

ability at least (1− ε)
(

1− exp(−
√
nd−2

2 )
)n2

we have r∗ � r.

4.3.1 NUMERICAL RESULTS

We generate a random tensor U ∈ R8×8×8×8×8×8 of TT-rank (1, 2, 4, 1, 1). The color scale repre-
sents the lower bound on the probability that we can guarantee the rank of a given completion is a
component-wise upper bound on the true rank. Then, we solve the following convex optimization
problem for different values of the sampling probability.

minimizeU ′∈Rn1×···×nd ‖
d−1∑
i=1

Ũ′(i)‖∗ (35)

subject to U ′Ω = UΩ.

Then, we calculate rank of each unfolding of the tensor obtained via solving (35) to find its
TT-rank. In this scenario, for each component of the TT-rank, we find the percentage of error
via ui−u∗i

min{ni,nd−i}−u∗i
× 100%, where n = 8, d = 6, ui and u∗i are the i-th rank component of

the obtained tensor and original tensor, respectively. Hence, 100% error simply means that the
corresponding unfolding is full rank. In Figure 9, gap represents the average of the defined error
over all components of TT-rank, i.e., over all unfoldings.
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Figure 9: The rank gap as a function of sampling probability for U ∈ R8×8×8×8×8×8 of TT-rank
(1, 2, 4, 1, 1).

5. Conclusions

We make use of the recently developed algebraic geometry analyses that study the fundamental
conditions on the sampling patterns for finite completability under a number of low-rank matrix and
tensor models to treat the problem of rank approximation for a partially sampled data. Particularly,
the goal is to approximate the unknown scalar or vector rank based on the sampling pattern and
the rank of a given completion. A number of data models have been treated, including single-
view matrix, multi-view matrix, CP tensor, tensor-train tensor and Tucker tensor. First we have
provided an upper bound on the unknown scalar rank (for single-view matrix and CP tensor) and
an component-wise upper bound on the vector rank (for multi-view matrix, Tucker tensor and TT
tensor) with probability one assuming that the sampling pattern satisfies the proposed combinatorial
conditions. Moreover, we have also provided probabilistic versions of such bounds that hold with
high probability assuming that the sampling probability is above a threshold. In addition, for single-
view matrix and CP tensor, these upper bounds can be exactly equal to the unknown scalar rank
given the lowest-rank completion. To illustrate how tight our proposed upper bounds are, we have
provided some numerical results for the single-view matrix case in which we applied the nuclear
norm minimization to find a low-rank completion of the sampled data and observe that the proposed
upper bound is almost equal to the true unknown rank.
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