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Abstract

A popular approach for solving stochastic optimization problems is the stochastic gradi-
ent descent (SGD) method. Although the SGD iteration is computationally cheap and
its practical performance may be satisfactory under certain circumstances, there is recent
evidence of its convergence difficulties and instability for unappropriate choice of parame-
ters. To avoid some of the drawbacks of SGD, stochastic proximal point (SPP) algorithms
have been recently considered. We introduce a new variant of the SPP method for solving
stochastic convex problems subject to (in)finite intersection of constraints satisfying a linear
regularity condition. For the newly introduced SPP scheme we prove new nonasymptotic
convergence results. In particular, for convex Lipschitz continuous objective functions,
we prove nonasymptotic convergence rates in terms of the expected value function gap
of order O

(
1

k1/2

)
, where k is the iteration counter. We also derive better nonasymptotic

convergence rates in terms of expected quadratic distance from the iterates to the optimal
solution for smooth strongly convex objective functions, which in the best case is of order
O
(
1
k

)
. Since these convergence rates can be attained by our SPP algorithm only under

some natural restrictions on the stepsize, we also introduce a restarting variant of SPP that
overcomes these difficulties and derive the corresponding nonasymptotic convergence rates.
Numerical evidence supports the effectiveness of our methods in real problems.

Keywords: Stochastic convex optimization, intersection of convex constraints, stochastic
proximal point, nonasymptotic convergence analysis, rates of convergence.

1. Introduction

The randomness in most of the practical optimization applications led the stochastic opti-
mization field to become an essential tool for many applied mathematics areas, such as ma-
chine learning (Polyak and Juditsky, 1992), distributed optimization (Necoara et al., 2011),
control (Karimi and Kammer, 2017), and sensor networks problems (Blatt and Hero, 2006).
Since the randomness usually enters the problem through the cost function and/or the
constraints set, in this paper we approach both randomness sources and consider stochastic
objective functions subject to stochastic constraints. Usually, in the literature, the following
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unconstrained stochastic model has been considered:

min
x∈Rn

F (x) = (E[f(x;S)]) , (1)

where the expectation is taken w.r.t. the random variable S. In the following subsec-
tions, we recall some popular numerical optimization algorithms for solving the previous
unconstrained stochastic optimization problem and set the context for our contributions.

1.1 Previous work

A very popular approach for solving the unconstrained stochastic problem (1) is the stochas-
tic gradient method (SGD) (Nemirovski et al., 2009; Moulines and Bach, 2011; Rosasco et
al., 2014; Polyak and Juditsky, 1992). At each iteration k, the SGD algorithm randomly
samples S and takes a step along the gradient of the chosen individual function:

xk+1 = xk − µk∇f(xk;Sk),

where µk is a positive stepsize. Convergence behavior of SGD for the last iterate sequence
has been analyzed in (Nemirovski et al., 2009) and for the average of the iterates sequence
has been given in (Polyak and Juditsky, 1992). However, there is a recent nonasymptotic
convergence analysis of SGD provided in (Moulines and Bach, 2011), under various differ-
entiability assumptions on the objective function. While the SGD scheme is the method
of choice in practice for many machine learning applications due to its superior empirical
performance, the theoretical estimates obtained in (Moulines and Bach, 2011) highlights
several difficulties regarding its practical limitations and robustness. For example, the step-
size is highly constrained to small values by an exponential term from the convergence rate
which could be catastrophically increased by uncontrolled variations of the stepsize. More
precisely, the convergence rates of SGD with decreasing stepsize µk = µ0

k , given for the
quadratic mean {E[‖xk − x∗‖2]}k≥0, where x∗ is the optimal solution of (1), contains cer-
tain exponential terms (depending on the initial stepsize) of the following form (Moulines
and Bach, 2011):

E[‖xk − x∗‖2] ≤ C1e
C2µ20

kαµ0
+O

(
1

k

)
, (2)

for µ0 > 2/α and for appropriate positive constants C1, C2 and α. Note that this conver-
gence rate holds under strong convexity and gradient Lipschitz assumptions on the objective
function F . From (2) we observe that {E[‖xk − x∗‖2]}k≥0 can grow exponentially until the
stepsizes becomes sufficiently small, a behavior which can be also observed in practical
simulations.

Since these drawbacks are naturally introduced by the SGD iteration, other essential mod-
ifications of this scheme have been applied for avoiding the issues. One resulted method
is the stochastic proximal point (SPP) algorithm for solving the unconstrained stochastic
problem (1) having the following iteration (Ryu and Boyd, 2016; Toulis et al., 2016; Bianchi,
2016):

xk+1 = arg min
z∈Rn

[
f(z;Sk) +

1

2µk
‖z − xk‖2

]
.
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Note that SGD represents a particular SPP iteration applied to the linearization of f(z;Sk)
in xk, that is to the linear function lf (z;xk, Sk) = f(xk;Sk) + 〈∇f(xk;Sk), z − xk〉. Of
course, when f has an easily computable proximal operator, it is natural to use f instead
of its linearization lf . In (Ryu and Boyd, 2016), the SPP algorithm has been applied to
problems with the objective function having Lipschitz continuous gradient and the following
restricted strong convexity property:

f(x;S) ≥ f(y;S) + 〈∇f(y;S), x− y〉+
1

2
〈MS(x− y), x− y〉 ∀x, y ∈ Rn, (3)

for some matrix MS � 0, satisfying λ = λmin(E[MS ]) > 0. In (Ryu and Boyd, 2016) the
asymptotic global convergence of SPP with decreasing stepsize µk = µ0

k is derived, followed
by a nonasymptotic analysis for the SPP with constant stepsize. In particular, it has been
proven that SPP converges linearly to a noise-dominated region around the optimal solution.
Moreover, the following asymptotic (i.e. for a sufficiently large k) convergence rate in the
quadratic mean have been given:

E[‖xk − x∗‖2] ≤
(

1

e

)µ0λ ln (k+1)

C1 +


C2

(µ0λ−1)k if µ0λ > 1
C2 ln(k)

k if µ0λ = 1
C2

(1−µ0λ)kµ0λ
if µ0λ < 1,

where C1 and C2 are some positive constants. With the essential difference that no ex-
ponential terms depending on µ0 are encountered, these rates of convergence have similar
orders with those for the variable stepsize SGD method. Although in this paper we make
similar assumptions on the objective function, we additionally assume the presence of con-
vex constraints and provide a nonasymptotic convergence analysis of the SPP for a more
general stepsize µk = µ0

kγ , with γ > 0. Moreover, the Moreau smoothing framework used
in our paper leads to more elegant and intuitive proofs. Another paper related to the SPP
algorithm is (Toulis et al., 2016), where the considered stochastic model involves minimiza-
tion of the expectation of random particular components f(x;S) defined by the composition
of a smooth function and a linear operator, i.e.:

f(x;S) = f(aTSx),

where aS ∈ Rn. Moreover, the objective function F (x) = E[f(aTSx)] needs to satisfy
λmin

(
∇2F (x)

)
≥ λ > 0 for all x ∈ Rn. The nonasymptotic convergence of the SPP

with decreasing stepsize µk = µ0
kγ , with γ ∈ (1/2, 1], has been analyzed in the quadratic

mean and the following convergence rate has been derived in (Toulis et al., 2016):

E[‖xk − x∗‖2] ≤ C
(

1

1 + λµ0α

)k1−γ
+O

(
1

kγ

)
,

where C and α are some positive constants. However, the analysis used in (Toulis et al.,
2016) cannot be extended to general convex objective functions and complicated constraints,
since it is essential in the proofs that each component of the objective function has the form
f(aTSx), where aS ∈ Rn. In our paper we consider general convex objective functions,
which lack the previously discussed structure, with (in)finite number of convex constraints.

3



Patrascu and Necoara

Further, in (Bianchi, 2016) a general asymptotic convergence analysis of several variants
of SPP scheme within operator theory settings has been provided, under mild convexity
assumptions. A particular optimization model instance analyzed in (Bianchi, 2016), related
to our paper, is:

min
x

f(x) s.t. x ∈ ∩mi=1Xi,

for which has been derived the following SPP type algorithm:

xk+1 =

{
arg minz∈Rn

[
f(z) + 1

2µk
‖z − xk‖2

]
if Sk = 0

ΠXSk
(xk) otherwise,

where Sk is randomly chosen in Ω = {0, 1, · · · ,m} according to a probability distribution P.
Although this scheme is very similar to the SPP algorithm, only the almost sure asymptotic
convergence has been provided in (Bianchi, 2016). Convergence results of order O

(
1
k

)
in the

strongly convex case, as well as almost sure convergence results under weaker assumptions,
are also provided in (Rosasco et al., 2017) for the stochastic proximal gradient algorithm on
convex composite optimization problems. In (Combettes and Pesquet, 2016) the asymptotic
behavior of a stochastic forward-backward splitting algorithm for finding a zero of the sum
of a maximally monotone set-valued operator and a co-coercive operator in Hilbert spaces
is investigated. Weak and strong almost sure convergence properties of the iterates are
established under mild conditions on the underlying stochastic processes.
A particular case of the stochastic optimization problem (1) is the discrete stochastic model,
where the random variable S is discrete and thus, usually the objective function is given as
a finite sum of functional components. There exists a large amount of work in the literature
on deterministic and randomized algorithms for the finite sum optimization problem. Linear
convergence of SGD for solving convex feasibility problems is proven recently in (Necoara,
2017). Convergence analysis of SGD for minimizing an objective function subject to a finite
number of convex constraints is provided e.g. in (Necoara, 2017; Nedic, 2011). Linear
convergence results on a restarted variant of SGD for finite-sum problems is given in (Yang
and Lin, 2016). On the deterministic side, the cyclic incremental gradient methods were
extensively analyzed e.g. in (Bertsekas, 2011). Recently, highly efficient algorithms with
improved convergence estimates (compared to SGD) for finite sums have been developed
using aggregated (averaged) or variance reduction techniques. The first category is based on
the common idea of updating the current iterate along the aggregated (averaged) gradient
step: e.g. incremental aggregated gradient (IAG) (Vanli et al., 2017), stochastic averaged
gradient (SAG) (Roux et al., 2012) and its generalization SAGA (Defazio et al., 2014).
Regarding the second category, there are simpler schemes, but memory intensive, such as
stochastic variance reduced gradient (SVRG) method introduced in (Johnson and Zhang,
2013). It has been proved that all these schemes can achieve linear convergence under
strong convexity and gradient Lipschitz assumptions on the finite sum objective function.
Similar optimal performances on finite sum minimization, as for the previous two classes
of algorithms, are obtained also for the stochastic dual coordinate ascent (SDCA) method,
which has been analyzed in (Shalev-Shwartz and Zhang, 2013).
Other stochastic proximal (gradient) schemes together with their theoretical guarantees
are studied in several recent papers as we further exemplify. In (Atchade et al., 2014)
a perturbed proximal gradient method is considered for solving composite optimization
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problems, where the gradient is intractable and approximated by Monte Carlo methods.
Conditions on the stepsize and the Monte Carlo batch size are derived under which the
convergence is guaranteed. Two classes of stochastic approximation strategies (stochastic
iterative Tikhonov regularization and the stochastic iterative proximal point) are analyzed
in (Koshal et al., 2013) for monotone stochastic variational inequalities and almost sure
convergence results are presented. A new stochastic optimization method is analyzed in
(Yurtsever et al., 2016) for the minimization of the sum of three convex functions, one of
which has Lipschitz continuous gradient and satisfies a restricted strong convexity condition.
In (Xu, 2011) a finite sample analysis for the averaged SGD is provided, which shows that
it usually takes a huge number of samples for averaged SGD to reach its asymptotic region,
for improperly chosen learning rate (stepsize). Moreover, simple strategies to properly set
the learning rate are derived in the same paper so that it takes a reasonable amount of
data for averaged SGD to reach its asymptotic region. In (Niu et al., 2011) it is shown
through a novel theoretical analysis that SGD can be implemented in a parallel fashion
without any locking. Moreover, for sparse optimization problems (meaning that the most
gradient updates only modify small parts of the decision variable) the developed scheme
achieves a nearly optimal rate of convergence. A regularized stochastic version of the BFGS
method is proposed in (Mokhtari and Ribeiro, 2014) to solve convex optimization problems.
Convergence analysis shows that lower and upper bounds on the Hessian eigenvalues of the
sample functions are sufficient to guarantee convergence of order O

(
1
k

)
. A comprehensive

survey on modern optimization algorithms for machine learning problems is given recently
in (Bottou et al., 2016). Based on experience, theoretical results are presented on a straight-
forward, yet versatile SGD algorithm, its practical behavior is discussed, and opportunities
are highlighted for designing new algorithms with improved performance.

1.2 Contributions

In this paper we consider both randomness sources (i.e. objective function and constraints)
and thus our problem of interest involves stochastic objective functions subject to (in)finite
intersection of constraints. Given the clear superior features of SPP algorithm over the
classical SGD scheme, we consider the SPP scheme for solving our problem of interest. The
main contributions of this paper are:

(i) More general stochastic optimization model and a new stochastic proximal point al-
gorithm: While most of the existing papers from the stochastic optimization literature
consider convex models without constraints or simple (easy projection onto) constraints, in
this paper we consider stochastic convex optimization problems subject to (in)finite inter-
section of constraints satisfying a linear regularity type condition. It turns out that many
practical applications, including those from machine learning, fits into this framework: e.g.
classification, regression, finite sum minimization, portfolio optimization, convex feasibil-
ity, optimal control problems. For this general stochastic optimization model we introduce
a new stochastic proximal point (SPP) algorithm. It is worth to mention that although
the analysis of an SPP method for stochastic models with complicated constraints is non-
trivial and does not follow from the analysis corresponding to the unconstrained setting,
our framework allows us to deal with even an infinite number of constraints. To the best of
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our knowledge, our SPP method is the first stochastic proximal point algorithm that can
tackle optimization problems with complicated constraints.

(ii) New nonasymptotic convergence results for the SPP method : For the newly introduced
SPP scheme we prove new nonasymptotic convergence results. In particular, for convex
and Lipschitz continuous objective functions, we prove nonasymptotic estimates for the
rate of convergence of the SPP scheme in terms of the expected value function gap and

feasibility violation of order O
(

1
k1/2

)
, where k is the iteration counter. We also derive

better nonasymptotic bounds for the rate of convergence of SPP scheme with decreasing
stepsize µk = µ0

kγ , with γ ∈ (0, 1], for smooth strongly convex objective functions. For
this case the convergence rates are given in terms of expected quadratic distance from the
iterates to the optimal solution and are of order:

E[‖xk − x∗‖2] ≤ C
(
E
[

1

1 + ᾱSµ0

])k1−γ
+O

(
1

kγ

)
,

where C and ᾱS are appropriate nonnegative constants. Note that the derived rates of
convergence do not contain any exponential term in µ0, as it is the case for the SGD
scheme, which makes SPP more robust than SGD even in the constrained case. This can
be also observed in numerical simulations, see Section 7 below.

(iii) Restarted variant of SPP algorithm and the corresponding convergence analysis: Since
the best complexity of our basic SPP scheme can be attained only under some natural
restrictions on the initial stepsize µ0, we also introduce a restarting stochastic proximal
point algorithm that overcomes these difficulties. The main advantage of this restarted
variant of SPP algorithm is that it is parameter-free and thus it is easily implementable in
practice. Under strong convexity and smoothness assumptions on the objective function,
for γ > 0 and epoch counter t, the restarting SPP scheme with the constant stepsize (per

epoch) 1
tγ provides a nonasymptotic complexity of order O

(
1

ε
1+ 1

γ

)
.

Paper outline. The paper is organized as follows. In Section 2 the problem of interest is
formulated and analyzed. Further in Section 3, a new stochastic proximal point algorithm is
introduced and its relations with the previous work are highlighted. We provide in Section
4 the first main result of this paper regarding the nonasymptotic convergence of SPP in the
convex case. Further, stronger convergence results are presented in Section 5 for smooth
strongly convex objective functions. In order to improve the convergence of the simple SPP
scheme, in Section 6 we introduce a restarted variant of SPP algorithm. In Section 7 we
provide some preliminary numerical simulations to highlight the empirical performance of
our schemes. Some long proofs are moved in the Appendix.

Notations. We consider the space Rn composed by column vectors. For x, y ∈ Rn denote
the scalar product 〈x, y〉 = xT y and Euclidean norm by ‖x‖ =

√
xTx. The projection

operator onto the nonempty closed convex set X is denoted by ΠX(·) and the distance from
a given x to the set X is denoted by distX(x) = minz∈X‖x − z‖. Given any convex set
X, the function distX(·) is convex and the squared distance function dist2

X(·) has Lipschitz
gradient with constant 1. For some function f , we denote by ∂f(x) the subdifferential set
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at x. We also use the following definition of the indicator function of a set X:

IX(x) =

{
0, if x ∈ X
∞, otherwise.

Finally, we define the function ϕα : (0,∞)→ R as:

ϕα(x) =

{
(xα − 1)/α, if α 6= 0

log(x), if α = 0.

2. Problem formulation

In many machine learning applications randomness usually enters the problem through the
cost function and/or the constraint set. Minimization of problems having complicating con-
straints can be very challenging. This is usually alleviated by approximating the feasible set
by an (in)finite intersection of simple sets (Necoara, 2017; Necoara et al., 2017; Nedic, 2011).
Therefore, in this paper we tackle the following stochastic convex constrained optimization
problem:

F ∗ = min
x∈Rn

F (x) (:= E[f(x;S)])

s.t. x ∈ X (:= ∩S∈ΩXS) ,
(4)

where f(·;S) : Rn → R are convex functions with full domain domf = Rn, XS are nonempty
closed convex sets, and S is a random variable with its associated probability space (Ω,P).
Notice that this formulation allows us to include (in)finite number of constraints. We denote
the set of optimal solutions with X∗ and x∗ any optimal point for (4). For the optimization
problem (4) we make the following assumptions.

Assumption 1 For any S ∈ Ω, the function f(·;S) is proper, closed, convex and Lipschitz
continuous, that is there exists Lf,S > 0 such that

|f(x;S)− f(y;S)| ≤ Lf,S‖x− y‖ ∀x, y ∈ Rn.

Notice that Assumption 1 implies that any subgradient gf (x;S) ∈ ∂f(x;S) is bounded,
that is ‖gf (x;S)‖ ≤ Lf,S for all x ∈ Rn and S ∈ Ω. For the sets we assume:

Assumption 2 Given S ∈ Ω, the following two properties hold:
(i) XS are simple convex sets (i.e. projections onto these sets are easy).
(ii) There exists ζ > 0 such that the feasible set X satisfies linear regularity:

dist2X(x) ≤ ζ E[dist2XS (x)] ∀x ∈ Rn.

Assumption 2 (ii) is known in the literature as the linear regularity property and it is es-
sential for proving linear convergence for (alternating) projection algorithms, see (Necoara,
2017; Necoara et al., 2017; Nedic, 2011). For example, when XS are hyperplanes, halfspaces
or when X has nonempty interior, then the linear regularity property holds. In particular,
if the set X contains a ball of radius r̄ and X is contained in a ball of radius R̄, then the
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ratio R̄/r̄ can be taken as the linear regularity constant ζ (Necoara et al., 2017). The linear
regularity property is related to the relaxation of strong convexity, the so-called quadratic
functional growth condition for an objective function, for smooth convex optimization in-
troduced in (Necoara et al., 2017). In (Necoara et al., 2017) it has been proved that several
first order methods converge linearly under functional growth condition and smoothness of
the objective function.
Notice that this general optimization model (4) covers a long range of applications from
various fields, such as optimization, machine learning, statistics, control, which we discuss
in more details below.

2.1 Convex feasibility problem

Let us consider the following objective function and constraints (Necoara, 2017):

f(x;S) :=
λ

2
‖x‖2 ∀S ∈ Ω and X = ∩S∈ΩXS ,

where λ > 0. Then, we obtain the least norm convex feasibility problem:

min
x∈Rn

λ

2
‖x‖2 s.t. x ∈ ∩S∈ΩXS .

We can also consider another reformulation of the least norm convex feasibility problem:

f(x;S) :=
λS
2
‖x‖2 + IXS (x) ∀S ∈ Ω,

where λS ≥ 0 and E[λS ] = λ. Then, this leads to the stochastic optimization model:

min
x∈Rn

E
[
λS
2
‖x‖2 + IXS (x)

]
.

Finding a point in the intersection of a collection of closed convex sets represents a modeling
paradigm for solving important applications such as data compression, neural networks and
adaptive filtering, see (Censor et al., 2012) for a complete list.

2.2 Regression problem

Let us consider the matrix A ∈ Rm×n. For any S ∈ Ω ⊆ R, let us define:

f(x;S) := `(ATSx),

where ` is some loss function and AS ∈ Rn. This results in the following constrained
optimization model:

min
x∈Rn

E[`(ATSx)] s.t. x ∈ ∩S∈ΩXS .

Many learning problems can be modeled into this form, see e.g. (Toulis et al., 2016; Shalev-
Shwartz and Zhang, 2013). This type of optimization model has been also considered in
(Bianchi, 2016; Rosasco et al., 2014).

8



Stochastic proximal point methods for convex optimization

2.3 Finite sum problem

Let Ω = {1, · · · ,m} and P be the uniform discrete probability distribution on Ω. Further,
we consider convex functions f(x; i) = `i(x). Then, the following constrained finite sum
problem is recovered:

min
x∈Rn

1

m

m∑
i=1

`i(x) s.t. x ∈ ∩mi=1Xi.

This constrained optimization model appears often in statistics and machine learning ap-
plications, where the functions `i(·) typically represent loss functions associated to a given
estimator and the feasible set comes from physical constraints, see e.g. (Defazio et al., 2014;
Roux et al., 2012; Vanli et al., 2017; Yurtsever et al., 2016). It is also a particular problem
of a more general optimization model considered in (Bianchi, 2016).

2.4 Multiple kernel learning problem

In many classification problems we want to learn a convex combination of kernels κ(x, x′) =∑M
j=1 βjκj(x, x

′) (Bach et al., 2004). This approach is useful in complex classification prob-
lems, where we use polynomial kernels of different degrees or kernels on different domains.
The goal is to learn the weights βj and they are usually found through SVM optimization:

min
(w,β,ξ,b)

1

2

 M∑
j=1

βj‖wj‖

2

+ C

N∑
i=1

ξi

w = (w1, · · · , wM ), wj ∈ Rnj , β = (β1, · · · , βM ), ξ = (ξ1, · · · , ξN )

yi

 M∑
j=1

βjw
T
j xij + b

 ≥ 1− ξi ∀i = 1 : N, ξ ≥ 0, β ≥ 0,
M∑
j=1

βj = 1.

Note that this formulation is equivalent to linear SVM for M = 1. We usually obtain a
sparse solution in β, where each component βj corresponds to one kernel κj . The dual of
this optimization problem takes the form:

min
(γ,α)

1

2
γ2 −

N∑
i=1

αi

0 ≤ α ≤ C,
N∑
i=1

αiyi = 0,

N∑
p=1

N∑
q=1

αpαqypyqκj(xp, xq) ≤ γ2 ∀j = 1 : M.

This convex Quadratic Optimization problem with Quadratic Constraints can be easily
reformulated as a Linear Program with infinite number of simple constraints by introducing
the notation Qj(α) =

∑N
p=1

∑N
q=1 αpαqypyqκj(xp, xq) (Sonnenburg et al., 2006):

max
(θ,β)

θ

θ ∈ R, β ≥ 0,
M∑
j=1

βj = 1,
M∑
j=1

βj

(
1

2
Qj(α)−

N∑
i=1

αi

)
≥ θ ∀α ∈ Ω(y),
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where we use the notation

Ω(y) =

{
α : 0 ≤ α ≤ C,

N∑
i=1

αiyi = 0

}
.

There are many methods for solving Linear Programs with infinite number of constraints,
in particular algorithms related to boosting (Sonnenburg et al., 2006). Note that in this
Linear Program formulation the sets XS are simple hyperplanes.

2.5 Optimal control problem

In this section we briefly present the H2 optimal control problem for linear systems (see
(Karimi and Kammer, 2017) for a detailed exposition). In this application one aims at
finding a stabilizing controller K for a linear system which minimize an H2 performance
indicator. This problem can be formulated as:

min
K(ω),Γ(ω)

π
T∫

− π
T

trace[Γ(ω)]dω

s.t. : W (ω)[(In +G(ω)K(ω))∗(In +G(ω)K(ω))]−1W ∗(ω) � Γ(ω) ∀ω ∈ Ω,

where the frequencies ω are taken in the interval Ω =
[
− π
T ,

π
T

]
, G(ω),W (ω) are the param-

eters associated with the linear dynamical system under consideration, Γ(ω) is a positive
semidefinite matrix and K(ω) is the controller that needs to be identified. Note that the
previous H2 optimal control problem requires that the constraints, expressed through ma-
trix inequalities, to hold for all frequencies ω in the interval Ω. Moreover, the objective
function can be expressed as an expectation over the same interval Ω. In control theory,
Γ(ω) and K(ω) are taken as polynomial matrices in the frequencies ω. Moreover, the pre-
vious matrix inequalities are usually convexified using Schur complement and linearization
techniques and then the interval Ω is discretized to get a finite number of constraints (linear
matrix inequalities) (Karimi and Kammer, 2017).

3. Stochastic Proximal Point algorithm

In this section we propose solving the optimization problem (4) through stochastic proxi-
mal point type algorithms. It has been proven in (Necoara et al., 2017) that the optimiza-
tion problem (4) can be equivalently reformulated under Assumption 2 into the following
stochastic optimization problem:

min
x∈Rn

E [f(x;S) + IXS (x)] . (5)

Since each component of the stochastic objective is nonsmooth, a first possible approach is to
apply stochastic subgradient methods (Duchi and Singer, 2009; Moulines and Bach, 2011),
which would yield simple algorithms, but having usually a relatively slow sublinear conver-
gence rate. Therefore, for more robustness, one can deal with the nonsmoothness through
the Moreau smoothing framework. However, there are multiple potential approaches in
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this direction. For a given smoothing parameter µ > 0, we can smooth each functional
component and the associated indicator function together to obtain the following smooth
approximation for the nonsmooth convex function f(·;S) + IXS :

f̄µ(x;S) := min
z∈Rn

f(z;S) + IXS (z) +
1

2µ
‖z − x‖2.

Let us denote the corresponding prox operator by z̄µ(x;S) = arg min
z∈Rn

f(z;S) + IXS (z) +

1
2µ‖z − x‖

2. It is known that any Moreau approximation f̄µ(·;S) is differentiable having

the gradient ∇f̄µ(x;S) = 1
µ(x − z̄µ(x;S)) (Rockafellar and Wets, 1998). Moreover, the

gradient is Lipschitz continuous with constants bounded by 1
µ . Then, instead of solving the

nonsmooth problem (5) we can consider solving the smooth approximation:

min
x∈Rn

F̄µ(x)
(
:= E[f̄µ(x;S)]

)
.

Notice that we can easily apply the classical SGD strategy to the newly created smooth
objective function, which results in the following iteration:

xk+1 = xk − µk∇f̄µk(xk;Sk) = z̄µk(xk;Sk)

= arg min
z∈Rn

f(z;Sk) + IXSk (z) +
1

2µk
‖z − xk‖2.

However, the nonasymptotic analysis technique considered in our paper encounters difficul-
ties with this variant of the algorithm. The main difficulty consists in proving the bound
‖∇f̄µ(x;S)‖ ≤ ‖gf(·;S)+IXS

(x)‖ for all x ∈ Rn, where gf(·;S)+IXS
(x) ∈ ∂(f(·;S) + IXS )(x).

We believe that such a bound is essential in our convergence analysis and we leave for fu-
ture work the analysis of this iterative scheme. Therefore, we considered a second approach
based on a smooth Moreau approximation only for the functional component f(·;S) and
keeping the indicator function IXS in its original form, that is:

fµ(x;S) := min
z∈Rn

f(z;S) +
1

2µ
‖z − x‖2

for some smoothing parameter µ > 0. Then, instead of solving nonsmooth problem (5), we
solve the following composite approximation:

min
x∈Rn

Fµ(x) (:= E[fµ(x;S) + IXS (x)]) . (6)

Let us denote the corresponding prox operator by:

zµ(x;S) = arg min
z∈Rn

f(z;S) +
1

2µ
‖z − x‖2.

Further, on the stochastic composite approximation (6) we can apply the stochastic pro-
jected gradient method, which leads to a stochastic proximal point like scheme for solving
the original problem (4):

11
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Algorithm SPP (x0, {µk}k≥0)

For k ≥ 1 compute:
1. Choose randomly Sk ∈ Ω w.r.t. probability distribution P
2. Update: yk = zµk(xk;Sk) and xk+1 = ΠXSk

(yk)

where x0 ∈ Rn is some initial starting point and {µk}k≥0 is a nonincreasing positive se-
quence of stepsizes. We assume that the algorithm SPP returns either the last point xk

or the average point x̂k = 1∑k−1
i=0 µi

∑k−1
i=0 µix

i when it is called as a subroutine. Since the

update rule of the positive smoothing (stepsize) sequence {µk}k≥0 strongly contributes to
the convergence of the scheme, we discuss in the following sections the most advantageous
choices. We first prove the following useful auxiliary result:

Lemma 3 Let µ> 0, S∈ Ω. Then, for any gf (x;S) ∈ ∂f(x;S), the following holds:

‖∇fµ(x;S)‖ ≤ ‖gf (x;S)‖ ∀x ∈ Rn.

Proof The optimality condition of problem min
z∈Rn

f(z;S) + 1
2µ‖x− z‖

2 is given by:

1

µ
(x− zµ(x;S)) ∈ ∂f(zµ(x;S);S).

The above inclusion easily implies that there is gf (zµ(x;S);S) ∈ ∂f(zµ(x;S);S) such that:

1

µ
‖zµ(x;S)− x‖2 = 〈gf (zµ(x;S);S), x− zµ(x;S)〉

= 〈gf (x;S), x− zµ(x;S)〉+ 〈gf (zµ(x;S);S)− gf (x;S), x− zµ(x;S)〉
≤ 〈gf (x;S), x− zµ(x;S)〉,

where in the last inequality we used the convexity of f . Lastly, by applying the Cauchy-
Schwarz inequality in the right hand side we get the above statement.

The following two well-known inequalities, which can be found in (Bullen, 2003), will be
also useful in the sequel:

(i) [Bernoulli] Let t ∈ [0, 1] and x ∈ [−1,∞), then the following holds:

(1 + x)t ≤ 1 + tx. (7)

(ii) [Minkowski] Let x and y be two random variables. Then, for any 1 ≤ p <∞, the
following inequality holds:

(E[|x+ y|p])1/p ≤ (E[|x|p])1/p + (E[|y|p])1/p . (8)

12



Stochastic proximal point methods for convex optimization

4. Nonasymptotic complexity of SPP: convex objective function

In this section we analyze, under Assumptions 1 and 2, the iteration complexity of SPP
scheme with nonincreasing stepsize rule to approximately solve the optimization problem

(4). In order to prove this nonasymptotic result, we define µ̂1,k =
k−1∑
i=0

µi, µ̂2,k =
k−1∑
i=0

µ2
i and

the averaged sequences x̂k = 1
µ̂1,k

∑k−1
i=0 µix

i and ŷk = 1
µ̂1,k

∑k−1
i=0 µiy

i. Moreover, denote by

Fk the history of random choices {Sk}k≥0, i.e. Fk = {S0, · · · , Sk}.

Lemma 4 Let Assumptions 1 and 2 hold and the sequences {xk, yk}k≥0 be generated by
SPP scheme with positive stepsize {µk}k≥0. Then the following relation holds:

E
[
dist2XSk

(ŷk)
]
≥ 1

ζ
E
[
dist2X(x̂k)

]
−
µ̂2,k

µ̂1,k

√
E[dist2X(x̂k)]

√
E[L2

f,S ].

Proof See Appendix for the proof.

Now, we are ready to derive the convergence rate of SPP in the average sequence x̂k:

Theorem 5 Under Assumptions 1 and 2, let the sequence {xk}k≥0 be generated by the
algorithm SPP with nonincreasing positive stepsize {µk}k≥0. Define Rµ = µ0ζ(‖x0−x∗‖2 +
E[L2

f,S ]µ̂2,k), then the following estimates for suboptimality and feasibility violation hold:

−ζE[L2
f,S ]

(
µ̂2,k

µ̂1,k
+2µ0

)
−

√
E[L2

f,S ]
Rµ
µ̂1,k

≤ E[F (x̂k)]− F ∗ ≤ Rµ
2µ0ζµ̂1,k

E[dist2X(x̂k)] ≤ 2ζ2E[L2
f,S ]

(
µ̂2,k

µ̂1,k
+ 2µ0

)2

+
2Rµ
µ̂1,k

.

(9)

Proof See Appendix for the proof.

Note that the right suboptimality bound (9), obtained for the SPP algorithm, is similar with
the one given for the standard subgradient method (Nesterov, 2004). Below we provide the
convergence estimates for the algorithm SPP with constant stepsize for a desired accuracy
ε > 0. For simplicity, assume that ‖x0 − x∗‖ ≥ 1 and E[L2

f,S ] ≥ 2.

Corollary 6 Under the assumptions of Theorem 5, let {xk}k≥0 be the sequence generated
by algorithm SPP with constant stepsize µk = µ > 0. Also let ε > 0 be the desired accuracy,
K be an integer satisfying:

K ≥
E[L2

f,S ]‖x0 − x∗‖2

ε2
max

{
1, (3ζ +

√
2ζ)2

}
,

and the stepsize be chosen as:

µ =
ε

E[L2
f,S ](3ζ +

√
2ζ)

.

13
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Then, after K iterations, the average point x̂K = 1
K

K−1∑
i=0

xi satisfies:

∣∣E[F (x̂K)]− F ∗
∣∣ ≤ ε and

√
E[dist2X(x̂K)] ≤ ε.

Proof We consider k = K in Theorem 5 and, by taking into account that µk = µ for
all k ≥ 0, we aim to obtain the lowest value of the right hand side of (9) by minimizing
over µ > 0. Thus, by denoting that r0 = ‖x0 − x∗‖, we obtain for the optimal smoothing
parameter:

µ =

√
r2

0

KE[L2
f,S ]

the optimal rate

E[F (x̂K)]− F ∗ ≤

√
E[L2

f,S ]r2
0

K
. (10)

Also using the optimal parameter µ̃ into the other relations of Theorem 5 result in:

E[dist2
X(x̂K)] ≤ r2

0

K

(
18ζ2 + 4ζ

)
(11)

and

E[F (x̂K)]− F ∗ ≥ −(3ζ +
√

2ζ)

√
E[L2

f,S ]r2
0

K
. (12)

From the upper and lower suboptimality bounds (10), (12) and feasibility bound (11), we
deduce the following bound:

K ≥
E[L2

f,S ]r2
0

ε2
max

{
1, (3ζ +

√
2ζ)2

}
which confirms our result.

In conclusion, Corollary 6 states that for a desired accuracy ε, if we choose a constant stepsize
µ = O(ε) and perform a number of SPP iterations O

(
1
ε2

)
we obtain an ε-optimal solution for

our original stochastic constrained convex problem (4). Note that for convex problems with
objective function having bounded subgradients the previous convergence estimates derived
for the SPP algorithm are similar to those corresponding to the classical deterministic
proximal point method (Guler, 1991) and subgradient method (Nesterov, 2004).

5. Nonasymptotic complexity of SPP: strongly convex objective function

In this section we analyze the convergence behavior of the SPP scheme under smoothness
and strong convexity assumptions on the objective function of constrained problem (4).
Therefore, in this section the Assumption 1 is replaced by the following assumptions:

14



Stochastic proximal point methods for convex optimization

Assumption 7 Each function f(·;S) is differentiable and σf,S-strongly convex, that is
there exists strong convexity constant σf,S ≥ 0 such that:

f(x;S) ≥ f(y;S) + 〈∇f(y;S), x− y〉+
σf,S

2
‖x− y‖2 ∀x, y ∈ Rn.

Moreover, the strong convexity constants σf,S satisfy σF = E[σf,S ] > 0.

Notice that if for some function f(·;S) the corresponding constant σf,S = 0, then f(·;S) is
only convex. However, relation E[σf,S ] = σF > 0 implies that the whole objective function
F of problem (4) is strongly convex with constant σF > 0. In the sequel we will analyze
the SPP scheme under the following additional smoothness assumption:

Assumption 8 Each function f(·;S) has Lipschitz gradient, that is there exists Lipschitz
constant Lf,S > 0 such that:

‖∇f(x;S)−∇f(y;S)‖ ≤ Lf,S‖x− y‖ ∀x, y ∈ Rn.

Note that Assumptions 7 and 8 are standard for the convergence analysis of SPP like
schemes, see e.g. (Moulines and Bach, 2011; Ryu and Boyd, 2016). We first present an
auxiliary result on the behavior of the proximal mapping zµ(·;S).

Lemma 9 Let f(·;S) satisfy Assumption 7. Further, for any S ∈ Ω and µ > 0, we define
θS(µ) = 1

1+µσf,S
. Then, the following contraction inequality holds for the prox operator:

‖zµ(x;S)− zµ(y;S)‖ ≤ θS(µ)‖x− y‖ ∀x, y ∈ Rn.

Proof See Appendix for the proof.

Notice that if all the functions f(·;S) are just convex, that is they satisfy Assumption 7 with
σf,S = 0, then Lemma 9 highlights the nonexpansiveness property of the proximal operator
zµ(·;S). We will further keep using the notation θS(µ) for the contraction factor of the
operator zµ(·;S). Moreover, in all our proofs below, regarding the results in expectation,
we use the standard technique of applying first expectation with respect to Sk conditioned
on Fk−1 and then apply the expectation over the entire history Fk−1 (see the proof of
Theorem 5). For simplicity of the exposition and for saving space, we omit these details
below.

5.1 Linear convergence to noise dominated region for constant stepsize SPP

Next we analyze the sequence generated by the SPP scheme with constant stepsize µ > 0
and provide a nonasymptotic bound on the quadratic mean {E[‖xk − x∗‖2]}k≥0.

Theorem 10 Under Assumption 7, let the sequence {xk}k≥0 be generated by the algo-
rithm SPP with constant stepsize µ > 0. Further, assume σmax

f = sup
S∈Ω

σf,S < ∞. Then,

E[θ2
S(µ)] ≤ E[θS(µ)] < 1 and the following linear convergence to some region around the

optimal point in the quadratic mean holds:

E[‖xk − x∗‖2] ≤ 2
(
E
[
θ2
S(µ)

])k ‖x0 − x∗‖2 +
2µ2E[‖∇f(x∗;S)‖2](

1−
√
E[θ2

S(µ)]
)2 .
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Proof First, it can be easily seen that for any µ > 0 and S ∈ Ω we have θ2
S(µ) ≤ θS(µ) ≤ 1

and assuming that σmax
f <∞ we obtain:

0 ≤ E[θ2
S(µ)] ≤ E[θS(µ)] = E

[
1

1 + µσf,S

]
= 1− E

[
µσf,S

1 + µσf,S

]
≤ 1− µσF

1 + µσmax
f

< 1.

Then, by applying Lemma 9 with S = Sk, x = xk and z = x∗, results in:∥∥∥zµ(xk;Sk)− zµ(x∗;Sk)
∥∥∥ ≤ θSk(µ)‖xk − x∗‖,

which, by the triangle inequality, further implies:∥∥∥zµ(xk;Sk)− x∗
∥∥∥ ≤ θSk(µ)‖xk − x∗‖+ ‖zµ(x∗;Sk)− x∗‖.

By using the nonexpansiveness property of the projection operator we get that ‖xk+1−x∗‖ ≤
‖yk − x∗‖, then the last inequality leads to the reccurent relation:∥∥∥xk+1 − x∗

∥∥∥ ≤ ∥∥∥zµ(xk;Sk)− x∗
∥∥∥ ≤ θSk(µ)‖xk − x∗‖+ ‖zµ(x∗;Sk)− x∗‖. (13)

The relation (13), Minkowski inequality and Lemma 3 lead to the following recurrence:√
E[‖xk+1 − x∗‖2]

(13)

≤
√
E
[
(θSk(µ)‖xk − x∗‖+ ‖zµ(x∗;Sk)− x∗‖)2

]
(8)

≤
√

E
[
θ2
Sk

(µ)‖xk − x∗‖2
]

+
√

E [‖zµ(x∗;Sk)− x∗‖2]

=
√

E
[
θ2
S(µ)

]√
E [‖xk − x∗‖2] + µ

√
E [‖∇fµ(x∗;S)‖2]

Lemma 3
≤

√
E
[
θ2
S(µ)

]√
E[‖xk − x∗‖2] + µ

√
E [‖∇f(x∗;S)‖2].

This yields the following relation valid for all µ > 0 and k ≥ 0:√
E[‖xk+1 − x∗‖2] ≤

√
E
[
θ2
S(µ)

]√
E[‖xk − x∗‖2] + µ

√
E [‖∇f(x∗;S)‖2], (14)

Denote rk=
√

E[‖xk − x∗‖2], η=
√

E [‖∇f(x∗;S)‖2]] and θ(µ)=
√
E
[
θ2
S(µ)

]
. Then, we get:

rk+1 ≤ θ(µ)rk + µη.

Finally, a simple inductive argument leads to:

rk ≤ r0θ(µ)k + µη
[
1 + θ(µ) + · · ·+ θ(µ)k−1

]
= r0θ(µ)k + µη

1− θ(µ)k

1− θ(µ)

≤ r0θ(µ)k +
µη

1− θ(µ)
.
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By squaring and returning to our basic notations, we recover our statement.

Theorem 10 proves a linear convergence rate in expectation, without assuming any kind
of smoothness on the objective function, for the sequence {xk}k≥0 generated by SPP with
constant stepsize µ > 0 when the iterates are outside of a noise dominated neighborhood

of the optimal set of radius
µ
√

E[‖∇f(x∗;S)‖2]

1−
√

E[θ2S(µ)]
. It also establishes the boundedness of the

sequence {xk}k≥0 when the stepsize is constant. Notice that in (Ryu and Boyd, 2016) a
similar result has been given for an unconstrained optimization model with the difference
that the convergence rate was provided for E[‖xk−x∗‖]. However, our proof is simpler and
more elegant, based on the properties of Moreau approximation, despite the fact that we
consider the constrained case.

5.2 Nonasymptotic sublinear convergence rate of variable stepsize SPP

In this section we derive sublinear convergence rate of order O(1/kγ) for the variable stepsize
SPP scheme, in a nonasymptotic fashion. We first prove the boundedness of {xk}k≥0 when
the stepsize is nonincreasing, which will be useful for the subsequent convergence results.

Lemma 11 Under Assumption 7, let the sequence {xk}k≥0 be generated by the algorithm
SPP with nonincreasing positive stepsize {µk}k≥0. Then, the following relation holds:

E
[
‖xk − x∗‖

]
≤
√

E[‖xk − x∗‖2] ≤ max

‖x0 − x∗‖,
µ0

√
E [‖∇f(x∗;S)‖2]

1−
√

E
[
θ2
S(µ0)

]
 .

Proof See Appendix for the proof.

Furthermore, we need an upper bound on the sequence {E[‖∇f(xk;S)‖]}k≥0:

Lemma 12 Under Assumptions 7 and 8, let the sequence {xk}k≥0 be generated by the
algorithm SPP with nonincreasing positive stepsizes {µk}k≥0. Then, the following holds:

E[‖∇f(xk;S)‖2] ≤ 2E[‖∇f(x∗;S)‖2] + 2E[L2
f,S ]A2,

where A = max

{
‖x0 − x∗‖, µ0

√
E[‖∇f(x∗;S)‖2]

1−
√

E[θ2S(µ0)]

}
.

Proof From the Lipschitz continuity of ∇f(·;S) we have that ‖∇f(x;S)−∇f(x∗;S)‖ ≤
Lf,S‖x− x∗‖ for all x ∈ Rn, which implies:

‖∇f(xk;S)‖2 ≤ (‖∇f(x∗;S)‖+ Lf,S‖xk − x∗‖)2 ≤ 2‖∇f(x∗;S)‖2 + 2L2
f,S‖xk − x∗‖2.

By taking expectation in both sides we get:

E[‖∇f(xk;S)‖2] ≤ 2E[‖∇f(x∗;S)‖2] + 2E[L2
f,S ]E[‖xk − x∗‖2].
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Lastly, by using Lemma 11 we obtain our statement.

Finally, we provide a non-trivial upper bound on the feasibility gap, which automatically
leads to a iterative descent in the distance to the feasible set of the sequence {xk}k≥0,
generated by the SPP scheme with nonincreasing stepsizes.

Lemma 13 Under Assumptions 2, 7 and 8, let the sequence {xk}k≥0 be generated by SPP
scheme with nonincreasing stepsizes {µk}k≥0. Then, the following relation holds:

√
E[dist2X(xk)] ≤

(
1− 1

ζ

)k/2 [
distX(x0) + 2µ0ζB

]
+ 2µk−d k

2
eζB,

where B =
√

2E[‖∇f(x∗;S)‖2] +A
√

2E[L2
f,S ].

Proof See Appendix for the proof.

Now, we are ready to derive the nonasymptotic convergence rate of the Algorithm SPP
with nonincreasing stepsizes. For simplicity, we denote η =

√
E[‖∇f(x∗;S)‖2] and keep the

notations for A from Lemma 12 and for B from Lemma 13.

Theorem 14 Under Assumptions 2, 7 and 8, let the sequence {xk}k≥0 be generated by the
algorithm SPP with the stepsize µk = µ0

kγ for all k ≥ 1, with µ0 > 0 and γ ∈ (0, 1], and

denote θ0 = E
[
θ2
S(µ0)

]
= E

[
1

(1+µ0σf,S)2

]
. Then, the following relations hold:

(i) If γ ∈ (0, 1), then we have the following nonasymptotic convergence rates:

E[‖xk − x∗‖2]≤θϕ1−γ(k)
0 r2

0 +Dθϕ1−γ(k)−ϕ1−γ( k+1
2

)

0 µ2
0

[
ϕ1−2γ

(
k + 1

2

)
+ 2

]
+
Dµ2

04γ

(1− θ0)kγ
.

(ii) If γ = 1, then we have the following nonasymptotic convergence rate:

E[‖xk − x∗‖2] ≤


θ
ϕ0(k)
0 r2

0 +
2µ20

k
(

ln
(

1
θ0

)
−1
) if θ0 <

1
e

θ
ϕ0(k)
0 r2

0 +
2µ20 ln k

k if θ0 = 1
e

θ
ϕ0(k)
0 r2

0 +
(

2
k

)ln( 1
θ0

)
µ20

1−ln
(

1
θ0

) if θ0 >
1
e ,

where D = 4‖∇F (x∗)‖
[
distX(x0)+2µ0ζB
µ0 ln(ζ/(ζ−1)) + 3γBζ

]
+ 2η

√
2η2 + 2E[L2

f,S ]A2 + 2ηA
√
E[L2

f,S ].

Proof See Appendix for the proof.

For more clear estimates of the convergence rates obtained in Theorem 14, we provide in
the next corollary a summary given in terms of the dominant terms:
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Corollary 15 Under the assumptions of Theorem 14 the following convergence rates hold:
(i) If γ ∈ (0, 1), then we have convergence rate of order:

E[‖xk − x∗‖2] ≤ O
(

1

kγ

)
(ii) If γ = 1, then we have convergence rate of order:

E[‖xk − x∗‖2] ≤


O
(

1
k

)
if θ0 <

1
e

O
(

ln k
k

)
if θ0 = 1

e

O
(

1
k

)2 ln
(

1
θ0

)
if θ0 >

1
e .

Proof First assume that γ ∈ (0, 1
2). This assumption implies that 1− 2γ > 0 and that:

ϕ1−2γ

(
k

2
+ 2

)
=

(
k
2 + 2

)1−2γ − 1

1− 2γ
≤
(
k
2 + 2

)1−2γ

1− 2γ
. (15)

On the other hand, by using the inequality e−x ≤ 1
1+x for all x ≥ 0, we obtain:

θ
ϕ1−γ(k+1)−ϕ1−γ( k+1

2
)

0 ϕ1−2γ

(
k

2
+ 2

)
= e(ϕ1−γ(k+1)−ϕ1−γ( k+1

2
)) ln θ0ϕ1−2γ

(
k

2
+ 2

)

≤
ϕ1−2γ

(
k
2 + 2

)
1 + [ϕ1−γ(k + 1)− ϕ1−γ(k2 + 1)] ln 1

θ0

(15)

≤
(k+4)1−2γ

21−2γ(1−2γ)

1
1−γ [(k + 1)1−γ − (k2 + 1)1−γ ] ln 1

θ0

=

(k+4)1−2γ

21−2γ(1−2γ)

(k+2)1−γ

1−γ [(2
3)1−γ − (1

2)1−γ ] ln 1
θ0

=
1− γ
1− 2γ

2γ(k + 4)−γ

[(2
3)1−γ − (1

2)1−γ ] ln 1
θ0

≈ O
(

1

kγ

)
.

Therefore, in this case, the overall rate will be given by:

r2
k+1 ≤ θ

O(k1−γ)
0 r2

0 +O
(

1

kγ

)
≈ O

(
1

kγ

)
.

If γ = 1
2 , then the definition of ϕ1−2γ(k2 + 2) provides that:

r2
k+1 ≤ θ

O(
√
k)

0 r2
0 + θ

O(
√
k)

0 O(ln k) +O
(

1√
k

)
≈ O

(
1√
k

)
.

When γ ∈ (1
2 , 1), it is obvious that ϕ1−2γ

(
k
2 + 2

)
≤ 1

2γ−1 and therefore the order of the
convergence rate changes into:

r2
k+1 ≤ θ

O(k1−γ)
0 [r2

0 +O(1)] +O
(

1

kγ

)
≈ O

(
1

kγ

)
.

Lastly, if γ = 1, by using θln k+1
0 ≤

(
1
k

)ln 1
θ0 we obtain the second part of our result.
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Notice that the above results state that our SPP algorithm with variable stepsize µ0
kγ con-

verges with O
(

1
kγ

)
rate. Similar results have been obtained in (Toulis et al., 2016) for a par-

ticular objective function of the form f(aTSx) without any constraints and for γ ∈ (1/2, 1].
Moreover, for γ = 1 similar convergence rate, but in asymptotic fashion and for uncon-
strained problems, has been derived in (Ryu and Boyd, 2016). As we have already men-
tioned in the introduction section, the convergence rate for the SGD scheme contains an

exponential term of the form eC2µ
2
0

kαµ0 , which for a given iteration counter k grows exponentially
in the initial stepsize µ0, see (Moulines and Bach, 2011). Thus, although the SGD method
achieves a rate O( 1

k ) for a variable stepsize µ0
k , if µ0 is chosen too large, then it can induce

catastrophic effects in the convergence rate. However, one should notice that for our SPP
method, Theorem 14 does not contain this kind of exponential term, therefore SPP is more
robust than SGD scheme even in the constrained case. This can be also observed in numer-
ical simulations, see Section 7 below. Clearly, Corollary 15 directly implies the following
complexity estimates for attaining a suboptimal point xk satisfying E[‖xk − x∗‖2] ≤ ε.

Corollary 16 Under the assumptions of Theorem 14 and ε > 0 the following estimates
hold. For γ ∈ (0, 1), if we perform: ⌈

O
(

1

ε1/γ

)⌉
iterations of SPP scheme with variable stepsize, then the sequence {xk}k≥0 satisfies E[‖xk−
x∗‖2] ≤ ε. Moreover, for γ = 1 and θ0 <

1
e , if we perform:⌈
O
(

1

ε

)⌉
iterations of SPP scheme with variable stepsize, then we have E[‖xk − x∗‖2] ≤ ε.

Proof The proof follows immediately from Corollary 15.

6. A restarted variant of Stochastic Proximal Point algorithm

From previous section we easily notice that an O
(

1
ε

)
convergence rate is obtained for the

SPP algorithm with variable stepsize µk = µ0
k only when the initial stepsize µ0 is chosen

sufficiently large such that θ0 = E
[

1
(1+µ0σf,S)2

]
< 1√

e
. However, this condition is not easy

to check. Therefore, if µ0 is not chosen adequately, we can encounter the case θ0 >
1√
e
,

which leads to a worse convergence rate for the SPP scheme of order O
(
ε
− 1

2 ln (1/θ0)

)
, that

is implicitly dependent on the choice of the initial stepsize µ0. In conclusion, in order to
remove this dependence on the initial stepsize of the simple SPP scheme, we develop a
restarting variant of it. This variant consists of running the SPP algorithm (as a routine)
for multiple times (epochs) and restarting it each time after a certain number of iterations.
In each epoch t, the SPP scheme runs for an estimated number of iterations Kt, which
may vary over the epochs, depending on the assumptions made on the objective function.
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More explicitly, the Restarted Stochastic Proximal Point (RSPP) scheme has the following
iteration:

Algorithm RSPP

Let µ0 > 0 and x0,0 ∈ Rn. For t ≥ 1 do:

1. Compute stepsize µt and number of inner iterations Kt

2. Set xKt,t the average output of SPP(xKt−1,t−1, µt) runned for Kt itera-
tions with constant stepsize µt

3. If an outer stopping criterion is satisfied, then STOP, otherwise t := t+1
and go to step 1.

We analyze below the nonasymptotic convergence rate of the RSPP algorithm under As-
sumptions 7 and 8.

6.1 Nonasymptotic sublinear convergence of algorithm RSPP

In this section we analyze the convergence rate of the sequence generated by the RSPP
scheme, which repeatedly calls the subroutine SPP with a constant stepsize, in multiple
epochs. We consider that SPP runs in epoch t ≥ 1 with the constant stepsize µt for Kt

iterations. As in previous sections, we first provide a descent lemma for the feasibility gap.
For simplicity, we keep the notations of A from Lemma 12 and B from Lemma 13.

Lemma 17 Let Assumptions 2, 7 and 8 hold. Also let the sequence {xKt,t}t≥0 be gener-
ated by RSPP scheme with nonincreasing stepsizes {µt}t≥0 and nondecreasing epoch lengths
{Kt}t≥1 such that Kt ≥ 1 for all t ≥ 1. Then, the following relation holds:

√
E[dist2X(xKt,t)] ≤

(
1− 1

ζ

)∑t
i=1

Ki
2

distX(x0,0) + 2

(
1− 1

ζ

) t∑
i=t−d t2 e

Ki
2

µ0ζ
2B + 2µt−d t

2
eζ

2B.

Proof See Appendix for the proof.

Next, we provide the non-asymptotic bounds on the iteration complexity of RSPP scheme.

Theorem 18 Let Assumptions 2, 7 and 8 hold and ε, µ0 > 0. Also let γ > 0 and {xKt,t}t≥0

be generated by RSPP scheme with µt = µ0
tγ and Kt = dtγe. If we perform the following

number of epochs:

T =

⌈
max

{
ln

(
2r2

0,0

ε

)
1

ln (1/θ0)
,

(
2γ+1Dr

ε
C
)1/γ

}⌉
,
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then after a total number of SPP iterations of T 1+γ

1+γ , which is bounded by 1

1 + γ
max

ln

(
2r2

0,0

ε

)1+γ
1

ln (1/θ0)1+γ ,

(
2γ+1Dr

ε
C
)1+ 1

γ


 ,

where Dr = 4‖∇F (x∗)‖
[
distX(x0,0)+2µ0ζ2B
µ0 ln(ζ/(ζ−1)) + 3γBζ2

]
+2η

√
2η2 + 2E[L2

f,S ]A2+2ηA
√
E[L2

f,S ]

and C = 1
2(1−γ) ln 1/

√
θ0

+
µ21

(1−θ0)2
, we have E[‖xKT ,T − x∗‖2] ≤ ε.

Proof See Appendix for the proof.

In conclusion Theorem 18 states that the RSPP algorithm with the choices (µt,Kt) =(µ0
tγ ,

tγ

2

)
requires O

(
ε
−
(

1+ 1
γ

))
simple SPP iterations to reach an ε optimal point. It is

important to observe that this convergence rate is achieved when the stepsize and the
epoch length are not dependent on any inaccessible constant, making our restarting scheme
easily implementable. Moreover, the parameter γ can be chosen in (0,∞), i.e. our RSPP
scheme allows also stepsizes µ0

tγ , with γ > 1. By comparison, an O
(
ε−1
)

complexity is
obtained for SPP with stepsize µk = µ0

k only when µ0 is chosen sufficiently large such that
θ0 <

1
e . However, this condition is not easy to check. Moreover, we may fall in the case

when θ0 >
1
e , which leads to a complexity of O

(
ε
− 1

2 ln (1/θ0)

)
of the variable stepsize SPP

scheme. Observe that the last convergence rate is implicitly dependent on the constant µ0

and can be arbitrarily bad, while for γ > 1 sufficiently large the RSPP scheme achieves the
optimal convergence rate O

(
ε−1
)
.

Remark 19 Notice that there exists a connection between the quadratic mean residual
E[‖xk − x∗‖2] and the function value residual in a certain point. To obtain this relation,
denote vk = [xk − 1

LF
∇F (xk)]X and observe that for some constant LF ≥ E[Lf,S ] we have:

F (vk) ≤ F (xk) + 〈∇F (xk), vk − xk〉+
LF
2
‖vk − xk‖2

= min
y∈X

F (xk) + 〈∇F (xk), y − xk〉+
LF
2
‖y − xk‖2

≤ min
y∈X

F (y) +
LF
2
‖y − xk‖2

≤ F (x∗) +
LF
2
‖xk − x∗‖2,

where in the second inequality we used the convexity relation. The last relation leads to
F (vk)− F (x∗) ≤ LF

2 ‖x
k − x∗‖2.

7. Numerical experiments

We present numerical evidence to assess the theoretical convergence guarantees of the SPP
algorithm. We provide three numerical examples: constrained stochastic least-square with
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random generated data (Moulines and Bach, 2011; Toulis et al., 2016), Markowitz port-
folio optimization using real data (Brodie et al., 2009; Yurtsever et al., 2016) and logistic
regression using real data (Platt, 1998). In all our figures the results are averaged over 20
Monte-Carlo simulations for an algorithm.

7.1 Stochastic least-square problems using random data

In this section we evaluate the practical performance of the SPP schemes on finite large scale
least-squares models. To do so, we follow a simple normal (constrained) linear regression
example from (Moulines and Bach, 2011; Toulis et al., 2016). Let m = 105 be the number
of observations, and n = 20 be the number of features. Let x∗ be a randomly a priori
chosen ground truth. The feature vectors a1, · · · , am ≈ Nn(0, H) are i.i.d. normal random
variables, and H is a randomly generated symmetric matrix with eigenvalues 1/k, for k =
1, · · · , n. The outcome bS is sampled from a normal distribution as bS |aS ≈ N (aTSx

∗, 1), for
S = 1, · · · ,m. Since the typical loss function is defined as the elementary squared residual
(aTSx− bS)2, which is not strongly convex, we consider batches of residuals to form our loss
functions, i.e we consider `(x, S) of two forms:

`(x, S) = ‖Aj(S):j(S)+nx− bj(S):j(S)+n‖2 or `(x, S) = (aTSx− bS)2,

where aS is the Sth row of A and Aj(S):j(S)+n ∈ Rn×n is a submatrix containing n rows
of A so that the function x 7→ ‖Aj(S):j(S)+nx − bj(S):j(S)+n‖2 is strongly convex. In our
tests we used round (m/2n) batches of dimension n and we let the rest as elementary
residuals, thus having in total p = m/2 + m/n loss functions. Additionally, we impose on
the estimator x also p linear inequality constraints {x | Cx ≤ d}. This constraints can be
found in many applications and they come from physical constraints, see e.g. (Censor et
al., 2012; Rosasco et al., 2014). We choose randomly the matrix C for the constraints and
d = C ·x∗+[0 0 0 vT ]T , where v ≥ 0 is a random vector of appropriate dimension, i.e. three
inequalities are active at the solution x∗. Besides the SPP and RSPP algorithms analyzed
in the previous sections of our paper, we also implemented SGD and the averaged variant
of SPP algorithm (A-SPP), which has the same SPP iteration, but outputs the average
of iterates: x̂k = (1/

∑k
i=1 µi)

∑k
i=1 µixi. Convergence behavior of the averaged iterates of

stochastic gradient has been initially proposed in the seminal paper (Polyak and Juditsky,
1992).
In Figure 1 we run algorithms SPP, RSPP, A-SPP and SGD for two values of the initial
stepsize: µ0 = 0.5 and µ0 = 1. Each scheme runs for two stepsize exponents: γ1 = 1 (left)
and γ2 = 1/2 (right). From Figure 1 we can asses one conclusion of Theorem 15: the best
performance for SPP is achieved for stepsize exponent γ = 1. Moreover, we can observe
that algorithm RSPP has the fastest behavior, while the averaged variant A-SPP is more
robust to changes in the initial stepsize µ0. The performance of SGD is much worse as
exponent γ decreases and it is also sensitive to the learning rate µ0. Notice that both tests
are performed over m iterations (i.e. one pass through data).

In the second set of experiments, we generate random least-square problems of the form
minx:Cx≤d 1/2‖Ax− b‖2, where both matrices A and C have m = 103 rows and generated
randomly. Now, we do not impose the solution x∗ to have the form given in the first test. We
let SPP and RSPP algorithms to do one pass through data for various stepsize exponents
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Figure 1: Performance comparison of SPP, A-SPP, RSPP and SGD for two values of initial
stepsize µ0 =0.5 and µ0 =1 and for two values of exponent γ=1/2 (left) and γ=1 (right).

γ. From Figure 2 we can assess the empirical evidence of the O(1/ε1/γ) convergence rate
of Theorem 15 for SPP and O(1/ε1+1/γ) convergence rate of Theorem 19 for RSPP, by
presenting squared relative distance to the optimum solution. Moreover, the simulation
results match other conclusions of Theorems 15 and 19 regarding the stepsize exponent
γ: (i) the performance of SPP deteriorates with the decrease in the value of the stepsize
exponent γ; (ii) from our preliminary numerical experiments we observed that RSPP scheme
runs faster for higher values of γ and it has a more robust performance with respect to the
variation of γ than SPP algorithm.
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Figure 2: Performance of: SPP for four values of the stepsize exponent γ = 1, 3/4, 1/2 and
1/4 (left); RSPP for four values of the stepsize exponent γ = 1, 4/3, 3/2 and 2 (right).

7.2 Markowitz portfolio optimization using real data

Markowitz portfolio optimization aims to reduce the risk by minimizing the variance for a
given expected return. This can be mathematically formulated as a convex optimization
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problem (Brodie et al., 2009; Yurtsever et al., 2016):

min
x∈Rn

E[(aTSx− b)2] s.t. x ∈ X = {x : x ≥ 0, eTx ≤ 1, aTavx ≥ b},

where aav = E[aS ] is the average returns for each asset that is assumed to be known (or
estimated), and b represents a minimum desired return. Since new data points are arriving
on-line, one cannot access the entire dataset at any moment of time, which makes the
stochastic setting more favorable. For simulations, we approximate the expectation with
the empirical mean as follows:

min
x∈Rn

1

m

m∑
S=1

(aTSx− b)2 s.t. x ∈ X = X1 ∩X2 ∩X3,

where X1 = {x : x ≥ 0}, X2 = {x : eTx ≤ 1} and X3 = {x : aTavx ≥ b}. In this application
we have the number of samples m larger than the number of constraints. However, by taking
a certain partition of [m] = Ω1 ∪ Ω2 ∪ Ω3, then one can consider: XS = Xi for all S ∈ Ωi,
with i ∈ {1, 2, 3}. We use 2 different real portfolio datasets: Standard & Poor’s 500 (SP500,
with 25 stocks for 1276 days) and one dataset by Fama and French (FF100, with 100
portfolios for 23.647 days) that is commonly used in financial literature, see e.g. (Brodie et
al., 2009). We split all the datasets into test (10%) and train (90%) partitions randomly.
We set the desired return aav as the average return over all assets in the training set and
b = mean(aav). The results of this experiment are presented in Figure 3. We plot the value
of the objective function over the datapoints in the test partition Ftest along the iterations.
We observe that SGD is very sensitive to both parameters, initial stepsize (µ0) and stepsize
exponent (γ), while SPP is more robust to changes in both parameters and also performs
better over one pass through data in the train partition.

7.3 Logistic regression using real data

Finally, we consider the logistic regression problem. In this task we train an estimator over
a given dataset (A, b), where A ∈ Rm×n is the observations matrix and b ∈ Rm is the labels
vector. For any S ∈ {1, · · · ,m} we define the logistic loss function:

`(aTSx) = log
(

1 + e−bS(aTSx)
)
,

where aS ∈ Rn is the Sth row of matrix A. Notice that the logistic loss function `(aTSx)
is only convex and smooth. However, in logistic regression we also consider a quadratic
regularization term (Toulis et al., 2016; Bach, 2010):

min
x∈Rn

1

m

m∑
S=1

log
(

1 + e−bS(aTSx)
)

+
λ

2
‖x‖2,

where λ > 0 is taken small, which makes the objective function λ-strongly convex. We
have tested the four schemes (SGD, SPP, ASPP and RSPP), on the Adult datasets (a2a
with m = 2265, n = 123 and a5a with m = 6414, n = 123) from LIBSVM/UCI database
(Platt, 1998). We set the initial stepsize at value µ0 = 0.6 and the regularization parameter
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Figure 3: Performance on Markowitz portfolio using real datasets (SP500 - top and FF100
- bottom) for the SPP, A-SPP, RSPP and SGD schemes for several values of the initial
stepsize µ0 and for two values of the exponent (γ = 1/2 - left and γ = 1 - right).

λ = 10−3. Once an approximate solution x̃∗ of the logistic regression problem is obtained,
we evaluate the resulted estimator on the test dataset, i.e. 1

2p

∑p
S=1 |sgn(ãTS x̃

∗)− b̃S |, where

Ã ∈ Rp×n and b̃ are the testing dataset. The results are displayed in Figure 4. We observe
that for large stepsize (γ = 1/2) the performances of all four methods (SGD, SPP, A-SPP
and RSPP) are similar. However, when we use a smaller stepsizes (γ = 1), the RSPP
algorithm outperforms the other methods. We also observe that the variation of stepsize
exponent γ does not influence too much the performance of RSPP algorithm, showing once
more the robustness of this scheme against variations in the stepsize choices µ0/k

γ .

Since we used different parameter values in our experiments, we want to provide some details
on the parameter choices. From the theoretical viewpoint, Theorems 15 and 19 show that
the stepsize exponent γ has to be chosen as large as possible to obtain the best convergence
rate. Let us consider for simplicity that σf,S = σ > 0 for all S ∈ Ω. Then, for the initial

stepsize µ0 Corollary 16 indicates that the best convergence rate is obtained for µ0 >
√
e−1
σ .

Therefore, in the case when σ is known (e.g. regularized logistic regression) we can choose
µ0 appropriately so that we obtain the best convergence. However, when this parameter σ
is not known, then there is an inherent need for parameter tuning. From practical point
of view, our plots show that the performance of SPP/RSPP deteriorates with the decrease
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Figure 4: Performance on logistic regression using real datasets (a2a - top and a5a - bottom)
for the SPP, A-SPP, RSPP and SGD schemes for two values of the exponent (γ = 1/2 - left
and γ = 1 - right).

in value of the exponent γ. That is, they indicate that the higher values of this parameter
the better performance. However, there is empirical evidence in the literature regarding
the SGD performance which shows that values γ < 1 provide a better performance than
the choice γ = 1. In these cases, the choice of initial stepsize µ0 requires a detailed tuning
procedure. As a general conclusion of our experiments, we can state that both parameters
µ0 and γ are strongly linked to the problem conditioning and, up to some extent, they have
to be tuned accordingly to the problem datasets.

8. Appendix

To make the paper more readable, in this Appendix we provide the proofs of some lemmas
and theorems.

Proof of Lemma 4:

Proof By using the convexity of the function Iµ,S(x) = 1
2µdist2

XS
(x) and taking the condi-

tional expectation w.r.t. Sk over the history Fk−1 = {S0, · · · , Sk−1}, we get:

E[I1,Sk(ŷk)|Fk−1] ≥ E
[
I1,Sk(x̂k) + 〈∇I1,Sk(x̂k), ŷk − x̂k〉|Fk−1

]
.
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Taking further the expectation over Fk−1 we obtain:

E[I1,Sk(ŷk)] ≥ E
[
I1,Sk(x̂k)

]
+ E

[
〈∇I1,Sk(x̂k), ŷk − x̂k〉

]

= E
[
I1,Sk(x̂k)

]
+

E
[
〈∇I1,Sk(x̂k),

k−1∑
i=0

µ2
i∇fµi(xi;Si)〉

]
µ̂1,k

≥ E
[
I1,Sk(x̂k)

]
− E

[
µ̂2,k

µ̂1,k
‖∇I1,Sk(x̂k)‖

∥∥∥∥∥
k−1∑
i=0

µ2
i

µ̂2,k
∇fµi(xi;Si)

∥∥∥∥∥
]

≥ E
[
I1,Sk(x̂k)

]
−
µ̂2,k

µ̂1,k
E

[
‖∇I1,Sk(x̂k)‖

k−1∑
i=0

µ2
i

µ̂2,k

∥∥∇fµi(xi;Si)∥∥
]
,

where in the second inequality we used the Cauchy-Schwarz inequality and in the third
the convexity relation regarding ‖ · ‖. Further, using as well Lemma 3, Assumption 2 and
Cauchy-Schwarz inequality, we have:

E
[

1

2
dist2

XSk
(ŷk)

]
Lemma 3
≥ E

[
1

2
dist2

XSk
(x̂k)

]
−

µ̂2,k

2µ̂1,k
E
[
distXSk (x̂k)Lf,Sk

]
Assump. 2
≥ 1

2ζ
E
[
dist2

X(x̂k)
]
−

µ̂2,k

2µ̂1,k

√
E[dist2

X(x̂k)]
√

E[L2
f,S ],

which proves the statement of the lemma.

Proof of Theorem 5:

Proof Since the function z → f(z;S) + 1
2µ‖z − x‖

2 is strongly convex, we have:

f(z;S) +
1

2µ
‖z − x‖2 ≥ f(zµ(x;S);S) +

1

2µ
‖zµ(x;S)− x‖2 +

1

2µ
‖zµ(x;S)− z‖2

= fµ(x;S) +
1

2µ
‖zµ(x;S)− z‖2 ∀z ∈ Rn. (16)

By taking x = xk, S = Sk, z = x∗, µ = µk in (16) and using the strictly nonexpansive
property of the projection operator, see e.g. (Nedic, 2011):

‖x−ΠXSk
(x)‖2 ≤ ‖x− z‖2 − ‖z −ΠXSk

(x)‖2 ∀z ∈ XSk , x ∈ Rn, (17)

then these lead to:

f(x∗;Sk)+
1

2µk
‖xk − x∗‖2 ≥ fµk(xk;Sk) +

1

2µk
‖yk − x∗‖2

(17)

≥ fµk(xk;Sk) +
1

2µk
‖ΠXSk

(yk)− x∗‖2 +
1

2µk
‖yk −ΠXSk

(yk)‖2

= fµk(xk;Sk) +
1

2µk
‖xk+1 − x∗‖2 +

1

2µk
‖yk − xk+1‖2, (18)
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where in the second inequality we used (17) with x = yk and z = x∗. For simplicity we
denote Iµ,S(x) = 1

2µ‖x−ΠXS (x)‖2. From relation (18), it can be easily seen that:

µk(f(xk;Sk)− f(x∗;Sk)) + I1,Sk(yk)−
µ2
k

2
L2
f,Sk

≤ µk(f(xk;Sk)− f(x∗;Sk)) + I1,Sk(yk)−
µ2
k

2
‖∇f(xk;Sk)‖2

= µk(f(xk;Sk)− f(x∗;Sk)) + I1,Sk(yk) + min
z∈Rn

[
µk〈∇f(xk;Sk), z − xk〉+

1

2
‖z − xk‖2

]
≤ µk(f(xk;Sk)− f(x∗;Sk)) + I1,Sk(yk) + µk〈∇f(xk;Sk), y

k − xk〉+
1

2
‖yk − xk‖2

= µk(f(xk;Sk) + 〈∇f(xk;Sk), y
k − xk〉+

1

2µk
‖yk − xk‖2 − f(x∗;Sk)) + I1,Sk(yk)

conv. f
≤ µk(fµk(xk;Sk)− f(x∗;Sk)) + I1,Sk(yk)

(18)

≤ 1

2
‖xk − x∗‖2 − 1

2
‖xk+1 − x∗‖2.

Taking now the conditional expectation in Sk w.r.t. the history Fk−1 = {S0, · · · , Sk−1} in
the last inequality we have:

µk(F (xk)− F (x∗)) + E[I1,Sk(yk)|Fk−1]−
µ2
k

2
E[L2

f,Sk
]

≤ 1

2
‖xk − x∗‖2 − 1

2
E[‖xk+1 − x∗‖2|Fk−1].

Taking further the expectation over Fk−1 and summing over i = 0, · · · , k − 1, results in:

‖x0 − x∗‖2

2
k−1∑
i=0

µi

≥ 1
k−1∑
i=0

µi

k−1∑
i=0

E[µi(F (xi)− F (x∗))] + E[I1,S(yi)]− µ2
i

2
E[L2

f,S ]

=
1

k−1∑
i=0

µi

k−1∑
i=0

E[µi(F (xi)− F (x∗))] + µiE[Iµi,S(yi)]− µ2
i

2
E[L2

f,S ]

≥ 1
k−1∑
i=0

µi

k−1∑
i=0

E[µi(F (xi)− F (x∗))] + µiE[Iµ0,S(yi)]− µ2
i

2
E[L2

f,S ]

Jensen
≥ E[F (x̂k)− F (x∗)] + E[Iµ0,S(ŷk)]−

E[L2
f,S ]µ̂2,k

2µ̂1,k
, (19)

where in the second inequality we used that Iµi,S(y) ≥ Iµ0,S(y) for all S ∈ Ω, i ≥ 0. The
relation (19) implies the following upper bound on the suboptimality gap:

E[F (x̂k)− F (x∗)] ≤
‖x0 − x∗‖2 + E[L2

f,S ]µ̂2,k

2µ̂1,k
. (20)
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On the other hand, recalling ∇F (x∗) = E[∇f(x∗;S)], we use the following fact:

E[F (x̂k)]− F (x∗) ≥ E[〈∇F (x∗), x̂k − x∗〉]
= E[〈∇F (x∗),ΠX(x̂k)− x∗〉] + E[〈∇F (x∗), x̂k −ΠX(x̂k)〉]
≥ −E[Lf,S ]E[distX(x̂k)]

Jensen
≥ −

√
E[L2

f,S ] E[dist2
X(x̂k)] ∀k ≥ 0, (21)

which is derived from the optimality conditions 〈∇F (x∗), z − x∗〉 ≥ 0 for all z ∈ X, the
Cauchy-Schwarz and Jensen inequalities. By denoting r0 = ‖x0 − x∗‖ and combining (19)
with Lemma 4 and the last inequality (21), we obtain:

E[dist2
X(x̂k)]−ζ

√
E[L2

f,S ]

(
µ̂2,k

µ̂1,k
+ 2µ0

)√
E[dist2

X(x̂k)]

Lemma 4+(21)

≤ 2µ0ζE[F (x̂k)− F (x∗)] + 2µ0ζE[Iµ0,S(ŷk)]

(20)

≤
µ0ζr

2
0 + µ0ζE[L2

f,S ]µ̂2,k

µ̂1,k
.

This last relation clearly implies an upper bound on the feasibility residual:√
E[dist2

X(x̂k)] ≤ζ
√

E[L2
f,S ]

(
µ̂2,k

µ̂1,k
+ 2µ0

)
+

√
µ0ζr2

0 + µ0ζE[L2
f,S ]µ̂2,k

µ̂1,k
. (22)

Also, combining (21) and (22) we obtain the lower bound on the suboptimality gap:

E[F (x̂k)]− F ∗≥−ζE[L2
f,S ]

(
µ̂2,k

µ̂1,k
+2µ0

)
−
√
E[L2

f,S ]

√
µ0ζr2

0 +µ0ζE[L2
f,S ]µ̂2,k

µ̂1,k
. (23)

From the upper and lower suboptimality bounds (20), (23) and feasibility bound (22), we
deduce our convergence rate results.

Proof of Lemma 9:
Proof Let σf,S ≥ 0 be the strong convexity constant of the function f(·;S). Notice
that we allow the convex case, that is σf,S = 0 for some S. Then, it is known that the
Moreau approximation fµ(·;S) is also a σ̂f,S-strongly convex function with strong convexity
constant, see e.g. (Rockafellar and Wets, 1998):

σ̂f,S =
σf,S

1 + µσf,S
.

Clearly, in the simple convex case, that is σf,S = 0, we also have σ̂f,S = 0. By denoting

L̂f,S = 1
µ the Lipschitz constant of the gradient of fµ(·;S), the following well-known relation

holds for the smooth and (strongly) convex function fµ(·;S), see e.g. (Nesterov, 2004):

〈∇fµ(x;S)−∇fµ(y;S), x− y〉 ≥ 1

σ̂f,S + L̂f,S
‖∇fµ(x;S)−∇fµ(y;S)‖2

+
σ̂f,SL̂f,S

L̂f,S + σ̂f,S
‖x− y‖2 ∀x, y ∈ Rn. (24)
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By using Assumption 7, then it can be also obtained that:

‖∇fµ(x;S)−∇fµ(y;S)‖ ≥ σ̂f,S‖x− y‖ ∀x, y ∈ Rn. (25)

Using this relation, we further derive that:

‖zµ(x;S)− zµ(y;S)‖2 = ‖x− y + µ(∇fµ(y;S)−∇fµ(x;S))‖2

= ‖x− y‖2 + 2µ〈∇fµ(y;S)−∇fµ(x;S), x− y〉+ µ2‖∇fµ(x;S)−∇fµ(y;S)‖2

(24)

≤

(
1−

2µσ̂f,SL̂f,S

L̂f,S + σ̂f,S

)
‖x− y‖2 + µ

(
µ− 2

L̂f,S + σ̂f,S

)
‖∇fµ(x;S)−∇fµ(y;S)‖2

(25)

≤

[
1 + σ̂2

f,S

(
µ2 − 2µ

σ̂f,S + L̂f,S

)
−

2µσ̂f,SL̂f,S

L̂f,S + σ̂f,S

]
‖x− y‖2

= (1− σ̂f,Sµ)2 ‖x− y‖2 ∀x, y ∈ Rn,

which implies our result.

Proof of Lemma 11:
Proof By taking µ = µk in relation (14), we obtain:√

E[‖xk+1 − x∗‖2] ≤
√

E
[
θ2
S(µk)

]√
E[‖xk − x∗‖2] + µk

√
E [‖∇f(x∗;S)‖2].

By using the notations rk =

√
E[‖xk − x∗‖2], θk =

√
E
[
θ2
S(µk)

]
and η =

√
E [‖∇f(x∗;S)‖2],

the last inequality leads to:

rk+1 ≤ θkrk + (1− θk)
µk

1− θk
η

≤ max

{
rk,

µk
1− θk

η

}
≤ max

{
r0,

µ0

1− θ0
η, · · · , µk

1− θk
η

}
. (26)

By observing the fact that t 7→ E
[

σf,S
(1+tσf,S)2

+
σf,S

1+tσf,S

]
is nonincreasing in t, and implicitly:

µk−1

1− θk−1
=

1

E
[

σf,S
(1+µk−1σf,S)2

+
σf,S

1+µk−1σf,S

]
≥ 1

E
[

σf,S
(1+µkσf,S)2

+
σf,S

1+µkσf,S

] =
µk

1− θk
,

then we have max
0≤i≤k

µi
1−θi = µ0

1−θ0 and the relation (26) becomes:

rk ≤ max

{
r0,

µ0

1− θ0
η

}
∀k ≥ 0, (27)

which implies our result.

We also present the following useful auxiliary result:
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Lemma 20 Let γ ∈ (0, 1] and the integers p, q ∈ N with q ≥ p ≥ 1. Given the sequence of
stepsizes µk = µ0

kγ for all k ≥ 1, where µ0 > 0, then the following relation holds:

q∏
i=p

E[θ2
S(µi)] ≤

(
E
[
θ2
S(µ0)

])ϕ1−γ(q+1)−ϕ1−γ(p)

Proof From definition of θS(µ) for any k ≥ 1 we have:

E[θ2
S(µk)] = E

[(
1

1 + µkσf,S

)2
]

= E

[
1(

1 + µ0
kγ σf,S

)2
]

(7)

≤ E

[(
1

1 + µ0σf,S

) 2
kγ
]
≤
(
E
[

1

(1 + µ0σf,S)2

]) 1
kγ

=
(
E[θ2

S(µ0)]
) 1
kγ . (28)

By taking into account that E[θ2
S(µ0)] = E

[
1

(1+µ0σf,S)2

]
≤ 1 and that

q∑
i=p

1

iγ
≥ ϕ1−γ(q + 1)− ϕ1−γ(p) =

q+1∫
p

1

tγ
dt =

{
ln q+1

p if γ = 1
(q+1)1−γ−p1−γ

1−γ if γ < 1,

then the relation (28) implies:

q∏
i=p

E[θ2
S(µi)] ≤

(
E
[
θ2
S(µ0)

]) q∑
i=p

1
iγ

≤
(
E
[
θ2
S(µ0)

])ϕ1−γ(q+1)−ϕ1−γ(p)

=


(
E
[
θ2
S(µ0)

])ln q+1
p if γ = 1(

E
[
θ2
S(µ0)

]) (q+1)1−γ−p1−γ
1−γ if γ < 1,

(29)

which immediately implies the above statement.

Proof of Lemma 13:

Proof By using the strictly nonexpansive property of the projection operator (17), with
z = ΠX(yk), x = yk, and the linear regularity assumption, we obtain:

E[dist2
X(xk+1)] ≤ E[‖xk+1 −ΠX(yk)‖2]

(17)

≤ E[‖yk −ΠX(yk)‖2]− E[‖yk − xk+1‖2]

As. 2
≤ E[‖yk −ΠX(yk)‖2]− 1

ζ
E[‖yk −ΠX(yk)‖2]

=

(
1− 1

ζ

)
E[dist2

X(yk)]. (30)
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On the other hand, from triangle inequality and Minkowski inequality, we obtain:√
E[dist2

X(yk)] ≤
√
E[‖yk −ΠX(xk)‖2] ≤

√
E[(‖yk − xk‖+ distX(xk))2]

(8)

≤
√

E[‖zµk(xk;Sk)− xk‖2] +

√
E[dist2

X(xk)]

=

√
E[dist2

X(xk)] + µk

√
E[‖∇fµk(xk;Sk)‖2]

Lemma 3
≤

√
E[dist2

X(xk)] + µk

√
E[‖∇f(xk;Sk)‖2]

Lemma 12
≤

√
E[dist2

X(xk)] + µk

(√
2E[‖∇f(x∗;S)‖2] +A

√
2E[L2

f,S ]
)
. (31)

For simplicity we use notations: α =
√

1− 1
ζ , dk =

√
E[dist2

X(xk)] and B =
√

2E[‖∇f(x∗;S)‖2]+

A
√

2E[L2
f,S ]. Combining (30) and (31) yields:

dk+1 ≤ αdk + αµkB ≤ αk+1d0 + B
k+1∑
i=1

αiµk−i+1. (32)

Define m = dk+1
2 e. By dividing the sum from the right side of (32) in two parts and by

taking into account that {µk}k≥0 is nonincreasing, then results in:

k+1∑
i=1

αiµk−i+1 =

m∑
i=1

αiµk−i+1 +

k+1∑
i=m+1

αiµk−i+1

≤ µk−m+1

m∑
i=1

αi + αm+1
k−m∑
i=0

αiµk−i−m

≤ µk−m+1
α(1− αm)

1− α
+ µ0α

m+1 1− αk−m+1

1− α
≤ µk−m+1

α

1− α
+ αm+1 µ0

1− α
.

By using the last inequality into (32) and using the bound α
1−α ≤ 2ζ, then these facts imply

the statement of the lemma.

Proof of Theorem 14:
Proof Let µ > 0, x ∈ Rn and S ∈ Ω, then we have:

1

2
‖zµ(x;S)− x∗‖2

=
1

2
‖zµ(x;S)− zµ(x∗;S)‖2 + 〈zµ(x;S)− zµ(x∗;S), zµ(x∗;S)− x∗〉+

1

2
‖zµ(x∗;S)− x∗‖2

≤
θ2
S(µ)

2
‖x− x∗‖2 − µ〈∇f(x∗;S), x− x∗〉+ 〈zµ(x∗;S)− x∗ + µ∇f(x∗;S), x− x∗〉

+ 〈zµ(x;S)− x, zµ(x∗;S)− x∗〉 − µ2

2
‖∇fµ(x∗;S)‖2. (33)
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Now we take expectation in both sides and consider x = xk and µ = µk. We thus seek a
bound for each term from the right hand side in (33). For the second term, by using the
optimality conditions 〈∇F (x∗), z − x∗〉 ≥ 0 for all z ∈ X, we have:

E[〈∇f(x∗;S), x∗ − xk〉] = E[〈∇F (x∗), x∗ −ΠX(xk)〉] + E[〈∇F (x∗),ΠX(xk)− xk〉]
≤ E[〈∇F (x∗),ΠX(xk)− xk〉]
C.-S.
≤ ‖∇F (x∗)‖ E[distX(xk)] ≤ ‖∇F (x∗)‖

√
E[dist2

X(xk)]

Lemma 13
≤ ‖∇F (x∗)‖

[(
1− 1

ζ

) k
2 (

distX(x0) + 2µ0ζB
)

+ 2µk−d k
2
eζB

]
,

where in the second inequality we used the Cauchy-Schwarz inequality. By using that
ex ≥ 1 + x , for all x ≥ 0, and the fact that 1

k ≤
1
kγ when k ≥ 1 and γ ∈ (0, 1], then the

last inequality implies:

E[〈∇f(x∗;S),x∗ − xk〉] ≤ ‖∇F (x∗)‖
[

2distX(x0) + 4µ0ζB
k ln (ζ/(ζ − 1))

+ 2µk−d k
2
eBζ

]
≤ µk‖∇F (x∗)‖

[
2distX(x0) + 4µ0ζB
µ0 ln (ζ/(ζ − 1))

+
2µk−d k

2
eBζ

µk

]
. (34)

For the third term in (33) we observe from the optimality conditions for zµk(x∗;S) that:∥∥∥∥ 1

µk
(zµk(x∗;S)− x∗) +∇f(x∗;S)

∥∥∥∥ = ‖∇f(zµk(x∗;S);S)−∇f(x∗;S)‖

As.1
≤ Lf,S‖zµk(x∗;S)− x∗‖ = µkLf,S‖∇fµk(x∗;S)‖

Lemma 3
≤ µkLf,S‖∇f(x∗;S)‖,

which yields the following bound:

〈zµk(x∗;S)− x∗ + µk∇f(x∗;S), xk − x∗〉 ≤ ‖zµk(x∗;S)− x∗ + µk∇f(x∗;S)‖ · ‖xk − x∗‖

≤ ‖µk∇f(x∗;S)− µk∇f(zµk(x∗;S);S)‖ · ‖xk − x∗‖
As.1
≤ µkLf,S‖x∗ − zµk(x∗;S)‖ · ‖xk − x∗‖

≤ µ2
kLf,S‖∇fµk(x∗;S)‖ · ‖xk − x∗‖

Lemma 3
≤ µ2

kLf,S‖∇f(x∗;S)‖ · ‖xk − x∗‖,

where in the first inequality we used the Cauchy-Schwarz. By taking expectation in both
sides and using Lemma 11, we obtain the refinement:

E[〈zµk(x∗;S)− x∗ + µk∇f(x∗;S), xk − x∗〉]
= µkE[〈∇f(x∗;S)−∇f(zµk(x∗;S);S), xk − x∗〉]
≤ µkE[‖∇f(x∗;S)−∇f(zµk(x∗;S);S)‖‖xk − x∗‖]

(35)
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As. 1
≤ µkE[Lf,S‖x∗ − zµk(x∗;S)‖‖xk − x∗‖]

= µkE[Lf,S‖∇fµk(x∗;S)‖‖xk − x∗‖]
Lemma 3
≤ µkE[Lf,S‖∇f(x∗;S)‖‖xk − x∗‖]

≤ µ2
k

√
E[L2

f,S ]
√
E[‖∇f(x∗;S)‖2]E[‖xk − x∗‖]

≤ µ2
k

√
E[L2

f,S ]
√
E[‖∇f(x∗;S)‖2]E[‖xk − x∗‖]

Lemma 11
≤ µ2

k

√
E[L2

f,S ]ηA, (36)

where in the first inequality we again used Cauchy-Schwarz relation and in the second we
used Assumption 1. Finally, for the fourth term in (33) we use Lemma 12:

E[〈zµk(xk;S)− xk, zµk(x∗;S)− x∗〉] = µ2
kE[〈∇fµk(xk;S),∇fµk(x∗;S)〉]

≤ µ2
kE[‖∇fµk(xk;S)‖‖∇fµk(x∗;S)‖]

Lemma 3
≤ µ2

kE[‖∇f(xk;S)‖‖∇f(x∗;S)‖] ≤ µ2
k

√
E[‖∇f(xk;S)‖2]E[‖∇f(x∗;S)‖2]

Lemma 12
≤ µ2

kη
√

2η2 + 2E[L2
f,S ]A2, (37)

where in the first inequality we used Cauchy-Schwarz. By taking expectation in (33), using
the relations (34)-(37) and taking into account that µk

µ
k−d k2 e

≤ 3γ for all k ≥ 1, we obtain:

E[‖zµk(xk;S)− x∗‖2]

≤ E
[
θ2
S(µk)‖xk − x∗‖2

]
+ 4µ2

k‖F (x∗)‖
[

distX(x0) + 2µ0ζB
µ0 ln (ζ/(ζ − 1))

+ 3γBζ
]

+ 2µ2
kη
√

2η2 + 2E[L2
f,S ]A2 + 2µ2

kηA
√
E[L2

f,S ]

= E
[
θ2
S(µk)

]
E[‖xk − x∗‖2] + µ2

kD.

For simplicity, we use further in the proof the following notations: rk =
√
E[‖xk − x∗‖2] and

θk = E[θ2
S(µk)]. Then, through the nonexpansiveness property of the projection operator,

the previous inequality turns into:

r2
k+1 ≤ E[‖zµk(xk;S)− x∗‖2] ≤ θkr2

k + µ2
kD

≤ r2
0

k∏
i=0

θi +D
k∑
i=0

 k∏
j=i+1

θj

µ2
i . (38)

To further refine the right hand side in (38), we first notice from Lemma 20 that we have
k∏
i=0

θi ≤ θ
ϕ1−γ(k+1)
0 . Then, from (38) we can derive different upper bounds for the two cases

of the parameter γ: γ < 1 and γ = 1.
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Case (i) γ < 1. From Lemma 20, we derive an upper approximation for the second term in
the right hand side of (38). Therefore, if we let m =

⌈
k
2

⌉
we obtain:

k∑
i=0

µ2
i

 k∏
j=i+1

θj

 =

m∑
i=0

µ2
i

 k∏
j=i+1

θj

+

k∑
i=m+1

µ2
i

 k∏
j=i+1

θj


Lemma 20
≤

m∑
i=0

µ2
i θ
ϕ1−γ(k+1)−ϕ1−γ(i+1)
0 + µm+1

k∑
i=m+1

µi

 k∏
j=i+1

θj


≤ θϕ1−γ(k+1)−ϕ1−γ(m+1)

0

m∑
i=0

µ2
i + µm+1

k∑
i=m+1

µi

 k∏
j=i+1

θj


= θ

ϕ1−γ(k+1)−ϕ1−γ(m+1)
0

m∑
i=0

µ2
i + µm+1

k∑
i=m+1

µi
1− θi

(1− θi)

 k∏
j=i+1

θj

 . (39)

We will further refine the right hand side of (39) by noticing the following two facts. First,
the constant µi

1−θi can be upper bounded by:

µi
1− θi

=
1

E
[

σS
(1+µiσS)2

+ σS
1+µiσS

] ≤ µi−1

1− θi−1
≤ · · · ≤ µ0

1− θ0
.

Second, the sum of products is upper bounded as:

k∑
i=m+1

(1− θi)

 k∏
j=i+1

θj

 =
k∑

i=m+1

 k∏
j=i+1

θj −
k∏
j=i

θj

 = 1−
k∏

j=m+1

θj ≤ 1.

By using the last two inequalities into (39), we have:

k∑
i=0

µ2
i

 k∏
j=i+1

θj

 ≤ θϕ1−γ(k+1)−ϕ1−γ(m+1)
0

m∑
i=0

µ2
i + µm+1

µ0

1− θ0
. (40)

Since
m∑
i=0

µ2
i ≤ µ2

0(ϕ1−2γ(m) + 2) ≤ µ2
0(ϕ1−2γ(m) + 2) ≤ µ2

0[ϕ1−2γ

(
k
2 + 1

)
+ 2] and using

(40) into (38), we obtain the above result.

Case (ii) γ = 1. In this case we have:

k∑
i=1

µ2
i

 k∏
j=i+1

θj

 Lemma 20
≤

k∑
i=1

µ2
i θ
ϕ0(k+1)−ϕ0(i+1)
0

=

k∑
i=1

µ2
1

i2
θ

ln k+1
i+1

0 =

k∑
i=1

µ2
1

i2

(
k + 1

i+ 1

)ln θ0

≤
(

1

k

)ln
(

1
θ0

)
k∑
i=1

µ2
1

i
2−ln 1

θ0

≤
(

1

k

)ln
(

1
θ0

)
µ2

0ϕln 1
θ0
−1(k).
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Therefore, the variation of θ0 leads to the following cases:

k∑
i=1

µ2
i

 k∏
j=i+1

θj

 ≤


µ20

k
(

ln
(

1
θ0

)
−1
) if θ0 <

1
e

µ20 ln k
k if θ0 = 1

e(
1
k

)ln( 1
θ0

)
µ20

1−ln
(

1
θ0

) if θ0 >
1
e ,

which leads to the second part of the result.

Proof of Lemma 17:

Proof The proof follows similar lines with the one of Lemma 30. Therefore, by using

notations: α =
√

1− 1
ζ and dk,t =

√
E[dist2

X(xk,t)] results in:

dk+1,t ≤ αdk,t + αµtB ≤ αk+1d0,t + µtB
k+1∑
i=1

αi

≤ αk+1d0,t + µtB
α

1− α
.

By setting k = Kt − 1, then the last inequality implies:

dKt,t ≤ αKtdKt−1,t−1 + µtB
α

1− α

≤ α
∑t
i=1Kid0,0 + B α

1− α

t−1∑
j=0

α
∑t
i=t−j+1Kiµt−j .

Now set m = d t2e. By dividing the sum from the right side of (32) in two parts, by taking
into account that {µt}t≥0 is nonincreasing and {Kt}t≥0 is nondecreasing, then results in:

t−1∑
j=0

α
∑t
i=t−j+1Kiµt−j =

m∑
j=0

α
∑t
i=t−j+1Kiµt−j +

t−1∑
j=m+1

α
∑t
i=t−j+1Kiµt−j

≤ µt−m
m∑
j=0

α
∑t
i=t−j+1Ki + µ0α

Kt

t−1∑
j=m+1

α
∑t−1
i=t−j+1Ki

≤ µt−m
1− αm+1

1− α
+ µ0α

∑t
i=t−mKi

1− αt−m+2

1− α

≤ µt−m
1− α

+
µ0α

∑t
i=t−mKi

1− α
.

By using the last inequality into (32) and using the bound α
1−α ≤ 2ζ, then these facts imply

the statement of the lemma.

Proof of Theorem 18:
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Proof First notice that from ex ≥ 1 + x for all x ≥ 0, we have
(

1− 1
ζ

)∑t
i=1

Ki
2 ≤

(
1− 1

ζ

)Kt
2 ≤ 2

Kt ln (ζ/ζ−1) and
(

1− 1
ζ

) t∑
i=t−d t2 e

Ki
2

≤
(

1− 1
ζ

)Kt
2 ≤ 2

Kt ln (ζ/ζ−1) , which imply

that Lemma 2 becomes√
E[dist2

X(xKt,t)] ≤ µt
2distX(x0,0)

µ0 ln (ζ/ζ − 1)
+ µt

4ζ2B
ln (ζ/ζ − 1)

+ 2µt−d t
2
eζ

2B. (41)

It can be seen that by combining (41) with a similar argument as in Theorem 14 we obtain
a similar descent as (38). Therefore, let k ≥ 0 and xk,t be the kth iterate from the tth
epoch. Then, by denoting r2

k,t = E[‖xk,t − x∗‖2], results in:

r2
k+1,t ≤ E[θS(µt)

2]r2
k,t + µ2

tDr.

Now taking k = Kt results in:

r2
0,t+1 = r2

Kt,t ≤ r
2
0,tθ

Kt
t +Drµ2

t

k∑
i=0

θit ≤ r2
0,tθ

Kt
t +

Drµ2
t

1− θt
. (42)

Recalling that we chose µt = µ0
tγ and Kt = dtγe, then (7) leads to:

θKtt ≤
(
E
[

1

(1 + µ0σf,S)2

])Kt
tγ

≤ θ0.

Therefore, (42) leads to:

r0,t+1

(42)

≤ θ0r
2
0,t +

Drµ2
t

1− θt
≤ θt0r2

0,1 +Dr
t∑
i=1

µ2
i θ
t−i
0

1− θi
. (43)

Note that
µ2i

1−θi is nonincreasing in i. Then, if we fix m = d t2e, then the sum
t∑
i=1

µ2i θ
t−i
0

1−θi can

be bounded as follows:

t∑
i=1

µ2
i θ
t−i
0

1− θi
≤ θm0

m∑
i=1

µ2
i

1− θi
+

t∑
i=m

µ2
i θ
t−i
0

1− θi

≤ θm0
m∑
i=1

µ2
i

1− θi
+

µ2
m

1− θm

t−m∑
i=1

θi0

≤ θm0 µ1

1− θ0

(
m∑
i=1

µi

)
+

µ2
m

(1− θm)(1− θ0)

≤ θm0 µ1

1− θ0

(
m∑
i=1

µi

)
+ µm

µ1

(1− θ0)2
. (44)
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Taking into account that
m∑
i=1

µi ≤
∫m

1
1
sγ ds ≤

2γ−1

(1−γ)tγ−1 and that θm0 ≤ 1
1+ t

2
ln 1
θ0

, the previous

relation (44) implies:

t∑
i=1

µ2
i θ
t−i
0

1− θi
≤
(

2

t

)γ [ 1

2(1− γ) ln 1/
√
θ0

+
µ2

1

(1− θ0)2

]
. (45)

By using this bound in relation (44), then in order to obtain r2
0,t+1 ≤ ε it is sufficient that

the number of epochs t to satisfy:

t ≥ max

{
ln

(
2r2

0,0

ε

)
1

ln (1/θ0)
,

(
2γ+1Dr

ε
C
)1/γ

}
. (46)

Finally, the total number of SPP iterations performed by RSPP algorithm satisfies:

t∑
i=1

Kt ≥
t∑
i=1

iγ ≥
∫ t

0
sγds =

t1+γ

1 + γ

≥ 1

1 + γ
max

ln

(
2r2

0,0

ε

)1+γ
1

ln (1/θ0)1+γ ,

(
2γ+1Dr

ε
C
)1+ 1

γ

 ,

which proves the statement of the theorem.
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