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Abstract
Follow the leader (FTL) is a simple online learning algorithm that is known to perform well when
the loss functions are convex and positively curved. In this paper we ask whether there are other
settings when FTL achieves low regret. In particular, we study the fundamental problem of linear
prediction over a convex, compact domain with non-empty interior. Amongst other results, we
prove that the curvature of the boundary of the domain can act as if the losses were curved: In this
case, we prove that as long as the mean of the loss vectors have positive lengths bounded away from
zero, FTL enjoys logarithmic regret, while for polytope domains and stochastic data it enjoys finite
expected regret. The former result is also extended to strongly convex domains by establishing an
equivalence between the strong convexity of sets and the minimum curvature of their boundary,
which may be of independent interest. Building on a previously known meta-algorithm, we also
get an algorithm that simultaneously enjoys the worst-case guarantees and the smaller regret of
FTL when the data is ‘easy’. Finally, we show that such guarantees are achievable directly (e.g.,
by the follow the regularized leader algorithm or by a shrinkage-based variant of FTL) when the
constraint set is an ellipsoid.
Keywords: online linear optimization, follow the leader, logarithmic regret, strongly convex
decision set, curvature

1. Introduction
Learning theory traditionally has been studied in a statistical framework, discussed at length, for
example, by Shalev-Shwartz and Ben-David (2014). The issue with this approach is that the
analysis of the performance of learning methods seems to critically depend on whether the data
generating mechanism satisfies some probabilistic assumptions. Realizing that these assumptions

∗. An earlier version of this paper was published in NIPS 2016 (Huang et al., 2016).
†. Ruitong Huang is now at Borealis AI, Edmonton, Canada.
‡. Tor Lattimore is now at DeepMind, London, UK.

c©2017 Ruitong Huang, Tor Lattimore, András György, and Csaba Szepesvári.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided at
http://jmlr.org/papers/v18/17-079.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v18/17-079.html


Huang, Lattimore, György, and Szepesvári

are not necessarily critical, much work has been devoted recently to studying learning algorithms
in the so-called online learning framework (Cesa-Bianchi and Lugosi, 2006). The online learning
framework makes minimal assumptions about the data generating mechanism, while allowing one to
replicate results of the statistical framework through online-to-batch conversions (Cesa-Bianchi et al.,
2004). By following a minimax approach, however, results proven in the online learning setting, at
least initially, led to rather conservative results and algorithm designs, failing to capture how more
regular, “easier” data, may give rise to faster learning. This is problematic as it may suggest overly
conservative learning strategies, missing opportunities to extract more information when the data
is nicer. Also, it is hard to argue that data resulting from passive data collection, such as weather
data, would ever be adversarially generated (though it is equally hard to defend that such data
satisfies precise stochastic assumptions). Realizing this issue, during recent years much work has
been devoted to understanding what regularities and how can lead to faster learning speed. For
example, much work has been devoted to showing that faster learning speed (smaller “regret”) can
be achieved in the online convex optimization setting when the loss functions are “curved”, such as
when the loss functions are strongly convex or exp-concave, or when the losses show small variations,
or the best prediction in hindsight has a small total loss, and that these properties can be exploited
in an adaptive manner (e.g., Merhav and Feder 1992, Freund and Schapire 1997, Gaivoronski and
Stella 2000, Cesa-Bianchi and Lugosi 2006, Hazan et al. 2007, Bartlett et al. 2007, Kakade and
Shalev-Shwartz 2009, Orabona et al. 2012, Rakhlin and Sridharan 2013, van Erven et al. 2015, Foster
et al. 2015).

In this paper we contribute to this growing literature by studying online linear prediction and the
follow the leader (FTL) algorithm. Online linear prediction is arguably the simplest yet fundamental
of all the learning settings, and lies at the heart of online convex optimization, while it also serves
as an abstraction of core learning problems such as prediction with expert advice. FTL, the online
analogue of empirical risk minimization of statistical learning, is the simplest learning strategy, one
can think of. Although the linear setting removes the possibility of exploiting the curvature of
losses, there are multiple ways online learning problems can present data that allows for small regret,
even for FTL. As is well known, in the worst case, FTL suffers a linear regret (e.g., Example 2.2 of
Shalev-Shwartz 2012). However, for “curved” losses (e.g., exp-concave losses), FTL was shown to
achieve small (logarithmic) regret (see, e.g., Merhav and Feder 1992; Cesa-Bianchi and Lugosi 2006;
Gaivoronski and Stella 2000; Hazan et al. 2007).

We take a thorough look at FTL in the case when the losses are linear, but the problem perhaps
exhibits other regularities. The motivation comes from the simple observation that, for prediction
over the simplex, when the loss vectors are selected independently of each other from a distribution
with a bounded support with a nonzero mean, FTL quickly locks onto selecting the loss-minimizing
vertex of the simplex, achieving finite expected regret. In this case, FTL is an excellent algorithm. In
fact, FTL is shown to be the minimax optimizer for the binary losses in the stochastic expert setting
in the paper of Kotłowski (2016). Thus, we ask the question of whether there are other regularities
that allow FTL to achieve nontrivial performance guarantees. Our main result shows that when the
decision set (or constraint set) has a sufficiently “curved” boundary (or equivalently, if it is strongly
convex) and the linear loss is bounded away from 0, FTL is able to achieve logarithmic regret even
in the adversarial setting, thus opening up a new way to prove fast rates not based on the curvature
of losses, but on that of the boundary of the constraint set and non-singularity of the linear loss.
In a matching lower bound we show that this regret bound is essentially unimprovable. We also
show an alternate bound for polytope constraint sets, which allows us to prove that (under certain
technical conditions) for stochastic problems the expected regret of FTL will be finite. To finish, we
use (A,B)-prod of Sani et al. (2014) to design an algorithm that adaptively interpolates between
the worst case O(

√
n logn) regret and the smaller regret bounds, which we prove here for “easy

data.” We also show that if the constraint set is an ellipsoid, both the follow the regularized leader
(FTRL) algorithm and a combination of FTL and shrinkage, which we call follow the shrunken leader
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(FTSL), achieve logarithmic regret for easy data. Simulation results on artificial data complement
the theoretical findings.

While we believe that we are the first to point out that the curvature of the constraint set W
can help in speeding up learning, this effect is known in convex optimization since at least the
work of Levitin and Polyak (1966), who showed that exponential rates are attainable for strongly
convex constraint sets if the norm of the gradients of the objective function admit a uniform lower
bound. More recently, Garber and Hazan (2015) proved an O(1/n2) optimization error bound
(with problem-dependent constants) for the Frank-Wolfe algorithm for strongly convex and smooth
objectives and strongly convex constraint sets. The effect of the shape of the constraint set was also
discussed by Abbasi-Yadkori (2009) who demonstrated O(

√
n) regret in the linear bandit setting.

Although at a high level these results are similar to ours, our proof technique is rather different.

2. Preliminaries, Online Learning and the Follow the Leader Algorithm
We consider the standard framework of online convex optimization, where a learner and an environment
interact in a sequential manner over n rounds: In every round t = 1, . . . , n, first the learner predicts
wt ∈ W. Then the environment picks a loss function `t ∈ L, and the learner suffers loss `t(wt) and
observes `t. Here, W is a compact and convex subset of the d-dimensional Euclidean space Rd with
non-empty interior, and L is a set of convex functions mapping W to the reals. The elements of L
are called loss functions. The performance of the learner is measured in terms of its regret,

Rn =
n∑
t=1

`t(wt)− min
w∈W

n∑
t=1

`t(w) .

The simplest possible case, which will be the focus of this paper, is when the losses are linear,
that is, when `t(w) = 〈ft, w〉 for some ft ∈ F ⊂ Rd. In fact, the linear case is not only simple, but
is also fundamental since the case of nonlinear loss functions can be reduced to it: Indeed, even if the
losses are nonlinear, defining ft ∈ ∂`t(wt) to be a subgradient1 of `t at wt and letting ˜̀

t(u) = 〈ft, u〉,
by the definition of subgradients, `t(wt)− `t(u) ≤ `t(wt)− (`t(wt) + 〈ft, u− wt〉) = ˜̀

t(wt)− ˜̀
t(u),

hence for any u ∈ W, ∑
t

`t(wt)−
∑
t

`t(u) ≤
∑
t

˜̀
t(wt)−

∑
t

˜̀
t(u) .

In particular, if an algorithm keeps the regret small no matter how the linear losses are selected (even
when allowing the environment to pick losses based on the choices of the learner), the algorithm can
also be used to keep the regret small in the nonlinear case.

Hence, in what follows we will study the linear case `t(w) = 〈ft, w〉 and, in particular, we will
study the regret of the so-called “Follow The Leader” (FTL) learner, which in round t ≥ 2 picks

wt = argmin
w∈W

t−1∑
i=1

`i(w) .

For the first round, w1 ∈ W is picked in an arbitrary manner. When W is compact, the optimal w of
minw∈W

∑t−1
i=1〈w, ft〉 is attainable, which we will assume henceforth. If multiple minimizers exist,

we simply fix one of them as wt. We will also assume that F is non-empty, compact and convex.
One problem of the linearization technique is that if some algorithm’s performance depends on

some additional properties of the linear loss function, linearization may not preserve these and could
lead to suboptimal performance. For example, if the loss functions are strongly convex and the
optimum in hindsight (in fact, wn+1) is an inner point of W, FTL has no chance to do well, since

1. We let ∂g(x) denote the subdifferential of a convex function g : dom(g) → R at x, that is, ∂g(x) ={
θ ∈ Rd | g(x′) ≥ g(x) + 〈θ, x′ − x〉 ∀x′ ∈ dom(g)

}
, where dom(g) ⊂ Rd is the domain of g.
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it will always predict points on the boundary. Thus, while our results extend from linear losses
to arbitrary convex functions, some of the conditions of our regret bounds may be violated or the
constants in the bounds might blow up, possibly leading to trivial or weak regret bounds. Thus,
in practice, one should always check if the linearization step makes sense. On the positive side, no
problem occurs if the optimum is outside of W.

2.1 Support Functions

Let Θt = − 1
t

∑t
i=1 fi be the negative average of the first t vectors in (ft)nt=1, ft ∈ F . For convenience,

we define Θ0 := 0. Thus, for t ≥ 2,

wt = argmin
w∈W

t−1∑
i=1
〈w, fi〉 = argmin

w∈W
〈w,−Θt−1〉 = argmax

w∈W
〈w,Θt−1〉 .

Denote by Φ(Θ) = maxw∈W〈w,Θ〉 the so-called support function of W. The support function,
being the maximum of linear and hence convex functions, is itself convex. Further Φ is positive
homogenous: for a ≥ 0 and θ ∈ Rd, Φ(aθ) = aΦ(θ). It follows then that the epigraph epi(Φ) ={

(θ, z) | z ≥ Φ(θ), z ∈ R, θ ∈ Rd
}
of Φ is a cone, since for any (θ, z) ∈ epi(Φ) and a ≥ 0, az ≥ aΦ(θ) =

Φ(aθ), (aθ, az) ∈ epi(Φ) also holds.
The differentiability of the support function is closely tied to whether in the FTL algorithm the

choice of wt is uniquely determined:

Proposition 1 Let W 6= ∅ be convex and closed. Fix Θ and let Z := {w ∈ W | 〈w,Θ〉 = Φ(Θ)}.
Then, ∂Φ(Θ) = Z and, in particular, Φ(Θ) is differentiable at Θ if and only if maxw∈W〈w,Θ〉 has a
unique optimizer. In this case, ∇Φ(Θ) = argmaxw∈W〈w,Θ〉.

The proposition follows from Danskin’s theorem when W is compact (e.g., Proposition B.25 of
Bertsekas 1999), but a simple direct argument, presented in Appendix A.1 for completeness, can also
be used to show that it also remains true even when W is unbounded. By Proposition 1, when Φ is
differentiable at Θt−1, wt = ∇Φ(Θt−1).

2.2 A Motivating Example

O D = w∗ = −µ

Â = −µt

B B̃

Ã = wt+1A

Figure 1: Illustration of how fast
rates can be achieved by
FTL.

We close this section with an example demonstrating how
fast rates can be achieved by the FTL algorithm. Consider
the case when the losses are independent and identically dis-
tributed (i.i.d.), which means that (ft) is an i.i.d. sequence
with expectation µ ∈ Rd. Then E [Θt] = −µ, and we have
‖Θt + µ‖2 = O(1/

√
t) with high probability. For W being

the unit ball of Rd one has wt = Θt/ ‖Θt‖2 and therefore a
crude bound suggests that ‖wt − w∗‖2 = O(1/

√
t) where

w∗ is the optimal decision in hindsight, overall predicting
that E [Rn] = O(

√
n). On the other hand, in the rest of

the paper we provide conditions when the expected regret
can be much smaller than this. Below we give a simple
geometric explanation how it can happen.

Let W = {w | ‖w‖2 ≤ 1} and consider a stochastic set-
ting where the ft are i.i.d. samples with expectation
E [ft] = µ = (−1, 0, . . . , 0) and ‖ft‖∞ ≤M almost surely.
It is straightforward to see that w∗ = (1, 0, . . . , 0), and
thus 〈w∗, µ〉 = −1. Let µt = −Θt denote our estimate of
µ after t time steps; then ‖µt − µ‖ = O(1/

√
t) with high
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probability. Now consider Fig. 1: The origin is denoted by O, the optimal prediction w∗ = −µ by D,
and −µt by Â. Then the prediction of FTL at time t is Ã, the intersection of the line connecting O
and Â with the unit sphere, and its instantaneous excess loss is 〈

#    »

OÃ,
#    »

OD〉 − 1 = |B̃D| where B̃ is
the orthogonal projection of Ã to OD. Next we give a simple geometric argument showing that if
|ÂD| ≤ ε then |B̃D| ≤ ε2. Since |ÂD| = ‖µt − µ‖ = O(1/

√
t) with high probability, this means that

the excess error at time t is O(1/t), making the regret O(logn) in n time steps, much smaller than
the previously anticipated O(

√
n) regret. To finish, let A denote the orthogonal projection of D to

the line connecting O and Â; then the Pythagorean theorem implies that |OA| ≤ |OD| = |OÃ|, and
so A ∈ OÃ. Therefore, the orthogonal projection of A to OD, denoted by B, belongs to the segment
OB̃, and so |BD| ≥ |B̃D|. Since the triangles OAD and ABD are similar, we have |BD|

|AD|
= |AD|
|OD|

.

Therefore, |BD| ≤ |AD|2 ≤ |ÂD|2 (by the definition of A), implying |B̃D| ≤ |ÂD|2, which we wanted
to prove.

3. Non-Stochastic Analysis of FTL
We start by rewriting the regret of FTL in an equivalent form, which shows that we can expect FTL
to enjoy a small regret when successive weight vectors move little.

Proposition 2 The regret Rn of FTL satisfies the following identity:

Rn =
n∑
t=1

t 〈wt+1 − wt,Θt〉 .

The result is a direct corollary of Lemma 9 of McMahan (2010), which holds for any sequence of losses
(even non-convex). It is also a tightening of the well-known inequality Rn ≤

∑n
t=1 `t(wt)− `t(wt+1),

which again holds for arbitrary loss sequences (e.g., Lemma 2.1 of Shalev-Shwartz, 2012). To keep
the paper self-contained, we give a direct proof based on the summation by parts formula:
Proof The summation by parts formula states that for any u1, v1, . . . , un+1, vn+1 reals,

∑n
t=1 ut (vt+1−

vt) = (ut+1vt+1−u1v1)−
∑n
t=1(ut+1−ut) vt+1. Applying this to the definition of regret with ut := wt,·

and vt+1 := tΘt, we get

Rn = −
n∑
t=1
〈wt, tΘt − (t− 1)Θt−1〉+ 〈wn+1, nΘn〉

= −
{
hhhhhh〈wn+1, nΘn〉 − 0−

n∑
t=1
〈wt+1 − wt, tΘt〉

}
+hhhhhh〈wn+1, nΘn〉.

Our next proposition gives another identity for the regret. Although this formula is not directly
needed for the rest of the paper, it provides interesting insights: as opposed to the previous result,
it is independent of wt, and directly connects the sequence (Θt)t to the geometric properties of W
through the support function Φ. A similar expression for a general “Follow the Regularized Leader”
algorithm was also derived by Abernethy et al. (2014). For this proposition, we will momentarily
assume that Φ is differentiable at (Θt)t≥1.

Proposition 3 Assume Φ is differentiable at Θ1, . . . ,Θn. Then

Rn =
n∑
t=1

tDΦ(Θt,Θt−1) , (1)
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where DΦ(θ′, θ) = Φ(θ′) − Φ(θ) − 〈∇Φ(θ), θ′ − θ〉 is the Bregman divergence of Φ and we use the
convention that ∇Φ(0) = w1.

Proof Let v = argmaxw∈W〈w, θ〉, v′ = argmaxw∈W〈w, θ′〉. When Φ is differentiable at θ,

DΦ(θ′, θ) = Φ(θ′)− Φ(θ)− 〈∇Φ(θ), θ′− θ〉 = 〈v′, θ′〉− 〈v, θ〉 − 〈v, θ′− θ〉 = 〈v′− v, θ′〉 . (2)

Therefore, by Proposition 2, Rn =
∑n
t=1 t〈wt+1 − wt,Θt〉 =

∑n
t=1 tDΦ(Θt,Θt−1).

When Φ is non-differentiable at some of the points Θ1, . . . ,Θn, the equality in the above propo-
sition can be replaced with inequalities. Defining the upper Bregman divergence DΦ(θ′, θ) =
supw∈∂Φ(θ) Φ(θ′)− Φ(θ)− 〈w, θ′ − θ〉 and the lower Bregman divergence DΦ(θ′, θ) similarly with inf
instead of sup, we can easily obtain an analogue of Proposition 3:

n∑
t=1

tDΦ(Θt,Θt−1) ≤ Rn ≤
n∑
t=1

tDΦ(Θt,Θt−1) . (3)

3.1 Constraint Sets with Positive Curvature

The previous results show in an implicit fashion that the curvature of W controls the regret. Before
presenting our first main results, which make this connection explicit, we define some basic notions
from differential geometry related to the curvature, while some extra details are presented in
Appendix A.2 (all differential geometry concept and results that we need can be found in Section 2.5
of the book of Schneider, 2014).

3.1.1 Curvature and Strong Convexity

Given a twice continuously differentiable planar curve γ in R2, there exists a parametrization with
respect to the curve length s, such that ‖γ′(s)‖ = ‖ (x′(s), y′(s)) ‖ =

√
x′(s)2 + y′(s)2 = 1. Under

the curve length parametrization, the curvature of γ at γ(s) is ‖γ′′(s)‖. Define the unit normal
vector n(s) as the unit vector that is perpendicular to γ′(s).2 Note that n(s) · γ′(s) = 0. Thus
0 = (n(s) · γ′(s))′ = n′(s) ·γ′(s)+n(s) ·γ′′(s), and ‖γ′′(s)‖ = ‖n(s) ·γ′′(s)‖ = ‖n′(s) ·γ′(s)‖ = ‖n′(s)‖.
Therefore, the curvature of γ at point γ(s) is the length of the differential of its unit normal vector.

Denote the boundary of W by bd(W) and a tangent plane of bd(W) at point w by TwW. We
shall assume that W is twice continuously differentiable, that is, bd(W) is a twice continuously
differentiable submanifold of Rd. Then TwW is unique, and there exists a unique unit vector at
w that is perpendicular to TwW and points outward of W. In fact, one can define a continously
differentiable normal unit vector field on bd(W), uW : bd(W) → Sd−1, the so-called Gauss map,
which maps a boundary point w ∈ bd(W) to the unique outer normal vector to W at w, where
Sd−1 =

{
x ∈ Rd | ‖x‖2 = 1

}
denotes the unit sphere in Rd. Since uW(w) maps bd(W) to unit vectors,

the differential of the Gauss map, ∇uW(w), defines a linear endomorphism of TwW. Moreover,
∇uW(w) is a self-adjoint operator, with nonnegative eigenvalues. The differential of the Gauss map,
∇uW(w), describes the curvature of bd(W) via the second fundamental form. In particular, the
principal curvatures of bd(W) at w ∈ bd(W) are defined as the eigenvalues of ∇uW(w). Perhaps
a more intuitive, yet equivalent definition, is that the principal curvatures are the eigenvalues of
the Hessian of f = fw in the parameterization t 7→ w + t − fw(t)uW(w) of bd(W), which is valid
in a small open neighborhood of w, where fw : TwW → [0,∞) is a suitable convex, nonnegative
valued function that also satisfies fw(0) = 0 (see Fig. 2). Thus, the principal curvatures at some
point w ∈ bd(W) describe the local shape of bd(W) up to the second order. In this paper, we
are interested in the minimum principal curvature at w ∈ bd(W), which can be interpreted as the
minimum curvature at w over all the planar curves γ ∈ bd(W) that go through w.
2. There exist two unit vectors that are perpendicular to γ′(s) for each point on γ. Pick the ones that are consistently

oriented.
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uW(w) = γ′′(s)

v = γ′(s)
w = γ(s)

p = w + t

t

γ(0)

γ(`)

TwW

uW(w)

vw

fw(t)

p

t
TwW

−fw(t)uW(w)

Figure 2: Some differential geometry notations.

A related concept that has been used in convex optimization to show fast rates is that of a
strongly convex constraint set (Levitin and Polyak, 1966; Garber and Hazan, 2015): W is λ-strongly
convex with respect to the norm ‖·‖ if, for any x, y ∈ W and γ ∈ [0, 1], the ‖·‖-ball with origin
γx+(1−γ)y and radius γ(1−γ)λ ‖x− y‖2 /2 is included inW . That is, for any z ∈ Rd with ‖z‖ = 1,
γx+(1−γ)y+γ(1−γ)λ2 ‖x− y‖

2
z ∈ W . Next we show that a convex bodyW with twice continuously

differentiable boundary is λ-strongly convex with respect to ‖·‖2 if and only if the principal curvatures
of the surface bd(W) are all at least λ.3 In the rest of the paper, Br(x) =

{
y ∈ Rd | ‖x− y‖2 ≤ r

}
will denote the Euclidean ball of radius r centered at x (in case x is the origin, it will often be
omitted).

Proposition 4 Let W ⊂ Rd be a convex body with with twice continuously differentiable boundary
and support function ϕ, and let λ be an arbitrary positive number. Then the following statements are
equivalent:

(i) The smallest principal curvature of W is at least λ.

(ii) W = ∩θ∈Sd−1B1/λ(wθ − θ/λ) where wθ ∈ ∂ϕ(θ) ⊂ bd(W).

(iii) W is λ-strongly convex.

Condition (ii), which is actually the definition of Polovinkin (1996) for strongly convex sets, means
that W can be obtained as the intersection of closed balls of radius 1/λ, such that there is one ball
for every boundary point w and tangent hyperplane P where the ball touches P at w. Note that
a ball with radius 1/λ satisfies all conditions: (i) and (ii) by definition, while (iii) holds, e.g., by
Example 13 of Journée et al. (2010).

3.1.2 Regret Bounds

As promised, our next result connects the principal curvatures of bd(W) to the regret of FTL and
shows that FTL enjoys logarithmic regret for highly curved surfaces, as long as ‖Θt‖2 is bounded
away from zero.

Theorem 5 Assume d ≥ 2 and let W ⊂ Rd be a convex body with twice continuously differentiable
boundary. Let M = maxf∈F ‖f‖2 and assume that Φ is differentiable at (Θt)t. Assume that the

3. Following Schneider (2014), a convex body in Rd is any compact, convex subset of Rd with non-empty interior.
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principal curvatures of the surface bd(W) are all at least λ0 for some constant λ0 > 0 (that is, W is
λ0 strongly convex) and Ln := min1≤t≤n ‖Θt‖2 > 0. Choose w1 ∈ bd(W). Then

Rn ≤
2M2

λ0Ln
(1 + logn) .

Before presenting the proof of the theorem, we discuss some of its implications and refinements.
After the proof we will provide some examples of constraint sets with positive minimum principal
curvature.

Remark 6 As we will show later in an essentially matching lower bound, this bound is tight, showing
that the forte of FTL is when Ln is bounded away from zero and λ0 is large. Note that the bound
is vacuous as soon as Ln = O(logn/n) and is worse than the minimax bound of O(

√
n) when

Ln = o(logn/
√
n). One possibility to reduce the bound’s sensitivity to Ln is to use the trivial bound

〈wt+1 − wt,Θt〉 ≤ LW = L supw,w′∈W ‖w − w′‖2 for indices t when ‖Θt‖2 ≤ L (with an arbitrary
L > 0). Then, by optimizing the bound over L, one gets a data-dependent bound of the form

Rn ≤ inf
L>0

(
2M2

λ0L
(1 + logn) + LW

n∑
t=1

t I (‖Θt‖2 ≤ L)
)
, (4)

which is more complex, but is free of Ln and thus reflects the nature of FTL better. Note that in
the case of stochastic problems, where f1, . . . , fn are independent and identically distributed (i.i.d.)
with µ := −E [Θt] 6= 0, the probability that ‖Θt‖2 < ‖µ‖2 /2 is exponentially small in t. Thus,
selecting L = ‖µ‖2 /2 in the previous bound, the contribution of the expectation of the second term
is O(‖µ‖2W ), giving an overall bound of the form O( M2

λ0‖µ‖2
logn+ ‖µ‖2W ). On the other hand, if

‖Θt‖2 = 1 if t is odd and ‖Θt‖ = 0 otherwise (such an example is trivial to construct), the optimal
choice of L in the above bound is L = Θ

(
M
n

√
logn
λ0W

)
leads to a vacuous O

(
Mn

√
W logn
λ0

)
regret

bound.

Remark 7 Now consider the case of i.i.d. losses in a bit more detail. Assume that W = F = B1,
the Euclidean unit ball centered at the origin, and assume E[ft] = µ 6= 0. Then it is straightforward
to derive a high probability lower bound for ‖Θt‖: Using that E‖Θt‖22 = ‖µ‖22 + σ2

t where σ2 =
E‖fi‖22 − ‖µ‖22, we get

P
[
‖Θt‖2 ≤

‖µ‖2
2

]
= P

[
‖Θt‖22 − E‖Θt‖22 ≤ −

3‖µ‖22
4 − σ2

t

]
≤ e
− t

18

(
3‖µ‖2

2
4 +σ2

t

)2

≤ e−t
‖µ‖4

2
32 ,

where the first inequality is due to McDiarmid’s inequality (Boucheron et al., 2013) after noticing
that changing a single fi to some f ′i ∈ F may change the value of ‖Θt‖22 by at most 6/t. Combining
this with (4) for L = ‖µ‖2/2, we get

ERn ≤
4
‖µ‖2

(1 + logn) + ‖µ‖2
4 sinh

(
‖µ‖4

2
32

) ≤ 4
‖µ‖2

(1 + logn) +O(1/‖µ‖72) . (5)

Koolen et al. (2016) also proved an O(logn) bound on the expected regret of the sophisticated
algorithm MetaGrad for the above case (Theorem 3 and Lemma 5 of their paper): in particular, they
showed that MetaGrad achieves O(Bd logn) regret where B = 2λmax

‖µ‖ with λmax being the maximum
eigenvalue of E[ftf>t ]. Since λmax can be as large as 1 (if ‖ft‖2 = 1), (5) can improve (asymptotically)
a factor of d over this regret bound. On the other hand, if ft is uniformly distributed on the half
unit sphere (e.g., the first coordinate of ft is nonnegative with probability 1), Koolen et al. (2016)
shows that B ≤ 24√

d
, which leads to an O(

√
d logn) regret, essentially matching (5), as one can show

that c√
d
≤ ‖µ‖2 ≤ 1√

d
for some constant c.

8
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Proof of Theorem 5 Fix θ1, θ2 ∈ Rd and let w(1) = argmaxw∈W〈w, θ1〉, w(2) = argmaxw∈W〈w, θ2〉.
Note that if θ1, θ2 6= 0 then w(1), w(2) ∈ bd(W). Below we will show that

〈w(1) − w(2), θ1〉 ≤
1

2λ0

‖θ2 − θ1‖22
‖θ2‖2

. (6)

Proposition 2 shows that bounding the regret is equivalent to bounding 〈wt+1−wt,Θt〉. We then apply
(6), which shows that the regret can be bounded by controlling the stability of Θt. A straightforward
calculation shows that Θt cannot move much: for any norm ‖·‖ on F , we have

‖Θt −Θt−1‖ =

∥∥∥∥∥ 1
t− 1

t−1∑
i=1

fi −
1
t

t∑
i=1

fi

∥∥∥∥∥ =

∥∥∥∥∥
t−1∑
i=1

(
1

t− 1 −
1
t

)
fi −

1
t
ft

∥∥∥∥∥
≤

∥∥∥∥∥
t−1∑
i=1

(
1

t− 1 −
1
t

)
fi

∥∥∥∥∥+
∥∥∥∥1
t
ft

∥∥∥∥ =

∥∥∥∥∥
t−1∑
i=1

1
t(t− 1)fi

∥∥∥∥∥+
∥∥∥∥1
t
ft

∥∥∥∥
= 1
t

∥∥∥∥∥ 1
t− 1

t−1∑
i=1

fi

∥∥∥∥∥+ 1
t
‖ft‖ ≤

2
t
M . (7)

where M = maxf∈F ‖f‖ is a constant that depends on F and the norm ‖·‖.
Combining inequality (6) with Proposition 2 and (7), we get

Rn =
n∑
t=1

t〈wt+1 − wt,Θt〉 ≤
n∑
t=1

t

2λ0

‖Θt −Θt−1‖22
‖Θt−1‖2

≤ 2M2

λ0

n∑
t=1

1
t‖Θt−1‖2

≤ 2M2

λ0Ln

n∑
t=1

1
t
≤ 2M2

λ0Ln
(1 + logn) .

To finish the proof we need to show (6). Below we provide a derivation based on the definition
of principal curvature. Using the equivalence between the principal curvature and the modulus of
strong convexity (cf., Proposition 4), we also provide an alternative proof in Appendix A.3 based on
strong convexity, which leads to the slightly weaker result (24), loosing a constant factor of 4.

The following elementary lemma relates the cosine of the angle between two vectors θ1 and θ2 to
the squared normalized distance between the two vectors, thereby reducing our problem to bounding
the cosine of this angle. For brevity, we denote by cos(θ1, θ2) the cosine of the angle between θ1 and
θ2.

Lemma 8 For any non-zero vectors θ1, θ2 ∈ Rd,

1− cos(θ1, θ2) ≤ 1
2
‖θ1 − θ2‖22
‖θ1‖2‖θ2‖2

. (8)

Proof Note that ‖θ1‖2‖θ2‖2 cos(θ1, θ2) = 〈θ1, θ2〉. Therefore, (8) is equivalent to 2‖θ1‖2‖θ2‖2 −
2〈θ1, θ2〉 ≤ ‖θ1−θ2‖22, which, by algebraic manipulations, is itself equivalent to 0 ≤ (‖θ1‖2−‖θ2‖2)2.

Given this result, it suffices to show that cos(θ1, θ2) ≤ 1− λ0〈w(1) − w(2), θ1
‖θ1‖2

〉, which we prove
using the tools from differential geometry introduced in Section 3.1.1. Let θ̃i = θi

‖θi‖2
for i = 1, 2.

The angle between θ1 and θ2 is the same as the angle between the normalized vectors θ̃1 and θ̃2. To
calculate the cosine of the angle between θ̃1 and θ̃2, let P be a plane spanned by θ̃1 and w(1) − w(2)

and passing through w(1) (P is uniquely determined if θ̃1 is not parallel to w(1) − w(2); if there are
multiple planes, just pick any of them). Further, let θ̂2 ∈ Sd−1 be the unit vector along the projection
of θ̃2 onto the plane P , as indicated in Fig. 3. Clearly, cos(θ̃1, θ̃2) ≤ cos(θ̃1, θ̂2).

9
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w(1)

θ̃1

w(2)

θ̃2

θ̂2

P

γ(s)

Figure 3: Illustration of the construction used in the proof of (6).

Consider a curve γ(s) on bd(W) connecting w(1) and w(2) that is defined by the intersection
of bd(W) and P and is parametrized by its curve length s so that γ(0) = w(1) and γ(l) = w(2),
where l is the length of the curve γ between w(1) and w(2). Note that since γ is parametrized by
its length, ‖γ′(s)‖2 = 1 for all s ∈ [0, l]. Let uW(w) denote the outer normal vector to W at w as
before, and let uγ : [0, l] → Sd−1 denote the Gauss map of the planar curve γ, that is, uγ(s) = θ̂

where θ̂ is the unit vector parallel to the projection of uW(γ(s)) on the plane P . Now, for any
θ ∈ Sd−1, wθ = argmaxw∈W〈w, θ〉 is a point where a hyperplane with normal vector θ touches W,
thus, uW(wθ) = θ. Therefore, uγ(0) = θ̃1 and uγ(l) = θ̂2. In fact γ exists in two versions since W
is a compact convex body, hence the intersection of P and bd(W) is a closed curve. Of these two
versions we choose the one that satisfies that 〈γ′(s), θ̃1〉 ≤ 0 for s ∈ [0, l].4 Given the above, we have

cos(θ̃1, θ̂2) = 〈θ̂2, θ̃1〉 = 1+ 〈θ̂2 − θ̃1, θ̃1〉 = 1+
〈∫ l

0
u′γ(s) ds, θ̃1

〉
= 1+

∫ l

0
〈u′γ(s), θ̃1〉ds. (9)

Note that γ is a planar curve on bd(W), thus its curvature λ(s) satisfies λ(s) ≥ λ0 for any s ∈ [0, l].
Also, for all s ∈ [0, l], γ′(s) is a unit vector parallel to P (since γ is parametrized by its curve length).
Moreover, u′γ(s) is parallel to γ′(s) since uγ(s) is the Gauss map, and λ(s) = ‖u′γ(s)‖2. Therefore,

〈u′γ(s), θ̃1〉 = ‖u′γ(s)‖2〈γ′(s), θ̃1〉 ≤ λ0〈γ′(s), θ̃1〉,

where the last inequality holds because 〈γ′(s), θ̃1〉 ≤ 0. Plugging this into (9), we get the desired

cos(θ̃1, θ̂2) ≤ 1 + λ0

∫ l

0
〈γ′(s), θ̃1〉ds = 1 + λ0

〈∫ l

0
γ′(s) ds, θ̃1

〉
= 1− λ0〈w(1) − w(2), θ̃1〉 .

Reordering and combining with (8) we obtain

〈w(1) − w(2), θ̃1〉 ≤
1
λ0

(
1− cos(θ̃1, θ̂2)

)
≤ 1
λ0

(1− cos(θ1, θ2)) ≤ 1
2λ0

‖θ1 − θ2‖22
‖θ1‖2‖θ2‖2

.

Multiplying both sides by ‖θ1‖2 gives (6), thus, finishing the proof.

Next we present the smallest principal curvature of some common convex bodies (the proofs are
relegated to the appendix), often used as constraint sets in machine learning.

Example 1 (i) The smallest principal curvature λ0 of the Euclidean ball W = {w | ‖w‖2 ≤ r} of
radius r satisfies λ0 = 1

r .

4. γ′ and u′
γ denote the derivatives of γ and uγ , respectively, which exist since bd(W) is twice continuously

differentiable. When s = 0 or s = l, it suffices to take the corresponding one-sided derivatives or, equivalently,
extend the definitions of γ and uγ to an interval [−ε, l + ε] for some ε > 0.

10
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(ii) Let Q be a positive definite matrix. If W =
{
w |w>Qw ≤ 1

}
then λ0 = λmin/

√
λmax, where

λmin and λmax are the minimal, respectively, maximal eigenvalues of Q.
(iii) Let p > 1 and W = {w |‖w‖p ≤ 1}. If p > 2, then λ0 = 0. Otherwise, if 1 < p ≤ 2, then

λ0 = min
w∈bd(W)

min
v∈Sd−1:〈w�(p−1),v〉=0

(p− 1)
v> diag

(
|w1|p−2, · · · , |wd|p−2) v
‖w�(p−1)‖2

≥ (p− 1)d
1
2−

1
p ,

where w�(p−1) = (|w1|p−1, . . . , |wd|p−1) and diag(a1, . . . , ak) denotes a k × k diagonal matrix
with diagonal entries a1, . . . , ak.

(iv) In general, let φ : Rd → R be a twice continuously differentiable convex function. Then, for
W = {w |φ(w) ≤ 1}, λ0 = minw∈bd(W) minv∈Sd−1:〈φ′(w),v〉=0

v>∇2φ(w)v
‖φ′(w)‖2

.

Some of the results above have been derived in the literature based on seemingly different but
equivalent assumptions explored in Proposition 4: (i) is a standard result in books on differential
geometry; Polovinkin (1996) derived (ii) based on the strong convexity definition (ii) in Proposition 4,
while (iii) was proved by Garber and Hazan (2015) based on the strong convexity definition (iii)
in Proposition 4. Other examples of strongly sets convex sets, that is, sets with positive minimal
principal curvature, can be found in the paper of Garber and Hazan (2015).

Our last result in this section is a lower bound for the linear game, showing that FTL achieves
the optimal rate under the condition that mint ‖Θt‖2 ≥ L > 0.

Theorem 9 Let λ, L ∈ (0, 1). Assume that {(1,−L), (−1,−L)} ⊂ F and let

W =
{

(x, y) ∈ R2 : x2 + y2

λ2 ≤ 1
}

be an ellipsoid with principal curvature λ. Then, for any learning strategy, there exists a sequence of
losses in F such that ‖Θt‖2 ≥ L for all t and

Rn ≥
1

84
√

2
1
λL

logn− 1
λL

(
2

1− e−λ2L2 + π2

108

)
. (10)

The theorem states that the regret of any learning strategy can be made at least as large as
Ω (logn/(Lλ)). Note that by Example 1, the minimal principal curvature of W in the above theorem
is λ. In fact, it is not too hard to extend the above argument for any set W such that there is
w ∈ bd(W) where the curvature is λ, and the curvature is a continuous function in a neighborhood
of w over the boundary bd(W). The constants in the bound then depend on how fast the curvature
changes within this neighborhood. In the case above, for small λL, the n-independent term in (10) is
of order 1/(λL)3.
Proof We define a random loss sequence, and we will show that no algorithm on this sequence can
achieve an o(logn/(λ0L) regret. Let P be a random variable with Beta(K,K) distribution for some
K > 0, and, given P , assume that Xt, t ≥ 1 are i.i.d. Bernoulli random variables with parameter P .
Let ft = Xt(1,−L) + (1−Xt)(−1,−L) = (2Xt − 1,−L). Thus, the second coordinate of ft is always
−L, and so ‖Θt‖2 =

∥∥∥ 1
t

∑t
i=1 fi

∥∥∥
2
≥ L. Furthermore, the conditional expectation of the loss vector

is fp 4= E [ft|P = p] = (2p− 1,−L).
Note that Xt is a function of ft for all t; thus the conditional expectation of P , given f1, . . . , ft−1,

can be determined by the well-known formula P̂t−1 = E [P | f1 . . . ft−1] = K+
∑t−1

i=1
Xi

2K+t−1 . Given p,
denote the optimizer of fp by wp, that is, wp = argminw∈W 〈w, fp〉. Then the Bayesian optimal

11
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choice in round t is

argmin
w∈W

E
[
[
〈
w, fP

〉∣∣ f1 . . . ft−1
]

= argmin
w∈W

〈
w,E

[
fP
∣∣ f1 . . . ft−1

]〉
= argmin

w∈W

〈
w, f P̂t−1

〉
= wP̂t−1 , (11)

where the first equality follows by linearity of the inner product, the second since fp is a linear
function of p and the third by the definition of wp.

Thus, denoting by Wt the prediction of an arbitrary algorithm in round t, the expected regret
can be bounded from below as

E [Rn] = E

[
max
w∈W

n∑
t=1
〈Wt − w, ft〉

]
= E

[
E

[
max
w∈W

n∑
t=1
〈Wt − w, ft〉

∣∣∣∣∣P
]]

≥ E

[
E

[
n∑
t=1

〈
Wt − wP , ft

〉∣∣∣∣∣P
]]

= E

[
n∑
t=1

E
[〈
Wt − wP , ft

〉∣∣P, f1, . . . , ft−1
]]

= E

[
n∑
t=1

E
[〈
Wt − wP , fP

〉∣∣ f1, . . . , ft−1
]]

(12)

≥ E

[
n∑
t=1

min
w∈W

E
[〈
w − wP , fP

〉∣∣ f1, . . . , ft−1
]]

= E

[
n∑
t=1

E
[〈
wP̂t−1 − wP , fP

〉∣∣∣ f1, . . . , ft−1

]]
(13)

=
n∑
t=1

E
[〈
wP̂t−1 − wP , fP

〉]
,

where (12) holds because of the independence of the fs given P and since Wt is chosen based on
f1, . . . , ft−1 (but not on P ), and (13) holds by (11).

By Lemma 17, given in Appendix A.4, we have

n∑
t=1

E
[〈
wP̂t−1 − wP , fP

〉]
≥ λL

2

n∑
t=1

E


(

2P̂t−1−2P
λL

)2

√
1 +

( 1−2P
λL

)2(1 +
(

1−2P̂t−1
λL

)2
)
 (14)

= 2
λL

n∑
t=1

E

 1√
1 +

( 1−2P
λL

)2E
 (P̂t−1 − P )2

1 +
(

1−2P̂t−1
λL

)2

∣∣∣∣∣∣∣P



≥ 2
λL

n∑
t=1

E

 1√
1 +

( 1−2P
λL

)2E
 (P̂t−1 − P )2

1 + 2
( 1−2P

λL

)2 + 2
(

2P−2P̂t−1
λL

)2

∣∣∣∣∣∣∣P

 ,
(15)

where in the last step we used (a+ b)2 ≤ a2 + b2. Let Gt be the event that |P̂t−P | ≤ K|1−2P |
2K+t + tλL

2K+t ;
note that Gt holds with high probability by Lemma 18 in Appendix A.4. Then, lower bounding the

12
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first term by 0, (15) can be lower bounded by

2
λL

n−1∑
t=1

E

 1√
1 +

( 1−2P
λL

)2E
 (P̂t − P )2

1 + 2
( 1−2P

λL

)2 + 2
(

2P−2P̂t
λL

)2 I(Gt)

∣∣∣∣∣∣∣P



≥ 2
λL

n−1∑
t=1

E

 1√
1 +

( 1−2P
λL

)2 E
[

(P̂t − P )2I(Gt)
∣∣∣P](

1 + 2
( 1−2P

λL

)2 + 2
(

2K
2K+t

|1−2P |
λL + 2t

2K+t

)2
)


≥ 2
λL

n−1∑
t=1

E

 1√
1 +

( 1−2P
λL

)2 E
[

(P̂t − P )2I(Gt)
∣∣∣P](

9 + 4
( 1−2P

λL

)2 + 8 |1−2P |
λL

)
 .

Combining the above, and using (P̂t − P )2 ≤ 1 together with the upper bound on the probability of
the event Gct , the complement of Gt, given in Lemma 18, we get

E [Rn] ≥ 2
λL

n−1∑
t=1

E

 1√
1 +

( 1−2P
λL

)2 E
[

(P̂t − P )2
∣∣∣P]− P [Gct ](

9 + 4
( 1−2P

λL

)2 + 8 |1−2P |
λL

)


≥ 2
λL

n−1∑
t=1

E

 1√
1 +

( 1−2P
λL

)2 E
[

(P̂t − P )2
∣∣∣P](

9 + 4
( 1−2P

λL

)2 + 8 |1−2P |
λL

)
− e−(t−1)λ2L2


≥ 2
λL

n−1∑
t=1

E

 1√
1 +

( 1−2P
λL

)2 E
[

(P̂t − P )2
∣∣∣P](

9 + 4
( 1−2P

λL

)2 + 8 |1−2P |
λL

)
 − 1

1− e−λ2L2

 . (16)

Now, by Lemma 19, given in Appendix A.4, we have

E
[

(P̂t − P )2
∣∣∣P] = K2(1− 2P )2

(2K + t)2 + tP (1− P )
(2K + t)2 ≥ P (1− P )

(
1
t
− 2
t(2K + t)

)
.

Combining this with (16) and introducing the constant

C = E

 1√
1 +

( 1−2P
λL

)2 P (1− P )(
9 + 4

( 1−2P
λL

)2 + 8 |1−2P |
λL

)


we obtain, for any K > 0,

E [Rn] ≥ 2
λL

[
− 1

1− e−λ2L2 +
n−1∑
t=1

C

(
1
t
− 2
t(2K + t)

)]
(17)

≥ 2C
λL

logn− 1
λL

(
2

1− e−λ2L2 + Cπ2

3

)
. (18)

where we used
∑n−1
t=1 ≥

∫ n
1 1/t = logn and

∑n−1
t=1 1/(t(2K + t)) ≤

∑∞
t=1 1/t2 = π2/6. It remains to

calculate a constant lower bound for C that is independent of λ and L. Denote |1−2P |
λL by Y ; then

0 ≤ P (1− P ) = 1−Y 2λ2L2

4 ≤ 1/4. Define Ĝ to be the event when |Y | ≤ 1. Since P has Beta(K,K)
distribution, E [P ] = 1

2 and Var(P ) = 1
8K . Therefore, by Chebyshev’s inequality,

P
[
Ĝc
]

= P
[∣∣∣∣P − 1

2

∣∣∣∣ > λL

2

]
≤ 1

2Kλ2L2 .
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Therefore,

C = E
[

1√
1 + Y 2

1− Y 2λ2L2

4(9 + 4Y 2 + 8Y )

]
≥ E

[
1√

1 + Y 2
1− Y 2λ2L2

4(9 + 4Y 2 + 8Y ) I(Ĝ)
]

≥ 1
84
√

2
E
[
(1− Y 2λ2L2)I(Ĝ)

]
≥ 1

84
√

2

(
E
[
1− Y 2λ2L2]− P

[
Ĝc
])

≥ 1
84
√

2

(
1− E

[
(1− 2P )2]− 1

2Kλ2L2

)
= 1

84
√

2

(
1− 1

2K −
1

2Kλ2L2

)
≥ 1

84
√

2
· 1

2

for any K ≥ 1 + 1
λ2L2 . Hence,

E [Rn] ≥ 1
84
√

2
1
λL

logn− 1
λL

(
2

1− e−λ2L2 + π2

108

)
,

where we used the trivial upper bound C ≤ 1/36 (obtained by maximizing the argument of the
expectation in P in the definition of C by selecting P = 1/2). The result is completed by noting that
the worst-case regret is at least as big as the expected regret, thus, for every n, there exist a P and a
sequence of loss vectors f1, . . . , fn such that the regret Rn satisfies (10).

3.2 Other Regularities

So far we have looked at the case when FTL achieves a low regret due to the curvature of bd(W).
The next result characterizes the regret of FTL when W is a polytope, which has a flat, non-smooth
boundary and thus Theorem 5 is not applicable. For this statement recall that given some norm ‖ · ‖,
its dual norm is defined by ‖w‖∗ = sup‖v‖≤1〈v, w〉.

Theorem 10 Assume that W is a polytope and that Φ is differentiable at Θi, i = 1, . . . , n. Let
wt = argmaxw∈W〈w,Θt−1〉, W = supw1,w2∈W ‖w1 − w2‖∗ and F = supf1,f2∈F ‖f1 − f2‖. Then the
regret of FTL is

Rn ≤W
n∑
t=1

t I(wt+1 6= wt)‖Θt −Θt−1‖ ≤ FW
n∑
t=1

I(wt+1 6= wt) .

Note that when W is a polytope, wt is expected to “snap” to some vertex of W. Hence, we expect
the regret bound to be non-vacuous, if, e.g., Θt “stabilizes” around some value. Some examples after
the proof will illustrate this.
Proof Let v=argmaxw∈W〈w, θ〉, v′=argmaxw∈W〈w, θ′〉. Similarly to the proof of Theorem 5,

〈v′ − v, θ′〉 = 〈v′, θ′〉 − 〈v′, θ〉+ 〈v′, θ〉 − 〈v, θ〉+ 〈v, θ〉 − 〈v, θ′〉
≤ 〈v′, θ′〉 − 〈v′, θ〉+ 〈v, θ〉 − 〈v, θ′〉 = 〈v′ − v, θ′ − θ〉 ≤W I(v′ 6= v)‖θ′ − θ‖,

where the first inequality holds because 〈v′, θ〉 ≤ 〈v, θ〉. Therefore, by (7),

Rn =
n∑
t=1

t 〈wt+1 − wt,Θt〉 ≤W
n∑
t=1

t I(wt+1 6=wt)‖Θt −Θt−1‖ ≤ FW
n∑
t=1

I(wt+1 6=wt) .

As noted before, since W is a polytope, wt is (generally) attained at the vertices. In this case, the
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epigraph of Φ is a polyhedral cone. Then, the event when wt+1 6= wt, that is, when the “leader”
switches corresponds to when Θt and Θt−1 belong to different linear regions corresponding to different
linear pieces of the graph of Φ.

We now spell out a corollary for the stochastic setting. In particular, in this case FTL will often
enjoy a constant regret:

Corollary 11 (Stochastic setting) Assume that W is a polytope and that (ft)1≤t≤n is an i.i.d.
sequence of random variables such that E [fi] = µ and ‖fi‖∞ ≤M . Let W = supw1,w2∈W ‖w1 − w2‖1.
Further assume that there exists a constant r > 0 such that Φ is differentiable for any ν such that
‖ν − µ‖∞ ≤ r. Then,

E [Rn] ≤ 2MW

(
3 + 2M2

r2 log
(

2M2d

r2

))
.

The existence of an r such that Φ is differentiable for any ν such that ‖ν − µ‖∞ ≤ r is equivalent to
that Φ is differentiable at µ. By Proposition 1, this condition requires that at µ, maxw∈W〈w, θ〉 has
a unique optimizer (note that the volume of the set of vectors θ with multiple optimizers is zero).
On the other hand, r should be selected to be the radius of the largest ball such that the optimal
decisions for the expected losses µ and ν (i.e., the maximizers defining Φ(−µ) and Φ(−ν)) belong to
the same face of W.
Proof Let V = {ν | ‖ν − µ‖∞ ≤ r}. Note that the epigraph of the function Φ is a polyhedral cone.
Since Φ is differentiable in the interior of V , {(θ,Φ(θ)) | θ ∈ V } is a subset of a linear subspace.
Therefore, for −Θt,−Θt−1 ∈ V , wt+1 = wt. Hence, by Theorem 10,

E [Rn] ≤ 2MW

n∑
t=1

P [−Θt,−Θt−1 /∈ V ] ≤ 4MW

(
1 +

n∑
t=1

P [−Θt /∈ V ]
)
. (19)

On the other hand, note that ‖fi‖∞ ≤M . Then

P [−Θt /∈ V ] = P

[∥∥∥∥∥1
t

t∑
i=1

fi − µ

∥∥∥∥∥
∞

≥ r

]
≤

d∑
j=1

P

[∣∣∣∣∣1t
t∑
i=1

fi,j − µj

∣∣∣∣∣ ≥ r
]
≤ 2de−

tr2
2M2 ,

where the last inequality is due to Hoeffding’s inequality. Now, using that for any α > 0 and τ > 0,∑n
t=τ+1 exp(−αt) ≤

∫ n
τ

exp(−αt)dt ≤ 1
α exp(−ατ), from (19) we obtain

E [Rn] ≤ 2MW

(
1 + τ + 2d

α
e−ατ

)
.

Setting α = r2

2M2 and τ = 1
α log(d/α) in the above bound finishes the proof.

4. Adaptive Algorithms
While FTL can exploit the curvature of the surface of the constraint set to achieve O(logn) regret, it
requires the curvature condition and mint ‖Θt‖2 ≥ L being bounded away from zero, or it may suffer
linear regret. On the other hand, many algorithms such as the follow the regularized leader (FTRL)
are known to achieve a regret guarantee of O(

√
n) even for the worst-case data in the linear setting

(see, e.g., Shalev-Shwartz, 2012). This raises the question of whether one can have an algorithm that
can achieve constant or O(logn) regret in the respective settings of Corollary 11 or Theorem 5, while
it still maintains O(

√
n) regret for worst-case data. One way to design an adaptive algorithm is to

use the (A,B)-prod algorithm of Sani et al. (2014), trivially leading to the following result:
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Algorithm 1 Follow The Shrunken Leader (FTSL)
1: Predict w1 = 0;
2: for t = 2, ..., n− 1 do
3: FTL: Compute w̃t = argminw∈W 〈w,Ft−1〉.
4: Shrinkage: Predict wt = ‖Ft−1‖2√

‖Ft−1‖2
2+t+2

w̃t.
5: end for
6: FTL: Compute w̃n = argminw∈W 〈w,Fn−1〉.
7: Shrinkage: Predict wn = ‖Fn−1‖2√

‖Fn−1‖2
2+n

w̃n.

Proposition 12 Consider (A,B)-prod of Sani et al. (2014), where algorithm A is chosen to be
FTRL with an appropriate regularization term, while B is chosen to be FTL. Then the regret of the
resulting hybrid algorithm H enjoys the following guarantees:

• If FTL achieves constant regret as in the setting of Corollary 11, then the regret of H is also
constant.
• If FTL achieves a regret of O(logn) as in the setting of Theorem 5, then the regret of H is also
O(logn).

• Otherwise, the regret of H is at most O(
√
n logn).

In the next section we show that if the constraint set is an ellipsoid, it is possible to design
adaptive algorithms directly.

4.1 Adaptive Algorithms for Ellipsoid Constraint Sets

In this section we provide some interesting results about adaptive algorithms for the case when W is
an ellipsoid in Rd. First, we show that a variant of FTL using shrinkage as regularization has O(logn)
regret when ‖Θt‖2 ≥ L > 0 for all t, but it also has O(

√
n) worst case guarantee. Furthermore, we

show that the standard FTRL algorithm is adaptive if the constraint set is an ellipsoid and the loss
vectors are stochastic. Throughout the section we will use the notation Ft = −tΘt =

∑t
i=1 fi.

4.1.1 Follow the Shrunken Leader

In this section we are going to analyze a combination of the FTL algorithm and the idea of shrinkage
often used for regularization purposes in statistics. We assume that W is the d-dimensional unit
ball and, without loss of generality, we further assume that ‖f‖2 ≤ 1 for all f ∈ F . The Follow The
Shrunken Leader (FTSL) algorithm is given in Algorithm 1. The main idea of the algorithm is to
predict a shrunken version of the FTL prediction, in this way keeping it away from the boundary of
W . The next theorem shows that the right amount of shrinkage leads to a robust, adaptive algorithm.

Theorem 13 Assume that W =
{
x ∈ Rd | ‖x‖2 ≤ 1

}
and ‖f‖2 ≤ 1 for all f ∈ F . Then the regret

of FTSL is O(
√
n). If, in addition, there exists an L > 0 such that ‖Θt‖2 ≥ L for 1 ≤ t ≤ n, then

the regret of is O(logn/L).

Proof By the definition of Ft and W, w̃t = −Ft−1/‖Ft−1‖2 for t ≥ 2. Let σn = ‖Fn−1‖2√
‖Fn−1‖2

2+n
. Our

proof follows the idea of Abernethy et al. (2008). We compute the upper bound on the value of the
game for each round backwards for t = n, n− 1, . . . , 1, by solving the optimal strategies for ft. The
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value of the game using FTSL is defined as

Vn = max
f1,...,fn

n∑
t=1
〈wt, ft〉 − min

w∈W
〈w,Fn〉

= max
f1,...,fn−1

n−1∑
t=1
〈wt, ft〉+ max

fn
‖Fn−1 + fn‖2 + 〈fn, wn〉︸ ︷︷ ︸

=:Un

We first prove that Un, the second term above, is bounded from above by
√
‖Fn−1‖22 + n. To see

this, let fn = anF̃n−1 + bnΩn−1 where F̃n−1 is the unit vector parallel to Fn−1 and Ωn−1 is a unit
vector orthogonal to Fn−1. Furthermore, since ‖fn‖2 ≤ 1, we have a2

n + b2n ≤ 1. Thus,

Un = max
fn

√
‖Fn−1‖22 + 2an‖Fn−1‖2 + a2

n + b2n − anσn

≤ max
a

√
‖Fn−1‖22 + 2a‖Fn−1‖2 + n− aσn

=
√
‖Fn−1‖22 + n,

where the last equality follows since the maximum is attained at a = 0. A similar statement holds
for the other time indices: for any t ≥ 1,

max
ft

√
‖Ft−1 + ft‖22 + t+ 1 + 〈ft, wt〉 ≤

√
‖Ft−1‖22 + t+ 1√

t
. (20)

Before proving this inequality, we show how it implies the first statement of the theorem:

Vn ≤ max
f1,...,fn−1

n−1∑
t=1
〈wt, ft〉+

√
‖Fn−1‖22 + n

≤ max
f1,...,fn−2

n−2∑
t=1
〈wt, ft〉+

√
‖Fn−2‖22 + n− 1 + 1√

n− 1

≤ . . .

≤ 1 +
n−1∑
t=1

1√
t
≤ 2(1 +

√
n− 1).

Moreover, if ‖Θt‖2 ≥ L > 0 for 1 ≤ t ≤ n, a stronger version of (20) also holds:

max
ft

√
‖Ft−1 + ft‖22 + t+ 1 + 〈ft, wt〉 ≤

√
‖Ft−1‖22 + t+ 1

(t− 1)L. (21)

This implies the second statement of the theorem, since

Vn ≤ max
f1,...,fn−1

n−1∑
t=1
〈wt, ft〉+

√
‖Fn−1‖22 + n

≤ max
f1,...,fn−2

n−2∑
t=1
〈wt, ft〉+

√
‖Fn−2‖22 + n− 1 + 1

(n− 1)L

≤ . . .

≤ 1 +
n−1∑
t=1

1
tL
≤ 1 + 1

L
+ log(n− 1)

L
.
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To finish the proof, it remains to show (20) and (21). Let ft = atF̃t−1 + btΩt−1 where F̃t−1 is the
unit vector parallel to Ft−1 and Ωt−1 is a unit vector orthogonal to Ft−1. Since ‖ft‖2 ≤ 1, observe
that a2

t + b2t = ‖ft‖2 ≤ 1. Furthermore, let σt = ‖Ft−1‖2√
‖Ft−1‖2

2+t+2
. Then, for any t ≥ 1,

∆t = max
ft

√
‖Ft−1‖22 + 2at‖Ft−1‖2 + a2

t + b2t + t+ 1− atσt −
√
‖Ft−1‖22 + t

≤ max
at

√
‖Ft−1‖22 + 2at‖Ft−1‖2 + t+ 2− atσt −

√
‖Ft−1‖22 + t

=
√
‖Ft−1‖22 + t+ 2−

√
‖Ft−1‖22 + t

= 2√
‖Ft−1‖22 + t+ 2 +

√
‖Ft−1‖22 + t

(22)

≤ 1√
t
.

This proves (20). Moreover, if ‖Ft−1‖2 = ‖(t− 1)Θ‖2 ≥ (t− 1)L > 0, by (22) we obtain

∆t ≤
2√

‖Ft−1‖22 + t+ 2 +
√
‖Ft−1‖22 + t

≤ 1
‖Ft−1‖2

≤ 1
(t− 1)L,

proving (21).

Remark 14 The above result can easily be extended to the case when W is an ellipsoid, that
is, W =

{
w |w>Qw ≤ 1

}
for some positive-definite matrix Q. Transforming the predictions as

ŵt = Q1/2wt and the losses f̂t = Q−1/2ft, we see that, for all t, the new prediction ŵt belongs to the
unit ball (i.e., ŵt ∈ B1) and 〈wt, ft〉 = 〈ŵt, f̂t〉. Thus, the value of the game can be bounded as

Vn = max
f1,...,fn : ‖fi‖2≤1

n∑
t=1
〈wt, ft〉 − min

w∈W
〈w,Fn〉

= max
f1,...,fn : ‖fi‖2≤1

n∑
t=1
〈ŵt, Q−1/2ft〉 − min

ŵ∈B1
〈ŵ, Q−1/2Fn〉

= max
f̂1,...,f̂n : ‖Q1/2f̂i‖2≤1

n∑
t=1
〈ŵt, f̂t〉 − min

ŵ∈B1
〈ŵ, F̂n〉

≤ max
f̂1,...,f̂n : ‖f̂i‖2≤ 1√

λmin

n∑
t=1
〈ŵt, f̂t〉 − min

ŵ∈B1
〈ŵ, F̂n〉

= 1√
λmin

max
f̃1,...,f̃n : ‖f̃i‖2≤1

n∑
t=1
〈ŵt, f̃t〉 − min

ŵ∈B1
〈ŵ, F̃n〉 ,

where λmin is the minimal eigenvalue of the matrix Q, F̂n =
∑n
t=1 f̂t, f̃t =

√
λmin f̂t, and F̃n =√

λmin F̂n =
∑n
t=1 f̃t. Thus, playing over W with loss vectors from the unit ball is equivalent to

playing over the unit ball B1 against losses overW (note that ‖Q1/2f̂i‖2 ≤ 1 is equivalent to f̂i ∈ W),
which can be reduced to playing against losses with maximum Euclidean norm 1. Thus, an algorithm
for the ellipsoid constraint set W is to run FTSL over the unit ball B1 with the transformed losses
f̃t, and predict wt = Q−1/2ŵt where ŵt is the prediction of FTSL. Assuming that ‖Θt‖2 ≥ L for all
t in the original problem, in the transformed problem we have ‖

√
λmin Q

−1/2Θt‖2 ≥ L
√
λmin/λmax

where λmax is the largest eigenvalue of Q. Hence, the regret of the algorithm (in both the original
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and the transformed problems) is at most O
(√

λmax
Lλmin

logn
)
. Note that this is exactly the same rate as

we can obtain from Theorem 5 and Example 1 (ii) for the (non-adaptive) FTL algorithm for the
ellipsoid constraint set W (a closer inspection of the constants shows that the leading constant for
FTSL is actually a factor of 2 better).

4.1.2 FTRL for Stochastic Losses

This section shows that when W is the unit ball B1, FTRL with regularizer R(w) = 1
2‖w‖

2 is an
adaptive algorithm achieving logarithmic regret for stochastic losses. To fix the notation, in round t,
FTLR predicts

wt = argmin
w∈W

ηt〈Ft−1, w〉+R(w),

if t > 1 and w1 = 0. It has been well known that FTRL with ηt = 1/
√
t− 1 is guaranteed to achieve

O(
√
n) regret in the adversarial setting (see, e.g., Shalev-Shwartz, 2012). It remains to prove that

FTRL indeed achieves a fast rate in the stochastic setting.

Theorem 15 Assume that the sequence of loss vectors, f1, . . . , fn ∈ Rd satisfies ‖ft‖2 ≤ 1 almost
surely and E [ft] = µ for all t with some ‖µ‖2 > 0. Then FTRL with ηt = 1/

√
t− 1 suffers O(logn)

regret .

Proof Using R(w) = 1
2‖w‖

2 as its regularization, in round t > 1 FTRL predicts

wt = argmin
w∈W

ηt〈Ft−1, w〉+R(w) =
{

1√
t−1Ft−1 if ‖Ft−1‖ ≤

√
t− 1 ;

Ft−1
‖Ft−1‖ otherwise.

(23)

For any 1 ≤ t ≤ n, denote the event ‖Ft‖ ≥
√
t by Et. Note that if ‖Ft−1‖ ≥

√
t− 1, FTRL predicts

exactly the same wt as FTL. Denote the accumulated loss of FTL in n rounds by LFTLn . Thus, the
regret of FTRL is

E [Rn] = E

[
n∑
t=1
〈ft, wt〉 − min

w∈W
〈ft, w〉

]

= E

[
n∑
t=1
〈ft, wt〉 − LFTLn

]
+ E

[
LFTLn − min

w∈W
〈ft, w〉

]

≤ 2
n∑
t=1

P [Ect ] +O(logn),

where to obtain the last inequality we applied (23) for the first term, while the second term is O(logn)
by Remark 7. It remains to bound the first term, 2

∑n
t=1 P [Ect ] in the above. For any t > 4

‖µ‖2
2
,

P
[
‖Ft‖2 ≤

√
t
]
≤ P

[
‖Ft‖2 <

t

2‖µ‖2
]
≤

d∑
i=1

P
[
|Ft,i| <

t

2 |µi|
]

≤
d∑
i=1

P
[
|Ft,i − tµi| >

t

2 |µi|
]
≤ 2

d∑
i=1

e−
µ2
i

4 t

19



Huang, Lattimore, György, and Szepesvári

Thus,

n∑
t=1

P [Ect ] =
4/‖µ‖2

2∑
t=1

P [Ect ] +
n∑

t=4/‖µ‖2
2

P [Ect ]

≤ 4
‖µ‖22

+ 2
d∑
i=1

n∑
t=0

e−
µ2
i

4 t

≤ 4
‖µ‖22

+ 2
d∑
i=1

1

1− e−
µ2
i

4

≤ 4
‖µ‖22

+ 2
d∑
i=1

µ2
i

4 = 4
‖µ‖22

+ ‖µ‖
2
2

2 .

where in the last inequality we used 1/(1 − e−a) ≤ a. Therefore, if ‖µ‖ > 0, the regret of FTRL
satisfies

E [Rn] ≤ 8
‖µ‖22

+ ‖µ‖22 +O(logn) = O(logn).

Remark 16 Similarly to FTSL, the above result can be extended to ellipsoid constraint sets with
an adequate choice of the regularizer R(w). Assume that W =

{
w |w>Qw ≤ 1

}
for some positive

definite matrix Q, and let R(w) = 1
2w
>Qw. Then

wt = argmin
w∈W

ηt〈Ft−1, w〉+R(w) = Q−1/2 argmin
w̃∈B1

ηt〈Q−1/2Ft−1, w̃〉+ 1
2‖w̃‖

2
2,

and

Rn =
n∑
t=1
〈ft, wt〉 − min

w∈W
〈ft, w〉 =

n∑
t=1
〈Q−1/2ft, w̃t〉 − min

w∈B1
〈Q−1/2ft, w̃〉.

Thus, the problem is equivalent to the case of a unit ball constraint set with the loss vector Q−1/2ft
for time t, and FTRL with the selected regularizer achieves O(

√
n) worst case regret and O(logn)

regret in the case of an i.i.d. loss sequence. Whether FTRL with a constraint-set-independent
regularizer R(w) = 1

2‖w‖
2
2 achieves similar adaptivity, remains an open question.

5. Simulations
We performed three simulations to illustrate the differences between FTL, FTRL with the regularizer
R(w) = 1

2 ‖w‖
2
2 when wt = argminw∈W

∑t−1
i=1〈fi−1, w〉+ R(w), and the adaptive algorithm (A,B)-

prod (AB) using FTL and FTRL as its candidates, which we shall call AB(FTL,FTRL).
For the experiments the constraint set W was chosen to be a slightly elongated ellipsoid in the

4-dimensional Euclidean space, with volume matching that of the 4-dimensional unit ball. The actual
ellipsoid is given by W =

{
w ∈ R4 |w>Qw ≤ 1

}
where Q is randomly generated as

Q =


4.3367 3.6346 −2.2250 3.5628
3.6346 3.9966 −2.3613 3.2817
−2.2250 −2.3613 2.0589 −2.1295
3.5628 3.2817 −2.1295 3.4206

 .
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We experimented with three types of data to illustrate the behavior of the different algorithms:
stochastic, “half-adversarial”, and “worst-case” data (worst-case for FTL), as will be explained below.
The first two data sets are random, so the experiments were repeated 100 times, and we report the
average regret with its standard deviation; the worst case data is deterministic, so there no repetition
was needed. For each experiment, we set n = 2500. The regularization coefficient for the FTRL, and
the learning rate for AB were chosen based on their theoretical bounds minimizing the worst-case
regret.

5.1 Stochastic Data

In this setting we used the following model to generate ft: Let (f̂t)t be an i.i.d. sequence drawn
from the 4-dimensional standard normal distribution, and let f̃t = f̂t/

∥∥∥f̂t∥∥∥
2
. Then, ft is defined

as ft = f̃t + Le1 where e1 = (1, 0, . . . , 0)>. Therefore, E
[∥∥∥ 1

t

∑t
s=1 fs

∥∥∥
2

]
→ L as t → ∞. In the

experiments we picked L ∈ {0, 0.1}.
The results are shown in Fig. 4. On the left-hand side we plotted the regret against the logarithm

of the number of rounds, while on the right-hand side we plotted the regret against the square root of
the number of rounds, together with the standard deviation of the results over the 100 independent
runs. As can be seen from the figures, when L = 0.1, the growth-rate of the regret of FTL is indeed
logarithmic, while when L = 0, the growth-rate is Θ(

√
n). In particular, when L = 0.1, FTL enjoys

a major advantage compared to FTRL, while for L = 0, FTL and FTRL perform essentially the
same (in this special case, the regret of FTL will indeed be O(

√
n) as wt will stay bounded, but

‖Θt‖ = O(1/
√
t)). As expected, AB(FTL,FTRL), gets the better of the two regrets with little to no

extra penalty.
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Figure 4: Regret of FTL, FTRL and AB(FTL,FTRL) against time for stochastic data.

5.2 “Half-Adversarial” Data

The half-adversarial data used in this experiment is the optimal solution for the adversary in the linear
game whenW is the unit ball (Abernethy et al., 2008). This data is generated as follows: The sequence
f̂t for t = 1, . . . , n is generated randomly in the (d− 1)-dimensional subspace S = span{e2, . . . , ed}
(here ei is the ith unit vector in Rd) as follows: f̂1 is drawn from the uniform distribution on the
unit sphere of S (actually Sd−1. For t = 2, . . . , n, f̂t is drawn from the uniform distribution on the
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unit sphere of the intersection of S and the hyperplane perpendicular to
∑t−1
i=1 f̂i and going through

the origin. Then, ft = Le1 +
√

1− L2f̂t for some L ≥ 0.
The results are reported in Fig. 5. When L = 0, the regret of both FTL and FTRL grows as

O(
√
n). When L = 0.1, FTL achieves O(logn) regret, while the regret of FTRL appears to be O(

√
n).

AB(FTL,FTRL) closely matches the regret of FTL.
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Figure 5: Experimental results for “half-adversarial” data.

5.3 Worst-Case Data

We also tested the algorithms on data where FTL is known to suffer linear regret, mainly to see how
well AB(FTL,FTRL) is able to deal with this setting. In this case, we set ft,i = 0 for all t and i ≥ 2,
while for the first coordinate, f1,1 = 0.9, and ft,1 = 2(t mod 2)− 1 for t ≥ 2.

The results are reported in Fig. 6. It can be seen that the regret of FTL is linear (as one can
easily verify theoretically), and AB(FTL,FTRL) succeeds to adapt to FTRL, and they both achieve
a much smaller O(

√
n) regret.

Figure 6: Experimental results for worst-case data.

5.4 The Unit Ball

We close this section by comparing the performance of our adaptive algorithms on the unit ball,
namely, FTL, FTSL, FTLR, and AB(FTL,FTRL). All these algorithms are parametrized as above.
The problem setup is similar to the stochastic data setting and the worst-case data setting. Again,
we consider a 4-dimensional setting, that is, W is the unit ball in R4 centered at the origin. The
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worst-case data is generated exactly as above, while the generation process of the stochastic data is
slightly modified to increase the difference between FTLR and FTL: we sample the i.i.d. vectors
f̂t from a zero-mean normal distribution with independent components whose variance is 1/16,
and let f̃t = f̂t if ‖f̂t‖2 ≤ 1 and f̃t = f̂t/

∥∥∥f̂t∥∥∥
2
when

∥∥∥f̂t∥∥∥
2
> 1 (i.e., we only normalize if f̂t falls

outside of the unit ball). The reason of this modification is to encourage the occurrence of the event
‖Ft−1‖2 <

√
t− 1. Recall that when ‖Ft−1‖2 ≥

√
t− 1, the prediction of FTRL matches that of

FTL, so we are trying to create some data where their behavior is actually different. As a result,
we will be able to observe that the predictions of FTL and FTRL are different in the early rounds.
Finally, as before, we let ft = f̃t + Le1, and set the time horizon to n = 20, 000.

The results of the simulation of the stochastic data setting are shown in Figure 7. In the case of
L = 0.1, FTRL suffers more regret at the beginning for some rounds, but then succeeds to match
the performance of FTL. The results of the simulation of the worst-case data setting are shown in
Figure 8, where FTSL has similar performance as FTRL.

Figure 7: Experimental results for stochastic data when W is the unit ball.

6. Conclusion
FTL is a simple method that is known to perform well in many settings, while existing worst-case
results fail to explain its good performance. While taking a thorough look at why and when FTL
can be expected to achieve small regret, we discovered that the curvature of the boundary of the
constraint and having average loss vectors bounded away from zero help keep the regret of FTL
small. These conditions are significantly different from previous conditions on the curvature of the
loss functions which have been considered extensively in the literature. It would be interesting to
further investigate this phenomenon for other algorithms or in other learning settings.
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Figure 8: Experimental results for worst-case data when W is the unit ball.
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Appendix A. Technical Results
A.1 Proof of Proposition 1

Under the extra condition that W is compact the result follows from Danskin’s theorem (e.g.,
Proposition B.25 of Bertsekas 1999). However, compactness is not required. For completeness, we
provide a short, direct proof. We need to show that Z = ∂ϕ(Θ) where recall that

∂ϕ(Θ) =
{
u ∈ Rd |ϕ(Θ) + 〈u, · −Θ〉 ≤ ϕ(·)

}
=
{
u ∈ Rd |ϕ(Θ) ≤ 〈u,Θ〉+ ϕ(·)− 〈u, ·〉

}
.

Since Z ⊂ W, if w ∈ Z, ϕ(Θ′) ≥ 〈w,Θ′〉 for any Θ′ by the definition of ϕ. Hence, ϕ(Θ) = 〈w,Θ〉 ≤
〈w,Θ〉+ ϕ(Θ′)− 〈w,Θ′〉 for any Θ′, implying that w ∈ ∂ϕ(Θ).

On the other hand, assume w ∈ ∂ϕ(Θ). Then ϕ(Θ) ≤ 〈w,Θ〉 since ϕ(0) = 〈w, 0〉 = 0. Since W is
closed, Z is also closed. Therefore, if w 6∈ Z, the strict separation theorem (applied to {w}, a convex
compact set, and Z, a convex closed set) implies that there exists ρ ∈ Rd such that 〈z, ρ〉 < 〈w, ρ〉 for all
z ∈ Z. Let Θ′ = Θ+ρ. Then, ϕ(Θ′) = maxu∈W〈u,Θ〉+〈u, ρ〉 < ϕ(Θ)+〈w,Θ′−Θ〉 ≤ 〈w,Θ′〉 ≤ ϕ(Θ′),
a contradiction. Hence, w ∈ Z.

A.2 Preliminaries in Differential Geometry

In this section we present some extra details on the tools we use from differential geometry. We
focus on providing the intuitive picture and foundational results used in the paper, omitting formal
definitions that do not directly contribute to this goal. The interested reader can find a detailed
formal treatment, for example, in Section 2.5 of the book of Schneider (2014).

A.2.1 Planar Curves

We only consider twice continuously differentiable curves in this paper, defined as injective twice
continuously differentiable functions γ : [a, b] → X from an interval [a, b] ⊂ R to a differentiable
manifold X ⊂ Rd such that γ′(u) 6= 0. Given a differentiable curve γ, we define its length between
γ(u) and γ(v) as `([u, v]) =

∫ v
u
‖γ′(s)‖ds for u, v ∈ [a, b]; throughout this section ‖ · ‖ denotes the
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Euclidean norm, and—with a slight abuse of notation—we will also use ` to denote the length of
a curve or an interval. Given a twice continuously differentiable bijective mapping r : [a, b] → J
(where J ⊂ R is an interval), γ can be reparametrized as a twice continuously differentiable function
from J to X, by γ̃(`) = γ(r−1(`)). In particular, when the mapping is r(u) = `([a, u]), that is, the
curve is reparametrized by the curve length, we have r−1(`([a, u])) = u and r′(u) = ‖γ′(u)‖ > 0.
Moreover, since ` = r(r−1(`)), we also have 1 = d r(r−1(`))

d ` = r′(u)d r
−1(`)
d ` where r(u) = `. Thus,

d r−1(`)
d ` = 1

r′(u) = 1
‖γ′(u)‖ , and so

‖γ̃′(`)‖ =
∥∥∥∥d γ(r−1(`))

d `

∥∥∥∥ =
∣∣∣∣d r−1(`)

d `

∣∣∣∣ ‖γ′(u)‖ = 1.

Thus, if the curve is parametrized by the its length, its gradient is always a unit vector. For the rest
of this section, we always assume this parametrization.

A planar curve is a curve in a 2-dimensional plane. Given a point γ(u) on the curve, one can
compute its tangent vector in the plane by γ′(u). Note that since γ is parametrized by its curve
length, γ′(u) is a unit vector. To measure how curved a planar curve is at point γ(u), we define its
curvature as

κ(γ(u)) =
∥∥∥∥d γ′(u)

d u

∥∥∥∥ = ‖γ′′(u)‖2.

Furthermore, since γ′(u) is a unit vector,

0 = d 1
d u

= d ‖γ′(u)‖2

d u
= d 〈γ′(u), γ′(u)〉

d u
= 2〈γ′(u), γ′′(u)〉,

thus γ′(u) is perpendicular to γ′′(u).

A.2.2 Manifolds, Tangent Plane, and Principal Curvature

A manifold M of dimension d is a Hausdorff topological space that is locally homeomorphic to Rd.
Given a convex body (a convex body is a compact, convex subset of Rd with non-empty interior)
W ⊂ Rd, its boundary is a manifold M = bd(W) of dimension d − 1. Assume that M is twice
continuously differentiable, and let ζ denote the standard embedding map from M to W.5 Now
let γ1, γ2 : [−1, 1] → M be two curves (not necessarily parametrized by curve length), such that
γ1(0) = γ2(0) = w. The two curves are equivalent at the point w if and only if their derivatives
are equal at the point u, that is, (ζ ◦ γ1)′(0) = (ζ ◦ γ2)′(0) and the tangent vector embedded in Rd
associated with this equivalence class is (ζ ◦ γ1)′(0). The set of all the tangent vectors form the
tangent space, denoted by TwM or TwW . One can verify that TwM is a d−1 dimensional hyperplane
in Rd. Note that this definition of tangent space is consistent with the ‘natural’ tangent plane in the
Euclidean space R3.6

Since TwM is a d − 1 dimensional hyperplane in Rd, there exists a unique vector that is
perpendicular to TwM , is of length 1 and points outward ofW (note that in this sense M = bd(W) is
oriented): this vector is called the Gauss vector at point w for W . The mapping uW : bd(W)→ Sd−1

that maps every w ∈ bd(W) to the corresponding Gauss vector is called the Gauss map. Since M is
twice continuously differentiable, the Gauss map uW is continuously differentiable. One can actually
show that ∇uW(w), the so-called Weingarten map, is a self-adjoint operator with nonnegative
eigenvalues, which can be represented as a (d − 1) × (d − 1) positive semidefinite matrix. The
eigenvalues of this matrix (or the self-adjoint operator) are called the principal curvatures of M at

5. A detailed discussion of manifolds including local charts and atlases can be found in Section 2.5 of the book of
Schneider (2014), together with a formal definition of differentiability. To build the intuition required to follow the
arguments in the paper it is sufficient to think of a manifold as the boundary of a convex body.

6. More generally, one can define the tangent space without embedding it to Rd, but, for simplicity, we only consider
here the definitions through the embedding ζ, which is always possible and allows to perform calculations in Rd.
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point w. Intuitively, how fast the Gauss map uW changes characterizes the curvature of the manifold
M . An interesting property of the operator ∇uW(w) is that it maps TwM to itself: for any unit
vector v ∈ TwM , 0 = limε→0

∂1
∂ε = limε→0

∂‖uW(w+εv)‖2
2

∂ε = 2 limε→0〈∇uW(w + εv)v, uW(w + εv)〉 =
2〈∇uW(w)v, uW(w)〉 , thus ∇uW(w)v is perpendicular to uW(w), thus belongs to TwM .

A.3 Technical Proofs Related to Strongly Convex Sets and Principal Curvatures

Proof of Proposition 4 We show that (i) implies (ii), (ii) implies (iii), and (iii) implies (i). We
start with showing that (i) implies (ii). First note that all principal curvatures of the d-dimensional
ball B = B1/λ with radius 1/λ (centered at the origin) are λ. Therefore, (i) and Theorem 3.2.9
of Schneider (2014) implies that there is a convex body M such that W +M = B, where for
two sets, S1, S2 ⊂ Rd, S1 + S2 is defined as {s1 + s2 | s1 ∈ S1, s2 ∈ S2}. For any θ ∈ Sd−1, let
mθ ∈ argmaxm∈M〈m, θ〉. Then clearly wθ +mθ maximizes 〈b, θ〉 for b ∈ W +M. Therefore, W +mθ

is a subset of B and touches it at wθ +mθ, or equivalently W ⊂ B −mθ and they touch each other,
and a tangent hyperplane with normal vector θ, in wθ. This proves that (i) implies (ii).

Next we prove that (ii) implies (iii). Assuming (ii) holds, let w ∈ W be any point in the interior
of W, and let p ∈ bd(W) be the closest boundary point to w, and recall that TpW is the tangent
space of W at p. By construction, B‖w−p‖2(w) touches the boundary of W at p (in the sense that
they do not intersect, but they can have multiple common points), and so w − p is orthogonal to
TpW. Therefore, B‖w−p‖2(w) also touches the boundary of the ball B = B1/λ(p+ w−p

λ‖w−p‖2
), which

contains W by assumption (ii). Now consider any two points x, y ∈ W and γ ∈ [0, 1] such that
w = γx+ (1− γ)y. Then the ball with radius λγ(1− γ)‖x− y‖22/2 centered at w is contained in B,
since B is λ-strongly convex. But then its radius is at most ‖p− w‖2, and so it is also contained in
W. This shows that W is λ-strongly convex, thus (iii) holds.

uW(w)

vw

f (s)

p = w + sv − f (s)uW(w)

sv
P

= (s, f (s))

Figure 9: The local coordinate sys-
tem at w.

To finish the proof of the proposition, assume (iii).
To prove that (i) holds, we have to show that for any
point w on bd(W) and for any unit vector v ∈ TwW, the
curvature of the boundary along v is at least λ. Using
the same notations as in Fig. 2 in Section 3.1, let P be
the hyperplane spanned by v and the outer normal vector
uW(w) of W at point w, and consider the planar curve
γ defined by bd(W) ∩ P . Using v as the axis of a local
2-dimensional coordinate system, a point γ(s) on the curve
γ in the neighborhood of w can be expressed as γ(s) =
w + sv − f(s)uW(w), where w serves as the origin in the
local coordinate system, f is the restriction of the function
fw(sv) (see Section 3.1) to P (to simplify the notation, we
denote it by f(s), omitting v and w), and the curve γ is
the epigraph of the function f , as in Fig. 9.

Note that f ′(0) = 0, and by Proposition 2.1 of Pressley
(2010), the curvature of γ at p can be obtained as

f ′′(s)√
1 + f ′(s)23

∣∣∣∣∣
s=0

= f ′′(0) .

Now since w(s), w(−s) ∈ W for a sufficiently small s, the strong convexity of W applied to w(s)
and w(−s) with γ = 1/2 implies that q = w(s)+w(−s)

2 + λ
8 ‖w(s)− w(−s)‖22u ∈ W. Substituting the

definition of w(s) and w(−s), we get

q = p− u
[
f(s) + f(−s)

2 − λ

8

(
4s2 + (f(s)− f(−s))2

)]
.
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Therefore, q ∈ W implies f(s) + f(−s) ≥ λs2, and so

f ′′(0) = lim
s→0

f(s)−f(0)
s − f(0)−f(−s)

s

s
= f(s) + f(−s)

s2 ≥ λ.

Thus (i) holds, finishing the proof of the proposition.

Proof of a weakened variant of (6) based on strong convexity
Given θ1 and θ2, for any 0 < γ < 1, define θγ = γθ1 + (1− γ)θ2 and

wγ = γw(1) + (1− γ)w(2) + λ0

2 γ(1− γ)‖w(1) − w(2)‖22
θγ
‖θγ‖2

.

By the strong convexity of W, wγ ∈ W, and so by the definition and convexity of the support
function Φ, we have

〈wγ , θγ〉 ≤ Φ(θγ) ≤ γΦ(θ1) + (1− γ)Φ(θ2) = γ〈w(1), θ1〉+ (1− γ)〈w(2), θ2〉.

Plugging in the definitions of wγ and θγ , and applying the Cauchy-Schwarz inequality, we obtain

λ0

2 γ(1− γ)‖w(1)−w(2)‖22‖θγ‖2 ≤ γ(1− γ)〈θ1− θ2, w
(1)−w(2)〉 ≤ γ(1− γ)‖θ1− θ2‖2‖w(1)−w(2)‖2 .

Rearranging and letting γ → 0 implies

‖w(1) − w(2)‖2 ≤
2
λ0

‖θ1 − θ2‖2
‖θ2‖2

.

Finally, the definition of w(2) and the Cauchy-Schwarz inequality yields

〈w(1) − w(2), θ1〉 ≤ 〈w(1) − w(2), θ1〉+ 〈w(2) − w(1), θ2〉︸ ︷︷ ︸
≥0

= 〈w(1) − w(2), θ1 − θ2〉

≤ ‖w(1) − w(2)‖2‖θ1 − θ2‖2 ≤
2
λ0

‖θ1 − θ2‖22
‖θ2‖2

, (24)

finishing the proof.

Proof of Example 1 We start with proving the last statement, part (iv), which implies the rest. Fix
w ∈ bd(W). Note that φ′(w) is a normal vector at w for bd(W), thus TwW = {v : 〈v, φ′(w)〉}. Then
the Gauss map uW of W satisfies uW(w) = φ′(w)

‖φ′(w)‖2
for w ∈ bd(W). According to Schneider (2014,

page 105), the principal curvatures of W at w are the eigenvalues of the Weingarten map Ww(v),
which is a linear map from TwW to itself defined through the derivative of uW : Ww(v) = 〈duWdw , v〉.
In our case,

Ww(v) =
〈
duW
dw

, v

〉
= ∇

2φ(w)v
‖φ′(w)‖2

− φ′(w)∇2φ(w)φ′(w)>v
‖φ′(w)‖32

= ∇
2φ(w)v
‖φ′(w)‖2

,

where in the last step we used that φ′(w) is orthogonal to the tangent space TwW (since it is parallel
to the normal vector uW(w)), and v ∈ TwW. Therefore, the smallest principal curvature at w is the
smallest eigenvalue minv∈Sd−1:〈φ′(w),v〉=0

v>∇2φ(w)v
‖φ′(w)‖2

. Taking minimum over all w ∈ bd(W) finishes
the proof.

Now part (ii) follows for φ(w) = w>Qw, as we need to minimize v>Qv/‖w>Q‖2. It is easy to
see that the denominator is maximized when w ∈ bd(W) is an eigenvector of Q corresponding to

27



Huang, Lattimore, György, and Szepesvári

λmax (with length 1/
√
λmax), and the numerator is minimized (for arbitrary v ∈ Sd−1) when v is an

eigenvector of Q corresponding to λmin. Since the two eigenvectors, w and v are orthogonal (or can
be chosen to be orthogonal if they are not unique), v is orthogonal to φ′(w) = Qw = λmaxw, and
hence it is a valid minimizer. This completes the proof of part (ii), and part (i) follows as a special
case.

Part (iii) follows similarly: Due to symmetry, it is enough to consider w in the nonnegative quadrant

(i.e., wi ≥ 0 for all i). Calculating the first and second derivatives of φ(w) = ‖w‖p =
(∑d

i=1 w
p
i

)1/p
,

for any w ∈ bd(W) (i.e., ‖w‖p = 1), we obtain

φ′(w) =
(

d∑
i=1

wpi

)1/p−1

w�(p−1) = w�(p−1) and ∇2φ(w) = (p− 1) diag
(
wp−2

1 , · · · , wp−2
d

)
.

When p > 2, picking w = (1, 0, 0, · · · , 0), one can easily verify that λ0 = 0. For 1 < p ≤ 2,
|wi|p−2 ≥ 1 since |wi| ≤ 1 by the assumption that ‖w‖p = 1. Thus, the minimum eigenvalue of
diag

(
wp−2

1 , · · · , wp−2
d

)
is at least 1, and so λ0 ≥ (p−1)/‖w�(p−1)‖2 since v> diag

(
wp−2

1 , · · · , wp−2
d

)
v ≥

1. Defining q via 1/p+ 1/q = 1, for any w ∈ bd(W) (i.e., with ‖wp‖ = 1), Hölder’s inequality implies

‖w�(p−1)‖2 ≤ d
1
2−

1
q ‖w�(p−1)‖q = d

1
2−

1
q

(
d∑
i=1

w
(p−1)q
i

) 1
q

= d
1
2−

1
q

(
d∑
i=1

wpi

) 1
q

= d
1
2−

1
q = d

1
p−

1
2 .

Thus, λ0 ≥ (p− 1)d
1
2−

1
p , as desired.

A.4 Technical Lemmas for the Lower Bound, Theorem 9

Lemma 17 Under the assumptions of Theorem 9, for any 0 < P1, P2 < 1,

〈
wP2 − wP1 , fP1

〉
≥ λL

2

( 2P2−2P1
λL

)2√
1 +

( 1−2P1
λL

)2 (1 +
( 1−2P2

λL

)2) .

Proof It is easy to see that for any p, wp is on the boundary ofW , that is, wp = argminw∈W 〈w, fp〉 =
(cos(ϕp), λ sin(ϕp)) for some ϕp. Then 〈wp, fp〉 = (2p− 1) cos(ϕp)− λL sin(ϕp), and so taking the
derivative it is easy to verify that tan(ϕp) = λL

1−2p and sin(ϕp) = λL√
(λL)2+(1−2p)2

> 0. Thus,

1− 2P1 = λL cos(ϕP1 )
sin(ϕP1 ) . To simplify notation, let ϕ1 = ϕP1 and ϕ2 = ϕP2 . Then,

〈wP2 − wP1 , fP1〉 =
〈(

cosϕ2 − cosϕ1
λ (sinϕ2 − sinϕ1)

)
,

( −λL cosϕ1
sinϕ1

−L

)〉
= −λL

(
(cos(ϕ2)− cos(ϕ1)) cos(ϕ1)

sin(ϕ1) + (sin(ϕ2)− sin(ϕ1))
)

= −λL
sin(ϕ1)

(
cos(ϕ2) cos(ϕ1)− cos2(ϕ1) + sin(ϕ1) sin(ϕ2)− sin2(ϕ1)

)
= λL

sin(ϕ1) (1− cos(ϕ2) cos(ϕ1)− sin(ϕ1) sin(ϕ2))

= λL

sin(ϕ1) (1− cos(ϕ1 − ϕ2))

= λL

sin(ϕ1)

(
1
2 (cos(ϕ1 − ϕ2)− 1)2 + 1

2 sin2(ϕ1 − ϕ2)
)
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≥ λL

2 sin(ϕ1) sin2(ϕ1 − ϕ2)

= λL

2 sin(ϕ1) sin2 ϕ2 (cot(ϕ1)− cot(ϕ2))2
.

The proof is finished by substituting cot(ϕi) = 1−2Pi
λL , sin(ϕ1) = 1√

1+( 1−2P1
λL )2

and sin2(ϕ2) =

1
1+( 1−2P2

λL )2 .

Lemma 18 (Concentration of P̂t) For any u > 0,

P
[
|P̂t − P | >

K

2K + t
|1− 2P |+ t

2K + t
u

∣∣∣∣P] ≤ 2 exp(−tu2) .

Proof Recall that P̂t = K+
∑t

i=1
Xi

2K+t . Thus,

P
[
|P̂t − P | > u

∣∣∣P] = P

[∣∣∣∣∣K +
∑t
i=1Xi

2K + t
− P

∣∣∣∣∣ > K

2K + t
|1− 2P |+ t

2K + t
u

∣∣∣∣∣P
]

= P

[∣∣∣∣∣
t∑
i=1

Xi − Pt+K(1− 2P )

∣∣∣∣∣ > K|1− 2P |+ tu

∣∣∣∣∣P
]

≤ P

[∣∣∣∣∣
t∑
i=1

Xi − Pt

∣∣∣∣∣ > tu

∣∣∣∣∣P
]
, (25)

where the last inequality is due to P [|A+ b| > c] ≤ P [|A| > c− |b|]. Note that conditioned on P ,
X1, . . . , Xt are independent Bernoulli random variables with expectation P , thus (25) holds by
Hoeffding’s inequality (see, e.g., (Cesa-Bianchi and Lugosi, 2006, Corollary A.1)).

Lemma 19
E
[

(P − P̂t)2
∣∣∣P] = K2(1− 2P )2

(2K + t)2 + tP (1− P )
(2K + t)2 .

Proof Recall that P̂t = K+
∑t

i=1
Xi

2K+t .Thus,

E
[

(P − P̂t)2
∣∣∣P] = E

(K(1− 2P )
2K + t

+
∑t
i=1Xi − Pt
2K + t

)2
∣∣∣∣∣∣P


= K2(1− 2P )2

(2K + t)2 + 1
(2K + t)2E

( t∑
i=1

Xi − tP

)2
∣∣∣∣∣∣P


= K2(1− 2P )2

(2K + t)2 + tP (1− P )
(2K + t)2 ,

where the second equality is due to E
[∑t

i=1Xi − Pt
∣∣∣P] = 0, and the last equality is due to that

conditioned on P ,
∑t
i=1Xi has a Binomial distribution with parameters t and P .
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