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Abstract
The use of convex regularizers allows for easy optimization, though they often produce biased
estimation and inferior prediction performance. Recently, nonconvex regularizers have attracted
a lot of attention and outperformed convex ones. However, the resultant optimization problem
is much harder. In this paper, a popular subclass of `1-based nonconvex sparsity-inducing
and low-rank regularizers is considered. This includes nonconvex variants of lasso, sparse
group lasso, tree-structured lasso, nuclear norm and total variation regularizers. We propose
to move the nonconvexity from the regularizer to the loss. The nonconvex regularizer is then
transformed to a familiar convex one, while the resultant loss function can still be guaranteed
to be smooth. Learning with the convexified regularizer can be performed by existing efficient
algorithms originally designed for convex regularizers (such as the proximal algorithm, Frank-
Wolfe algorithm, alternating direction method of multipliers and stochastic gradient descent). This
is further extended to consider cases where the convexified regularizer does not have a closed-form
proximal step, and when the loss function is nonconvex nonsmooth. Extensive experiments on a
variety of machine learning application scenarios show that optimizing the transformed problem is
much faster than running the state-of-the-art on the original problem.
Keywords: Nonconvex optimization, Nonconvex regularization, Proximal algorithm, Frank-
Wolfe algorithm, Matrix completion

1. Introduction

Regularized risk minimization is fundamental to machine learning. It admits a tradeoff between the
empirical loss and regularization as:

min
x
F (x) ≡ f(x) + g(x), (1)

where x is the model parameter, f is the loss and g is the regularizer. The choice of regularizers
is important and application-specific, and is often the crux to obtain good prediction performance.
Popular examples include the sparsity-inducing regularizers, which have been commonly used in
image processing (Beck and Teboulle, 2009; Mairal et al., 2009; Jenatton et al., 2011) and high-
dimensional feature selection (Tibshirani et al., 2005; Jacob et al., 2009; Liu and Ye, 2010); and
the low-rank regularizers, which have obtained good empirical performance on various matrix and
tensor learning tasks such as collaborative filtering (Candès and Recht, 2009; Mazumder et al.,
2010) and visual data analysis (Liu et al., 2013; Lu et al., 2014).
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Most of these regularizers are convex. Well-known examples include the `1-regularizer for
sparse coding (Donoho, 2006), and the nuclear norm regularizer in low-rank matrix learning
(Candès and Recht, 2009). Besides having nice theoretical guarantees, convex regularizers also
allow easy optimization. Popular optimization algorithms in machine learning include the proximal
algorithm (Parikh and Boyd, 2013), Frank-Wolfe (FW) algorithm (Jaggi, 2013), alternating
direction method of multipliers (ADMM) (Boyd et al., 2011), stochastic gradient descent (SGD)
and its variants (Bottou, 1998; Xiao and Zhang, 2014). Many of these are efficient, scalable, and
have sound convergence properties.

However, convex regularizers often lead to biased estimation. For example, in sparse coding, the
solution obtained by the `1-regularizer is often not as sparse and accurate (Zhang, 2010b). In low-
rank matrix learning, the estimated rank obtained with the nuclear norm regularizer is often much
higher (Mazumder et al., 2010). To alleviate this problem, a number of nonconvex regularizers,
which are variants of the convex `1-norm, have been recently proposed. Examples include the
Geman penalty (GP) (Geman and Yang, 1995), log-sum penalty (LSP) (Candès et al., 2008),
minimax concave plus (MCP) penalty (Zhang, 2010a), Laplace penalty (Trzasko and Manduca,
2009), and smoothly clipped absolute deviation (SCAD) penalty (Fan and Li, 2001). As can be
seen from Figure 1, they are all (i) nonsmooth at zero, which encourage a sparse solution; and (ii)
concave, which place a smaller penalty than the `1-regularizer on features with large magnitudes.
Empirically, these nonconvex regularizers usually outperform convex regularizers.

Figure 1: Plot of various nonconvex variants of the convex `1-regularizer.

In this paper, we consider a popular subclass of `1-based nonconvex sparsity-inducing and low-
rank regularizers such as nonconvex variants of the lasso, sparse group lasso, tree-structured lasso,
nuclear norm and total variation regularizers. Even with a convex loss, the resulting nonconvex
problem (1) is much harder to optimize. One can use general-purpose nonconvex optimization
solvers such as the concave-convex procedure (Yuille and Rangarajan, 2002). Unfortunately, the
subproblem in each iteration can be as expensive as the original problem, and the concave-convex
procedure is thus often slow in practice (Gong et al., 2013; Zhong and Kwok, 2014).

Recently, the proximal algorithm has been extended for nonconvex problems. Examples
include nonconvex inexact proximal splitting (NIPS) (Sra, 2012), inertial proximal algorithm for
non-convex optimization (IPiano) (Ochs et al., 2014), unified treatment of accelerated gradient
(UAG) (Ghadimi and Lan, 2016), general iterative shrinkage and thresholding (GIST) (Gong et al.,
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2013), inertial forward-backward (IFB) algorithm (Bot et al., 2016), and nonmonotone accelerated
proximal gradient (nmAPG) (Li and Lin, 2015) algorithm. Specifically, NIPS, IPiano and UAG
allow f in (1) to be Lipschitz smooth (and possibly nonconvex) but g has to be convex; while
GIST, IFB and nmAPG further allow g to be nonconvex. The current state-of-the-art is nmAPG.
Nevertheless, efficient computation of the underlying proximal operator is only possible for simple
nonconvex regularizers. When the regularizer is complicated, such as the nonconvex versions of the
fused lasso and overlapping group lasso regularizers (Zhong and Kwok, 2014), the corresponding
proximal step has to be solved numerically and is again expensive. Another approach is by using
the proximal average (Zhong and Kwok, 2014), which computes and averages the proximal step of
each underlying regularizer. As the proximal step is only approximate, its convergence is usually
slower than typical applications of the proximal algorithm (Yu, 2013; Li and Lin, 2015).

When f is smooth, there are endeavors to extend other algorithms from convex to nonconvex
optimization. For the global consensus problem, standard ADMM converges only when g is convex
(Hong et al., 2016). When g is nonconvex, convergence of ADMM is only established for problems
of the form minx,y f(x) + g(y) : y = Ax, where matrix A has full row rank (Li and Pong, 2015).
The convergence of ADMM in more general cases is an open issue. More recently, the stochastic
variance reduced gradient (SVRG) algorithm (Xiao and Zhang, 2014), which is a SGD variant with
reduced variance in the gradient estimates, has also been extended for problems with nonconvex f ,
but the regularizer g is still required to be convex (Reddi et al., 2016a; Zhu and Hazan, 2016).

Sometimes, it is desirable to have a nonsmooth loss f . For example, the absolute loss is more
robust to outliers than the square loss, and has been popularly used in applications such as image
denoising (Yan, 2013), robust dictionary learning (Zhao et al., 2011) and robust PCA (Candès et al.,
2011). The resulting optimization problem becomes more challenging. When both f and g are
convex, ADMM is often the main optimization tool for problem (1) (He and Yuan, 2012). However,
when either f or g is nonconvex, ADMM no longer guarantees convergence. Besides, the loss f may
also be nonconvex as this is more robust to outliers and can obtain better performance (e,g., `0-norm
(Yan, 2013) and capped-`1 norm (Sun et al., 2013)). However, when f is nonsmooth and nonconvex,
none of the above-mentioned algorithms (i.e., proximal algorithms, FW algorithms, ADMM, and
SVRG) can be used. As a last resort, one can use more general nonconvex optimization approaches
such as convex concave programming (CCCP) (Yuille and Rangarajan, 2002), which is slow in
general.

In this paper, we first consider the case where the loss function f is smooth (possibly nonconvex)
and the regularizer g is nonconvex. We propose to handle nonconvex regularizers by reusing
the abundant repository of efficient convex algorithms originally designed for convex regularizers.
Motivated by the fact that recent proximal algorithms (Gong et al., 2013; Li and Lin, 2015; Zhong
and Kwok, 2014) all rely on the smoothness of f and a simple closed-form proximal step for g,
the key is to shift nonconvexity associated with the nonconvex regularizer to the loss function. The
nonconvex regularizer is then transformed to a familiar convex regularizer, while the transformed
loss function is still smooth. To illustrate the practical usefulness of this convexification scheme, we
show how it can be used with popular optimization algorithms in machine learning. For example,
for the proximal algorithm, the resultant proximal step can be much easier after transformation.
Specifically, for the nonconvex tree-structured lasso and nonconvex sparse group lasso, we show
that the corresponding proximal steps have closed-form solutions on the transformed problems, but
not on the original ones. For the nonconvex total variation problem, though there is no closed-form
solution for the proximal step before and after the transformation, we show that the proximal step

3



YAO AND KWOK

is still cheaper and easier for optimization after the transformation. To allow further speedup, we
propose a proximal algorithm variant that allows the use of inexact proximal steps with convex
g when it has no closed-form proximal step solution. For the FW algorithm, we consider its
application to nonconvex low-rank matrix learning problems, and propose a variant with guaranteed
convergence to a critical point of the nonconvex problem. For SVRG in stochastic optimization and
ADMM in consensus optimization, we show that these algorithms have convergence guarantees on
the transformed problems but not on the original ones.

We further consider the case where f is both nonconvex and nonsmooth (and g is nonconvex).
We demonstrate that problem (1) can be similarly transformed to an equivalent problem with
a smooth loss and convex regularizer. However, as the proximal step with the transformed
regularizer has to be solved numerically and exact proximal step is required, usage with the proximal
algorithm may not be efficient. We show that this can be alleviated by the proposed inexact
proximal algorithm. Finally, in the experiments, we demonstrate the above-mentioned advantages
of optimizing the transformed problems instead of the original ones on various tasks, and show that
running algorithms on the transformed problems can be much faster than running the state-of-the-art
on the original problems.

The rest of the paper is organized as follows. Section 2 provides a review on the related works.
The main idea for problem transformation is presented in Section 3, and its usage with various
algorithms are discussed in Section 4. Experimental results are shown in Section 5, and the last
section gives some concluding remarks. All the proofs are in Appendix A. Note that this paper
extends a shorter version published in the International Conference of Machine Learning (Yao and
Kwok, 2016).

Notation: We denote vectors and matrices by lowercase and uppercase boldface letters, respectively.
For a vector x ∈ Rd, ‖x‖2 = (

∑d
i=1 |xi|2)1/2 is its `2-norm, Diag(x) returns a diagonal matrix

X ∈ Rd×d with Xii = xi. For a matrix X ∈ Rm×n (where m ≤ n without loss of generality),
its nuclear norm is ‖X‖∗ =

∑m
i=1 σi(X), where σi(X)’s are the singular values of X , and its

Frobenius norm is ‖X‖F =
√∑m

i=1

∑n
j=1X

2
ij , and ‖X‖∞ = maxi,j |Xij |. For a square matrix

X , X ∈ S+ indicates it is positive semidefinite. For two matrices X and Y , 〈X,Y 〉 =
∑

i,j XijYij .
For a smooth function f , ∇f(x) is its gradient at x. For a convex but nonsmooth f , ∂f(x) = {u :
f(y) ≥ f(x) + 〈u, y − x〉} is its subdifferential at x, and g ∈ ∂f(x) is a subgradient.

Given a function (e.g., f ), a bar on top (e.g., f̄ ) indicates the function is smooth but not necessarily
convex, and a breve on top (e.g., f̆ ) means that it is convex but not necessarily smooth.

2. Related Works

In this section, we review some popular algorithms for solving (1). Here, f is assumed to be
Lipschitz smooth.

2.1 Convex-Concave Procedure (CCCP)

The convex-concave procedure (CCCP) (Yuille and Rangarajan, 2002; Lu, 2012) is a popular and
general solver for (1). It assumes thatF can be decomposed as a difference of convex (DC) functions
(Hiriart-Urruty, 1985), i.e., F (x) = F̆ (x) + F̂ (x) where F̆ is convex and F̂ is concave. In each
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CCCP iteration, F̂ is linearized at xt, and xt+1 is generated as

xt+1 = arg min
x
F̆ (x) + F̂ (xt)− (x− xt)>st, (2)

where st ∈ ∂(−F̂ (xt)) is a subgradient. This is a convex problem and can be easier than directly
minimizing F .

However, CCCP is expensive as (2) needs to be exactly solved. Sequential convex programming
(SCP) (Lu, 2012) improves its efficiency when F is of the form in (1). It assumes that f is L-
Lipschitz smooth (possibly nonconvex); while g can be nonconvex, but admits a DC decomposition
as g(x) = ς̆(x) + ς̂(x) where ς̆ is convex and ς̂ is concave. It then generates xt+1 as

xt+1 = arg min
x
f(xt) + (x− xt)>∇f(xt) +

L

2
‖x− xt‖22 + ς̆(x) + ς̂(xt)− (x− xt)>st

= arg min
x

1

2
‖x− xt − st +

1

L
∇f(xt)‖22 + ς̆(x), (3)

where st ∈ ∂ (−ς̂(xt)). When ς̆ is a simple function, (3) has a closed-form solution, and SCP can
be faster than CCCP. For example, when ς̆(x) = ‖x‖1, (3) is the proximal step of the `1-norm and
has a closed-form solution (Tibshirani, 1996). However, convergence of SCP is still slow in general
(Gong et al., 2013; Zhong and Kwok, 2014; Li and Lin, 2015).

2.2 Proximal Algorithm

The proximal algorithm (Parikh and Boyd, 2013) has been popularly used for optimization problems
of the form in (1). Let f be convex and L-Lipschitz smooth, and g is convex. The proximal
algorithm generates iterates {xt} as

xt+1 = arg min
x
f(xt) + (x− xt)>∇f(xt) +

L

2
‖x− xt‖22 + g(x)

= prox 1
L
g

(
xt −

1

L
∇f(xt)

)
,

where proxg(z) ≡ arg minx
1
2‖x − z‖22 + g(x) is the proximal step, The proximal algorithm

converges at a rate of O(1/T ). This can be further accelerated to O(1/T 2) by modifying the
generation of {xt} as (Beck, 2009; Nesterov, 2013):

yt = xt +
αt−1 − 1

αt
(xt − xt−1),

xt+1 = prox 1
L
g

(
yt −

1

L
∇f(yt)

)
,

where α0 = α1 = 1 and αt+1 = 1
2(
√

4α2
t + 1 + 1).

Recently, the proximal algorithm has been extended to nonconvex optimization. In particular,
NIPS (Sra, 2012), IPiano (Ochs et al., 2014) and UAG (Ghadimi and Lan, 2016) allow f to be
nonconvex, while g is still required to be convex. GIST (Gong et al., 2013), IFB (Bot et al.,
2016) and nmAPG (Li and Lin, 2015) further remove this restriction and allow g to be nonconvex.
It is desirable that the proximal step has a closed-form solution. This is true for many convex
regularizers such as the lasso regularier (Tibshirani, 1996), tree-structured lasso regularizer (Liu and
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Ye, 2010; Jenatton et al., 2011) and sparse group lasso regularizer (Jacob et al., 2009). However,
when g is nonconvex, a closed-form solution only exists when g is simple (e.g., nonconvex lasso
regularizer (Gong et al., 2013)), but not for the more general cases (e.g., nonconvex tree-structured
lasso regularizer (Zhong and Kwok, 2014)).

On the other hand, Zhong and Kwok (2014) used the proximal average (Bauschke et al., 2008)
to handle complicated g’s of the form g(x) =

∑K
i=1 µigi(x), where each gi has a simple proximal

step. The iterates are generated as

xt+1 =
K∑
i=1

µi · proxµi
L
gi

(
xt −

1

L
∇f(xt)

)
/

K∑
i=1

µi.

Each of the constituent proximal steps proxµi
L
gi

(·) can be computed inexpensively, and the per-
iteration complexity is low. However, it only approximates proxg(z) and consequently also the
original problem (1). Empirically, its convergence can be slow.

2.3 Frank-Wolfe (FW) Algorithm

The FW algorithm (Frank and Wolfe, 1956) is used for solving optimization problems of the form

min
x
f(x) : x ∈ C, (4)

where f is Lipschitz-smooth and convex, and C is a compact convex set. Recently, it has been
popularly used in machine learning (Jaggi, 2013). In each iteration, the FW algorithm generates the
next iterate xt+1 as

st = arg min
s∈C

s>∇f(xt), (5)

γt = arg min
γ∈[0,1]

f((1− γ)xt + γst), (6)

xt+1 = (1− γt)xt + γtst. (7)

Here, (5) is a linear subproblem which can often be easily solved; (6) performs line search, and the
next iterate xt+1 is generated from a convex combination of xt and st in (7). The FW algorithm has
a convergence rate of O(1/T ) (Jaggi, 2013).

In this paper, we will focus on using the FW algorithm to learn a low-rank matrix X ∈ Rm×n.
Without loss of generality, we assume that m ≤ n. The nuclear norm ‖X‖∗ of X is the tightest
convex envelope of rank(X), and is often used as a low-rank regularizer (Candès and Recht, 2009).
The low-rank matrix learning problem can be written as

min
X

f(X) + µ‖X‖∗, (8)

where f is the loss. For example, in matrix completion (Candès and Recht, 2009),

f(X) =
1

2
‖PΩ(X −O)‖2F , (9)

where O is the observed incomplete matrix, Ω ∈ {0, 1}m×n contains indices to the observed entries
in O, and [PΩ(A)]ij = Aij if Ωij = 1, and 0 otherwise.
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The FW algorithm for this nuclear norm regularized problem is shown in Algorithm 1 (Zhang
et al., 2012). Let the iterate at the tth iteration be Xt. As in (5), the following linear subproblem has
to be solved (Jaggi, 2013):

min
S:‖S‖∗≤1

〈S,∇f(Xt)〉. (10)

This can be obtained from the rank-one SVD of ∇f(Xt) (step 3). Similar to (6), line search is
performed at step 4. As a rank-one matrix is added intoXt in each iteration, it is convenient to write
Xt as

t∑
i=1

uiv
>
i = UtV

>
t , (11)

where Ut = [u1, . . . , ut] and Vt = [v1, . . . , vt]. The FW algorithm has a convergence rate of
O(1/T ) (Jaggi, 2013). To make it empirically faster, Algorithm 1 also performs optimization at
step 6 (Laue, 2012; Zhang et al., 2012). Substituting ‖X‖∗ = minX=UV >

1
2

(
‖U‖2F + ‖V ‖2F

)
(Srebro et al., 2004) into (8), we have the following local optimization problem:

min
U,V

f(UV >) +
µ

2
(‖U‖2F + ‖V ‖2F ). (12)

This can be solved by standard solvers such as L-BFGS (Nocedal and Wright, 2006).

Algorithm 1 Frank-Wolfe algorithm for problem (8) with f convex (Zhang et al., 2012).
1: U1 = [ ] and V1 = [ ];
2: for t = 1 . . . T do
3: [ut, st, vt] = rank1SVD(∇f(Xt));
4: [αt, βt] = arg minα≥0,β≥0 f(αXt + βutv

>
t ) + µ(α‖Xt‖∗ + β);

5: Ūt =
[√
αtUt;

√
βtut

]
and V̄t =

[√
αtVt;

√
βtvt

]
;

6: obtain [Ut+1, Vt+1] from (12), using Ūt and V̄t for warm-start; // Xt+1 = Ut+1V
>
t+1

7: end for
8: return UT+1 and VT+1.

2.4 Alternating Direction Method of Multipliers (ADMM)

ADMM is a simple but powerful algorithm first introduced in the 1970s (Glowinski and Marroco,
1975). Recently, it has been popularly used in diverse fields such as machine learning, data mining
and image processing (Boyd et al., 2011). It can be used to solve optimization problems of the form

min
x,y

f(x) + g(y) : Ax+By = c, (13)

where f, g are convex functions, and A,B (resp. c) are constant matrices (resp. vector) of
appropriate sizes. Consider the augmented Lagrangian L(x, y, u) = f(x) + g(y) + u>(Ax +
By − c) + τ

2‖Ax + By − c‖22, where u is the vector of Lagrangian multipliers, and τ > 0 is a
penalty parameter. At the tth iteration of ADMM, the values of x, y and u are updated as

xt+1 = arg min
x
L(x, yt, ut), (14)

yt+1 = arg min
y
L(xt+1, y, ut), (15)

ut+1 = ut + τ(Axt+1 +Byt+1 − c). (16)
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By minimizing L(x, y, uk) w.r.t. x and y in an alternating manner ((14) and (15)), ADMM can more
easily decompose the optimization problem when f, g are separable.

In this paper, we will focus a special case of (13), namely, the consensus optimization problem:

min
y,x1,...,xM

M∑
i=1

fi(x
i) + g(y) : x1 = · · · = xM = y. (17)

Here, each fi is Lipschitz-smooth, xi is the variable in the local objective fi, and y is the global
consensus variable. This type of problems is often encountered in machine learning, signal
processing and wireless communication (Bertsekas and Tsitsiklis, 1989; Boyd et al., 2011). For
example, in regularized risk minimization, y is the model parameter, fi is the regularized risk
functional defined on the ith data subset, and g is the regularizer. The augmented Lagrangian for
(17) is

L(y, x1, . . . , xM , u1, . . . , uM ) = g(y) +

M∑
i=1

fi
(
xi
)

+ (ui)>(xi − y) +
τ

2
‖xi − y‖22,

where ui is the dual variable for the constraint xi = y. Substituting into (14)-(16), we have

xit+1 = arg min
xi

fi(x
i) + (uit)

>(xi − yt) +
τ

2
‖xi − yt‖22, i = 1, . . . ,M, (18)

yt+1 = arg min
y

1

2

∥∥∥∥∥y −
M∑
i=1

(
xit +

1

τ
uit

)∥∥∥∥∥
2

2

+
1

τ
g(y) = prox 1

τ
g

(
M∑
i=1

xit +
1

τ
uit

)
, (19)

ut+1 = ut + τ
(
xit+1 + yt+1

)
, i = 1, . . . ,M.

When fi is smooth and g is convex, ADMM converges to a critical point of (17) (Hong et al., 2016).
However, when g is nonconvex, its convergence is still an open issue.

3. Shifting Nonconvexity from Regularizer to Loss

In recent years, a number of nonconvex regularizers have been proposed. Examples include the
Geman penalty (GP) (Geman and Yang, 1995), log-sum penalty (LSP) (Candès et al., 2008) and
Laplace penalty (Trzasko and Manduca, 2009). In general, learning with nonconvex regularizers is
much more difficult than learning with convex regularizers. In this section, we show how to move
the nonconvex component from the nonconvex regularizers to the loss function. Existing algorithms
can then be reused to learn with the convexified regularizers.

First, we make the following standard assumptions on (1).

A1. F is bounded from below and lim‖x‖2→∞ F (x) =∞;

A2. f is L-Lipschitz smooth (i.e., ‖∇f(x)−∇f(y)‖2 ≤ L‖x− y‖2), but possibly nonconvex.

Let κ be a function that is concave, non-decreasing, ρ-Lipschitz smooth with κ′ non-
differentiable at finite points, and κ(0) = 0. All nonconvex regularizers in Table 1 satisfy the
requirements on κ.

In this paper, we consider g of the following forms:
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κ(α) κ′(α) κ0 ρ

GP (Geman and
Yang, 1995)

βα
θ+α

βθ
(θ+α)2

β
θ

2β
θ2

LSP (Candès et al.,
2008)

β log(1 + α
θ ) β

θ+α
β
θ

β
θ2

MCP (Zhang, 2010a)

{
βα− α2

2θ α ≤ βθ
1
2θβ

2 α > βθ

{
β − α

θ α ≤ βθ
0 α > βθ

β 1
θ

Laplace (Trzasko and
Manduca, 2009)

β(1− exp(−α
θ )) β

θ exp
(
−α
θ

) β
θ

β
θ2

SCAD (Fan and Li,
2001)


βα α ≤ β
−α2+2θβα−β2

2(θ−1) β < α ≤ θβ
β2(1+θ)

2 α > θβ


β α ≤ β
−α+θβ
θ−1 β < α ≤ θβ

0 α > θβ

β 1
θ−1

Table 1: Example nonconvex regularizers. Here, κ0 ≡ κ′(0) and β > 0. For SCAD, θ > 2,
whereas for others, θ > 0.

C1. g(x) =
∑K

i=1 µigi(x), where µi ≥ 0,

gi(x) = κ(‖Aix‖2), (20)

and Ai is a matrix. When κ is the identity function, g(x) reduces to the convex regularizer∑K
i=1 µi‖Aix‖2. By using different Ai’s, g becomes various structured sparsity regularizers

such as the group lasso (Jacob et al., 2009), fused lasso (Tibshirani et al., 2005), and graphical
lasso (Jacob et al., 2009).

C2. g(X) = µ
∑m

i=1 κ(σi(X)), where X is a matrix and µ ≥ 0. When κ is the identity function,
g reduces to the nuclear norm.

First, consider g in C1. Rewrite each nonconvex gi in (20) as

gi(x) = ḡi(x) + κ0‖Aix‖2, (21)

where κ0 = κ′(0), and ḡi(x) = κ(‖Aix‖2) − κ0‖Aix‖2. Obviously, κ0‖Aix‖2 is convex but
nonsmooth. The following shows that ḡi, though nonconvex, is concave and Lipschitz smooth.

Proposition 1 κ(‖z‖2)− κ0‖z‖2, where z ∈ Rd, is concave and 2ρ-Lipschitz smooth.

Corollary 2 ḡi is concave and Lipschitz smooth with modulus L̄i = 2ρ‖Ai‖F .

Corollary 3 g(x) can be decomposed as ḡ(x) + ğ(x), where ḡ(x) ≡
∑K

i=1 µiḡi(x) is concave and
Lipschitz-smooth, while ğ(x) ≡ κ0

∑K
i=1 µi‖Aix‖2 is convex but nonsmooth.

Remark 4 When Ai = Diag(ei), where ei is the unit vector for dimension i, ‖Aix‖2 = |xi| and

g(x) =

d∑
i=1

µiκ(‖Aix‖2) =

d∑
i=1

µiκ(|xi|). (22)

9
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Using Corollary 3, g can be decomposed as ḡ(x) + ğ(x), where ḡ(x) ≡
∑d

i=1 µi(κ(|xi|)− κ0|xi|)
is concave and 2ρ-Lipschitz smooth, while ğ(x) ≡ κ0

∑d
i=1 µi|xi| is convex and nonsmooth. When

d = 1 and µ1 = 1, an illustration of g(x) = κ(|x|), ḡ(x) = κ(|x|) − κ0|x| and ğ(x) = κ0|x|
for the various nonconvex regularizers is shown in Figure 2. When κ is the identity function and
µ1 = · · · = µm = µ, g in (22) reduces to the lasso regularizer µ‖x‖1.

(a) GP. (b) LSP. (c) MCP.

(d) Laplace. (e) SCAD.

Figure 2: Decompositions of the regularizers in Table 1 (β = 1 for all regularizers; θ = 2.25 for
SCAD and 1.5 for others).

Using Corollary 3, problem (1) can then be rewritten as

min
x
f̄(x) + ğ(x), (23)

where f̄(x) ≡ f(x) + ḡ(x). Note that f̄ (which can be viewed as an augmented loss) is Lipschitz
smooth while ğ (viewed as a convexified regularizer) is convex but possibly nonsmooth. In
other words, nonconvexity is shifted from the regularizer g to the loss f , while ensuring that the
augmented loss is smooth.

When X is a matrix, similar to Corollary 3, the following Proposition holds for g in C2.

Proposition 5 Any g in C2 can be decomposed as ḡ(X) + ğ(X), where

ḡ(X) ≡ µ
m∑
i=1

κ(σi(X))− µκ0‖X‖∗ (24)

is concave and 2ρ-Lipschitz smooth, and ğ(X) ≡ κ0‖X‖∗ is convex and nonsmooth.

10
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Since ḡ is concave and ğ is convex, the nonconvex regularizer g = ğ− (−ḡ) can be viewed as a
difference of convex functions (DC) (Hiriart-Urruty, 1985). Lu (2012); Gong et al. (2013); Zhong
and Kwok (2014) also relied on DC decompositions of the nonconvex regularizer. However, they do
not utilize this in the computational procedures, while we use the DC decomposition to simplify the
regularizers. As will be seen, though the DC decomposition of a nonconvex function is not unique
in general, the particular one proposed here is crucial for efficient optimization.

4. Example Use Cases

In this section, we provide concrete examples to show how the proposed convexification scheme
can be used with various optimization algorithms. An overview is summarized in Table 2.

section advantages
proximal algorithm 4.1, 4.6 cheaper proximal step

FW algorithm 4.2 cheaper linear subproblem
(consensus) ADMM 4.3 cheaper proximal step; provide convergence guarantee

SVRG 4.4 cheaper proximal step; provide convergence guarantee
mOWL-QN 4.5 simpler analysis; capture curvature information

Table 2: Using the proposed convexification scheme with various algorithms.

4.1 Proximal Algorithms

In this section, we provide example applications on using the proximal algorithm for nonconvex
structured sparse learning. The proximal algorithm has been commonly used for learning with
convex regularizers (Parikh and Boyd, 2013). With a nonconvex regularizer, the underlying
proximal step becomes much more challenging. Gong et al. (2013); Li and Lin (2015) and Bot et al.
(2016) extended proximal algorithm to simple nonconvex g, but cannot handle more complicated
nonconvex regularizers such as the tree-structured lasso regularizer (Liu and Ye, 2010; Schmidt
et al., 2011), sparse group lasso regularizer (Jacob et al., 2009) and total variation regularizer
(Nikolova, 2004). Using the proximal average (Bauschke et al., 2008), Zhong and Kwok (2014) can
handle nonconvex regularizers of the form g =

∑K
i=1 µigi, where each gi is simple. However, the

solutions obtained are only approximate. General nonconvex optimization techniques such as the
concave-convex procedure (CCCP) (Yuille and Rangarajan, 2002) or its variant sequential convex
programming (SCP) (Lu, 2012) can also be used, though they are slow in general (Gong et al., 2013;
Zhong and Kwok, 2014).

Using the proposed transformation, one only needs to solve the proximal step of a standard
convex regularizer instead of that of a nonconvex regularizer. This allows reuse of existing
solutions for the proximal step and is much less expensive. As proximal algorithms have the same
convergence guarantee for convex and nonconvex f (Gong et al., 2013; Li and Lin, 2015; Yao et al.,
2017), solving the transformed problem can be much faster. The following gives some specific
examples.

11
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4.1.1 NONCONVEX SPARSE GROUP LASSO

In sparse group lasso, the feature vector x is divided into groups. Let Gj be the set containing
dimensions of x that are in group j, and

[
xGj
]
i

= xi if i ∈ Gj and 0 otherwise. Given training
samples {(a1, y1), . . . , (aN , yN )}, (convex) sparse group lasso is formulated as (Jacob et al., 2009):

min
x

N∑
i=1

`(yi, a
>
i x) + λ‖x‖1 +

K∑
j=1

µj‖xGj‖2, (25)

where ` is a smooth loss, and K is the number of (non-overlapping) groups.
For the nonconvex extension, the regularizer becomes

g(x) = λ

d∑
i=1

κ(|xi|) +

K∑
j=1

µjκ(‖xGj‖2). (26)

Using Corollary 3 and Remark 4, the convexified regularizer is ğ(x) = κ0(λ‖x‖1 +∑K
j=1 µj‖xGj‖2). Its proximal step can be easily computed by the algorithm in (Yuan et al., 2011).

Specifically, the proximal operator of ğ can be obtained by computing proxµj‖·‖2(proxλ‖·‖1(xGj ))
for each group separately. This can then be used with any proximal algorithm that can handle
nonconvex objectives (as f̄ is nonconvex). In particular, we will adopt the state-of-the-art
nonmontonic APG (nmAPG) algorithm (Li and Lin, 2015) (shown in Algorithm 2). On the other
hand, note that nmAPG cannot be directly used with the nonconvex regularizer g in (26), as the
corresponding proximal step has no inexpensive closed-form solution.

Algorithm 2 Nonmonotonic APG (nmAPG) (Li and Lin, 2015).
1: Initialize z1 = x1 = x0, α0 = 0, α1 = 1, η ∈ [0, 1), c1 = F (x1), q1 = 1, and stepsize τ > L̄,
δ ∈ (0, τ − L̄);

2: for t = 1, . . . , T do
3: yt = xt + αt−1

αt
(zt − xt) + αt−1−1

αt
(xt − xt−1);

4: zt+1 = prox 1
τ
ğ(yt −

1
τ∇f̄(yt));

5: if F (zt+1) ≤ ct − δ
2‖zt+1 − yt‖22 then

6: xt+1 = zt+1;
7: else
8: vt+1 = prox 1

τ
ğ(xt −

1
τ∇f̄(xt));

9: xt+1 =

{
zt+1 F (zt+1) ≤ F (vt+1)

vt+1 otherwise
;

10: end if
11: αt+1 = 1

2(
√

4α2
t + 1 + 1);

12: qt+1 = ηqt + 1;
13: ct+1 = ηqtct+F (xt+1)

qt+1
;

14: end for
15: return xT+1;

12
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4.1.2 NONCONVEX TREE-STRUCTURED GROUP LASSO

In (convex) tree-structured group lasso (Liu and Ye, 2010; Jenatton et al., 2011), the dimensions in
x are organized as nodes in a tree, and each group corresponds to a subtree. The regularizer is of
the form

∑K
j=1 λj‖xGj‖2. Interested readers are referred to (Liu and Ye, 2010) for details.

For the nonconvex extension, g(x) becomes
∑K

j=1 λjκ(‖xGj‖2). Again, there is no closed-
form solution of its proximal step. On the other hand, the convexified regularizer is ğ(x) ≡
κ0
∑K

j=1 λj‖xGj‖2. As shown in (Liu and Ye, 2010), its proximal step can be computed efficiently
by processing all the groups once in some appropriate order.

4.1.3 NONCONVEX TOTAL VARIATION (TV) REGULARIZER

In an image, nearby pixels are usually strongly correlated. The TV regularizer captures such
behavior by assuming that changes between nearby pixels are small. Given an image X ∈ Rm×n,
the TV regularizer is defined as TV(X) = ‖DvX‖1 + ‖XDh‖1 (Nikolova, 2004), Dv =−1 1

. . . . . .
−1 1

 ∈ R(m−1)×m and Dh =


−1

1
. . .
. . . −1

1

 ∈ Rn×(n−1) are the horizontal and

vertical partial derivative operators, respectively. Thus, it is popular on image processing problems,
such as image denoising and deconvolution (Nikolova, 2004; Beck and Teboulle, 2009).

As in previous sections, the nonconvex extension of TV regularizer can be defined as

m−1∑
i=1

m∑
j=1

κ
(∣∣∣[DvX]ij

∣∣∣)+

n∑
i=1

n−1∑
j=1

κ
(∣∣∣[XDh]ij

∣∣∣) . (27)

Again, it is not clear how its proximal step can be efficiently computed. Instead, with the proposed
transformation, the transformed problem is

min
X

f̄(X) + µκ0TV(X),

where µ is the regularization parameter, f̄(X) = f(X) + µ
∑m−1

i=1

∑m
j=1(κ(|[DvX]ij |) −

κ0|[DvX]ij |)+µ
∑n

i=1

∑n−1
j=1 (κ(|[XDh]ij |)−κ0|[XDh]ij |) is concave and Lipschitz smooth. One

then only needs to compute the proximal step of the standard TV regularizer.
Unlike the proximal steps in Sections 4.1.1 and 4.1.2, the proximal step of the TV regularizer has

no closed-form solution and needs to be solved iteratively. In this case, Schmidt et al. (2011) showed
that using inexact proximal steps can make proximal algorithms faster, but they only considered the
situation where both f and g are convex. In the following, we extend nmAPG (Algorithm 2),
which can be used with nonconvex objectives, to allow for inexact proximal steps (steps 5 and 9
of Algorithm 3). However, Lemma 2 of (Li and Lin, 2015), which is key to the convergence of
nmAPG, no longer holds because of the inexact proximal step. To fix this problem, in step 6 of
Algorithm 3, we use F (Xt) instead of ct in Algorithm 2. We also drop the comparison of F (Zt+1)
and F (Vt+1) (originally in step 9 of Algorithm 2).

Inexactness of the proximal step can be controlled as follows. Let P = X − 1
τ∇f̄(X), and

h(X) ≡ 1
2‖X − P‖

2
F + 1

τ ğ(X) be the objective in prox 1
τ
ğ(P ). As ğ(X) = κ0TV(X) is convex,

13
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Algorithm 3 Inexact nmAPG.

1: Initialize Z̃1 = X1 = X0, α0 = 0, α1 = 1 and stepsize τ > L̄, δ ∈ (0, τ − L̄);
2: for t = 1, . . . , T do
3: choose tolerance εt;
4: Yt = Xt + αt−1

αt
(Zt −Xt) + αt−1−1

αt
(Xt −Xt−1);

5: Z̃t+1 = approximate prox 1
τ
ğ(Yt −

1
τ∇f̄(Yt)), with inexactness ϑt+1 ≤ εt;

6: if F (Z̃t+1) ≤ F (Xt)− δ
2‖Z̃t+1 − Yt‖2F then

7: Xt+1 = Z̃t+1;
8: else
9: Xt+1 = approximate prox 1

τ
ğ(Xt − 1

τ∇f̄(Xt)), with inexactness ϑt+1 ≤ εt;
10: end if
11: αt+1 = 1

2(
√

4α2
t + 1 + 1);

12: end for
13: return XT+1;

h is also convex. Let X̃ be an inexact solution of this proximal step. The inexactness h(X̃) −
h(prox 1

τ
ğ(P )) is upper-bounded by the duality gap ϑ ≡ h(X̃) − D(W̃ ), where D is the dual of h,

and W̃ is the corresponding dual variable. In steps 5 and 9 of Algorithm 3, we solve the proximal
step until the duality gap ϑt+1 is smaller than a given threshold εt. The following Theorem shows
convergence of Algorithm 3.

Theorem 6 Let
∑∞

t=1 εt < ∞. The sequence {Xt} generated from Algorithm 3 has at least one
limit point, and every limit point is also a critical point of (1).

If the proximal step is exact, ‖Vt − prox 1
τ
ğ(Vt −

1
τ∇f̄(Vt))‖2F can be used to measure how far

Vt is from a critical point (Gong et al., 2013; Ghadimi and Lan, 2016). In Algorithm 3, the proximal
step is inexact, and Xt+1 is an inexact solution to prox 1

τ
ğ(Vt −

1
τ∇f̄(Vt)), where Vt = Yt if step 7

is executed, and Vt = Xt if step 9 is executed. As Xt+1 converges to a critical point of (1), we
propose using dt ≡ ‖Xt+1 − Vt‖2F to measure how far Xt+1 is from a critical point. The following
Proposition shows a O(1/T ) convergence rate on mint=1,...,T dt.

Proposition 7 (i) limt→∞ dt = 0; and (ii) mint=1,...,T dt converges to zero at a rate of O(1/T ).

Note that the (exact) nmAPG in Algorithm 2 cannot handle the nonconvex g in (27) efficiently,
as the corresponding proximal step has no closed-form solution but has to be solved exactly. Even
the proposed inexact nmAPG (Algorithm 3) cannot be directly used with nonconvex g. As the
dual of the nonconvex proximal step is difficult to derive and the optimal duality gap is nonzero in
general, the proximal step’s inexactness cannot be easily controlled.

Remark 8 As mentioned in Section 3, the proposed decomposition of the nonconvex regularizer
g can be regarded as a DC decomposition, which is not unique in general. For example, in
Section 4.1.1, we might try to add a quadratic term to convexify the nonconvex sparse group lasso
regularizer. Specifically, we can decompose g(x) in (26) as ς̆(x) + ς̂(x), where

ς̆(x) = λ
d∑
i=1

(
κ(|xi|) +

ρ

2
x2
i

)
+

K∑
j=1

µj

(
κ(‖xGj‖2) +

ρ

2
‖xGj‖22

)
, (28)
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and ς̂(x) = −ρ
2

∑K
j=1(µj + λ)‖xGj‖22. It can be easily shown that ς̂ is concave, and the following

Proposition 9 shows that ς̆ is convex. Thus, F can be transformed as F (x) = f̄(x) + ς̆(x), where
f̄(x) = f(x) + ς̂(x) is Lipschitz-smooth, and ς̆ is convex but nonsmooth. However, the proximal
step associated with ς̆ has no simple closed-form solution.

Proposition 9 κ(‖ · ‖) + ρ
2‖ · ‖

2, where ‖ · ‖ is a norm, is convex.

Similarly, in Section 4.1.2, we can also add a quadratic term to convexify the nonconvex tree-
structured group lasso regularizer as

∑K
j=1 λj(κ(‖xGj‖2)+ ρ

2‖xGj‖
2
2). The corresponding proximal

step is

min
x

1

2
‖x− z‖22 +

K∑
j=1

λj

(
κ
(
‖xGj‖2

)
+
ρ

2
‖xGj‖22

)
. (29)

However, inexpensive closed-form solution on the proximal step is only known for tree-structured
group lasso regularizers of the form

∑K
j=1 λj‖xGj‖2 (Jenatton et al., 2011; Liu and Ye, 2010). Thus,

(29) has to be iteratively solved (e.g., using ADMM), and is slow.
In Section 4.1.3, by adding quadratic terms to the nonconvex TV regularizer, it becomes∑m−1
i=1

∑m
j=1(κ (|[DvX]ij |)+ ρ

2 [DvX]2ij)+
∑n

i=1

∑n−1
j=1 (κ(|[XDh]ij |)+ ρ

2 [XDh]2ij), where ρ > 0
is a constant. The corresponding proximal step is

min
X

1

2
‖X−Z‖2F +µ

m−1∑
i=1

m∑
j=1

(
κ (|[DvX]ij |)+

ρ

2
[DvX]2ij

)
+µ

n∑
i=1

n−1∑
j=1

(
κ (|[XDh]ij |)+

ρ

2
[XDh]2ij

)
,

which is difficult to solve. Morevoer, unlike the proposed convexification scheme, the dual of the
above is difficult to derive.

4.2 Frank-Wolfe Algorithm

In this section, we use the Frank-Wolfe algorithm to learn a low-rank matrix X ∈ Rm×n for matrix
completion (Section 2.3). The nuclear norm regularizer in (8) may over-penalize top singular values.
Recently, there is growing interest to replace this with nonconvex regularizers (Lu et al., 2014, 2015;
Yao et al., 2015). Hence, instead of (8), we consider

min
X

f(X) + µ

m∑
i=1

κ(σi(X)). (30)

When κ is the identity function, (30) reduces to (8). Note that the FW algorithm cannot be directly
used on (8), as its linear subproblem in (10) then becomes minS:

∑m
i=1 κ(σi(S))≤1〈S,∇f(Xt)〉, which

is difficult to solve.
Using Proposition 5, problem (30) is transformed into

min
X

f̄(X) + µ̄‖X‖∗, (31)

where

f̄(X) = f(X) + ḡ(X), ḡ(X) = µ
m∑
i=1

(κ(σi(X))− κ0σi(X)), (32)
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and µ̄ = µκ0. Although this only involves the standard nuclear norm regularizer, Algorithm 1
still cannot be used as f̄ in (32) is no longer convex. A FW variant allowing nonconvex f̄ is
proposed in (Bredies et al., 2009). However, condition 1 in (Bredies et al., 2009) requires g to
satisfy lim‖X‖F→∞

g(X)
‖X‖F =∞. This condition does not hold with g(X) = ‖X‖∗ in (31), as

‖X‖∗
‖X‖F

=

√
(
∑m

i=1 σi)
2∑m

i=1 σ
2
i

≤

√
m
∑m

i=1 σ
2
i∑m

i=1 σ
2
i

=
√
m <∞.

In the following, we propose a nonconvex FW variant (Algorithm 4) for the transformed
problem (31). It is similar to the original FW Algorithm 1, but with three important modifications.
First, ḡ(X) in (32) depends on the singular values of X , which cannot be directly obtained from the
UV > factorization in (11). Instead, we use the low-rank factorization

X = UBV >, (33)

where U ∈ Rm×k, V ∈ Rn×k are orthogonal and B ∈ Sk×k+ is positive semidefinite.

Algorithm 4 Frank-Wolfe algorithm for solving the nonconvex problem (31).
1: U1 = [ ], B1 = [ ] and V1 = [ ];
2: for t = 1 . . . T do
3: [ut, st, vt] = rank1SVD(∇f̄(Xt));
4: obtain αt and βt from (36);
5: [Ūt, B̄t, V̄t] = warmstart(Ut, ut, Vt, vt, Bt, αt, βt);
6: obtain [Ut+1, Bt+1, Vt+1] from (37), using Ūt, B̄t and V̄t for warm-start;

// Xt+1 = Ut+1Bt+1V
>
t+1

7: end for
8: return UT+1, BT+1 and VT+1.

The second problem is that line search in Algorithm 1 is inefficient in general when operated on
a nonconvex f̄ . Specifically, step 4 in Algorithm 1 then becomes

[αt, βt] = arg min
α≥0,β≥0

f̄(αXt + βutv
>
t ) + µ̄(α‖Xt‖∗ + β). (34)

To solve (34), we have to compute ∂f̄(S)
∂α and ∂f̄(S)

∂β , where S = αXt + βutv
>
t . As shown in

Proposition 10, this requires the SVD of S and can be expensive.

Proposition 10 Let the SVD of S be USDiag([σ1(S), . . . , σm(S)])V >S . Then

∂f̄(S)

∂α
= α〈Xt,∇f̄(S)〉, and

∂f̄(S)

∂β
= βu>t ∇f̄(S)vt,

where∇f̄(S) = ∇f(S) + µUSDiag(w)V >S , and w = [κ′(σi(S))− κ0] ∈ Rm.

Alternatively, as S is a rank-one update of Xt, one can perform incremental update on SVD,
which takesO((m+n)t2) time (Golub and Van Loan, 2012). However, every time α, β are changed,
this incremental SVD has to be recomputed, and is thus inefficient.
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To alleviate this problem, we approximate f̄(S) by an upper bound as

f̄(S) = f̄(Xt + (α− 1)Xt + βutv
>
t )

≤ f̄(Xt) + 〈(α− 1)Xt + βutv
>
t ,∇f̄(Xt)〉+

L̄

2
‖(α− 1)Xt + βutv

>
t ‖2F . (35)

As (ut, vt) is obtained from the rank-1 SVD of∇f̄(Xt), we have ‖utv>t ‖F = 1 and u>t ∇f̄(Xt)vt =
st. Moreover, Xt = UtBtV

>
t , and so ‖Xt‖F = ‖Bt‖F and ‖Xt‖∗ = Tr (Bt). Substituting these

and the upper bound (35) into (34), we obtain a simple quadratic program:

minα≥0,β≥0
(α− 1)2L̄

2
‖Bt‖2F + (α− 1)βL̄(u>t Ut)Bt(V

>
t vt) +

β2L̄

2
+ βst

+α〈Bt, U>t ∇f̄(Xt)Vt〉+ µ̄(α‖Bt‖∗ + β). (36)

Note that the objective in (36) is convex, as the RHS in (35) is convex and the last term from (34) is
affine. Using the following Corollary 11, 〈Bt, U>t ∇f̄(Xt)Vt〉 in (36) can be obtained as

〈Bt, U>t ∇f̄(Xt)Vt〉 = 〈Bt, U>t ∇f(Xt)Vt〉+ µ̄
t∑
i=1

σi(Bt)(κ
′(σi(Bt))− κ0).

Corollary 11 For X in (33), let the SVD of B be UBDiag([σ1(B), . . . , σk(B)])V >B . Then,
∇f̄(X) = ∇f(X) + µ̄(UUB)Diag(w)(V VB)>, where w = [κ′(σi(B))− κ0] ∈ Rk.

Instead of requiring SVD on Xt, it only requires SVD on Bt (which is of size t × t at the tth
iteration of Algorithm 4). As the target matrix is supposed to be low-rank, t � m. Hence, all the
coefficients in (36) can be obtained in O((m + n)t2 + ‖Ω‖1t) time. Besides, (36) is a quadratic
program with only two variables, and thus can be very efficiently solved.

The third modification is that with f̄ instead of f , (12) can no longer be used for local
optimization, as ḡ(X) in (32) depends on the singular values of X . On the other hand, with the
decomposition of X in (33) and Proposition 12 below, (31) can be rewritten as

minU,B,V f(UBV >) + ḡ(B) + µ̄Tr (B) (37)

s.t. U>U = I, V >V = I,B ∈ S+. (38)

This can be efficiently solved using matrix optimization techniques on the Grassmann manifold
(Ngo and Saad, 2012).

Proposition 12 For orthogonal matrices U and V , ḡ(UBV >) = ḡ(B).

In Algorithm 4, step 5 is used to warm-start (37), and the procedure is shown in Algorithm 5.
It expresses Xt = αtUt−1Bt−1V

>
t−1 + βtutv

>
t obtained in step 4 to the form UtBtV

>
t so that the

orthogonal constraints on Ut, Vt in (38) are satisfied.
Existing analysis for the FW algorithm cannot be used on this nonconvex problem. The

following Theorem shows convergence of Algorithm 4 to a critical point of (8).

Theorem 13 If (8) has a rank-r critical point, then Algorithm 4 converges to a critical point of (8)
after r iterations.
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Algorithm 5 warmstart(Ut, ut, Vt, vt, Bt, αt, βt).
1: [Ūt, RŪt ] = QR([Ut, ut]); // QR denotes the QR factorization
2: [V̄t , RV̄t ] = QR([Vt, vt]);

3: B̄t = RŪt

[
αtBt 0

0 βt

]
R>
V̄t

;

4: return Ūt, B̄t and V̄t;

As in Remark 8, an alternative convexification approach is to decompose the regularizer in
(30) as ς̆(X) + ς̂(X), where ς̂(X) = −ρ

2

∑m
i=1 σ

2
i (X) and ς̆(X) =

∑m
i=1 κ(σi(X)) + ρ

2σ
2
i (X).

The corresponding linear subproblem in (5) becomes minS:ς̆(S)≤1〈S,∇f(Xt)〉, which is difficult
to solve. On the other hand, with the proposed procedure, the subproblem associated with the
transformed problem (31) can be easily solved via rank-1 SVD (Jaggi, 2013).

4.3 Alternating Direction Method of Multipliers (ADMM)

In this section, we consider using ADMM on the consensus optimization problem (17). When all the
fi’s and g are convex, ADMM has a convergence rate of O(1/T ) (He and Yuan, 2012). Recently,
ADMM has been extended to problems where g is convex but fi’s are nonconvex (Hong et al.,
2016). However, when g is nonconvex, such as when a nonconvex regularizer is used in regularized
risk minimization, the convergence of ADMM is still an open reseach problem.

Using the proposed transformation, we can decompose a nonconvex g as ḡ + ğ, where ḡ is
concave and Lipschitz-smooth, while ğ is convex but possibly nonsmooth. Problem (17) can then
be rewritten as

min
y,x1,...,xM

M∑
i=1

f̄i(x
i) + ğ(y) : x1 = · · · = xM = y, (39)

where f̄i(x) = fi(x)+ 1
M ḡ(x). Let pi be the dual variable for the constraint xi = y. The augmented

Lagrangian for (39) is

L
(
y, x1, . . . , xM , p1, . . . , pM

)
= ğ(y) +

M∑
i=1

f̄i(x
i) + (pi)>(xi − y) +

τ

2
‖xi − y‖22.

Using (14) and (15), we have the following update equations at iteration t:

xit+1 = arg min
xi

f̄i(x
i) + (pit)

>(xi − yt) +
τ

2
‖xi − yt‖22, i = 1, . . . ,M,

yt+1 = arg min
y

1

2

∥∥∥∥∥y −
M∑
i=1

(
xit +

1

τ
pit

)∥∥∥∥∥
2

2

+
1

τ
ğ(y) = prox 1

τ
ğ

(
M∑
i=1

xit +
1

τ
pit

)
. (40)

As in previous sections, the proximal step in (40), which is associated with the convex ğ, is usually
easier to compute than the proximal step associated with the original nonconvex g. Moreover,
since ğ is convex, convergence results in Theorem 2.4 of (Hong et al., 2016) can now be applied.
Specifically, the sequence {yt, {xit}} generated by the ADMM procedure is bounded and all its limit
points are critical points of (39).
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As in Remark 8, the alternative convexification approach based on adding a quadratic regularizer
(Proposition 9) does not help. For example, when g is the nonconvex tree-structured lasso
regularizer, after adding a quadratic regularizer ρ2‖yGj‖

2
2, the yt update in (19) becomes

yt+1 = arg min
y

1

2

∥∥∥∥∥y −
M∑
i=1

(
xit +

1

τ
pit

)∥∥∥∥∥
2

2

+
1

τ

K∑
j=1

λj

(
κ
(
‖yGj‖2

)
+
ρ

2
‖yGj‖22

)
.

which is still difficult to solve.

4.4 Stochastic Variance Reduced Gradient

Variance reduction methods have been commonly used to speed up the often slow convergence of
SGD. Examples include the stochastic variance reduced gradient (SVRG) and its proximal extension
Prox-SVRG (Xiao and Zhang, 2014). They can be used for the following optimization problem

min
x

N∑
i=1

`(yi, a
>
i x) + g(x), (41)

where {(a1, y1), . . . , (aN , yN )} are the training samples, ` is a smooth convex loss function, and
g is a convex regularizer. Recently, Prox-SVRG is also extended for nonconvex objectives. Reddi
et al. (2016a) and Zhu and Hazan (2016) considered smooth nonconvex ` but without g. This is
further extended to the case of smooth ` and convex nonsmooth g in (Reddi et al., 2016b). However,
convergence is still unknown for the more general case where the regularizer g is also nonconvex.

Using the proposed transformation, (41) can be rewritten as

min
x

N∑
i=1

(
`(yi, a

>
i x) +

1

N
ḡ(x)

)
+ ğ(x),

where ` + 1
N ḡ is smooth and ğ is convex. The convergence results of Theorem 1 of (Reddi et al.,

2016b) can now be applied, which shows that SVRG generates a bounded sequence and all its limit
points are critical points of (41).

As in Remark 8, adding a quadratic term to convexify the nonconvex regularizer does not make
the corresponding proximal step easier, and so does not help.

4.5 With OWL-QN

In this section, we consider OWL-QN (Andrew and Gao, 2007) and its variant mOWL-QN (Gong
and Ye, 2015b), which are efficient algorithms for the `1-regularization problem

min
x
f(x) + µ‖x‖1. (42)

Recently, Gong and Ye (2015a) proposed a nonconvex generalization for (42), in which the standard
`1 regularizer is replaced by the nonconvex g(x) = µ

∑d
i=1 κ(|xi|):

min
x
f(x) + µ

d∑
i=1

κ(|xi|). (43)
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Gong and Ye (2015a) proposed a sophisticated algorithm (HONOR) which involves a combination
of quasi-Newton and gradient descent steps. Though the algorithm is similar to OWL-QN and
mOWL-QN, the convergence analysis in (Gong and Ye, 2015b) cannot be directly applied as the
regularizer is nonconvex. Instead, a non-trivial extension was developed in (Gong and Ye, 2015a).

Here, by convexifying the nonconvex regularizer, (43) can be rewritten as

min
x
f̄(x) + µκ0‖x‖1, (44)

where f̄(x) = f(x) + ḡ(x), and ḡ(x) = µ
∑d

i=1(κ(|xi|)−κ0|xi|). It is easy to see that the analysis
in (Gong and Ye, 2015b) can be extended to handle smooth but nonconvex f̄ . As a result, Theorem 1
in (Gong and Ye, 2015b) can still be applied. Thus, mOWL-QN is guaranteed to generate a bounded
sequence and its limit points are critical points of (42).

As in previous subsections, adding a quadratic term to convexify the nonconvex regularizer
does not help. The mOWL-QN can only work with the `1-regularizer, but not with the modified
regularizer ς̆(x) = ρµ

2 ‖x‖
2
2 + µ

∑d
i=1 κ(|xi|).

Problem (43) can be solved by either (i) directly using HONOR, or (ii) using mOWL-QN on
the transformed problem (44). We believe that the latter approach is computationally more efficient.
In (43), the Hessian depends on both terms in the objective, as the second-order derivative of κ is
not zero in general. However, HONOR constructs the approximate Hessian using only information
from f , and thus ignores the curvature information due to

∑d
i=1 κ(|xi|). On the other hand, the

Hessian in (44) depends only on f̄ , as the Hessian due to ‖x‖1 is zero (Andrew and Gao, 2007), and
mOWL-QN now extracts Hessian from f̄ . Hence, optimizing (44) with mOWL-QN is potentially
faster, as all the second-order information is utilized. This will be verified empirically in Section 5.4.

4.6 Nonsmooth and Nonconvex Loss

In many applications, besides having nonconvex regularizers, the loss function may also be
nonconvex and nonsmooth. In this section, we consider using the nonconvex functions in Figure 1
as the loss function. Thus, neither f nor g in (1) is convex, smooth. The optimization problem
becomes even harder, and many existing algorithms cannot be used. In particular, the proximal
algorithm requires f in (1) to be smooth (possibly nonconvex) (Gong et al., 2013; Li and Lin, 2015;
Bot et al., 2016). The FW algorithm requires f in (4) to be smooth and convex (Jaggi, 2013). For
the ADMM, it allows f in the consensus problem to be smooth, but g has to be convex (Hong et al.,
2016). For problems of the form minx,z f(y) + g(y) : y = Ax, ADMM requires A to have full
row-rank (Li and Pong, 2015). As will be seen, it is not satisfied for problems considered in this
section. CCCP (Yuille and Rangarajan, 2002) and smoothing (Chen, 2012) are more general and
can still be used, but are usually very slow.

In this section, we consider two application examples, and show how they can be efficiently
solved with the proposed transformation.

4.6.1 TOTAL VARIATION IMAGE DENOISING

Using the (convex) `1 loss and (convex) TV regularizer introduced in Section 4.1.3, consider the
following optimization problem:

min
X
‖Y −X‖1 + µTV(X), (45)
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where Y ∈ Rm×n is a given corrupted image, and X is the target image to be recovered. The use of
nonconvex loss and regularizer often produce better performance (Yan, 2013). Thus, we consider
the following nonconvex extension:

min
X

m∑
i=1

n∑
j=1

κ
(∣∣∣[Y −X]ij

∣∣∣)+ µ

m−1∑
i=1

m∑
j=1

κ
(∣∣∣[DvX]ij

∣∣∣)+ µ

n∑
i=1

n−1∑
j=1

κ
(∣∣∣[XDh]ij

∣∣∣) , (46)

where both the loss and regularizer are nonconvex and nonsmooth. As discussed above, this can be
solved by CCCP and smoothing. However, as will be experimentally demonstrated in Section 5.5,
the convergence is slow.

Using the proposed transformation on both the loss and regularizer, problem (46) can be
transformed to the following problem:

min
X

f̄(X) + κ0‖X − Y ‖1 + κ0µTV(X), (47)

where

f̄(X) =
m∑
i=1

n∑
j=1

κ
(∣∣∣[Y −X]ij

∣∣∣)− κ0‖Y −X‖1

+ µ

m−1∑
i=1

m∑
j=1

κ
(∣∣∣[DvX]ij

∣∣∣)− κ0‖DvX‖1 +
n∑
i=1

n−1∑
j=1

κ
(∣∣∣[XDh]ij

∣∣∣)− κ0‖XDh‖1


is smooth and nonconvex. As (47) is not a consensus problem, the method in (Hong et al., 2016)
cannot be used. To use the ADMM algorithm in (Li and Pong, 2015), extra variables and constraints
Zv = DvX and Zh = XDh have to be imposed. However, the full row-rank condition in (Li and
Pong, 2015) does not hold.

In this section, we consider the proximal algorithm. Given some Z, the proximal step in (47) is

arg min
X

1

2
‖X − Z‖2F +

1

τ
(‖X − Y ‖1 + µTV(X)) , (48)

where τ is the stepsize. Though this has no closed-form solution, ‖X − Y ‖1 + µTV(X) in (48) is
convex and one can monitor inexactness of the proximal step via the duality gap. Thus, we can use
the proposed inexact nmAPG algorithm in Algorithm 3 for (47). It can be shown that the dual of
(48) is

minW,P,Q
1

2τ
‖W + µD>v P + µQD>h ‖2F − 〈Z,W 〉 − µ〈DvZ,P 〉 − µ〈ZDh, Q〉+ 〈Y,W 〉

s.t. ‖W‖∞ ≤ 1, ‖P‖∞ ≤ 1 and ‖Q‖∞ ≤ 1, (49)

and the primal variable can be recovered as X = Z − 1
τ (W + µD>v P + µQD>h ). By substituting

the obtained X into (48) and {W,P,Q} into (49), the duality gap can be computed in O(mn) time.
As (49) is a smooth and convex problem, both accelerated gradient descent (Nesterov, 2013) and
L-BFGS (Nocedal and Wright, 2006) can be applied. Algorithm 3 is then guaranteed to converge
to a critical point of (46) (Theorem 6 and Proposition 7).
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Note that it is more advantageous to transform both the loss and regularizer in (47). If only the
regularizer in (46) is transformed, we obtain

f̄TV(X) +

m∑
i=1

n∑
j=1

κ
(∣∣∣[Y −X]ij

∣∣∣)+ κ0µTV(X), (50)

where

f̄TV(X) = µ

m−1∑
i=1

m∑
j=1

κ
(∣∣∣[DvX]ij

∣∣∣)− κ0‖DvX‖1 +

n∑
i=1

n−1∑
j=1

κ
(∣∣∣[XDh]ij

∣∣∣)− κ0‖XDh‖1


is nonconvex. The corresponding proximal step for (50) is

arg min
X

1

2
‖X − Z‖2F +

1

τ

 m∑
i=1

n∑
j=1

κ
(∣∣∣[Y −X]ij

∣∣∣)+ κ0µTV(X)

 . (51)

While the proximal steps in both (48) and (51) have no closed-form solution, working with (48) is
more efficient. As (48) is convex, its dual can be efficiently solved with methods such as accelerated
gradient descent and L-BFGS. In contrast, (51) is nonconvex, its duality gap is nonzero, and so can
only be solved in the primal with slower methods like CCCP and smoothing. Besides, one can only
use the more expensive nmAPG (Algorithm 2) but not the proposed inexact proximal algorithm.

One may also consider simultaneously transforming both the loss and regularizer using the
decomposition discussed in Remark 8. However, it is not helpful here. By adding and subtracting a
quadratic term, the objective in (46) can be decomposed as ς̆(X) + ς̂(X), where

ς̂(X) =−
m∑
i=1

n∑
j=1

ρ

2
[Y −X]2ij −

ρµ

2

m−1∑
i=1

m∑
j=1

[DvX]2ij −
ρµ

2

n∑
i=1

n−1∑
j=1

[XDh]2ij ,

ς̆(X) =

m∑
i=1

n∑
j=1

(
κ(| [Y −X]ij |) +

ρ

2
[Y −X]2ij

)

+ µ
m−1∑
i=1

m∑
j=1

(
κ(|[DvX]ij |) +

ρ

2
[DvX]2ij

)
+ µ

n∑
i=1

n−1∑
j=1

(
κ(|[XDh]ij |) +

ρ

2
[XDh]2ij

)
.

We need to solve the proximal step associated with ς̆(X), which is difficult.

4.6.2 ROBUST SPARSE CODING

The second application is robust sparse coding, which has been popularly used in face recognition
(Yang et al., 2011), image analysis (Lu et al., 2013) and background modeling (Zhao et al., 2011).
Given an observed signal y ∈ Rm, the goal is to seek a robust sparse representation x ∈ Rd of
y based on the dictionary D ∈ Rm×d (which is assumed to be fixed here). Mathematically, it is
formulated as the following optimization problem:

min
x
‖y −Dx‖1 + µ‖x‖1.
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Its nonconvex extension is:

min
x

m∑
j=1

κ(|[y −Dx]j |) + µ
d∑
i=1

κ(|xi|). (52)

Using the proposed transformation, problem (52) becomes

min
x
f̄(x) + κ0‖y −Dx‖1 + µκ0‖x‖1, (53)

where

f̄(x) = µ
d∑
j=1

κ(|xj |)− κ0µ‖x‖1 +
m∑
j=1

κ(|[y −Dx]j |)− κ0‖y −Dx‖1

is smooth and nonconvex. Again, we use the inexact nmAPG algorithm in Algorithm 3. The
proximal step for (53) is

arg min
x

1

2
‖x− z‖22 +

1

τ
(‖y −Dx‖1 + µ‖x‖1), (54)

where τ is the stepsize and z is given. As in Section 4.6.1, ‖y −Dx‖1 + µ‖x‖1 in (54) is convex,
and one can monitor inexactness of the proximal step by the duality gap. The dual of (54) is

min
p,q

1

2τ
‖D>p+ µq‖22 − p>Dz − µq>z : ‖p‖∞ ≤ 1, ‖q‖∞ ≤ 1. (55)

As in (49), this can be solved with L-BFGS or accelerated gradient descent. The primal variable
can be recovered as x = z − 1

τ (D>p+ µq), and the duality gap can be checked in O(md) time.
If only the regularizer is transformed, we obtain

min
x

m∑
j=1

κ(|[y −Dx]j |) + f̄RSC(x) + κ0µ‖x‖1, (56)

where f̄RSC(x) = µ
∑d

j=1 κ(|xj |)− κ0µ‖x‖1. The corresponding proximal step is

arg min
x

1

2
‖x− z‖22 +

m∑
j=1

κ(|[y −Dx]j |) + κ0µ‖x‖1, (57)

which still involve the nonconvex function κ. As in Section 4.6.1, (55) is easier to solve than (57).
As in previous sections, adding a quadratic term to convexify the loss and regularizer is not

helpful. The objective in (52) will then be decomposed as ς̆(X) + ς̂(X), where

ς̂(X) =− ρ

2

m∑
j=1

[y −Dx]2j −
ρµ

2

d∑
i=1

x2
i ,

ς̆(X) =
m∑
j=1

(
κ(|[y −Dx]j |) +

ρ

2
[y −Dx]2j

)
+ µ

d∑
i=1

(
κ(|xi|) +

ρ

2
x2
i

)
,

and the proximal step associated with ς̆(X) is again difficult to solve.
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5. Experiments

In this section, we perform experiments on using the proposed procedure with (i) proximal
algorithms (Sections 5.1 and 5.2); (ii) Frank-Wolfe algorithm (Section 5.3); (iii) comparision with
HONOR (Section 5.4) and (vi) image denoising (Section 5.5). Experiments are performed on a PC
with Intel i7 CPU and 32GB memory. All algorithms are implemented in Matlab.

5.1 Nonconvex Sparse Group Lasso

In this section, we perform experiments on the nonconvex sparse group lasso model in Section 4.1.1.
For simplicity, assume that µ1 = · · · = µK = µ. Using the square loss, (25) becomes

min
x

1

2
‖y −A>x‖22 + λ

d∑
i=1

κ (|xi|) + µ

K∑
j=1

κ
(
‖xGj‖2

)
, (58)

where A = [a1, . . . , aN ]. In this experiment, we use the LSP regularizer in Table 1 (with θ = 0.5)
as κ(·). The synthetic data set is generated as follows. We set d = 200, 000. The ground-truth
parameter x̄ ∈ Rd is divided into 200 non-overlapping groups: {1, . . . , 1000}, {1001, . . . , 2000},
. . . , {199001, . . . , 200000} (Figure 3). We randomly set 87.5% of the groups to zero. In each
nonzero group, we randomly set 50% of its features to zero, and generate the nonzero features from
the standard normal distribution N (0, 1). The whole data set has 400, 000 samples, and entries of
the input A ∈ R200,000×400,000 is a sparse matrix with 0.01% nonzero elements which are generated
from N (0, 1). The ground-truth output is ȳ = A>x̄. This is then corrupted by random Gaussian
noise ε in N (0, 0.05) to produce y = ȳ + ε.

Figure 3: An example ground-truth parameter x̄ ∈ R200000. It is reshaped as a 200× 1000 matrix,
with each row representing a group.

The proposed algorithm will be called N2C (Nonconvex-to-Convex). The proximal step of
the convexified regularizer ğ(x) = κ0(λ‖x‖1 +

∑K
j=1 µj‖xGj‖2) is obtained using the algorithm

in (Yuan et al., 2011). The nmAPG algorithm (Algorithm 2) in (Li and Lin, 2015) is used for
optimization. This will be compared with the following state-of-the-art algorithms:

1. SCP: Sequential convex programming (Lu, 2012), in which the LSP regularizer is
decomposed as in (28).
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2. GIST (Gong et al., 2013): Since the nonconvex regularizer is not separable, the associated
proximal operator has no closed-form solution. Instead, we use SCP (with warm-start) to
solve it numerically.

3. GD-PAN (Zhong and Kwok, 2014): It performs gradient descent with the proximal average
(Bauschke et al., 2008) of the nonconvex regularizers. Closed-form solutions for the proximal
operators of each individual regularizer are obtained separately, and then averaged.

4. nmAPG with the original nonconvex regularizer: As in GIST, the proximal step is solved
numerically by SCP.

5. As a baseline, we also compare with the FISTA (Beck, 2009) algorithm, which solves the
convex sparse group lasso model (with κ removed from (58)).

We do not compare with the concave-convex procedure (Yuille and Rangarajan, 2002), which has
been shown to be slow (Gong et al., 2013; Zhong and Kwok, 2014).

We use 50% of the data for training, another 25% as validation set to tune λ, µ in (58), and the
rest for testing. The stepsize is fixed at τ = σ1(A>A). For performance evaluation, we use the (i)
testing root-mean-squared error (RMSE) on the predictions; (ii) absolute error between the obtained
parameter x̂ and the corresponding ground-truth x̄: ABS = ‖x̂ − x̄‖1/d; and (iii) CPU time. To
reduce statistical variability, the experimental results are averaged over 5 repetitions.

Results are shown in Table 3. As can be seen, all the nonconvex models obtain better errors
(RMSE and ABS) than the convex FISTA. As for the training speed, N2C is the fastest. SCP, GIST,
nmAPG and N2C all solve the original problem (1), and have the same recovery performance. GD-
PAN solves an approximate problem in each iteration, and its error is slightly worse than the other
nonconvex algorithms on this data set.

non-accelerated accelerated convex
SCP GIST GD-PAN nmAPG N2C FISTA

RMSE 48.9±0.1 48.9±0.1 49.2±0.1 48.9±0.1 48.9±0.1 64.0±0.1
ABS 3.1±0.1 3.1±0.1 5.5±0.1 3.1±0.1 3.1±0.1 13.0±0.1

CPU time(sec) 23.2±7.5 105.6±24.6 33.7±11.7 43.0±3.5 7.9±1.2 5.1±0.8

Table 3: Results on nonconvex sparse group lasso. RMSE and ABS are scaled by 10−3, and the
CPU time is in seconds. The best and comparable results (according to the paired t-test
with 95% confidence) are highlighted.

Figure 4(a) shows convergence of the objective with time for a typical run. SCP, GIST, nmAPG
and N2C all converge towards the same objective value. GD-PAN can only approximate the original
problem. Thus, it converges to an objective value which is larger than the others. Figure 4(b) shows
the convergence with number of iterations. As can be seen, N2C and nmAPG, which are based
on the same state-of-the-art proximal algorithm (Algorithm 2), require nearly the same number
of iterations for convergence. However, as N2C has an inexpensive closed-form solution for its
proximal step, it is much faster when measured in terms of time (Figure 4(a)). Figure 5 shows
convergence of the testing RMSE. Its behaviour is similar to those observed in Figure 4. Overall,
N2C, which uses acceleration and inexpensive proximal step, is the fastest.
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(a) Objective vs CPU time (seconds). (b) Objective vs number of iterations.

Figure 4: Convergence of objective on nonconvex sparse group lasso. In the ordinate, “best” refers
to the smallest objective value obtained among the various methods. Note that FISTA is
not shown as its (convex) objective is different from the others.

(a) Testing RMSE vs CPU time (seconds). (b) Testing RMSE vs number of iterations.

Figure 5: Convergence of the testing RMSE on nonconvex sparse group lasso.

5.1.1 IMPACT OF NONCONVEXITY OF THE LOSS ON NMAPG

Recall that N2C uses nmAPG as the underlying proximal algorithm solver. Thus, in the above
experiment, we have compared the performance of using nmAPG on (i) the transformed problem,
which has a convex regularizer and a more nonconvex loss; and (ii) the original problem, which has a
nonconvex regularizer and a less nonconvex loss). In the following, we will provide more empirical
evidence that the increased nonconvexity of the transformed loss does not harm convergence of
nmAPG. Instead of tuning the regularization parameter µ in (58) using the validation set, we vary
µ in {0.01, 0.1, 1}. A larger µ makes the regularizer g more nonconvex, and more nonconvexity
will be transferred to f̄ by the proposed transformation. The other parts of the experimental setup
are the same. Figure 6 compares the convergence behavior of N2C and nmAPG w.r.t. the number
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of iterations. As can be seen, they are almost identical, which agrees with Figure 4(b). Hence,
nonconvexity of the loss have little effect on the empirical performance of nmAPG.

(a) µ = 0.01. (b) µ = 0.1.

(c) µ = 1.

Figure 6: Convergence of N2C and nmAPG on nonconvex sparse group lasso with various µ.

5.1.2 NONCONVEX OPTIMIZATION

As discussed in (Ge et al., 2015), there are two main theoretical issues in optimizing nonconvex
functions. The first issue is that it may be hard to find the global minimum. However, it has been
shown that for composite minimization problems with nonconvex regularizer and the loss function
satisfying the restricted strong convexity condition (of which nonconvex lasso is such an example),
all stationary points can have nearly the same statistical error1 (Loh and Wainwright, 2015). Note
that with the proposed transformation, the transformed optimization problem has the same stationary
points as the original problem, and so all stationary points still have nearly the same statistical error.
To verify this, we experiment on the nonconvex sparse group lasso with 100 different initializations.
Figure 7 shows the convergence behaviour and the obtained statistical error from the N2C algorithm.
As can be seen from Figure 7(a), the differences in the final objective values obtained from different

1. Let x̄ be the ground-truth predictor and x be an arbitrary stationary point. The statistical error is defined as ‖x− x̄‖2.
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initialization are small. From Figure 7(b), we can also see that the obtained solutions have nearly
the same statistical error.

(a) objective vs number of iterations. (b) statistical error vs number of iterations.

Figure 7: Objective / statistical error on nonconvenx sparse group lasso (µ = 1). Here, N2C
algorithm is used, and the “best” in Figure 7(a) is the lowest objective among the 100
random runs.

The second issue is that even finding a local minimum can be hard, as the optimizer may get
trapped in saddle points. However, recent papers (Ge et al., 2015, 2017, 2016; Lee et al., 2016,
2017) have shown that batch gradient descent and noisy stochastic gradient descent almost never
converge to saddle points, and can converge to a local minimizer. We expect that a similar result
also holds for proximal gradient descent, but will leave this as future work.

5.2 Nonconvex Tree-Structured Group Lasso

In this section, we perform experiments on the nonconvex tree-structured group lasso model in
Section 4.1.2. Following (Liu and Ye, 2010), we use the face data set JAFFE2, which contains 213
256 × 256 images with seven facial expressions: anger, disgust, fear, happy, neutral, sadness and
surprise. Their tree structure, which is based on pixel neighborhoods, is also used here. The number
of groups K is 341.

Since our goal is only to demonstrate usefulness of the proposed convexification scheme, we
focus on the binary classification problem “anger vs not-anger” (with 30 anger images and 183 non-
anger images). The logistic loss is used, which is more appropriate for classification. Given training
samples {(a1, y1), . . . , (aN , yN )}, the optimization problem is then

min
x

N∑
i=1

wi log
(

1 + exp(−yi · a>i x)
)

+ µ
K∑
i=1

λiκ (‖xGi‖2) , (59)

where κ(·) is the LSP regularizer (with θ = 0.5), wi’s are weights (set to be the reciprocal of the
size of sample i’s class) used to alleviate class imbalance, and λi = 1/

√
‖Gi‖1 as in (Liu and Ye,

2. http://www.kasrl.org/jaffe.html
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2010). We use 60% of the data for training, 20% as validation set to tune µ, and the rest for testing.
For the proposed N2C algorithm, the proximal step of the convexified regularizer is obtained as in
(Liu and Ye, 2010).

As in Section 5.1, we compare the proposed N2C with SCP, GIST, GD-PAN, nmAPG, and
FISTA. The stepsize η is obtained by line search. For performance evaluation, we use (i) the testing
accuracy; (ii) solution sparsity (i.e., percentage of nonzero elements); and (iii) CPU time. To reduce
statistical variability, the experimental results are averaged over 5 repetitions.

Results are shown in Table 4. As can be seen, all nonconvex models have similar testing
accuracies, and they again outperform the convex model. Moreover, solutions from the nonconvex
models are sparser. Overall, N2C is the fastest and has the sparsest solution.

non-accelerated accelerated convex
SCP GIST GD-PAN nmAPG N2C FISTA

testing accuracy (%) 99.5±1.0 99.5±1.0 99.5±1.0 99.5±1.0 99.5±1.0 96.7±1.3
sparsity (%) 9.8±0.9 11.6±3.6 9.7±0.9 9.6±0.9 9.6±0.8 24.1±0.8

CPU time (min) 10.3±1.5 68.0±17.2 12.0±2.4 11.7±1.3 1.7±0.2 0.5±0.1

Table 4: Results on tree-structured group lasso. The best and comparable results (according to the
paired t-test with 95% confidence) are highlighted.

Figure 8 shows convergence of the algorithms versus CPU time and number of iterations. The
observations are similar to those in Figure 8, and N2C is the fastest. GIST is the slowest, as it does
not utilize acceleration and its proximal step is solved numerically which is expensive. GD-PAN
converges to a less optimal solution due to its use of approximation. Moreover, as in Section 5.1,
nmAPG and N2C show similar convergence behavior w.r.t. the number of iterations (Figure 8(b)),
but N2C is much faster w.r.t. time (Figure 8(a)). Convergence of the testing loss is shown in
Figure 9.

(a) Objective vs CPU time (minutes). (b) Objective vs number of iterations.

Figure 8: Convergence of objective on nonconvex tree-structured group lasso. Note that the curves
for nmAPG and N2C overlap in Figure 8(b).
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(a) Testing loss vs CPU time (minutes). (b) Testing loss vs number of iterations.

Figure 9: Convergence of testing loss on nonconvex tree-structured group lasso.

As in Section 5.1.1, Figure 10 shows the convergence of N2C and nmAPG w.r.t. the number of
iterations when µ is varied in {0.01, 0.1, 1}. Again, their behavior are almost identical. Hence, the
increased nonconvexity of the transformed loss does not harm convergence of nmAPG.

5.3 Nonconvex Low-Rank Matrix Completion

In this section, we perform experiments on nonconvex low-rank matrix completion (Section 4.2),
with the square loss in (30). The LSP regularizer is used, with θ =

√
µ as in (Yao et al.,

2015). We use the data sets MovieLens, Netflix and Yahoo, which have been commonly used
for evaluating matrix completion (Mazumder et al., 2010; Wen et al., 2012; Hsieh and Olsen, 2014).
The MovieLens and Netflix data sets contain ratings {1, 2, . . . , 5} assigned by various users on
movies, while the Yahoo data set contains ratings {10, 20, . . . , 100} on music. Following (Yao
et al., 2015), we normalize the ratings to zero mean and unit variance.

#users #movies #ratings
100K 943 1,682 100,000

MovieLens 1M 6,040 3,449 999,714
10M 69,878 10,677 10,000,054

Netflix 480,189 17,770 100,480,507
Yahoo 249,012 296,111 62,551,438

Table 5: Recommendation data sets used in the experiments.

5.3.1 MOVIELENS

The proposed FW procedure (Algorithm 4), denoted N2C-FW, is compared with the following
algorithms:

1. FaNCL (Yao et al., 2015): This is a recent nonconvex matrix regularization algorithm. It is
based on the proximal algorithm using efficient approximate SVD and automatic thresholding
of singular values.
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(a) µ = 0.01. (b) µ = 0.1.

(c) µ = 1.

Figure 10: Convergence of N2C and nmAPG on tree-structured group lasso with various µ.

2. LMaFit (Wen et al., 2012): It factorizes X as a product of low-rank matrices U ∈ Rm×k and
V ∈ Rn×k. The nonconvex objective 1

2‖PΩ(UV > − O)‖2F is then minimized by alternating
minimization on U and V using gradient descent.

3. Active subspace selection (denoted “active”) (Hsieh and Olsen, 2014): This solves the
(convex) nuclear norm regularized problem (with κ being the identity function in (8)) by
using the active row/column subspaces to reduce the optimization problem size.

We do not compare with IRNN (Lu et al., 2014) and GPG (Lu et al., 2015), which have been shown
to be much slower than FaNCL (Yao et al., 2015).

Following (Yao et al., 2015), we use 50% of the ratings for training, 25% for validation and the
rest for testing. For performance evaluation, we use (i) the testing RMSE; and (ii) the recovered
rank. To reduce statistical variability, the experimental results are averaged over 5 repetitions.

Results are shown in Table 6. As can be seen, the nonconvex models (N2C-FW, FaNCL and
LMaFit) achieve lower RMSEs than the convex model (active subspace selection), with N2C-
FW having the smallest RMSE. Moreover, the convex model needs a much higher rank than the
nonconvex models, which agrees with previous observations in (Mazumder et al., 2010; Yao et al.,
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2015). Thus, its running time is also much longer than the others. Figure 11 compares convergence
of N2C and FaNCL w.r.t. the objective in (30). The objectives of LMaFit and active subspace
selection are different from N2C-FW, and thus are not shown. As can be seen, though FaNCL uses
singular value thresholding to truncate the SVD, it does not control the rank as directly as N2C-FW
and so is still slower. Figures 12 compares convergence of the testing RMSE on all algorithms. As
the recovered matrix ranks for the nonconvex models are very low (2 − 9 in Table 6), N2C-FW is
much faster than the others as it starts from a rank-one matrix and only increases its rank by one in
each iteration.

RMSE rank CPU time(sec)
100K N2C-FW 0.855±0.004 2 0.8±0.1

FaNCL 0.857±0.003 2 2.6±0.5
LMaFit 0.867±0.004 2 1.8±0.2

(convex) active 0.875±0.002 52 9.4±0.3
1M N2C-FW 0.785±0.001 5 19.9±0.5

FaNCL 0.786±0.001 5 53.6±6.5
LMaFit 0.812±0.002 5 45.1±2.7

(convex) active 0.811±0.001 106 124.6±1.3
10M N2C-FW 0.778±0.001 9 313.0±2.2

FaNCL 0.779±0.001 9 615.7±6.0
LMaFit 0.797±0.001 9 264.9±3.9

(convex) active 0.808±0.001 137 904.8±30.2

Table 6: Results on the MovieLens data sets. The best results (according to the paired t-test with
95% confidence) are highlighted.

5.3.2 NETFLIX AND YAHOO

Next, we perform experiments on two very large recommendation data sets, Netflix and Yahoo
(Table 5). We randomly use 50% of the observed ratings for training, 25% for validation and the
rest for testing. As active subspace selection has been shown to be slower and inferior to the others
(Table 6), it is not compared here. Each experiment is repeated five times. Results are shown in
Table 7, and a more detailed convergence comparison with CPU time is shown in Figures 13 and
14. Again, N2C is much faster than FaNCL, and has the lowest testing RMSE.

5.4 Comparison with HONOR

In this section, we experimentally compare the proposed method with HONOR (Section 4.5) on the
model in (43), using the logistic loss and LSP regularizer. Following (Gong and Ye, 2015a), we fix
µ = 1 in (43), and θ in the LSP regularizer to 0.01µ. Experiments are performed on three large data
sets,3 kdd2010a, kdd2010b and url (Table 8). Both kdd2010a and kdd2010b are educational data
sets, and the task is to predict students’ successful attempts to answer concepts related to algebra.

3. https://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/binary.html
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(a) MovieLens-100K. (b) MovieLens-1M.

(c) MovieLens-10M.

Figure 11: Convergence of objective vs CPU time on the MovieLens data sets for nonconvex low-
rank matrix completion.

The url data set contains a collection of websites, and the task is to predict whether a particular
website is malicious. We compare

1. running HONOR directly on (43). The threshold of the hybrid step in HONOR is set to 10−10,
which yields the best empirical performance in (Gong and Ye, 2015a);

2. running mOWL-QN (Gong and Ye, 2015b) on the transformed problem (44).

To reduce statistical variability, the experimental results are averaged over 5 repetitions.
Figure 15 shows convergence of the objective (which is the same in (43) and (44)) with CPU

time. As can be seen, mOWL-QN converges faster than HONOR. This validates our claim that the
curvature information of the nonconvex regularizer helps.
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(a) MovieLens-100K. (b) MovieLens-1M.

(c) MovieLens-10M.

Figure 12: Convergence of testing RMSE vs CPU time on the MovieLens data sets for nonconvex
low-rank matrix completion.

5.5 Image Denoising

In this section, we perform experiments on total variation image denoising with nonconvex loss and
nonconvex regularizer (as introduced in Section 4.6.1). The LSP function (with θ = 1) is used as
κ in (46) on both the loss and regularizer. Eight popular images4 are used (Figure 16). They are
then corrupted by pepper-and-salt noise, with 10% of the pixels randomly set to 0 or 255 with equal
probabilities.

For performance evaluation, we use the RMSE =
√

1
mn

∑m
i=1

∑n
j=1(Xij − X̄ij)2, where X̄ ∈

Rm×n is the clean image, and X ∈ Rm×n is the recovered image. To tune µ, we pick the value
that leads to the smallest RMSE on the first four images (boat, couple, fprint, hill). Denoising
performance is then reported on the remaining images (house, lena, man, peppers).

The following algorithms will be compared:

4. http://www.cs.tut.fi/˜foi/GCF-BM3D/
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RMSE rank CPU time(min)
Netflix N2C-FW 0.792±0.001 13 64.9±1.8

FaNCL 0.793±0.001 13 322.1±7.3
LMaFit 0.807±0.001 15 98.2±1.8

Yahoo N2C-FW 0.643±0.001 9 111.3±13.5
FaNCL 0.650±0.001 9 444.7±92.4
LMaFit 0.666±0.001 12 179.3±37.5

Table 7: Results on the Netflix and Yahoo data sets. The best results (according to the paired t-test
with 95% confidence) are highlighted.

(a) Netflix. (b) Yahoo.

Figure 13: Convergence of objective vs CPU time on the Netflix and Yahoo data sets for nonconvex
low-rank matrix completion.

1. CCCP (Yuille and Rangarajan, 2002): Proposition 9 is used to construct the DC
decomposition for κ (Details are in Appendix B.1);

2. Smoothing (Chen, 2012): The nonsmooth κ is smoothed, and then gradient descent is used
(Details are in Appendix B.2);

3. nmAPG (Li and Lin, 2015): This optimizes (50) with Algorithm 2, and the exact proximal
step is solved numerically using CCCP;

4. inexact-nmAPG: This optimizes (47) with Algorithm 3 (with εt = 0.95t), and the inexact
proximal step is solved numerically using L-BFGS.

5. As a baseline, we also compare with ADMM (Boyd et al., 2011) with the convex formulation.

To reduce statistical variability, the experimental results are averaged over 5 repetitions.
The RMSE results are shown in Table 9. As can be seen, the (convex) ADMM formulation

leads to the highest RMSE, while CCCP, smoothing, nmAPG and inexact-nmAPG have the same
RMSE which is lower than that of ADMM. This agrees with previous observations that nonconvex
formulations can yield better performance than the convex ones. Timing results are shown in
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(a) Netflix. (b) Yahoo.

Figure 14: Convergence of testing RMSE vs CPU time on the Netflix and Yahoo data sets for
nonconvex low-rank matrix completion.

kdd2010a kdd2010b url
number of samples 510,302 748,401 2,396,130
number of features 20,216,830 29,890,095 3,231,961

Table 8: Data sets used in the comparison with HONOR.

Table 10 and Figure 17. As can be seen, smoothing has low iteration complexity but suffers from
slow convergence. CCCP and nmAPG both need to exactly solve a subproblem, and thus are also
slow. The inexact-nmAPG algorithm does not guarantee the objective value to be monotonically
decreasing as iteration proceeds. As the inexactness is initially large, there is an initial spike in
the objective. However, inexact-nmAPG then quickly converges, and is much faster than all the
baselines.

house lena man peppers
CCCP 0.0205±0.0010 0.0174±0.0005 0.0223±0.0002 0.0207±0.0009

smoothing 0.0205±0.0011 0.0174±0.0005 0.0223±0.0002 0.0207±0.0009
nmAPG 0.0205±0.0010 0.0174±0.0005 0.0223±0.0002 0.0207±0.0009

inexact-nmAPG 0.0205±0.0010 0.0174±0.0005 0.0223±0.0002 0.0207±0.0009
(convex) ADMM 0.0223±0.0011 0.0193±0.0005 0.0242±0.0002 0.0229±0.0008

Table 9: RMSE for image denoising. The best RMSE’s (according to the paired t-test with 95%
confidence) are highlighted.
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(a) kdd2010a. (b) kdd2010b.

(c) url.

Figure 15: Convergence of the objective vs CPU time for HONOR and mOWL-QN.

(a) boat. (b) couple. (c) fprint. (d) hill. (e) house. (f) lena. (g) man. (h) peppers.

Figure 16: Samples images used in the denoising experiment. Top: Clean images; Bottom: Noisy
images.

6. Conclusion

In this paper, we proposed a novel approach to learning with nonconvex regularizers that are variants
of the convex `1-norm. By moving the nonconvexity associated with the nonconvex regularizer
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house lena man peppers
CCCP 21.0±2.3 270.0±13.0 325.3±17.4 14.5±1.2

smoothing 75.5±2.0 433.1±4.8 437.7±6.8 61.9±1.7
nmAPG 19.4±2.3 91.4±7.3 104.4±2.7 16.1±1.8

inexact-nmAPG 10.3±1.1 37.9±5.0 43.0±7.6 8.1±0.2
(convex) ADMM 3.0±0.1 42.8±1.1 46.9±1.0 2.2±0.1

Table 10: CPU time (seconds) for image denoising. The shortest CPU time (according to the paired
t-test with 95% confidence) are highlighted.

(a) house. (b) lena.

(c) man. (d) peppers.

Figure 17: CPU time (seconds) vs objective value on different images.

to the loss, the nonconvex regularizer is convexified to become a familiar convex regularizer
while the augmented loss is still Lipschitz smooth. This allows one to reuse efficient algorithms
originally designed for convex regularizers on the transformed problem. To illustrate usages with
the proposed transformation, we plug it into many popular optimization algorithms. First, we
consider the proximal algorithm, and showed that while the proximal step is expensive on the
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original problem, it becomes much easier on the transformed problem. We further propose an
inexact proximal algorithm, which allows inexact update of proximal step when it does not have a
closed-form solution. Second, we combine the proposed convexification scheme with the Frank-
Wolfe algorithm on learning low-rank matrices, and showed that its crucial linear programming
step becomes cheaper and more easily solvable. As no convergence results exist on this nonconvex
problem, we designed a novel Frank-Wolfe algorithm based on the proposed transformation and
with convergence guarantee. Third, when using with ADMM and SVRG, we showed that the
existing convergence results can be applied on the transformed problem but not on the original
one. We further extend the proposed transformation to handle nonconvex and nonsmooth loss
functions, and illustrate its benefits on the total variation model and robust sparse coding. Finally, we
demonstrate the empirical advantages of working with the transformed problems on various tasks
with both synthetic and real-world data sets. Experimental results show that better performance can
be obtained with nonconvex regularizers, and algorithms on the transformed problems run much
faster than the state-of-the-art on the original problems.
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Appendix A. Proofs

A.1 Proposition 1

Proof First, we introduce a few Lemmas.

Lemma 14 (Golub and Van Loan (2012)) For x 6= 0, the gradient of the `2-norm is ∇xi‖x‖2 =
xi/‖x‖2.

Let h(z) = κ(‖z‖2)− κ0‖z‖2.

Lemma 15

∇zih(z) =

{
κ′(‖z‖2)−κ0
‖z‖2 zi z 6= 0

0 otherwise
. (60)

Proof For z 6= 0, ‖z‖2 is differentiable (Lemma 14), and we obtain the first part of (60). For z = 0,
let h̄i(z) = κ′(‖z‖2)−κ0

‖z‖2 zi. Consider any ∆ with ‖∆‖2 = 1.

lim
α→0+

h̄i(0 + α∆) = lim
α→0+

κ′(‖α∆‖2)− κ0

‖α∆‖2
α∆i

= lim
α→0+

(κ′(α)− κ0)∆i = 0,

as limα→0+ κ
′(α)−κ0 = 0. Thus, h(z) is smooth at z = 0, and we obtain the second part of (60).
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Lemma 16 (Eriksson et al. (2004)) Let f : R→ R be a differentiable function. If its derivative f ′

is bounded, then f is Lipschitz-continuous with constant c where c is equal to the maximum value
of |f ′|.

Lemma 17 (Eriksson et al. (2004)) If a continuous function f : R→ R isL1-Lipschitz continuous
in [a, b] and L2-Lipschitz continuous in [b, c] (where −∞ ≤ a < b < c ≤ ∞), then it is
max(L1, L2)-Lipschitz continuous in [a, c].

Lemma 18 Let z be an arbitrary vector, and ei be the unit vector with only its ith dimension equal
to 1. Define ĥi(γ) = κ′(‖z+eiγ‖2)−κ0

‖z+eiγ‖2 (zi + γ). Then, ĥ is 2ρ-Lipschitz continuous.

Proof Let the finite non-differentiable points of κ′ be {α̂1, . . . , α̂k}, where α̂1 < · · · < α̂k. We
partition (−∞,∞) into intervals (−∞, α̂1] ∪ [α̂1, α̂2] ∪ · · · ∪ [α̂k,∞), such that κ′′ exists in each
interval. Let w = z + eiγ. For any interval,

ĥ′i(γ) =
κ′′(‖w‖2)

‖w‖2
(zi + γ)2 +

(
1− (zi + γ)2

‖w‖22

)
κ′(‖w‖2)− κ0

‖w‖2
. (61)

Let φ(α) = κ′(α) − κ0, where α ≥ 0. Note that φ(0) = 0. Moreover, φ(α) is ρ-Lipschitz
continuous as κ is ρ-Lipschitz smooth. Thus,

|φ(α)− φ(0)| = |κ′(α)− κ0| ≤ ρα,

and so ∣∣κ′(‖w‖2)− κ0

∣∣ ≤ ρ‖w‖2. (62)

Note that (zi + γ)2 ≤ ‖w‖22, (61) can be rewritten as∣∣∣ĥ′i(γ)
∣∣∣ ≤ ∣∣∣∣κ′′(‖w‖2)

‖w‖2
(zi + γ)2

∣∣∣∣+

∣∣∣∣(1− (zi + γ)2

‖w‖22

)
κ′(‖w‖2)− κ0

‖w‖2

∣∣∣∣
≤
∣∣κ′′(‖w‖2)

∣∣+

∣∣∣∣κ′(‖w‖2)− κ0

‖w‖2

∣∣∣∣ ≤ 2ρ,

where the last inequality is due to that κ is ρ-Lipschitz smooth and (62). Thus, |ĥ′i(γ)| ≤ 2ρ, and by
Lemma 16, we have ĥi(γ) is 2ρ-Lipschitz continuous on any interval. Obviously ĥi is continuous,
and we conclude that ĥi is also 2ρ-Lipschitz continuous by Lemma 17.

From Lemma 18, ĥi is 2ρ-Lipschitz continuous. Thus, ∇h is 2ρ-Lipschitz continuous in each
of its dimensions. For any x, y ∈ Rd,

‖∇h(x)−∇h(y)‖22 =

d∑
i=1

[∇xih(x)−∇yih(y)]2

≤ 4ρ2
d∑
i=1

(xi − yi)2 = 4ρ2‖x− y‖22,

and hence h is 2ρ-Lipschitz smooth. Finally, we will show that h(z) is also concave.
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Lemma 19 (Boyd and Vandenberghe (2004)) φ(x) = π(q(x)) is concave if π is concave, non-
increasing and q is convex.

Let π(α) = κ(α) − κ0α, where α ≥ 0. Note that π is concave. Moreover, π(0) = 0
and π′(α) ≤ 0. Thus, π(α) is non-increasing on α ≥ 0. Next, let q(z) = ‖z‖2. Then,
h(z) ≡ κ(‖z‖2)− κ0‖z‖2 = π(q(z)). As q is convex, h(z) is concave from Lemma 19.

A.2 Corollary 2

Proof From Proposition 1 and the definition of ḡi, we can see that ḡi is concave. Then, for any x, y,

‖∇h(Aix)−∇h(Aiy)‖22 ≤ 4ρ2‖Aix−Aiy‖22 ≤ 4ρ2‖Ai‖2F ‖x− y‖22.

Thus, ḡi is 2ρ‖Ai‖F -Lipschitz smooth.

A.3 Corollary 3

Proof It is easy to see that ğ(x) = κ0
∑K

i=1 µi‖Aix‖2 is convex but not smooth. Using Corollary 2,
as each ḡi is concave and Lipschitz-smooth, ḡ is also concave and Lipschitz-smooth.

A.4 Proposition 5

Proof First, we introduce a few Lemmas.

Definition 20 (Bertsekas (1999)) A function f : Rm → R is absolute symmetric if
f ([x1; . . . ;xm]) = f

([
|xπ(1)|; . . . ; |xπ(m)|

])
for any permutation π.

Lemma 21 (Lewis and Sendov (2005)) Let σ(X) = [σ1(X); . . . ;σm(X)] be the vector
containing singular values of X . For an absolute symmetric function f : Rm → R, φ(X) ≡
f(σ(X)) is concave on X if and only if f is concave.

From the definition of ḡ in (24),

ḡ(X) = µ̄

m∑
i=1

(κ(σi(X))− κ0‖X‖∗) = µ̄

m∑
i=1

(κ(σi(X))− κ0σi(X)) .

Let

h(x) = µ̄
m∑
i=1

(κ(|xi|)− κ0|xi|). (63)

Obviously, h is absolute symmetric. From Remark 4, h is concave. Thus, ḡ is also concave by
Lemma 21.

Lemma 22 (Lewis and Sendov (2005)) Let the SVD of X be UDiag(σ(X))V >, where σ(X) =
[σ1(X); . . . ;σm(X)], f : Rm → R be smooth and absolute symmetric, and φ(X) ≡ f(σ(X)). We
have
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1. ∇φ(X) = UDiag(∇f(σ(X)))V >; and

2. If f is L-Lipschitz smooth, then φ is also L-Lipschitz smooth.

From Remark 4, h in (63) is 2ρ-Lipschitz smooth. Hence, from Lemma 22, ḡ(X) is also 2ρ-
Lipschitz smooth and∇ḡ(X) = UDiag(∇h(σ(X)))V >.

A.5 Proposition 9

Proof First, we introduce the following Lemma.

Lemma 23 (Boyd and Vandenberghe (2004)) φ(x) = π(q(x)) is convex if π is convex, non-
decreasing and q is convex.

Let π(α) = κ(α) + ρ
2α

2 where α ≥ 0. As κ is ρ-Lipschitz smooth, κ′(β)− κ′(α) ≤ ρ(α− β).
Thus, π′(α)−π′(β) = κ′(α)+ρα−κ′(β)−ρβ ≥ 0, i.e., π is convex. Besides, π′(0) = κ′(0) ≥ 0.
Thus, π′(α) ≥ 0 and π is also non-decreasing. Let q(x) = ‖x‖ which is obviously convex as ‖ · ‖
is a norm, we can express φ(x) = π(q(x)) = κ(‖x‖x) + ρ

2‖x‖
2. Finally, φ(x) is also convex due

to Lemma 23.

A.6 Theorem 6

Proof First, we introduce a few Lemmas.

Lemma 24 Let X̃ be an inexact solution of the proximal step minZ h(Z), where h(Z) = 1
2‖Z −

(X − 1
τ∇f̄(X))‖2F + 1

τ ğ(Z). Let X̂ = arg minZ h(Z). If h(X̃)− h(X̂) ≤ ε, then

F (X̃) ≤ F (X)− τ − L̄
2
‖X̃ −X‖2F + τε.

Proof Let φ(Z) = 〈Z −X,∇f(X)〉+ τ
2‖Z −X‖

2
F + ğ(Z). We have

X̂ = arg min
Z
h(Z) = arg min

Z
φ(Z), (64)

φ(Z) = τh(Z)− 1

τ
‖∇f̄(X)‖2F . (65)

From (64), we have

φ(X̂) = 〈X̂ −X,∇f(X)〉+
τ

2
‖X̂ −X‖2F + ğ(X̂) ≤ ğ(X). (66)

As h(X̃)− h(X̂) ≤ ε, from (65) (note that ‖∇f̄(X)‖2F is a constant), we have

φ(X̃)− φ(X̂) = τ(h(X̃)− h(X̂)) ≤ τε.
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Then with (66), we have φ(X̃) ≤ τε+ φ(X̂) ≤ ğ(X) + τε, i.e.,

〈X̃ −X,∇f(X)〉+
τ

2
‖X̃ −X‖2F + ğ(X̃) ≤ ğ(X) + τε. (67)

As f̄ is L̄-Lipschitz smooth,

f̄(X̃) ≤ f̄(X) + 〈X̃ −X,∇f(X)〉+
L̄

2
‖X̃ −X‖2F .

Combining with (67), we obtain

f̄(X̃) +
τ

2
‖X̃ −X‖22 + ğ(X̃) ≤ f̄(X) +

L̄

2
‖X̃ −X‖2F + ğ(X) + τε.

Thus, F (X̃) ≤ F (X)− τ−L̄
2 ‖X̃ −X‖

2
F + τε.

If step 6 in Algorithm 3 is satisfied, Xt+1 = Z̃t+1, and

F (Xt+1) ≤ F (Xt)−
δ

2
‖Xt+1 − Yt‖2F . (68)

Otherwise, step 9 is executed, and from Lemma 24, we have

F (Xt+1) ≤ F (Xt)−
τ − L̄

2
‖Xt+1 −Xt‖2F + τεt. (69)

Partition Ω(T ) = {1, 2, . . . , T} into Ω1(T ) and Ω2(T ), such that step 7 is performed if t ∈
Ω1(T ); and execute step 9 otherwise. Combining (68) and (69), we have

F (X1)− F (XT+1)

≥ δ

2

∑
t∈Ω1(T )

‖Xt+1 − Yt‖2F +
τ − L̄

2

∑
t∈Ω2(T )

(
‖Xt+1 −Xt‖2F − τεt

)
,

≥ δ

2

∑
t∈Ω1(T )

‖Xt+1 − Yt‖2F +
τ − L̄

2

∑
t∈Ω2(T )

‖Xt+1 −Xt‖2F −
(τ − L̄)τ

2

∑
t∈Ω2(T )

εt

≥ δ

2

∑
t∈Ω1(T )

‖Xt+1 − Yt‖2F +
τ − L̄

2

∑
t∈Ω2(T )

‖Xt+1 −Xt‖2F −
(τ − L̄)τ

2

∞∑
t=1

εt

≥ δ

2

∑
t∈Ω1(T )

‖Xt+1 − Yt‖2F − c1 +
τ − L̄

2

∑
t∈Ω2(T )

‖Xt+1 −Xt‖2F , (70)

where c1 = (τ−L̄)τ
2

∑∞
t=1 εt <∞ and c1 ≥ 0. From (70), we have

F (X1)− inf
X
F (X) + c1 ≥ F (X1)− lim

T→∞
F (XT+1) + c1

≥ lim
T→∞

δ

2

∑
t∈Ω1(T )

‖Xt+1 − Yt‖2F +
τ − L̄

2

∑
t∈Ω2(T )

‖Xt+1 −Xt‖2F

≡ c2. (71)

From Assumption A1, c2 ≤ F (X1)− infX F (X) + c1 <∞. Thus, c2 ≥ 0 is a finite constant. Let
Ω∞1 = limT→∞Ω1(T ), and Ω∞2 = limT→∞Ω2(T ). Consider the three cases:
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1. |Ω∞1 | is finite, and |Ω∞2 | is infinite. As |Ω∞2 | = ∞ and lim‖X‖F→∞ F (X) = ∞ from
Assumption A1 and (71), we have

lim
t∈Ω∞2 ,t→∞

‖Xt+1 −Xt‖2F = 0.

Thus, there exists a limit point such that X∗ = limtj∈Ω∞2 ,tj→∞Xtj for a subsequence {Xtj}
of {Xt}. Since limtj→∞ εtj = 0, then

lim
tj∈Ω∞2 ,tj→∞

Xtj+1 = lim
tj∈Ω∞2 ,tj→∞

prox 1
τ
ğ(Xtj −

1

τ
∇f̄(Xtj )).

As a result,

0 ∈ lim
tj∈Ω∞2 ,tj→∞

1

τ
∇f̄(Xtj ) + (Xtj+1 −Xtj ) +

1

τ
∂ğ(Xtj+1).

Since both limtj∈Ω∞2 ,tj→∞Xtj = limtj∈Ω∞2 ,tj→∞Xtj+1 = X∗, we then have ∇f̄(X∗) +
∂ğ(X∗) 3 0, and X∗ is a critical point of (1).

2. |Ω∞1 | is infinite, and |Ω∞2 | is finite. As Ω∞1 is infinite and lim‖X‖F→∞ F (X) = ∞ from
Assumption A1 and (71), we have

lim
tj∈Ω∞1 ,tj→∞

‖Xtj+1 − Ytj‖2F = 0

for a subsequence {Xtj} of {Xt}. Thus, there exist a limit point such that

X∗ = lim
tj∈Ω∞1 ,tj→∞

Xtj+1 = lim
tj∈Ω∞1 ,tj→∞

Ytj . (72)

As limtj→∞ εtj = 0, we have

0 ∈ lim
tj∈Ω∞1 ,tj→∞

1

τ
∇f̄(Ytj ) + (Xtj+1 − Ytj ) +

1

τ
∂ğ(Xtj+1).

From (72), we have∇f̄(X∗) + ∂ğ(X∗) 3 0 and X∗ is a critical point of (1).

3. Both |Ω∞1 | and |Ω∞2 | are infinite. From the above two cases, we can see that once |Ω∞1 | or
|Ω∞2 | is infinite, then {Xt} is bounded, and any limit point of {Xt} is also a critical point. In
the third case, both |Ω∞1 | and |Ω∞2 | are infinite. Thus, any limit point of {Xt} is also a critical
point of (1).

As a result, {Xt} is bounded and its limits points are critical points of (1).

A.7 Proposition 7

Proof From (71), we have

δ

2

∑
t1∈Ω1(T )

‖Xt1+1 − Yt1‖2F +
τ − L̄

2

∑
t2∈Ω2(T )

‖Xt2+1 −Xt2‖2F < c2, (73)
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where c2 ∈ (0,∞) is a positive constant. Let c3 = min( δ2 ,
τ−L̄

2 ). From the definition of Vt, (73)
can be rewritten as

c3

T∑
t=1

‖Xt+1 − Vt‖2F ≤
δ

2

∑
t1∈Ω1(T )

‖Xt1+1 − Yt1‖2F +
τ − L̄

2

∑
t2∈Ω2(T )

‖Xt2+1 −Xt2‖2F ≤ c2.

Since c2 is finite, thus limt→∞ dt ≡ ‖Xt+1 − Vt‖2F = 0. Besides, we have

min
t=1,...,T

T∑
t=1

‖Xt+1 − Vt‖2F ≤
1

T

T∑
t=1

‖Xt+1 − Vt‖2F ≤
c2

c3T
.

A.8 Proposition 10

Proof Note from (32) that ∇f̄(S) = ∇f(S) + ∇ḡ(S). Using the matrix chain rule, since S =
αXt + βutv

>
t and ∂S

∂α = Xt, then

∂f̄(S)

∂α
=

〈
∇f̄(S),

∂S

∂α

〉
= α〈Xt,∇f̄(S)〉.

Similarly, since ∂S
∂β = utv

>
t ,

∂f̄(S)

∂β
=

〈
∇f̄(S),

∂S

∂β

〉
= β

〈
utv
>
t ,∇f̄(S)

〉
= β

(
u>t ∇f̄(S)vt

)
.

As ḡ(S) = µ
∑m

i=1 κ(σi(S))−µκ0σi(S), using Lemma 22,∇f̄(X) = ∇f(S) +µUSDiag(w)V >S
and wi = κ′(σi(S))− κ0.

A.9 Corollary 11

Proof Note that the SVD of X is (UUB)Diag([σ1(B), . . . , σk(B)])(V VB)>. Using Lemma 22,

∇f̄(X) = ∇f(X) +∇ḡ(X) = ∇f(X) + µ(UUB)Diag(w)(V VB)>,

where w ∈ Rk with wi = κ′(σi(B))− κ0.

A.10 Proposition 12

Proof As ḡ(X) is defined on the singular values of the input matrix X , we only need to show
that UBV > and B have the same singular values. Let the SVD of B be UBDiag(σ(B))V >B ,
where σ(B) = [σ1(B), . . . , σm(B)]. As U and V are orthogonal, it is easy to see that
(UUB) Diag(σ(B)) (VBV )> is the SVD of X . Thus, the Proposition holds.
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A.11 Theorem 13

Proof We first introduce two Propositions.

Proposition 25 (Mishra et al. (2013) ) For a square matrix X , let sym(X) = 1
2(X + X>). The

first-order optimality conditions for (37) are

∇f̄(X)V B − U sym(U>∇f̄(X)V B) = 0,

(∇f̄(X))>UB − V sym(V >∇f̄(X)UB) = 0,

sym(U>∇f̄(X)V ) + µ̄I = 0.

Proposition 26 If (31) has a critical point with rank r, choose the sizes of matrices U , V and B be
m× r, n× r and r× r, respectively. Then, any critical point of (37) is also a critical point of (31).

Proof The subdifferential of the nuclear norm can be obtained as (Watson, 1992)

∂‖X‖∗ = {UV > +W : U>W = 0,WV = 0, ‖W‖∞ ≤ 1}, (74)

where X = UBV >. Let X̂ = Û B̂V̂ > be a critical point of (37). We have sym(Û>∇f̄(X̂)V̂ ) +
µ̄I = 0 due to Proposition 25. From the property of the matrix norm, we have

λ = ‖ sym(Û>∇f̄(X̂)V̂ )‖∞ ≤ ‖Û>∇f̄(X̂)V̂ ‖∞ ≤ ‖∇f̄(X̂)‖∞.

The equality holds only when∇f̄(X̂) = −µ̄Û V̂ >− µ̄Û⊥Σ̂⊥V̂
>
⊥ , where Û⊥ and V̂⊥ are orthogonal

matrices with Û>Û⊥ = 0 and V̂ >V̂⊥ = 0, and Σ̂⊥ is a diagonal matrix with positive elements
[Σ⊥]ii ≤ 1. Combining this with (74), we have

∇f̄(X̂) ∈ −µ̄∂‖X̂‖∗. (75)

Then, for (31), if X∗ is a critical point, we have

∇f̄(X∗) ∈ −µ̄∂‖X∗‖∗. (76)

Comparing (75) and (76), the difference is on the ranks of X̂ and X∗. As (31) has a critical point
with rank-r, X̂ is also a critical point of (31).

In Algorithm 4, the sizes ofU , V andB are selected asm×t, n×t, and t×t, respectively. If (31)
has a critical point with rank r, then as iteration goes and t = r, from Proposition 26, Algorithm 4
will return a critical point of (31).

Appendix B. Details in Section 5.5

B.1 CCCP

Using Proposition 9, we can decompose κ(|x|) = ς̂(x) + ς̆(x), where ς̂(x) = −ρ
2x

2 is convex and
ς̆(x) = κ(|x|) + ρ

2x
2 is concave. Apply the above decomposition on κ in (46), and we have the
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following DC decomposition:

F̆ (X) =
m∑
i=1

n∑
j=1

ς̆
(

[Y −X]ij

)
+ µ

m−1∑
i=1

m∑
j=1

ς̆
(

[DvX]ij

)
+ µ

n∑
i=1

n−1∑
j=1

ς̆
(

[XDh]ij

)
,

F̂ (X) =
m∑
i=1

n∑
j=1

ς̂
(

[Y −X]ij

)
+ µ

m−1∑
i=1

m∑
j=1

ς̂
(

[DvX]ij

)
+ µ

n∑
i=1

n−1∑
j=1

ς̂
(

[XDh]ij

)
.

The CCCP procedures at Section 2.1 can then be applied.

B.2 Smoothing

As the LSP is used as κ, a smoothed version of it can be obtained as κ̃λ(x) = β log
(

1 + hλ(x)
θ

)
,

where hλ(x) =

{
|x| if |x| ≥ λ
x2

2λ + λ
2 otherwise

. Thus, (46) is smoothed as

F̆λ(X) =
m∑
i=1

n∑
j=1

κ̃λ

(
[Y −X]ij

)
+ µ

m−1∑
i=1

m∑
j=1

κ̃λ

(
[DvX]ij

)
+ µ

n∑
i=1

n−1∑
j=1

κ̃λ

(
[XDh]ij

)
.

Gradient descent is then used for optimization (Chen, 2012). Specifically, we need to minimize a
sequence of subproblems {F̆λ1(X), F̆λ2(X), . . . } with λi = λ0ν

i, and using X from F̆λi−1
(X) to

warm start F̆λi(X). In the experiment, we set λ0 = 0.1 and ν = 0.95.
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d’automatique, informatique, recherche opérationnelle. Analyse numérique, 9(2):41–76, 1975.

G.H. Golub and C.F. Van Loan. Matrix Computations. Johns Hopkins University Press, 2012.

P. Gong and J. Ye. HONOR: Hybrid Optimization for NOn-convex Regularized problems. In
Advances in Neural Information Processing Systems, pages 415–423, 2015a.

P. Gong and J. Ye. A modified orthant-wise limited memory quasi-Newton method with
convergence analysis. In Proceedings of the 32nd International Conference on Machine
Learning, pages 276–284, 2015b.

P. Gong, C. Zhang, Z. Lu, J. Huang, and J. Ye. A general iterative shrinkage and thresholding
algorithm for non-convex regularized optimization problems. In Proceedings of the 30th
International Conference on Machine Learning, pages 37–45, 2013.

B. He and X. Yuan. On the o(1/n) convergence rate of the douglas-rachford alternating direction
method. SIAM Journal on Numerical Analysis, 50(2):700–709, 2012.

J.B. Hiriart-Urruty. Generalized differentiability, duality and optimization for problems dealing
with differences of convex functions. Convexity and Duality in Optimization, pages 37–70, 1985.

M. Hong, Z.-Q. Luo, and M. Razaviyayn. Convergence analysis of alternating direction method of
multipliers for a family of nonconvex problems. SIAM Journal on Optimization, 26(1):337–364,
2016.

C.-J. Hsieh and P. Olsen. Nuclear norm minimization via active subspace selection. In Proceedings
of the 31st International Conference on Machine Learning, pages 575–583, 2014.

L. Jacob, G. Obozinski, and J.-P. Vert. Group lasso with overlap and graph lasso. In Proceedings of
the 26th International Conference on Machine Learning, pages 433–440, 2009.

M. Jaggi. Revisiting Frank-Wolfe: Projection-free sparse convex optimization. In Proceedings of
the 30th International Conference on Machine Learning, pages 427–435, 2013.

R. Jenatton, J. Mairal, G. Obozinski, and F. Bach. Proximal methods for hierarchical sparse coding.
Journal of Machine Learning Research, 12:2297–2334, 2011.

S. Laue. A hybrid algorithm for convex semidefinite optimization. In Proceedings of the 29th
International Conference on Machine Learning, pages 177–184, 2012.

J. Lee, M. Simchowitz, M. Jordan, and B. Recht. Gradient descent only converges to minimizers.
In Proceedings of the 29th Conference on Learning Theory, pages 1246–1257, 2016.

J. Lee, I. Panageas, G. Piliouras, M. Simchowitz, M.I. Jordan, and B. Recht. First-order methods
almost always avoid saddle points. arxiv preprint, University of Southern California, 2017.

49



YAO AND KWOK

A.S. Lewis and H.S. Sendov. Nonsmooth analysis of singular values. Set-Valued Analysis, 13(3):
243–264, 2005.

G. Li and T.K. Pong. Global convergence of splitting methods for nonconvex composite
optimization. SIAM Journal on Optimization, 25(4):2434–2460, 2015.

H. Li and Z. Lin. Accelerated proximal gradient methods for nonconvex programming. In Advances
in Neural Information Processing Systems, pages 379–387, 2015.

J. Liu and J. Ye. Moreau-Yosida regularization for grouped tree structure learning. In Advances in
Neural Information Processing Systems, pages 1459–1467, 2010.

J. Liu, P. Musialski, P. Wonka, and J. Ye. Tensor completion for estimating missing values in visual
data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(1):208–220, 2013.

P. Loh and M. Wainwright. Regularized M-estimators with nonconvexity: Statistical and
algorithmic theory for local optima. Journal of Machine Learning Research, 16:559–616, 2015.

C. Lu, J. Shi, and J. Jia. Online robust dictionary learning. In IEEE Conference on Computer Vision
and Pattern Recognition, pages 415–422, 2013.

C. Lu, J. Tang, S. Yan, and Z. Lin. Generalized nonconvex nonsmooth low-rank minimization. In
Proceedings of the International Conference on Computer Vision and Pattern Recognition, pages
4130–4137, 2014.

C. Lu, C. Zhu, C. Xu, S. Yan, and Z. Lin. Generalized singular value thresholding. In Proceedings
of the 29th AAAI Conference on Artificial Intelligence, pages 1805–1811, 2015.

Z. Lu. Sequential convex programming methods for a class of structured nonlinear programming.
Preprint arXiv:1210.3039, 2012.

J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online dictionary learning for sparse coding. In
Proceedings of the 26th International Conference on Machine Learning, pages 689–696, 2009.

R. Mazumder, T. Hastie, and R. Tibshirani. Spectral regularization algorithms for learning large
incomplete matrices. Journal of Machine Learning Research, 11:2287–2322, 2010.

B. Mishra, G. Meyer, F. Bach, and R. Sepulchre. Low-rank optimization with trace norm penalty.
SIAM Journal on Optimization, 23(4):2124–2149, 2013.

Y. Nesterov. Gradient methods for minimizing composite functions. Mathematical Programming,
140(1):125–161, 2013.

T. Ngo and Y. Saad. Scaled gradients on Grassmann manifolds for matrix completion. In Advances
in Neural Information Processing Systems, pages 1412–1420, 2012.

M. Nikolova. A variational approach to remove outliers and impulse noise. Journal of Mathematical
Imaging and Vision, 20(1-2):99–120, 2004.

J. Nocedal and S.J. Wright. Numerical Optimization. Springer, 2006.

50



EFFICIENT LEARNING OF NONCONVEX REGULARIZERS BY REDISTRIBUTING NONCONVEXITY

P. Ochs, Y. Chen, T. Brox, and T. Pock. iPiano: Inertial proximal algorithm for nonconvex
optimization. SIAM Journal on Imaging Sciences, 7(2):1388–1419, 2014.

N. Parikh and S. Boyd. Proximal algorithms. Foundations and Trends in Optimization, 1(3):123–
231, 2013.
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