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Abstract

Topic modeling is an important tool in natural language processing. Topic models provide
two forms of output. The first is a predictive model. This type of model has the ability to
predict unseen documents (e.g., their categories). When topic models are used in this way,
there are ample measures to assess their performance. The second output of these models
is the topics themselves. Topics are lists of keywords that describe the top words pertaining
to each topic. Often, these lists of keywords are presented to a human subject who then
assesses the meaning of the topic, which is ultimately subjective. One of the fundamental
problems of topic models lies in assessing the quality of the topics from the perspective
of human interpretability. Naturally, human subjects need to be employed to evaluate
interpretability of a topic. Lately, crowdsourcing approaches are widely used to serve the
role of human subjects in evaluation. In this work we study measures of interpretability
and propose to measure topic interpretability from two perspectives: topic coherence and
topic consensus. We start with an existing measure for topic coherence—model precision.
It evaluates coherence of a topic by introducing an intruded word and measuring how well
a human subject or a crowdsourcing approach could identify the intruded word: if it is
easy to identify, the topic is coherent. We then investigate how we can measure coherence
comprehensively by examining dimensions of topic coherence. For the second perspective
of topic interpretability, we suggest topic consensus that measures how well the results of a
crowdsourcing approach matches those given categories of topics. Good topics should lead
to good categories, thus, high topic consensus. Therefore, if there is low topic consensus
in terms of categories, topics could be of low interpretability. We then further discuss how
topic coherence and topic consensus assess different aspects of topic interpretability and
hope that this work can pave way for comprehensive measures of topic interpretability.

1. Introduction

Understanding natural language is one of the cornerstones of artificial intelligence research.
Researchers can usually rely on text to give them signal for their specific problem. Text
has been used to greatly aid artificial intelligence tasks such as opinion mining (Pang and
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Lee, 2008; Tumasjan et al., 2010), and user home location detection (Mahmud et al., 2012),
and to find users in crisis situations (Morstatter et al., 2014). Topic modeling is one of
the prominent text analysis techniques. Formally, topics are probability distributions over
the words, but usually researchers treat them as lists of the most probable keywords. This
process is akin to organizing newspaper articles by the “section” in which they appear, and
simultaneously ranking words for that section. Topic models have been widely used for
many tasks in social media research, such as using text to discover topics of discussion in
crisis scenarios (Kireyev et al., 2009), event detection and analysis (Hu et al., 2012), and
finding a Twitter user’s home location (Eisenstein et al., 2010).

Topic modeling describes a family of approaches which work toward the above task.
Latent Dirichlet Allocation (Blei et al., 2003), commonly known as LDA, is one example
of a very popular topic model. LDA, and models like it, are used from two perspectives.
The first is as a predictive model. When LDA is used in this way, the application is clear:
there are many existing measures to assess the predictive performance. The other main
use of LDA is to describe the dataset. The topics it learns are read by humans for them
to get a better picture of the underlying themes in the dataset. When used this way, the
topic distributions are manually inspected in many studies to show that some underlying
pattern exists in the corpus. The meaning behind these topics is often interpreted by the
individual who builds the model, and topics are often given a title or name to reflect their
understanding of the underlying meaning of the topics. One key concern with topic models
lies with how well human beings can actually understand the topics, or the problem of topic
interpretability. It may be true that when presented with a group of words a human subject
will always be able to assign some meaning. In this work, we question if we can tap on a
group of human subjects or crowdsourcing in search of measures for topic interpretability.
We focus on assessing the interpretability of topics from two perspectives: coherence,
and consensus. Coherence measures how semantically close the top words of a topic are.
Consensus measures how well the results of a crowdsourcing approach or generated by a
group of human subjects match those given categories of topics.

The main contributions of this work are:

• We elaborate the need for measuring topic coherence, a novel dimension for measuring
the semantic quality of topics. Based on this dimension, we propose “Model Precision
Choose Two”, a measure to comprehensively estimate how well a topic’s top words
are related to each other;

• We propose a topic consensus measure that estimates how well a statistical topic
represents an underlying category of text in the corpus; and

• We demonstrate how these measures complement the existing framework and show
how the results of these measures can help to further discover interpretable topics by
a topic model.

2. Related Work

Topic modeling has been widely accepted in many communities such as machine learning,
NLP, and social sciences (Ramage et al., 2009b). More recently topic modeling has been
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widely applied to social media data. In the context of disaster-related tweets, Kireyev et al.
(2009) tries to find disaster-related tweets, modeling two types of topics: informational
and emotional. Joseph et al. (2012) studies the relation between users’ posts and their
geolocation. Several works (Yin et al., 2011; Hong et al., 2012; Pozdnoukhov and Kaiser,
2011) focus on identifying topics in geographical Twitter datasets, looking for topics that
pertain to things such as local concerts and periods of mass unrest. Topic modeling was also
used to find indication of bias in Twitter streams (Morstatter et al., 2013). Topic models
exist have been developed to meet the unique needs of web data (Lin et al., 2014).

With such a wide acceptance, it is important that the topics produced by topic models
are evaluated. Approaches to evaluating topic models follow two main avenues: evaluating
the predictive performance of the model, and evaluating its interpretability. While we only
focus on the latter in this work, we will cover the related work in the area of assessing the
predictability before moving on to discuss the evaluation of interpretability.

2.1 Evaluating the Predictive Power of Topic Models

In the most general case, topic models are run over large corpora of data that do not
contain a “ground truth” definition of the topics in the text. Because of this, we cannot
apply supervised machine learning measures such as accuracy, precision, and recall to the
task. Instead, the most often used measure for the predictive performance of topic models
is “perplexity” (Jelinek et al., 1977; Jurafsky and Martin, 2000), which measures how well
the topics match a set of held-out documents (Blei et al., 2003; Griffiths and Steyvers, 2004;
Kawamae, 2016; Asuncion et al., 2009). Perplexity is defined as:

perp(q, x) = 2
− 1

|x|
∑|x|

i=1 log2q(xi), (1)

where q is the model we are testing, and x is the set of held-out documents. The intuition
is that we are measuring how perplexed, or surprised, the model is. If the documents in
x have a high probability of occurring, then the summation in the exponent will have a
greater value, and thus the overall perplexity score will have a lower value.

Some specialized topic models can leverage ground truth labels. One such case is “La-
beled LDA” (Ramage et al., 2009a), which is a different approach that takes labels into
account when building the model. When evaluating its performance, traditional measures
for supervised machine learning are applied such as F1 (Frakes and Baeza-Yates, 1992),
which is calculated as:

F1 =
2πρ

π + ρ
, (2)

where π = TP
TP+FP is the precision and ρ = TP

TP+FN is the recall. Obtaining “true positives”,
“false positives”, “true negatives”, and “false negatives” requires data with ground truth,
which is why we could not apply it when no labels are available.

2.2 Evaluating the Interpretability of Topic Models

Interpretability is largely a human issue. People generally read topics in order to assign
meaning to them. Because of this, it is natural that humans would read topics in order
to evaluate their interpretability. This issue has been addressed largely by two schools of
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thought. The first school of thought is ad-hoc, where researchers manually read topics in
order to judge their quality. In the second, researchers take a more principled approach,
employing measures that can judge the quality of topics in a more automated manner.
In the subsequent subsections, we provide more details regarding each approach and the
related work that employs it.

2.2.1 Eyeballing

The most common approach to assessing the quality of topics is the “eyeballing” approach,
where topics are inspected carefully and manually assigned a label. After the topics are
read, a “title” is assigned to each one based upon the top keywords in the text. In Grimmer
and Stewart (2013), the authors manually label topics based upon the top words in the
topic. These manual topic labels are supplemented with automatic labeling approaches
such as Aletras and Stevenson (2014); Lau et al. (2011); Maiya et al. (2013); Mao et al.
(2012), however the final call is made by a human. In other work, topic models were
verified on scientific corpora to show that the topics that were produced by the model
made sense (Blei et al., 2003; Griffiths and Steyvers, 2004). By displaying the top words
from the topics to the reader, they make the case that the topics they find are of high
quality. In the context of disaster-related tweets, Kireyev et al. (2009) try to find disaster-
related tweets, labeling two types of topics: informational and emotional. This was done
by interpreting a visualization of the topic clusters and manually assigning meaning to the
topic groups. Other forms of visualization have been proposed to identify interpretable
topics, such as that proposed in Le and Lauw (2016) where the authors show topics in
a low-dimensional embedding. Another visualization approach is proposed in Sievert and
Shirley (2014), where the authors show topics, their top words, and the size of the topic to
the user to help them differentiate interpretable topics. Similarly, Hu et al. (2014) created
an approach to iteratively add constraints to generate better topics.

The manual labeling of topics goes beyond mere text. For example, Schmidt (2012)
uses LDA to cluster 1820’s ship voyages. By treating trips as documents and nightly
latitude/longitude checkins as words, the authors generate topics based upon these trips.
Using manual inspection of topics, the authors are able to label topics as “trading” and
“whaling” topics, amongst others. Other works focus on identifying topics in geographical
Twitter datasets, looking for topics that pertain to things such as local concerts and periods
of mass unrest (Yin et al., 2011; Hong et al., 2012).

While the manual inspection of topics is often used for topic labeling, it can also be
used for topic filtering. In Kumar et al. (2013), the authors employ subject-matter experts
to label the topics for them. In this case the authors had the labelers mark the topics as
“relevant” to their study, or “not relevant”. Ultimately those topics that were not deemed
relevant were removed.

This method of evaluation, while common, has the issue that it is ad-hoc. This is a
major problem in topic assessment as this evaluation can be subjective, sometimes coming
down to just one researcher who assigns definitions to the topics learned from the model.
To mitigate this issue, researchers have investigated imposing principled measures for topic
interpretability. Additionally, this has implications for reproducibility, as a different re-
searcher may have a different interpretation of the top words.
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Figure 1: Demographic breakdown of the Turkers who participated.

2.2.2 Principled Evaluation of Topic Interpretability

This method of assessing topic quality employs formal approaches and measures to assess
the interpretability of statistical topics, generally through crowdsourcing. While aggregat-
ing the results of crowdsourced tasks is challenging, some work has focused on leveraging
crowdsourcing to assess human interpretability (Zhou et al., 2014). Chang et al. (2009) pro-
posed the first such framework for topic models in which a hybrid approach was employed.
This approach focuses on crowdsourcing in order to assess topic interpretability. The results
of the crowd are then aggregated through different measures to give a “score”, which is a
numerical value indicating the topic’s interpretability. While not truly automated, it pro-
vides a reproducible framework that can be used by researchers to perform this assessment.
In their paper, the authors focus on two main validation schemes for topic models: “Word
Intrusion” which studies the top words within a topic by discovering how well participants
can identify a word that does not belong. They also introduce “Topic Intrusion”, which
studies how well the topic probabilities for a document match a human’s understanding
of this document by showing three highly-probably topics, and one improbable topic, and
asking the worker to select the “intruder”.

Chang’s influential paper provided the groundwork for a principled study of topic in-
terpretability. Subsequent work aimed to provide automated approaches to replace the
Turkers. Lau et al. (Lau et al., 2014) went about this by building heuristics to guess the
actions of the workers. They provide an algorithm that will guess which answer a crowd-
sourced worker will choose when presented in an Human Intelligence Task (HIT). Other
investigations into this measure include Roder et al. (Röder et al., 2015), who automati-
cally explore the space of possible weights applied to existing interpretability measures and
aggregation functions to find the measure that best approximates model precision.

2.3 Crowdsourcing Approaches to Evaluation

The crowdsourced experiments carried out in this work were performed using Amazon’s
Mechanical Turk1 platform. Mechanical Turk is a crowdsourcing platform that allows re-
questers to coordinate Human Intelligence Tasks (HITs) to be solved by Turkers. The
formulation of each HIT will be described in the corresponding section for each experiment.
In all cases, each HIT was solved 8 times to overcome issues that arise from using non-expert
annotators (Snow et al., 2008).

1. http://www.mturk.com
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Document	1:	
board	presenta,on	massive	

Document	2:	
american	beef	domes,c	

Document	3:	
basketball	hall	fame	 ... 

LDA	K	

Topic	1	 Topic	2	 ...	 Topic	K	

Document1	 0.2	 0.1	 0.01	

Document2	 0.7	 0.02	 0.1	
...	

Documentn	 0.1	 0.3	 0.02	

	
Topic	1:	

season					2.0%	
game							1.8%	
home							1.5%	
start									1.2%	
hit												1.0%	

	

	
Topic	2:	

percent				3.3%	
market					1.6%	
fell												1.3%	
shares						1.2%	
u.s.											1.2%	

	

	
Topic	K:	

film											1.9%	
series							1.1%	
director			0.8%	
tv														0.8%	
movie						0.8%	

	

... 

Figure 2: An overview of the LDA process. Each document is presented as a bag of words
along with K, the number of topics the LDA operator wishes to discover. Two outputs are
provided: the topics (on the bottom), and the document-topic associations (on the right).

In this paper we experiment with three measures that rely on crowdsourcing platforms
like Amazon’s Mechanical Turk. In order to ensure the reliability, as well as to account for
noise in the results, it is important to have a basic understanding of the userbase solving the
HITs we create. Prior to solving any HITs, we require the Turker to fill out a demographic
survey. The demographic survey consists of five questions about the Turker’s background:
their sex, age, first language, country of origin, and highest level of education achieved.
The demographic makeup of our Turkers can be seen in Figure 1. Figures 1(d) and 1(e)
reveal a strong skew towards American Turkers who speak English as their first language.
This could be partly attributed to a recent change in the Mechanical Turk terms of service
that requires Turkers to provide their Social Security Number2 in order to solve HITs on
the site. Regardless, this allows us to go forward knowing that the participants are largely
English speakers, and we cannot attribute poor performance in our analysis to a poor grasp
of English.

This exercise in understanding the demographic makeup of our Turkers is done to give
us a sense of the expected demographic makeup in future studies. We do not delete any
Turkers who are non-native speakers. Instead, we investigate a Turkers’ ability to solve
our HITs based upon their performance at the “sanity” questions, the easiest HITs to
solve in our set. These would be “control questions” to differentiate genuine workers (Liu
et al., 2013). Initially, we planned to delete users who missed over 25% of these questions.
Fortunately, no user fell below this threshold, and consequently no user was deleted from
our study.

2. https://www.mturk.com/mturk/help?helpPage=worker#tax_no_have_tin
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3. Topic Modeling

Topic modeling refers to a family of models that seek to discover abstract “topics” that
occur within a corpus (Blei, 2012). Different approaches have been proposed for this task.
For example, one of the first topic models was PLSA (Hofmann, 1999). LDA (Blei et al.,
2003) built on this by adding a Dirichlet prior to the document-topic distribution. Many ap-
proaches have also been proposed for this task such as Hierarchical Dirichlet Processes (Teh
et al., 2006), Correlated Topic Models (Blei and Lafferty, 2006), and Pachinko Allocation (Li
and McCallum, 2006). While these are more recent than LDA, LDA is the most widely
used topic modeling approach.

3.1 Latent Dirichlet Allocation

The goal of topic modeling is to learn “topics” from a large corpus of text. In LDA, each
topic is a probability distribution over the entire vocabulary of the corpus. While each topic
contains every word, the probabilities assigned to the word vary by topic. Furthermore, the
model learns an association for each document over each of the topics. In other words, each
document is described as a probability distribution over all of the topics in the corpus.

Formally, LDA takes two inputs:3 A bag-of-words corpus containing d documents and
a vocabulary of size v, and a scalar value K, which indicates the number of topics that the
model will learn. LDA then outputs a model, m. The model, m, consists of two matrices:

1. A Topic × V ocabulary matrix, Tm ∈ RK×v. This is the matrix of topics that are
learned by the model. Tm

i,j is the association of word j with topic i.

2. ADocument×Topicmatrix, Dm ∈ Rd×K , with entry Dm
i,j representing the probability

that document i is generated by topic j.

This is the fundamental input and output of the model, and can be seen in Figure 2.
The model can be trained either through expectation maximization (Blei et al., 2003), or
through Gibbs sampling (Griffiths and Steyvers, 2004). In this work we use the Mallet
toolkit (McCallum, 2002), which uses the latter strategy to learn the parameters.

Beyond the notation, Figure 2 more clearly articulates the two schools of thought out-
lined in Section 2. When a researcher employs the “eyeballing” approach described in Sec-
tion 2.2.1, what they are doing is having a human read the top words in the topic (depicted
at the bottom of the figure) and divining a meaning for the topic. For example, a researcher
may read the top words of “Topic 1” in Figure 2 and call it a “sports topic”. While this
ultimately may be an appropriate guess, there is no existing measure to determine the how
well the definition fits the topic.

Principled evaluation, the second school of thought outlined in Section 2.2.2, consists of
applying a standard framework to the practice of assessing topic quality. In (Chang et al.,
2009), the authors propose a hybrid framework to assess topic quality, while (Mimno et al.,
2011) propose a solution to do it automatically. The thrust of this work is to extend the
existing principled framework in order to assess new dimensions of topic quality.

Going forward we will reproduce “Model Precision”, one of the measures introduced
in (Chang et al., 2009). Next, we will provide two new measures which can extend the ex-

3. For the sake of simplicity, we do not consider hyperparameters.
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isting framework and show how the insights they provide compare to the existing solution.
The measures we propose are also hybrid, meaning that they depend on crowdsourcing to
obtain their results. We note that while useful, this has major implications for reproducibil-
ity. These experiments require ample time and money in order to run, making it intractable
for many researchers. Thus, we experiment with automated measures that can replace the
effort performed by the crowdsourced workers.

3.2 Data

We generate topics from LDA using two datasets. First, we use a dataset of scientific
abstracts from the European Research Council. The text in these documents is of high
quality, written by scientists who wish to argue their case in order to secure funding for their
research. It is possible that topical misunderstanding can stem from a lack of understanding
of the crowdsourced workers, who are not necessarily trained to understand scientific text.
To complement this dataset, we use a large corpus of news articles curated by Yahoo News.
We introduce both of these datasets in the subsequent sections.

3.2.1 Scientific Abstracts

The first text corpus focused upon in this study consists of 4,351 abstracts of accepted
research proposals to the European Research Council.4 In the first 7 years of its existence,
the European Research Council (ERC) has funded approximately 4,500 projects, 4,351
of which are used in this study. Abstracts are limited to 2,000 characters, and when a
researcher submits an abstract, they are required to select one of the three scientific domains
their research fits into: Life Sciences (LS), Physical Sciences (PE), or Social Sciences and
Humanities (SH). These labels will be used in the crowdsourced measure we propose later.

Mapping scientific research areas has become of growing interest to scientists, policy-
makers, funding agencies and industry. Traditional bibliometric data analyses such as co-
citation analysis supply us with basic tools to map research fields. However, Social Sciences
and Humanities (SH) are especially difficult to map and to survey, since the fields and disci-
plines are embedded in diverse and often diverging epistemic cultures. Some are specifically
bound to local contexts, languages and terminologies, and the SH domain lacks coherent
referencing bodies or citation indices, and dictionaries (Mayer and Pfeffer, 2014). Further-
more, SH terminology is often hard to identify as it resembles everyday speech. Innovative
semantic technologies such as topic modeling promise alternative approaches to mapping
SH, but the basic question here is: how interpretable are they and how can their results be
evaluated in a systematic way? This raises further questions into the interpretability of the
LDA topics we study in this paper.

The abstracts used in this research were accepted between 2007–2013, written in English,
and classified by the authors5 into one of the three main ERC domains. The first column of
Table 1 shows some statistics of the corpus. The aim of each abstract is to provide a clear
understanding of the objectives and methods to achieve them. Abstracts are also used to
find reviewers or match authors to panels.

4. http://erc.europa.eu/projects-and-results/erc-funded-projects

5. The authors of the respective abstract, not the authors of this work.
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Table 1: Properties of the European Research Council accepted abstracts and Yahoo News
corpora. The values for each category represent the number of documents in the category.

Property ERC Data Yahoo News Data

Documents 4,351 258,919
Tokens 649,651 6,888,693
Types 10,016 214,957
Category 1 LS: 1,573 S: 88,934
Category 2 PE: 1,964 B: 90,159
Category 3 SH: 814 E: 79,826

3.2.2 News Data

The second text corpus used in this work consists of 258,919 news articles indexed by
Yahoo News.6 Yahoo News maintains a corpus of every news article published on its site
between 2015-02-01 and 2015-06-03.7 Similar to newspapers, these articles are tagged with
a “section”, which corresponds to a categorization. In this study, we select articles from
three such categories: Sports (S), Business (B), and Entertainment (E).

The rationale for choosing this dataset is that discovering the topics of a corpus is very
similar to automatically discovering the “sections” of a newspaper. When individuals read
the top words of a topic, they often assign meanings to the topics, which could correspond
to the types of categories seen in newspapers (Grimmer and Stewart, 2013). We employ this
corpus because it can give us exactly this mapping, and, in the case of one of our measures,
tells us exactly how well these topic understandings map onto the true distribution of the
topic. Another important distinction of this dataset is that it consists of text that is meant
to be read by everyone.

All of the articles in this corpus were written between February 1st, 2015 and June 3rd,
2015, in English, and classified by Yahoo into one of the three aforementioned categories.
The summary statistics of our corpus can be seen in the second column of Table 1.

3.3 Extracting Topics from Text

We apply LDA to extract topics from the text. We run LDA on each dataset four times,
with K = 10, 25, 50, 100, yielding a total of 185 ERC topics, and 185 Yahoo News topics.
All LDA runs were carried out using the Mallet toolkit (McCallum, 2002). Before running
LDA, we stripped the case of all words and removed stopwords according to the MySQL
stopwords list.8 Tokenization was performed using Mallet’s preprocessing framework, us-
ing a special regular expression which preserves punctuation within words.9 This allows
for URLs, contractions, and possessives to be preserved. In all experiments, we fix the
hyperparameter values to α = 5.0 and β = 0.01.

6. https://www.yahoo.com/news/

7. https://webscope.sandbox.yahoo.com/catalog.php?datatype=r&did=75

8. http://www.ranks.nl/stopwords

9. We provided the regular expression ‘[\p{L}\p{P}]*\p{L}’ to the “token-regex” argument in Mallet’s
import-file module.
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Table 2: The LDA models generated for this study. These indicate the different values of
“m” used throughout the experiments, e.g. in Equation 3.

Name Dataset Strategy Topics

ERC-010 ERC LDA 10
ERC-025 ERC LDA 25
ERC-050 ERC LDA 50
ERC-100 ERC LDA 100
ERCRand-010 ERC Random 10
ERCSanitySH-010 ERC Manual 10

News-010 News LDA 10
News-025 News LDA 25
News-050 News LDA 50
News-100 News LDA 100
NewsRand-010 News Random 10
NewsSanityS-010 News Manual 10

In addition to the LDA runs, we extract two additional topic groups from each corpus.
This is done with the intent of giving some controls to understand the bounds of the topic
measures. The first is a set of random topics. To generate these topics, we weight the words
by their frequency in the corpus and randomly draw words from this distribution. These
topics have a roughly equal mixture of the three categories in the corpus they represent.

To complement our random topics, we also create a set of “sanity” topics. These topics
are handpicked to be a clear representation of one of the categories. In the ERC corpus, we
calculate each word’s probability of occurring in a SH, LS, or PE document. We then select
words that occur most (> 95% of the time) in the SH category. Furthermore, we ensure that
these words occur in fewer than < 5% of the documents from the other two categories. The
intention behind these topics is that they provide a strictly pure representation of the SH
category, and should provide as a useful sanity check of the Turker’s labeling abilities. The
same process is repeated with the Yahoo News data, by selecting topics similarly skewed
towards the S category. These topics lie in contrast to the random topics in that they are
strongly skewed to represent a single group.

In both cases of random and sanity topics, these topics are unlike traditional LDA topics,
containing only a set of 5 words. We use both of these auxiliary topic sets for validation
of the results obtained using the LDA topics. Table 2 shows an overview of all of the topic
sets generated for this study.

These topic sets provide examples of how topic models can be applied to extract topics
from real world data. We next investigate how to measure their interpretability from two
perspectives: coherence, and consensus.

10
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Figure 3: Results of “Model Precision” task on the topic sets from the two datasets. The
horizontal bar represents the median, and the dots represent outliers.

4. Topic Coherence

One definition of coherence is “the quality or state of systematic or logical connection
or consistency”.10 When a topic is a set of words, its coherence is about the relationships
among the words. Since each individual can have their opinion of coherence, a crowdsourcing
approach is used to obtain a group’s feedback. This transforms an individual’s opinion to
a distribution of collective opinions. We first introduce Chang et al.’s ingenious measure of
coherence.

4.1 Model Precision — A Measure of Coherence

Model Precision, introduced by (Chang et al., 2009), is a widely used measure of the “co-
herence” of an individual topic. It measures the distinctness of a randomly-inserted word
into the top five words of a topic. The intuition is that if humans are consistently able to
identify the randomly-inserted word, then the topic is more coherent because the intruded
word is clearly distinct from the other 5 words. On the other hand, if the humans cannot
consistently choose this randomly-inserted word, then the top 5 words of the topic are likely
not coherent. This is because the humans are conflating the definition of the top words in
the topic with a word that is far away.

For each topic, we show the Turker the top 5 most probable words from the topic’s
probability distribution along with one of the least probable words in the distribution. We
call this word the “intruded” word. To prevent rare words from being selected as the

10. http://www.merriam-webster.com/dictionary/coherence
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intruder, we ensure that it is also among the top 5 words from another topic. We then ask
the Turker to select the word that they think is the intruded word. Model precision is the
number of times a Turker was able to guess the intruded word divided by the number of
times the HIT was solved, formally:

MPm
k =

1

|smk |

|smk |∑
i=1

1(gmk = smk,i), (3)

where MPm
k is the model precision of the k-th topic from model m, gmk is the ground-truth

intruded word for topic k, smk is the vector of choices made by Turkers on topic k, and 1(·)
is the indicator function which yields 1 if gmk = smk,i, and 0 otherwise.

The results of this measure on both of our datasets are shown in Figure 3. These
figures show boxplots which depict the performance of the topics against this measure.
Following traditional boxplot visualization techniques (Wickham and Stryjewski, 2011),
the dark horizontal line in the middle of the box is the median, and the lower stem, lower
box, upper box, and upper steam each account for 25% of the data. Dots represent topics
determined to be outliers by a rule.11

We expect that the results would put the interpretability of the LDA topics somewhere
in between the random and sanity topics. They should perform better than the random
topics, as these are designed to be uninterpretable. Furthermore, our LDA topics should
underperform when compared with the sanity topics, which are designed specifically to be
highly interpretable. In fact, the results only partially back up this intuition. While the
random topics do in fact perform very poorly, the LDA topics actually outperform the
sanity topics. This is likely due to the homogeneity of the topics and the words from their
vocabulary. When all of the choices are “SH” words in the ERC corpus, or “S” words in
the News corpus, it is quite likely that the human workers will be confused.

While comparing the distributions of the results may shed light on the broad strokes,
the outliers may also provide insight about the results of the experiments. For example, in
both K = 10 cases, we see one outlier, indicating one underperforming topic. In the random
topic set on the ERC data, we see one topic overperforming, doing much better than the
rest of the topics and even scoring near the median of the sanity topics. The four HITs are
shown in Table 3. These results illuminate the issue of how these topics became outliers:
the intruding word. In the bad topic modeling topics (rows 1, 2, and 3), the topics perform
badly because they are not coherent. The words spread over many different concepts, and it
is difficult to decipher the meaning. On the other hand the random topic which should have
done badly (row 4) actually outperforms the rest of the topic set. Turkers coalesced around
“can”, and “seem” as the intruded words. Since these are randomly-generated topics, any
word among the 6 could be considered “intruded”, but only one answer is selected as correct
from the setup of our HITs. It just so happened that “can” was the selected word, leading
this topic to have an uncharacteristically high score.

These results may also give some inclination about how to use this measure. In fact,
there are any number of ways to use these results. For example, if we set K = 10, we will get
10 topics from the dataset. On large corpora like those used here, we should expect these
10 topics to be very generic, encompassing major themes of the text. With K = 100 topics,

11. Outliers are determined using the “1.5 rule” (Frigge et al., 1989).
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Table 3: Outlier topics from Model Precision.

Row Model Top 5 Words Intruded Word

1 ERC-010 design, use, based, develop, can accompany
2 News-010 news, state, network, april, day bigeast.com
3 News-025 family, actress, life, -year-old, star megan’s
4 ERCRand-010 maps, resource, visual, manifestation, seem can

we may also get generic topics, and additionally we are more likely to get fine-grained topics
that discuss more specific issues. For example, if in the K = 10 case we get one “politics”
topic, we may expect to get topics pertaining to specific candidates, issues, and localities
in the K = 100 case. Interpretability measures can help to shed light on which topics are
understandable by humans, and may give an indication of which topic model, or which
topics within a model are the most interpretable.

In the following, we first examine what is not assessed by model precision in terms of
coherence, and suggest the need for a new measure that can complement model precision
for comprehensive measure of coherence.

4.2 A Missing Dimension of Model Precision

Model Precision works by asking the user to choose the word that does not fit within the
rest of the set. We are measuring the top words in the topic by comparing them to an
outlier. While this method is very useful for this task, it does not measure the coherence
within the top words for the topic. This is because a good topic should have top words that
are semantically close to each other, an aspect of topic quality which is not accounted for
by Model Precision.

A diagram illustrating this phenomenon is shown in Figure 4. In Figure 4(a), we see a
coherent topic. This topic is coherent because all 5 of the top words are close together, while
the intruded word is far away. In Figure 4(b) we see a topic that is less coherent because
the fifth word lies at a distance from the first four. In both cases, Model Precision gives us
the intruder word in the topic, as seen in Figures 4(c), and 4(d). While this is the desired
performance of Model Precision, it leaves us with no understanding of the coherence of the
top words of the topic. Results are masked by the outlier, and do not give information
about the intra-cluster distance, or coherence of the topic.

In light of this, we look for a way to separate topics not just by their distance from an
outlier, but also by the distance within the top words in the topic. The next section of this
paper investigates a method which can measure not just the intruder word, but also the
coherence of the top words in the topic. In this way we separate topics such as those shown
in Figure 4 based on the coherence of their top words.

4.3 Model Precision Choose Two — Another Dimension of Coherence

In this section we propose a new measure for the coherence of the top words of a topic.
This experiment sets up the task as before: we select the top five words from a topic, and
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Figure 4: Comparison between Model Precision, and Model Precision Choose Two for two
real topics from the Yahoo News corpus. In Figures 4(g) and 4(h), the height of the bars
represents the number of times the word was selected in the crowdsourced experiments.
Model Precision Choose Two can distinguish the less-coherent topic.

inject one low-probability word. The key difference is that we ask the Turker to select two
intruded words among the six.

The intuition behind this experiment is that the Turkers’ first choice will be the intruded
word, just as in Model Precision. However, their second choice is what makes the topic’s
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quality clear. In a coherent topic the Turkers won’t be able to distinguish a second word as
all of the words will seem similar. A graphical representation of this phenomenon is shown
in Figure 4(g). In the case of an incoherent, a strong “second-place” contender will emerge
as the Turkers identify a 2nd intruder word, as in Figure 4(h).

4.3.1 Experimental Setup

To perform this experiment, we inject one low-probability word for each topic, and we ask
the Turkers to select two words that do not fit within the group. We show the six words to
the Turker in random order with the following prompt:

You will be shown six words. Four words belong together, and two of them do not.
Choose two words that do not belong in the group.

Coherent topics will cause the Turkers’ responses regarding the second intruded word
to be unpredictable. Thus, our measure of the goodness of the topic should be the pre-
dictability of the Turkers’ second choice. We propose a new measure called “Model Precision
Choose Two” to measure this. Model Precision Choose Two (MPCT) measures this spread
as the peakedness of the probability distribution. We define MPCTm

k for topic k on model
m as:

MPCTm
k = H

(
pturk(wm

k,1), ..., pturk(wm
k,5)
)
, (4)

where H(·) is the Shannon entropy (Lin, 1991), wm
k is the vector of the top words in topic

k generated by model m, and pturk(wm
k,i) is the probability that a Turker selects wm

k,i.
This measures the strength of the second-place candidate, with higher values indicating a
smoother, more even distribution, and lower values indicating Turkers gravitation towards
a second word.

The intuition behind choosing entropy is that it will measure the unpredictability in the
Turker selections. That is, if the Turkers are confused about which second word to choose,
then their answers will be scattered amongst the remaining five words. As a result, the
entropy will be high. Conversely, if the second word is obvious, the Turkers will begin to
congregate around that second choice, meaning that their answers will be focused. As a
result, the entropy will be low. Because entropy is able to measure the confusion of the
Turkers responses about the second word, we use it directly in the design of our measure.

4.3.2 Results and Discussion of Model Precision Choose Two

The results of this experiment on both corpora are shown in Figure 5. The box plots show
the distribution of the results across all of the topics in each topic group. These results
illustrate the differences between the two datasets in terms of both performance as well as
the appropriate value of K, the number of topics, to maximize the performance. In the ERC
data a larger value of K consistently improved our results, while with the News dataset we
achieved better results with a larger K.

The results of the MPCT experiments showed how to compute this measure on a topic
set. While this new measure elicits another dimension of the topics, their coherence, they
alone to not provide the whole picture of what makes a good topic.

Evidence of this is shown in both corpora in Figure 5. In both cases, the “sanity” topics
do well, achieving among the best results. However, the median score from the “random”
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Figure 5: Results of “Model Precision Choose Two” on the topic sets from the two datasets.
The figures are presented as before, with the horizontal bar indicating the median, and the
dots representing outliers.

topics is also very high. It is easy to see why this occurs: in both very good and in very
bad topic groups, the Turker has a difficult time choosing any second choice intruder, which
drives the MPCT score up. Because of this, we need to combine these results with model
precision in order to get a good understanding of the topic quality.

To better compare the results, we compare a case-by-case basis in Figure 6. Both yield
similar results which show interesting properties about the dataset. First, Figures 6(c)
and 6(f) confirm our hypothesis that random topics can have a high MPCT. However,
these lousy topics all have a low MP score. Curiously, though, we see in Figures 6(a)
and 6(d) show another interesting pattern: that it is possible for topics to have a high MP
and a low MPCT.

To better demonstrate what these values mean for a topic, we show several topics along-
side their MP and MPCT scores in Table 4. We show topics of varying quality from the
perspective of both measures we introduce. By reading the topics, we can make several
observations. First, row 1 and 2 have both high MP and high MPCT. Contrast these topics
with rows 3 and 4 which have a high MP score, yet a low MPCT score. When we look
at the intruded word in rows 1–4, they all seem equally “distant”, however in rows 3–4, a
second word also emerges to the Turkers.12 In rows 5–8, all of the topics perform badly
according to MP, but 5–6 are good according to MPCT, while 7–8 are bad according to both
measures. After reading the topics in rows 5–8, it is difficult to understand the story. The
results of this table tell us two things: 1) a high MP score is a necessary but not sufficient

12. In row 3, “large” was the word the turkers rallied around as the second choice. In row 4, it was “fans”.
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Figure 6: Scatter plots of each topic’s Model Precision Choose Two (x-axis), and Model
Precision (y-axis) for each corpus. Above the plot is the correlation (ρ) of the values for
all of the topics in the plot. The radius of the circle indicates the number of topics that
received the score. “-*” means that all LDA-generated topic groups were considered for
this scatter plot.

Table 4: Topics with varying MP and MPCT scores from models built on the two corpora
in this work.

Row Model Top 5 Words Intruded Word MP Score MPCT Score

1 ERC-100 production, plants, provide, food, plant suppressor 1.00 0.99
2 News-100 number, system, transactions, card, money flees 1.00 0.97
3 ERC-50 methods, data, information, analysis, large diesel 1.00 0.00
4 News-25 series, fans, season, show, episode leveon 1.00 0.00
5 ERC-100 nuclear, fundamental, water, understanding, surface modularity 0.13 0.92
6 News-100 film, khan, ians, actor, bollywood debonair 0.30 1.00
7 ERC-50 mechanisms, pathways, involved, molecular, role specialized 0.00 0.00
8 News-100 injury, left, list, return, surgery tests-results 0.00 0.25

condition to identify interpretable topics, and 2) by measuring coherence with MPCT we
can identify quality topics better than with MP alone. A confusion matrix showing the
differences between MP and MPCT are shown in Table 5.

Model Precision Choose Two is a new measure that rounds out the measurement of topic
coherence. Coherence is one aspect of topic interpretability, however, we introduced two
aspects of topic interpretability. We next investigate the interpretability from the second
perspective: consensus.
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Table 5: Qualitative assessment of the difference between low and high values. When MP is
low, a topic is not interpretable regardless of the value of MPCT; when MP is high, a topic is
interpretable when MPCT is high, otherwise it has limited interpretability. This is because
high MP alone cannot reveal how interpretable a topic is as the topic is differentiable from
an outlier term.

MPCT
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Figure 7: An overview of the setup of the topic consensus framework. The left stacked bar
comes from the categories of the documents in which tokens appear. The right stacked bar
comes from the aggregate of the Turker answers.

5. Topic Consensus

Understanding the underlying distribution of concepts in a topic is important. Since LDA
is a mixture model, we can expect some of the topics identified by this model to contain
a mixture of different topics. This phenomenon has been documented in the literature as
“chimera” topics (Schmidt, 2012). Being able to identify these topics effectively is impor-
tant, but we currently do not know how well crowdsourced workers will be able to identify
them. In this section we propose a measure, “topic consensus,” which measures how well
the mixture of the documents in the LDA topic matches the mixture of labels from the
workers.

Unlike topic coherence, topic consensus measures how well the results of a mixture of
labels given by a group of human subjects match those given categories of topics, or human
labels of topics. The “eyeballing” approach to topic interpretability, as discussed in Sec-
tion 2.2.1 is the process of manually reading a topic and assigning it a title. These are explicit
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titles such as “Environment”, and “Judiciary” categories from congressional records (Grim-
mer and Stewart, 2013), or “disaster-related” categories from social media (Kireyev et al.,
2009). Each title requires a human being to manually read these topics and to assign these
category labels. Presumably, good topics should lead to good categories, thus, high topic
consensus. Therefore, if there is low topic consensus in terms of categories, topics could be
of low interpretability.

5.1 A New Measure for Topic Consensus

We discuss how well the topics from topic modeling conform to the natural categories
underlying the text. Explicit topic categories are often present in many corpora, such as
newspaper articles, due to their manual categorization by “sections” or categories. For
example, our ERC abstracts which explicitly label each abstract with an ERC category,
and we measure this conformity to the underlying topic distribution by leveraging the
ground-truth topic category labels available as the ERC categories when the abstract is
submitted.

The Turkers’ answers reveal the labels that are assigned to topics. By showing the
categories to the Turkers as multiple choice questions we can see the category label that a
human would assign to the topic. Ideally, we would additionally ask the Turkers to assign
confidence scores to their labels to better understand their labeling strategy and to get a
better distribution of the category labels. However, since humans are bad at answering
questions about themselves (i.e. their own internal confidence) (Bernard and Ryan, 2009),
we instead ask many Turkers the same question about the same topic and aggregate the
responses. By aggregating the category assignment of Turkers, we can obtain a distribution
based on their understanding of the topic.

To understand how well the statistical topics mimic the underlying topics, we show
the Turkers the top 20 words of a statistical topic and ask them to choose which of the
three categories from that corpus the topic describes. For example, for a given ERC topic,
we show the top 20 words along with options for “Life Sciences”, “Physical Sciences”, or
“Social Sciences”. We also provide a fourth option, “No Topic Matched”, in case that any
of the three categories do not make sense to the Turker. This is depicted in the right half
of Figure 7, where Turkers are shown the HIT including top 3 words with 2 categories,
and their answers are aggregated to make the distribution of Turker answers. In the figure,
instead of 20 top words, top 3 words “a”, “b”, and “c” are chosen to be presented to Turkers.

To compute topic consensus, we compare the distribution of the Turkers’ responses for
that topic with the distribution of the topic over the ERC categories. To perform this
analysis, we construct an LDA Topic × Category matrix R, where Ri,c indicates topic
i’s probability of occurring in ERC category c. This can be seen in the lefthand side of
Figure 7, where the tokens that are labeled with the topic are aggregated based upon the
category label of the document they appear in to form the category distribution.

The structure of each row of R is dependent on the type of topic group it comes from.
We construct the row of R, which correspond to the automated distributions, as follows for
each topic group:

• ERC-* / News-* — The Ri row vector for an ERC topic is created by taking the
sum of the columns of the D matrix, as defined in Section 3.1. This sum is taken
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for each row (document) of D labeled with the corresponding ERC category. This is
defined as:

Ri,c =

∑
j∈Mc

Dj,i∑
D∗,i

, (5)

where Mc is the set of documents containing the label corresponding to the column of
R, e.g., “SH”, “LS”, or “PE”. This gives us an understanding of the category makeup
for each LDA topic.

• ERCSanitySH-010 / NewsSanityS-010 — The Ri row vector for an SH topic
contains a 1 for the sanity category and a 0 for the others. This is due to the way the
topics are generated, they contain purely words from that topic.

• ERCRand-010 / NewsRand-010 — Turkers should not be able to read any defini-
tion from a random topic as it consists of random words from the vocabulary. Thus,
the row vector for each topic in this set is a 1 for the “N/A” category, and a 0 for the
other categories.

Using the responses from the Turkers, we build a separate Topic × Category matrix,
RAMT where RAMT

i,j represents the Turkers’ probability of choosing category j when
presented with topic i. In this way, RAMT is the representation of R obtained from the
Turkers’ responses. A row in RAMT indicates the distribution over categories for a given
LDA topic from the Turker’s responses.

The consensus between the responses from the crowdsourced workers and the data is
defined as:

consensusmt = 1− JS(RAMT
t||Rt)

log2(|c|+ 1)
, (6)

where |c| is the number of categories in the datasets (both the ERC and News datasets
have |c| = 3 categories). We add 1 to account for the presence of the N/A answer. JS is
the Jensen-Shannon divergence (Lin, 1991) between the two distributions JS(RAMT

t||Rt),
defined as:

JS(RAMT
t||Rt) =

K(RAMT
t||M) +K(Rt||M)

2
, (7)

where K is Kullback-Leibler divergence (Joyce, 2011), and M = 1
2(RAMT

t + Rt). Jensen-
Shannon is a natural choice as the rows of R and RAMT are probability distributions over
the 3 ERC or News categories and Jensen-Shannon is a measure of the similarity of two
distributions. Jensen Shannon is bounded from [0, log2(|c| + 1)]; we divide by the upper
bound to yield a number from [0, 1]. Finally, Jensen Shannon is a measure of divergence,
meaning that a lower score means that the distributions are more aligned. Thus, we subtract
the Jensen Shannon divergence from 1 in order to stay consistent with a consensus measure,
where greater consensus means a better topic.

5.2 Topic Consensus Results

The results of the topic consensus experiment are shown in Figure 8. The results of both
datasets indicate that the random topics perform worse than and the sanity topics perform
better than the LDA topics. The results make sense: Sanity topics should have the highest
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Table 6: Confusion matrix of ground truth ERC category assignments of topics against the
category assignments made by the Turkers, taken from the outer product of the respective
probability distributions. Rows are from the turkers, and columns are from LDA. In the
ERC topics, we see that the Turkers are generally able to identify SH and LS topics, but
overall fail to identify PE topics. The Turkers perform well when shown random topics,
giving most of these topics a “not applicable” label.

ERC-* ERCRand-010 ERCSanitySH-010

Ground Truth

LS SH PE NA LS SH PE NA LS SH PE NA

AMT Classification

LS 29.69 5.21 13.39 0 0 0 0 0.59 0 0.09 0 0

SH 7.96 8.12 10.36 0 0 0 0 3.09 0 9.66 0 0

PE 16.62 8.14 36.21 0 0 0 0 0.61 0 0.11 0 0

NA 16.41 9.38 23.48 0 0 0 0 5.71 0 0.14 0 0

News-* NewsRand-010 NewsSanityS-010

Ground Truth

S B E NA S B E NA S B E NA

AMT Classification

S 35.31 7.74 8.36 0.00 0 0 0 4.26 9.84 0 0 0

B 9.88 50.00 8.61 0.00 0 0 0 1.96 0.04 0 0 0

E 10.00 7.12 21.67 0.00 0 0 0 2.60 0.08 0 0 0

NA 9.10 9.81 7.40 0.00 0 0 0 1.17 0.04 0 0 0

consensus and random topics the lowest consensus, and the performance of the other three
topic models are in between.

To further investigate these answers we show a “confusion matrix” that compares the
Turkers’ responses with the ground truth in Table 6. Each cell in the matrix is the aggre-
gation of the Turker’s responses with the max of all the Turkers taken as the result. This
is obtained from the sum of the outer product of the probability distributions from both
the turkers (rows), and LDA (columns). The results for ERC-* and News-* topic sets show
that most of the topics are understandable. In the case of the “PE” class in the ERC-*
distribution, 52

52+60+8+2 = 43% of the topics are misclassified as NA. This could be because
of the highly technical language in the physical sciences topics which causes users to select
“NA”. On the other hand the “SH” topics in the ERC corpus and the “B” topics in the News
corpus are perfectly, and nearly-perfectly understood respectively. The sanity topics in both
corpora achieve perfect scores. Finally, the random topics are vastly different between the
two datasets. The random topics in the ERC corpus achieved 80% accuracy, however in the
News domain the accuracy is 10%, with most of the misinterpretations leading the Turkers
to categorize random topics as sports. We conjecture that the misclassification of sports
may be a byproduct of the specific language of sports documents. For example, once a
Turker sees a word like “football” in a random topic, they may be inclined to think that
the topic is a sports topic.
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Figure 8: Topic consensus scores across all models across both corpora. Higher scores are
better. On the left we see the form that is shown to the workers. On the right we see that
the random topics perform worse than any of the ERC topics, and the SH topics perform
the best.

5.3 Using Topic Interpretability Measures

We have employed three measures to identify interpretable topics from topic models thus
far: Model Precision, Model Precision Choose Two, and Topic Consensus. At this point
we will step back and discuss how to use these measures. There are two clear ways to use
these measures. The first is for model selection, and the second is for topic selection.

Model selection is the process of choosing one model out of many (Kohavi et al., 1995).
When selecting models for interpretability, we may choose the one that performs best. In
the case of the News data, the model constructed with K = 10 performs best according to
Topic Consensus, and the Model Precision Choose Two measures. Therefore, this model is
the best one to choose from the perspective of interpretability.

The other strategy is topic selection. It may be that we are only using topic modeling
to describe our dataset, and that we do not need the entire model in order to proceed. In
this case, we can use the results of our topic interpretability measures to select a subset of
topics that have high interpretability. This is favorable in cases where we need more topics.
For example, in the case of Topic Consensus on the ERC data (Figure 8 (a)), we see that
the median of K = 25 outperforms that of K = 100. However, the top quartile of K = 25
is worse than K = 100. This means that 25 of the 100 topics generated by the K = 100
model are, on average, better than the top 6 topics generated by the K = 25 model. Thus,
if we are looking for topics which can help us to better understand our dataset, we may
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decide to use topic selection with a larger K and use the interpretability measures proposed
in this work to separate interpretable topics from less-interpretable ones.

6. Automating Measures of Topic Interpretability

In search of measures for topic interpretability, we resort to crowdsourcing approaches to
measuring coherence and topic consensus. A natural question is whether we can replace
crowdsourcing with automated measures. Crowdsourcing approaches could be costly, or
not scalable without funds to recruit a sufficient numbers of Turkers. Furthermore, their
results are hard to reproduce without good resources. In short, they present challenges in
terms of scalability and reproducibility. The search for automated measures could replace
Turkers and make empirical comparison available, saving researchers both time and cost of
performing crowdsourced experiments. In this section, therefore, we investigate measures
that can be used to automatically measure interpretable topics in terms of coherence and
consensus. Mimno et al. (2011) are among researchers who first try to automate evalu-
ation measures. They generated topics from medical literature and hired physicians, who
are subject matter experts in their fields, to rate the quality of topics. They then pro-
posed automated measures, Topic Size and Semantic Coherence, to replace these experts
for reproducibility. Newman et al. (Newman et al., 2010) proposed a measure based on
Pointwise Mutual Information. Aletras and Stevenson (2013) measured the quality of top-
ics by inspecting the vector similarity between them. Morstatter et al. (2015) found that
the peakedness of the distribution can be used to find interpretable topics. In the following,
we introduce these measures, examine their correlations with the three measures of topic
interpretability in this work, and then investigate if any of these automated measures can
be used to accurately predict measures of topic coherence and topic consensus without the
aid of the Turkers.

6.1 Automatic Topic Interpretability Measures

We introduce methods used for automatically assessing the quality of topics. Eight measures
are given below:

i. Topic Size (TS): LDA soft assigns documents to topics by hard assigning the tokens
within the document to a topic. At the end of training, each token in the corpus will
have a topic assigned to it. “Topic Size” is the count of the number of tokens in the
input corpus that are assigned to the topic after training. This was used in Mimno
et al. (2011) as a possible measure for topic quality. The hypothesis behind this
measure is that a larger topic (with more tokens) will represent more of the corpus,
and thus will reveal a larger portion of the information within it.

ii. Semantic Coherence (SC): Also introduced by Mimno et al. (2011), this measures
the probability of top words co-occuring within documents in the corpus:

SC(w) =

|w|∑
j=2

j−1∑
k=1

log
D(wj ,wk) + 1

D(wk)
, (8)
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where w is a vector of the top words in the topic sorted in descending order, and D
is the number of documents containing all of the words provided as arguments. This
measure is computed on the top 20 words of the topic.

iii. Semantic Coherence Significance (SCS): We adapt the SC measure above to
understand the significance of the top words in the topic when compared to a random
set of words. To calculate this measure we select 100 groups of words at random,
following the topic’s word distribution. We then recompute the Semantic Coherence
measure for each of the random topics, obtaining a vector, d, of topic coherence scores.
We calculate the mean, d̄, and standard deviation, std(d). Significance is defined as:

SCS(w) =
SC(w)− d̄

std(d)
. (9)

iv. Normalized Pointwise Mutual Information (NPMI): Introduced by Bouma
(2009), this metric measures the probability that two random variables coincide. This
measure was used to estimate the performance of Model Precision in Lau et al. (2014),
where the authors adapted it to measure the coincidence of the top |w| words. In
this paper, two variables “coinciding” is the probability that they will co-occur in a
document. The authors named this version OC-Auto-NPMI, formally:

OC-Auto-NPMI(w) =

|w|∑
j=2

j−1∑
k=1

log
PD(wj ,wk)

PD(wj)PD(wk)

−log(PD(wj ,wk))
, (10)

where PD(·) = D(·)/|N |, where |N | is the number of documents in the corpus. PD

measures the probability that a document in the corpus contains the words given to
D(·). Going forward, we will refer to this measure as NPMI.

v. Category-Distribution HHI (Cat-HHI): The Herfindahl-Hirschman Index (Hirschman,
1945), or HHI, is a measure proposed to find the amount of competition in a market.
This is calculated by measuring the market share of each firm in the market, formally:

HHI =
(H − 1/N)

(1− 1/N)
, (11)

Where H =
∑

i s
2
i , N is the number of firms in the market, and si is the market share

of firm i, as a percentage. HHI ranges from 0 to 1, with 1 being a perfect monopoly
(no competition), and 0 being an evenly split market. In this way we measure how
focused the market is on a particular firm.

By treating the corpus categories as firms, and the market share distribution as Ri,
we can calculate how focused each topic is around a particular category.

vi. Topic-Probability HHI (TP-HHI): Using the same formulation as ERC-HHI,
this time we treat every word in the vocabulary as a firm, and Tm

i as the probability
distribution. In other words, the topic’s probability distribution is the market, and
TP-HHI measures the market’s focus any word, or group of words. This measure varies
from other significance measures, such as AlSumait et al. (2009), in that it focuses
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purely on the peakedness of the distribution. This measures whether the focus of a
topic is around a handful of words, or whether it is evenly spread across the entire
vocabulary used to train the model.

vii. No. of Word Senses: The total number of word senses, according to WordNet,
of the top five words in the topic. This varies slightly from the measure proposed
in (Chang et al., 2009), where the authors also consider the intruded word. Because
the intruded word is generally far away, we exclude it from our calculation.

viii. Avg. Pairwise JCD: The Jiang-Conrath (Jiang and Conrath, 1997) distance (JCD)
is a measure of semantic similarity, or coherence, that considers the lowest common
subsumer according to WordNet. Here we compute the average JCD of all

(
5
2

)
= 10

pairs of the top five words of the topic. This approach was introduced by (Chang
et al., 2009), however we modify it slightly to only consider the topic’s top five words.

ix. Lesk Similarity: The Lesk Algorithm (Banerjee and Pedersen, 2002) for word sense
disambiguation uses WordNet to identify the most appropriate synset for an ambigu-
ous word given a context. Following the use of this algorithm in (Newman et al.,
2010), we adopt this technique in our automated measures. To turn the synset re-
turned by this algorithm into a similarity measure, we evaluate the path similarity
from the synset returned by this algorithm and all of the synsets in the context. The
“context” is defined as the top 5 words in the topic, and the “ambiguous word” is the
intruded word. When applying this to consensus, we use the same intruded word as
in the MP and MPCT case.

6.2 Correlation with Crowdsourced Measures of Topic Interpretability

To see how well these automatic topic measures compare with the crowdsourced topic mea-
sures from the “Topic Interpretability” section, we calculate the Spearman’s ρ (Spearman,
1904) rank correlation coefficient between the crowdsourced measure and the automatic
measure. The correlations between each pair of crowdsourced and automatic measure are
shown in Table 7. In this table, we present the Spearman’s ρ, as well as an indication of
the significance level for the following hypothesis test:

H0 : The two sets of data are uncorrelated.
Instances where the hypothesis is rejected at the α = 0.05 significance level are shown in Ta-
ble 7. We see that the measure most correlated with Model Precision and Model Precision
Choose Two (MPCT) is Avg. Pairwise JCD, meaning that documents whose words have a
higher semantic similarity are more likely to achieve higher Model Precision (MP) values.
We see that higher (better) values of Model Precision are accompanied by higher average
JCD values. Table 7 shows the measure most correlated with Topic Consensus (TC) is
TP-HHI. These correlations lead us to the next question: can we predict each of the three
measures (MP, MPCT, and TC) of topic interpretability based on their correlations?

6.3 Predicting Crowdsourced Values of Topic Interpretability Measures

While correlation can be used to find the quality of a measure, we further ask if it is feasible
to predict the actual value of the topics’ crowdsourced measures. At first it may seem that
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Table 7: Spearman’s ρ between measures requiring Mechanical Turk and automated mea-
sures. Instances where we reject the null hypothesis at the significance level of α = 0.05 are
denoted with ∗, and instances where we reject the null hypothesis at the significance level
of α = 10−4 are denoted with ∗∗.

ERC-* News-*
MP MPCT TC MP MPCT TC

TS 0.152∗ -0.709∗∗ 0.532∗∗ -0.585∗∗ -0.645∗∗ 0.688∗∗

SC 0.359∗∗ -0.165∗ 0.584∗∗ -0.443∗∗ -0.885∗∗ 0.163∗

SCS -0.074 -0.582∗∗ 0.788∗∗ -0.337∗∗ -0.410∗∗ 0.501∗∗

NPMI -0.562∗∗ 0.067 0.774∗∗ 0.189∗ -0.203∗ 0.674∗∗

Cat-HHI 0.103 -0.652∗∗ 0.478∗∗ -0.223∗ -0.416 0.588
TP-HHI -0.471∗∗ -0.057 0.885∗∗ -0.001 -0.318∗ 0.913∗∗

Senses -0.111 -0.267∗ 0.854∗∗ -0.055 0.022 0.674∗∗

JCD 1.000∗∗ 0.750∗∗ 0.022 0.685∗∗ 0.805∗∗ 0.349∗∗

Lesk 0.050 -0.034 0.189∗ 0.533∗∗ 0.503∗∗ 0.442∗∗

Table 8: Errors of the predictive algorithm trained on all of the automated measures.
Results are presented as RMSE ± the standard deviation. These results indicate that
Topic Consensus is the most predictable.

Model Precision Model Precision Choose Two Topic Consensus

ERC-* 0.280± 0.039 0.352± 0.064 0.131± 0.021
News-* 0.239± 0.049 0.307± 0.075 0.114± 0.034

the most correlated measure may be the most predictive, however, due to nonlinear patterns
within the data this may not be the case. In this section, we investigate if we can predict
the true scores of topic interpretability by using the above eight automated measures.

We train a linear regression model to predict the true value of the crowdsourced measures
using the automated measures. We build three models: one where the dependent variable is
“Model Precision” (MP), another where it is “Model Precision Choose Two” (MPCT), and
the other where the dependent variable is “Topic Coherence” (TC). In all three cases, the
independent variables are all of the automated measures introduced previously. We use 10-
fold cross validation and report both the mean and standard deviation of the performance
of the models across all 10 runs in Table 8. These results indicate that it is easiest to
predict the raw scores of Topic Consensus, and that it is the hardest to predict those of
Model Precision Choose Two. An advantage of this prediction approach is that it allows
for inclusion of new automated measures in order to increase the predictive capability of
the prediction model.
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7. Conclusion and Future Work

Statistical topic models are a key component for machine learning, NLP, and the social
sciences. In this work we investigate different measures for the interpretability of the topics
generated by these approaches. We view topic interpretability from two perspectives: topic
coherence and topic consensus. Coherence measures how semantically close the top words
of a topic are. Consensus measures the agreement between the mixture of labels assigned
by the humans and the mixture of labels from the documents assigned to the topic. We
investigate what is needed for comprehensive measure of each perspective, understand how
different these measures for topic coherence and consensus are, and show their experimental
results using real-world datasets.

For topic coherence, we study Model Precision (MP) and propose Model Precision
Choose Two (MPCT). The two measures complement each other to better measure the
semantic closeness of topic words. MP works by making sure that the topic words should
be far away from the intruded word. Additionally, MPCT complements MP by addressing
the closeness of the 5 words within the topic. We compare MPCT with MP and show
how these two measures can work in tandem to identify interpretable topics. One natural
question that can arise from the MPCT setup is why only two words are requested, when
in fact any number of words could be asked for. While this is theoretically attractive, the
practical implications for the Turkers can present a challenge. By asking them to select
one intruder and one additional word, we present a small, viable workload for the Turkers.
Finding more strategies to effectively measure coherence is an area for future work.

For topic consensus, we assess how well the workers’ aggregate understanding of the
topic matches the aggregate of the categories provided by the corpus. In both corpora, each
document is tagged with a category. When we train a topic model, each topic will ultimately
be a mixture of these categories. This method reveals how well the topics generated can be
understood in relation to the underlying categories in the corpus. One natural application
of this measure is to identify chimera topics, i.e. those topics that are split between two
concepts or categories. Furthermore, by inspecting the Turker’s results on known topics,
we can see the bounds of this measure on extremely good, and extremely bad topics.

All three measures of topic interpretability rely on crowdsourcing platforms, which mo-
tivates a need to automate them in order to improve reproducibility and scalability. Recre-
ating these results with human workers requires significant investments of time to recruit
the workers, as well as funds to pay them. We investigate how to estimate these crowd-
sourced topic measures without the need of crowdsourcing tools such as Mechanical Turk.
We find some automated measures that are highly correlated with crowdsourced measures
(MP, MPCT, and TC), allowing researchers to reproduce these topic quality measures at
scale. In addition, we propose to construct a prediction model for predicting MP, MPCT,
and TC based on the automated measures. This prediction model can take advantage of
new automated measures to improve their predictive power.

Topic interpretability is a challenge to the problem of topic quality assessment. This
work makes extensive efforts to solidify its measurement via topic coherence and topic
consensus and demonstrates that both coherence and consensus can help understand topic
interpretability. More research remains to be done. One direction for future work is to
catalogue the performance of all crowdsourced measures across more and different datasets
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to provide a benchmark for different types of data. This is because different types of data
intuitively require corresponding crowdsourced measures. Model Precision Choose Two was
designed to measure an additional dimension of topic interpretability, however increasing the
number of words the turker should choose may lead to more dimensions of interpretability.
Future work also includes investigating different models, e.g., those that take K out of the
equation, as is the case with nonparametric topic models such as Hierarchical Dirichlet
Processes (Teh et al., 2006). New NLP models offer new semantic properties, such as word
embeddings which attempt to embed words with similar semantic meanings closer together.
Designing measures for these properties is an important area for future work. Additionally,
there is more work to be done in how the setup changes the output of these measures. For
example, in the “topic consensus” results, we noted that words like “football” may draw
a Turker to think that a topic is a sports topic more strongly than words like “field”, or
“goal”. Challenges such as this provide exciting research directions in this area.
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