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Abstract

Clustering is a central approach for unsupervised learning. After clustering is applied, the
most fundamental analysis is to quantitatively compare clusterings. Such comparisons are
crucial for the evaluation of clustering methods as well as other tasks such as consensus
clustering. It is often argued that, in order to establish a baseline, clustering similarity
should be assessed in the context of a random ensemble of clusterings. The prevailing
assumption for the random clustering ensemble is the permutation model in which the
number and sizes of clusters are fixed. However, this assumption does not necessarily
hold in practice; for example, multiple runs of K-means clustering returns clusterings with
a fixed number of clusters, while the cluster size distribution varies greatly. Here, we
derive corrected variants of two clustering similarity measures (the Rand index and Mutual
Information) in the context of two random clustering ensembles in which the number and
sizes of clusters vary. In addition, we study the impact of one-sided comparisons in the
scenario with a reference clustering. The consequences of different random models are
illustrated using synthetic examples, handwriting recognition, and gene expression data.
We demonstrate that the choice of random model can have a drastic impact on the ranking
of similar clustering pairs, and the evaluation of a clustering method with respect to a
random baseline; thus, the choice of random clustering model should be carefully justified.

Keywords: clustering comparison, clustering evaluation, adjustment for chance, Rand
index, normalized mutual information

1. Introduction

Clustering is one of the most fundamental techniques of unsupervised learning and one of
the most common ways to analyze data. Naturally, numerous methods have been developed
and studied (Jain, 2010). To interpret clustering results, it is crucial to compare them to
each other. For instance, the evaluation of a clustering method is usually carried out by
comparing the method’s results with a planted reference clustering, assuming that the more
similar the method’s solution is to the reference clustering, the better the method. This is
particularly common in the field of complex networks in which clustering similarity measures
are used to justify the performance of community detection methods (Danon et al., 2005;
Lancichinetti and Fortunato, 2009). As quantitative comparison is a fundamental operation,
it plays a key role in many other tasks. For instance, comparisons of clusterings can facilitate
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taxonomies for clustering solutions, can be used as a criteria for parameter estimation, and
form the basis of consensus clustering methods (Meila, 2005; Vinh et al., 2009; Yeung et al.,
2001).

Among the many clustering comparison methods (see, e.g. Meila, 2005; Pfitzner et al.,
2009), two of the most prominent measures are the Rand index (Rand, 1971) and the
Normalized Mutual Information (NMI, Danon et al., 2005). In both cases, the similarity
score exists in the range [0, 1], where 1 corresponds to identical clusterings and 0 implies
maximally dissimilar clusterings. However, in practice, both measures do not efficiently use
the full range of values in between 0 and 1, with many comparisons concentrating near the
extreme values (Vinh et al., 2009; Hubert and Arabie, 1985). This makes it difficult to
directly interpret the results of a comparison.

Thus, it is often argued that clustering similarity should be assessed in the context of a
random ensemble of clusterings (Vinh et al., 2009; Hubert and Arabie, 1985; DuBien and
Warde, 1981; DuBien et al., 2004; Albatineh et al., 2006; Romano et al., 2014; Zhang, 2015;
Romano et al., 2016) and rescaled (see Equation 1). Such a correction for chance establishes
a baseline by using the expected similarity of all pair-wise comparisons between clusterings
specified by a random model; the resulting similarity values have a new interpretation
that facilitates comparisons within a set of clusterings. Specifically, once corrected for
chance, a similarity value of 1 still corresponds to identical clusterings, but a value of
0 now corresponds to the expected value amongst random clusterings. Positive values of
corrected similarity better reflect an intuitive comparison of clusterings (Hubert and Arabie,
1985; Steinley et al., 2016). The correction may also introduce negative values when two
clusterings are less similar than expected by chance.

The correction procedure requires two choices: a model for random clusterings and how
clusterings are drawn from the random model. However, even the existence of these choices is
usually ignored or relegated to the status of technical trivialities. Here, we demonstrate that
these choices may dramatically affect results, and therefore the choice of a particular model
for random clusterings should be justified based on the understanding of the clustering
scenario. A poor choice of the random model may “not be random enough” and encode
crucial features of the clusterings in all of the random clusterings, providing a poor baseline.
At the same time, a random model may be “too random” in which crucial features are
lost in a sea of random clusterings that are not representative of the particular problem.
Characterizing random models is an important topic of research across statistical physics,
network science, and combinatorial mathematics (Sethna, 2006; Goldenberg et al., 2010;
Mansour, 2012). Yet, despite the importance of random model selection, almost no study
that uses clustering comparison provides a justification for their choice of random model.

By far, the most common approach to correct clustering similarity for chance assumes
that both clusterings are uniformly and independently sampled from the permutation model
(Mperm). In the permutation model, the number and size of clusters within a clustering are
fixed, and all random clusterings are generated by shuffling the elements between the fixed
clusters. However, the premises of the permutation model are frequently violated; in many
clustering scenarios, either the number of clusters, the size distribution of those clusters,
or both vary drastically (Hubert and Arabie, 1985; Wallace, 1983). For example, K-means
clustering, probably the most common technique, fixes the number of clusters but not the
sizes of those clusters (Jain, 2010). Later, we explore a real example in which K-means
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produces clusterings with large variations in the clusterings’ cluster size sequences. This
suggests that comparing K-means clusterings based on Mperm is misleading.

Furthermore, even the assumption that both clusterings were randomly drawn from the
same random model (a two-sided comparison) is often problematic. For example, when
comparing against a given reference clustering, it is more reasonable to find the expected
similarity of the reference clustering with all of the random clusterings from the random
model. This one-sided comparison accounts for the fixed structure of the reference clustering
which is always present in the comparisons, providing a more meaningful baseline.

Here, we present a general framework to adjust measures of clustering similarity for
chance by considering a broader class of random clustering models and one-sided compar-
isons. Specifically, we consider two other random models for clusterings: a uniform distri-
bution over the ensemble of all clusterings of N elements with the same number of clusters
(Mnum), and a uniform distribution over the ensemble of all clusterings of N elements (Mall).
The resulting expectations for the Rand index under all three random models are summa-
rized in Table 1 and for Mutual Information in Table 2, with the full derivations given in
Section 4 and Section 5 respectively. The adjusted similarity measures used throughout this
work rescale the Rand and MI measures by these expectations according to Equation 1. We
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Adjusted Rand Index

All Clusterings

One-sided

Two-sided

Fixed Number of Clusters

One-sided

Two-sided

Permutation Model
Two-sided = One-sided

Table 1: The expected Rand index between two random clusterings A and B of N elements,
or random clustering A and reference clustering G under different random models.
Details and derivations are given in Section 4.
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Upper Bound

Two-sided = One-sided

Table 2: The expected Mutual Information between two random clusterings A and B of
N elements, or random clustering A and reference clustering G under different
random models. Details and derivations are given in Section 5.
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Impact of Random Models on Clustering Similarity

also introduce one-sided variants of the adjusted Rand index and adjusted Mutual Infor-
mation when using the Mnum or Mall random models (for Mperm, the one-sided similarity
is equivalent to the two-sided case).

The impact of our framework is illustrated in the case of two common tasks for adjusted
clustering similarity measures: 1) ranking the similarity between pairs of clusterings (or
finding the most similar clustering pair), and 2) evaluating the performance of a clustering
method with respect to a random baseline. In Section 6, these tasks are demonstrated in
the context of several examples: a synthetic clustering example, K-means clustering of a
handwritten digits data set (MNIST), and an evaluation of hierarchical clustering applied
to gene expression data. Our results demonstrate that both the choice of random model for
clusterings and the choice of one-sided comparisons can affect results significantly. There-
fore, we argue that clustering comparisons should be accompanied by a proper justification
for the random model.

2. Clusterings

We first explicitly introduce a clustering of elements. Given a set of N distinct elements
V = {v1, . . . , vN} (i.e. data points or vertices), a clustering is a partition of V into a set
C = {C1, . . . , CKC} of KC non-empty disjoint subsets of V , the clusters, Ck, such that

1. ∀Ci, Cj if i 6= j, then Ci ∩ Cj = ∅

2.
⋃KC
k=1Ck = V .

Each clustering specifies a sequence of cluster sizes, namely, letting ci = |Ci| be the size of
the i-th cluster, then the sequence of cluster sizes is [c1, c2, . . . , cKC ].

Throughout this paper, we focus on the similarity of two clusterings over the same
set of N labeled elements, A = {A1, . . . , AKA} (with KA clusters of sizes ai) and B =
{B1, . . . , BKB} (with KB clusters of sizes bj).

3. Correction for Chance

Given a clustering similarity measure s and a random model for clusterings: model, the ex-
pected clustering similarity Emodel[s] of pair-wise comparisons within the random ensemble
defined by the model corrects s for chance as follows (Hubert and Arabie, 1985)

s− Emodel[s]

smax − Emodel[s]
. (1)

The denominator rescales the adjusted similarity by the maximum similarity of pair-wise
comparisons within the ensemble smax so identical clusterings always have a similarity of
1.0. For some clustering similarity measures, the value of smax is independent of the random
model used; for example, the Rand index is always bounded above by 1.0. However, in the
case of mutual information, the value of smax depends on the random model used.

4. Rand Index

The Rand index (Rand, 1971) compares the number of element pairs which are either co-
assigned to the same cluster, or assigned to different clusters in both clusterings, to the

5



Gates and Ahn

A/B B1 B2 . . . BKB Sums

A1 n11 n12 . . . n1KB a1
A2 n21 n22 . . . n2KB a2
...

...
...

. . .
...

...
AKA nKA1 nKA2 . . . nKAKB aKA
Sums b1 b2 . . . bKB

∑
ij nij = N

Table 3: The contingency table T for two clusterings A = {A1, . . . , AKA} and B =
{B1, . . . , BKB} of N elements, where nij = |Ai ∩ Bj | are the number of elements
that are in both cluster Ai ∈ A and cluster Bj ∈ B.

total number of element pairs. The most common formulation of the Rand index focuses
on the following four sets of the

(
N
2

)
element pairs: N11 the number of element pairs which

are grouped in the same cluster in both clusterings, N10 the number of element pairs which
are grouped in the same cluster by A but in different clusters by B, N01 the number of
element pairs which are grouped in the same cluster by B but in different clusters by A,
and N00 the number of element pairs which are grouped in different clusters by both A and
B. Intuitively, N11 and N00 are indicators of the agreement between the two clusterings,
while N10 and N01 reflect the disagreement between the clusterings.

The aforementioned pair counts are identified from the contingency table T between
two clusterings, shown in Table 3, by the following set of equations

N11 =

KA,KB∑

k,m=1

(
nkm

2

)
=

1

2



KA,KB∑

k,m=1

n2km −N




N10 =

KA∑

k=1

(
ak
2

)
−N11 =

1

2



KA∑

k=1

a2k −
KA,KB∑

k,m=1

n2km


 (2)

N01 =

KB∑

m=1

(
bm
2

)
−N11 =

1

2




KB∑

m=1

b2m −
KA,KB∑

k,m=1

n2km




N00 =

(
N

2

)
−N11 −N10 −N01

The Rand index between clusterings A and B, RI(A,B) is then given by the function

RI(A,B) =
N11 +N00(

N
2

)

=
2
∑KA,KB

k,m=1

(
nkm
2

)
−∑KA

k=1

(
ak
2

)
−∑KB

m=1

(
bm
2

)
+
(
N
2

)
(
N
2

) . (3)

It lies between 0 and 1, where 1 indicates the clusterings are identical and 0 occurs for
clusters which do not share a single pair of elements (this only happens when one clustering

6
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is the full set of elements and the other clustering groups each element into its own cluster).
As the number of clustered elements increases, the measure becomes dominated by the
number of pairs which were classified into different clusters (N00), resulting in decreased
sensitivity to co-occurring element pairs (Fowlkes and Mallows, 1983).

Another formulation of the Rand index, used in our later derivations, focuses on a binary
representation of the element pairs. Specifically, consider the vector UA = [u1, . . . , u(N2 )]

with binary entries uα ∈ {−1, 1} corresponding to all possible element pairs. Using α to
index over all element pairs by α =

(
N
2

)
−
(
N−i+1

2

)
+ j − i, for i < j ≤ N , then uα = 1 if

elements vi and vj are in the same cluster in A and uα = −1 if elements vi and vj are in
different clusters in A. There are QA1 1s in UA and QA−1 −1s in UA with

QA1 =

KA∑

k=1

(
ak
2

)
, QA−1 =

(
N

2

)
−

KA∑

k=1

(
ak
2

)
. (4)

The Rand index is found from the vectors UA and UB, for clusterings A and B respectively,
as the number of 1s in their product vector, UA � UB, using element-wise multiplication
and normalized by the total size of the vectors,

(
N
2

)
.

4.1 Expected Rand Index, Permutation Model (Mperm)

The expectation of the Rand index with respect to the permutation model follows from
drawing the entries in Table 3 from the generalized hypergeometric distribution. Utilizing
the previous notation with QA1 =

∑KA
k=1

(
ak
2

)
, the expectation Eperm[RI(A,B)] of the Rand

index with respect to the permutation model for the cluster size sequences of clusterings A
and B is given by

Eperm[RI(A,B)] =
2QA1 Q

B
1 −

(
N
2

)(
QA1 +QB1

)
+
(
N
2

)2
(
N
2

)2 (5)

(see Fowlkes and Mallows, 1983, Hubert and Arabie, 1985, or Albatineh and Niewiadomska-
Bugaj, 2011 for the full derivation).

The commonly used adjusted Rand index (ARI) of Hubert and Arabie (1985) uses Mperm

to calculate the expectation of the Rand index, Eperm[RI(A,B)], as found in Equation 5.
This expectation is then used in Equation 1, along with the fact that the maximum value
of the Rand index is maxperm[RI] = 1.0, to give

ARIperm(A,B) =

(
N
2

)∑KAKB
k,m=1

(
nkm
2

)
−∑KA

k=1

(
ak
2

)∑KB
m=1

(
bm
2

)

1
2

(
N
2

) [∑KA
k=1

(
ak
2

)
+
∑KB

m=1

(
bm
2

)]
−∑KA

k=1

(
ak
2

)∑KB
m=1

(
bm
2

) . (6)

4.2 Expected Rand Index, Fixed Number of Clusters

We follow DuBien and Warde (1981) to calculate the Rand index between two clusterings
under the assumptions that both clusterings were independently and uniformly drawn from
the ensemble of clusterings with a fixed number of clusters (Mnum). Recall that the Rand
index between two clusterings A and B is given by the number of 1s in the element-wise
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product of the binary representations vectors UA and UB. The expected Rand index under
any random model is then the expected number of 1s in this product vector, normalized by
the total size of the vector

E[RI(A,B)] = E


 1(

N
2

)
(N2 )∑

α=1

1uAα ·uBα=1


 (7)

=
1(
N
2

)
(N2 )∑

α=1

E
[
1uAα ·uBα=1

]

=
1(
N
2

)
(N2 )∑

α=1

P (uAα · uBα = 1)

The product uAα · uBα equals 1 when either uAα = 1 and uBα = 1, or uAα = −1 and uBα = −1.
Since we assumed both clusterings were independent, this gives

P (uAα · uBα = 1) = P (uAα = 1)P (uBα = 1) + P (uAα = −1)P (uBα = −1) (8)

where P (uAα = 1) is the probability that the two elements vi and vj are in the same cluster

in clustering A, where the element pair is indexed by α =
(
N
2

)
− (N−i)(N−i+1)

2 + j − i with
i < j ≤ N . Likewise, P (uAα = −1) is the probability that the two elements vi and vj are in
different clusters.

Under the assumption of Mnum, there is a uniform probability of selecting a clustering
from the S(N,KA) clusterings of N elements into KA clusters; we define, Pnum(uAα = 1) as
the proportion of these clusterings with elements vi and vj in the same cluster. To find this
proportion, notice that we can ensure vi is in the same cluster as vj by first partitioning all
elements besides vi into KA clusters; then, we can add vi to the same cluster as vj . Since
there are S(N − 1,KA) such clusterings without element vi, this gives

Pnum(uAα = 1) =
S(N − 1,KA)

S(N,KA)
(9)

Pnum(uAα = −1) = 1− S(N − 1,KA)

S(N,KA)
. (10)

Finally, the expected Rand index between two clusterings A and B with KA and KB
clusters assuming Mnum is given by

Enum[RI(A,B)] =
S(N − 1,KA)

S(N,KA)

S(N − 1,KB)

S(N,KB)

+

(
1− S(N − 1,KA)

S(N,KA)

)(
1− S(N − 1,KB)

S(N,KB)

)
. (11)

When N is large, we can approximate the Stirling numbers of the second kind for a
fixed K by S(N,K) ≈ KN

K! . This can be inserted into equation (11) to give the following
approximation for the mean of the Rand index assuming Mnum

Enum[RI(A,B)] ≈ 1

KAKB
+

(
1− 1

KA

)(
1− 1

KB

)
. (12)
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Interestingly, this suggests that the Rand index goes to 1 at a rate inversely related to the
smaller number of clusters O(max{K−1A ,K−1B }).

4.3 Expected Rand Index, All Clusterings Mall

The average of the Rand index between two clusterings under the assumption that the clus-
terings were drawn with uniform probability from the set of all clusterings directly follows
from the random model with a fixed number of clusters previously discussed. Namely, be-
cause Bell numbers are related to Stirling numbers of the second kind byBN =

∑N
k=1 S(N, k),

a similar reasoning as followed for equation (9) gives

Pall(uα = 1) =
N∑

k=1

S(N, k)

BN
Pnum(ukα = 1) (13)

=
1

BN

N∑

k=1

S(N, k)
S(N − 1, k)

S(N, k)

=
BN−1
BN

. (14)

Using this probability for the expectation in equation (7) gives the expected Rand index
under the assumption that both clusterings were uniformly drawn from the set of all clus-
terings of N elements

Eall[RI(A,B)] =

(
BN−1
BN

)2

+

(
1− BN−1

BN

)2

. (15)

When N is large, we can approximate the ratio of successive Bell numbers by
BN+1

BN
≈

N
logN . Using this approximation in equation (15) gives the following approximation for the
mean of the Rand index in Mall

Eall[RI(A,B)] ≈
(

logN

N

)2

+

(
1− logN

N

)2

. (16)

Interestingly, this suggests that the expected Rand index between two random clusterings

goes to 1 at a rate O
(
log(N)
N

)
, inversely proportional to the number of elements.

4.4 One-Sided Rand

Consider a reference clustering G that has the cluster size sequence [g1, . . . , gKG ]. The

binary pair vector representation of G has QG1 1s and QG−1 =
(
N
2

)
− QG1 , −1s. The one-

sided expectation of the Rand index under the assumption that clustering A was randomly
drawn from either the Mnum or Mall random models follows from treating the two clusterings
independently as in equation (8). Since the cluster sequence for the reference clustering is
fixed, the probability that a random entry in the binary pair vector is 1 is given by the

9
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fraction of 1s in the vector

Pnum(uGα = 1) =
1(
N
2

)QG1 (17)

=
1(
N
2

)
KG∑

i=1

(
gi
2

)
.

The one-sided expectation of the Rand index under the assumption that clustering A was
randomly drawn from the set of all clusterings with a fixed number of clusters M1

num is

E1
num[RI(A,G)] =

(
S(N − 1,KA)

S(N,KA)

QG1(
N
2

)
)

+

(
1− S(N − 1,KA)

S(N,KA)

)(
1− QG1(

N
2

)
)
. (18)

The one-sided expectation of the Rand index with the assumption that the random clus-
tering A is drawn from the ensemble of all partitions M1

all is

E1
all[RI(A,G)] =

BN−1
BN

QG1(
N
2

) +

(
1− BN−1

BN

)(
1− QG1(

N
2

)
)
. (19)

5. Mutual Information

Another prominent family of clustering similarity measures is based on the Shannon infor-
mation between probabilistic representations of each clustering. These probability distri-
butions are also calculated from the contingency table T , Table 3. The partition entropy
H of a clustering A is given by

H(A) = −
KA∑

k=1

ak
N

log
ak
N
. (20)

Using this entropy, the mutual information MI(A,B) between two clusterings A and B is
given by

MI(A,B) = H(A) +H(B)−H(A,B)

=

KA,KB∑

k,m=1

nkm
N

log
nkmN

akbm
. (21)

The mutual information can be interpreted as an inverse measure of independence between
the clusterings, or a measure of the amount of information each clustering has about the
other. As it can vary in the range [0,min{H(A), H(B)}], to facilitate comparisons, it is
desirable to normalize it to the range [0, 1]. There are at least six proposals in the literature
for this upper bound, each with different advantages and drawbacks

min{H(A), H(B)} ≤
√
H(A)H(B) ≤ H(A) +H(B)

2
(22)

≤ max{H(A), H(B)} ≤ max{logKA, logKB} ≤ logN.

10
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The resulting measures are all known as normalized mutual information (NMI). This mea-
sure has been said to exhibit more desirable properties than the Rand index; for example,
it is dependent on the relative proportions of the cluster sizes in each clustering rather
than the number of elements. However, due to its dependence on the number of clusters
in each clustering, it is known to favor comparisons between clusterings with more clusters
regardless of any other shared clustering features (White and Liu, 1994; Vinh et al., 2010;
Amelio and Pizzuti, 2015).

5.1 Expected Mutual Information, Permutation Model (Mperm)

The mutual information between two clusterings has also previously been studied under the
assumption that both clusterings were randomly generated from the permutation model
(Vinh et al., 2009; Romano et al., 2014; Vinh et al., 2010). Expanding the definition of the
mutual information gives

Eperm[MI(A,B)] = Eperm[H(A)] + Eperm[H(B)]− Eperm[H(A,B)] (23)

= H(A) +H(B)− Eperm[H(A,B)]

where the second line follows from the fact that all cluster sizes (and hence the entropy)
are the same for every clustering in Mperm.

The expectation of the joint entropy with respect to Mperm for the cluster size distri-
butions of clusterings A and B is the average over all possible contingency tables T with
entries n

Eperm[H(A,B)] = −
∑

T
p(T |A,B)

KA∑

k=1

KB∑

m=1

n

N
log
( n
N

)
. (24)

Rearranging the summations, and recalling that the entries of the contingency tables are
hyper-geometrically distributed such that the probability of each entry

p(n) =

(
bm
n

)(
N−bm
ak−n

)
(
N
ak

) (25)

is only dependent on the row sum ak and column sum bm, gives

Eperm[H(A,B)] = −
KA∑

k=1

KB∑

m=1

∑

n

n

N
log
( n
N

) (bm
n

)(
N−bm
ak−n

)
(
N
ak

) . (26)

According to the hyper-geometric distribution, the summation over table entries nkm oc-
curs between the lower bound: max{0, ak + bm − N} and the upper bound: min{ak, bm}.
Combining this expression with the individual entropies H(A) and H(B) gives (Vinh et al.,
2009)

Eperm[MI(A,B)] =

KA∑

k=1

KB∑

m=1

∑

n

n

N
log

(
Nn

akbm

) (bm
n

)(
N−bm
ak−n

)
(
N
ak

) . (27)
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As shown in Romano et al. (2014), the computational complexity of calculating the expected
mutual information assuming the permutation model is of order O(max{KAN,KBN}).

The adjusted mutual information (AMI) of Vinh et al. (2009) uses Mperm to correct
the MI for chance according to equation (1) and selecting an upper bound max[MI] from
equation (22) to give

AMI(A,B) =
MI(A,B)− Eperm[MI(A,B)]

maxperm[MI]− Eperm[MI(A,B)]
. (28)

5.2 Expected Mutual Information, Fixed Number of Clusters (Mnum)

Next, we consider the Mutual Information between two clusterings under the assumptions
that both clusterings were independently and uniformly drawn from the ensemble of cluster-
ings with a fixed number of clusters (Mnum). In this case, the expected mutual information
is dependent on both the average partition entropy and the joint partition entropy

Enum[MI(A,B)] = Enum[H(A)] + Enum[H(B)]− Enum[H(A,B)]. (29)

This expectation can be found by considering the average partition entropy and joint parti-
tion entropy separately. Recall that in the permutation model Eperm[H(A)] = H(A) since
the cluster sizes remain unchanged; however, the same does not hold in Mnum. Denoting
a random clustering with KA clusters as πKA , and using the notion

∑
σi∈πKA

to indicate

the summation over all clusters in the clustering πKA , where the cardinality of the cluster
is |σi| = a, then the expected partition entropy of a random clustering in Mnum is

Enum[H(A)] = −
∑

πKA

pnum(πKA)
∑

σi∈πKA

a

N
log
( a
N

)
. (30)

Note that this expression only depends on the size a = |σi| for σi ∈ πKA of the clusters in
the clustering. This means the expected entropy of a random clustering can be rewritten
in terms of the expected contribution to the entropy from a random cluster of size a.
A counting argument gives the number of clusters of size a which appear in all of the
clusterings in the random ensemble. First, choose a of the N elements to form the cluster.
Each clustering in Mnum must have KA clusters, so the remaining N − a elements have to
be arranged into KA−1 other clusters. There are S(N −a,KA−1) ways to partition these
remaining elements. This gives

(
N
a

)
S(N − a,KA− 1) clusters of size a (Chern et al., 2014).

The expected number of clusters nnum(a) in a random clustering drawn from Mnum is then(
N
a

)S(N−a,KA−1)
S(N,KA)

. Therefore, the expected clustering entropy in Mnum is:

Enum[H(A)] = −
N−(KA−1)∑

a=1

(
N

a

)
S(N − a,KA − 1)

S(N,KA)

a

N
log
( a
N

)
. (31)

where the summation is over all possible cluster sizes [1, N − (KA − 1)] encountered when
partitioning N elements into KA clusters.

Similarly, the expected joint entropy of two random clusterings drawn independently
from Mnum is given by the expected number of clusters of size a from a clustering with

12
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KA clusters, the expected number of clusters of size b from a clustering with KB clusters,

and then considering the probability of overlap p(nkm) =
( b
nkm

)( N−b
a−nkm

)

(Na)
from the resulting

random contingency table

Enum[H(A,B)] = −
∑

πKA

pnum(πKA)
∑

πKB

pnum(πKB)

×
KA∑

k=1

KB∑

m=1

∑

n

n

N
log

(
Nn

akbm

) (bm
n

)(
N−bm
ak−n

)
(
N
ak

)

= −
N−(KA−1)∑

a=1

N−(KB−1)∑

b=1

∑

n

[(
N

a

)
S(N − a,KA − 1)

S(N,KA)
(32)

×
(
N

b

)
S(N − b,KB − 1)

S(N,KB)

n

N
log
( n
N

) (b
n

)(
N−b
a−n
)

(
N
a

)
]
.

Note that, when using equation (1) to adjust the mutual information for chance under
the assumption of Mnum, the maximum value for the measure over the entire ensemble of
random clusterings has to be used. When considering clusterings with a fixed number of
clusters, we know that H(A) ≤ logKA. This means that the choices for maxnum[MI(A,B)]
are

min{logKA, logKB} ≤
√

logKA logKB ≤
1

2
logKAKB ≤ max{logKA, logKB}. (33)

As is apparent from the summations in equation (32), the computational complexity of
exactly calculating the expected mutual information assuming Mnum is of order O(N3).

5.3 Expected Mutual Information, All Clusterings Mall

The expected Mutual Information between two clusterings under the assumption that both
clusterings were independently and uniformly drawn from the set of all possible clusterings
of N elements, Mall, has a similar derivation as the previous case of Mnum. Both the
expectations for the entropy of a single clustering and the joint entropy of the two clusterings
need to be considered separately and can be rewritten in terms of the contributions from
individual clusters of a given size. In Mall, the number of clusters of size a is again found
by choosing a of the N elements for the cluster and then partitioning the remaining N − a
elements; there are now BN−a possible ways to cluster the remaining elements (Chern et al.,
2014). This gives

Eall[H(A)] = −
N∑

a=1

(
N

a

)
BN−a
BN

a

N
log
( a
N

)
. (34)

13



Gates and Ahn

The expected joint entropy for two clusterings is then

Eall[H(A,B)] = −
∑

πa

p(πa)
∑

πb

p(πb)
N∑

i=1

N∑

j=1

∑

n

n

N
log

(
Nn

aibj

) (bj
n

)(
N−bj
ai−n

)
(
N
ai

)

= −
N∑

a=1

(
N

a

)
BN−a
BN

N∑

b=1

(
N

b

)
BN−b
BN

∑

n

n

N
log
( n
N

) (b
n

)(
N−b
a−n
)

(
N
a

)

= −2
N∑

a=1

a−1∑

b=1

(
N

a

)
BN−a
BN

(
N

b

)
BN−b
BN

∑

n

n

N
log
( n
N

) (b
n

)(
N−b
a−n
)

(
N
a

) (35)

−
N∑

a=1

((
N

a

)
BN−a
BN

)2∑

n

nij
N

log
( n
N

) (a
n

)(
N−a
a−n

)
(
N
a

) ,

with the last simplification resulting from the symmetry of the hyper-geometric term with
respect to a and b.

As in the previous case, the maximum bound of the measure must be consider over the
entire ensemble of clusterings. Again, we consider the bound H(A) ≤ logN . This reduces
to only one choice for maxall[MI(A,B)] = logN .

5.4 One-Sided Mutual Information

As was the case for the one-sided expected Rand index, the one-sided expectation of mutual
information follows from the fact that the cluster sequence for the reference clustering is
fixed. This results in the following one-sided expected joint entropy when the random
clustering A is drawn from the Mnum model

E1
num[H(A,G)] = −

N∑

a=1

(
N

a

)
S(N − a,KA − 1)

S(N,KA)

KG∑

b=1

∑

n

n

N
log
( n
N

) (gb
n

)(
N−gb
a−n

)
(
N
a

) . (36)

The corresponding one-sided expected MI assuming M1
num is

E1
num[MI(A,G)] = −

KA∑

a=1

(
N

a

)
S(N − a,KA − 1)

S(N,KA)

a

N
log
( a
N

)
−

KG∑

b=1

gb
N

log
(gb
N

)
(37)

+

N∑

a=1

(
N

a

)
S(N − a,KA − 1)

S(N,KA)

KG∑

b=1

∑

n

n

N
log
( n
N

) (gb
n

)(
N−gb
a−n

)
(
N
a

) .

The one-sided expected joint entropy when the random clustering A is drawn from the M1
all

model is

E1
all[H(A,G)] = −

N∑

a=1

(
N

a

)
BN−a
BN

KG∑

b=1

∑

n

n

N
log
( n
N

) (gb
n

)(
N−gb
a−n

)
(
N
a

) , (38)
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and the one-sided expectation of the MI when the random clustering A is drawn from the
M1

all model is

E1
all[MI(A,G)] = −

KA∑

a=1

(
N

a

)
BN−a
BN

a

N
log
( a
N

)
−

KG∑

b=1

gb
N

log
(gb
N

)
(39)

+

N∑

a=1

(
N

a

)
BN−a
BN

KG∑

b=1

∑

n

n

N
log
( n
N

) (gb
n

)(
N−gb
a−n

)
(
N
a

) .

Again, the maximum bound must be chosen with respect to the measure maximum over
the clusterings present in the random model.

6. Results

The choice of random model for clusterings and the choice of one-sided comparisons can
significantly affect results of clustering comparisons. We first illustrate that the ranking of
similar clustering pairs (or, equivalently, finding the most similar clustering pair) depends
on the choices of random models in a hypothetical example (Section 6.1) and K-means
clustering of a handwritten digits data set (Section 6.2). One of the primary reasons such
strong discrepancies occur is that the cluster size sequences are fixed within samples from
Mperm. This means that adjusted comparisons using Mperm are unable to differentiate
random clusterings with drastically different cluster size sequences, as we illustrate through
our third example in Section 6.3. Second, we demonstrate that the interpretation of adjusted
clustering similarity measures with respect to a random baseline also depends on the random
model through an evaluation of hierarchical clustering applied to gene expression data in
Section 6.4. Crucially, all of these examples illustrate that conclusions based on corrected
similarity measures can change depending on the random model for clusterings.

6.1 Clustering Similarity Ranking

Our first example demonstrates how rankings assigned by the similarity score can change
depending on the assumed random model. Consider the four hypothetical clusterings of
20 elements presented in Figure 1a. Clustering W contains four equally sized clusters;
clustering X is generated by shifting the membership of one element from W; clustering
Y groups the elements into 10 equally sized clusters; and clustering Z groups the elements
into 10 heterogeneous clusters. The similarity (from the most similar at the top to the
least similar at the bottom) of all 6 clustering pairs is ranked using the Rand index and
each of its three adjusted variants in Figure 1b. Note that the adjusted Rand index can be
negative. The unadjusted Rand index ranking serves as a reference to illustrate how the
random models change rankings.

As one would expect, all four Rand measures identify clusterings W and X as the most
similar (Figure 1b). However, the ranking of the other five comparisons varies widely as
a result of the underlying random models. These changes can be understood by tracking
comparisons to clustering Z. The low Rand index for the three comparisons with clustering
Z (≈ 0.76) reflects the fact that clustering Z has a drastically different number of clusters or
cluster size sequence from the other three clusterings. The permutation model retains these
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Figure 1: The choice of random model for the Rand index has a significant impact on the
rankings of clustering similarity. a, Four clusterings ofN = 20 elements;W and X
each contain four clusters and differ by the assignment of one element (6), Y and Z
each contain ten clusters. b, Rankings for the similarity of clustering pairs using
the Rand index, the Adjusted Rand index assuming Mperm, the Adjusted Rand
index assuming Mnum, and the Adjusted Rand index assuming Mall. Rankings
which change as a function of random model are highlighted in dark red.

differences in all random clusterings; the resulting adjusted index thus treats comparisons
between clustering Z and either W or X more favorably than those to clustering Y. On
the other hand, the cluster size sequence for clustering Z is relatively rare in both Mnum

and Mall. Since clusterings Y and Z have the same number of clusters, the differences in
their adjusted scores using Mnum are a consequence of their cluster size sequences. Finally,
all four clusterings are over 20 elements—the only factor that specifies the expected Rand
index assuming Mall—so they are all adjusted by the same amount when Mall is used. Note
that in our example, clustering Z has a negative adjusted Rand score using the Mall when
compared with all three other clusterings, thus it is less similar to the other three clusterings
than one would have expected from comparing two completely random clusterings.

This example illustrates an important property of the Mall model. Namely, the ranking
provided by the Rand index remains unchanged whenever the Mall model is used for ad-
justment because all clusterings have the same number of elements. However, the corrected
baseline now provides a strong interpretation for negative scores: Two randomly selected
clusterings are expected to be more similar. This is an important consideration for the
evaluation of clustering methods; if the derived clustering is no more similar than would
be expected when comparing completely random clusterings, the solution is likely not a
meaningful representation of the data.
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Figure 2: Both the random model and maximum bound have a significant impact on the
rankings of clustering similarity using Mutual Information (MI). Rankings for
the similarity of clustering pairs from Figure 1a using (vertically) the raw MI, the
Adjusted MI assumingMperm, the Adjusted MI assumingMnum, and the Adjusted
MI assuming Mall. MI similarity also depends on the choice of maximum bound
(horizontal) as a function of the two clusterings’ model entropies; minimum (Min),
square-root (Sqrt), average (Sum), and maximum (Max). The MI measures which
are normalized but not adjusted by a random model are all members of the
common family of normalized MI (NMI). For a given random model, similarity
rankings which change as a function of maximum bound are highlighted in dark
red.
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We then turn our attention to clustering similarity measured by mutual information
(MI). Rankings using the adjusted MI depend on two dimensions of variation: the random
model and the maximum bound for the measure. This variation is illustrated in Figure 2
using the same 6 comparisons between pairs of clusterings from Figure 1a. We consider four
cases for the MI maximum bound: Min, Sqrt, Sum, and Max, corresponding to the mini-
mum of the two model partition entropies, the geometric mean of the two model partition
entropies, the average of the two model partition entropies, and the maximum of the two
model partition entropies, respectively (see Appendix 5 for details). For the permutation
model, the model partition entropies are calculated from the cluster size sequences, while
the model partition entropies in Mnum are bounded by the logarithm of the number of clus-
ters and the model partition entropies in Mall are bounded by the logarithm of the number
of elements. As a point of reference, all rankings are illustrated in comparison to the raw
mutual information score, unnormalized and without a random model adjustment (None).
All adjustments of the mutual information without a random model (None, first row) are
members of the commonly used family of Normalized Mutual Information (NMI) measures
(Danon et al., 2005).

The rankings in Figure 2 demonstrate that both the random model and the maximum
bound affect the relative similarity between clusterings when adjusting MI. Firstly, the only
random model whose adjustments are independent of MI’s maximum bound is Mall. This
occurs because every choice of the maximum bound reduces to logN (the entropy of the
clustering that places each element into its own cluster). In the other three random model
scenarios, the maximum bound depends on the clusterings under comparison. Secondly,
MI is highly dependent on the number of clusters in each of the clusterings: When either
no normalization and random model adjustment are used, or the Mall model is used, MI
ranks the similarity of clusterings Y and Z above that of W and X because of the greater
number of clusters in the former case. This bias is mitigated to varying extents by the NMI
variations; while NMI using the Sqrt, Sum, and Max normalization terms all produce the
intuitive ranking of W and X as the most similar pair, NMI using Min for normalization
still succumbs to the larger number of clusters in Y, and ranks X and Y as the most similar
clustering pair. The adjustments provided by both the Mperm and Mnum random models
control for the number of clusters; this reduces the impact of the number of clusters when
the cluster sizes are regular, but the bias re-occurs when there is a large imbalance between
the cluster sizes.

6.2 Appropriate Random Model for Comparing K-means Clusterings

Clustering similarity measures are commonly used to evaluate the results of clustering meth-
ods in relation to a known reference clustering. Since the number of clusters can vary be-
tween instances, appropriately corrected similarity measures are necessary. However, as we
have already seen, the choice of similarity measure and its chance corrected variants can
affect the results of the comparisons and suggest drastically different interpretations for the
effectiveness of the method.

We demonstrate the importance of the random ensemble assumption through a com-
parison of the clusterings uncovered by 400 runs of K-means on a collection of hand-written
digits (Alimoglu and Alpaydin, 1996, see Appendix B.1 for details). The K-means cluster-
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Figure 3: The impact of random model choice on the evaluation of K-means clustering. a,
The digits data set contains 1, 797 points in 64 dimensions (projected to 2 dimen-
sions using t-SNE dimensionality reduction for visualization, Van der Maaten and
Hinton, 2008) with a ground truth clustering corresponding to the digit, and an
example K-means clustering. b, The original cluster size sequence (top left) and
10 cluster size sequences uncovered by K-means clustering with random initial-
ization (top right). Intensity represents cluster sizes that are smaller (darker) or
larger (lighter) than the ground truth clusters. (bottom) The cluster size sequence
for 400 clusterings uncovered by K-means clustering with random initialization
using Barycentric coordinates. The actual clustering size sequence (black) and
the most similar clustering determined by the Adjusted Rand index assuming
Mperm (light blue) and M1

num (light orange). c, The similarity between the actual
digits clusterings and each of the 400 K-means clusterings as measured by the
Adjusted Rand index assuming Mperm (y-axis) and M1

num (x-axis). d, The rank-
ing of the most similar 10 K-means clusterings as determined by the Adjusted
Rand index assuming Mperm (left) and M1

num (right).
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ing method groups elements so as to minimize the average (Euclidean) distance from the
cluster centroid. In most scenarios, it uncovers clusterings with a pre-specified number of
clusters (K). For our example, the digits naturally fall into 10 disjoint clusters, shown in
Figure 3a, with relative cluster sizes given on the left of Figure 3b. Interestingly, almost
all 400 clusterings produced by K-means have a different cluster size sequence (Figure 3b,
bottom) and the cluster sizes vary over a wide range (Figure 3b, top). This suggests that
both the specific assignment of elements to clusters and the size sequence of the clusters are
major factors differentiating the K-means clusterings. Both sources of variation need to be
captured by the random model in order to have a meaningful baseline.

Since the number of clusters does not change between runs, but the size sequence of
those clusters changes considerably, it is more appropriate to assess similarity within the
context of random clusterings with a fixed number of clusters rather than those given by
the permutation model. Furthermore, since all of the comparisons are made against the
same reference clustering, a one-sided similarity metric better captures the comparison
scenario. In Figure 3c, the similarity of the reference clustering compared to each of the
400 uncovered clusterings is shown using the Adjusted Rand index assuming Mperm and
the Adjusted Rand index assuming M1

num. While the measures are strongly correlated
(the black line indicates perfect agreement), the Adjusted Rand index assuming Mperm is
consistently biased towards higher similarity. Most importantly, the bulk of the uncovered
clusterings change their relative ranking when considered in the context of M1

num compared
to Mperm as demonstrated by the rankings of the top 10 most similar clusterings in Figure
3d.

6.3 Random Models and Inhomogeneous Cluster Sizes

For both the Rand index and MI, the permutation model is invariant to differences in the
cluster size sequence. This invariance is explicitly demonstrated in our next example by
the difference between the adjusted similarity measures assuming Mperm and Mnum. To
generate an increasing disparity in cluster sizes, we use a preferential attachment model of
element assignment. At each step of the algorithm, a random element is uniformly chosen
for reassignment to a new cluster based on the current sizes of those clusters. A move is
rejected if it results in an empty cluster.

In Figure 4, we compare a clustering of 1, 000 elements grouped into 50 equally sized
clusters and a randomized variant of the same clustering throughout 106-steps of our pref-
erential attachment algorithm using the Adjusted Rand index (Figure 4a) and Adjusted MI
(Figure 4b). Cluster size inhomogeneity is measured by the entropy of the clustering size
sequence; equally sized clusters have the maximum entropy (log2 50 ≈ 5.64), while greater
inhomogeneity in cluster sizes decreases the entropy of the cluster size sequence. In both
cases, the comparisons assuming Mperm are invariant to the inhomogeneity of the cluster
size sequences. On the other hand, comparisons assuming Mnum reflect the changes in the
cluster size sequence.

6.4 Performing at Random in Tumor Gene Expression Clustering

Finally, recall that adjusted clustering similarity measures have the added interpretation
with respect to a random baseline. Such random baselines play an important role when
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Figure 4: The invariance to inhomogeneous cluster size sequences when assuming Mperm.
A clustering with 50 equal-sized clusters is compared to a second clustering B
generated by a preferential attachment model. The cluster size sequence inho-
mogenity for clustering B is measured by the cluster size sequence entropy (low
entropy is indicative of large cluster size inhomogenity). The similarity is calcu-
lated using the adjusted similarity assuming the permutation model Mperm and
Mnum for a, the Adjusted Rand index, and b, the Adjusted Mutual Information.
In both cases, the similarity assuming Mperm is relatively constant (near 0), while
the similarity assuming Mnum increases with increasing entropy.

evaluating methods in unsupervised learning and classification. In our case, the adjusted
similarity measures answer the question: Is the result of our clustering method more similar
to the desired clustering than if we selected a random clustering? The adjusted similarity
measure quantifies an answer to this question: positive scores indicate performance above
random, while negative scores indicate a random clustering is more similar.

The interpretation of the adjusted similarity as a random baseline is highly dependent
on the assumption of the random model. Critically, if the random model does not reflect the
actual ensemble in which the clustering method is searching, the baseline does not accurately
reflect the scenario in question. Thus, methods are incorrectly assessed as performing better
than randomly generating a clustering.

We illustrate the dependence of adjusted similarity baseline on the choice of random
model using a gene expression data set. Specifically, we use a collection of 35 cancer gene
expression studies assembled in de Souto et al. (2008). The studies in the collection aim to
differentiate the gene expression in cancerous cell tissue samples from those in healthy con-
trols. Each study contains anywhere from 22 to 248 data points (individual tissue samples)
for which between 85 and 4, 553 features (individual gene expression) were measured after
removing the uninformative and missing genes. For details on the individual studies and
filtering methodologies, see de Souto et al. (2008) and references therein.
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Figure 5: The impact of random model choice on the evaluation of gene expression cluster-
ing with respect to the random baseline. The results of agglomerative hierarchical
clustering identified from the gene expression in tissue samples from cancerous
and healthy cells in 35 studies. a, The uncovered clusterings are compared to
the reference clustering using the Adjusted Rand index assuming the permuta-
tion model Mperm (x-axis), and the one-sided Adjusted Rand index assuming
a fixed-number of clusters M1

num (y-axis). The dashed grey line indicates nu-
merical agreement between the similarity measures. There are four possibilities
when using two measures to assess similarity with respect to the random baseline:
both random models conclude better than chance (blue, quadrant I), both ran-
dom models conclude worse than chance (green, quadrant III), Mperm concludes
better than chance but M1

num concludes worse than chance (pink, quadrant IV),
and visa-versa (orange, quadrant II). b, The assumed random model affects the
classification of clustering comparisons with respect to the random baseline in all
four random models considered here (M1

num,Mnum,Mall and M1
all) vs. Mperm.

Clusterings are identified via agglomerative hierarchical clustering using correlation to
compute the average linkage between data points, a common clustering methodology in
biology. While many other methods could be used (and indeed, were compared in de Souto
et al., 2008), we use hierarchical clustering as a representative example to illustrate the
consequences of the random model. Since hierarchical clustering produces a clustering with
the user specified number of clusters, its similarity should be adjusted using the one-sided
Adjusted Rand index assuming M1

num, where the reference clustering is specified for each
study individually.

Figure 5 shows the similarity between the derived clustering and the reference clustering
for each of the 35 studies. The Adjusted Rand index assuming Mperm is shown on the
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x-axis; positive scores (blue and pink points) denote the method performed better than
the random baseline, while negative scores (orange and green points) denote the method
performed worse than the random baseline. When the Adjusted Rand index assuming M1

num

is used (y-axis), a different classification of method performance with respect to the random
baseline is found. Of particular note are the seven studies for which the method performed
better than chance according to Mperm, yet, M1

num concludes the method actually performed
worse than chance (pink points). In this case, a random clustering drawn from the model
with a fixed number of clusters would actually perform better than agglomerative hierarchical
clustering, yet the practitioner using the permutation model would incorrectly conclude the
method was performing better than chance. This discrepancy occurs even when the values of
the Adjusted Rand index assuming Mperm are relatively high (> 0.4). Similarly interesting
are the three studies in which the method performed worse than chance according to Mperm,
yet, M1

num concludes the method actually performed better than chance (orange points).

7. Discussion

Given the prevalence of clustering methods for analyzing data, clustering comparison is
a fundamental problem that is pertinent to numerous areas of science. In particular, the
correction of clustering similarity for chance serves to establish a baseline that facilitates
comparisons between different clustering solutions. Expanding previous studies on the
selection of an appropriate model for random clusterings (Meila, 2005; Vinh et al., 2009;
Romano et al., 2016), our work provides an extensive summary of random models and clearly
demonstrates the strong impact of the random model on the interpretation of clustering
results.

Our results underpin the importance of selecting the appropriate random model for a
given context. To that end, we offer the following guidelines:

1. Consider what is fixed by the clustering method: do all clusterings have a user specified
number of clusters (use Mnum), or is the cluster size sequence fixed (use Mperm)?

2. Is the comparison against a reference clustering (use a one-sided comparison), or are
you comparing two derived clusterings (then use a two-sided comparison)?

The specific comparisons studied here are not meant to establish the superiority of a
particular clustering identification technique or a specific random clustering model, rather,
they illustrate the importance of the choice of the random model. Crucially, conclusions
based on corrected similarity measures can change depending on the random model for
clusterings. Therefore, previous studies which did promote methods based on evidence
from corrected similarity measures should be re-evaluated in the context of the appropriate
random model for clusterings (Yeung et al., 2001; de Souto et al., 2008; Yeung and Ruzzo,
2001; Thalamuthu et al., 2006; McNicholas and Murphy, 2010).

Throughout this work, we assumed a uniform probability of selecting a partition given
a constraint on the types of partitions in the ensemble. However, other probability dis-
tributions could be used which better model the clusterings encountered in practice. For
example, instead of using a uniform distribution over the number of clusters, one could
consider an inferred distribution for the number of clusters actually uncovered by a given
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method (e.g. affinity propagation). This is particularly relevant when considering Mall, an
extreme case for random partitions. Additionally, given that many systems exhibit clus-
terings with a heavy-tailed cluster size sequence, clusterings with such skewed cluster size
distributions could be favored. Changes to the prior probabilities would likely change the
expectations of the clustering similarity measures.

The behavior of the Rand index and Mutual Information in the context of the random
clustering models discussed here further reveals problems with both measures. Specifically,
the expected similarity of random clusterings increases as the number of elements grows.
Intuition would suggest the opposite; the similarity of two randomly selected clusterings
should decrease as the number of elements increases because it is harder to match the ele-
ment memberships to clusters between two random clusterings. Instead, both MI and Rand
are dominated by the fact that the expected number of clusters and cluster size distribution
are converging with increasing N (Mansour, 2012). Our analysis also illustrates the de-
pendency on the normalization term for MI, which, combined with a previously established
bias on the number of clusters, suggests more care should be taken when interpreting the
results of MI clustering comparisons.

In conclusion, our framework for the correction of clustering similarity for chance al-
lows for more conscious comparisons between clusterings. The practitioner should always
provide justification for their choice of random clustering model and treatment of one-sided
comparisons.
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Appendix A. Stirling and Bell Numbers

The Stirling number of the second kind S(n, k) gives the number of ways to partition a set
of n elements into k clusters, where

S(n, k) =
1

k!

k∑

j=0

(−1)k−j
(
k

j

)
jn. (40)

There are several recurrence relations which also give S(n, k), one of the most useful is the
relation

S(0, 0) = 1 S(n, 0) = S(0, n) = 0 (41)

S(n+ 1, k) = kS(n, k) + S(n, k − 1).

As n → ∞, an asymptotic approximation to the Stirling numbers of the second kind for a
fixed k is given by S(n, k) ≈ kn

k! .
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The Bell number Bn is the total number of clusterings over a set with n elements. It
is related the Stirling numbers of the second kind by the summation over k for a fixed n,
Bn =

∑n
k=0 S(n, k). There is also a useful recurrence relation for Bell numbers: Bn+1 =∑n

k=0

(
n
k

)
Bk. As n→∞, an asymptotic approximation to the ratio of the n-th and (n+ 1)-

th Bell numbers is Bn
Bn+1

≈ logn
n . See Mansour (2012) for an extended discussion of both the

Stirling numbers of the second kind and the Bell numbers.

In practice, calculating the Bell numbers and Stirling numbers of the second kind from
their recurrence relations can be computationally expensive. However, many efficient ap-
proximations and implementations are available (Temme, 1993; Mansour, 2012). Here, we
make use of the mpmath arbitrary precision library for Python developed by Johansson
et al. (2013). This library takes advantage of Dobiǹski’s Formula to approximate the Bell
numbers (Dobiński, 1877; Chen and Yeh, 1994).

Appendix B. Application Data Sets

B.1 Digits Data Set

The digits data set is bundled with the sci-kit learn source code and consists of 1, 797
images of 8× 8 gray level pixels of handwritten digits. The reference clustering contains 10
clusters corresponding to the true digit. The data set was originally assembled in Alimoglu
and Alpaydin (1996). To provide a visualization, the data was projected to 2-d using the
t-Distributed Stochastic Neighbor Embedding (t-SNE) dimensionality reduction method
(Van der Maaten and Hinton, 2008) initialized from the pca decomposition.

B.2 Gene Expression Data Set

The data was assembled in de Souto et al. (2008) and is freely available from
http://bioinformatics.rutgers.edu/Publications/deSouto2008c/index.html. The
studies represent two prominent methods for determining gene expression in cell tissue
samples from cancer tumors or healthy controls, Affymetrix microarrays and cDNA mi-
croarrays, which, respectively, measure the number of RNA copies found in the cell and
the ratio of the number of copies vs a control sample. Each study contains anywhere from
22 to 248 data points (individual tissue samples) for which between 85 and 4, 553 features
(individual gene expression) were measured after removing the uninformative and missing
genes. Please see de Souto et al. (2008) for details of this selection process.
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