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Abstract

Classification is an important supervised learning technique with numerous applications.
We develop an angle-based multicategory distance-weighted support vector machine (MD-
WSVM) classification method that is motivated from the binary distance-weighted sup-
port vector machine (DWSVM) classification method. The new method has the merits
of both support vector machine (SVM) and distance-weighted discrimination (DWD) but
also alleviates both the data piling issue of SVM and the imbalanced data issue of DWD.
Theoretical and numerical studies demonstrate the advantages of MDWSVM method over
existing angle-based methods.

Keywords: Discriminant analysis, Imbalanced data, High dimension, Support vector
machine, Distance-weighted discrimination

1. Introduction

Classification is important in both statistics and machine learning. The goal of classification
is to build a classifier such that it can predict the category of a new observation. Popular
classification methods include Fisher’s linear discriminant analysis, logistic regression, sup-
port vector machine (SVM), and boosting. See Hastie et al. (2001) for an introduction to
various classification methods.

SVM (Schölkopf and Burges, 1999; Cristianini and Shawe-Taylor, 2000) has been shown
to be a very popular and powerful method. It is well known that the binary SVM searches
for a hyperplane in the feature space (that is a type of projection space from the original
data) that maximizes the margin (a gap between the two groups). SVM has numerous
applications, such as image classification (Chapelle et al., 1999; Foody and Mathur, 2006)
and cancer diagnostics (Duan et al., 2005; Wang and Huang, 2011).
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In a high-dimensional, low sample size (HDLSS) setting, Marron et al. (2007) and Ahn
and Marron (2010) observed a data-piling phenomenon with the binary SVM and other
classification methods. A SVM-type linear classifier is a margin-based classifier. It has a
separating hyperplane, and its normal vector is essentially the discriminant direction. Data-
piling is the phenomenon when projecting the data points to the discriminant direction
that many of these projections are identical. This phenomenon indicates that the resulting
separating hyperplane might be affected by noise artifacts in the data. Noise artifacts result
in a discrimination direction far away from the Bayes direction. See more discussion in Ahn
and Marron (2010).

To alleviate the data-piling issue, Marron et al. (2007) proposed the binary distance-
weighted discrimination (DWD) classifier. The idea of DWD is to minimize the total inverse
margin of all the data points. This method works quite well in the HDLSS setting. However,
because the DWD method uses all the observations to estimate the decision boundary, it
is very sensitive to imbalanced sample sizes (Qiao et al., 2010). In particular, when the
sample size of one class is much larger than the other, the classification boundary will be
pushed towards the minority class and all future data will be assigned to the majority class.
See more discussion in Qiao and Zhang (2015a,b) for the HDLSS overfitting issue of SVM
and imbalanced data issue of DWD. To deal with both problems, Qiao and Zhang (2015a)
proposed a binary distance-weighted support vector machine (DWSVM) method, which can
be viewed as a combination of the binary SVM and DWD. The new method inherits both
the merits of SVM and DWD yet outperforms both SVM and DWD in the HDLSS and
imbalanced context.

In practice, many classification problems have more than two classes. A natural way
to deal with multiclass classification problems is to take a one-versus-one or one-versus-rest
approach, see examples in Hastie et al. (1998) and Allwein et al. (2000). Though both
approaches are intuitive, the one-versus-one approach can lead to a tie-in-vote problem and
the one-versus-rest approach suffers from inconsistency when there is no dominant class
(Lee et al., 2004).

It is more desirable to consider all classes simultaneously. In a multiclass setting, the
observed data are (xi, yi), i = 1, . . . , n, where xi ∈ Rd is a multivariate predictor, the scalar
yi ∈ {1, . . . ,K} is the corresponding class label, with K as the number of classes. Many
classification approaches map x to f(x) ∈ RK , and the corresponding prediction rule is
ŷ = arg maxi fj(x), where fj is the jth element of f . In this type of approach, a constraint

such as
∑K

j=1 fj = 0 is usually imposed to remove redundancy and reduce the dimension
of the problem. See Zhu and Hastie (2001); Lee et al. (2004); Liu and Shen (2006); Liu
(2007); Liu and Yuan (2011) for more discussion. Fisher consistency for several existing
multicategory hinge loss functions are also provided in Liu (2007).

It is straightforward to see that the sum-to-zero constraint can be removed if we redefine
f in RK to be in RK−1, as the degrees of freedom of f is essentially K−1. Several classifiers
have been proposed using this fact. For example, Lange and Wu (2008) proposed a vertex
based model that maps the data x in Rd to a f(x) ∈ RK−1, and predicts the label based
on the distance of f(x) to K predefined vertices. Zhang and Liu (2014) proposed a similar
idea where they define the same K vertices in the Rk−1 space, and use the angle between f
to these vertex vectors to predict labels. More details are given in Section 2 of this paper.
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The angle-based method can be viewed as a natural extension of the binary large margin
classifier to the multiclass context. Zhang and Liu (2014) replace the usual functional margin
by the angle (or inner product) between the projection f and the vertices. Their simulation
results show that these angle-based classifiers have good prediction performance. The Fisher
consistency of a family of large margin classifiers is also proved. However, as a specific case
in large margin classifiers, the angle-based SVM (MSVM) method is not Fisher consistent
because its loss function is not a strictly monotone decreasing function. In Zhang and Liu
(2014), Fisher consistency of a proximal SVM was proposed and proven instead.

In our experiment in Section 2, under HDLSS and imbalanced data setting, we observed
that MSVM suffers from data piling issue. Binary DWD, based on the idea of Zhang and
Liu (2014), can be extended to multicategory angle-based DWD (MDWD). Though free
from the data piling concern, MDWD suffers from the imbalanced issue. Both these issues
were previously observed in the binary case (Marron et al., 2007; Qiao and Zhang, 2015a).

Note that Huang et al. (2013) extended the binary DWD to a version of multiclass DWD
(MDWDH). It adopts the idea of pairwise comparisons from one-versus-one idea. MDWDH
considers a data point with label i being misclassified if the difference of projections on ith
member and jth member is negative (i 6= j). Even though it has nice theoretical properties
and empirical performance as shown in their paper, the angle-based methods have better
geometric interpretation. In addition, the pair-wise natural of the method will have more
expensive computational cost, compared to angle-based approaches. We also observed that
the performance is slightly better than angled-based MDWD method. If the angle-based
MDWD approach also incorporates the pairwise idea, the two approaches will have similar
empirical performance.

In this paper, we adapt the idea in Qiao and Zhang (2015a) to develop a hybrid of MSVM
and MDWD. The work can also be viewed as an extension of the binary DWSVM to the
multiclass context. We prove its Fisher consistency and use extensive simulation studies to
show the usefulness of our approach. For many cases, the novel approach outperforms both
MDWD and MSVM, especially under HDLSS and the imbalanced case.

The rest of this article is organized as follows. In Section 2, we briefly review the existing
multicategory classifiers, and introduce our angle-based distance-weighted support vector
machine (MDWSVM) model. In Section 3, we prove the Fisher consistency and show some
imbalance properties of our new approach. In Section 4, we perform simulation studies to
compare our model with MSVM and MDWD. The sensitivity of the prediction performance
in terms of the tuning parameters is also explored in this section. Section 5 involves a real
application and Section 6 discusses some future work for this model. The proofs of all
theorems and lemmas are given in the appendix.

2. Methodology

In this section, we give a general introduction to classification, including the angle-based
multicategory classifier. We then show some drawbacks of this angle-based classification,
which motivates our MDWSVM. We conclude with a detailed introduction of our approach,
along with its implementation.
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2.1 Classification and Loss Function

Consider a binary classification problem with observed data (xi, yi), i = 1, . . . , n. The
xi ∈ Rd is a multivariate predictor and the scalar yi ∈ {1,−1} is the corresponding class
label. The goal is to find a decision function f along with its prediction ŷ(x) = sign(f(x))
to minimize the misclassification error E(Ŷ 6= Y ). Note that when yf(x) > 0, f(x) gives a
correct prediction; otherwise f(x) gives a misclassification. A natural way to estimate the
misclassification error is to use the empirical error 1/n

∑
I(ŷi(x) 6= yi) = 1/n

∑
I(yif(xi) <

0), where I(.) is the indicator function. However, due to the discontinuity and nonconvexity
of I(yif(xi) < 0), it is hard to conduct a direct minimization.

A common surrogate is a convex loss function `(.), which is commonly used in large
margin classifiers (Hastie et al., 2001). A large margin classifier can be viewed as minimizing
the loss function given a constraint

min
f∈F

n∑
i=1

`(f(xi), yi) +
λ

2
J(f),

where F denotes the function space and J(.) is a type of norm, which is used to control the
complexity of the model. The function `(f, y) is a loss function surrogate for the 0-1 loss.
The tuning parameter λ balances the loss and the norm. For example, the popular linear
SVM uses the hinge loss function `S(u) = (1− u)+ where u = yf(x), and the L2 norm.

The SVM method can also be viewed as maximizing the smallest distances of all obser-
vations to the separating hyperplane. As discussed in Section 1, SVM suffers from the data
piling problem in HDLSS setting. Marron et al. (2007) proposed the DWD method, which
improves the performance of SVM in the HDLSS setting. Essentially, DWD minimizes the
mean of inverse distance of all data vectors to the separating hyperplane. As is discussed
in Bartlett et al. (2006); Liu et al. (2011); Qiao and Zhang (2015a), DWD is also a large
margin classifier, and its loss function is

`D(u) =

{
2− u u ≤ 1

1/u otherwise.
(1)

In practice, lots of applications deal with multicategory rather than binary classification.
For multiclass problems, yi ∈ {1, 2, . . . ,K}, i = 1, . . . , n, with K the number of classes.
The common simultaneous procedure is to map x to f(x) ∈ RK , and the corresponding
prediction rule is ŷ = arg maxj fj(x), where fj is the jth element of f . Commonly a sum
to zero constraint on f is used as discussed in Section 1 to overcome identifiability issues,
see more discussion in Vapnik and Vapnik (1998); Lee et al. (2004); Liu and Yuan (2011).

Many multicategory classification methods can be viewed as the following constrained
optimization problem,

min
f∈F

n∑
i=1

`(f(xi), yi) +
λ

2

K∑
j=1

J(fj),

s.t.

K∑
j=1

fj(x) = 0.
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For example, a multicategory SVM with hinge loss (Vapnik and Vapnik, 1998) uses the
loss function `(f(x), y) = (1−fy(x))+. However, unlike binary classification, multicategory
classification with a sum to zero constraint does not have a clear geometric explanation.
It also suffers from expensive computation (Zhang and Liu, 2014). To overcome these
limitations, Lange and Wu (2008) proposed the vertex idea where they define f as a K − 1
dimensional function instead of a K dimensional function. This removes the need for a
sum-to-zero constraint. A similar idea is used later by Zhang and Liu (2014) to conduct
angle-based classification, which will be discussed next.

2.2 Angle-based Classification Framework

The idea of angle-based classification is to map x to f(x), where f = (f1, . . . , fK−1), with
a set of K predefined vertices in RK−1. We then assess which vertex has the smallest angle
to the projection f , and the corresponding label is the prediction. In Zhang and Liu (2014),
the vertices W = (W1,W2, . . . ,WK) are defined as a collection of K vectors in RK−1 with
elements

Wj =

{
(K − 1)−1/2ζ, j = 1,

−(1 +K1/2)/{(K − 1)3/2}ζ + {K/(K − 1)}1/2ej−1, 2 ≤ j ≤ K.

The unit vector ζ is of length K − 1, and ej is a vector in RK−1 such that all of its
element are 0, except the jth is 1.

In this setting, W form a simplex with K vertices in a (K − 1) dimensional space. The
center of W is at the origin, and each of the Wj , j = 1, . . . ,K has Euclidean norm of 1.
Further, it is easy to check that the angle between each pair of vertices Wi and Wj , i 6= j is
the same. Instead of yi, Wyi is used to represent the observed class. The prediction function

is ŷ = arg maxj〈Wj , f̂〉, where the inner product 〈., .〉 between the two vectors denotes the

projection of f̂ to Wj . The larger the inner product, the smaller the angle between f̂ and
Wj .

With this prediction rule, Zhang and Liu (2014) proposed the optimization model for
the angle-based classification

min
f∈F

1

n

n∑
i=1

`(〈f(xi),Wyi〉) +
λ

2
J(f). (2)

The product 〈f(xi),Wyi〉 can be viewed as a new functional margin of (x, y). Defining
u = 〈f(xi),Wyi〉, one of the examples given in Zhang and Liu (2014) is the multicategory
angle-based SVM (MSVM) where the loss function is replaced by hinge loss `S(u) = (1−u)+
and with L2 norm. DWD loss can be applied to this framework as well, along with more
generalizations of binary large margin classifiers. See Zhang and Liu (2014) for more details.

2.3 From Binary DWSVM to MDWSVM

Through the exploration of the angle-based classification method, we found that MSVM
has similar data piling issues; while MDWD does not have data piling problems, it suffers
from imbalanced issues. To demonstrate the data piling and imbalanced issues, we show
projection plots of a simulated example. In this example, we randomly simulate three
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Figure 1: Plots of projections and Wj ’s in R2 space. Dashed lines are the Wj ’s, j = 1, . . . , 3;
Dots, triangles and squares represent the points from the three different classes. The left
panel shows the projection plot for the Bayes classification, the middle one is for angle-
based MSVM, and the right one is for the angle-based MDWD. The middle panel shows
the MSVM has severe data piling issues (the middle panel), and MDWD in the right panel
suffers from imbalanced issues (the right panel).

classes of observations with 500 covariates, the sample sizes for each class are 100, 50, 50
respectively. For each group, the first two covariates are distributed N(µj , σ

2I2), where µj ’s
are three fixed points equally spaced on the unit circle, and σ = 0.5. All other covariates
are independently and identically distributed N(0, σ2). Note that the data are HDLSS and
imbalanced.

One representation of the projection plots is given in Figure 1. This plot is used to
visualize the n projections f(xi)’s, i = 1, . . . , n and vectors Wj ’s, j = 1, . . . , 3 (dashed lines)
in the R2 plane. The different colors and shapes correspond to different groups. The solid
purple lines are the Bayesian decision boundaries. X̃1 and X̃2 are the two axes in this R2

plane.
From Figure 1 it is clear that MSVM has severe data piling issues since almost all the

points project to a single point on the W direction. Furthermore, MDWD suffers from
the imbalanced issue as the angle-based classification assigns almost all the points to the
dominant Class 1. These findings agree with those in Qiao and Zhang (2015a) for the binary
case.

To alleviate both data piling and imbalanced issues, Qiao and Zhang (2015a) proposed
binary DWSVM, a combination of SVM and DWD. The method has the form

min
f∈F

1

n

n∑
i=1

α`D(yif0(xi)) + (1− α)`S(yif(xi)) +
λ

2
J(f), (3)

where f0(x) = xω + β0 and f(x) = xω + β, ω ∈ Rd is the coefficient direction vector and
scalar β, β0 ∈ R. The loss function `D is from formula (1) and `S is the hinge loss. Notice
that β is the SVM intercept and β0 is the DWD intercept, which is called auxillary intercept
in the DWSVM paper. The prediction function is ŷ = sign(f(x)) = sign(xTi ω + β). The
tuning parameter 0 < α < 1 is used to balance SVM and DWD losses.
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Qiao and Zhang (2015a) show that in binary classification, by choosing the appropriate
α, the DWSVM method will result in a smaller misclassification error compared to both the
DWD method and SVM method in HDLSS and imbalanced data context. Furthermore, in
terms of the similarity to the Bayes classifier, the DWSVM are similar to the DWD but
better than the SVM.

The DWSVM method motivated us to build a multicategory DWSVM within the angle-
based framework. Applying DWSVM to the angle-based framework, we propose a multi-
category angle-based DWSVM (MDWSVM)

min
f∈F

1

n

n∑
i=1

α`D(〈f0(xi),Wyi〉) + (1− α)`S(〈f(xi),Wyi〉) +
λ

2
J(f). (4)

In this model f(xi) = xiB+β0 and f0(xi) = xiB+βd0 , where B = (B1, B2, . . . , BK−1),
each of the Bj , j = 1, . . . ,K − 1 is a vector of length d, which does not include the inter-
cept.The parameters β0, β

d
0 ∈ RK−1 are intercept vectors. Note that f0 and f are only

different in terms of the intercept β0 and βd0 respectively. In this model, the interest is to
find B, β0 and βd0 to minimize the loss function. For prediction ŷ = arg maxj〈Wj , f̂〉 =
arg maxj〈Wj ,xiB + β0〉, however, only β0 and B are used. This avoids the imbalanced is-

sue cost by βd0 . Note that the prediction arg maxj〈Wj , f̂〉 is equivalent to arg minj ∠(Wj , f̂)
where ∠(a, b) represents the angle between vector a and b . We predict x with the label j
such that vertex Wj and f(x) has the smallest angle among all ∠(Wj , f̂), j = 1, . . . ,K. Ob-

serve that
∑K

j=1〈Wj , f̂〉 = 0 for all x, which means the angle-based classification framework
automatically includes sum-to-zero constraints.

2.4 Implementation of MDWSVM

In Qiao and Zhang (2015a), the implementation of the binary DWSVM (3) was through
second-order cone programming. Mathematically, the DWSVM model can be written as

min
ω,β,β0,ηi,ξi

n∑
i=1

{α(
1

ri
+ ηi) + (1− α)ξi},

s.t. ri = yi(x
T
i ω + β) + ηi, ri ≥ 0 and ηi ≥ 0,

yi(x
T
i ω + β) + ξi ≥ 1, ξi ≥ 0,

‖ω‖2 ≤ C.

(5)

The first constraint ri = yi(x
T
i ω + β) + ηi is the distance from each data vector i to its

separating hyperplane (adding slackness to allow misclassification), which corresponds to
the DWD optimization. The second constraint yi(x

T
i ω+β)+ξi ≥ 1 is a standard constraint

in SVM optimization. Both ηi and ξi control the misclassification rate, but with different
decision boundaries. The third constraint ‖ω‖2≤ C is equivalent to the second term in (2),
the Euclidean norm.

To extend (5) to multiclass, we replace the distances (functional margins) to the inner
product as introduced earlier in (2). Thus our MDWSVM will have the following mathe-
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matical form:

min
f ,f0

n∑
i=1

{α(
1

ri
+ ηi) + (1− α)ξi},

s.t. ri = 〈f0(xi),Wyi〉+ ηi, ri ≥ 0 and ηi ≥ 0,

〈f(xi),Wyi〉+ ξi ≥ 1, ξi ≥ 0,

k−1∑
j=1

BT
j Bj ≤ C.

(6)

In this form f0 and f are the same as in (4). It is verified in Zhang and Liu (2014) that
the first term in the objective function

∑n
i=1(

1
ri

+ ηi) along with its constraint is equivalent
to the objective of the MDWD method, and the second term in the objective function∑n

i=1 ξi along with its constraint is equivalent to the objective in the MSVM method. In
this case, MDWSVM can be viewed as a convex combination of MDWD and MSVM losses
where the parameter α balances the two.

Model (6) can be easily implemented in Matlab using the CVX package (Grant et al.,
2008). Notice the only difference between f(x) and f0(x) is their location vectors β0 and
βd0 . For prediction we only adopt the location vector from MSVM, which shows insensitivity
to the imbalanced issue from Figure 1. Moreover, by combining the discriminant direction
of MDWD and MSVM, our new model will have a better discriminant direction (closer to
the Bayes direction) than the MSVM method alone. Both improvements will be shown in
Sections 4 and 5 using simulations and real examples.

3. Theoretical Properties

Fisher consistency is a fundamental requirement for a classification method. Fisher consis-
tency implies that when the sample size approaches infinity, the classifier becomes closer
and closer to the Bayes classification rule, which corresponds to the minimum misclassifi-
cation rate. Qiao and Zhang (2015a) explored Fisher consistency of the binary DWSVM
model. In the multiclass context, Zhang and Liu (2014) extended Fisher consistency to all
large margin classification models under the angle-based framework.

Let Pj = Pr(Y = j|X = x) for j = 1, . . . ,K. Note that ŷ = arg maxj Pj is the Bayes
rule. Assume that for a given x, the vector f∗(x) minimizes E[`{〈f(X),WY 〉}|X = x],
and the corresponding decision boundary will then be ŷ = arg maxj〈f∗(x),WY 〉. Note
that this is essentially the limit minimizer of (2) when sample size diverges to infinity.
Fisher consistency assures that these two decision functions are the same ( arg maxj Pj =
arg maxj〈f∗(x),WY 〉).

In this section, we will prove that if using the approximate SVM loss function from
Zhang and Liu (2014) in replacement of hinge loss, our MDWSM is Fisher consistent.

Theorem 1 The MDWSVM is Fisher consistent for any 0 < α < 1.

Fisher consistency in Theorem 1 ensures that the minimizer of the expected loss function
will assign an observation to the same class as what Bayes rule does. Furthermore, in our
numerical study in Section 4.2, we notice that for MDWSVM method, as long as C is
fixed, different α’s will give similar performance in both prediction error and closeness to
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the Bayes rule. Thus we will fix α to be 0.5 in this paper and not discuss the choice of α
further.

In the next theorem, we want to prove that MDWSVM is insensitive to imbalance. Using
a similar paradigm as in Owen (2007), we consider the case that the sample size of one class
diverges to infinity. Qiao and Zhang (2015a) showed that, in binary classification, the
intercept term of DWD diverges, but the intercept of SVM and DWSVM will not diverge.
This shows that SVM is not sensitive to imbalance, but DWD will be severely affected.
In our multiclass setting, for simplicity, it is assumed that only one of the classes is the
dominant one, and the sample size of all other classes are equally fixed. Without loss of
generality, we assume their sample sizes are all 1. Under this setting, we can simply assume
observation 1, . . . ,K − 1 belongs to the class 1, . . . ,K − 1 respectively, and observations
K . . . , n belong to class K. As n goes to infinity, the classifier tends to classify all the points
to the dominant class K. If this happens, 〈β0,WyK 〉 goes to infinity. In the next proposition,
we prove that this will be not be the case for the angle-based SVM. Furthermore, we present
in Theorem 3 that the intercept of our MDWSVM model is not sensitive to imbalance either.

Proposition 2 In MSVM setting, when the size of the majority class goes to infinity,
〈β0,WyK 〉 <

√
2CK max |xij |+ 1.

Theorem 3 In the MDWSVM setting, when the size of the majority class goes to infinity,
〈β0,WyK 〉 <

√
2CK max |xij |+ 1.

Note that Theorem 3 does not ensure that the MDWSVM method completely overcomes
the imbalanced issue. When the sample size of the majority group goes to infinity, the
method still will ignore some observations in minority groups.

4. Simulation

In this section, we use three simulation examples to demonstrate the performance of our
MDWSVM method. We compare it to the angle-based SVM (MSVM) described in Section
2 and the angle-based DWD (MDWD) naturally developed using the ideas from Zhang and
Liu (2014).

In each example, we simulate a training data set, a tuning data set, and a testing data
set. The training data and tuning data have the same sample sizes and are used to estimate
the model and to find the optimal tuning parameters. The size of the testing data set is ten
times the size of the training data, and is used to evaluate the prediction performance. As
we are interested in the misclassification rate in both the dominant class and the minority
classes, we will not use the total error rate 1/n

∑
i I(ŷi 6= yi) in this paper. Instead, we use

the average within-group error rate as follows

r =
1

K

K∑
j=1

 1

nj

∑
i:xi∈Cj

I(ŷi 6= j|xi ∈ Cj)

 .

Here Cj stands for class j and nj is the sample size for class j. This measure was previously
introduced in Qiao and Liu (2009). Note that the term within the bracket is the error rate
for each group, so r is the arithmetic average of all these error rates.
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We also want to measure the closeness of the estimated classifier to the Bayes rule. For
the binary case, we can measure the angle between the two linear decision boundaries. For
the multiclass case, we develop a similar measure as follows. Note that B is the projection
matrix from Rd to RK−1 (the projection space). In the binary case, B is the discrimination
direction vector, we can use the Euclidean inner product 〈B,BBayes〉 to measure the angle
between the estimated and the Bayes rule. For the multiclass case, both B and BBayes are
matrices. In matrix form, we want to measure the angle between the jth columns in both
B and BBayes, and then calculate an average of these angles.

In this paper, we use the Frobenius inner product: 〈B,BBayes〉F =
∑

i,j BijBBayes ij .
Essentially, this is the sum of entries of the Hadamard product between B and BBayes.
One can see that this is the same idea as the inner product of the corresponding columns
in B and BBayes, a scaled mean of the inner products. To make this quantity directly
linked to angle, we normalize both B and BBayes to have Frobenius norm of 1, and thus
∠〈B,BBayes〉 = arc cos(〈B,BBayes〉F ) will be the angle used in this paper.

In all examples, α is set as 0.5, the reason for this is described in Section 4.2. We want
to choose C in R+. For convenience, we use the log scale, and set log2C from -3 to 15. For
the first two examples, we generate datasets that have signal based on only a few covariates,
and then we add pure noise as additional covariates. To better compare the performance
for both balanced and imbalanced scenarios, all the examples are conducted under both
balance and imbalance cases. Let p = Pr(Y = 1) and Pr(Y = j) = 1

K−1(1 − p) for j 6= 1.
We will consider p = 1/K for the balanced case and p = 1/2 and p = 1/3 for the imbalanced
case for all examples. The size of the training dataset for each example is 300, 600 and
300 respectively. In each example, five sets of dimensions are considered: 2, 10, 100, 500
and 1000. The noise covariates are identically independent distributed as N(0, σ2). For the
third example, all covariates are signal variables. And for all simulation settings, we repeat
the experiments 100 times and report the average performance.

4.1 Performance Comparison

Example 1 We generate a three class dataset, where the first two covariates are distributed
N(uj , σ

2I2). In this setting, the uj’s are three points equally spaced on a unit circle, and
σ is chosen such that the Bayes error is 0.1. As we can see, this example is similar to the
Example 1 in Zhang and Liu (2014) other than that our case considered both the balanced
and imbalanced scenarios.

Example 2 We generate a five class dataset, Let Pr(Y = 1) = p, and the first five covari-
ates are distributed N(uj , σ

2I5). Here uj’s are five points equally spaced on the sphere of
unit ball in R4, and σ = 0.55. When dimension is larger than 4, the last d − 4 covariates
are identically independent distributed as N(0, σ2).

Example 3 A three groups dataset is generated with dimension d, the centers of the three
groups are equally distributed on the sphere of an unit ball in Rd. A random noise N(0, σ2 =
0.552) was added to each dimension.

We report the average prediction error rate and the average angle to the Bayes rule in
Figures 2. Take Figure 2(a), which corresponds to Example 1, as an example. We report
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Figure 2: Performance comparison plot between the three methods for Examples 1, 2, and
3. The top row of each graph plots the misclassification rate for different dimensions (the
x axis) and different prior probabilities (left, middle and right panels). The bottom row
is the angle between the estimated and the Bayes rule. For all measures, smaller implies
better result. We can see that our method (the solid black line) performs almost the same
as the other two methods (MSVM, the red dashed line, MDWD, the dotted blue line) for
balanced case, but outperforms the other two for the imbalanced cases.
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both misclassification rate (the top row) and the angle between the estimated classifiers and
the Bayes rule. In the plot, we use black solid lines for our MDWSVM method, red dashed
lines for MSVM method, and blue dotted lines for MDWD method. The grid points on the
x axis represents the different dimensions d. The y axis corresponds to the performance
measure. In our plot, the smaller the y axis value, the better the performance. Different
imbalance ratios are visualized in different panels from left to right. The left two panels
correspond to the balanced case; the middle panels are mild imbalance (p = 1/2); and the
right two panels are more severe imbalanced case (p = 2/3). For the balanced case, our
approach performs similar to the MSVM and MDWD methods. However, for the imbalanced
cases (the middle and right panels), we can see clear gaps between the performance of our
method and the other two methods, demonstrating that our method outperforms the other
two. Note that a similar pattern can also be seen in Figures 2(b) and 2(c). All suggests
that the novel approach is better than MSVM and MDWD.

It is also shown in these plots that as the dimension of training data changes from small
to large (2 to 1000), the classifier’s performances become worse and worse. Furthermore, the
performance differences of the three methods become more pronounced. Note that MDWD
gives the worst prediction error rate compared to the other two methods, and MSVM gives
the worst classification direction compared to the other two methods. Our MDWSVM gives
comparably the best performance in both aspects.

4.2 Sensitivity to Parameters

There are two parameters C and α in our MDWSVM method. We have conducted many
simulations to evaluate the performance of these two parameters. In this section, we will
only use Example 1 to show the performance. We set α to be fixed, varied C, and evaluated
its performance. Then we fixed an optimal C to evaluate the sensitivity of our approach
to different α’s. At the beginning, we let α = 0.5, and allow C to change from 2−3 to 212.
The simulation is conducted under different dimensions (100, 500, 1000). All the simulation
results are based on 100 replicates. The left panel of Figure 3 is the prediction error under
different values of C with different dimensions of training data. It is clearly shown from
the graph that as C increases, the prediction error rate first decreases and then increases.
It shows that a minimal prediction error can be reached within this range. The right panel
shows the relationship between prediction error rate and different α’s. It is also clear that
the prediction error rate stays the same as α changes from 0.1 to 0.9, regardless of the
slightly increase as α approaches to 1.

Based on the performance from Figure 3, the change of α has little impact on the
prediction error rate compared to a change of C. The performance is quite stable for
different α’s. Since the property of the parameters are not the focus in this paper, this
simulation gives us an easy suggestion of choosing parameters. One can simply fix α = 0.5
and use cross-validation to choose C. This is why we fix α = 0.5 in our simulation.

4.3 Computation Time

In this subsection, we will compare the computational time for these methods (MDWSVM,
MSVM and MDWD). To test the computational complexity, we only consider the simulation
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Figure 3: Average within-group error rate change under different parameters. Left panel
is the prediction error rate change under different C value for fixed α = 0.5; right panel is
prediction error rate change for different α when C is fixed at its optimal value

Dimension MDWSVM MDWD MSVM

10 8.31(0.04) 8.22(0.04) 0.88(0.01)
100 14.52(0.07) 12.80(0.05) 2.79(0.01)
1000 41.66(0.20) 27.43(0.12) 9.30(0.07)

Table 1: Computation time comparison for MDWSVM, MDWD and MSVM based on 100
runs of Example 1. The number shows average computing time in seconds, and the number
in the parenthesis is the corresponding standard error.

of Example 1. We let the dimension change from 10 to 1000. Table 1 gives the average
computation time in seconds for 100 replicates along with their standard error. All numerical
experiments were carried out on an Intel Xeon E3-1284L (2.5 GHz) processor.

Table 1 shows that the most efficient method is MSVM and the most time-consuming
method is our MDWSVM. Note that MSVM can still be viewed as a quadratic program-
ming problem, while both MDWD and MDWSVM are conic program problems. It is not
surprising that MSVM is the most computational efficient one. It is our expectation that
MDWSVM would have the longest time to run, since it combines both MSVM and MDWD.
From equation 6, we can see that the number of parameters can be viewed as the sum of
the ones for MDWD and MSVM. Thus the computation times it takes to solve the problem
increases as well. It is good enough that the computational time of MDWSVM is shorter
than the sum of the computing time of each individual methods. It is worth mentioning
that as dimension increases, the CPU times for the three methods increase.
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2002/01/01 New Year 2002/09/02 Labor Day
2002/05/27 Memorial Day 2002/11/28 Thanksgiving
2002/07/04 Independence Day 2002/12/25 Christmas

Table 2: Six national holidays on weekdays that are removed

5. Real Data Application

In this section, we apply our MDWSVM method to a real data used in Shen and Huang
(2005). The data were gathered at an inbound call center of a major northeastern U.S
financial firm in 2002, and describe the call volume from 7:00am-12:00am. Each day is
divided into 408 150-second intervals and the number of phone calls is recorded in each
interval. Due to equipment malfunctioning, there are 6 missing weekdays within the whole
year. The call volume data form a 360× 408 matrix, where each row corresponds to a day
and each column is the call volume for one of the 150-second intervals.

Note that the data have been thoroughly analyzed in Shen and Huang (2005). Here we
simply add some new insights from the data by using our novel approach. According to
their analysis, the pattern for Saturday and Sunday is very different from the weekdays.
Thus in this analysis, we only focus on the weekdays. Shen and Huang (2005) show that
for weekdays, by using singular value decomposition to analyze the number of phone calls,
Monday and Friday are slightly different from all other weekdays, see Section 5.3 and Figure
6 of Shen and Huang (2005) for more details. Tuesday, Wednesday and Thursday are hard
to tell apart from each other. In this section, we only focus on classifying Monday, Friday
and other weekdays (Tuesday, Wednesday and Thursday). In addition, due to the fact that
the center has very low volumes on national holidays, we remove the holidays that fall on
weekdays. Table 2 provides the national holidays excluded in our analysis. These days,
along with some other more holidays, were also removed in Shen and Huang (2005).

After removing these holidays, we have 48, 50, 51, 50, 52 days for Monday to Friday
respectively. The data are divided into three groups, Group 1: Monday (size 48); Group
2: Tuesday to Thursday (size 151); Group 3: Friday (size 52). This dataset is a typical
imbalanced HDLSS dataset with Group 2 as the dominant group. The average number of
phone calls on each time interval are presented in Figure 4. From Figure 4, we can see that
the average number of phone calls on Monday is quite distinct from the other days as it
is larger than the other two groups. However, Group 2 and 3 are hard to distinguish from
each other by only looking at the average number of phone calls. For this data set, we will
compare the performance of three classifiers: our MDWSVM, MSVM, MDWD.

To obtain a good evaluation, all three methods use five-fold cross validation. And the
evaluation measures are the total error rate (TER) and the average within-group error rate
(AER). We also report the prediction error within each group. Table 3 provides these results
for the three different methods.

From Table 3 it is straightforward to conclude that the prediction error of MDWSVM
for each of the groups is the smallest, as well as the total error rate and average with-group
prediction error rate. Our MDWSVM model works very well for this data set.

Taking another look at the Table 3, the prediction error rate for Monday and Friday
are more than 30%, which seems to be large. The result could be explained by the fact
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Figure 4: Average number of calls in each time interval for the three classes Monday,
Tuesday to Thursday and Friday. In this plot, the red dotted line is the number of phone
calls for Mondays, the black solid line is for Tuesday to Thursday, and the blue dashed line
is for Friday.

MDWD MSVM MDWSVM

Mon. 0.8156 0.6200 0.4111
Tue. - Thu. 0.0396 0.0594 0.0985
Fri. 0.6145 0.5527 0.3200

TER 0.3098 0.2702 0.2053
AER 0.4899 0.4107 0.2765

Table 3: Prediction error for number of phone calls. The top 3 rows report the cross-
validation prediction error for each class, and the bottom two rows are the total error rate
and the average within-group error rate.
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that the DWSVM used here is a linear classifier, while the nature of the data may not be
well classified by a linear classifier. If we incorporate a kernel approach to our classifier, the
performance should improve.

6. Discussion

In this paper, we proposed a new angle-based method MDWSVM. We show in this pa-
per that in HDLSS and the imbalanced case, our novel MDWSVM method has smaller
misclassification error relative to both MDWD and MSVM. In addition, it is closer to the
Bayes discriminant direction compared to that of MSVM. The MDWSVM can be viewed as
an extension of the binary DWSVM to the multicategory case. Furthermore, as our model
considers both SVM and DWD loss, it can be treated as a weighted hybridization of MSVM
and MDWD.

One of the limitations of DWD-type methods is that it suffers from slow computation
time compared to SVM-type methods (See Chapter 4.3 for examples). Recently an alter-
nating direction method of multipliers (ADMM) algorithm has been implemented by Lam
et al. (2016) for the DWD type methods, which can handle large size data more efficiently.
A similar implementation for our MDWSVM method will be explored in the future.

Note that we only consider linear classifiers for simplicity. This method can be extended
to a kernel approach (Liu and Yuan, 2011) by allowing f to be a nonlinear mapping. The
implementation of such a generalization will be our immediate future work.

Our MDWSVM uses the squared norm as the regularization component so it does not
have a variable selection property. To better deal with data of high dimension, variable
selection penalties can be added to the model, e.g. LASSO (Tibshirani, 1996) or Elastic
net (Zou and Hastie, 2005). Work on this type of generalization will follow.
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Appendix A.

In this appendix we prove the following theorems and proposition from Section 3:

Lemma 1 (Zhang and Liu, 2014): Suppose we have an arbitrary f ∈ RK−1. For any
u, v ∈ {1, . . . ,K} such that u 6= v, define Tu,v = Wu − Wv. For any scalar z ∈ R,
〈(f + zTu,v),Ww〉 = 〈f ,Ww〉, where w ∈ {1, . . . ,K} and w 6= u, v. Furthermore, we have
that 〈(f + zTu,v),Wu〉 − 〈f ,Wu〉 = −〈(f + zTu,v),Wv〉+ 〈f ,Wv〉.

The proof of Lemma 1 is given in Zhang and Liu (2014). From Lemma 1, one can see that
for a given f , if we move it along the direction of Tu,v, the inner product of f and Ww will
stay the same when w 6= u, v. Furthermore, the sum of inner product 〈f ,Wu〉+〈f ,Wu〉,Wu〉
will remain unchanged as well. This lemma will help us to prove the Fisher consistency of
the MDWSVM method.

Theorem 1. The MDWSVM is Fisher consistent for any 0 < α < 1.

Proof. Recall the definition of f∗ is that

(f∗,f∗0 ) = arg min
f ,f0

E[(1− α)`s{〈f(X),WY 〉}+ α`d{〈f0(X),WY 〉}|X = x].

We need to show that when P1 > P2, 〈W1,f
∗〉 > 〈W2,f

∗〉. This can be easily proved
by contradiction.

If 〈W1,f
∗〉 = 〈W2,f

∗〉, Let f∗0 = f∗ − ∆, here we can see that as ∆ is only the
difference of intercept, which is independent of X. Let (f∗∗,f∗∗0 ) = (f∗∗,f∗0 ) be such that
〈Wj ,f

∗∗〉 = 〈Wj ,f
∗〉 for j ≥ 3 and 〈W1,f

∗∗〉 = 〈W1,f
∗〉 + ε, 〈W2,f

∗∗〉 = 〈W2,f
∗〉 − ε.

This (f∗∗,f∗∗0 ) exists based on Lemma 1 and the fact that inner product is continuous. To
get the required f∗∗, we only need to move f∗ along the direction of T1,2.

Then it is easy to get

K∑
j=1

Pj [(1− α)`s{〈f∗∗,Wj〉}+ α`d{〈f∗∗0 ,Wj〉}]

−
K∑
j=1

Pj [(1− α)`s{〈f∗,Wj〉}+ α`d{〈f∗0 ,Wj〉}]

=ε(P1 − P2)(1− α)`′s{〈f∗,W1〉}+ o(ε)

Since we are using proximal hinge loss, `s is differentiable, P1−P2 > 0, `′s < 0 and 0 < α < 1.
we have

∑K
j=1 Pj [(1− α)`s{〈f∗∗,Wj〉}+ α`d{〈f∗∗0 ,Wj〉}] <

∑K
j=1 Pj [(1− α)`s{〈f∗,Wj〉}+

α`d{〈f∗0 ,Wj〉}], which is a contradiction.

For 〈W1,f
∗〉 < 〈W2,f

∗〉 case, if P1`
′
s{〈f∗,W1〉} − P2`

′
s{〈f∗,W2〉} < 0, then choose

(f∗∗,f∗∗0 ) = (f∗∗,f∗0 ) be such that 〈Wj ,f
∗∗〉 = 〈Wj ,f

∗〉 for j ≥ 3 and 〈W1,f
∗∗〉 =

17



Sun, Craig and Zhang

〈W1,f
∗〉+ ε, 〈W2,f

∗∗〉 = 〈W2,f
∗〉 − ε. Then we have

K∑
j=1

Pj [(1− α)`s{〈f∗∗,Wj〉}+ α`d{〈f∗∗0 ,Wj〉}]

−
K∑
j=1

Pj [(1− α)`s{〈f∗,Wj〉}+ α`d{〈f∗0 ,Wj〉}]

=ε(1− α){P1`
′
s{〈f∗,W1〉} − P2`

′
s{〈f∗,W2〉}}+ o(ε) < 0

We can see that If P1`
′
s{〈f∗,W1〉} − P2`

′
s{〈f∗,W2〉} > 0, then choose (f∗∗,f∗∗0 ) =

(f∗∗,f∗0 ) be such that 〈Wj ,f
∗∗〉 = 〈Wj ,f

∗〉 for j ≥ 3 and 〈W1,f
∗∗〉 = 〈W1,f

∗〉 − ε,
〈W2,f

∗∗〉 = 〈W2,f
∗〉+ ε. Then we have

K∑
j=1

Pj [(1− α)`s{〈f∗∗,Wj〉}+ α`d{〈f∗∗0 ,Wj〉}]

−
K∑
j=1

Pj [(1− α)`s{〈f∗,Wj〉}+ α`d{〈f∗0 ,Wj〉}]

=ε(1− α){−P1`
′
s{〈f∗,W1〉}+ P2`

′
s{〈f∗,W2〉}}+ o(ε) < 0

We can see that this is a contradiction. This completes the proof.

Proposition 2. In MSVM setting, when the size of the majority class goes to infinity,
〈β0,WyK 〉 <

√
2CK max |xij |+ 1.

Proof. Assume observations 1, . . . ,K − 1 belong to the class 1, . . . ,K − 1 respectively,
and observations K, . . . , n belong to class K.

Loss =

n∑
i=1

`s{〈f(xi),Wyi〉}

=
K−1∑
i=1

`s{〈f(xi),Wi〉}+
n∑

i=K

`s{〈f(xi),WK〉}

=
K−1∑
i=1

`s{〈xTi B,Wi〉+ 〈β0,Wi〉}+
n∑

i=K

`s{〈xTi B,WK〉+ 〈β0,WK〉}

Now we prove that ∀B ∈ Rp×(K−1), we have

〈β0,WK〉 < sup
i
|〈xTi B,Wi〉|K + 1 <

√
2CK max |xij |+ 1.

We can use contradiction to prove it, if 〈β0,WK〉 > supi |〈xTi B,Wi〉|K + 1, then

`s{〈xTi B,WK〉+ 〈β0,WK〉} = 0

for all i ∈ {K, . . . , n} as 〈xTi B,WK〉+ 〈β0,WK〉 > 1.
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Loss =

n∑
i=1

`s{〈f(xi),Wyi〉} =

K−1∑
i=1

`s{〈xTi B,Wi〉+ 〈β0,Wi〉}.

Then dL
dβ0

=
∑K−1

i=1 l′s{〈xTi B,Wi〉 + 〈β0,Wi〉}W ′i . Since 〈β0,WK〉 > supi |〈xTi B,Wi〉|K + 1,

one can get that uK = 〈xTKB,WK〉+ 〈β0,WK〉 > 1. Based on the property of W , we have∑K
i=1〈β0,Wi〉 = 0. Furthermore, it is easy to deduct that min〈β0,Wi〉 < − supi |〈xTi B,Wi〉|

for i ∈ {1, . . . ,K − 1}. Then minui = 〈xTi B,Wi〉 + min〈β0,Wi〉 < 0 for i = 1, . . . ,K − 1.
Thus we can choose K − 1 different values K1,K2, , . . . ,KK−1 from 1, . . . ,K − 1 such
that uK1 ≥ uK2 ≥ . . . ≥ 0 ≥ . . . ≥ uKK−1

. Assume i0 = max{i, uKi < 1}, then

dL
dβ0

= −
∑KKi0

i=KK−1
W ′Ki

. One can simply verify that dL
dβ0
6= 0 based on the property of

vertex W . Thus β0 cannot be the β0 that minimize the loss function given B. This step
completes the prove.

Theorem 3. In the MDWSVM setting, when the size of the majority class goes to infinity,
〈β0,WyK 〉 <

√
2CK max |xij |+ 1.

Proof. Based on the proof of Proposition 2, for any ∀B ∈ Rp×(K−1), we have

〈β0,WK〉 < sup
i
|〈xTi B,Wi〉|K + 1 <

√
2CK max |xij |+ 1.

Thus for MDWSVM model, no matter what B we get, the intercept only comes from
MSVM part. Therefore, from the conclusion of Proposition 2, Theorem 3 is proved.
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