
Journal of Machine Learning Research 18 (2018) 1-11 Submitted 12/16; Revised 12/16; Published 4/18

Maximum Likelihood Estimation for Mixtures of Spherical
Gaussians is NP-hard

Christopher Tosh ctosh@cs.ucsd.edu

Sanjoy Dasgupta dasgupta@cs.ucsd.edu

Department of Computer Science and Engineering

University of California, San Diego

La Jolla, CA 92093-0404, USA

Editor: Mikhail Belkin

Abstract

This paper presents NP-hardness and hardness of approximation results for maximum
likelihood estimation of mixtures of spherical Gaussians.
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1. Introduction

A spherical Gaussian in Rd is a distribution specified by its mean µ ∈ Rd and variance
σ2 > 0, with density

N(x;µ, σ2) =

(
1

2πσ2

)d/2

exp

(
−‖x− µ‖

2

2σ2

)
.

(The standard notation for this Gaussian is N(µ, σ2Id), but we will drop the identity matrix
as a shorthand.)

When data arise from several sources, or form several clusters, it is common to model
each source or cluster by a spherical Gaussian. If there are k sources, the resulting overall
distribution is a mixture of k Gaussians,

π1N(µ1, σ
2
1) + π2N(µ2, σ

2
2) + · · ·+ πkN(µk, σ

2
k),

where µi ∈ Rd and σ2i are the mean and variance of the ith component, and πi is the fraction
of the distribution that arises from this component. In what follows, we will often package
the parameters together as π = (π1, . . . , πk), µ = (µ1, . . . , µk), σ = (σ1, . . . , σk).

A standard statistical task is to fit a mixture of k Gaussians to a given data set. This
is typically formulated as an optimization problem (Dempster et al., 1977), where given
data points x1, . . . , xn ∈ Rd, the goal is to find the parameters (π,µ,σ) that maximize the
log-likelihood

LL(π,µ,σ) =

n∑
i=1

ln

 k∑
j=1

πjN(xi;µj , σ
2
j )

 . (1)

In this brief note, we establish the computational hardness of this estimation problem. This
is in contrast with various positive results showing that, when data is in fact generated
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from a Gaussian mixture, it is possible to efficiently recover the mixture from a sample of
polynomial size, under certain conditions; relevant work includes, for instance, Belkin and
Sinha (2010), Moitra and Valiant (2010), Hsu and Kakade (2013), and Hardt and Price
(2015), among others.

1.1 Gaussians with the same variance

We start with the simplest subcase, where the variances of the components are constrained
to be the same.

mixtures of spherical Gaussians with same variance: mog-sv
Input: Points x1, . . . , xn ∈ Rd; positive integer k; unary parameter b.
Output: A mixture of k spherical Gaussians with the same variance, (π,µ, σ),
whose log-likelihood

LL(π,µ, σ) =

n∑
i=1

ln

 k∑
j=1

πjN(xi;µj , σ
2)


is within an additive factor 1/b of optimal.

Since the parameters of the optimal mixture are real-valued, they can only be provided to
within some precision. The role of the input parameter b is to specify the desired level of
accuracy. It is worth pointing out, however, that in our reductions, the coordinates of data
points take values in {−1, 0, 1} and the hardness does not stem from precision issues but
rather from underlying combinatorial structure.

mog-sv is similar to the k-means clustering problem, which is NP-hard (Aloise et al.,
2009).

k-means
Input: Points x1, . . . , xn ∈ Rd; positive integer k.
Output: A collection of k “centers” µ = (µ1, . . . , µk) in Rd that minimize the
cost function

Φ(µ) =

n∑
i=1

min
1≤j≤k

‖xi − µj‖2.

The biggest difference between the two problems is that k-means assigns each data point
xi to a single center µj (a “hard” clustering), while the mixture of Gaussians effectively
spreads it out over all the centers (a “soft” clustering). Earlier work (Arora and Kannan,
2001) has established that a “hard clustering” version of the mixture of Gaussians problem
is NP-hard. Here we consider the more standard formulation, and show that it is hard even
when k = 2.

Theorem 1 mog-sv is NP-hard on instances with k = 2.

The proof follows from the observation that an additive approximation to the best mog-sv
solution yields a multiplicative approximation to the best k-means solution:
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Lemma 2 Fix any data set x1, . . . , xn ∈ Rd and any positive integer k. Let LLOPT denote
the log-likelihood of the optimal solution to mog-sv, and ΦOPT the lowest achievable k-
means cost. For any parameters (π,µ, σ), we have

ln
Φ(µ)

ΦOPT
≤ 4 ln k

d
+

2

nd
(LLOPT − LL(π,µ, σ)) .

The first term on the right-hand side comes from the discrepancy between hard and soft
clustering. It can be made negligible by increasing the dimension, for instance by padding
each point with extra zero-valued coordinates.

Lemma 2 can also be combined with a recent hardness of approximation result for k-
means (Awasthi et al., 2015) to show that, if k is allowed to be large, mog-sv cannot be
approximated within an additive factor of o(nd).

Theorem 3 There is a family of mog-sv instances with the following properties:

• An instance with n points has dimension O(n).

• Each point is {0, 1}-valued and has O(1) nonzero coordinates.

• k = Θ(n).

For some absolute constant co, it is NP-hard to approximate mog-sv on such instances
within an additive factor of codn.

The specific form of this result (additive versus multiplicative approximation, interpoint dis-
tances that are small constants) is motivated by the unusual properties of the log-likelihood
objective. To begin with, consider the problem of fitting a single Gaussian to a data set
X ⊂ Rd of size n. A quick calculation shows that the log-likelihood (of the maximum
likelihood estimate) is

dn

2
ln

d

2πe
− dn

2
ln radius(X ), where radius(X ) =

1

|X |
∑
x∈X
‖x−mean(X )‖2.

Depending on the scale of the data, this log-likelihood could be positive, negative, or zero.
When fitting a mixture of k Gaussians, the log-likelihood has a term of this sort for each
cluster, plus an additional term of size ±n ln k due to the mixing weights. For the kind of
instance described in the theorem, any cluster with at least two points has radius Θ(1) and
thus the log-likelihoods of all reasonable mixture models lie in an interval of size O(dn).

The proofs of these results appear in Section 2.

1.2 Gaussians with differing variances

When the different Gaussian components are allowed to have different variances, and k > 1,
the maximum-likelihood solution is always degenerate. This is because it is possible to make
the log-likelihood go to infinity by centering one of the Gaussians at a single data point
and letting its variance go to zero. Thus, in order for the problem to be well-defined,
an additional constraint must be introduced. One option is to force all variances to be
non-negligible.
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mixtures of spherical Gaussians with constrained variances: mog
Input: Points x1, . . . , xn ∈ Rd; positive integer k; value σo > 0; unary integer b.
Output: A mixture of k spherical Gaussians (π,µ,σ) whose log-likelihood is
within an additive factor 1/b of optimal, subject to the constraint σ1, . . . , σk ≥
σo.

This problem is slightly further from k-means, but remains intractable.

Theorem 4 mog is NP-hard on instances with k = 2.

The proof appears in Section 3.

2. Mixtures of spherical Gaussians with the same variance

2.1 Induced partitions

We start with a basic relation between hard and soft clustering that applies to arbitrary
mixture models, not just those with Gaussian components of the same variance.

Although a mixture model represents a soft clustering, it also induces a natural hard
partition. For data set X and mixture of Gaussians (π,µ,σ), this hard partition has clusters

Xj =

{
x ∈ X : j = argmax

`
π`N(x;µ`, σ

2
` )

}
(2)

(breaking ties arbitrarily). The log-likelihood of a mixture is easily bounded in terms of the
likelihood of the corresponding hard partition.

Lemma 5 Pick any mixture (π,µ,σ) and data set X = {x1, . . . , xn}.

(a) For any partition (X ′1, . . . ,X ′k) of X , we have

LL(π,µ,σ) ≥
k∑

j=1

∑
x∈X ′j

ln(πjN(x;µj , σ
2
j )).

(b) For the partition (X1, . . . ,Xk) induced by (π,µ,σ), as in Eq (2), we have

LL(π,µ,σ) ≤ n ln k +

k∑
j=1

∑
x∈Xj

ln(πjN(x;µj , σ
2
j )).

Proof Recall from (1) that the contribution of each data point xi to LL(π,µ,σ) is

ln

 k∑
j=1

πjN(xi;µj , σ
2
j )

 .

For xi ∈ X ′j , we can lower-bound this contribution by ln(πjN(xi;µj , σ
2
j )). Similarly, if

xi ∈ Xj , then we can upper-bound the contribution by ln(kπjN(xi;µj , σ
2
j )), by the manner

in which the hard partition (X1, . . . ,Xk) is defined.
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2.2 Proof of Lemma 2

As in the statement of Lemma 2, fix data x1, . . . , xn ∈ Rd, and define LLOPT to be the
log-likelihood of the optimal solution of mog-sv. Let ΦOPT be the optimal k-means cost.

Pick any parameters (π,µ, σ), and let (X1, . . . ,Xk) be the induced hard partition of the
data set, as per Eq (2). From Lemma 5,

LL(π,µ, σ) ≤ n ln k +
k∑

j=1

∑
x∈Xj

(
lnπj +

d

2
ln

(
1

2πσ2

)
− ‖x− µj‖

2

2σ2

)

≤ n ln k +
nd

2
ln

(
1

2πσ2

)
− 1

2σ2

k∑
j=1

∑
x∈Xj

‖x− µj‖2

≤ n ln k +
nd

2
ln

(
1

2πσ2

)
− Φ(µ)

2σ2

≤ n ln k +
nd

2
ln

(
nd

2πΦ(µ)

)
− nd

2
,

where the last inequality comes from solving for the optimal value of σ2 (namely, Φ(µ)/nd)
in the preceding line.

Suppose the optimal k-means solution is realized by centers µ∗ = (µ∗1, . . . , µ
∗
k). Let

π∗1 = · · · = π∗k = 1/k and σ∗2 = Φ(µ∗)/nd. To bound the log-likelihood of the mixture
model (π∗,µ∗, σ∗), we look at the hard partition that it induces, (X ∗1 , . . . ,X ∗k ), and notice
that X ∗j consists of points whose closest center is µ∗j . We then apply Lemma 5 to get

LL(π∗,µ∗, σ∗) ≥
k∑

j=1

∑
x∈X ∗j

(
lnπ∗j +

d

2
ln

(
1

2πσ∗2

)
−
‖x− µ∗j‖2

2σ∗2

)

= −n ln k +
nd

2
ln

(
1

2πσ∗2

)
− 1

2σ∗2

k∑
j=1

∑
x∈X ∗j

‖x− µ∗j‖2

= −n ln k +
nd

2
ln

(
1

2πσ∗2

)
− 1

2σ∗2
Φ(µ∗)

= −n ln k +
nd

2
ln

(
nd

2πΦ(µ∗)

)
− nd

2
,

where the last equality comes from substituting in the value of σ∗2. Combining our bounds
for the two mixtures, we get

LLOPT − LL(π,µ, σ) ≥ LL(π∗,µ∗, σ∗)− LL(π,µ, σ)

≥ nd

2
ln

(
Φ(µ)

Φ(µ∗)

)
− 2n ln k.

Rearranging terms yields the lemma statement.
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2.3 Proof of Theorem 1

With Lemma 2 in place, a reduction from k-means to mog-sv is almost immediate. There
are various hardness results available for k-means (Aloise et al., 2009; Dasgupta and Freund,
2009; Mahajan et al., 2009; Awasthi et al., 2015); of these, we use Aloise et al. (2009) as a
starting point.

Theorem 6 (Aloise et al. (2009)) There exists a family of k-means instances with the
following properties, for some low-order polynomials α(·) and β(·):

• For an instance containing n points, each point has dimension at most α(n), with
individual coordinates taking values in {−1, 0, 1}.

• It is NP-hard to approximate the best k-means solution, with k = 2, within a factor
of 1 + 1/β(n).

To prove Theorem 1, we reduce the problem of finding a (1 + 1/β(n))-approximate
k-means solution to mog-sv. Given an instance x1, . . . , xn of k-means:

• Pad each point with additional zero-valued coordinates until the dimension d exceeds
16β(n) ln k. This has no effect on interpoint distances or on the optimal k-means cost.

• Solve mog-sv for these modified points, with precision parameter b = 1. This yields
(π,µ, σ) such that LLOPT − LL(π,µ, σ) ≤ 1, where LLOPT is the optimal log-
likelihood. It follows from Lemma 2 that

ln
Φ(µ)

ΦOPT
≤ 4 ln k

d
+

2

nd
≤ 1

2β(n)
,

whereupon Φ(µ) ≤ ΦOPT (1 + 1/β(n)).

2.4 Proof of Theorem 3

A recent hardness of approximation result for k-means shows the following.

Theorem 7 (Awasthi et al. (2015)) There is a family of k-means instances with the
following properties:

• An instance with n points has dimension at most n, points that are {0, 1}-valued (and
have at most two non-zero coordinates), and a target number of clusters k = Ω(n).

• It is NP-hard to approximate the optimal k-means solution within a factor c, for some
absolute constant c > 1.

Pick any co < (1/2) ln c. To see that it is hard to approximate mog-sv within an additive
factor cond, we reduce from k-means as follows. Start with an instance x1, . . . , xn ∈ Rd of
the type described in Theorem 7. Then:

• If necessary, pad points with zero-valued coordinates to bring the dimension up to

d ≥ 4 ln k

(ln c)− 2co
.
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• Obtain an approximate solution (π,µ, σ) to mog-sv on these points such that LLOPT−
LL(π,µ, σ) ≤ cond.

• Return the centers µ.

By Lemma 2, we have

ln
Φ(µ)

ΦOPT
≤ 4 ln k

d
+

2

nd
cond ≤ ln c,

so that µ is a c-approximate solution to the k-means instance.

3. The general case

We now consider the case where the variances are allowed to differ but are uniformly lower
bounded. Specifically, a mixture model (π,µ,σ) is admissible if all σj ≥ σo, where σo is
supplied as part of the input.

The basic reduction still applies, with an additional device to force all variances to be
close to the lower bound—and therefore approximately equal.

3.1 Controlling the variances

Lemma 8 Fix any data set X = {x1, . . . xn} in Rd, and let D = maxi 6=i′ ‖xi − xi′‖ denote
its diameter. Pick any ∆, δ > 0. If the dimension d satisfies

d ≥ 4

δ

(
nD2

2σ2o
+ n ln k + ∆

)
, (3)

then any admissible mixture (π,µ,σ) within an additive factor ∆ of optimal (that is,
LL(π,µ,σ) ≥ LLOPT − ∆) has the following property: in the associated hard partition
(X1, . . . ,Xk), any nonempty cluster Xj has σ2j ≤ σ2o(1 + δ).

Proof Pick any admissible mixture (π,µ,σ) that is within ∆ of optimal, and let (X1, . . . ,Xk)
be the associated hard partition. Let µ̃j denote the cluster means:

µ̃j =
1

|Xj |
∑
x∈Xj

x.
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Using Lemma 5, we can compare the log-likelihood of (π,µ,σ) to that of the adjusted
parameters (π, µ̃, σ̃), where each σ̃j = σo.

LL(π, µ̃, σ̃)− LL(π,µ,σ)

≥
k∑

j=1

∑
x∈Xj

(
ln(πjN(x; µ̃j , σ

2
o))− ln(πjN(x;µj , σ

2
j ))
)
− n ln k

=
k∑

j=1

∑
x∈Xj

(
d

2
ln

1

2πσ2o
− ‖x− µ̃j‖

2

2σ2o
− d

2
ln

1

2πσ2j
+
‖x− µj‖2

2σ2j

)
− n ln k

=

k∑
j=1

d|Xj |
2

ln
σ2j
σ2o

+
∑
x∈Xj

(
‖x− µj‖2

2σ2j
− ‖x− µ̃j‖

2

2σ2o

)− n ln k

≥
k∑

j=1

d|Xj |
2

ln
σ2j
σ2o

+

(
1

2σ2j
− 1

2σ2o

) ∑
x∈Xj

‖x− µ̃j‖2
− n ln k

≥
k∑

j=1

|Xj |
(
d ln

σj
σo
− D2

2σ2o

)
− n ln k ≥ d ln

maxj:Xj 6=∅ σj

σo
− nD2

2σ2o
− n ln k.

In the second-last line, we have exploited the fact that µ̃j is the mean of cluster Xj , so that∑
x∈Xj

‖x− µ̃j‖2 ≤
∑

x∈Xj
‖x− µj‖2, and for the last line we have used ‖x− µ̃j‖ ≤ D.

The difference above is at most ∆, and thus for each nonempty cluster Xj ,

d ln
σj
σo
− nD2

2σ2o
− n ln k ≤ ∆,

whereupon σ2j ≤ σ2o(1 + δ) given the bound (3) on the dimension d.

This observation allows us to prove following analog of Lemma 2.

Lemma 9 Following the terminology of Lemma 8, pick δ,∆ > 0 and suppose that the
dimension satisfies (3). Pick any admissible mixture (π,µ,σ) whose log-likelihood is within
an additive factor ∆ of the optimal. Then

Φ(µ) ≤ (1 + δ)
(
2σ2o(∆ + 2n ln k) + ΦOPT

)
.

Proof Let (X1, . . . ,Xk) be the hard partition of the data set induced by (π,µ,σ). By
Lemma 8, we know that for any nonempty cluster Xj , the variance σ2j is at most (1 + δ)σ2o .
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Thus, using Lemma 5, we have

LL(π,µ,σ) ≤ n ln k +
k∑

j=1

∑
x∈Xj

(
lnπj +

d

2
ln

1

2πσ2j
− ‖x− µj‖

2

2σ2j

)

≤ n ln k +
k∑

j=1

 |Xj |d
2

ln
1

2πσ2j
− 1

2σ2j

∑
x∈Xj

‖x− µj‖2


≤ n ln k +
nd

2
ln

1

2πσ2o
− 1

2(1 + δ)σ2o

k∑
j=1

∑
x∈Xj

‖x− µj‖2

≤ n ln k +
nd

2
ln

(
1

2πσ2o

)
− Φ(µ)

2(1 + δ)σ2o

Let µ∗1, . . . , µ
∗
k be an optimal k-means solution and let (X ∗1 , . . . ,X ∗k ) be the hard partition

of the data set induced by the mixture model (π∗,µ∗,σ∗) where π∗j = 1/k and σ∗j = σo for
all j. Again using Lemma 5,

LL(π∗,µ∗,σ∗) ≥
k∑

j=1

∑
x∈X ∗j

(
lnπ∗j +

d

2
ln

1

2πσ∗j
2 −
‖x− µ∗j‖2

2σ∗j
2

)

= −n ln k +
nd

2
ln

(
1

2πσ2o

)
− Φ(µ∗)

2σ2o

Then by the near-optimality of (π,µ,σ), we have

∆ ≥ LLOPT − LL(π,µ,σ)

≥ LL(π∗,µ∗,σ∗)− LL(π,µ,σ)

≥
(
−n ln k +

nd

2
ln

1

2πσ2o
− Φ(µ∗)

2σ2o

)
−
(
n ln k +

nd

2
ln

(
1

2πσ2o

)
− Φ(µ)

2(1 + δ)σ2o

)
=

Φ(µ)

2(1 + δ)σ2o
− ΦOPT

2σ2o
− 2n ln k

Rearranging gives the theorem statement.

3.2 Proof of Theorem 4

Once again we reduce from k-means, using the hardness result of Aloise et al. (2009),
summarized in Theorem 6. Recall that the family of instances for which k-means was
shown to be hard has k = 2, d = poly(n), and points with {−1, 0, 1}-valued coordinates.

Starting with such an instance x1, . . . , xn ∈ Rd, we show how mog can be used to find
a (1 + 1/β(n))-approximate solution to k-means.

• Let D denote the diameter of the points; it is polynomial in n.

• Set δ = 1/(5β(n)) and

σ2o =
δ

2(1 + 2n ln k)
.
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• Pad the points with zero-valued coordinates to bring the dimension up to at least

d =
4

δ

(
nD2

2σ2o
+ n ln k + 1

)
.

• Invoke mog on these modified points, with target precision b = 1 and variance lower
bound σ2o . This returns a mixture (π,µ,σ) whose log-likelihood is at least LLOPT −1,
subject to the variance constraint.

• Return centers µ.

Lemma 9, with ∆ = 1, asserts that

Φ(µ) ≤ (1 + δ)(2σ2o(1 + 2n ln k) + ΦOPT ) ≤ (1 + δ)(δ + ΦOPT ) ≤ (1 + 5δ)ΦOPT ,

which is at most (1 + 1/β(n))ΦOPT . For the last inequality, we have used the fact that
ΦOPT ≥ 1/2 since all interpoint distances are ≥ 1.
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