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Abstract

We study the round complexity of minimizing the average of convex functions under a new
setting of distributed optimization where each machine can receive two subsets of functions.
The first subset is from a random partition and the second subset is randomly sampled
with replacement. Under this setting, we define a broad class of distributed algorithms
whose local computation can utilize both subsets and design a distributed stochastic vari-
ance reduced gradient method belonging to in this class. When the condition number of
the problem is small, our method achieves the optimal parallel runtime, amount of com-
munication and rounds of communication among all distributed first-order methods up to
constant factors. When the condition number is relatively large, a lower bound is provided
for the number of rounds of communication needed by any algorithm in this class. Then, we
present an accelerated version of our method whose the rounds of communication matches
the lower bound up to logarithmic terms, which establishes that this accelerated algorithm
has the lowest round complexity among all algorithms in our class under this new setting.
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1. Introduction

In this paper, we consider the distributed optimization problem of minimizing the average
of N convex functions fi : Rd → R for i = 1, . . . , N , i.e.,

min
x∈Rd

{
f(x) :=

1

N

N∑
i=1

fi(x)

}
(1)

using m machines. For simplicity of notation, we assume N = mn for an integer n but all
of our results can be easily generalized for an arbitrary N . In this paper, the norm ‖ · ‖
represents the Euclidean norm and 〈·, ·〉 represents the inner product in Rd. Throughout
the whole paper, we make the following standard assumptions on problem (1).

Assumption 1 The functions fi for i = 1, . . . , N in (1) satisfy the following properties:

• Each function fi is convex and L-smooth, which means fi is differentiable and its
gradient ∇fi is L-Lipschitz continuous, i.e., ‖∇fi(x)−∇fi(y)‖ ≤ L‖x−y‖, ∀x, y ∈ Rd.

• The average function f is µ-convex with µ ≥ 0, i.e., f(x) ≥ f(y) + 〈∇f(y), x− y〉 +
µ
2‖x− y‖

2, ∀x, y ∈ Rd.

When µ > 0, f is µ-strongly convex and we call κ = L
µ the condition number of f . Note

that the function f itself can be Lf -smooth, namely, ‖∇f(x)−∇f(y)‖ ≤ Lf‖x−y‖, ∀x, y ∈
Rd, for a constant Lf ≤ L. Let x∗ be an optimal solution of (1) and a deterministic solution
x̂ is called an ε-optimal solution to (1) if f(x̂) − f(x∗) ≤ ε. If x̂ is a random variable
generated by a stochastic algorithm, we call it an ε-optimal solution if E[f(x̂)− f(x∗)] ≤ ε.

One of the most important applications of problem (1) is empirical risk minimization
(ERM) in statistics and machine learning. Let {ξ1, ξ2, . . . , ξN} be a set of i.i.d. samples
from an unknown distribution D. A regularized ERM problem with can be formulated as

min
x∈Rd

{
f(x) =

1

N

N∑
i=1

φ(x, ξi) + r(x)

}
, (2)

where x represents a vector of parameters of a predictive model, φ(x, ξ) is a loss function, and
r(x) is a regularization term. Note that (2) has the form of (1) with fi(x) = φ(x, ξi) + r(x).
A commonly used regularization term is r(x) = λ

2‖x‖
2 and the regularization parameter λ

significantly influences µ and κ. The value of λ is typically in the order of Θ(1/
√
N) =

Θ(1/
√
mn) as justified by Shamir and Srebro (2014), Shamir et al. (2014), Shalev-Shwartz

et al. (2009) and Zhang and Lin (2015). For simplicity, in the rest of the paper, we will call
fi the ith data point or the ith function interchangeably.

We consider a situation where all N functions are initially stored in a large storage space
that has limited computation power. Then, these N functions are partitioned, sampled
and distributed to m machines where the main computation is performed for solving (1).
One common practice under a classical setting is to randomly and evenly partition the N
functions into subsets S1, S2, . . . , Sm with |Sj | = N

m = n and store Sj in machine j. In this
paper, we consider a new setting where an extra set of functions Rj with |Rj | ≤ O(|Sj |)
is sampled with replacement from these N functions so that the set Sj ∪ Rj is stored in
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machine j for the local computation. Since no machine can access all N functions, we
consider solving (1) by synchronized distributed algorithms that alternate between a local
computation procedure at each machine, and a round of communication to share information
among the machines.

One contribution of this paper is to develop a distributed algorithm for (1) under this new
setting. Compared to the previous methods where only Sj is stored in machine j, our method
requires more storage space or machines but significantly fewer rounds of communication
to achieve an ε-optimal solution for (1) when the problem’s parameters are in a practical
regime, showing the advantage of the new setting. Moreover, we define a broad class of
distributed algorithms for (1) under the new setting, which includes the proposed method,
and establish a lower bound for the number of rounds of communication needed by any
algorithm in this class to find an ε-optimal solution. This lower bound matches the number
of rounds required by the proposed method up to logarithmic factors, indicating that our
lower bound is tight and the proposed method is nearly optimal in this class.

1.1 Performance Metrics

In the design of distributed algorithms, one often needs to consider more performance met-
rics than in the single-machine scenario. A priori, the most important performance metric
is the total runtime of algorithm—the time difference between the start of the first machine
and the end of the last machine. However, there are other factors than the machines’ CPU
time that affect the total runtime such as the communication between machines. Moreover,
the latency in initiating communication is also non-negligible, and often the bottleneck of
the entire system.

We use the following synchronous message passing model from the distributed compu-
tation literature, e.g., Gropp et al. (1996) and Dean and Ghemawat (2008): We assume
the communication occurs in rounds—in each round, machines exchanges messages with
each other and, between two rounds, machines only perform computation based on their
local information (local data points and messages received before). Under this model, three
metrics are of main interests to us:

• Parallel runtime: The longest running time of the m machines spent in local parallel
computation. In distributed first-order optimization methods, we measure it by the
number of gradient computations, i.e., ∇fi(x) computed for any i and x, in parallel.

• The amount of communication: The total amount of communication among m
machines, measured by the number of bits transmitted through the network. It does
not include the bits of the communication for distributing functions to machines be-
fore an algorithm starts. For the algorithms that only communicate iterates x and
gradients ∇fi(x), the amount of communication can be measured by the number of
vectors of size O(d) transmitted through the network.

• The number of rounds of communication: How many times m machines have
to pause their local computation and initiate a round of communication to exchange
messages. We also refer it as “rounds” or “round complexity” for simplicity.

Typically, trade-offs exist among these three metrics and algorithms need to be designed
with a balance of these metrics. In this paper, we mostly focus on the third metric, the

3



Lee, Lin, Ma and Yang

number of rounds of communication an algorithm needs for solving (1), which has a signif-
icant impact on the total runtime of an algorithm when the speed of network transmission
is slow or initiating the communication between machines in each round is time consuming.

1.2 Main Contributions

Distributed algorithms with low round complexity: First, we propose a dis-
tributed stochastic variance reduced gradient (DSVRG) method in the new distributed set-
ting where machine j has access to two subsets of {fi}i∈[N ]: a subset Sj of size n from
a random partition of {fi}i∈[N ] and a subset Rj of size αn with α > 0 sampled with
replacement from {fi}i∈[N ]. This method is a simple distributed implementation of the
single-machine stochastic variance reduced gradient (SVRG) method (Johnson and Zhang,
2013; Mahdavi et al., 2013; Xiao and Zhang, 2014; Konečnỳ and Richtárik, 2017). We show

in Theorem 14 that the DSVRG method with α = Θ(1) requires O
((

κ
n

)
log
(

1
ε

))
rounds

of communication to find an ε-optimal solution for (1) in a realistic regime of ε and κ that
contains most of ERM problems in practices.

Second, using the acceleration techniques developed by Frostig et al. (2015) and Lin et al.
(2015), we propose a distributed accelerated stochastic variance reduced gradient (DASVRG)
method that further improves the theoretical performance of DSVRG. In a practical regime
of ε and κ similar to DSVRG, we show in Theorem 16 that DASVRG with α = Θ(1) requires

only O
((√

κ
n

)
log
(
κ
n

)
log
(

1
ε

))
rounds of communication to find an ε-optimal solution,

which is lower than the round complexity of many existing techniques in the traditional
setting with Rj = ∅, showing the advantage of the new distributed setting. The proposed
algorithms may require more machines than previous approaches in order to have extra
space for storing Rj in additional to Sj . However, when α = Θ(1) (e.g., α = 1), the
required number of machines will increase only by a constant factor under the new setting.

Round complexity lower bounds: We also contribute to the answer of a fundamental
question about the round complexity for solving (1) under the new setting:

When each machine receives functions from both random partition and sampling with
replacement, what is the minimum number of rounds of communication a distributed opti-
mization algorithm needs in order to obtain an ε-optimal solution for (1)?

Since different algorithms utilize different operations in local computation which may
influence how many rounds are needed, a class of algorithms must be specified before we
can answer the question above affirmatively. Hence, we define a broad class of algorithms
called distributed (extended) first-order algorithm, denoted by Fα (see Definition 1).

In Fα with α ≥ 0, machine j has access to the subsets Sj and Rj of {fi}i∈[N ] as
described in the DSVRG and DASVRG methods above with |Rj | = αn. One realistic
setting is when α ≤ O(1) so that the memory space required in each machine remains
|Rj |+ |Sj | = Θ(|Sj |) = Θ(n). It is only interesting to consider α < m− 1, since, otherwise,
|Rj |+ |Sj | ≥ N which means the memory space of machine j is large enough to store all the
N functions so that distributed computing is no longer needed. In Fα, each machine locally
maintains a set of vectors W which can be shared with other machines and merged the
W sets sent from other machines during a round of communication. Between the rounds
of communication, machine j can add to W arbitrarily many linear combinations of the
vectors in W and the (proximal) gradients of the functions in Sj ∪ Rj evaluated on the
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vectors in W . With flexible schemes of communication and computation, the class Fα with
α = 0 (i.e., Rj = ∅) covers many exist methods in the classical setting. When α > 0, the
class Fα covers the proposed DSVRG and DASVRG methods.

We show that, when f is µ-strongly convex (µ > 0), any algorithm in Fα needs at least

Ω̃
(√ κ/n+α

(α+1)3
log
(

1
ε

))
rounds of communication in order to find an ε-optimal solution. Here

and elsewhere in the paper, Ω̃(·) and Õ(·) hide a logarithmic factor of m. In the scenario
where α ≤ O(1), this lower bound becomes Ω̃

(√
κ
n log

(
1
ε

))
, which suggests that the round

complexity of DASVRG with α = Θ(1) is nearly optimal and our lower bound is tight up to
logarithmic factors for a practical regime of parameters. Briefly speaking, this lower bound
is proved by carefully designing the “worst” {fi}i∈[N ] such that, with a high probability,
the random subset Sj ∪ Rj in any single machine j does not contain enough (first-order)
information of f in (1) so that many rounds of communication must be performed. Since
this proof is much more challenging than the round complexity analysis of the DSVRG and
DASVRG methods and is the main technical result of this paper, we provide it first in the
main body of the paper before introducing the new algorithms.

Optimal parallel runtime, amount of communication, and rounds: In some
practical regime of parameters, we show that our DSVRG algorithm can be tuned so that
it achieves the optimal parallel runtime, the optimal amount of communication, and the
optimal number of rounds of communication simultaneously for solving (1). Concretely,
when κ = O(n1−2δ) with a constant 0 < δ < 1

2 , with appropriate choices of the control
parameters (shown in Proposition 15), DSVRG finds an ε-optimal solution with a parallel
runtime of O(n), an O(m) amount of communication and O(1) rounds of communication
for any ε = Ω( 1

ns ) where s is any universal positive constant.
Note that κ = O(n1−2δ) is a common setting for machine learning applications. For

example, as argued in Shamir and Srebro (2014), Shamir et al. (2014), Shalev-Shwartz
et al. (2009) and Zhang and Lin (2015), ERM often has the condition number κ in the
order of Θ(

√
N) = Θ(

√
mn). Therefore, when the number of machines m is not too large,

e.g., when m ≤ n0.8, we have that κ = Θ(
√
mn) ≤ n0.9 (so that δ = 0.05).1 Moreover,

ε = n−10 (so that s = 10) is certainly a high enough accuracy for most machine learning
applications since it exceeds the statistically optimal accuracy.

These performance guarantees of DSVRG, under the specific setting where κ = O(n1−2δ)
and ε = Ω( 1

ns ), are optimal up to constant factors among all the distributed first-order
methods. First, to solve (1), all m machines together need to compute at least Ω(N) gradi-
ents (Agarwal and Bottou, 2015) in total so that each function in {fi}i∈[N ] can be accessed
at least once. Therefore, at least one machine needs to compute at least Ω(n) gradients in
serial given any possible allocation of functions. Second, the amount of communication is
at least Ω(m) for even simple Gaussian mean estimation problems (Braverman et al., 2016),
which can be solved as optimization (1). Third, at least O(1) rounds of communication is
needed to integrate the computation results from machines into a final output.

Extension to non-strongly convex problem: Although we mainly focus on
strongly convex problems, some of our results can be extended to the non-strongly con-
vex case. Using a similar approach to the strongly convex case, we show that when µ = 0,

any algorithm in Fα needs at least Ω̃
(√

L
(α+1)3nε

)
rounds of communication to find an

1. If n = 105, then n0.8 = 104 which is already much more than the number of machines in most clusters.
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ε-optimal solution for (1). In the scenario where α ≤ O(1), this lower bound becomes

Ω̃
(√

L
nε

)
. To achieve of this lower bound, we apply DASVRG to the strongly convex problem

minx∈Rd{f(x) + σε
2 ‖x‖

2} with σε = Θ(ε). According to the round complexity of DASVRG
in the strongly convex case, we show in Theorem 17 that, in a certain regime of ε and κ, an

ε-optimal solution can be found by DASVRG with α = Θ(1) in O
((√

L
nε

)
log
(
L
nε

)
log
(

1
ε

))
rounds of communication, showing that our lower bound is tight up to logarithmic factors
in that regime.

1.3 Notations and Outline

For a positive integer K, let [K] denote the set {1, 2, . . . ,K}. We define a multi-set as a
collection of items where some items can be repeated. We say two multi-sets are equal if
they contain the same sets of unique elements and each unique element appears for the
same number of times in both multi-sets. For a multi-set R, the notation R\{i} represents
a multi-set identical to R except that the occurrence of i, if i ∈ R, is reduced by one. The
union of a regular set S and a multi-set R, denoted by S ∪ R, is defined as a regular set
consisting of the items in either S or R without repetition. Let A⊗B denote the Kronecker
product of matrices A and B and let 1n denotes the all-one vector in Rn.

The rest of this paper is organized as follows. In Section 2, we review the related
literature and compare the theoretical performance of our methods with existing work in
distributed optimization. In Section 3, we define a broad family of distributed optimization
algorithms and state our main results on the lower bounds for the rounds of communication
for this family. In Section 4, we provide the proof of the main results. In Section 5 and
Section 6, we present the DSVRG and DASVRG algorithms, respectively, and show their
theoretical guarantees. We briefly describe how to apply DASVRG to non-strongly convex
problems in Section 7. Finally, we present some numerical results in Section 8 and conclude
the paper in Section 9.

2. Related Work

The work most closely related to our paper is Arjevani and Shamir (2015), where a lower
bound for the rounds of communication was established for solving

min
x∈Rd

{
1

m

m∑
j=1

f̄j(x)

}
(3)

using a broad class of distributed algorithms when machine j has only access to the local
function f̄j(x) for j = 1, 2, . . . ,m. To connect (3) to (1), we can define the local function as

f̄j(x) :=
1

|Sj |
∑
i∈Sj

fi(x) (4)

for a given partition {Sj}j∈[m] of {fi}i∈[N ]. Arjevani and Shamir (2015) proved that, if the
local functions {f̄j}j∈[m] are δ-related (see Arjevani and Shamir (2015) for the definition) and

f is strongly convex, the class of algorithms they considered needs at least Ω
((√

δκ
)

log
(

1
ε

))
6
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rounds of communication to find an ε-optimal solution for (3). When δ = Ω(1), their
lower bound can be achieved by a straightforward centralized distributed implementation
of accelerated gradient methods. In a specific context of linear regression with functions in
Sj being a i.i.d. sample, it was shown by Shamir et al. (2014) that δ = O( 1√

n
). In this case,

the lower bound by Arjevani and Shamir (2015) becomes O(
√
κ

n.25
log(1

ε )), which has already
been achieved by DISCO (Zhang and Lin, 2015) and AIDE (Reddi et al., 2016).

With our notation, the aforementioned algorithms all belong to the family F0 where
each machine only receives the subset Sj from the random partition of {fi}i∈[N ]. Unlike all
previous work, the DSVRG and DASVRG algorithms we propose belong to Fα with α > 0
so that each machine has access to a subset Rj sampled with replacement from {fi}i∈[N ] in
addition to Sj . Moreover, in the setting of Arjevani and Shamir (2015), machine j processes
the entire local average function f̄j in (4) in the local computation while machine j in our
algorithms can process each individual function in Sj∪Rj . Because of these key differences,
DSVRG and DASVRG do not fall into the class of algorithms subject to the lower bound
in Arjevani and Shamir (2015). That’s why the communication lower bound we establish
for Fα and the communication upper bound ensured by DASVRG can be both lower than
the lower bound by Arjevani and Shamir (2015). The “worst” set of functions {fi}i∈[N ]

constructed in our main proof is a generalization of the set of functions in Arjevani and
Shamir (2015). Chen et al. (2017) established lower bounds for the round complexity when
the data is partitioned on features which is different from the setting in our paper and
Arjevani and Shamir (2015) where the data is partitioned on samples.

Recently, there have been many distributed optimization algorithms proposed for prob-
lem (1) when f is strongly convex. We list several of them, including a distributed imple-
mentation of the accelerated gradient method (Accel Grad) by Nesterov (2013), in Table 1
and present their rounds and key assumptions for a clear comparison. Except DSVRG and
DASVRG, all algorithms in Table 1 belong to F0 (i.e., Rj = ∅).

The O(
√
κf log(1

ε )) rounds of communication (κf :=
Lf
µ ) of Accel Grad in Table 1 is

directly from the iteration complexity of the single-machine accelerated gradient method,
and the O(

√
κ log(1

ε )) round complexity of centralized ADMM was given by Deng and
Yin (2016). The distributed dual coordinate ascent method, including DisDCA (Yang,
2013), CoCoA (Jaggi et al., 2014) and CoCoA+ (Ma et al., 2015), is a class of distributed
coordinate optimization algorithms which can be applied to the conjugate dual formulation
of (2) when fi(x) = φ(x, ξi) = φi(ξ

T
i x) for φi on R1. By Ma et al. (2015) and Jaggi

et al. (2014), CoCoA+ requires O(κ log(1/ε)) rounds of communication to find an ε-optimal
solution.2 Therefore, when applicable, both DSVRG and DASVRG with α = Θ(1) require
fewer rounds of communication than the methods mentioned above.

Assuming the problem (1) has the form of (2) with ξi’s i.i.d. sampled from a distribution

D (denoted by ξi
iid∼ D), the DANE (Shamir et al., 2014) and DISCO (Zhang and Lin, 2015)

algorithms require O((1+
√
κ

n.25
) log(1/ε)) and O((1+ κ2

n ) log(1/ε)) rounds of communication,
respectively. Hence, DSVRG uses fewer rounds of communication than DANE and fewer
than DISCO when κ ≤ n1.5. If applicable, DASVRG always uses fewer rounds of commu-
nication than DISCO and DANE. Furthermore, DANE only has the theoretical guarantee

2. CoCoA+ has a better theoretical performance than CoCoA. According to Ma et al. (2015), CoCoA+ is
equivalent to DisDCA with “practical updates” (Yang, 2013) under certain choices of parameters.
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Algorithm Rounds Settings (when Assumption 1 holds)

DSVRG (1 + κ
n) log 1

ε κ log
(

1
ε

)
≤ O(N), α = Θ(1)

DASVRG (1 +
√

κ
n) log(1 + κ

n) log 1
ε (1 +

√
κ
n) log(1 + κ

n) log 1
ε ≤ O(m), α = Θ(1)

DISCO
(1 +

√
κ

n.25
) log 1

ε (2) with ξi
iid∼ D and quadratic φ(x, ξi)

d.25
(

(1 +
√
κ

n.25
) log 1

ε + κ1.5

n.75

)
(2) with ξi

iid∼ D

δ2κ2 log 1
ε δ-related {f̄j}j∈[m]

DANE (1 + κ2

n ) log 1
ε (2) with ξi

iid∼ D and quadratic φ(x, ξi)
κf log 1

ε√
δκ log 1

ε δ-related {f̄j}j∈[m]

AIDE (1 +
√
κ

n.25
) log 1

ε (2) with ξi
iid∼ D and quadratic φ(x, ξi)√

κf log 1
ε

CoCoA+ κ log 1
ε (2) with φ(x, ξi) = φi(ξ

T
i x)

Accel Grad
√
κf log 1

ε

ADMM
√
κ log 1

ε µ-strongly convex fi

Table 1: Rounds and settings of different distributed optimization algorithms. Except
DSVRG and DASVRG, all algorithms in this table only require α = 0 (i.e., they
do not require a subset Rj sampled with replacement).

mentioned above when it is applied to quadratic problems. Also, DISCO only applies to
self-concordant functions with easily computed Hessian3 and makes strong statistical as-
sumptions on the data points. On the contrary, DSVRG and DASVRG works for a more

general problem (1) and do not assume ξi
iid∼ D for (2).

In each iteration, DANE requires solving a non-trivial sub-problem to optimality. Reddi
et al. (2016) proposed an INEXACTDANE algorithm that is similar to DANE but only needs
to solve the sub-problem approximately and still achieves the same round complexity as
DANE up to a logarithmic factor. Applying the acceleration techniques developed by Frostig
et al. (2015) and Lin et al. (2015) to INEXACTDANE, Reddi et al. (2016) further proposed an
Accelerated Inexact DanE (AIDE) algorithm that matches the round complexity of DISCO
up to a logarithmic factor.

Shamir (2016) consider a without-replacement SVRG which, if implemented in a dis-
tributed way, is similar to the DSVRG proposed here. The main difference between his
method and DSVRG is that his method sequentially accesses the data points in Sj while
while DSVRG accesses the data points in Rj for the local update. Since Shamir (2016)
assumes that the concatenation of {Sj}j∈[m] forms a random permutation of {fi}[N ], his
method essentially performs the iterative update of SVRG by sampling from {fi}[N ] without
replacement. When κ is smaller than N and ε is not extremely small (the same as what
DSVRG requires), his method obtains the same round complexity as DSVRG. However, his
complexity analysis only applies for quadratic {fi}[N ]. Konečný et al. (2016) proposed a

3. The examples in Zhang and Lin (2015) all take the form of fi(x) = φi(ξ
T
i x) for some function φi on R1,

which is more specific than φ(x, ξi), so that it is relatively easy to compute the Hessian of fi.
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Federated SVRG algorithm which is also a distributed implementation of SVRG and can be
viewed as a special case of INEXACTDANE with specific choices of parameters (Reddi et al.,
2016). However, the performance analysis of INEXACTDANE under those specific choices of
parameters is only available when {fi}[N ] are quadratic and δ-related.

The methods in comparison in Table 1 are centralized methods which are typically
implemented in a star network with a center server. There also exist many distributed
(sub)gradient methods (Nedić and Ozdaglar, 2007, 2009; Duchi et al., 2012; Jakovetić et al.,
2012; Chen and Ozdaglar, 2012; Jakovetić et al., 2014; Beck et al., 2014; Shi et al., 2015a,b;
Aybat et al., 2015) and distributed ADMM methods (Boyd et al., 2011; Wei and Ozdaglar,
2012; Mota et al., 2013; Shi et al., 2014; Chang et al., 2015; Makhdoumi and Ozdaglar,
2017; Deng and Yin, 2016; Mokhtari et al., 2016) for decentralized optimization over general
networks. In general, the decentralized distributed methods require more rounds of com-
munication than the centralized ones. For example, the number of communication rounds
needed by the decentralized ADMM in Makhdoumi and Ozdaglar (2017) is O(

√
κ log(1

ε ))
multiplied by a network-dependent factor that is typically greater than one.

3. Lower Bounds on Rounds of Communication

In this section, we first define a broad family of distributed (extended) first-order methods
which contains many existing distributed optimization algorithms in the literature. Then,
we prove the lower bounds for the round complexity for this family of algorithms to find an
ε-optimal solution for (1) under Assumption 1 with µ > 0 and µ = 0, respectively.

The algorithms in the family we consider consist of a data distribution stage where the
functions {fi}i∈[N ] are distributed onto m machines, and a distributed computation stage
where, in each round, machines can not only use first-order information of the functions
stored locally but also apply preconditioning using local second-order information.

Definition 1 (Distributed (extended) first-order algorithms Fα) Suppose there is a
stage of data distribution where {fi}i∈[N ] are distributed to m machines such that:

1. The index set [N ] is randomly and evenly partitioned into S1, S2, . . . , Sm with |Sj | = n
for j = 1, . . . ,m.

2. A multi-set Rj of size αn is created by sampling with replacement from [N ] for j =
1, . . . ,m, where α ≥ 0 is a constant. When α = 0, we have Rj = ∅ for all j.

3. Let S′j = Sj ∪Rj. Machine j acquires functions in {fi}i∈S′j for j = 1, . . . ,m.

We say an algorithm A for solving (1) belongs to the family Fα (A ∈ Fα) of distributed
(extended) first-order algorithms if the machines do the following operations in rounds:

1. Machine j maintains a local working set of vectors Wj ⊂ Rd initialized to be Wj = {0},
where 0 is the all-zero vector in Rd.

9
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2. In each round, for arbitrarily many times, machine j can add any w ∈ Rd to Wj if w
satisfies (c.f. Arjevani and Shamir (2015))

γw + ν∇Fj(w) ∈ span

{
w′,∇Fj(w′), (∇2Fj(w

′) +D)w′′, (∇2Fj(w
′) +D)−1w′′

∣∣∣∣
w′, w′′ ∈Wj , D is diagonal,∇2Fj(w

′) and (∇2Fj(w
′) +D)−1 exist

}
(5)

for some constants γ ≥ 0 and ν ≥ 0 with γν 6= 0, where Fj =
∑

i∈Uj⊂S′j
fi with an

arbitrary subset Uj of S′j.

3. At the end of the round, all machines can simultaneously send any vectors in Wj

to any other machines, and each machine can add the vectors received from other
machines to its local working set.

4. The final output is a vector in the linear span of Wj for any j.

We use A({fi}i∈[N ], {S′j}j∈[m], H) to represent the output vector of A when it is applied
to (1) for H rounds with the inputs {fi}i∈[N ] and the sets {S′j}j∈[m] generated in the data
distribution stage described above.

Besides the randomness due to the data distribution stage, the algorithm A itself can
be a randomized algorithm. Hence, the output A({fi}i∈[N ], {S′j}j∈[m], H) can be a random
vector. Next, we provide some discussions on this class of algorithms.

In Fα, machines can only share iterates but not data points explicitly. Therefore, the
sets {S′j}j∈[m] will not be changed during the algorithm. The class Fα allows gradient
update w = w′− η∇Fj(w′) with η > 0 in local computation, which corresponds to (5) with
γ = 1, ν = 0. It also allows proximal mapping update w = arg minv

1
2η‖v − w

′‖2 + Fj(v)

with η > 0 in local computation, which has an optimality condition w+ η∇Fj(w) = w′ and
thus corresponds to (5) with γ = 1, ν = η. As a result, the class F0 covers distributed Accel
Grad, ADMM, DANE and AIDE. Although the algorithms in Fα can use the local second-
order information like ∇2fi(x) in each machine, Newton’s method is still not contained in
Fα since Newton’s method requires the access to the global second-order information such
as ∇2f(x) (machines are not allowed to share Hessian matrices with each other). That
being said, one can still use a distributed iteration method which can multiply ∇2fi(x) to a
local vector in order to solve the inversion of ∇2f(x) approximately. This scheme will lead
to a distributed inexact Newton method such as DISCO, which also belongs to F0. The
DSVRG and DASVRG algorithms proposed in this paper belong to Fα with α > 0.

We are ready to present the lower bounds for the rounds of communications.

Theorem 2 Suppose m ≥ (e + 4 max{1, α})2 and there exists an algorithm A ∈ Fα with
the following property:

“For any ε > 0 and any N convex functions {fi}i∈[N ] satisfying Assumption 1 with
µ > 0 and κ ≥ 1.5n, there exists Hε such that the output x̂ = A({fi}i∈[N ], {S′j}j∈[m], Hε)
satisfies E[f(x̂)− f(x∗)] ≤ ε, where the sets {S′j}j∈[m] are generated as in Definition 1.”

Then, with k ≡ d(e+ 4 max{1, α}) logme, we must have

Hε ≥

(√
2κ/(3n) + k − 1−

√
k

4k
√
k

)
log

((
1− 1

e

)
µ‖x∗‖2

4ε

)
≥ Ω̃

(√
κ/n+ α

(α+ 1)3
log

(
µ‖x∗‖2

ε

))
.
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In the definition of Fα, we allow the algorithm to access both randomly partitioned
data and independently sampled data, and allow the algorithm to use local Hessian for
preconditioning. This makes our lower bounds in Theorem 2 stronger: Even with more
options in distributing data and with algorithms more powerful than first-order methods
(in terms of the class of operations it can take), the number of rounds needed to find an
ε-optimal solution still cannot be reduced.

The κ ≥ 1.5n condition is not critical because, when κ ≤ n1−2δ

32 < 1.5n for a constant

0 < δ < 1
2 , we will show in Proposition 15 in Section 5.2 that DSVRG only needs O( log(1/ε)

δ logn )
rounds, which almost meets the trivial lower bound Ω(1).

A similar result can be obtained for the non-strongly convex case.

Theorem 3 Suppose m ≥ (e + 4 max{1, α})2 and there exists an algorithm A ∈ Fα with
the following property:

“For any ε > 0 and any N convex functions {fi}i∈[N ] satisfying Assumption 1 with
µ = 0, there exists Hε such that the output x̂ = A({fi}i∈[N ], {S′j}j∈[m], Hε) satisfies E[f(x̂)−
f(x∗)] ≤ ε, where the sets {S′j}j∈[m] are generated as in Definition 1.”

Then, with k ≡ d(e+ 4 max{1, α}) logme, we must have Hε ≥
√(

1− 1
e

) L‖x∗‖2
64k3nε

.

4. Proofs of Main Results

In this section, we will provide the proofs for Theorem 2 and 3. Before presenting all
technical details, we will first give an informal sketch of the proofs.

4.1 Sketch of Proof for Main Results

We will only provide an informal proof sketch for Theorem 2. The proof of Theorem 3
follows a similar strategy.

Let k be an integer with k = Θ(log(m)), µ′ = nµ and κ′ = L
µ′ . For simplicity, we

assume m
k is an integer in this proof sketch although Theorem 2 and 3 hold without this

assumption. Let E0 = {0} where 0 is the all-zero vector in Rb and let Et be the subspace
of Rb consisting of the vectors whose non-zero values only appear in the first t coordinates.

Motivated by the proof for the lower bound of the iteration complexity of first-order
methods (Nesterov, 2013), we construct a convex quadratic function p̄ : Rb → R and
represent it as the average of k convex quadratic functions ps : Rb → R for s = 1, 2, . . . , k.
In particular, we construct p̄(w) = 1

2w
TΣw + qTw + µ′

2 ‖w‖
2 = 1

k

∑k
s=1 ps, where p̄s(w) =

1
2w

TΣsw + qTs w + µ′

2 ‖w‖
2 for s = 1, 2, . . . , k. We are able to choose Σ, Σs, q and qs here

such that the following properties are satisfied

1. The matrix Σ = 1
k

∑k
s=1 Σs. The matrix Σ is tridiagonal and the matrix Σs is block

diagonal with a 2× 2 block and k− 2 consecutive zero entries alternatively appearing
along its diagonal. The sparsity patterns of Σ and Σs can be seen in Figure 1 in an
example with b = 15 and k = 3.

2. The vector q = 1
k

∑k
s=1 qs with q, qs ∈ E1 for s = 1, . . . , k.

3. Each ps is L-smooth and p̄ is µ′-strongly convex.
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Figure 1: The sparsity pattern of Σ and Σ′ when U = {2, 3}, b = 15 and k = 3.

4. The vector w∗ = arg minw p̄(w) is non-zero in all coordinates and, when b is sufficiently
larger than t, ‖ŵ − w∗‖2 ≥ Ω((1− 1√

κ′
)2t) for any ŵ ∈ Et.

Because the gradient ∇p̄(w) = (Σ + µ′I)w + q, where Σ is tridiagonal and q ∈ E1,
if a first-order method is applied to minw p̄(w) with an initial solution of 0, the solution
will stay in Et after t iterations. According to the 4th property above, a large number of
iterations is needed for the first-order method to achieve an ε-optimal solution. We will
use a similar argument to show that, when minw p̄(w) is solved by a distributed first-order
method but each machine does not have a full collection of {ps}s∈[k], a large number of
rounds of communication is needed in order to find an ε-optimal solution.

Suppose a machine can only locally access the functions in {ps}s∈U with U $ [k]. By
the sparsity patterns of Σ and Σs, Σ′ =

∑
s∈U Σs will be block diagonal with the size of

each block being at most (k + 1) × (k + 1). The sparsity patterns of Σ′ can be seen in
Figure 1 for an example with U = {2, 3}, b = 15 and k = 3. Since q, qs ∈ E1, if the
local computation of this machine starts with an initial solution in Et and the solution is
updated only using linear combinations of gradients ∇ps(w) = (Σs + µ′I)w + qs for s ∈ U ,
this machine can only produce a solution in Et+k no matter how many local iterations are
performed. According to the 4th property above, this machine has to receive a solution
outside Et+k from other machines in order to make progress in approximting w∗. Hence, if
no machine in a distributed first-order method has a full collection of {ps}s∈[k], many rounds
of communication is needed in order to generate an ε-optimal solution for minw p̄(w).

Since p̄ is the average of only k = Θ(log(m)) functions while the communication lower
bound is given for minimizing the average of N functions, we will make a few copies of
{ps}s∈[k] and add some zero functions to them. In particular, let v = m

k and {gi}i∈[N ]

be the multi-set of functions on Rb that consists of v copies of {ps}s∈[k] and N − vk zero

functions. Therefore, ḡ(w) ≡ 1
N

∑N
i=1 gi(w) = p̄(w)

n so that w∗ = arg minw ḡ(w). In addition,

each gi is L-smooth due to the 3rd property above and g is µ′

n -strongly (i.e., µ-strongly)
convex because m gi’s are µ′-strongly convex and N −m gi’s are zero.

Suppose an algorithm in Fα is applied to minw ḡ(w) with the initial solution 0. Each
machine will receives n functions from {gi}i∈[N ] by random partition and another αn func-
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tions from {gi}i∈[N ] by random sampling with replacement. Since k = Θ(log(m)) and
{gi}i∈[N ] contains only vk = m functions from {ps}s∈[k] and N − m zero functions, we
can show that, with a high probability, no machine will receive k or more functions from
{ps}s∈[k]. According to the previous discussion, the number of non-zero coordinate in the
solution generated by the algorithm will only increase by at most k between two consec-
utive rounds of communication. In other words, if ŵ is the solution found by Fα after
H rounds of communication, we must have ŵ ∈ Et with t = Hk. By the 4th property
above, the distance ‖ŵ − w∗‖2 ≥ Ω((1 − 1√

κ′
)2t). Since ḡ is strongly convex, this distance

implies an objective function gap of ḡ(ŵ) − ḡ(w∗) ≥ Ω((1 − 1√
κ′

)2t). Hence, in order to

ensure ḡ(ŵ) − ḡ(w∗) ≤ ε, with a high probably, the rounds of communication must satisfy
H = t

k ≥ Ω(
√
κ′) log

(
1
ε

)
= Ω(

√
κ
n) log

(
1
ε

)
. This provides the lower bounds for the rounds

of communication we found in this paper. Finally, we show that the same lower bound can
be proved without having any zero function in the N functions. To do so, we raise the di-
mension of the problem from b to d = nb by constructing a problem like (1), where {fi}i∈[N ]

consists of vn copies of {ps}s∈[k] with the first v copies defined on the first b coordinates of
x, the second v copies defined on the second b coordinates of x and so on. Problem (1) with
such {fi}i∈[N ] can be solved as n independent problems on Rb with each problem equivalent
to minw ḡ(w) so that the same communication lower bound can be obtained.

4.2 Some Definitions and Lemmas

Before we start the formal proof for Theorem 2, some definitions and technical lemmas are
provided in this section. Given a vector x ∈ Rd and a set of indices D ⊂ [d], we use xD to
represent the sub-vector of x that consists of the coordinates of x indexed by D.

Definition 4 A function f : Rd → R is decomposable with respect to a partition D1, . . . , Dr

of coordinates [d] if f(x) = g1(xD1) + · · · + gr(xDr) with gl : R|Di| → R for l = 1, . . . , r.
A set of functions {fi}i∈[N ] is simultaneously decomposable with respect to a partition
D1, . . . , Dr if each fi is decomposable with respect to D1, . . . , Dr.

It follows the Definition 1 and Definition 4 straightforwardly that:

Proposition 5 Suppose the functions {fi}i∈[N ] in (1) are simultaneously decomposable with

respect to a partition D1, . . . , Dr so that fi(x) =
∑r

l=1 g
l
i(xDl) with gli : R|Dl| → R for

i = 1, . . . , N and l = 1, . . . , r. Let x∗ be the optimal solution of (1). We must have

x∗Dl ∈ arg min
w∈R|Dl|

{
ḡl(w) ≡ 1

N

N∑
i=1

gli(w)

}
, for l = 1, 2, . . . , r. (6)

Moreover, any algorithm A ∈ Fα, when applied to {fi}i∈[N ], becomes decomposable with
respect to the same partition D1, . . . , Dr in the following sense: For l = 1, . . . , r, there exists
an algorithm Al ∈ Fα such that, after any number of rounds H,

E[f(x̂)− f(x∗)] =

r∑
l=1

E[ḡl(ŵl)− ḡl(x∗Dl)],

where x̂ = A({fi}i∈[N ], {S′j}j∈[m], H) ∈ Rd and ŵl = Al({gli}i∈[N ], {S′j}j∈[m], H) ∈ R|Dl| for
l = 1, 2, . . . , r and {S′j}j∈[m] is generated as in Definition 1.
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Proof The proof of this proposition is straightforward. Since {fi}i∈[N ] in (1) are simulta-
neously decomposable with respect to a partition D1, . . . , Dr, we have

f(x) =
1

N

N∑
i=1

r∑
l=1

gli(xDl) =
r∑
l=1

ḡl(xDl)

so that the problem (1) can be solved by solving (6) for each l separately and x∗Dl must be
the solution of the l-th problem in (6).

In addition, the function Fj in Definition 1 is also decomposable with respect to the same
partitionD1, . . . , Dr. As a result, its gradient∇Fj(x) also has a decomposed structure in the
sense that the block [∇Fj(x)]Dl only depends on xDl . Similarly, its Hessian matrix ∇2Fj(x)
is a block diagonal matrix with r blocks and the l-th block only depends on xDl . These
properties ensure that each operation A is able to apply (as in Definition 1) to some x ∈ Rd
can be decomposed into r independent operations applied on xD1 , xD2 , . . . , xDr separately.
Hence, given the sets {S′j}j∈[m], the sequence of operations conducted by A on xDl can be

viewed as an algorithm Al ∈ Fα applied to {gli}i∈[N ] so that ŵl = Al({gli}i∈[N ], {S′j}j∈[m], H)
is indeed the sub-vector x̂Dl of the vector x̂ = A({fi}i∈[N ], {S′j}j∈[m], H) for l = 1, 2, . . . , r
and any H.

Because m ≥ (e+ 4 max{1, α})2 and k ≡ d(e+ 4 max{1, α}) logme, we can show that

m

k
≥ m

1.25(e+ 4 max{1, α}) logm
≥ e+ 4 max{1, α}

2.5 log(e+ 4 max{1, α})
≥ e+ 4

2.5 log(e+ 4)
> 3

for any α ≥ 0, where we use the fact that 1.25x ≥ dxe for x ≥ 4 and the fact that x
log x is

monotonically increasing on [e,+∞). In the rest of the paper, we define

v ≡
⌊m
k

⌋
and θ ≡ vk

m
.

It is easy to show that 2
3 < 1− k

m < θ ≤ 1, where the first inequality is because m
k > 3 and

the second and the last inequalities are by the definitions of v and θ.

4.3 Proof for Theorem 2

Now we are ready to give the proof for Theorem 2 in this subsection. Let

µ′ ≡ µn

θ
, κ′ ≡ L

µ′
=
θκ

n
>

2κ

3n
≥ 1. (7)

We first generalize the machinery by Arjevani and Shamir (2015) to construct k functions
on Rb where b = uk for some integers k, u ≥ 1. The values of k and u will be specified later.
In particular, for i, j = 1, . . . , b, let δi,j be an b× b matrix with its (i, j) entry being one and
others being zeros. Let M0,M1, . . . ,Mb−1 be b× b matrices defined as

Mi =


δ1,1 for i = 0
δi,i − δi,i+1 − δi+1,i + δi+1,i+1 for 1 ≤ i ≤ b− 2

δb−1,b−1 − δb−1,b − δb,b−1 +
√
κ′+k−1+3

√
k√

κ′+k−1+
√
k
δb,b for i = b− 1.

(8)
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For s ∈ [k], let

Σs =
u−1∑
i=0

Mik+s−1. (9)

For example, when u = 2 and k = 3 (so b = 6), the matrices Σs’s are given as follows

Σ1 =


1 0 0 0 0 0
0 0 0 0 0 0
0 0 1 −1 0 0
0 0 −1 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ,Σ2 =


1 −1 0 0 0 0
−1 1 0 0 0 0

0 0 0 0 0 0
0 0 0 1 −1 0
0 0 0 −1 1 0
0 0 0 0 0 0

 ,

Σ3 =


0 0 0 0 0 0
0 1 −1 0 0 0
0 −1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 −1
0 0 0 0 −1 K

 ,

where K =
√
κ′+k−1+3

√
k√

κ′+k−1+
√
k

.

We define k functions p1, . . . , pk : Rb → R as follows

ps(w) =


L
4

[(
1− µ′

L

)
wTΣ1w

2 −
(

1− µ′

L

)
e>1 w

]
+ µ′

2 ‖w‖
2 for s = 1

L
4

[(
1− µ′

L

)
wTΣsw

2

]
+ µ′

2 ‖w‖
2 for s = 2, . . . , k,

(10)

where e1 = (1, 0, . . . , 0)T ∈ Rb, and denote their average by

p̄ ≡ 1

k

k∑
s=1

ps =
L− µ′

4k

[
1

2
wT

(
k∑
s=1

Σs

)
w − eT1 w

]
+
µ′

2
‖w‖2. (11)

According to (7), we have 1 − µ′

L > 0 so that ps for any s ∈ [k] and p̄ are all µ′-strongly
convex functions. It is also easy to show that, for each s, λmax(Σs) ≤ 4 so that ∇ps has a

Lipschitz continuity constant of L
(

1− µ′

L

)
+ µ′ = L and ps is L-smooth.

Next, we characterize the optimal solution of minw∈Rb p̄(w).

Lemma 6 Let h ∈ R be the smaller root of the equation h2−2
(
κ′−1+2k
κ′−1

)
h+1 = 0, namely,

h ≡
√
κ′+k−1−

√
k√

κ′+k−1+
√
k
. Then, w∗ = (w∗1, w

∗
2, . . . , w

∗
b )
T ∈ Rb with

w∗j = hj , for j = 1, 2, . . . , b (12)

is the optimal solutions of minw∈Rb p̄(w).
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Proof By (9), we have

k∑
s=1

Σs =



2 −1 0 0 0 0
−1 2 −1 0 0 0

0 −1 2 −1 0 0
...

...
. . .

. . .
. . .

...
0 0 0 −1 2 −1

0 0 0 0 −1
√
κ′+k−1+3

√
k√

κ′+k−1+
√
k


.

With this tridiagonal structure in its Hessian matrix, p̄(w) is related to but different from
the functions constructed by Nesterov (2013) and Lan and Zhou (2017) to establish the
iteration lower bound for single-machine first-order algorithms. We can show that the
optimal solution of minw∈Rb p̄(w) must satisfy the following optimality conditions

w∗2 − 2

(
κ′ − 1 + 2k

κ′ − 1

)
w∗1 + 1 = 0

w∗j+1 − 2

(
κ′ − 1 + 2k

κ′ − 1

)
w∗j + w∗j−1 = 0, for j = 2, 3, . . . , b− 1 (13)

−

(√
κ′ + k − 1 + 3

√
k

√
κ′ + k − 1 +

√
k

+
4k

κ′ − 1

)
w∗b + w∗b−1 = 0.

We can easily verify that w∗j = hj for j = 1, 2, . . . , b satisfy all equations in (13) such that
w∗ is the optimal solution of minw∈Rb p̄(w).

We claim that {ps}s∈[k] in (10) has the following property according to our construction.

Lemma 7 Suppose U is a strict subset of {ps}s∈[k] defined in (10), and q is an arbitrary
linear combination of some functions ps in U . The Hessian of q is a block diagonal matrix
where each block is a square matrix of a size at most k.

Proof There must exist some s′ ∈ [k] with ps′ /∈ U . Since q is a linear combination of
ps’s in U , according to the construction in (10), the Hessian of q is a tridiagonal matrix

because it is a linear combination of a diagonal matrix (the Hessian of µ′

2 ‖w‖
2) and all the

matrices Σs defined in (9) except Σs′ . We note that Σs′ is the only matrix among all Σs’s
that has non-zero entries in the positions (s′ − 1 + ik, s′ + ik) and (s′ + ik, s′ − 1 + ik) for
i = 0, 1, . . . , u−1 and both the row and column indices of these positions are equally spaced
with a gap of k. Therefore, without Σs′ involved in the linear combination, the tridiagonal
Hessian of q becomes block diagonal with each block of a size at most k.

To complete the proof of Theorem 2, the following lemma is critical. This lemma tells
us that the property given by Lemma 7 forces the machines to perform a large number of
rounds of communication in order to minimize p̄ whenever {ps}s∈[k] do not appear together
in any machine.
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Lemma 8 For any b = uk with integers k, u ≥ 1, let {gi}i∈[N ] be the multi-set of functions

on Rb that consists of v copies of {ps}s∈[k] defined as (10) and N −vk zero functions. More
specifically,

gi(w) =

{
ps(w) if i = s, s+ k, s+ 2k, . . . , s+ (v − 1)k,
0 if i ≥ vk + 1.

(14)

Suppose an algorithm A ∈ Fα is applied to {gi}i∈[N ] to solve

min
w∈Rb

ḡ(w) ≡ 1

N

N∑
i=1

gi (15)

and the sets {S′j}j∈[m] are generated as in Definition 1. Let E be the random event that
none of the m machines has all functions in {ps}s∈[k]. Let ŵ = A({gi}i∈[N ], {S′j}j∈[m], H).
Then, for any ε > 0 and k ≥ 1, there exist u and b = uk such that E[g(ŵ) − g(w∗)|E ] ≤ ε

only if H ≥
(√

κ′+k−1−
√
k

4k
√
k

)
log
(
µ‖w∗‖2

4ε

)
.

Proof Let w∗ ∈ Rb defined as (12). Since ḡ = 1
N

∑N
i=1 gi = v

N

∑k
s=1 ps = θp̄

n , we have
w∗ = arg minw∈Rb p̄(w) = arg minw∈Rb ḡ(w) by Lemma 6.

Let E0 = {0}, where 0 is the all-zero vector in Rb and let Et be the linear space in Rb
spanned by the unit vectors e1, . . . , et for t = 1, . . . , b, where es ∈ Rb has one in its s-th
component and zeros in other components.

Because A is applied to (15), by Definition 1, the working set Wj in machine j in each
round can be updated for arbitrarily many times by including a vector w such that

γw + ν∇Fj(w) ∈ span

{
w′,∇Fj(w′), (∇2Fj(w

′) +D)w′′, (∇2Fj(w
′) +D)−1w′′

∣∣∣∣
w′, w′′ ∈Wj , D is diagonal,∇2Fj(w

′) and (∇2Fj(w
′) +D)−1 exist

}
(16)

for some constants γ ≥ 0 and ν ≥ 0 with γν 6= 0, where Fj =
∑

i∈Uj⊂S′j
gi with an arbitrary

subset Uj of S′j . Suppose event E happens such that S′j does not contain all functions in
{ps}s∈[k] for any j. The set Uj in (16) will be a strict subset of {ps}s∈[k] so that, according
to Lemma 7, the Hessian matrix ∇2Fj in (16) is block-diagonal with a block size at most
k. Because Fj is always a quadratic function, such a property of its Hessian matrix means,
as long as Wj is contained by Et, any vector w satisfying (16) will be in Et+k. Therefore,
we can show that, at the beginning of round ` in algorithm A, if ∪jWj ⊂ Et, then at the
end of round ` (and at the beginning of round ` + 1), we have ∪jWj ⊂ Et+k. Using this
finding and the fact that ∪jWj = {0} = E0 initially, we conclude that, after H rounds in
A, we must have ∪jWj ⊂ EHk. Let t = Hk. Since ŵ = A({gi}i∈[N ], {S′j}j∈[m], H), we must
have ŵ ∈ Et if E happens.

By (12), we can show that

‖w∗‖2 =
b∑

j=1

(w∗j )
2 =

b∑
j=1

h2j =
h2(1− h2b)

1− h2
. (17)
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Because p̄ defined in (11) is µ′-strong convex, we have

2

µ′
E[p̄(ŵ)− p̄(w∗)|E ] ≥ E[‖ŵ − w∗‖2|E ] ≥

b∑
j=t+1

E[(w∗j )2|E ] ≥ h2t+2(1− h2b−2t)
1− h2

≥ ‖w
∗‖2(h2t − h2b)

1− h2b

where the second inequality is because ŵ ∈ Et and the third inequality is due to (17).
For any k ≥ 1, when u is large enough so b = uk is large enough, the inequality above

implies E[p̄(ŵ) − p̄(w∗)|E ] ≥ µ′‖w∗‖2h2t
4 = µ′‖w∗‖2

4

(√
κ′+k−1−

√
k√

κ′+k−1+
√
k

)2t
. Based on this inequal-

ity, when E[ḡ(ŵ) − ḡ(w∗)|E ] ≤ ε, or equivalently, when E[p̄(ŵ) − p̄(w∗)|E ] ≤ nε
θ , we

must have log
(
µ′θ‖w∗‖2

4nε

)
≤ 2t log

(
1 + 2

√
k√

κ′+k−1−
√
k

)
≤ 4t

√
k√

κ′+k−1−
√
k
, which further implies

H = t
k ≥

(√
κ′+k−1−

√
k

4k
√
k

)
log
(
µ‖w∗‖2

4ε

)
.

In Lemma 8, the requirement of a large enough b = uk is necessary since, if b is fixed and
the number of rounds H satisfies Hk ≥ b, the solution ŵ = A({gi}i∈[N ], {S′j}j∈[m], H) can
be non-zero in all dimensions so that it may equal w∗. If this happens, g(ŵ)−g(w∗) ≤ ε for
any ε so that the lower bound for H in Lemma 8 does not hold. Because the communication
lower bound we study does not depend on the dimension of the problem, we construct the
functions with a dimension higher than Hk so that there are dimensions that will not be
reached by the generated solutions so that the optimality gap has to reduce to zero slowly.

We now complete the proof of Theorem 2 by constructing N special functions {fi}i∈[N ]

on Rd with d = nb and b = uk for a sufficiently large u based on {ps}s∈[k] defined as (10),
so that any algorithm A ∈ Fα, when applied to {fi}i∈[N ], will need at least the targeted
amount of rounds of communication.

For a large enough u, we partition the set of indices [d] = {1, . . . , d} into n disjoint
subsets D1, D2, . . . , Dn with |Dl| = b and Dl = {b(l − 1) + 1, , b(l − 1) + 2, . . . , bl}. For any
l ∈ [n] and s ∈ [k], let ql,s(x) be a function on Rd defined as

ql,s(x) ≡ ps(xDl), (18)

where {ps}s∈[k] is defined as (10). By its definition, the function ql,s(x) only depends on the
b coordinates of x indexed by Dl. Therefore, we obtain nk different functions {ql,s}l∈[n],s∈[k].
Finally, we define {fi}i∈[N ] to be a set that consists of v copies of {ql,s}l∈[n],s∈[k] and N−vkn
zero functions. In other words, the non-zero functions in the set {fi}i∈[N ] we constructed
in this way constitutes a multi-set as follows

p1(xD1), p2(xD1), · · · , pk(xD1), · · · , p1(xD1), p2(xD1), · · · , pk(xD1)
p1(xD2), p2(xD2), · · · , pk(xD2), · · · , p1(xD2), p2(xD2), · · · , pk(xD2)

...
...

...
...

...
...

...
...

...
p1(xDn), p2(xDn), · · · , pk(xDn), . . . , p1(xDn), p2(xDn), · · · , pk(xDn)

 , (19)

where the l-th row consists of v copies of {ps}s∈[k] applied on xDl .
Because of Lemma 6 and the fact that

f(x) =
1

N

N∑
i=1

fi(x) =
v

N

n∑
l=1

k∑
s=1

ql,s(x) =
v

N

n∑
l=1

k∑
s=1

ps(xDl) =
θ

n

n∑
l=1

p̄(xDl), (20)
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the optimal solution x∗ for (1) with {fi}i∈[N ] constructed as (19) is x∗ = 1n ⊗ w∗ =

(w∗, w∗, . . . , w∗)T where w∗ ∈ Rd is defined as (12) and repeated for n times in x∗.

Now, we want to verify that the functions {fi}i∈[N ] satisfy our assumptions. In fact, we
have shown that ps is L-smooth for each s ∈ [k]. Since fi is either a zero function or equals
ps(xDl) for some l ∈ [n] and s ∈ [k], the function fi is L-smooth for each i ∈ [N ] as well.
Since p̄ is µ′-strongly convex (on Rb) and µ′ = nµ

θ , the function f defined in (1) must be
µ-strongly convex (on Rd) according to the relationship (20).

According to its construction, {fi}i∈[N ] are simultaneously decomposable with respect
to the partition D1, . . . , Dn with Dl = {b(l − 1) + 1, b(l − 1) + 2, . . . , bl} (see Definition 4).
In fact, fi(x) = ps(xDl) for some s ∈ [k] and l ∈ [n] so that fi(x) can be represented as

fi(x) =
n∑
l=1

gli(xDl), (21)

where gli ∈ {ps}s∈[k] for exactly one l ∈ [n] and gli ≡ 0 for other l’s. Moreover, for any
l ∈ [n], the following equality holds between the two multi-sets

{gli}i∈[N ] = {gi}i∈[N ], (22)

where {gi}i∈[N ] are defined as (14).4 By Proposition 5, A can be decomposed with respective
to the same partition D1, D2, . . . , Dn into A1, . . . ,An ∈ Fα and Al is applied to

min
w∈Rb

{
ḡl ≡ 1

N

N∑
i=1

gli =
1

N

N∑
i=1

gi = ḡ

}
, (23)

which is exactly the problem (15) and has the form of (1). Recall Definition 1 for the
procedure of generating S′j = Sj ∪ Rj , When {fi|i ∈ S′j} is allocated to machine j for

algorithm A, what happens at the same time is that {gli|i ∈ S′j} is allocated to machine j
for algorithm Al for l = 1, 2, . . . , n.

We now focus on the solution generated by Al for some l. For machine j in Al, let Y1,j

be the number of functions in {ps}s∈[k] (repetitions counted) that are contained in Sj and
Y2,j be the number of functions in {ps}s∈[k] (repetitions counted) that are contained in Rj .

Due to (14) and (22), exactly vk functions in {gli}i∈[N ] are from {ps}s∈[k] and the other
N−vk functions are zero. Hence, Y1,j has a hypergeometric distribution where Prob(Y1,j =
r) equals the probability of r successes in n draws, without replacement, from a population
of size N that contains vk successes. Let r = e logm. According to Chvatal (1979) and

4. The equation (22) does not means gli = gi for any l and i. It only means, for any l and i, there exists an
i′ ∈ [N ] so that gli = gi′ .
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vk
N ≤

1
n , we have Prob(Y1,j ≥ r) ≤

(
vkn
Nr

)r (n−vkn/N
n−r

)n−r
≤
(

1
r

)r (n−1
n−r

)n−r
, which implies

Prob(Y1,j ≥ e logm) ≤
(

1

e logm

)e logm( n− 1

n− e logm

)n−e logm

=

(
1

e logm

)e logm(
1 +

e logm− 1

n− e logm

)n−e logm

<

(
1

e logm

)e logm

ee logm−1 =
1

e

(
1

logm

)e logm

≤ 1

e

(
1

2 log(e+ 1)

)e logm

≤ 1

em2
, (24)

where the second inequality is because (1 + 1
x)x < e, the third inequality is because m ≥

(e+ 4 max{1, α})2 ≥ (e+ 1)2, and the last inequality is because (2 log(e+ 1))e > e2.

On the other hand, we have Y2,j = 0 when α = 0 and Y2,j =
∑

i∈Rj 1gli∈{ps}s∈[k]
when

α > 0, where 1gli∈{ps}s∈[k]
for i ∈ Rj are αn i.i.d. binary random variables which equal

one with a probability of vk
N and zero with a probability of 1 − vk

N . Suppose α > 0. The

mean and the variance of 1gli∈{ps}s∈[k]
are θ

n and θ
n(1− θ

n), respectively. Hence, by Bernstein

inequality (Uspensky, 1937), we have

Prob(Y2,j ≥ 4 max{1, α} logm) ≤ Prob(Y2,j > αθ + 3 max{1, α} logm)

≤ exp

(
−1

2(3 max{1, α} logm)2

αθ
(
1− θ

n

)
+ max{1, α} logm

)

≤ exp

(
−1

2(3 max{1, α} logm)2

2 max{1, α} logm

)
≤ exp (−2 max{1, α} logm) ≤ 1

m2
, (25)

where the first inequality is because max{1, α} logm > αθ and the third inequality is
because max{1, α} logm ≥ αθ

(
1− θ

n

)
. Suppose α = 0. (25) holds trivially.

Combining (24) and (25) for j = 1, 2, . . . ,m and using the union bound, we have

Prob(Y1,j + Y2,j < (e+ 4 max{1, α}) logm for j = 1, 2, . . . ,m) ≥ 1− 2

m
.

Therefore, we have shown that, with a probability of at least 1− 2
m , the multi-set {gli|i ∈ S′j}

contains fewer than (e+4 max{1, α}) logm ≤ k functions from {ps}s∈[k] (repetition counted)

for any j ∈ [m]. In other words, with a probability of at least 1− 2
m , no machine in Al has

all of the functions in {ps}s∈[k]. If the event that “none of the m machines has all functions
in {ps}s∈[k]” (same as the event E in Lemma 8) indeed happens in Al, we call Al bad. Then,
since m ≥ (e+ 4 max{1, α})2, we have actually proved

Prob(Al is bad) ≥ 1− 2

m
≥ 1− 1

e
. (26)
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By Proposition 5, after H rounds, the solutions x̂ = A({fi}i∈[N ], {S′j}j∈[m], H) ∈ Rd and

ŵl = Al({gli}i∈[N ], {S′j}j∈[m], H) ∈ R|Dl| for l = 1, 2, . . . , n satisfy

E[f(x̂)− f(x∗)] =

n∑
l=1

E[ḡl(ŵl)− ḡl(x∗Dl)] =

n∑
l=1

E[ḡ(ŵl)− ḡ(x∗Dl)]

≥
n∑
l=1

E[ḡ(ŵl)− ḡ(x∗Dl)|Al is bad]Prob(Al is bad)

≥
n∑
l=1

E[ḡ(ŵl)− ḡ(x∗Dl)|Al is bad]

(
1− 1

e

)
.

Therefore, if E[f(x̂)− f(x∗)] ≤ ε, there must exist an l ∈ [n] such that

E[ḡ(ŵl)− ḡ(x∗Dl)|Al is bad]

(
1− 1

e

)
≤ ε

n
. (27)

When Al is bad, none of the m machines in Al has all functions in {ps}s∈[k]. By Lemma 8,
there exist u and b = uk such that (27) happens only if

H ≥

(√
κ′ + k − 1−

√
k

4k
√
k

)
log

((
1− 1

e

)
µn‖w∗‖2

4ε

)

=

(√
κ′ + k − 1−

√
k

4k
√
k

)
log

((
1− 1

e

)
µ‖x∗‖2

4ε

)
,

≥
( √

κ′ − 1

4
√

2k
√
k

)
log

((
1− 1

e

)
µ‖x∗‖2

4ε

)
,

which is the desired lower bound after applying κ′ ≥ 2κ
3n .

4.4 Proof for Theorem 3

We provide the proof for Theorem 3 in this subsection by following a similar argument to
the proof of Theorem 2. Some notations in the previous sections will be used here but
defined differently.

We first use the machinery developed in Section 2.1.1 by Nesterov (2013) to construct
k functions on Rb where b = uk for some integers k, u ≥ 1. In particular, for i, j = 1, . . . , b,
let δi,j be an b × b matrix with its (i, j) entry being one and others being zeros. Let
M0,M1, . . . ,Mb−1 be b× b matrices defined as

Mi =

{
δ1,1 for i = 0
δi,i − δi,i+1 − δi+1,i + δi+1,i+1 for 1 ≤ i ≤ b− 1.

(28)

Here, only the Mb−1 in (28) is different from the Mb−1 in (8). For s ∈ [k], let Σs =∑u−1
i=0 Mik+s−1 which has the same form as (9) but with a different Mb−1. For example,
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when u = 2 and k = 3 (so b = 6), the matrices Σs’s are given as follows.

Σ1 =


1 0 0 0 0 0
0 0 0 0 0 0
0 0 1 −1 0 0
0 0 −1 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ,Σ2 =


1 −1 0 0 0 0
−1 1 0 0 0 0

0 0 0 0 0 0
0 0 0 1 −1 0
0 0 0 −1 1 0
0 0 0 0 0 0

 ,

Σ3 =


0 0 0 0 0 0
0 1 −1 0 0 0
0 −1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 −1
0 0 0 0 −1 1

 .

We define k functions p1, . . . , pk : Rb → R as follows

ps(w) =


L
4

[
wTΣ1w

2 − e>1 w
]

for s = 1

L
4

[
wTΣsw

2

]
for s = 2, . . . , k,

(29)

where e1 = (1, 0, . . . , 0)T ∈ Rb, and denote their average by

p̄ ≡ 1

k

k∑
s=1

ps =
L

4k

[
1

2
wT

(
k∑
s=1

Σs

)
w − eT1 w

]
. (30)

It is also easy to show that λmax(Σs) ≤ 4 so that ∇ps has a Lipschitz continuity constant
of L so that ps is L-smooth.

Observing that

k∑
s=1

Σs =



2 −1 0 0 0 0
−1 2 −1 0 0 0

0 −1 2 −1 0 0
...

...
. . .

. . .
. . .

...
0 0 0 −1 2 −1
0 0 0 0 −1 2


,

we note that the function p̄(w) defined in (30) is the one studied in Section 2.1.2 by Nesterov
(2013) for establishing the lower bound for the iteration complexity for single-machine first-
order methods. Following Section 2.1.2 by Nesterov (2013), the optimal solution and the
optimal value of minw∈Rb p̄(w) can be characterized as follows.

Lemma 9 (Nesterov (2013)) The vector w∗ = (w∗1, w
∗
2, . . . , w

∗
b )
T ∈ Rb with

w∗j = 1− j

b+ 1
, for j = 1, 2, . . . , b (31)

is the optimal solution of minw∈Rb p̄(w). Moreover, ‖w∗‖2 ≤ b+1
3 and p̄(w∗) = L

8k

(
−1 + 1

b+1

)
.

The following lemma can be extracted from Section 2.1.2 in Nesterov (2013) which
characterizes the optimal value of p̄ when restricted in the subspace of first t coordinates.
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Lemma 10 (Nesterov (2013)) Let p̄ defined as (30). We have

min
(w1,...,wt)∈Rt

p̄(w1, . . . , wt, 0, . . . , 0) =
L

8k

(
−1 +

1

t+ 1

)
.

We can show that {ps}s∈[k] defined in (29) has the following properties.

Lemma 11 Suppose U is a strict subset of {ps}s∈[k] defined in (10), and q is an arbitrary
linear combination of some functions ps in U . The Hessian of q is a block diagonal matrix
where each block is a square matrix of a size at most k.

Proof Same as the proof of Lemma 7.

Lemma 12 For any b = uk with integers k, u ≥ 1, let {gi}i∈[N ] be the multi-set of functions

on Rb that consists of v copies of {ps}s∈[k] defined as (29) and N −vk zero functions. More
specifically, {gi}i∈[N ] is defined as (14) but with {ps}s∈[k] defined as (29). Suppose an
algorithm A ∈ Fα is applied to (15) and the sets {S′j}j∈[m] are generated as in Definition 1.
Let E be the random event that none of the m machines has all functions in {ps}s∈[k]. Let
ŵ = A({gi}i∈[N ], {S′j}j∈[m], H). Then, for any ε > 0 and k ≥ 1, there exist u and b = uk

such that E[g(ŵ)− g(w∗)|E ] ≤ ε only if H ≥
√

3L‖w∗‖2
128k3nε

.

Proof Let u = 2H + 1, b = 2Hk + k and w∗ ∈ Rb defined as (31). Since ḡ = 1
N

∑N
i=1 gi =

v
N

∑k
s=1 ps = θp̄

n , we have w∗ = arg minw∈Rb p̄(w) = arg minw∈Rb ḡ(w) by Lemma 9.
Let Et defined as in the proof of Lemma 8. Following the same argument as in the

proof of Lemma 8, we can show that, if E happens, after H rounds in algorithm A, we must
have ∪jWj ⊂ EHk, where Wj is the working set of machine j by Definition 1. Let t = Hk.
Since ŵ = A({gi}i∈[N ], {S′j}j∈[m], H), we must have ŵ ∈ Et if E happens. According to
Lemma 10, we have

p̄(ŵ) ≥ min
(w1,...,wt)∈Rt

p̄(w1, . . . , wt, 0, . . . , 0) =
L

8k

(
−1 +

1

Hk + 1

)
,

which, together with Lemma 9, implies

E
[
p̄(ŵ)− p̄(w∗)
‖w∗‖

∣∣E] ≥ L
8k

(
−1 + 1

Hk+1 + 1− 1
b+1

)
1
3 (b+ 1)

≥ 3L

32k3(H + 1)2
≥ 3L

128k3H2
.

Based on this inequality, when E[ḡ(ŵ) − ḡ(w∗)|E ] ≤ ε, or equivalently, when E[p̄(ŵ) −
p̄(w∗)|E ] ≤ nε

θ ≤
3nε
2 , we must have H ≥

√
L‖w∗‖2
64k3nε

.

The rest of the proof of Theorem 3 is almost identical to that of Theorem 2 so we will
only provide a brief sketch. In particular, we will construct N special non-strongly convex
functions {fi}i∈[N ] on Rd with d = nb for a sufficiently large b based on {ps}s∈[k] defined as
(29), and show that any algorithm A ∈ Fα will need at least the targeted amount of rounds
of communication when it is applied to {fi}i∈[N ].

For a large enough u and b = uk, we partition the set of indices [d] = {1, . . . , d} into n
disjoint subsets D1, D2, . . . , Dn with |Dl| = b and Dl = {b(l − 1) + 1, b(l − 1) + 2, . . . , bl}.
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For any l ∈ [n] and s ∈ [k], let ql,s(x) be a function on Rd defined as (18) where {ps}s∈[k]

is defined as (29). We define {fi}i∈[N ] to be a set that consists of v copies of {ql,s}l∈[n],s∈[k]

and N − vkn zeros functions. In other words, the set of non-zero functions in {fi}i∈[N ] is
defined as (19) with {ps}s∈[k] given as (29). It is easy to verify that the each function in
{fi}i∈[N ] is L-smooth.

Because of Lemma 9 and (20), the optimal solution x∗ for (1) with {fi}i∈[N ] constructed

as above is x∗ = 1n ⊗ w∗ = (w∗, w∗, . . . , w∗)T where w∗ ∈ Rd is defined as (31).

By its construction, {fi}i∈[N ] are simultaneously decomposable with respect to the par-
tition D1, . . . , Dn with Dl = {b(l − 1) + 1, b(l − 1) + 2, . . . , bl}. In fact, fi(x) = ps(xDl) for
some s ∈ [k] and l ∈ [n] with {ps}s∈[k] defined as (29) so that fi(x) can be represented as

(21) where gli ∈ {ps}s∈[k] for exactly one l ∈ [n] and gli ≡ 0 for other l’s. Moreover, for any
l ∈ [n], the equality (22) holds with {gi}i∈[N ] defined as (14) and {ps}s∈[k] defined as (29).

By Proposition 5, A can be decomposed with respective to the partition D1, D2, . . . , Dn

into A1, . . . ,An ∈ Fα and Al is applied to (23) (the same as (15)). Let S′j = Sj ∪ Rj
generated as in Definition 1. When {fi|i ∈ S′j} is allocated to machine j for algorithm A,

the set {gli|i ∈ S′j} is allocated to machine j for algorithm Al for l = 1, 2, . . . , n. We still
call Al bad if none of the m machines in algorithm Al has all functions in {ps}s∈[k]. Then,
following exactly the same argument as in Theorem 2, we can obtain (26) which indicates
that Al can be bad with a constant probability for each l. As a result, if E[f(x̂)−f(x∗)] ≤ ε,
there must exist an l ∈ [n] such that (27) holds.

When Al is bad, after the data distribution stage, none of the m machines in Al has all
functions in {ps}s∈[k]. According to Lemma 12, there exists b such that (27) happens only

if H ≥
√(

1− 1
e

) L‖x∗‖2
64k3nε

, which is the desired lower bound.

5. Distributed SVRG

In this section, we consider a distributed stochastic variance reduced gradient (DSVRG)
method that is based on a parallelization of the stochastic variance reduced gradient (SVRG)
method (Johnson and Zhang, 2013; Mahdavi et al., 2013; Xiao and Zhang, 2014; Konečnỳ
and Richtárik, 2017). SVRG works in multiple stages and, in each stage, one batch gradient
is computed using all N data points and O(κ) iterative updates are performed with only
one data point processed in each iterative update.

Our DSVRG algorithm randomly partitions the N data points into m subsets {Sj}j∈[m]

with |Sj | = n and Sj is allocated to machine j in order to parallelize the computation of
the batch gradient in SVRG. Then, we let the m machines conduct the iterative update
of SVRG in serial in a “round-robin” scheme, namely, let all machine stay idle except one
machine that performs a certain steps of iterative updates of SVRG using its local data and
pass the solution to the next machine. However, the only caveat in this idea is that the
iterative update of SVRG requires an unbiased estimator of∇f(x) which can be constructed
by sampling over the whole data set. However, the unbiasedness will be lost if each machine
can only sample over Sj . To address this issue, we let machine j sample with replacement
from the whole data set to construct a second set Rj with |Rj | = αn for α > 0 during the
data allocation. In each iterative update, if each machine samples over Rj , the unbiased
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Algorithm 1 Distributed SVRG (DSVRG)

Input: An initial solution x̃0 ∈ Rd, data {fi}i∈[N ], the number of machines m, a step

length η < 1
4L , the number of stages K, the number of iterations T in each stage, and

a parameter α ≥ TK
N .

Output: x̃K

1: Generate (a) a random partition {Sj}j∈[m] of [N ], (b) m multi-sets {Rj}j∈[m] with
|Rj | = αn uniformly sampled with replacement from [N ], and (c) data {fi | i ∈ Sj ∪Rj}
stored on machine j.

2: k ← 1
3: for ` = 0, 1, 2, . . . ,K − 1 do
4: Center sends x̃` to each machine
5: for machine j = 1, 2, . . . ,m in parallel do
6: Compute h`j =

∑
i∈Sj ∇fi(x̃

`) and send it to center
7: end for
8: Center computes h` = 1

N

∑m
j=1 h

`
j and send it to machine k

9: (x̃`+1, {Rj}j∈[m], k)← SS-SVRG(x̃`, {fi}i∈[N ], h
`, {Rj}j∈[m], k, η, T )

10: end for

estimator will be still available so that the convergence property can be inherited from the
single-machine SVRG.

5.1 DSVRG Algorithm and Its Round Complexity

Let α > 0. We first randomly partition [N ] into subsets {Sj}j∈[m] with |Sj | = N
m = n and

create m multi-sets {Rj}j∈[m] with |Rj | = αn by uniformly sampling with replacement from
[N ]. With the data {fi|i ∈ Sj ∪Rj} distributed on machine j for each j ∈ [m], we describe
formally each stage of this DSVRG in Algorithm 1 and the iterative update in Algorithm 2.
From the definitions of Sj and Rj and the communication and computation performed, we
can easily see that DSVRG belongs to the family Fα (α > 0) in Definition 1.

We start DSVRG in machine k with k = 1 initially at an initial solution x̃0 ∈ Rd. At the
beginning of stage ` of DSVRG, all m machines participate in computing a batch gradient h`

in parallel using the data indexed by S1, . . . , Sm. Within stage `, in each iteration, machine
k samples one data fi from its local data indexed by Rk to construct a stochastic gradient
∇fi(xt) − ∇fi(x̃`) + h` and performs the iterative update (Line 3 of Algorithm 2). After
this iteration, the index i is removed from Rk. Due to the construction of Rk, we can easily
prove that this stochastic gradient is an unbiased estimation of the batch gradient ∇f(xt).

Lemma 13 Suppose x̃, xt, {fi}i∈[N ], h, {Rj}j∈[m] and k are defined as in Algorithm 2
(SS-SVRG). In addition, suppose each element of Rj was i.i.d. sampled with replacement

from [N ] and h = 1
N

∑N
i=1∇f(x̃). In the t-th iteration of Algorithm 2, we have

E[∇fi(xt)−∇fi(x̃) + h|xt, x̃] = ∇f(xt),

where the expectation is taken over i and {Rj}j∈[m].

Proof Since Rk is a multi-set that consists of indices uniformly sampled with replacement
from [N ], the index i has a uniform distribution over [N ]. Moreover, because each index
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Algorithm 2 Single-Stage SVRG: SS-SVRG(x̃, {fi}i∈[N ], h, {Rj}j∈[m], k, η, T )

Input: A solution x̃ ∈ Rd, data {fi}i∈[N ], a batch gradient h, m multi-sets {Rj}j∈[m], the

index of the active machine k, a step length η < 1
4L , and the number of iterations T .

Output: The average solution x̄T , the updated multi-sets {Rj}j∈[m], and the updated
index of active machine k.

1: x0 = x̃ and x̄0 = 0
2: for t = 0, 1, 2, . . . , T − 1 do
3: Machine k uniformly samples an instance i from Rk and computes

xt+1 = xt − η (∇fi(xt)−∇fi(x̃) + h) , x̄t+1 =
xt+1 + tx̄t
t+ 1

, Rk ← Rk\{i}

4: if Rk = ∅ then
5: xt+1 and x̄t+1 are sent to machine k + 1
6: k ← k + 1
7: end if
8: end for

sampled from Rk in the previous iteration has been removed from Rk, the set Rk at iteration
t does not contain the indices in the previous iterations that determine xt so that Rk is
independent of xt. With these facts, we can show that

E[∇fi(xt)−∇fi(x̃) + h|xt, x̃] = E
[
E[∇fi(xt)−∇fi(x̃) + h|Rk, xt, x̃]

∣∣∣xt, x̃]
= E

[
1

|Rk|
∑
i∈Rk

(∇fi(xt)−∇fi(x̃) + h)
∣∣∣xt, x̃] = Ei∼N [∇fi(xt)−∇fi(x̃) + h|xt, x̃] = ∇f(xt),

where the third equality is because Rk is independent of xt and the marginal distribution
of each i in Rk is uniform distribution on [N ].

The m machines do the iterative updates in the order from machine 1 to machine
m. Once the current active machine, say, machine k, has removed all of its samples in
Rk (so that Rk = ∅), then it must pass the current solution and the running average of all
solutions generated in the current stage to machine k+1. At any time during the algorithm,
there is only one machine updating the solution xt and the other m − 1 machines only
contribute in computing the batch gradient h`. We want to emphasize that it is important
that machines should never use any samples in Rj ’s more than once since, otherwise, the
stochastic gradient ∇fi(xt)−∇fi(x̃`) + h` will lose its unbiasedness. Because one element
in Rk is removed in each iterative update (Line 3) of Algorithm 2, this update cannot
be performed any longer once each Rk becomes empty. Hence, a requirement for using
Algorithm 1 is TK ≤

∑
j∈[m] |Rj | = αnm = αN .

The convergence of Algorithm 1 is established by the following theorem.

Theorem 14 Suppose 0 < η < 1
4L and µ > 0. Algorithm 1 guarantees

E
[
f(x̃K)− f(x∗)

]
≤
(

1

µη(1− 4Lη)T
+

4Lη(T + 1)

(1− 4Lη)T

)K [
f(x̃0)− f(x∗)

]
. (32)
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When η = 1
16L , T = 96κ and α ≥ 96κ

log(9/8)N log
(
f(x̃0)−f(x∗)

ε

)
, Algorithm 1 finds an ε-optimal

solution with K ≤ 1
log(9/8) log

(
f(x̃0)−f(x∗)

ε

)
stages and at most

96κ
αn

+1

log(9/8) log
(
f(x̃0)−f(x∗)

ε

)
rounds of communication.

In particular, if 96κ
log(9/8) log

(
f(x̃0)−f(x∗)

ε

)
≤ O(N) in addition to the previous conditions,

Algorithm 1 with α = Θ(1) finds an ε-optimal solution with at most O
(
(κn + 1) log

(
1
ε

))
rounds of communication.

Proof In the iterative update given in Line 3 of Algorithm 2, a stochastic gradient∇fi(xt)−
∇fi(x̃) + h is constructed with h being the batch gradient ∇f(x̃) and i sampled from Rk
in the active machine k. By Lemma 13, this stochastic gradient is unbiased estimator of
∇f(xt). Therefore, the path of solutions x̃0, x̃1, x̃2, . . . generated by Algorithm 1 has the
same distribution as the ones generated by single-machine SVRG so that the convergence
result for the single-machine SVRG can be directly applied to Algorithm 1. The inequality
(32) has been shown in Theorem 1 in Xiao and Zhang (2014) for single-machine SVRG,
which now also holds for Algorithm 1.

When η = 1
16L and T = 96κ, it is easy to show that

1

µη(1− 4Lη)T
+

4Lη(T + 1)

(1− 4Lη)T
≤ 1

µη(1− 4Lη)T
+

8Lη

(1− 4Lη)
=

2

9
+

2

3
=

8

9

so that Algorithm 1 needs K ≤ 1
log(9/8) log

(
f(x̃0)−f(x∗)

ε

)
stages to find an ε-optimal solution.

Since Algorithm 1 performs TK iterative updates with one element of Rk removed after
each update, it requires TK ≤

∑
j∈[m] |Rj | = αN , which is satisfied by the above upper

bound of K, the choice of T and the assumption on α.

Since Algorithm 1 needs one round of communication to compute a batch gradient at
each stage (one call of SS-SVRG) and one round after every αn iterative updates (when

Rk = ∅), it needs K+ TK
αn ≤

(
96κ
αn + 1

)
1

log(9/8) log
(
f(x̃0)−f(x∗)

ε

)
rounds of communication in

total to find an ε-optimal solution. The second part of the conclusion is a straightforward
outcome from the first part.

By Theorem 14, to find an ε-optimal solution, DSVRG requires α ≥ Ω( κN log(1/ε))
so that each machine must have a minimum memory space of |Sj | + |Rj | = n + αn =
Ω(n + κ

m log(1/ε)). For ERM problem where κ = Θ(
√
N) and ε is reasonably small, for

example, ε = 1
ns for a constant s, the requirement becomes α ≥ Ω( log(n)√

nm
), which can

be easily satisfied with a constant α (α = Θ(1)). In this case, DSVRG only asks for
Θ(n +

√
n
m log(n)) = Θ(n) memory space in each machine to store Sj ∪ Rj . Note that

a memory space of n is necessary in all distributed algorithms to store Sj so the space
required by DSVRG is in the same order of magnitude as other distributed algorithms in
this scenario. Although we use κ = Θ(

√
N) as an example, DSVRG still applies with

α = Θ(1) and Θ(n) memory space when ε = 1
ns and κ = Θ(N b) with b ∈ (0, 1).

Compared to other methods which use only Sj , DSVRG and DASVRG (introduced
later) require additional Θ(αN) amount of communication during the data allocation stage
for transmitting the second data set Rj from the center to each machine. Although the
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communication during the data allocation stage is not included in the total amount of
communication in the performance metrics defined in Section 1.1, it will certainly affect the
efficiency of an algorithm in practice. Hence, in Algorithm 4 in Appendix, we design an
efficient data allocation scheme which reuses the randomness of first randomly partitioned
data set Sj to construct Rj . We show in Lemma 18 that this method helps to increase the
overlap between Rj and Sj so that it requires a smaller amount of communication to allocate
{fi|i ∈ Sj ∪ Rj} to machine j than the direct implementation. For example, when κ =
Θ(
√
N) in a typical ERM problem, with Algorithm 4, DSVRG only needs O((log(1/ε))2)

more amount of communication during the data allocation stage than other methods.

5.2 Regime Where DSVRG is Optimal

In this subsection, we consider a scenario where κ = O(n1−2δ) with a constant 0 < δ < 1
2 and

ε = 1
ns with a constant s > 0. We show that with modified values of η, T and K, DSVRG

can find an ε-optimal solution for (1) with the optimal parallel runtime, the optimal amount
of communication, and the optimal number of rounds of communication simultaneously.

Proposition 15 Suppose 0 < κ ≤ n1−2δ

32 with a constant 0 < δ < 1
2 . When η = 1

16nδL
, T =

n and α ≥ 1
log(nδ/2)

log
(
f(x̃0)−f(x∗)

ε

)
, Algorithm 1 finds an ε-optimal solution for (1) with

K = O( log(1/ε)
logn ) stages, O(

(
1+α
α

) log(1/ε)
logn ) rounds of communications, O(n log(1/ε)

logn ) parallel

runtime, and O((m+ 1
α) log(1/ε)

logn ) amount of communication.

If ε = 1
ns with a positive constant s in addition to the conditions above, Algorithm 1

finds an ε-optimal solution for (1) with α = Θ(1), O(1) rounds of communications, O(n)
parallel runtime, and O(m) amount of communication.

Proof Since η = 1
16nδL

< 1
4L , Algorithm 1 guarantees (32) according to Theorem 14. With

T = n and η = 1
16nδL

, we have

1

µη(1− 4Lη)T
+

4Lη(T + 1)

(1− 4Lη)T
≤ 1

µη(1− 4Lη)T
+

8Lη

(1− 4Lη)
=

16nδκ

(1− 1/(4nδ))n
+

1

2nδ(1− 1
4nδ

)

≤ 1

2nδ(1− 1/(4nδ))
+

1

2nδ(1− 1/(4nδ))
≤ 2

nδ
.

Hence, E
[
f(x̃K)− f(x∗)

]
≤ ε is implied by (32) with K ≤ 1

log(nδ/2)
log
(
f(x̃0)−f(x∗)

ε

)
=

O( log(1/ε)
logn ). The requirement TK ≤ αN is satisfied by the above upper bound of K and the

assumption on α.

Since Algorithm 1 needs one round of communication to compute a batch gradient at
each stage and one round after every αn iterative updates, it needsK+TK

αn = O( (1+α) log(1/ε)
α logn )

rounds of communication in total to find an ε-optimal solution. Since one gradient is com-
puted in each iterative update and n gradients are computed in parallel in each stage, the
parallel runtime of Algorithm 1 is (n + T )K = O(n log(1/ε)

log(n) ). Finally, each batch gradient

computation requires machines sending m vectors of size O(d) to the center and every αn
iterative updates require sending two vectors of size O(d) between machines. Hence, Algo-
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rithm 1 requires (mK + 2TK
αn ) = O((m + 1

α) log(1/ε)
logn ) amount of communication to find an

ε-optimal solution.5

We can easily obtain the second part of the conclusion after substituting ε in the
three performance metrics above by 1

ns with a positive constant s and using the fact that

α ≥ 1
log(nδ/2)

log
(
f(x̃0)−f(x∗)

ε

)
= Θ(1)

We emphasize again that the amount of communication in Proposition 15 is measured
by the number of vectors of size O(d) transmitted through the network after the data
distribution phase so it does not include the communication for sending Sj and Rj to
machines. The justification for the scenario where κ = O(n1−2δ) and ε = 1

ns and why these
performance guarantees are optimal have been discussed in Section 1.2. To apply DSVRG
under this scenario, the required memory space in each machine is O(n+αn) = O(n) (since
we are able to choose α = Θ(1) in this case), which is in the same order of magnitude as
the memory requirement of all distributed methods.

6. Accelerated Distributed SVRG

In this section, we use the generic acceleration techniques in Frostig et al. (2015) and Lin
et al. (2015) to further improve the theoretical performance of DSVRG and obtain a dis-
tributed accelerated stochastic variance reduced gradient (DASVRG) method. DASVRG
belongs to the family Fα (α > 0) in Definition 1. We will show that the lower bound given
in Theorem 2 for the round complexity of Fα is matched by the rounds needed by DASVRG
with α = Θ(1) up to logarithmic factors for a flexible and realistic regime of parameters.

6.1 DASVRG Algorithm and Its Round Complexity

We define the proximal function for f(x) as

fσ(x; y) ≡ f(x) +
σ

2
‖x− y‖2 =

1

N

N∑
i=1

fσ,i(x; y), (33)

where fσ,i(x; y) = fi(x) + σ
2 ‖x− y‖

2, σ is a positive constant to be determined later and
y ∈ Rd is a proximal point. The condition number of this proximal function is κ(fσ) ≡ L+σ

µ+σ
which is always smaller than κ.

Given an algorithm, denoted by A, that can be applied to (1), the acceleration scheme
developed in Frostig et al. (2015) and Lin et al. (2015) is an iterative method that involves
inner and outer loops and uses A as a sub-routine called in each outer loop. In particular,
in the p-th outer iteration of this acceleration scheme, the algorithm A is applied to find a
solution for the p-th proximal problem defined on a proximal point yp ∈ Rd, namely,

min
x∈Rd

fσ(x; yp) for p = 0, 1, 2, . . . , P − 1. (34)

Since κ(fσ) < κ, solving (34) is generally easier than solving (1). Moreover, the algorithm
A does not need to solve (34) to optimality but only needs to generate an approximate

5. As we defined in Section 1.1, the communication used to distribute Sj and Rj to machine j is not
included in the amount of communication given here.
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solution x̂p+1 with an accuracy εp in the sense that

E
[
fσ(x̂p+1; yp)− min

x∈Rd
fσ(x; yp)

]
≤ εp. (35)

Then, the acceleration scheme uses the convex combination of x̂p+1 and another auxiliary
solution zp+1 to construct a new proximal point yp+1. After that, the (p + 1)-th proximal
problem is constructed based on yp+1 which will be solved in the next outer iteration while
the auxiliary solution zp+1 will be updated by a momentum step. With an appropriately
chosen value for σ, it is shown by Frostig et al. (2015) and Lin et al. (2015) that, for many
existing A including SAG (Schmidt et al., 2017; Roux et al., 2012), SAGA (Defazio et al.,
2014a), SDCA (Shalev-Shwartz and Zhang, 2013), SVRG (Johnson and Zhang, 2013) and
Finito/MISO (Defazio et al., 2014b; Mairal, 2015), this acceleration scheme needs a smaller
runtime for finding an ε-optimal solution than applying algorithm A directly to (1).

Given the success of this acceleration scheme in the single-machine setting, it will be
promising to also apply this scheme to the DSVRG to further improve its theoretical perfor-
mance. Indeed, this can be done by choosing A in this acceleration scheme to be DSVRG.
In particular, we follow the scheme in Algorithm 2 in Frostig et al. (2015) and obtain the
DASVRG method as in Algorithm 3. In the p-th outer iteration of DASVRG, DSVRG is
used to solve the proximal problem (34) in a distributed way up to an accuracy εp.

Theorem 16 When µ > 0, σ = L
n , η = 1

16L , T = 96κ(fσ), K = 1
log(9/8) log

(
4
(

2σ+µ
µ

)3/2
)

and α ≥ 384

log(9/8)m

√
2κ

n
+ 1 log

(
4

(
2κ

n
+ 1

)3/2
)

log

((
2κ

n
+ 1

)
f(x̂0)− f(x∗)

ε

)
, (36)

Algorithm 3 find an ε-optimal solution with P ≤
√

8σ+4µ
µ log

(
(2σ+2µ)(f(x̂0)−f(x∗)

µε

)
outer

loops and at most
384
α

+2

log(9/8)

√
2κ
n + 1 log

(
4
(

2κ
n + 1

)3/2)
log
((

2κ
n + 1

) f(x̂0)−f(x∗)
ε

)
rounds of

communication.
In particular, if the right hand side of (36) is at most O(1) in addition to the pre-

vious conditions, Algorithm 1 with α = Θ(1) finds an ε-optimal solution with at most
O
(
(1 +

√
κ
n) log(1 + κ

n) log 1
ε

)
rounds of communication.

Proof Due to the way {Rj}j∈[m] is generated and Lemma 13, the solution path x̃0, x̃1, x̃2, . . .
generated within the p-th outer loop of Algorithm 3 has same distribution as the solution
path generated by applying the single-machine SVRG to (34) with an initial solution of
x̃0 = x̂p. Hence, according to Theorem 1 in Xiao and Zhang (2014), the following inequality
holds for the p-th outer loop of Algorithm 3

E
[
fσ(x̂p+1; yp)− min

x∈Rd
fσ(x; yp)

]
≤
(

1

µη(1− 4Lη)T
+

4Lη(T + 1)

(1− 4Lη)T

)K [
fσ(x̂p; yp)− min

x∈Rd
fσ(x; yp)

]
.

Applying the values of η and T to this inequality, the p-th outer loop of Algorithm 3 ensures

E
[
fσ(x̂p+1; yp)− min

x∈Rd
fσ(x; yp)

]
≤
(

8

9

)K [
fσ(x̂p; yp)− min

x∈Rd
fσ(x; yp)

]
.
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Algorithm 3 Distributed Accelerated SVRG (DASVRG)

Input: An initial solution x̂0 ∈ Rd, data {fi}i∈[N ], the number of machines m, a step length

η < 1
4L , the number of stages K in DSVRG, the number of iterations T in each stage

of DSVRG, the number of outer iterations P in DASVRG, a parameter σ ≥ 0, and a
parameter α ≥ TKP

N .
Output: x̂P

1: Generate (a) a random partition {Sj}j∈[m] of [N ], (b) m multi-sets {Rj}j∈[m] with
|Rj | = αn uniformly sampled with replacement from [N ], and (c) data {fi | i ∈ Sj ∪Rj}
stored on machine j.

2: k ← 1
3: Initialize ρ = µ+2σ

µ and z0 = x̂0

4: for p = 0, 1, 2, . . . , P − 1 do

5: Center computes yp = 1
1+ρ−1/2 x̂p + ρ−1/2

1+ρ−1/2 zp and x̃0 = x̂p and sends yp to each

machine
6: for ` = 0, 1, 2, . . . ,K − 1 do
7: Center sends x̃` to each machine
8: for machine j = 1, 2, . . . ,m in parallel do
9: Compute h`j =

∑
i∈Sj ∇f̃i(x̃

`; yp) and send it to center
10: end for
11: Center computes h` = 1

N

∑m
j=1 h

`
j and sends it to machine k

12: (x̃`+1, {Rj}j∈[m], k)← SS-SVRG(x̃`, {fσ,i(x; yp)}i∈[N ], h
`, {Rj}j∈[m], k, η, T )

13: end for
14: Machine k computes x̂p+1 = x̃K and sends x̂p+1 to center
15: Center computes zp+1 = (1− ρ−1/2)zp + ρ−1/2[yp − ρ(yp − x̂p+1)]
16: end for

By this inequality and the choice of K, we can show that the solution x̂p+1 generated from
the p-th outer loop of Algorithm 3 satisfies (35) with

εp =
1

4

(
µ

2σ + µ

)3/2 [
fσ(x̂p; yp)− min

x∈Rd
fσ(x; yp)

]
.

Using this result and Lemma 3.3, 3.4, 3.5 and 3.6 in Frostig et al. (2015), we can show that

E [f(x̂P )− f(x∗)] ≤ 2σ + 2µ

µ

(
1− 1

2

√
µ

2σ + µ

)P
[f(x̂0)− f(x∗)] .

This means Algorithm 3 finds an ε-optimal solution after P ≤ 2
√

2σ+µ
µ log

(
(2σ+2µ)(f(x̂0)−f(x∗)

µε

)
outer loops.

Since Algorithm 3 performs TKP iterative updates with one element of Rk removed
after each update, it requires TKP ≤

∑
j∈[m] |Rj | = αN , which is satisfied by the choices

of T and K, the above upper bound of P and the assumption on α.
Since Algorithm 3 needs one round of communication to compute a batch gradient at

each stage (one call of SS-SVRG) and one round after every αn iterative updates (when
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Rk = ∅), it needs

KP +
TKP

αn
=

(
T

αn
+ 1

)
KP

≤
(

96κ(fσ)

αn
+ 1

)
2

log(9/8)

√
2σ + µ

µ
log

(
4

(
2σ + µ

µ

)3/2
)

log

(
(2σ + 2µ)(f(x̂0)− f(x∗)

µε

)

≤
(

192

α
+ 1

)
2

log(9/8)

√
2κ

n
+ 1 log

(
4

(
2κ

n
+ 1

)3/2
)

log

((
2κ

n
+ 1

)
f(x̂0)− f(x∗)

ε

)
rounds of communication in total to find an ε-optimal solution. In the second inequality
above, we use the fact that σ = L

n and κ(fσ)
n = L+σ

nµ+nσ ≤
n+1
n ≤ 2. The second conclusion is

a straightforward outcome of the first conclusion.

According to Theorem 16, DASVRG requires α ≥ Ω( 1
m

√
κ
n + 1 log(κn + 1) log(1/ε))

so that each machine must have a memory space of |Sj | + |Rj | = n + αn = Ω(n +
n
m

√
κ
n + 1 log(κn + 1) log(1/ε)). For ERM problem where κ = Θ(

√
N) and ε = 1

ns for a

constant s, the requirement becomes α ≥ Ω( 1
m

√√
m
n + 1 log(

√
m
n + 1) log(n)), which can

be easily satisfied with a constant α (α = Θ(1)). Moreover, in this case, DASVRG only

asks for Θ(n + n
m

√√
m
n + 1 log(

√
m
n + 1) log(n)) = Θ(n) memory space in each machine

to store Sj ∪ Rj which is in the same order of magnitude as the space required by other
distributed algorithms. Although we use κ = Θ(

√
N) as an example, DASVRG still applies

with α = Θ(1) and Θ(n) memory space when ε = 1
ns and κ = Θ(N b) with b ∈ (0, 1).

Furthermore, another crucial insight we obtain here is that, although in the single-
machine setting, the acceleration scheme of Frostig et al. (2015) and (Lin et al., 2015) only
helps to reduce the time complexity when κ ≥ N by choosing σ = Θ(N), in the distributed
setting, it helps to reduce the rounds as long as κ ≥ n by choosing σ = Θ(n). This shows
an interesting and new application of this generic acceleration scheme.

In DSVRG and DASVRG, the subsets {Sj}j∈[m] are only used to compute the batch

gradient ∇f(x̃`). Therefore, both DSVRG and DASVRG can be applied with the same
theoretical guarantees under the general setting where {Sj}j∈[m] is an arbitrary (not nec-
essarily random) partition of {fi}i∈[N ] into equal-sized subsets. Because our lower bound
for the round complexity is provided for the algorithms in Fα where {Sj}j∈[m] is a random
partition, we present both DSVRG and DASVRG in the same setting to show that the
theoretical lower bound is almost reachable and DASVRG is nearly optimal within Fα.

7. DASVRG for Non-Strongly Convex Problem

In this section, we consider solving (1) when f is not strongly convex (µ = 0) by the
standard technique of applying DASVRG to the following regularized version of (1)

min
x∈Rd

{
fλ(x) ≡ f(x) +

λ

2
‖x‖2 =

1

N

N∑
i=1

fλi (x)

}
, (37)

where fλi (x) ≡ fi(x) + λ
2 ‖x‖

2 and λ is a positive constant. Note that problem (37) satisfies
Assumption 1 with ∇fλi being (L + λ)-Lipschitz continuous and fλ being λ-convex. The

32



Distributed Stochastic Variance Reduced Gradient Methods

condition number of fλ is κ(fλ) ≡ L+λ
λ . With λ small enough, the ε-solution of (37) found

by DASVRG can be an ε-solution for (1). Although this method is well-known, we present
it here just to show that the lower bound of round complexity for non-strongly convex
problems in Theorem 3 can be achieved up to logarithmic terms under some scenario.

Theorem 17 Suppose Algorithm 3 is applied to (37) where λ = ε
D∗ with D∗ ≥ ‖x∗‖2.

When σ = L+λ
n , η = 1

16(L+λ) , T = 96κ(fλσ ) = 96L+λ+σ
λ+σ , K = 1

log(9/8) log
(

4
(

2σ+λ
λ

)3/2)
, and

α ≥ 384

log(9/8)m

√
2D∗L

nε
+ 3 log

(
4

(
2D∗L

nε
+ 3

)3/2
)

log

((
2D∗L

nε
+ 3

)
f(x̂0)− f(x∗)

ε/2

)
. (38)

Algorithm 3 find an ε-optimal solution of (1) with P =
√

8σ+4λ
λ log

(
(2σ+2λ)(f(x̂0)−f(x∗)

λε/2

)
and

(
192
α + 1

)
2

log(9/8)

√
2D∗L
nε + 3 log

(
4
(

2D∗L
nε + 3

)3/2)
log
((

2D∗L
nε + 3

) f(x̂0)−f(x∗)
ε/2

)
rounds

of communication.

In particular, if the right hand side of (38) is at most O(1) in addition to the previous
conditions, Algorithm 1 with α = Θ(1) finds an ε-optimal solution of (1) with at most

Õ

(
(
√

L
nε) log2(1

ε )

)
rounds of communication.

Proof Let x̂P be the output of Algorithm 3 when it is applied to (37) with the specific
values of η, σ, T and K given in the statement of the theorem. Because ∇fλi is (L + λ)-
Lipschitz continuous and fλ is λ-convex, according to Theorem 16, x̂P is an ε

2 -optimal
solution of (37) and it is found with the number of rounds of communication stated in the
conclusion. Moreover, we can easily show that

E[f(x̂P )− f(x∗)] ≤ f(x̂P ) +
λ

2
‖x̂P ‖2 − f(x∗)− λ

2
‖x∗‖2 +

λ

2
‖x∗‖2

≤ fλ(x̂P )− min
x∈Rd

fλ(x) +
λ

2
‖x∗‖2 ≤ ε

2
+
ε

2
= ε,

where the last inequality is because λ = ε
D∗ with D∗ ≥ ‖x∗‖2. Hence, x̂P is an ε-optimal

solution of (1). Then, the rest of the conclusion will be proved by applying Theorem 20.

According to (38) in Theorem 17, we acknowledge here that DASVRG can be applied to
non-strongly convex problem with α = Θ(1) only under a restricted condition, for example,
when ε = O( 1

Nb ) with b ∈ (0, 1). The development in this section is mostly for the theoretical
interest on the tightness of the lower bound by Theorem 3.

8. Numerical Experiments

This section presents the numerical performances of our methods in comparisons with some
existing distributed optimization techniques on simulated and real data.
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8.1 Experiments with Simulated Data

In this section, we conduct numerical experiments with simulated data to compare our
DSVRG algorithm with DISCO (Zhang and Lin, 2015) and a distributed implementation
of gradient descent (GD) method. We use a single machine to simulate the distributed
environment and all methods are implemented in Matlab running on a 64-bit Microsoft
Windows 10 machine with a 2.70Ghz Intel(R) i7-6820HQ CPU and 8GB of memory. We
consider ridge regression, minx∈Rd

1
N

∑N
i=1(aTi x − bi)2 + λ

2‖x‖
2, where ai ∈ Rd and bi ∈ R

for i ∈ [N ] are the data points. We generate (ai, bi) following the experimental setup in
Agarwal et al. (2012) by choosing a correlation parameter ω ∈ [0, 1]. Let A be the N × d
matrix whose rows are ai’s. According to Agarwal et al. (2012), the eigenvalues of 1

NE[ATA]

lie within the interval
[

1
(1+ω)2

, 2
(1−ω)2(1+ω)

]
so that the condition number κ increases when

we choose ω close to 1. To make comparisons under different settings, we choose λ = 10−4,
d = 50, N = 104, ω ∈ {0, 0.3, 0.5} and m ∈ {10, 20}. All generated instances satisfy

κ = n1−2δ

32 with 0 < δ < 1
2 which is in the optimal regime of DSVRG (see Section 5.2).

For each instance, we compute the largest and the smallest eigenvalues of 1
NA

TA so as
to compute the condition number κ and the parameters δ, η and T as in Proposition 15
for implementing DSVRG. Note that the lower bound for α given in Proposition 15 can be
conservative and depends on the unknown value f(x∗). In this experiment, we choose α = 1
so that DSVRG can run for at most N iterations, which corresponds to N

|Rj | = m rounds

because |Rj | = T = n. In each main iteration of DISCO, an inexact Newton direction v is
computed by solving a preconditioned linear system P−1∇2f(xk)v = P−1∇f(xk) using a
distributed preconditioned conjugate gradient method, where xk in the solution in the kth
main iteration. We choose P = ∇2f̄1(xk) + (λ +

√
m × 0.001)I with f̄1 defined in (4) and

compute P−1 directly. In the GD method, we use a step length of η = 1
L .

Since DSVRG stores |Rj |+ |Sj | = (1 +α)n data points in machine j, it is meaningful to
allow other methods to also store (1 +α)n data points in each machine in the comparisons.
With more local data, the round complexity of the distributed GD method is unchanged

while that of DISCO will be reduced according to its round complexity O((1 +
√
κ

n.25
) log 1

ε ).
Therefore, when implementing DISCO, we use different numbers of machines which lead
to different amounts of local data. In particular, we choose m = 2, 5 and 10 in DISCO
when m = 10 in DSVRG and GD and choose m = 4, 10 and 20 in DISCO when m = 20
in DSVRG and GD. Since α = 1, DSVRG with 10 (20) machines and DISCO with 5 (10)
machines store the same amount of data points in each machine.

The performance of the three methods are shown in Figure 2, where the vertical axis
represents the logarithm of optimality gap (i.e., log(f(xk) − f(x∗))) and the horizon axis
represents the number of rounds of communication. The values of κ and δ for each instance
are shown in the figures. According to Figure 2, when δ is relatively large, DSVRG is less
efficient than GD because the step length η = 1

16nδL
in DSVRG is too small and the small

κ leads to a low round complexity of GD. However, when δ is relatively small, DSVRG
significantly outperforms GD, which is consistent with Proposition 15. The performance of
DISCO is improved when it uses more machines (and a smaller n), which is also consistent

with its round complexity O((1 +
√
κ

n.25
) log 1

ε ). DSVRG with 10 machines is more efficient
than DISCO with 10 and 5 machines for all instances here and is slightly worse than DISCO
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Figure 2: Comparing DSVRG implemented as in Proposition 15 with DISCO and the dis-
tributed gradient descent method (GD) in rounds. The condition number κ of
each instance is in the regime where DSVRG is optimal (see Section 5.2).

with 2 machines. Recall that DSVRG with 10 machines stores the same amount of local
data as DISCO with 5 machines. The results suggest that DSVRG with a small α can
potentially outperform DISCO on the problems with κ = O(n1−2δ) even if the machines
have access to the same amount of data in both algorithms. However, when α is large,
DSVRG can be less efficient than DISCO because DISCO needs much fewer machines. The
same conclusion can be made from the results where DSVRG uses 20 machines and DISCO
uses 4, 10 and 20 machines.

8.2 Experiments with Real Data

In this section, we conduct numerical experiments with real data to compare our DSVRG
and DASVRG algorithms with DisDSCA by Yang (2013) and a distributed implementation
of the accelerated gradient method (Accel Grad) by Nesterov (2013). We apply these four
algorithms to the ERM problem (2) with three data sets:6 Covtype, Million Song and
Epsilon. In particular, we solve ridge regression minx∈Rd

1
N

∑N
i=1(aTi x− bi)2 + λ

2‖x‖
2 with

Million Song data and regularized logistic regression minx∈Rd
1
N

∑N
i=1 log(1+exp(−biaTi x))+

λ
2‖x‖

2 with Covtype and Epsilon data. Following the previous work, we map the target
variable of year from 1922 ∼ 2011 into [0, 1] for the Million Song data. To compare these
methods in a challenging setting, we conduct experiments using random Fourier features

6. http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
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Figure 3: Comparing the DSVRG and DASVRG methods with DisDCA and the accelerated
gradient method (Accel Grad) in rounds.

(RFF) (Rahimi and Recht, 2008) on Covtype and Million Song data sets. The RFF is a
method for solving large-scale kernel methods by generating finite dimensional features, of
which the inner product approximate the kernel similarity. We generate RFF corresponding
to RBF kernel. After generating RFF, Covtype data has N = 522, 911 examples d = 1, 000
features and Million Song data has N = 463, 715 examples and d = 2, 000 features. Since
the original Epsilon data is large enough (12G), we use its original features.

The experiments are conducted on a server (Intel(R) Xeon(R) CPU E5-2667 v2 3.30GHz)
with multiple processes with each process simulating one machine. We choose the number
of processes (machines) to be m = 5. To test the performances of algorithms for differ-
ent condition numbers, we choose the regularization parameter λ to be 1/N0.5, 1/N0.75

and 1/N . For each setting, L is computed as
maxi=1,...,N ‖ai‖2

γ + λ where 1
γ is the Lipschiz

continuous constant of ∇xφ(x, ξ) in (2), and µ is set to be λ. We implement DSVRG by
choosing η = 1

L , T = 10, 000 and K = N
T . For DASVRG, we choose η = 1

L , T = 10, 000,
K = 1 and P = N

T . In both DSVRG and DASVRG, we directly choose Rj = Sj since, in
practice, this implementation gives performances very similar to the performances when Rj
is sampled separately. For DisDCA, we use SDCA (Shalev-Shwartz and Zhang, 2013) as
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Figure 4: Comparing the DSVRG and DASVRG methods with DisDCA and the accelerated
gradient method (Accel Grad) in rounds using Epsilon data.

the local solver so that it is equivalent to the implementation of CoCoA+ with σ′ = m and
γ = 1 as in the experiments in Ma et al. (2015). We run SDCA for T = 10, 000 iterations
in each round of DisDCA with N

T rounds in total.

The numerical results are presented in Figure 3, where the horizontal axis presents
the number of rounds of communication conducted by algorithms and the vertical axis
represents the logarithm of optimality gap. According to Figure 3, the performances of all
algorithms get worse when λ decreases (so the condition number increases). We find that
DSVRG and DASVRG have almost identical performances in rounds of communication and
they both outperform the other two methods significantly. To compare the performances
of algorithms under different values of m. We choose the m = 10 and 15 and repeat the
same experiments on Epsilon data. The numerical results are shown in Figure 4. Similar
to the case of m = 5, our DSVRG and DASVRG require fewer rounds to reach the same
ε-optimal solution than the other two methods.

9. Conclusion

We study the round complexity for minimizing the average of N convex functions by dis-
tributed optimization with m machines under a new setting where each machine receives
a subset of the N functions through both random partition and random sampling with re-
placement. Then, we propose a DSVRG algorithm under this setting which is a distributed
extension of the existing SVRG algorithm. In DSVRG, the batch gradients are computed
in parallel while the machines perform iterative updates in serial. DSVRG utilizes the lo-
cal functions sampled with replacement to construct the unbiased stochastic gradient in
each iterative update. We provide the theoretical analysis on the rounds of communica-
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tion needed by DSVRG to find an ε-optimal solution, showing that DSVRG is optimal in
terms of runtime, the amount of communication and the rounds of communication when
the condition number is small. When the condition number is large, using an acceleration
strategy by Frostig et al. (2015) and Lin et al. (2015), we proposed a DASVRG algorithm
that requires even fewer rounds of communication than DSVRG and many existing meth-
ods that only store random partitioned data in machines, showing the advantage of the
new distributed setting. Then, we define a broad family of algorithms which cover DSVRG,
DASVRG and many existing methods in the literature. We provide the minimum number of
rounds of communication needed by this family of algorithms for finding an ε-solution. The
rounds of communication needed by DASVRG matches this lower bound up to logarithmic
terms, and thus, is nearly optimal within this family.
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Appendix A. An Efficient Data Allocation Procedure

In this section, we design an efficient data allocation scheme which requires a smaller amount
of communication to allocate {fi|i ∈ Sj ∪Rj} to machine j than the direct implementation.

We assume that a random partition S1, . . . , Sm of [N ] can be constructed efficiently.
Let Q be the number of samples in {Rj}j∈[m] needed for the algorithm to run the desired
number of iterations. In other words, Q = TK in DSVRG and Q = TKP in DASVRG, both
of which can be much smaller than αN , the total size {Rj}j∈[m]. Therefore, in practical
implementation, we only need to ensure the total size of {Rj}j∈[m] equal Q by allowing
|Rj | ≤ αn or even Rj = ∅ in order to save the communication amount.

A straightforward data allocation procedure is to prepare a partition S1, . . . , Sm of [N ]
and then sample a sequence of Q i.i.d. indices r1, . . . , rQ uniformly with replacement from
[N ]. After partitioning r1, . . . , rQ into m multi-sets R1, . . . , Rm ⊂ [N ], we allocate data
{fi|i ∈ Sj ∪ Rj} to machine j. Note that the amount of communication in distributing
S1, . . . , Sm is exactly N which is necessary for almost all distributed algorithms. However, in
the worst case, this straightforward procedure requires an extra Q amount of communication
for distributing Rj\Sj .

To improve the efficiency of data allocation, we propose a procedure which reuses the
randomness of S1, . . . , Sm to generate the indices r1, . . . , rQ so that the overlap between
Sj and Rj can be increased which helps reduce the additional amount of communication
for distributing R1, . . . , Rm. The key observation is that the concatenation of S1, . . . , Sm
is a random permutation of [N ] which has already provided enough randomness needed by
R1, . . . , Rm. Hence, it will be easy to build the i.i.d. samples r1, . . . , rQ by adding a little
additional randomness on top of S1, . . . , Sm. With this observation in mind, we propose
our data allocation procedure in Algorithm 4.
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Algorithm 4 Data Allocation : DA(N,m,Q, α)

Input: Index set [N ], the number of machines m, and the constant α, and the length of
target sequence Q.

Output: A random partition S1, . . . , Sm of [N ], indices r1, . . . , rQ ∈ [N ], multi-sets
R1, . . . , Rm ⊂ [N ], and data {fi | i ∈ Sj ∪Rj} stored on machine j for each j ∈ [m].

Center samples r1, . . . , rQ and R1, . . . , Rm as follows:

1: Randomly partition [N ] into m disjoint sets S1, . . . , Sm of the same size n = N
m .

2: Concatenate the subsets S1, . . . , Sm into a random permutation i1, . . . , iN of [N ] so that
Sj = {i(j−1)n+1, . . . , ijn}.

3: for ` = 1 to Q do
4: Let

r` =

{
i` with probability 1− `−1

N
i`′ with probability 1

N for `′ = 1, 2, . . . , `− 1.

5: end for
6: Let

Rj =


{r(j−1)αn+1, . . . , rjαn} if j = 1, . . . , d Qαne − 1

{r
(d Q
αn
e−1)αn+1

, . . . , rQ} if j = d Qαne
∅ if j = d Qαne+ 1, . . . ,m.

(39)

Distribute data points to machines:

7: Machine j acquires data points in {fi|i ∈ Sj ∪Rj} from the storage center.

The correctness and the expected amount of communication of Algorithm 4 are charac-
terized as follows.

Lemma 18 The sequence r1, . . . , rQ generated in Algorithm 4 has the same joint distribu-
tion as a sequence of i.i.d. indices uniformly sampled with replacement from [N ]. Moreover,

the expected amount of communication for distributing ∪mi=1{fi|i ∈ Rj\Sj} is at most Q2

2N .

Proof Conditioned on i1, . . . , i`−1 and r1, . . . , r`−1, the random index i` has uniform dis-
tribution over [N ] \ {i1, . . . , i`−1}. Therefore, by Line 4 in Algorithm 4, the conditional
distribution of the random index r`, conditioning on i1, . . . , i`−1 and r1, . . . , r`−1, is a uni-
form distribution over [N ]. Hence, we complete the proof of the first claim of the lemma.

To analyze the amount of communication, we note that i` 6= r` with probability `−1
N .

Suppose i` ∈ Sj for some j. We know that the data point fr` needs to be transmitted to
machine j separately from Sj only if i` 6= r`. Therefore, the expected amount of communi-

cation for distributing ∪mi=1{fi|i ∈ Rj\Sj} is upper bounded by
∑Q

`=1
`−1
N ≤ Q2

2N .

According to Lemma 18, besides the (necessary) N amount of communication to dis-

tribute S1, . . . , Sm, Algorithm 4 needs only Q2

2N additional amount of communication to
distribute R1, . . . , Rm thanks to the overlaps between Sj and Rj for each j. This additional
amount is less than the Q amount required by the straightforward method when Q ≤ N .
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Note that we only need Q = O(κ log(1/ε)) in the DSVRG algorithm and Q = O(n(1 +√
κ
n) log(1 + κ

n) log 1
ε ) in the DASVRG algorithm. When κ = Θ(

√
N) in a typical ERM

problem, we have Q2

2N = O((log(1/ε))2) in DSVRG and Q2

2N = O(
√

n
m(log(

√
m
n ) log(1/ε))2) in

DASVRG, both of which are much less than theN amount of communication for distributing
S1, . . . , Sm. In other words, although DSVRG and DASVRG require additional amount of
communication to allocate the data compared to other algorithms, this additional amount
is marginal if κ is not too large.

Although Algorithm 4 is given for allocating Sj and Rj together to machine j, it can be
used to only allocate Rj to machine j when Sj has already existed in machine j beforehand.
The only requirements are that {Sj}j∈[m] still forms a random partition of [N ] and that,
after generating Rj as (39), machine j knows which machine holds i for each i ∈ Rj\Sj so
that machine j can acquire data in Rj\Sj from that machine in Line 7 of Algorithm 4.
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