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Abstract

Gaussian processes (GPs) are flexible distributions over functions that enable high-
level assumptions about unknown functions to be encoded in a parsimonious, flexible and
general way. Although elegant, the application of GPs is limited by computational and
analytical intractabilities that arise when data are sufficiently numerous or when employ-
ing non-Gaussian models. Consequently, a wealth of GP approximation schemes have been
developed over the last 15 years to address these key limitations. Many of these schemes
employ a small set of pseudo data points to summarise the actual data. In this paper we
develop a new pseudo-point approximation framework using Power Expectation Propaga-
tion (Power EP) that unifies a large number of these pseudo-point approximations. Unlike
much of the previous venerable work in this area, the new framework is built on standard
methods for approximate inference (variational free-energy, EP and Power EP methods)
rather than employing approximations to the probabilistic generative model itself. In this
way all of the approximation is performed at ‘inference time’ rather than at ‘modelling
time’, resolving awkward philosophical and empirical questions that trouble previous ap-
proaches. Crucially, we demonstrate that the new framework includes new pseudo-point
approximation methods that outperform current approaches on regression and classification
tasks.

Keywords: Gaussian process, expectation propagation, variational inference, sparse
approximation

1. Introduction

Gaussian Processes (GPs) are powerful nonparametric distributions over continuous func-
tions that are routinely deployed in probabilistic modelling for applications including regres-
sion and classification (Rasmussen and Williams, 2005), representation learning (Lawrence,
2005), state space modelling (Wang et al., 2005), active learning (Houlsby et al., 2011),
reinforcement learning (Deisenroth, 2010), black-box optimisation (Snoek et al., 2012), and
numerical methods (Mahsereci and Hennig, 2015). GPs have many elegant theoretical
properties, but their use in probabilistic modelling is greatly hindered by analytic and
computational intractabilities. A large research effort has been directed at this fundamen-
tal problem resulting in the development of a plethora of sparse approximation methods
that can sidestep these intractabilities (Csató, 2002; Csató and Opper, 2002; Schwaighofer
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and Tresp, 2002; Seeger et al., 2003; Quiñonero-Candela and Rasmussen, 2005; Snelson
and Ghahramani, 2006; Snelson, 2007; Naish-Guzman and Holden, 2007; Titsias, 2009;
Figueiras-Vidal and Lázaro-Gredilla, 2009; Álvarez et al., 2010; Qi et al., 2010; Bui and
Turner, 2014; Frigola et al., 2014; McHutchon, 2014; Hensman et al., 2015; Hernández-
Lobato and Hernández-Lobato, 2016; Matthews et al., 2016)

This paper develops a general sparse approximate inference framework based upon Power
Expectation Propagation (PEP) (Minka, 2004) that unifies many of these approximations,
extends them significantly, and provides improvements in practical settings. In this way, the
paper provides a complementary perspective to the seminal review of Quiñonero-Candela
and Rasmussen (2005) viewing sparse approximations through the lens of approximate
inference, rather than approximate generative models.

The paper begins by reviewing several frameworks for sparse approximation focussing
on the GP regression and classification setting (Section 2). It then lays out the new unifying
framework and the relationship to existing techniques (Section 3). Readers whose focus is
to understand the new framework might want to move directly to this section. Finally, a
thorough experimental evaluation is presented in Section 4.

2. Pseudo-point Approximations for GP Regression and Classification

This section provides a concise introduction to GP regression and classification and then
reviews several pseudo-point based sparse approximation schemes for these models. For sim-
plicity, we first consider a supervised learning setting in which the training set comprises N
D-dimensional input and scalar output pairs {xn, yn}Nn=1 and the goal is to produce prob-
abilistic predictions for the outputs corresponding to novel inputs. A non-linear function,
f(x), can be used to parameterise the probabilistic mapping between inputs and outputs,
p(yn|f,xn, θ) which may also depend on hyperparameters θ. Typical choices for the prob-
abilistic mapping are Gaussian p(yn|f,xn, θ) = N (yn; f(xn), σ2

y) for the regression setting
(yn ∈ R) and Bernoulli p(yn|f,xn, θ) = B(yn; Φ(f(xn))) with a sigmoidal link function
Φ(f) for the binary classification setting (yn ∈ {0, 1}). Whilst it is possible to specify the
non-linear function f via an explicit parametric form, a more flexible and elegant approach
employs a GP prior over the functions directly, p(f |θ) = GP(f ; 0, kθ(·, ·)), here assumed
without loss of generality to have a zero mean-function and a covariance function kθ(x,x

′).
This class of probabilistic models has a joint distribution

p(f,y|θ) = p(f |θ)
N∏
n=1

p(yn|f(xn), θ)

where we have collected the observations into the vector y and suppressed the inputs on
the left hand side to lighten the notation.

This model class contains two potential sources of intractability. First, the possibly non-
linear likelihood function can introduce analytic intractabilities that require approximation.
Second, the GP prior entails an O(N3) complexity that is computationally intractable for
many practical problems. These two types of intractability can be handled by combining
standard approximate inference methods with pseudo-point approximations that summarise
the full Gaussian process via M pseudo data points leading to an O(NM2) cost. The main

2



Unifying Gaussian Process Approximations

approaches of this sort can be characterised in terms of two parallel frameworks that are
described in the following sections.

2.1 Sparse GP Approximation via Approximate Generative Models

The first framework begins by constructing a new generative model that is similar to the
original, so that inference in the new model might be expected to produce similar results,
but which has a special structure that supports efficient computation. Typically this ap-
proach involves approximating the Gaussian process prior as it is the origin of the cubic
cost. If there are analytic intractabilities in the approximate model, as will be the case in
e.g. classification or state-space models, then these will require approximate inference to be
performed in the approximate model.

The seminal review by Quiñonero-Candela and Rasmussen (Quiñonero-Candela and
Rasmussen, 2005) reinterprets a family of approximations in terms of this unifying frame-
work. The GP prior is approximated by identifying a small set of M ≤ N pseudo-points
u, here assumed to be disjoint from the training function values f so that f = {u, f , f6=u,f}.
Here f6=u,f denotes the function values which are not at the training inputs or pseudo-inputs.
The GP prior is then decomposed using the product rule

p(f |θ) = p(u|θ)p(f |u, θ)p(f6=u,f |f ,u, θ).

Of central interest is the relationship between the pseudo-points and the training function
values p(f |u, θ) = N (f ; KfuK−1

uuu,Dff ) where Dff = Kff − Qff and Qff = KfuK−1
uuKuf .

Here we have introduced matrices corresponding to the covariance function’s evaluation
at the pseudo-input locations {zm}Mm=1, so that [Kuu]mm′ = kθ(zm, zm′) and similarly
for the covariance between the pseudo-input and data locations [Kuf ]mn = kθ(zm,xn).
Importantly, this term saddles inference and learning with a complexity cost that is cubic
in the number of data points. Computationally efficient approximations can be constructed
by simplifying these dependencies between the pseudo-points and the data function values
q(f |u, θ) ≈ p(f |u, θ). In order to benefit from these efficiencies at prediction time as well,
a second approximation is made whereby the pseudo-points form a bottleneck between the
data function values and test function values p(f6=u,f |u, θ) ≈ p(f6=u,f |f ,u, θ). Together, the
two approximations result in an approximate prior process,

q(f |θ) = p(u|θ)q(f |u, θ)p(f6=u,f |u, θ).

We can now compactly summarise a number of previous approaches to GP approximation
as special cases of the choice

q(f |u, θ) =

B∏
b=1

N (fb; Kfb,uK−1
uuu, αDfb,fb)

where b indexes B disjoint blocks of data-function values. The Deterministic Training
Conditional (DTC) approximation uses α → 0; the Fully Independent Training Condi-
tional (FITC) approximation uses α = 1 and B = N ; the Partially Independent Training
Conditional (PITC) approximation uses α = 1 (Quiñonero-Candela and Rasmussen, 2005;
Schwaighofer and Tresp, 2002).
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Before considering inference in the modified models, note that it is possible to construct
more flexible modified prior processes using the inter-domain approach that places the
pseudo-points in a different domain from the data, defined by a linear integral transform
g(z) =

∫
w(z, z′)f(z′)dz′. Here the window w(z, z′) might be a Gaussian blur or a wavelet

transform. The pseudo-points are now placed in the new domain g = {u,g 6=u} where they
induce a potentially more flexible Gaussian process in the old domain f through the linear
transform (see Figueiras-Vidal and Lázaro-Gredilla, 2009, for FITC). The expressions in
this section still hold, but the covariance matrices involving pseudo-points are modified to
take account of the transform,

[Kuu]mm′ =

∫
w(zm, z)kθ(z, z

′)w(z′, zm′)dzdz′, [Kuf ]mn =

∫
w(zm, z)kθ(z,xn)dz.

Having specified modified prior processes, these can be combined with the original like-
lihood function to produce a new generative model. In the case of point-wise likelihoods we
have

q(y, f |θ) = q(f |θ)
N∏
n=1

p(yn|f(xn), θ).

Inference and learning can now be performed using the modified model using standard
techniques. Due to the form of the new prior process, the computational complexity is
O(NM2) (for testing, N becomes the number of test data points, assuming dependencies
between the test-points are not computed).1 For example, in the case of regression, the
posterior distribution over function values f (necessary for inference and prediction) has a
simple analytic form

q(f |y, θ) = GP(f ;µf |y,Σf |y), µf |y = QffK
−1
ff y, Σf |y = Kff −QffK

−1
ff Qff , (1)

where Kff = Qff + blkdiag({αbDfbfb}Bb=1) + σ2
yI and blkdiag builds a block-diagonal matrix

from its inputs. One way of understanding the origin of the computational gains is that
the new generative model corresponds to a form of factor analysis in which the M pseudo-
points determine the N function values at the observed data (as well as at potential test
locations) via a linear Gaussian relationship. This results in low rank (sparse) structure in
Kff that can be exploited through the matrix inversion and determinant lemmas. In the
case of regression, the new model’s marginal likelihood also has an analytic form that allows
the hyperparameters, θ, to be learned via optimisation

log q(y|θ) = −N
2

log(2π)− 1

2
log |Kff | −

1

2
yᵀK

−1
ff y. (2)

The approximate generative model framework has attractive properties. The cost of
inference, learning, and prediction has been reduced from O(N3) to O(NM2) and in many
cases accuracy can be maintained with a relatively small number of pseudo-points. The
pseudo-point input locations can be optimised by maximising the new model’s marginal

1. It is assumed that the maximum size of the blocks is not greater than the number of pseudo-points
dim(fb) ≤M .
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likelihood (Snelson and Ghahramani, 2006). When M = N and the pseudo-points and
observed data inputs coincide, then FITC and PITC are exact which appears reassuring.
However, the framework is philosophically challenging as the elegant separation of model
and (approximate) inference has been lost. Are we allowed in an online inference setting,
for example, to add new pseudo-points as more data are acquired and the complexity of the
underlying function is revealed? This seems sensible, but effectively changes the modelling
assumptions as more data are seen. Devout Bayesians might then demand that we perform
model averaging for coherence. Similarly, if the pseudo-input locations are optimised, the
principled non-parametric model has suddenly acquired MD parameters and with them
all of the concomitant issues of parametric models including overfitting and optimisation
difficulties (Bauer et al., 2016). As the pseudo-inputs are considered part of the model,
the Bayesians might then suggest that we place priors over the pseudo-inputs and perform
full-blown probabilistic inference over them.

These awkward questions arise because the generative modelling interpretation of pseudo-
data entangles the assumptions made about the data with the approximations required
to perform inference. Instead, the modelling assumptions (which encapsulate prior under-
standing of the data) should remain decoupled from inferential assumptions (which leverage
structure in the posterior for tractability). In this way pseudo-data should be introduced
when we seek to perform computationally efficient approximate inference, leaving the mod-
elling assumptions unchanged as we refine and improve approximate inference. Indeed, even
under the generative modelling perspective, for analytically intractable likelihood functions
an additional approximate inference step is required, begging the question: why not handle
computational and analytic intractabilities together at inference time?

2.2 Sparse GP Approximation via Approximate Inference: VFE

The approximate generative model framework for constructing sparse approximations is
philosophically troubling. In addition, learning pseudo-point input locations via optimisa-
tion of the model likelihood can perform poorly e.g. for DTC it is prone to overfitting even
for M � N (Titsias, 2009). This motivates a more direct approach that commits to the
true generative model and performs all of the necessary approximation at inference time.

Perhaps the most well known approach in this vein is Titsias’s beautiful sparse varia-
tional free energy (VFE) method (Titsias, 2009). The original presentation of this work
employs finite variable sets and an augmentation trick that arguably obscures its full ele-
gance. Here instead we follow the presentation in Matthews et al. (2016) and lower bound
the marginal likelihood using a distribution q(f) over the entire infinite-dimensional func-
tion,

log p(y|θ) = log

∫
p(y, f |θ)df ≥

∫
q(f) log

p(y, f |θ)
q(f)

df = Eq(f)

[
log

p(y, f |θ)
q(f)

]
= F(q, θ).

The VFE bound can be written as the difference between the model log-marginal likelihood
and the KL divergence between the variational distribution and the true posterior F(q, θ) =
log p(y|θ)−KL[q(f)||p(f |y, θ)]. The bound is therefore saturated when q(f) = p(f |y, θ), but
this is intractable. Instead, pseudo-points are made explicit, f = {u, f6=u}, and an approxi-
mate posterior distribution used of the following form q(f) = q(u, f6=u|θ) = p(f6=u|u, θ)q(u).
Under this approximation, the set of variables f6=u do not experience the data directly, but
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rather only through the pseudo-points, as can be seen by comparison to the true poste-
rior p(f |y, θ) = p(f6=u|y,u, θ)p(u|y, θ). Importantly, the form of the approximate posterior
causes a cancellation of the prior conditional term, which gives rise to a bound withO(NM2)
complexity,

F(q, θ) = Eq(f |θ)
[
log

p(y|f, θ)������
p(f6=u|u, θ)p(u|θ)

������
p(f6=u|u, θ)q(u)

]
=
∑
n

Eq(f |θ) [log p(yn|fn, θ)]−KL[q(u)||p(u|θ)].

For regression with Gaussian observation noise, the calculus of variations can be used to
find the optimal approximate posterior Gaussian process over pseudo-data qopt(f |θ) =
p(f6=u|u, θ)qopt(u) which has the form

qopt(f |θ) = GP(f ;µf |y,Σf |y), µf |y = QffK̃
−1
ff y, Σf |y = Kff −QffK̃

−1
ff Qff , (3)

where K̃ff = Qff + σ2
yI. This process is identical to that recovered when performing ex-

act inference under the DTC approximate regression generative model (Titsias, 2009) (see
Equation (1) as α→ 0). In fact, DTC was originally derived using a related KL argument
(Csató, 2002; Seeger et al., 2003). The optimised free-energy is

F(qopt, θ) = −N
2

log(2π)− 1

2
log |K̃ff | −

1

2
yᵀK̃−1

ff y − 1

2σ2
y

trace(Kff −Qff ). (4)

Notice that the free-energy has an additional trace term as compared to the marginal
likelihood obtained from the DTC generative model approach (see Equation (2) as α→ 0).
The trace term is proportional to the sum of the variances of the training function values
given the pseudo-points, p(f |u), it thereby encourages pseudo-input locations that explain
the observed data well. This term acts as a regulariser that prevents overfitting which
plagues the generative model formulation of DTC.

The VFE approach can be extended to non-linear models including classification (Hens-
man et al., 2015), latent variable models (Titsias and Lawrence, 2010) and state space
models (Frigola et al., 2014; McHutchon, 2014) by restricting q(u) to be Gaussian and
optimising its parameters. Indeed, this uncollapsed form of the bound can be beneficial
in the context of regression too as it is amenable to stochastic optimisation (Hensman
et al., 2013). Additional approximation is sometimes required to compute any remaining
intractable non-linear integrals, but these are often low-dimensional. For example, when the
likelihood depends on only one latent function value, as is typically the case for regression
and classification, the bound requires only 1D integrals Eq(fn) [log p(yn|fn, θ)] which may be
evaluated using quadrature (Hensman et al., 2015).

The VFE approach can also be extended to employ inter-domain variables (Álvarez et al.,
2010; Tobar et al., 2015; Matthews et al., 2016). The approach considers the augmented
generative model p(f, g|θ) where to remind the reader the auxiliary process is defined by a
linear integral transformation, g(z) =

∫
w(z, z′)f(z′)dz′. Variational inference is now per-

formed over both latent processes q(f, g) = q(f,u, g6=u|θ) = p(f, g6=u|u, θ)q(u). Here the
pseudo-data have been placed into the auxiliary process with the idea being that they can
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induce richer dependencies in the original domain that model the true posterior more accu-
rately. In fact, if the linear integral transformation is parameterised then the transformation
can be learned so that it approximates the posterior more accurately.

A key concept underpinning the VFE framework is that the pseudo-input locations (and
the parameters of the inter-domain transformation, if employed) are purely parameters of
the approximate posterior, hence the name ‘variational parameters’. This distinction is
important as it means, for example, that we are free to add pseudo-data as more structure
of the underlying function is revealed, without altering the modelling assumptions (e.g. see
Bui et al. (2017) for an example in online inference). Moreover, since the pseudo-input
locations are variational parameters, placing priors over them is unnecessary in this frame-
work. Unlike the model parameters, optimisation of variational parameters is automatically
protected from overfitting as the optimisation is minimising the KL divergence between the
approximate posterior and the true posterior. Indeed, although the DTC posterior is recov-
ered in the regression setting, as we have seen the free-energy is not equal to the log-marginal
likelihood of the DTC generative model, containing an additional term that substantially
improves the quality of the optimised pseudo-point input locations.

The facts that the form of the DTC approximation can be recovered from a direct
approximate inference approach and that this new perspective leads to superior pseudo-
input optimisation, raises the question: can this also be done for FITC and PITC?

2.3 Sparse GP Approximation via Approximate Inference: EP

Expectation Propagation (EP) is a deterministic inference method (Minka, 2001) that is
known to outperform VFE methods in GP classification when non-sparse fully-factored ap-
proximations q(f) =

∏
n qn(fn) are used (Nickisch and Rasmussen, 2008). Motivated by this

observation, EP has been combined with the approximate generative modelling approach
to handle non-linear likelihoods (Naish-Guzman and Holden, 2007; Hernández-Lobato and
Hernández-Lobato, 2016). This begs the question: can the sparsification and the non-linear
approximation be handled in a single EP inference stage, as for VFE? Astonishingly Csató
and Opper not only developed such a method in 2002 (Csató and Opper, 2002), predat-
ing much of the work mentioned above, they showed that it is equivalent to applying the
FITC approximation and running EP if further approximation is required. In our view,
this is a central result, but it appears to have been largely overlooked by the field. Snelson
was made aware of it when writing his thesis (Snelson, 2007), briefly acknowledging Csató
and Opper’s contribution. Qi et al. (2010) extended Csató and Opper’s work to utilise
inter-domain pseudo-points and they additionally recognised that the EP energy function
at convergence is equal to the FITC log-marginal likelihood approximation. Interestingly,
no additional term arises as it does when the VFE approach generalised the DTC generative
model approach. We are unaware of other work in this vein.

It is hard to know for certain why these important results are not widely known, but a
contributing factor is that the exposition in these papers is largely at Marr’s algorithmic level
(Dawson, 1998), and does not focus on the computational level, making them challenging to
understand. Moreover, Csató and Opper’s paper was written before EP was formulated in a
general way and the presentation, therefore, does not follow what has become the standard
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approach. In fact, as the focus was online inference, Assumed Density Filtering (Kushner
and Budhiraja, 2000; Ito and Xiong, 2000) was employed rather than full-blown EP.

2.4 Contributions

One of the primary contributions of this paper is to provide a clear computational exposi-
tion of Csató and Opper’s EP procedure including an explicit form of the approximating
distribution and full details about each step. In addition to bringing clarity we make the
following novel contributions:

• We show that a generalisation of EP called Power EP can subsume the EP and
VFE approaches (and therefore FITC and DTC) into a single unified framework.
More precisely, the fixed points of Power EP yield the FITC and VFE posterior
distribution under different limits and the Power EP marginal likelihood estimate
(the negative ‘Power EP energy’) recovers the FITC marginal likelihood and the VFE
too. Critically, the connection to the VFE method leans on the new interpretation of
Titsias’s approach (Matthews et al., 2016) outlined in the previous section that directly
employs the approximate posterior over function values (rather than augmenting the
model with pseudo-points). The connection therefore also requires a formulation of
Power EP that involves KL divergence minimisation between stochastic processes.

• We show how versions of PEP that are intermediate between the existing VFE and EP
approaches can be derived, as well as mixed approaches that treat some data variation-
ally and others using EP. We also show how PITC emerges from the same framework
and how to incorporate inter-domain transforms. For regression with Gaussian ob-
servation noise, we obtain analytical expressions for the fixed points of Power EP in
a general case that includes all of these extensions as well as the form of the Power
EP marginal likelihood estimate at convergence that is useful for hyperparameter and
pseudo-input optimisation.

• We consider (Gaussian) regression and probit classification as canonical models on
which to test the new framework and demonstrate through exhaustive testing that
versions of PEP intermediate between VFE and EP perform substantially better on
average. The experiments also shed light on situations where VFE is to be preferred
to EP and vice versa, an important open area of research.

Many of the new theoretical contributions described above are summarised in Figure 1
along with their relationship to previous work.

3. A New Unifying View using Power Expectation Propagation

In this section, we provide a new unifying view of sparse approximation using Power Ex-
pectation Propagation (PEP or Power EP) (Minka, 2004). We review Power EP, describe
how to apply it for sparse GP regression and classification, and then discuss its relationship
to existing methods.
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A) GP Regression B) GP Classification

PEP
VFE

EP

inter-dom
ain

[1] Quiñonero-Candela et al. 2005
[2] Snelson et al., 2005
[3] Snelson, 2006
[4] Schwaighofer, 2002 

[7,1,2*]

[11*]

[9*,12*]

[10][14,10]

[6,8,5*]

[15*,13*] inter-dom
ain

 structured
approx.

 structured
approx.

[13] Matthews et al., 2016
[14] Figueiras-Vidal et al., 2009
[15] Alverez et al. 2010 

(FITC)

[4,1*,3*]
(PITC)

[5] Titsias, 2009
[6] Csató, 2002
[7] Csató et al., 2002
[8] Seeger et al., 2003

[9] Naish-Guzman et al, 2007
[10] Qi et al., 2010
[11] Hensman et al., 2015
[12] Hernández-Lobato et al., 2016 

PEP
VFE

EP

* = optimised pseudo-inputs              ** = structured versions of VFE recover VFE (Remark 5)

** **

Figure 1: A unified view of pseudo-point GP approximations applied to A) regression, and
B) classification. Every point in the algorithm polygons corresponds to a form of
GP approximation. Previous algorithms correspond to labelled vertices. The new
Power EP framework encompasses the three polygons, including their interior.

3.1 The Joint-Distribution View of Approximate Inference and Learning

One way of understanding the goal of distributional inference approximations, including
the VFE method, EP and Power EP, is that they return an approximation of a tractable
form to the model joint-distribution evaluated on the observed data. In the case of GP
regression and classification, this means q∗(f) ≈ p(f,y|θ) where ∗ is used to denote an un-
normalised process. Why is the model joint-distribution a sensible object of approximation?
The joint distribution can be decomposed into the product of the posterior distribution
and the marginal likelihood, p(f,y|θ) = p∗(f |y, θ) = p(f |y, θ)p(y|θ), the two inferential
objects of interest. A tractable approximation to the joint can therefore be similarly de-
composed q∗(f) = Zq(f) into a normalised component that approximates the posterior
q(f) ≈ p(f |y, θ) and the normalisation constant which approximates the marginal likeli-
hood Z ≈ p(y|θ). In other words, the approximation of the joint simultaneously returns
approximations to the posterior and marginal likelihood. In the current context, tractability
of the approximating family means that it is analytically integrable and that this integra-
tion can be performed with an appropriate computational complexity. We consider the
approximating family comprising unnormalised GPs, q∗(f) = Z GP(f ;mf , Vff′).

The VFE approach can be reformulated in the new context using the unnormalised KL
divergence (Zhu and Rohwer, 1997) to measure the similarity between the approximation
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and the joint distribution

KL[q∗(f)||p(f,y|θ)] =

∫
q∗(f) log

q∗(f)

p(f,y|θ)
df +

∫
(p(f,y|θ)− q∗(f)) df. (5)

The unnormalised KL divergence generalises the KL divergence to accommodate unnor-
malised densities. It is always non-negative and collapses back to the standard form
when its arguments are normalised. Minimising the unnormalised KL with respect to
q∗(f) = ZVFE q(f) encourages the approximation to match both the posterior and marginal-
likelihood, and it yields analytic solutions

qopt(f) = argmin
q(f)∈Q

KL[q(f)||p(f |y, θ)], and Zopt
VFE = exp(F(qopt(f), θ)).

That is, the standard variational free-energy approximation to the posterior and marginal
likelihood is recovered. One of the pedagogical advantages of framing VFE in this way
is that approximation of the posterior and marginal likelihood are committed to upfront,
in contrast to the traditional derivation which begins by targeting approximation of the
marginal likelihood, but shows that approximation of the posterior emerges as an essential
part of this scheme (see Section 2.2). A disadvantage is that optimisation of hyperparame-
ters must logically proceed by optimising the marginal likelihood approximation, Zopt

VFE, and
at first sight therefore appears to necessitate different objective functions for q∗(f |θ) and θ
(unlike the standard view which uses a single objective from the beginning). However, it
is easy to show that maximising the single objective p(y|θ)−KL[q∗(f |θ)||p(f,y|θ)] directly
for both q∗(f |θ) and θ is equivalent and that this also recovers the standard VFE method
(see Appendix A).

3.2 The Approximating Distribution Employed by Power EP

Power EP also approximates the joint-distribution, employing an approximating family
whose form mirrors that of the target,

p∗(f |y, θ) = p(f |y, θ)p(y|θ) = p(f |θ)
∏
n

p(yn|f, θ) ≈ p(f |θ)
∏
n

tn(u) = q∗(f |θ). (6)

Here, the approximation retains the exact prior, but each likelihood term in the exact
posterior, p(yn|fn, θ), is approximated by a simple factor tn(u) that is assumed Gaussian.
These simple factors will be iteratively refined by the PEP algorithm such that they will
capture the effect that each true likelihood has on the posterior. As the approximation
retains the exact prior it explicitly depends on the hyperparameters θ. However, we will
suppress this dependence to lighten the notation.

Before describing the details of the PEP algorithm, it is illuminating to consider an
alternative interpretation of the approximation. Together, the approximate likelihood
functions specify an unnormalised Gaussian over the pseudo-points that can be written∏
n tn(u) = N (ỹ; W̃u, Σ̃) (assuming that the product of these factors is normalisable which

may not be the case for heavy tailed likelihoods, for example). The approximate posterior
above can therefore be thought of as the (exact) GP posterior resulting from a surrogate
regression problem with surrogate observations ỹ that are generated from linear combina-
tions of the pseudo-points and additive surrogate noise ỹ = W̃u + Σ̃1/2ε. We note that the
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true posterior approximate posterior

true joint distribution approximate joint distribution

refine

Figure 2: Perspectives on the approximating family. The true joint distribution over the
unknown function f and theN data points y (top left) comprises the GP prior and
an intractable likelihood function. This is approximated by a surrogate regression
model with a joint distribution over the function f and M surrogate data points ỹ
(top right). The surrogate regression model employs the same GP prior, but uses
a Gaussian likelihood function p(ỹ|u,W̃, Σ̃) = N (ỹ; W̃u, Σ̃). The intractable
true posterior (bottom left) is approximated by refining the surrogate data ỹ,
their input locations z and the parameters of the surrogate model W̃ and Σ̃.

pseudo-points u live on the latent function (or an inter-domain transformation thereof) and
the surrogate observations ỹ will not generally lie on the latent function. The surrogate
observations and the pseudo-points are therefore analogous to the data y and the function
values f in a normal Gaussian Process regression problem, respectively. To make the paper
more specific on this point, we have defined parameters for the surrogate regression problem
explicitly in Appendix H. The PEP algorithm will implicitly iteratively refine {ỹ,W̃, Σ̃}
such that exact inference in the simple surrogate regression model returns a posterior and
marginal likelihood estimate that is ‘close’ to that returned by performing exact inference
in the intractable complex model (see Figure 2).

3.3 The EP Algorithm

One method for updating the approximate likelihood factors tn(u) would be to minimise
the unnormalised KL divergence between the joint distribution and each of the distributions
formed by replacing one of the likelihoods by the corresponding approximating factor (Li
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et al., 2015),

argmin
tn(u)

KL

[
p(f,y|θ)

∣∣∣∣∣∣∣∣p(f,y|θ)tn(u)

p(yn|fn, θ)

]
= argmin

tn(u)
KL[p∗\n(f)p(yn|fn, θ)||p∗\n(f)tn(u)].

Here we have introduced the leave-one-out joint p∗\n(f) = p(f,y|θ)/p(yn|fn, θ) which makes
clear that the minimisation will cause the approximate factors to approximate the like-
lihoods in the context of the leave-one-out joint. Unfortunately, such an update is still
intractable. Instead, EP approximates this idealised procedure by replacing the exact leave-
one-out joint on both sides of the KL by the approximate leave-one-out joint (called the
cavity) p∗\n(f) ≈ q∗\n(f) = q∗(f)/tn(u). Not only does this improve tractability, but it also
means that the new procedure effectively refines the approximating distribution directly at
each stage, rather than setting the component parts in isolation,

KL[q∗\n(f)p(yn|fn, θ)||q∗\n(f)tn(u)] = KL[q∗\n(f)p(yn|fn, θ)||q∗(f)].

However, the updates for the approximating factors are now coupled and so the updates
must now be iterated, unlike in the idealised procedure. In this way, EP iteratively refines
the approximate factors or surrogate likelihoods so that the GP posterior of the surrogate
regression task ‘best’ approximates the posterior of the original regression/classification
problem.

3.4 The Power EP Algorithm

Power EP is, algorithmically, a mild generalisation of the EP algorithm that instead removes
(or includes) a fraction α of the approximate (or true) likelihood functions in the following
steps:

1. Deletion: compute the cavity distribution by removing a fraction of one approximate
factor, q∗\n(f) ∝ q∗(f)/tαn(u).

2. Projection: first, compute the tilted distribution by incorporating a corresponding frac-
tion of the true likelihood into the cavity, p̃(f) = q∗\n(f)pα(yn|fn, θ). Second, project the
tilted distribution onto the approximate posterior using the KL divergence for unnor-
malised densities,

q∗(f)← argmin
q∗(f)∈Q

KL[p̃(f)||q∗(f)].

Here Q is the set of allowed q∗(f) defined by Equation (6).

3. Update: compute a new fraction of the approximate factor by dividing the new approx-
imate posterior by the cavity, tαn,new(u) = q∗(f)/q∗\n(f), and incorporate this fraction

back in to obtain the updated factor, tn(u) = t1−αn,old(u)tαn,new(u).

The above steps are iteratively repeated for each factor that needs to be approximated.
Notice that the procedure only involves one likelihood factor to be handled at a time. In
the case of analytically intractable likelihood functions, this often requires only low dimen-
sional integrals to be computed. In other words, PEP has transformed a high dimensional
intractable integral that is hard to approximate into a set of low dimensional intractable
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integrals that are simpler to approximate. The procedure is not guaranteed to converge in
general, but we did not observe any convergence issues in our experiments. Furthermore, it
can be shown to be numerically stable when the factors are log-concave (as in GP regression
and classification without pseudo-data) (Seeger, 2008).

If Power EP converges, the fractional updates are equivalent to running the original EP
procedure, but replacing the KL minimisation with an alpha-divergence minimisation (Zhu
and Rohwer, 1995; Minka, 2005),

Dα[p∗(f)||q∗(f)] =
1

α(1− α)

∫ [
αp∗(f) + (1− α)q∗(f)− p∗(f)αq∗(f)1−α]df.

When α = 1, the alpha-divergence is the inclusive KL divergence D1[p∗(f)||q∗(f)] =
KL[p∗(f)||q∗(f)] recovering EP as expected from the PEP algorithm. As α→ 0 the exclu-
sive KL divergence is recovered, D→0[p∗(f)||q∗(f)] = KL[q∗(f)||p∗(f)], and since minimising
a set of local exclusive KL divergences is equivalent to minimising a single global exclusive
KL divergence (Minka, 2005), the Power EP solution is the minimum of a variational free-
energy (see Appendix B for more details). In the current case, we will now show explicitly
that these cases of Power EP recover FITC and Titsias’s VFE solution respectively.

3.5 General Results for Gaussian Process Power EP

This section describes the Power EP steps in finer detail showing the complexity is O(NM2)
and laying the ground work for the equivalence relationships. The Appendix F includes a
full derivation.

We start by defining the approximate factors to be in natural parameter form, making
it simple to combine and delete them, tn(u) = Ñ (u; zn,T1,n,T2,n) = zn exp(uᵀT1,n −
1
2uᵀT2,nu). We consider full rank T2,n, but will show that the optimal form is rank 1.
The parameterisation means the approximate posterior over the pseudo-points has natural
parameters T1,u =

∑
n T1,n and T2,u = K−1

uu +
∑

n T2,n inducing an approximate posterior,
q∗(f |θ) = ZPEPGP(f ;mf , Vff′). The mean and covariance functions of the approximate
posterior are

mf = KfuK−1
uuT−1

2,uT1,u; Vff′ = Kff′ −Qff′ + KfuK−1
uuT−1

2,uK−1
uuKuf′ .

Deletion: The cavity for data point n, q∗\n(f) ∝ q∗(f)/tαn(u), has a similar form to the

posterior, but the natural parameters are modified by the deletion step, T
\n
1,u = T1,u−αT1,n

and T
\n
2,u = T2,u − αT2,n, yielding the following mean and covariance functions

m
\n
f = KfuK−1

uuT
\n,−1
2,u T

\n
1,u; V

\n
ff′ = Kff′ −Qff′ + KfuK−1

uuT
\n,−1
2,u K−1

uuKuf′ .

Projection: The central step in Power EP is the projection. Obtaining the new approx-
imate unnormalised posterior q∗(f) by minimising KL[p̃(f)||q∗(f)] would näıvely appear
intractable. Fortunately,

Remark 1 Due to the structure of the approximate posterior, q∗(f) = p(f6=u|u)q∗(u),
the objective, KL[p̃(f)||q∗(f)] is minimised when Ep̃(f)[φ(u)] = Eq∗(u)[φ(u)], where φ(u) =
{u,uuᵀ} are the sufficient statistics, that is when the moments at the pseudo-inputs are
matched.

13



Bui, Yan and Turner

This is the central result from which computational savings are derived. Furthermore, this
moment matching condition would appear to necessitate computation of a set of integrals
to find the zeroth, first and second moments. However, the technique known as ‘differenti-
ation under the integral sign’2 provides a useful shortcut that only requires one integral to
compute the log-normaliser of the tilted distribution, log Z̃n = logEq∗\n(f)[p

α(yn|fn)], before

differentiating w.r.t. the cavity mean to give

mu = m
\n
u + V

\n
ufn

d log Z̃n

dm
\n
fn

; Vu = V
\n
u + V

\n
ufn

d2 log Z̃n

d(m
\n
fn

)2
V
\n
fnu. (7)

Update: Having computed the new approximate posterior, the approximate factor
tn,new(u) = q∗(f)/q∗\n(f) can be straightforwardly obtained, resulting in,

T1,n,new = V−1
u mu − (V

\n
u )−1m

\n
u , T2,n,new = V−1

u − (V
\n
u )−1, zαn = Z̃neG(q

\n
∗ (u))−G(q∗(u)),

where we have defined the log-normaliser as the functional G(Ñ (u; z,T1,T2)) =
log
∫
Ñ (u; z,T1,T2)du. Remarkably, these results and Equation (7) reveals that T2,n,new

is a rank-1 matrix. As such, the minimal and simplest way to parameterise the approxi-
mate factor is tn(u) = znN (KfnuK−1

uuu; gn, vn), where gn and vn are scalars, resulting in a
significant memory saving and O(NM2) cost.

In addition to providing the approximate posterior after convergence, Power EP also
provides an approximate log-marginal likelihood for model selection and hyperparameter
optimisation,

logZPEP = log

∫
p(f)

∏
n

tn(u)df = G(q∗(u))− G(p∗(u)) +
∑
n

log zn. (8)

Armed with these general results, we now consider the implications for Gaussian Process
regression.

3.6 Gaussian Regression case

When the model contains Gaussian likelihood functions, closed-form expressions for the
Power EP approximate factors at convergence can be obtained and hence the approximate
posterior:

tn(u) = N (KfnuK−1
uuu; yn, αDfnfn + σ2

y), q(u) = N (u; KufK
−1
ff y,Kuu −KufK

−1
ff Kfu)

where Kff = Qff + αdiag(Dff ) + σ2
yI and Dff = Kff −Qff as defined in Section 2. These

analytic expressions can be rigorously proven to be the stable fixed point of the Power EP
procedure using Remark 1. Briefly, assuming the factors take the form above, the natural
parameters of the cavity q∗\n(u) become,

T
\n
1,u = T1,u − αγnynKfnuK−1

uu, T
\n
2,u = T2,u − αγnK−1

uuKufnKfnuK−1
uu,

2. In this case, the dominated convergence theorem can be used to justify the interchange of integration
and differentiation (see e.g. Brown, 1986).
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where γ−1
n = αDfnfn + σ2

y . The subtracted quantities in the equations above are exactly
the contribution the likelihood factor makes to the cavity distribution (see Remark 1) so∫
q∗\n(f)pα(yn|fn)df6=u = q∗\n(u)

∫
p(fn|u)pα(yn|fn)dfn ∝ q∗(u). Therefore, the posterior

approximation remains unchanged after an update and the form for the factors above is the
fixed point. Moreover, the approximate log-marginal likelihood is also analytically tractable,

logZPEP = −N
2

log(2π)− 1

2
log |Kff | −

1

2
yᵀK

−1
ff y − 1− α

2α

∑
n

log
(
1 + αDfnfn/σ

2
y

)
.

We now look at special cases and the correspondence to the methods discussed in Section 2.

Remark 2 When α = 1 [EP], the Power EP posterior becomes the FITC posterior in
Equation (1) and the Power EP approximate marginal likelihood becomes the FITC marginal
likelihood in Equation (2). In other words, the FITC approximation for GP regression is,
surprisingly, equivalent to running an EP algorithm for sparse GP posterior approximation
to convergence.

Remark 3 As α → 0 the approximate posterior and approximate marginal likelihood are
identical to that of the VFE approach in Equations (3) and (4) (Titsias, 2009). This result
uses the limit: limx→0 x

−1 log(1+x) = 1. So FITC and Titsias’s VFE approach employ the
same form of pseudo-point approximation, but refine it in different ways.

Remark 4 For fixed hyperparameters, a single pass of Power EP is sufficient for conver-
gence in the regression case.

3.7 Extensions: Structured, Inter-domain and Multi-power Power EP
Approximations

The framework can now be generalised in three orthogonal directions:

1. enable structured approximations to be handled that retain more dependencies in the
spirit of PITC (see Section 2.1)

2. incorporate inter-domain pseudo-points thereby adding further flexibility to the form
of the approximate posterior

3. employ different powers α for each factor (thereby enabling e.g. VFE updates to be
used for some data points and EP for others).

Given the groundwork above, these three extensions are straightforward. In order to handle
structured approximations, we take inspiration from PITC and partition the data into
B disjoint blocks yb = {yn}n∈Bb (see Section 2.1). Each PEP factor update will then
approximate an entire block which will contain a set of data points, rather than just a
single one. This is related to a form of EP approximation that has recently been used to
distribute Monte Carlo algorithms across many machines (Gelman et al., 2014; Xu et al.,
2014).

In order to handle inter-domain variables, we define a new domain via a linear transform
g(x) =

∫
dx′W (x,x′)f(x′) which now contains the pseudo-points g = {g 6=u,u}. Choices for
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W (x,x′) include Gaussians or wavelets. These two extensions mean that the approximation
becomes,

p(f, g)
∏
b

p(yb|f) ≈ p(f, g)
∏
b

tb(u) = q∗(f).

Power EP is then performed using private powers αb for each data block, which is the third
generalisation mentioned above. Analytic solutions are again available (covariance matrices
now incorporate the inter-domain transform)

tb(u) = N (KfbuK−1
uuu; yb, αbDfbfb + σ2

yI), q(u) = N (u; KufK
−1
ff y,Kuu −KufK

−1
ff Kfu),

where Kff = Qff + blkdiag({αbDfbfb}Bb=1) + σ2
yI and blkdiag builds a block-diagonal matrix

from its inputs. The approximate log-marginal likelihood can also be obtained in closed-
form,

logZPEP = −N
2

log(2π)− 1

2
log |Kff | −

1

2
yᵀK

−1
ff y +

∑
b

1− αb
2αb

log
(
I + αbDfbfb/σ

2
y

)
.

Remark 5 When αb = 1 and W (x,x′) = δ(x − x′) the structured Power EP posterior
becomes the PITC posterior and the Power EP approximate marginal likelihood becomes
the PITC marginal likelihood. Additionally, when B = N we recover FITC as discussed in
Section 3.6.

Remark 6 When αb → 0 and W (x,x′) = δ(x−x′) the structured Power EP posterior and
approximate marginal likelihood becomes identical to the VFE approach (Titsias, 2009).
This is a result of the equivalence of local and global exclusive KL divergence minimisation.
See Appendix B for more details and Figure 1 for more relationships.

3.8 Classification

For classification, the non-Gaussian likelihood prevents an analytic solution. As such, the
iterative Power EP procedure is required to obtain the approximate posterior. The pro-
jection step requires computation of the log-normaliser of the tilted distribution, log Z̃n =
logEq∗\n(f)[p

α(yn|f)] = logEq∗\n(fn)[Φ
α(ynfn)]. For general α, this quantity is not available in

closed form3. However, it involves a one-dimensional expectation of a non-linear function of
a normally-distributed random variable and, therefore, can be approximated using numeri-
cal methods, e.g. Gauss-Hermite quadrature. This procedure gives an approximation to the
expectation, resulting in an approximate update for the posterior mean and covariance. The
approximate log-marginal likelihood can also be obtained and used for hyperparameter op-
timisation. As α→ 0, it becomes the variational free-energy used in Hensman et al. (2015)
which employs quadrature for the same purpose. These relationships are shown in Figure 1
which also shows that inter-domain transformations and structured approximations have

3. except for special cases, e.g. when α = 1 and Φ(x) is the probit inverse link function, Φ(x) =∫ x

−∞N (a; 0, 1)da.
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not yet been fully explored in the classification setting. In our view, the inter-domain gen-
eralisation would be a sensible one to pursue and it is mathematically and algorithmically
straightforward. The structured approximation variant is more complicated as it requires
multiple non-linear likelihoods to be handled at each step of EP. This will require further
approximation such as using Monte Carlo methods (Gelman et al., 2014; Xu et al., 2014).
In addition, when α = 1, M = N and the pseudo-points are at the training inputs, the
standard EP algorithm for GP classification is recovered (Rasmussen and Williams, 2005,
sec. 3.6).

Since the proposed Power EP approach is general, an extension to other likelihood
functions is as simple as for VFE methods (Dezfouli and Bonilla, 2015). For example, the
multinomial probit likelihood can be handled in the same way as the binary case, where the
log-normaliser of the tilted distribution can be computed using a C-dimensional Gaussian
quadrature [C is the number of classes] (Seeger and Jordan, 2004) or nested EP (Riihimäki
et al., 2013).

3.9 Complexity

The computational complexity of all the regression and classification methods described
in this section is O(NM2) for training, and O(M2) per test point for prediction. The
training cost can be further reduced to O(M3), in a similar vein to the uncollapsed VFE
approach (Hensman et al., 2013, 2015), by employing stochastic updates of the poste-
rior and stochastic optimisation of the hyperparameters using minibatches of data points
(Hernández-Lobato and Hernández-Lobato, 2016). In particular, the Power EP update
steps in Section 3.2 are repeated for only a small subset of training points and for only
a small number of iterations. The approximate log-marginal likelihood in Equation (8) is
then computed using this minibatch and optimised as if the Power EP procedure has con-
verged. This approach results in a computationally efficient training scheme, at the cost
of returning noisy hyperparameter gradients. In practice, we find that the noise can be
handled using stochastic optimisers such as Adam (Kingma and Ba, 2015). In summary,
given these advances the general PEP framework is as scalable as variational inference.

4. Experiments

The general framework described above lays out a large space of potential inference algo-
rithms suggesting many exciting directions for innovation. The experiments considered in
the paper will investigate only one aspect of this space; how do algorithms that are interme-
diate between VFE (α = 0) and EP/FITC (α = 1) perform? Specifically, we will investigate
how the performance of the inference scheme varies as a function of α and whether this de-
pends on: the type of problem (classification or regression); the data set (synthetic data
sets, 8 real world regression data sets and 6 classification data sets); the performance metric
(we compare metrics that require point-estimates to those that are uncertainty sensitive).
An important by-product of the experiments is that they provide a comprehensive compar-
ison between the VFE and EP approaches which has been an important area of debate in
its own right.

The results presented below are compact summaries of a large number of experiments full
details of which are included in Appendix I (along with additional experiments). Python
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and Matlab implementations are available at http://github.com/thangbui/sparseGP_

powerEP.

4.1 Regression on Synthetic Data Sets

In the first experiment, we investigate the performance of the proposed Power EP method
on toy regression data sets where ground truth is known. We vary α (from 0 VFE to 1
EP/FITC) and the number of pseudo-points (from 5 to 500). We use thirty data sets, each
comprising 1000 data points with five input dimensions and one output dimension, that
were drawn from a GP with an Automatic Relevance Determination squared exponential
kernel. A 50:50 train/test split was used. The hyperparameters and pseudo-inputs were
found by optimising the PEP energy using L-BFGS with a maximum of 2000 function evalu-
ations. The performances are compared using two metrics: standardised mean squared error
(SMSE) and standardised mean log loss (SMLL) as described in Rasmussen and Williams
(2005). The approximate negative log-marginal likelihood (NLML) for each experiment is
also computed. The mean performance using Power EP with different α values and full GP
regression is shown in Figure 3. The results demonstrate that as M increases, the SMLL and
SMSE of the sparse methods approach that of full GP. Power EP with α = 0.8 or α = 1 (EP)
overestimates the log-marginal likelihood when intermediate numbers of pseudo-points are
used, but the overestimation is markedly less when M = N = 500. Importantly, however,
an intermediate value of α in the range 0.5-0.8 seems to be best for prediction on average,
outperforming both EP and VFE.

4.2 Regression on Real-world Data Sets

The experiment above was replicated on 8 UCI regression data sets, each with 20 train/test
splits. We varied α between 0 and 1, and M was varied between 5 and 200. Full details
of the experiments along with extensive additional analysis is presented in the appendices.
Here we concentrate on several key aspects. First we consider pairwise comparisons between
VFE (α→ 0), Power EP with α = 0.5 and EP/FITC (α = 1) on both the SMSE and SMLL
evaluation metrics. Power EP with α = 0.5 was chosen because it is the mid-point between
VFE and EP and because settings around this value empirically performed the best on
average across all data sets, splits, numbers of inducing points, and evaluation metrics.

In Figure 4A we plot (for each data set, each split and each setting of M) the evaluation
scores obtained using one inference algorithm (e.g. PEP α = 0.5) against the score obtained
using another (e.g. VFE α = 0). In this way, points falling below the identity line indicate
experiments where the method on the y-axis outperformed the method on the x-axis. These
results have been collapsed by forming histograms of the difference in the performance of
the two algorithms, such that mass to the right of zero indicates the method on the y-axis
outperformed that on the x-axis. The proportion of mass on each side of the histogram,
also indicated on the plots, shows in what fraction of experiments one method returns a
more accurate result than the other. This is a useful summary statistic, linearly related to
the average rank, that we will use to unpack the results. The average rank is insensitive to
the magnitude of the performance differences and readers might worry that this might give
an overly favourable view of a method that performs the best frequently, but only by a tiny
margin, and when it fails it does so catastrophically. However, the histograms indicate that
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Figure 3: The performance of various α values averaged over 30 trials. See text for more
details

the methods that win most frequently tend also to ‘win big’ and ‘lose small’, although EP
is a possible exception to this trend (see the outliers below the identity line on the bottom
right-hand plot).

A clear pattern emerges from these plots. First, PEP α = 0.5 is the best performing
approach on the SMSE metric, outperforming VFE 67% of the time and EP 78% of the
time. VFE is better than EP on the SMSE metric 64% of the time. Second, EP performs
the best on the SMLL metric, outperforming VFE 93% of the time and PEP α = 0.5 71%
of the time. PEP α = 0.5 outperforms VFE in terms of the SMLL metric 93% of the time.

These pairwise rank comparisons have been extended to other values of α in Figure 5A.
Here, each row of the figure compares one approximation with all others. Horizontal bars
indicate that the methods have equal average rank. Upward sloping bars indicate the
method shown on that row has lower average rank (better performance), and downward
sloping bars indicate higher average rank (worse performance). The plots show that PEP
α = 0.5 outperforms all other methods on the SMSE metric, except for PEP α = 0.6 which
is marginally better. EP is outperformed by all other methods, and VFE only outperforms
EP on this metric. On the other hand, EP is the clear winner on the SMLL metric, with
performance monotonically decreasing with α so that VFE is the worst.

The same pattern of results is seen when we simultaneously compare all of the methods,
rather than considering sets of pairwise comparisons. The average rank plots shown in
Figure 4B were produced by sorting the performances of the nine different approximating
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methods for each data set, split, and number of pseudo-points M and assigning a rank.
These ranks are then averaged over all data sets and their splits, and settings of M . PEP
α = 0.5 is the best for the SMSE metric, and the two worst methods are EP and VFE.
PEP α = 0.8 is the best for the SMLL metric, with EP and PEP α = 0.6 not far behind
(when EP performs poorly it can do so with a large magnitude, explaining the discrepancy
with the pairwise ranks).

There is some variability between individual data sets, but the same general trends are
clear: For MSE α = 0.5 is better than VFE on 6/8 data sets and EP on 8/8 data sets,
whilst VFE is better than EP on 3 data sets (the difference on the others being small). For
SMLL EP is better than α = 0.5 on 5/8 data sets and VFE on 7/8 data sets, whilst α = 0.5
is better than VFE on 8/8 data sets. Performance tends to increase for all methods as a
function of the number of pseudo-points M. The interaction between the choice of M and
the best performing inference method is often complex and variable across data sets making
it hard to give precise advice about selecting α in an M dependent way.

In summary, we make the following recommendations based on these results for GP
regression problems. For a MSE loss, we recommend using α = 0.5. For SMLL we recom-
mend using EP. It is possible that more fine grained recommendations are possible based
upon details of the data set and the computational resources available for processing, but
further work will be needed to establish this.

4.3 Binary Classification

We also evaluated the Power EP method on 6 UCI classification data sets, each has 20
train/test splits. The details of the data sets are included in Appendix I.3. The data
sets are all roughly balanced, and the most imbalanced is pima with 500 positive and 267
negative data points. Again α was varied between 0 and 1, and M was varied between
10 and 100. We adopt the experimental protocol discussed in Section 3.9, including: (i)
not waiting for Power EP to converge before making hyperparameter updates, (ii) using
minibatches of data points for each Power EP sweep, (iii) parallel factor updates. The Adam
optimiser was used with default hyperparameters to handle the noisy gradients produced
by these approximations (Kingma and Ba, 2015). We also implemented the VFE approach
of Hensman et al. (2015) and include this in the comparison to the PEP methods. The VFE
approach should be theoretically identical to PEP with small α, however, we note that the
results can be slightly different due to differences in the implementation—optimisation for
VFE vs. the iterative PEP procedure, and we also note that each step of PEP only gets to
see a tiny fraction of each data point when α is small which can slow the learning speed.
Similar to the regression experiment, we compare the methods using the pairwise ranking
plots on the test error and negative log-likelihood (NLL) evaluation metrics.

In Figure 6, we plot (for each data set, each split and each setting of M) the evaluation
scores using one inference algorithm against the score obtained using another [see Section 4.2
for a detailed explanation of the plots]. In contrast to the regression results in Section 4.2,
there are no clear-cut winners among the methods. The test error results show that PEP
α = 0.5 is marginally better than VFE and EP, while VFE edges EP out in this metric.
Similarly, all methods perform comparably on the NLL scale, except with PEP α = 0.5
outperforming EP by a narrow margin (65% of the time vs. 35%)
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Figure 5: Average ranking of various α values in the regression experiment, lower is better.
Top plots show the pairwise comparisons. Red circles denote rows being better
than the corresponding columns, and blue circles mean vice versa. Bottom plots
show the ranks of all methods when being compared together. Intermediate α
values (not EP or VFE) are best on average.
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We repeat the pairwise comparison above to all methods and show the results in Figure 7.
The plots show that there is no conclusive winner on the test error metric with VFE and
PEP α ≤ 0.5 performing similarly. On the NLL metric VFE, PEP α = 0.4 and PEP
α = 0.5 have a slight edge over other α values. Notably, methods corresponding to bigger
α values, such as PEP α = 0.8 and EP, are outperformed by all other methods. Similar
to the regression experiment, we observe the same pattern of results when all methods are
simultaneously compared, as shown in Figure 7. However, the large errorbars suggest the
difference between the methods is small in both metrics.

There is some variability between individual data sets, but the general trends are clear
and consistent with the pattern noted above. For test error, PEP α = 0.5 is better than
VFE on 1/6 data set and is better than EP on 3/6 data sets (the differences on the other
data sets are small). VFE outperforms EP on 2/6 data sets, while EP beats VFE on only
1/6 data sets. For NLL, PEP α = 0.5 only clearly outperforms VFE on 1/6 data set, but
is worse compared to VFE on 1 data set (the other 4 data sets have no clear winner). PEP
α = 0.5 is better than EP on 5/6 data sets and EP is better on the remaining data set). EP
is only better than VFE on 2/6 data sets, and is outperformed by VFE on the other 4/6
data sets. The finding that PEP and VFE are slightly better than EP on the NLL metric
is surprising as we expected EP perform the best on the uncertainty sensitive metric (just
as was discovered in the regression case). The full results are included in the appendices
(see figs 25, 26 and 27). Similar to the regression case, we observe that as M increases, the
performance tends to be better for all methods and the differences between the methods
tend to become smaller, but we have not found evidence for systematic sensitivity to the
nature of the approximation.

In summary, we make the following recommendations based on these results for GP
classification problems. For a raw test error loss and for NLL, we recommend using α = 0.5
(or α = 0.4). It is possible that more fine grained recommendations are possible based upon
details of the data set and the computational resources available for processing, but further
work will be needed to establish this.

5. Discussion

It is difficult to identify precisely where the best approximation methods derive their advan-
tages, but here we will speculate. Since the negative variational free-energy is a lower-bound
on the log-marginal likelihood it has the enviable theoretical guarantee that pseudo-input
optimisation is always guaranteed to improve the estimate of the log marginal likelihood
and the posterior (as measured by the inclusive KL). The negative EP energy, in contrast,
is not generally a lower bound which can mean that pseudo-input optimisation drives the
solution to the point where the EP energy over-estimates the log marginal likelihood the
most, rather than to the point where the marginal likelihood and/or posterior estimate
is best. For this reason, we believe that variational methods are likely to be better than
EP if the goal is to derive accurate marginal likelihood estimates, or accurate predictive
distributions, for fixed hyperparameter settings. For hyperparameter optimisation, things
are less clear-cut since variational methods are biased away from the maximal marginal
likelihood, towards hyperparameter settings for which the posterior approximation is accu-
rate. Often this bias is severe and also creates local-optima (Turner and Sahani, 2011). So,
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Figure 7: Average ranking of various α values in the classification experiment, lower is
better. Top plots show the pairwise comparisons. Red circles denote rows being
better than the corresponding columns, and blue circles mean vice versa. Bottom
plots show the ranks of all methods when being compared together. Intermediate
α values (not EP or VFE) are best on average.
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although EP will generally also be biased away from the maximal marginal likelihood and
potentially towards areas of over-estimation, it can still outperform variational methods.
Superposed onto these factors, is a general trend for variational methods to minimise MSE
or classification error-rate and EP methods to minimise negative log-likelihood, due to the
form of their respective energies (the variational free-energy includes the average training
MSE in the regression case, for example). Intermediate methods will blend the strengths
and weaknesses of the two extremes. It is interesting that values of α around a half are
arguably the best performing on average. Similar empirical conclusions have been made
elsewhere (see e.g. Minka, 2005; Hernández-Lobato et al., 2016; Depeweg et al., 2016). In
this case, the alpha-divergence interpretation of Power EP shows that it is minimising the
Hellinger distance whose square root is a valid distance metric. Further experimental and
theoretical work is required to clarify these issues.

The results presented above employed (approximate) type-II maximum likelihood fitting
of the hyperparameters. This estimation method is known in some circumstances to overfit
the data. It is therefore conceivable therefore that pseudo-point approximations, which have
a tendency to encourage under-fitting due to their limited representational capacity, could
be beneficial due to them mitigating overfitting. We do not believe that this is a strong effect
in the experiments above. For example, in the synthetic data experiments the NLML, SMSE
and SMLL obtained from fitting the unapproximated GP were similar to those obtained
using the GP from which the data were generated, indicating that overfitting is not a strong
effect (see fig. 9 in the appendix). It is true that EP and α = 0.8 over-estimates the marginal
likelihood in the synthetic data experiments, but this is a distinct effect from over-fitting
which would, for example, result in overconfident predictions on the test data set. The SMSE
and SMLL on the training and test sets, for example, are similar which is indicative of a
well-fit model. It would be interesting to explore distributional hyperparameter estimates
(see e.g. Piironen and Vehtari, 2017) that employ these pseudo-point approximations.

One of the features of the approximate generative models introduced in Section 2.1 for
regression, is that they contain input-dependent noise, unlike the original model. Many data
sets contain noise of this sort and so approximate models like FITC and PITC, or models in
which the observation noise is explicitly modelled are arguably more appropriate than the
original unapproximated regression model (Snelson, 2007; Saul et al., 2016). Motivated by
this train of reasoning, Titsias (2009) applied the variational free-energy approximation to
the FITC generative model, an approach that was later generalised by Hoang et al. (2016) to
encompass a more general class of input dependent noise, including Markov structure (Low
et al., 2015). Here the insight is that the resulting variational lower bound separates over
data points (Hensman et al., 2013) and is, therefore, amenable to stochastic optimisation
using minibatches, unlike the marginal likelihood. In a sense, these approaches unify the
approximate generative modelling approach, including the FITC and PITC variants, with
the variational free-energy methods. Indeed, one approach is to posit the desired form of the
optimal variational posterior, and to work backwards from this to construct the generative
model implied (Hoang et al., 2016). However, these approaches are quite different from the
one described in this paper where FITC and PITC are shown to emerge in the context of
approximating the original unapproximated GP regression model using Power EP. Indeed, if
the goal really is to model input dependent noise, it is not at all clear that generative models

26



Unifying Gaussian Process Approximations

like FITC are the most sensible. For example, FITC uses a single set of hyperparameters
to describe the variation of the underlying function and the input dependent noise.

6. Conclusion

This paper provided a new unifying framework for GP pseudo-point approximations based
on Power EP that subsumes many previous approaches including FITC, PITC, DTC, Tit-
sias’s VFE method, Qi et al’s EP method, and inter-domain variants. It provided a clean
computational perspective on the seminal work of Csató and Opper that related FITC to
EP, before extending their analysis significantly to include a closed form Power EP marginal
likelihood approximation for regression, connections to PITC, and further results on clas-
sification and GPSSMs. The new framework was used to devise new algorithms for GP
regression and GP classification. Extensive experiments indicate that intermediate values
of Power EP with the power parameter set to α = 0.5 often outperform the state-of-the-
art EP and VFE approaches. The new framework suggests many interesting directions
for future work in this area that we have not explored, for example, extensions to online
inference, combinations with special structured matrices (e.g. circulant and Kronecker struc-
ture), Bayesian hyperparameter learning, and applications to richer models. The current
work has only scratched the surface, but we believe that the new framework will form a
useful theoretical foundation for the next generation of GP approximation schemes.
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Appendix A. A Unified Objective for Unnormalised KL Variational
Free-energy Methods

Here we show that performing variational inference by optimising the unnormalised KL
naturally leads to a single objective for both the approximation to the joint distribution,
q∗(f |θ) and the hyperparameters θ.

The unnormalised KL is given by

KL[q∗(f |θ)||p(f,y|θ)] =

∫
q∗(f |θ) log

q∗(f |θ)
p(f,y|θ)

df +

∫
(p(f,y|θ)− q∗(f |θ)) df.

This is intractable as it includes the marginal likelihood p(y|θ) =
∫
p(f,y|θ)df . However,

since we are interested in minimising this objective with respect to q∗(f |θ) we can ignore
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the intractable term,

argmin
q∗(f |θ)

KL[q∗(f |θ)||p(f,y|θ)] = argmax
q∗(f |θ)

(
p(y|θ)−KL[q∗(f |θ)||p(f,y|θ)]

)
= argmax

q∗(f |θ)

(∫
q∗(f |θ) log

p(f,y|θ)
q∗(f |θ)

df +

∫
q∗(f |θ)df

)
.

In other words, we have turned the unnormalised KL into a tractable lower-bound of the
marginal likelihood G(q∗(f |θ), θ) = p(y|θ)−KL[q∗(f |θ)||p(f,y|θ)]. The structure of this new
lower-bound can be understood by decomposing the approximation to the joint distribution
into a normalised posterior approximation q(f |θ) and an approximation to the marginal
likelihood, ZVFE, that is q∗(f |θ) = ZVFE q(f |θ):

G(ZVFEq(f |θ), θ) = ZVFE

(
1− logZVFE +

∫
q(f |θ) log

p(f,y|θ)
q(f |θ)

df

)
.

We can see that optimising the lower-bound with respect to θ is equivalent to optimising the
standard variational free-energy F(q(f |θ), θ) =

∫
q(f |θ) log p(f,y|θ)

q(f |θ) df . Moreover, optimising

for ZVFE recovers Zopt
VFE = exp(F(q(f |θ), θ)). Substituting this back into the bound

G(Zopt
VFEq(f |θ), θ) = Zopt

VFE = exp(F(q(f |θ), θ)).

In other words, the new collapsed bound is just the exponential of the original variational
free-energy and optimising the collapsed bound for θ is equivalent to optimising the approx-
imation to the marginal likelihood.

Appendix B. Global and Local Inclusive KL Minimisations

In this section, we will show that optimising a single global inclusive KL divergence, KL[q||p],
is equivalent to optimising a sum of a set of local inclusive KL divergence, KL[q||p̃], where
p, q and p̃ are the exact posterior, the approximate posterior and the tilted distribution
accordingly. Without loss of generality, we assume that p(θ) =

∏
n fn(θ) ≈

∏
n tn(θ) = q(θ),

that is the exact posterior is a product of factors, {fn(θ)}n, each of which is approximated by
an approximate factor tn(θ). Substituting these distributions into the global KL divergence
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gives,

KL[q(θ)||p(θ)] =

∫
dθq(θ) log

q(θ)

p(θ)

=

∫
dθq(θ) log

∏
n tn(θ)∏
n fn(θ)

=

∫
dθq(θ) log

[∏
n tn(θ)∏
n fn(θ)

∏
n

∏
i 6=n ti(θ)∏

n

∏
i 6=n ti(θ)

]
=

∫
dθq(θ) log

∏
n[
∏
i ti(θ)]∏

n[fn(θ)
∏
i 6=n ti(θ)]

=
∑
n

∫
dθq(θ) log

∏
i ti(θ)

fn(θ)
∏
i 6=n ti(θ)

=
∑
n

KL[q(θ)||p̃n(θ)],

which means running the EP procedure, where we use KL[q(θ)||p̃n(θ)] in place of
KL[p̃n(θ)||q(θ)], is equivalent to the VFE approach which optimises a single global KL
divergence, KL[q(θ)||p(θ)].

Appendix C. Some Relevant Linear Algebra and Function Expansion
Identities

The Woodbury matrix identity or Woodbury formula is:

(A+ UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1. (9)

In general, C need not be invertible, we can use the Binomial inverse theorem,

(A+ UCV )−1 = A−1 −A−1UC(C + CV A−1UC)−1CV A−1. (10)

When C is an identity matrix and U and V are vectors, the Woodbury identity can be
shortened and become the Sherman-Morrison formula,

(A+ uvᵀ)−1 = A−1 − A−1uvᵀA−1

1 + vᵀA−1u
. (11)

Another useful identity is the matrix determinant lemma,

det(A+ uvᵀ) = (1 + vᵀA−1u)det(A). (12)

The above theorem can be extend for matrices U and V ,

det(A+ UV ᵀ) = det(I + V ᵀA−1U)det(A). (13)

We also make use of the following Maclaurin series,

exp(x) = 1 + x+
x2

2!
+
x3

3!
+ · · · , (14)

and log(1 + x) = x− x2

2
+
x3

3
+ · · · . (15)
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Appendix D. KL Minimisation between Gaussian Processes and Moment
Matching

The difficult step of Power-EP is the projection step, that is how to find the posterior
approximation q(f) that minimises the KL divergence, KL[p̃(f)||q(f)], where p̃(f) is the
tilted distribution. We have chosen the form of the approximate posterior

q(f) = p(f6=u|u)q(u) = p(f6=u|u)
exp(θᵀuφ(u))

Z(θu)
,

where Z(θu) =
∫

exp(θᵀuφ(u))du to ensure normalisation. We can then write the KL
minimisation objective as follows,

FKL = KL[p̃(f)||q(f)]

=

∫
p̃(f) log

p̃(f)

q(f)
df

= 〈log p̃(f)〉p̃(f) − 〈log p(f6=u|u)〉p̃(f) − θᵀu〈φ(u)〉p̃(f) + logZ(θu).

Since p(f6=u|u) is the prior conditional distribution, the only free parameter that controls
our posterior approximation is θu. As such, to find θu that minimises FKL, we find the
gradient of FKL w.r.t θu and set it to zero,

0 =
dFKL

dθu
= −〈φ(u)〉p̃(f) +

d logZ(θu)

dθu
= −〈φ(u)〉p̃(f) + 〈φ(u)〉q(u),

therefore, 〈φ(u)〉p̃(f) = 〈φ(u)〉q(u). That is, though we are trying to perform the KL min-
imisation between two Gaussian processes, due to the special form of the posterior approx-
imation, it is sufficient to only match the moments at the inducing points u.4

Appendix E. Shortcuts to the Moment Matching Equations

The most crucial step in Power-EP is the moment matching step as discussed above. This
step can be done analytically for the Gaussian case, as the mean and covariance of the
approximate posterior can be linked to the cavity distribution as follows,

mu = m
\n
u + V

\n
uf

d logZtilted,n

dm
\n
f

,

Vu = V
\n
u + V

\n
uf

d2 logZtilted,n

dm
\n,2
f

V
\n
fu,

4. We can show that this condition gives the minimum of FKL by computing the second derivative.
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where Ztilted,n is the normaliser of the tilted distribution,

Ztilted,n =

∫
q\n(f)p(yn|f)df

=

∫
q\n(f)p(yn|fn)df

=

∫
q\n(fn)p(yn|fn)dfn.

In words, Ztilted,n only depends on the marginal distribution of the cavity process, q\n(fn),
simplifying the moment matching equations above,

mu = m
\n
u + V

\n
ufn

d logZtilted,n

dm
\n
fn

, (16)

Vu = V
\n
u + V

\n
ufn

d2 logZtilted,n

dm
\n,2
fn

V
\n
fnu. (17)

We can rewrite the cross-covariance V
\n
ufn

= V
\n
u K−1

uuKufn . We also note that, m
\n
fn

=

KfnuK−1
uum

\n
u , resulting in,

d logZtilted,n

dm
\n
u

=
d logZtilted,n

dm
\n
fn

K−1
uuKufn ,

d logZtilted,n

dV
\n
u

= K−1
uuKufn

d2 logZtilted,n

dm
\n,2
fn

KfnuK−1
uu.

Substituting these results back in Equations (16) and (17), we obtain

mu = m
\n
u + V

\n
u

d logZtilted,n

dm
\n
u

, (18)

Vu = V
\n
u + V

\n
u

d2 logZtilted,n

dm
\n,2
u

V
\n
u . (19)

Therefore, using Equations (16) and (17), or Equations (18) and (19) are equivalent in
our approximation settings.

Appendix F. Full Derivation of the Power-EP Procedure

We provide the full derivation of the Power-EP procedure in this section. We follow the
derivation in (Qi et al., 2010) closely, but provide a clearer exposition and details how to
get to each step used in the implementation, and how to handle powered/fractional deletion
and update in Power-EP.
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F.1 Optimal Factor Parameterisation

We start by defining the approximate factors to be in natural parameter form as this makes
it simple to combine and delete them, tn(u) = Ñ (u; zn,T1,n,T2,n) = zn exp(uᵀT1,n −
1
2uᵀT2,nu). We initially consider full rank T2,n, but will show that the optimal form is rank
1.

The next goal is to relate these parameters to the approximate GP posterior. The
approximate posterior over the pseudo-outputs has natural parameters T1,u =

∑
n T1,n

and T2,u = K−1
uu +

∑
n T2,n. This induces an approximate GP posterior with mean and

covariance function,

mf = KfuK−1
uuT−1

2,uT1,u = Kfuγ,

Vff′ = Kff′ −Qff′ + KfuK−1
uuT−1

2,uK−1
uuKuf′ = Kff′ −KfuβKuf′ ,

where γ and β are likelihood-dependent terms we wish to store and update using PEP; γ
and β fully specify the approximate posterior.

Deletion step: The cavity for data point n, q\n(f) ∝ q∗(f)/tαn(u), has a similar form to

the posterior, but the natural parameters are modified by the deletion, T
\n
1,u = T1,u−αT1,n

and T
\n
2,u = T2,u − αT2,n, yielding a new mean and covariance function

m
\n
f = KfuK−1

uuT
\n,−1
2,u T

\n
1,u = Kfuγ

\n,

V
\n

ff′ = Kff′ −Qff′ + KfuK−1
uuT\n,−12,uK−1

uuKuf′ = Kff′ −Kfuβ
\nKuf′ .

Projection step: The central step in Power EP is the projection step. Obtaining the new
approximate unnormalised posterior q∗(f) such that KL[p̃(f)||q∗(f)] is minimised would
näıvely appear intractable. Fortunately, as shown in the previous section, because of the
structure of the approximate posterior, q(f) = p(f6=u|u)q(u), the objective, KL[p̃(f)||q∗(f)]
is minimised when Ep̃(f)[φ(u)] = Eq(u)[φ(u)], where φ(u) are the sufficient statistics, that is
when the moments at the pseudo-inputs are matched. This is the central result from which
computational savings are derived. Furthermore, this moment matching condition would
appear to necessitate computation of a set of integrals to find the zeroth, first and second
moments. Using results from the previous section simplifies and provides the following
shortcuts,

mu = m
\n
u + V

\n
ufn

d log Z̃n

dm
\n
fn

, (20)

Vu = V
\n
u + V

\n
ufn

d2 log Z̃n

d(m
\n
fn

)2
V
\n
fnu, (21)

where log Z̃n = logEq\n(f)[p
α(yn|fn)] is the log-normaliser of the tilted distribution.

Update step: Having computed the new approximate posterior, the fractional approx-
imate factor tn,new(u) = q∗(f)/q\n(f) can be straightforwardly obtained, resulting in,

T1,n,new = V−1
u mu −V

\n,−1
u m

\n
u , (22)

T2,n,new = V−1
u −V

\n,−1
u , (23)

zαn = Z̃n exp(G
q
\n
∗ (u)

− Gq∗(u)),
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where GÑ (u;z,T1,T2) =
∫
Ñ (u; z,T1,T2)du. Let d1 = d log Z̃n

dm
\n
fn

and d2 = d2 log Z̃n

d(m
\n
fn

)2
. Using

Equation (9) and Equation (21), we have,

V−1
u −V

\n,−1
u = −V

\n,−1
u V

\n
ufn

[
d−1

2 + V
\n
fnuV

\n,−1
u V

\n
ufn

]−1
V
\n
fnuV

\n,−1
u . (24)

Let vn = α(−d−1
2 − V

\n
fnuV

\n,−1
u V

\n
ufn

), and wn = V
\n,−1
u V

\n
ufn

. Combining Equation (24)
and Equation (23) gives

T2,n,new = wnαv
−1
n wᵀ

n. (25)

At convergence, we have tn(u)α = tn,new(u), hence T2,n = wnv
−1
n wᵀ

n. In words, T2,n is
optimally a rank-1 matrix. Note that,

wn = V
\n,−1
u V

\n
ufn

= (Kuu −Kuuβ
\nKuu)−1(Kufn −Kuuβ

\nKufn)

= K−1
uu(I−Kuuβ

\n)−1(I−Kuuβ
\n)Kufn

= K−1
uuKufn .

Using Equation (20) an Equation (25) gives,

V−1
u mu = (V

\n,−1
u + wnαv

−1
n wᵀ

n)(m
\n
u + V

\n
ufn
d1)

= V
\n,−1
u m

\n
u + wnαv

−1
n wᵀ

nm
\n
u + V

\n,−1
u V

\n
ufn
d1 + wnαv

−1
n wᵀ

nV
\n
ufn
d1.

Substituting this result into Equation (22),

T1,n,new = V−1
u mu −V

\n,−1
u m

\n
u

= wnαv
−1
n wᵀ

nm
\n
u + V

\n,−1
u V

\n
ufn
d1 + wnαv

−1
n wᵀ

nV
\n
ufn
d1

= wnαv
−1
n

(
wᵀ
nm
\n
u + d1vn/α+ wᵀ

nV
\n
ufn
d1

)
.

Let T1,n,new = wnαv
−1
n gn, we obtain,

gn = −d1

d2
+ Kfnuγ

\n.

At convergence, T1,n = wnv
−1
n gn. Re-writing the form of the approximate factor using T1,n

and T2,n at convergence,

tn(u) = Ñ (u; zn,T1,n,T2,n)

= zn exp(uᵀT1,n −
1

2
uᵀT2,nu)

= zn exp(uᵀwnv
−1
n gn −

1

2
uᵀwnv

−1
n wᵀ

nu).

As a result, the minimal and simplest way to parameterise the approximate factor is tn(u) =
z̃nN (wᵀ

nu; gn, vn) = z̃nN (KfnuK−1
uuu; gn, vn), where gn and vn are scalars, resulting in a

significant memory saving compared to the parameterisation using T1,n and T2,n.
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F.2 Projection

We now recall the update equations in the projection step (Equations (20) and (21)):

mu = m
\n
u + V

\n
ufn
d1,

Vu = V
\n
u + V

\n
ufn
d2V

\n
fnu.

Note that:

mu = Kuuγ,

Vu = Kuu −KuuβKuu,

and

m
\n
u = Kuuγ

\n,

V
\n
u = Kuu −Kuuβ

\nKuu.

Using these results, we can convert the update for the mean and covariance, mu and Vu,
into an update for γ and β,

γ = K−1
uumu

= K−1
uu(m

\n
u + V

\n
ufn
d1)

= γ\n + K−1
uuV

\n
ufn
d1, and (26)

β = K−1
uu(Kuu −Vu)K−1

uu

= K−1
uu(Kuu −V

\n
u −V

\n
ufn
d2V

\n
fnu)K−1

uu

= β\n −K−1
uuV

\n
ufn
d2V

\n
fnuK−1

uu. (27)

F.3 Deletion Step

Finally, we present how deletion might be accomplished. One direct approach to this step
is to divide out the cavity from the cavity, that is,

q\n(f) ∝ q(f)

tαn(u)
=
p(f6=u|u)q(u)

tαn(u)
= p(f6=u|u)q\n(u).

Instead, we use an alternative using the KL minimisation as used in (Qi et al., 2010), by
realising that doing this will result in an identical outcome as the direct approach since
the factor and distributions are Gaussian. Furthermore, we can re-use results from the
projection and inclusion steps, by simply swapping the quantities and negating the site
approximation variance. In particular, we present projection and deletion side-by-side, to
facilitate the comparison,

Projection: q(f) ≈ q\n(f)p(yn|fn),

Deletion: q\n(f) ∝ q(f)
1

tαn(u)
.
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The projection step minimises the KL between the LHS and RHS while moment match-
ing, to get q(f). We would like to do the same for the deletion step to find q\n(f), and thus
reuse the same moment matching results for γ and β with some modifications.

Our task will be to reuse Equations (26) and (27), the moment matching equations in
γ and β. We have two differences to account for. Firstly, we need to change any uses of
the parameters of the cavity distribution to the parameters of the approximate posterior,

V
\n
ufn

to Vufn , γ\n to γ and β\n to β. This is the equivalent of re-deriving the entire
projection operation while swapping the symbols (and quantities) for the cavity and the
full distribution. Secondly, the derivatives d1 and d2 are different here, as

log Z̃n = log

∫
q(f)

1

tαn(u)
df.

Now, we note

1

tn(u)
∝ 1

Nα(wᵀ
nu; gn, vn)

∝ 1

exp
(
−α

2 v
−1
n (wᵀ

nu− gn)
2
)

= exp

(
1

2
αv−1

n (wᵀ
nu− gn)2

)
∝ N (wᵀ

nu; gn,−vn/α).

Then we obtain the derivatives of log Z̃n

d̃2 =
d2 log Z̃n

dm2
fn

= −
[
Kfn,uK−1

u,uKu,fn −Kfn,uβKu,fn − vn/α
]−1

,

d̃1 =
d log Z̃n

dmfn

= (Kfn,uγ − gn)d̃2.

Putting the above results together, we obtain,

γ\n = γ + K−1
uuVufn d̃1, and

β\n = β −K−1
uuVufn d̃2VfnuK−1

uu.

F.4 Summary of the PEP Procedure

We summarise here the key steps and equations that we have obtained, that are used in
the implementation:

1. Initialise the parameters: {gn = 0}Nn=1, {vn =∞}Nn=1, γ = 0M×1 and β = 0M×M

2. Loop through all data points until convergence:
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(a) Deletion step: find γ\n and β\n

γ\n = γ + K−1
uuVufn d̃1, and

β\n = β −K−1
uuVufn d̃2VfnuK−1

uu.

(b) Projection step: find γ and β

γ = γ\n + K−1
uuV

\n
ufn
d1,

β = β\n −K−1
uuV

\n
ufn
d2V

\n
fnuK−1

uu.

(c) Update step: find gn,new and vn,new

gn,new = −d1

d2
+ Kfnuγ

\n,

vn,new = −d−1
2 −V

\n
fnuV

\n,−1
u V

\n
ufn
,

and parameters for the full factor,

vn ← (v−1
n,new + (1− α)v−1

n )−1,

gn ← vn(gn,newv
−1
n,new + (1− α)gnv

−1
n ).

Appendix G. Power-EP Energy for Sparse GP Regression and
Classification

The Power-EP procedure gives an approximate marginal likelihood, which is the negative
Power-EP energy, as follows,

F = G(q∗(u))− G(p∗(u)) +
1

α

∑
n

[
logZtilted,n + G(q

\n
∗ (u))− G(q∗(u))

]
,

where G(q∗(u)) is the log-normaliser of the approximate posterior, that is,

G(q∗(u)) = log

∫
p(f6=u|u) exp(θᵀuφ(u))df6=udu

= log

∫
exp(θᵀuφ(u))du

=
M

2
log(2π) +

1

2
log |V|+ 1

2
mᵀV−1m, (28)

where m and V are the mean and covariance of the posterior distribution over u, respec-
tively. Similarly,

G(q
\n
∗ (u)) =

M

2
log(2π) +

1

2
log |Vcav,n|+

1

2
mᵀ

cav,nV
−1
cav,nmcav,n, (29)

and G(p∗(u)) =
M

2
log(2π) +

1

2
log |Kuu|.
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Finally, logZtilted,n is the log-normalising constant of the tilted distribution,

logZtilted = log

∫
qcav(f)pα(yn|f)df

= log

∫
p(f6=u|u)qcav(u)pα(yn|f)df6=udu

= log

∫
p(fn|u)qcav(u)pα(yn|fn)dfndu. (30)

Next, we can write down the form of the natural parameters of the approximate posterior
and the cavity distribution, based on the approximate factor’s parameters, as follows,

V−1 = K−1
uu +

∑
i

wiτiw
ᵀ
i , (31)

V−1m =
∑
i

wiτiỹi, (32)

V−1
cav,n = V−1 − αwnτnw

ᵀ
n, (33)

Vcav,n
−1mcav,n = V−1m− αwnτngn. (34)

Note that τi := v−1
i . Using Equation (11) and Equation (33) gives,

Vcav,n = V +
Vwnατnw

ᵀ
nV

1−wᵀ
nατnVwn

. (35)

Using Equation (12) and Equation (33) gives,

log det(Vcav,n) = log det(V)− log(1−wᵀ
nατnVwn). (36)

Substituting Equation (35) and Equation (36) back to Equation (29) results in,

G(q
\n
∗ (u)) =

M

2
log(2π) +

1

2
log det(V) +

1

2
mᵀV−1m

− 1

2
log(1−wᵀ

nατnVwn) +
1

2

mᵀwnατnw
ᵀ
nm

1−wᵀ
nατnVwn

+
1

2
gnατnw

ᵀ
nVcav,nwnατngn − gnατnwᵀ

nVcav,nV
−1m. (37)

We now plug the above result back into the approximate marginal likelihood, yielding,

F =
1

2
log |V|+ 1

2
mᵀV−1m− 1

2
log |Kuu|+

1

α

∑
n

logZtilted,n

+
∑
n

[
− 1

2α
log(1−wᵀ

nατnVwn) +
1

2

mᵀwnτnw
ᵀ
nm

1−wᵀ
nατnVwn

+
1

2
gnτnw

ᵀ
nVcav,nwnατngn − gnτnwᵀ

nVcav,nV
−1m

]
. (38)
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G.1 Regression

We have shown in the previous section that the fixed point solution of the Power-EP it-
erations can be obtained analytically for the regression case, gn = yn and τ−1

n = dn =
α(Kfnfn − KfnuK−1

uuKufn) + σ2
y . Crucially, we can obtain a closed form expression for

logZtilted,n,

logZtilted,n = −α
2

log(2πσ2
y) +

1

2
log(σ2

y)−
1

2
log(αvn + σ2

y)−
1

2

(yn − µn)2

vn + σ2
y/α

,

where µn = wᵀ
nmcav = wᵀ

nVcav(V−1m−wnατnyn) and vn =
dn−σ2

y

α + wᵀ
nVcavwn. We can

therefore simplify the approximate marginal likelihood F further,

F =
1

2
log |V|+ 1

2
mᵀV−1m− 1

2
log |Kuu|

+
∑
n

[
−1

2
log(2πσ2

y) +
1

2α
log σ2

y −
1

2α
log dn −

y2
n

2dn

]
= −N

2
log(2π)− 1

2
log |D + Qff | −

1

2
yT (D + Qff )−1y − 1− α

2α

∑
n

log(
dn
σ2
y

),

where Qff = KfuK−1
uuKuf and D is a diagonal matrix, Dnn = dn.

When α = 1, the approximate marginal likelihood takes the same form as the FITC
marginal likelihood,

F = −N
2

log(2π)− 1

2
log |D + Qff | −

1

2
yT (D + Qff )−1y,

where Dnn = dn = Kfnfn −KfnuK−1
uuKufn + σ2

y .

When α tends to 0, we have,

lim
α→0

1− α
2α

∑
n

log(
dn
σ2
y

) =
1

2

∑
n

lim
α→0

log(1 + α gn
σ2
y
)

α
=

∑
n hn

2σ2
y

,

where hn = Kfnfn −KfnuK−1
uuKufn . Therefore,

F = −N
2

log(2π)− 1

2
log |σ2

yI + Qff | −
1

2
yT (σ2

yI + Qff )−1y −
∑

n hn
2σ2

y

,

which is the variational lower bound of Titsias (Titsias, 2009).

G.2 Classification

In contrast to the regression case, the approximate marginal likelihood for classification
cannot be simplified due to the non-Gaussian likelihood. Specifically, logZtilted,n is not
analytically tractable, except when α = 1 and the classification link function is the Gaus-
sian CDF. However, this quantity can be evaluated numerically, using sampling or Gauss-
Hermite quadrature, since it only involves a one-dimensional integral.
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We now consider the case when α tends to 0 and verify that in such case the approxi-
mate marginal likelihood becomes the variational lower bound. We first find the limits of
individual terms in Equation (38):

lim
α→0
− 1

2α
log(1−wᵀ

nατnVwn) =
1

2
wᵀ
nτnVwn, (39)

1

2

mᵀwnτnw
ᵀ
nm

1−wᵀ
nατnVwn

∣∣∣∣
α=0

=
1

2
mᵀwnτnw

ᵀ
nm, (40)

1

2
gnτnw

ᵀ
nVcav,nwnατngn

∣∣∣∣
α=0

= 0, (41)

−gnτnwᵀ
nVcav,nV

−1m

∣∣∣∣
α=0

= −gnτnwᵀ
nm. (42)

We turn our attention to logZtilted,n. First, we expand pα(yn|fn) using Equation (14):

pα(yn|fn) = exp(α log p(yn|fn))

= 1 + α log p(yn|fn) + ξ(α2).

Substituting this result back into logZtilted/α gives,

1

α
logZtilted =

1

α
log

∫
p(fn|u)qcav(u)pα(yn|fn)dfndu

=
1

α
log

∫
p(fn|u)qcav(u)[1 + α log p(yn|fn) + ξ(α2)]dfndu

=
1

α
log

[
1 + α

∫
p(fn|u)qcav(u) log p(yn|fn)dfndu + α2ξ(1)

]
=

1

α

[
α

∫
p(fn|u)qcav(u) log p(yn|fn)dfndu + α2ξ(1)

]
=

∫
p(fn|u)qcav(u) log p(yn|fn)dfndu + αξ(1).

Therefore,

lim
α→0

1

α
logZtilted =

∫
p(fn|u)q(u) log p(yn|fn)dfndu. (43)
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Putting these results into Equation (38), we obtain,

F =
1

2
log |V|+ 1

2
mᵀV−1m− 1

2
log |Kuu|

+
∑
n

1

2
wᵀ
nτnVwn +

1

2
mᵀwnτnw

ᵀ
nm− gnτnwᵀ

nm +

∫
p(fn|u)q(u) log p(yn|fn)dfndu

=
1

2
log |V|+ 1

2
mᵀV−1m− 1

2
log |Kuu|+

1

2
mᵀ(V−1 −K−1

uu)m−mᵀV−1m

+
∑
n

1

2
wᵀ
nτnVwn +

∫
p(fn|u)q(u) log p(yn|fn)dfndu

=
1

2
log |V| − 1

2
mᵀK−1

uum− 1

2
log |Kuu|+

∑
n

1

2
wᵀ
nτnVwn

+
∑
n

∫
p(fn|u)q(u) log p(yn|fn)dfndu. (44)

We now write down the evidence lower bound of the global variational approach of
Titsias (Titsias, 2009), as applied to the classification case (Hensman et al., 2015),

FVFE = −KL[q(u)||p(u)] +
∑
n

∫
p(fn|u)q(u) log p(yn|fn)dfndu, (45)

where

−KL[q(u)||p(u)] = −1

2
trace(K−1

uuV)− 1

2
mᵀK−1

uum +
M

2
− 1

2
log |Kuu|+

1

2
log |V|

= −1

2
trace([V−1 −

∑
n

wnτnwn]V)− 1

2
mᵀK−1

uum

+
M

2
− 1

2
log |Kuu|+

1

2
log |V|

=
1

2
trace(

∑
n

wnτnwnV)− 1

2
mᵀK−1

uum− 1

2
log |Kuu|+

1

2
log |V|. (46)

Therefore, FVFE is identical to the limit of the approximate marginal likelihood provided
by power-EP as shown in Equation (44).

Appendix H. The Surrogate Regression Viewpoint

It was written in the main text that it is instructive to view the approximation using
pseudo-points as forming a surrogate exact Gaussian process regression problem such that
the posterior and the marginal likelihood of this surrogate problem are close to that of the
original intractable regression/classification problem. This approximation view is useful and
could potentially be used for other intractable probabilistic model, despite that we have not
used this view in the practical implementation of the algorithms/PEP procedure discussed
in this paper. In this section, we detail the surrogate model and how the parameters of
this model can be tuned to match the approximate posterior and approximate marginal
likelihood.
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We consider the exact GP regression problem with M surrogate observations ỹ that are
formed by linear combinations the pseudo-outputs and additive surrogate Gaussian noise,
ỹ = W̃u + Σ̃1/2ε. The exact posterior and log marginal likelihood can be obtained for this
model as follows,

p̃(u|y) = N−1(u; W̃Σ̃−1ỹ,K−1
uu + W̃ᵀΣ̃−1W̃),

log p(ỹ) = −M
2

log(2π)− 1

2
(log |K−1

uu + W̃ᵀΣ̃−1W̃|+ log |K−1
uu|+ log |Σ̃|)

− 1

2
ỹᵀΣ̃−1ỹ − 1

2
ỹᵀΣ̃−1W̃(K−1

uu + W̃ᵀΣ̃−1W̃)−1W̃ᵀΣ̃−1ỹ,

where we have used the matrix inversion lemma and the matrix determinant lemma in the
equations above, and that N−1 denotes the Gaussian distribution with natural parameters.

The aim is to show that we can use the above quantities is to match a given approximate
posterior q(u) = N−1(u; S−1m,S−1) and an approximate marginal likelihood F , that is,
p̃(u|y) = q(u) and log p(ỹ) = F . Substituting the above results into the constraints leading
to the following simplified constraints:

W̃Σ̃−1ỹ = m,

W̃ᵀΣ̃−1W̃ = R = K−1
uu − S−1,

ỹᵀΣ̃−1ỹ + log |Σ̃| = c,

where c is a constant. Assume that R is invertible, we can simplified the above results
further,

Σ̃−1/2ỹ = R−1/2m,

Σ̃−1/2W̃ = Rᵀ/2,

log |Σ̃| = d,

where d is a constant. We can choose Σ̃, e.g. a diagonal matrix, that satisfies the third
equality above. Given Σ̃, obtaining ỹ and W̃ from the first two equalities is trivial.

Appendix I. Extra Experimental Results

I.1 Comparison Between Various α Values on a Toy Regression Problem
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Figure 8: Results on a toy regression problem: Negative log-marginal likelihood, mean squared error and mean log-loss on the test
set for full Gaussian process regression on synthetic data sets with true hyperparameters and hyperparameters obtained
by type-2 ML. Each dot is one trial, i.e. one synthetic data set. The results demonstrate that type-2 maximum likelihood
on hyperparameters works well, despite being a little confident on the log-marginal likelihood on the train set.
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Figure 9: Results on a toy regression problem with 500 training points: Mean squared error and log-likelihood on train and test
sets on synthetic data sets with hyperparameters obtained by type-2 ML. In this example, the test error is higher than
the training error, as measured by the mean squared error, because the test points and training points are relatively far
apart, making the prediction task on the training set easier (interpolation) than on the test set (extrapolation). This
is consistent with the results with more training points, shown in Figure 10.
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Figure 10: Results on a toy regression problem with 1000 training points: Mean squared error and log-likelihood on train and
test sets on synthetic data sets with hyperparameters obtained by type-2 ML. See Figure 9 for a discussion.
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Figure 11: Results on a toy regression problem: Standardsised mean log-loss on the test set for various values of α and various
number of pseudo-points M . Each trace is for one split, bold line is the mean. The rightmost figure shows the mean
for various α, and the results using GP regression.
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Figure 12: Results on a toy regression problem: Standardsised mean squared error on the test set for various values of α and
various number of pseudo-points M . Each trace is for one split, bold line is the mean. The rightmost figure shows
the mean for various α, and the results using GP regression.

46



U
n
if
y
in
g

G
a
u
ssia

n
P
r
o
c
e
ss

A
p
p
r
o
x
im

a
t
io
n
s

0 100 200 300 400 500

M

300

350

400

450

500

550

600

650

700

to
y
_
5

N
L
M
L

0.000

0 100 200 300 400 500

M

300

350

400

450

500

550

600

650

700
0.100

0 100 200 300 400 500

M

300

350

400

450

500

550

600

650

700
0.200

0 100 200 300 400 500

M

300

350

400

450

500

550

600

650

700
0.500

0 100 200 300 400 500

M

300

350

400

450

500

550

600

650

700
0.800

0 100 200 300 400 500

M

300

350

400

450

500

550

600

650

700
1.000

0 100 200 300 400 500

M

300

350

400

450

500

550

600

650

700

Figure 13: Results on a toy regression problem: The negative log marginal likelihood of the training set after training for various
values of α and various number of pseudo-points M . Each trace is for one split, bold line is the mean. The rightmost
figure shows the mean for various α, and the results using GP regression. Power EP with α close to 1 over-estimates
the marginal-likelihood.
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I.2 Real-world Regression

We include the details of the regression data sets in Table 1 and several comparisons of α
values in Figures 17 to 22.

data set N train/test D

boston 455/51 14
concrete 927/103 9
energy 691/77 9
kin8nm 7373/819 9
naval 10741/1193 18
yacht 277/31 7
power 8611/957 5

red wine 1439/160 12

Table 1: Regression data sets
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two rows) and SMLL (bottom two rows). The scatter plots show the performance of Power-EP (α = 0.5) vs VFE.
Each point is one split and points with lighter colours are runs with big M. Points that stay below the diagonal line
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Figure 17: Results on real-world regression problems: Negative training log-marginal likelihood for different data sets, various
values of α and various number of pseudo-points M . Each trace is for one split, bold line is the mean. The rightmost
figures show the mean for various α for comparison. Lower is better [however, lower could mean overestimation].
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Figure 18: Results on real-world regression problems: Negative training log-marginal likelihood for different data sets, various
values of α and various number of pseudo-points M , averaged over 20 splits. Lower is better [however, lower could
mean overestimation].
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Figure 19: Results on real-world regression problems: Standardised mean squared error on the test set for different data sets,
various values of α and various number of pseudo-points M . Each trace is for one split, bold line is the mean. The
rightmost figures show the mean for various α for comparison. Lower is better.
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Figure 20: Results on real-world regression problems: Standardised mean squared error on the test set for different data sets,
various values of α and various number of pseudo-points M , averaged over 20 splits. Lower is better.
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Figure 21: Results on real-world regression problems: Standardised mean log loss on the test set for different data sets, various
values of α and various number of pseudo-points M . Each trace is for one split, bold line is the mean. The rightmost
figures show the mean for various α for comparison. Lower is better.
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Figure 22: Results on real-world regression problems: Standardised mean log loss on the test set for different data sets, various
values of α and various number of pseudo-points M , averaged over 20 splits. Lower is better.
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I.3 Real-world Classification

It was demonstrated in (Hernández-Lobato and Hernández-Lobato, 2016; Hensman et al.,
2015) that, once optimised, the pseudo points tend to concentrate around the decision
boundary for VFE, and spread out to cover the data region in EP. Figure 23 illustrates the
same effect as α goes from close to 0 (VFE) to 1 (EP).
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Figure 23: The locations of pseudo data points vary with α.. Best viewed in colour.

We include the details of the classification data sets in Table 2 and several comparisons
of α values in Figures 27 to 30.

58



Unifying Gaussian Process Approximations

data set N train/test D N positive/negative

australian 621/69 15 222/468
breast 614/68 11 239/443
crabs 180/20 7 100/100
iono 315/35 35 126/224
pima 690/77 9 500/267
sonar 186/21 61 111/96

Table 2: Classification data sets
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Figure 24: A comparison between Power-EP with α = 0.5 and VFE on several classification data sets, on two metrics: classification
error (top two rows) and NLL (bottom two rows). See Figure 14 for more details about the plots.
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Figure 25: A comparison between EP and VFE on several classification data sets, on two metrics: classification error (top two
rows) and NLL (bottom two rows). See Figure 14 for more details about the plots.
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error (top two rows) and NLL (bottom two rows). See Figure 14 for more details about the plots.
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Figure 27: Results on real-world classification problems: Classification error rate on the test set for different data sets, various
values of α and various number of pseudo-points M . Each trace is for one split, bold line is the mean. The rightmost
figures show the mean for various α for comparison. Lower is better.
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Figure 28: Results on real-world classification problems: Classification error rate on the test set for different data sets, various
values of α and various number of pseudo-points M , averaged over 20 splits. Lower is better.
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Figure 29: Results on real-world classification problems: Average negative log-likelihood on the test set for different data sets,
various values of α and various number of pseudo-points M . Each trace is for one split, bold line is the mean. The
rightmost figures show the mean for various α for comparison. Lower is better.
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Figure 30: Results on real-world classification problems: Average negative log-likelihood on the test set for different data sets,
various values of α and various number of pseudo-points M , averaged over 20 splits. Lower is better.

66



Unifying Gaussian Process Approximations

I.4 Binary Classification on Even/Odd MNIST Digits
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Figure 31: The test error and log-likelihood of the MNIST binary classification task
(M=100).
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Figure 32: The test error and log-likelihood of the MNIST binary classification task
(M=200).

I.5 When M = N and α = 1, Do We Recover EP for GPC (Rasmussen and
Williams, 2005, sec. 3.6)?

The key difference between the EP method in this manuscript when M = N and the pseudo-
inputs and the training inputs are identical, and the standard EP method as described by
(Rasmussen and Williams, 2005, sec. 3.6) is the factor representation. While Rasmussen and
Williams (2005) used a one dimensional unnormalised Gaussian distribution that touches
only one function value fn to approximate each exact factor, the approximate factor used
in the EP scheme described in the main text touches all M pseudo-points, hence all N
function values when the pseudo-inputs are placed at the training inputs. However, in
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practice both methods give virtually identical results. Figure 33 shows the approximate log
marginal likelihood and the negative test log-likelihood, given by running the EP procedure
described in the main text on the ionosphere data set. We note that these results are
similar to that of the standard EP method (see Kuss and Rasmussen, 2005).
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Figure 33: EP energy on the train set [TOP] and the average negative log-likelihood on the
test set[BOTTOM] when M = N .
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