
Journal of Machine Learning Research 18 (2018) 1-42 Submitted 11/16; Revised 3/18; Published 6/18

Parallelizing Stochastic Gradient Descent for Least Squares
Regression: Mini-batching, Averaging, and Model Misspecification

Prateek Jain, Praneeth Netrapalli {PRAJAIN,PRANEETH}@MICROSOFT.COM
Microsoft Research, Bangalore 560001, INDIA

Sham M. Kakade SHAM@CS.WASHINGTON.EDU
Paul G. Allen School of Computer Science and Department of Statistics,
University of Washington, Seattle WA 98195, USA

Rahul Kidambi RKIDAMBI@UW.EDU
Department of Electrical Engineering,
University of Washington, Seattle WA 98195, USA

Aaron Sidford SIDFORD@STANFORD.EDU
Department of Management Science and Engineering,
Stanford University, Palo Alto CA 94305, USA

Editor: Leon Bottou

Abstract
This work characterizes the benefits of averaging techniques widely used in conjunction with
stochastic gradient descent (SGD). In particular, this work presents a sharp analysis of: (1) mini-
batching, a method of averaging many samples of a stochastic gradient to both reduce the variance
of a stochastic gradient estimate and for parallelizing SGD and (2) tail-averaging, a method in-
volving averaging the final few iterates of SGD in order to decrease the variance in SGD’s final
iterate. This work presents sharp finite sample generalization error bounds for these schemes for
the stochastic approximation problem of least squares regression.

Furthermore, this work establishes a precise problem-dependent extent to which mini-batching
can be used to yield provable near-linear parallelization speedups over SGD with batch size one.
This characterization is used to understand the relationship between learning rate versus batch size
when considering the excess risk of the final iterate of an SGD procedure. Next, this mini-batching
characterization is utilized in providing a highly parallelizable SGD method that achieves the min-
imax risk with nearly the same number of serial updates as batch gradient descent, improving
significantly over existing SGD-style methods. Following this, a non-asymptotic excess risk bound
for model averaging (which is a communication efficient parallelization scheme) is provided.

Finally, this work sheds light on fundamental differences in SGD’s behavior when dealing with
mis-specified models in the non-realizable least squares problem. This paper shows that maximal
stepsizes ensuring minimax risk for the mis-specified case must depend on the noise properties.

The analysis tools used by this paper generalize the operator view of averaged SGD (Défossez
and Bach, 2015) followed by developing a novel analysis in bounding these operators to char-
acterize the generalization error. These techniques are of broader interest in analyzing various
computational aspects of stochastic approximation.

Keywords: Stochastic Gradient Descent, Stochastic Approximation, Least Squares Regression,
Parallelization, Mini Batch SGD, Iterate Averaging, Suffix Averaging, Batchsize Doubling, Model
Averaging, Parameter Mixing, Mis-specified models, Heteroscedastic Noise, Agnostic Learning

c©2018 Prateek Jain, Sham M. Kakade, Rahul Kidambi, Praneeth Netrapalli and Aaron Sidford.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided at
http://jmlr.org/papers/v18/16-595.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v18/16-595.html

JAIN, KAKADE, KIDAMBI, NETRAPALLI AND SIDFORD

1. Introduction and Problem Setup

With the ever increasing size of modern day datasets, practical algorithms for machine learning are
increasingly constrained to spend less time and use less memory. This makes it particularly desirable
to employ simple streaming algorithms that generalize well in a few passes over the dataset.

Stochastic gradient descent (SGD) is perhaps the simplest and most well studied algorithm that
meets these constraints. The algorithm repeatedly samples an instance from the stream of data
and updates the current parameter estimate using the gradient of the sampled instance. Despite its
simplicity, SGD has been immensely successful and is the de-facto method for large scale learn-
ing problems. The merits of SGD for large scale learning and the associated computation versus
statistics tradeoffs is discussed in detail by the seminal work of Bottou and Bousquet (2007).

While a powerful machine learning tool, unfortunately SGD in its simplest forms is inherently
serial. Over the past years, as dataset sizes have grown there have been remarkable developments in
processing capabilities with multi-core/distributed/GPU computing infrastructure available in abun-
dance. The presence of this computing power has triggered the development of parallel/distributed
machine learning algorithms (Mann et al. (2009); Zinkevich et al. (2011); Bradley et al. (2011); Niu
et al. (2011); Li et al. (2014); Zhang and Xiao (2015)) that possess the capability to utilize multiple
cores/machines. However, despite this exciting line of work, it is yet unclear how to best parallelize
SGD and fully utilize these computing infrastructures.

This paper takes a step towards answering this question, by characterizing the behavior of con-
stant stepsize SGD for the problem of strongly convex stochastic least square regression (LSR) un-
der two averaging schemes widely believed to improve the performance of SGD. In particular, this
work considers the natural parallelization technique of mini-batching, where multiple data-points
are processed simultaneously and the current iterate is updated by the average gradient over these
samples, and combine it with variance reducing technique of tail-averaging, where the average of
many of the final iterates are returned as SGD’s estimate of the solution.

In this work, parallelization arguments are structured through the lens of a work-depth tradeoff:
work refers to the total computation required to reach a certain generalization error, and depth refers
to the number of serial updates. Depth, defined in this manner, is a reasonable estimate of the
runtime of the algorithm on a large multi-core architecture with shared memory, where there is no
communication overhead, and has strong implications for parallelizability on other architectures.

1.1 Problem Setup and Notations

We use boldface small letters (x,w etc.) for vectors, boldface capital letters (A,H etc.) for matrices
and normal script font letters (M, T etc) for tensors. We use ⊗ to denote the outer product of two
vectors or matrices. Loewner ordering between two PSD matrices is represented using �,�.
This paper considers the stochastic approximation problem of Least Squares Regression (LSR). Let
L : Rd → R be the expected square loss over tuples (x, y) sampled from a distribution D:

L(w) =
1

2
· E(x,y)∼D[(y − 〈w,x〉)2] ∀ w ∈ Rd. (1)

Let w∗ be a minimizer of the problem (1). Now, let the Hessian of the problem (1) be denoted as:

H
def
= ∇2L(w) = E

[
xx>

]
.

2

PARALLELIZING STOCHASTIC GRADIENT DESCENT FOR LEAST SQUARES REGRESSION

Next, we define the fourth moment tensorM of the inputs x as:

M def
= E [x⊗ x⊗ x⊗ x] .

Let the noise εx,y in a sample (x, y) ∼ D with respect to the minimizer w∗ of (1) be denoted as:

εx,y
def
= y − 〈w∗,x〉.

Finally, let the noise covariance matrix Σ be denoted as:

Σ
def
= E

[
ε2x,yxx>

]
.

The homoscedastic (or, additive noise/well specified) case of LSR refers to the case when εx,y is
mutually independent from x. This is the case, say, when εx,y sampled from a Gaussian, N(0, σ2)
independent of x. In this case, Σ = σ2H, where, σ2 = E

[
ε2
]
, where the subscript on εx,y is

suppressed owing to the independence of ε on any sample (x, y) ∼ D. On the other hand, the
heteroscedastic (or, mis-specified) case refers to the setting when εx,y is correlated with the input x.
In this paper, all our results apply to the general mis-specified case of the LSR problem.

1.1.1 ASSUMPTIONS

We make the following assumptions about the problem.

(A1) Finite fourth moment: The fourth moment tensorM = E
[
x⊗4

]
exists and is finite.

(A2) Strong convexity: The Hessian of L(·), H = E
[
xx>

]
is positive definite i.e., H � 0.

(A1) is a standard regularity assumption for the analysis of SGD and related algorithms. (A2) is
also a standard assumption and guarantees that the minimizer of (1), i.e., w∗ is unique.

1.1.2 IMPORTANT QUANTITIES

In this section, we will introduce some important quantities required to present our results. Let I

denote the d× d identity matrix. For any matrix A,MA
def
= E

[(
x>Ax

)
xx>

]
. Let HL = H⊗ I

and HR = I ⊗H represent the left and right multiplication operators of the matrix H so that for
any matrix A, we haveHLA = HA andHRA = AH.

• Fourth moment bound: Let R2 be the smallest number such thatMI � R2H.

• Smallest eigenvalue: Let µ be the smallest eigenvalue of H i.e., H � µI.

The fourth moment bound implies that E
[
‖x‖2

]
≤ R2. Further more, (A2) implies that the smallest

eigenvalue µ of H is strictly greater than zero (µ > 0).

1.1.3 STOCHASTIC GRADIENT DESCENT: MINI-BATCHING AND ITERATE AVERAGING

In this paper, we work with a stochastic first order oracle. This oracle, when queried at w samples
an instance (x, y) ∼ D and uses this to return an unbiased estimate of the gradient of L(w):

∇̂L(w) = −(y − 〈w,x〉) · x; E
[
∇̂L(w)

]
= ∇L(w).

3

JAIN, KAKADE, KIDAMBI, NETRAPALLI AND SIDFORD

We consider the stochastic gradient descent (SGD) method (Robbins and Monro, 1951), which
minimizes L(w) by following the direction opposite to this noisy stochastic gradient estimate, i.e.:

wt = wt−1 − γ · ∇̂Lt(wt−1), with, ∇̂Lt(wt−1) = −(yt − 〈wt−1,xt〉) · xt

with γ > 0 being a constant step size/learning rate; ∇̂Lt(wt−1) is the stochastic gradient evaluated
using the sample (xt, yt) ∼ D at wt−1. We consider two algorithmic primitives used in conjunction
with SGD namely, mini-batching and tail-averaging (also referred to as iterate/suffix averaging).

Mini-batching involves querying the gradient oracle several times and using the average of the
returned stochastic gradients to take a single step. That is,

wt = wt−1 − γ ·
(

1

b

b∑
i=1

∇̂Lt,i(wt−1)

)
,

where, b is the batch size. Note that at iteration t, mini-batching involves repeatedly querying the
stochastic gradient oracle at wt−1 for a total of b times. For every query i = 1, ..., b at iteration t, the
oracle samples an instance {xti, yti} and returns a stochastic gradient estimate ∇̂Lt,i(wt−1). These
estimates {∇̂Lt,i(wt−1)}bi=1 are averaged and then used to perform a single step from wt−1 to wt.
Mini-batching enables the possibility of parallelization owing to the use of cheap matrix-vector mul-
tiplication for computing stochastic gradient estimates. Furthermore, mini-batching allows for the
possible reduction of variance owing to the effect of averaging several stochastic gradient estimates.

Tail-averaging (or suffix averaging) refers to returning the average of the final few iterates of
a stochastic gradient method as a means to improve its variance properties (Ruppert, 1988; Polyak
and Juditsky, 1992). In particular, assuming the stochastic gradient method is run for n−steps,
tail-averaging involves returning

w̄ =
1

n− s

n∑
t=s+1

wt

as an estimate of w∗. Note that s can be interpreted as being cn, with c < 1 being some constant.
Typical excess risk bounds (or, generalization error bounds) for the stochastic approximation

problem involve the contribution of two error terms namely, (i) the bias, which refers to the depen-
dence on the starting conditions w0/initial excess risk L(w0)−L(w∗) and, (ii) the variance, which
refers to the dependence on the noise introduced by the use of a stochastic first order oracle.

1.1.4 OPTIMAL ERROR RATES FOR THE STOCHASTIC APPROXIMATION PROBLEM

Under standard regularity conditions often employed in the statistics literature, the minimax opti-
mal rate on the excess risk is achieved by the standard Empirical Risk Minimizer (or, Maximum
Likelihood Estimator) (Lehmann and Casella, 1998; van der Vaart, 2000). Given n i.i.d. samples
Sn = {xi, yi}ni=1 drawn from D, define the empirical risk minimization problem as obtaining

w∗n = arg min
w

1

2n

n∑
i=1

(yi − 〈w,xi〉)2.

Let us define the noise variance σ̂2
MLE to represent

σ̂2
MLE = E

[
‖∇̂L(w∗)‖2H−1

]
= Tr[H−1Σ].

4

PARALLELIZING STOCHASTIC GRADIENT DESCENT FOR LEAST SQUARES REGRESSION

The asymptotic minimax rate of the Empirical Risk Minimizer w∗n on every problem instance is

σ̂2
MLE/n (Lehmann and Casella, 1998; van der Vaart, 2000), i.e.,

lim
n→∞

ESn [L(w∗n)]− L(w∗)

σ̂2
MLE/n

= 1.

For the well-specified case (i.e., the additive noise case, where, Σ = σ2H), we have σ̂2
MLE = dσ2.

Seminal works of Ruppert (1988); Polyak and Juditsky (1992) prove that tail-averaged SGD, with
averaging from start, achieves the minimax rate for the well-specified case in the limit of n→∞.

Goal: In this paper, we seek to provide a non-asymptotic understanding of (a) mini-batching
and issues of learning rate versus batch-size, (b) tail-averaging, (c) the effect of the model mis-
specification, (d) a batch size doubling scheme for parallelizing statistical estimation, (e) a com-
munication efficient parallelization scheme namely, parameter-mixing/model averaging and (f) the
behavior of learning rate versus batch size on the final iterate of the mini-batch SGD procedure,
on the behavior of excess risk of SGD (in terms of both the bias and the variance terms) for the
streaming LSR problem, with the goal of achieving the minimax rate on every problem instance.

1.2 This Paper’s Contributions

The main contributions of this paper are as follows:

• This work shows that mini-batching yields near-linear parallelization speedups over the stan-
dard serial SGD (i.e. with batch size 1), as long as the mini-batch size is smaller than a
problem dependent quantity (which we denote by bthresh). When batch-sizes increase beyond
bthresh, mini-batching is inefficient (owing to the lack of serial updates), thus obtaining only
sub-linear speedups over mini-batching with a batch size bthresh. A by-product of this analysis
sheds light on how the step sizes naturally interpolate from ones used by standard serial SGD
(with batch size 1) to ones used by batch gradient descent.

• While the final iterate of SGD decays the bias at a geometric rate but does not obtain minimax
rates on the variance, the averaged iterate (Polyak and Juditsky, 1992; Défossez and Bach,
2015) decays the bias at a sublinear rate while achieving minimax rates on the variance. This
work rigorously shows that tail-averaging obtains the best of both worlds: decaying the bias
at a geometric rate and obtaining near-minimax rates (up to constants) on the variance. This
result corroborates with empirical findings (Merity et al., 2017) that indicate the benefits of
tail-averaging in general contexts such as training Long-Short term memory models (LSTMs).

• Next, this paper precisely characterizes the tradeoffs of learning rate versus batch size and its
effect on the excess risk of the final iterate of an SGD procedure, which provides theoretical
evidence to empirical observations (Goyal et al., 2017; Smith et al., 2017) described in the
context of deep learning and non-convex optimization.

• Combining the above results, this paper provides a mini-batching and tail-averaging version
of SGD that is highly parallelizable: the number of serial steps (which is a proxy for the
un-parallelizable time) of this algorithm nearly matches that of offline gradient descent and is
lower than the serial time of all existing streaming LSR algorithms. See Table 1 for compari-
son. We note that these results are obtained by providing a tight finite-sample analysis of the
effects of mini-batching and tail-averaging with large constant learning rate schemes.

5

JAIN, KAKADE, KIDAMBI, NETRAPALLI AND SIDFORD

• We provide a non-asymptotic analysis of parameter mixing/model averaging schemes for
the streaming LSR problem. Model averaging schemes are an attractive proposition for dis-
tributed learning owing to their communication efficient nature, and they are particularly ef-
fective in the regime when the estimation error (i.e. variance) is the dominating term in the
excess risk. Here, we characterize the excess risk (in terms of both the bias and variance) of
the model averaging procedure which sheds light on situations when it is an effective paral-
lelization scheme (in that when this scheme yields linear parallelization speedups).

• All the results in this paper are established for the general mis-specified case of the streaming
LSR problem. This establishes a fundamental difference in the behavior of SGD when deal-
ing with mis-specified models in contrast to existing analyses that deal with the well-specified
case. In particular, this analysis reveals a surprising insight that the maximal stepsizes (that
ensure minimax optimal rates) are a function of the noise properties of the mis-specified prob-
lem instance. The main takeaway of this analysis is that the maximal step sizes (that permit
achieving minimax rates) for the mis-specified case can be much lower than ones employed
in the well-specified case: indeed, a problem instance that yields such a separation between
the maximal learning rates for the well specified and the mis-specified case is presented.

The tool employed in obtaining these results generalizes the operator view of averaged SGD
with batch size 1 (Défossez and Bach, 2015) and a clear exposition of the bias-variance decomposi-
tion from Jain et al. (2017a) to obtain a sharp bound on the excess risk for mini-batch, tail-averaged
constant step-size SGD. Note that the work of Défossez and Bach (2015) does not establish mini-
max rates while working with large constant step sizes; this shortcoming is remedied by this paper
through a novel sharp analysis that rigorously establishes minimax optimal rates while working with
large constant step sizes. Furthermore, note that while straightforward operator norm bounds of the
matrix operators suffice to show convergence of the SGD method, they turn out to be pretty loose
bounds (particularly for bounding the variance). To tighten these bounds, this paper presents a fine
grained analysis that bounds the trace of the SGD operators when applied to the relevant matrices.
The bounds of this paper and its advantages compared to existing algorithms is indicated in table 1.

While this paper’s results focus on strongly convex streaming least square regression, we believe
that our techniques and results extend more broadly. This paper aims to serve as the basis for future
work on analyzing SGD and parallelization of large scale algorithms for machine learning.

Paper organization: Section 2 presents the related work. Section 3 presents the main results
of this work. Section 4 outlines the proof techniques. Section 5 presents experimental simulations
to demonstrate the practical utility of the established mini-batching limits and tail-averaging. The
proofs of all the claims and theorems are provided in the appendix.

2. Related Work

Stochastic approximation has been the focus of much efforts starting with the work of Robbins
and Monro (1951), and has been analyzed in subsequent works including Nemirovsky and Yudin
(1983); Kushner and Yin (1987, 2003). These questions and the related issues of computation versus
statistics tradeoffs have received renewed attention owing to their relevance in the context of modern
large scale machine learning, as highlighted by the work of Bottou and Bousquet (2007).

Geometric Rates on initial error: For offline optimization with strongly convex objectives, gradi-
ent descent (Cauchy, 1847) and fast gradient methods (Polyak, 1964; Nesterov, 1983) indicate linear

6

PARALLELIZING STOCHASTIC GRADIENT DESCENT FOR LEAST SQUARES REGRESSION

Algorithm Final error Runtime/Work Depth Streaming Mis-specified
Gradient Descent
(Cauchy, 1847)

O
(
σ2d
n

)
κnd log n·∆0

σ2d
κ log n·∆0

σ2d
× X

SDCA
(Shalev-Shwartz and Zhang, 2012)

O
(
σ2d
n

)
(n+ R2

λmin
d)d · log n·∆0

σ2d
(n+ R2

λmin
d) · log n·∆0

σ2d
× X

Averaged SGD
(Défossez and Bach, 2015)1 O

(
1

λ2minn
2γ2
·∆0 +σ2d

n

)
nd n X ×

Streaming SVRG
with initial error oracle 2

(Frostig et al., 2015b)
O
(

exp
(
−nλmin(H)

R2

)
·∆0

)
+ σ2d

n nd (R2

λmin(H)) · log n·∆0
σ2d X X

Algorithm 2
(this paper)

O
((

R2t
‖H‖2n

) t
κ log(κ) ·∆0 + σ2d

n

)
nd

t
t−κ log(κ) · κ log(κ)·
log
(
n·∆0
σ2d
· R2t
‖H‖2

) X X

Algorithm 2
with initial error oracle

(this paper)
O
(

exp
(
− nλmin(H)
R2·log(κ)

)
·∆0 + σ2d

n

)
nd κ log(κ) log n·∆0

σ2d
X X

Table 1: Comparison of Algorithm 2 with existing algorithms including offline methods such as
Gradient Descent, SDCA and streaming methods such as averaged SGD, streaming SVRG given
n samples for LSR, with ∆0 = L(w0) − L(w∗). The error of offline methods are obtained by
running these algorithms so that their final error is O(σ2d/n) (which is the minimax rate for the
well-specified case). The table is written assuming the additive noise/well specified case; for algo-
rithms which support the mis-specified case, these bounds can be appropriately modified. Refer to
Section 1.1 for the definitions of all quantities. We do not consider accelerated variants in this table.
Note that the accelerated variants have served to improve running times of the offline algorithms,
with the sole exception of Jain et al. (2017b). For Algorithm 2, we require t ≥ 24κ log(κ). Finally,
note that streaming SVRG does not conform to the first order oracle model (Agarwal et al. (2012)).

convergence. However, a multiplicative coupling of number of samples n and condition number in
the computational effort is a major drawback in the large scale context. These limitations are ad-
dressed through developments in offline stochastic methods (Roux et al., 2012; Shalev-Shwartz and
Zhang, 2012; Johnson and Zhang, 2013; Defazio et al., 2014) and their accelerated variants (Shalev-
Shwartz and Zhang, 2013a; Frostig et al., 2015a; Lin et al., 2015; Defazio, 2016; Allen-Zhu, 2016)
which offer near linear running time in the number of samples and condition number with log(n)
passes over the dataset stored in memory.

For stochastic approximation with strongly convex objectives, SGD offers linear rates on the
bias without achieving minimax rates on the variance (Bach and Moulines, 2011; Needell et al.,
2016; Bottou et al., 2016). In contrast, iterate averaged SGD (Ruppert, 1988; Polyak and Juditsky,
1992) offers a sub-linearO(1/n2) rate on the bias (Défossez and Bach, 2015; Dieuleveut and Bach,
2015) while achieving minimax rates on the variance. Note that all these results consider the well-
specified (additive noise) case when stating the generalization error bounds. We are unaware of any
results that provide sharp non-asymptotic analysis of SGD and the related step size issues in the
general mis-specified case. Streaming SVRG (Frostig et al., 2015b) offers a geometric rate on the
bias and optimal statistical error rates; we will return to a discussion of Streaming SVRG below. In
terms of methods faster than SGD, our own effort (Jain et al., 2017b) provides the first accelerated
stochastic approximation method that improves over SGD on every problem instance.

Parallelization of Machine Learning algorithms: In offline optimization, Bradley et al. (2011)
study parallel co-ordinate descent for sparse optimization. Parallelization via mini-batching has
been studied in Cotter et al. (2011); Takác et al. (2013); Shalev-Shwartz and Zhang (2013b); Takác

1. Défossez and Bach (2015)’s bound holds with learning rate γ → 0. This work supports these bounds with γ = 1/R2.
2. Initial error oracle provides initial excess risk ∆0 = L(w0)− L(w∗) and noise level σ2.

7

JAIN, KAKADE, KIDAMBI, NETRAPALLI AND SIDFORD

et al. (2015). These results compare worst case upper bounds on the training error to argue par-
allelization speedups, thus providing weak upper bounds on mini-batching limits. Parameter mix-
ing/Model averaging (Mann et al., 2009) guarantees linear parallelization speedups on the variance
but do not improve the bias. Approaches that attempt to re-conciliate communication-computation
tradeoffs (Li et al., 2014) indicate increased mini-batching hurts convergence, and this is likely an ar-
tifact of comparing weak upper bounds. Hogwild (Niu et al., 2011) indicates near-linear paralleliza-
tion speedups in the harder asynchronous optimization setting, relying on specific input structures
like hard sparsity; these bounds are obtained by comparing worst case upper bounds on training
error. Refer to oracle models paragraph below for details on these worst case upper bounds.

In the stochastic approximation context, Dekel et al. (2012) study mini-batching in an oracle
model that assumes bounded variance of stochastic gradients. These results compare worst case
bounds on the generalization error to prescribe mini-batching limits, which renders these limits
to be too loose (as mentioned in their paper). Our paper’s mini-batching result offers guidelines on
batch sizes for linear parallelization speedups by comparing generalization bounds that hold on a per
problem basis as opposed to worst case bounds. Refer to the paragraph on oracle models for more
details. Finally, parameter mixing in the stochastic approximation context (Rosenblatt and Nadler,
2014; Zhang et al., 2015) offers linear parallelization speedups on the variance error while not im-
proving the bias (Rosenblatt and Nadler, 2014). Finally, Duchi et al. (2015) guarantees asymptotic
optimality of asynchronous optimization with linear parallelization speedups on the variance.

Oracle models and optimality: In stochastic approximation, there are at least two lines of
thought with regards to oracle models and notions of optimality. One line involves considering
the case of bounded noise (Kushner and Yin, 2003; Kushner and Clark, 1978), or, bounded variance
of the stochastic gradient, which in the least squares setting amounts to assuming bounds on

∇̂L(w)−∇L(w) = (xx> −H)(w −w∗)− εx.

This implies additional assumptions are required on compactness of the parameter set (which are
enforced via projection steps); such assumptions do not hold in practical implementation of stochas-
tic gradient methods and in the setting considered by this paper. Thus, the mini-batching thresholds
in Cotter et al. (2011); Niu et al. (2011); Dekel et al. (2012); Li et al. (2014) present bounds in the
above worst-case oracle model by comparing weak upper bounds on the training/test error.

Another view of optimality (Anbar, 1971; Fabian, 1973) considers an objective where the goal
is to match the rate of the statistically optimal estimator (referred to as the M−estimator) on every
problem instance. Polyak and Juditsky (1992) consider this oracle model for the LSR problem and
prove that the distribution of the averaged SGD estimator on every problem matches that of the
M−estimator under certain regularity conditions (Lehmann and Casella, 1998). A recent line of
work (Bach and Moulines, 2013; Frostig et al., 2015b) aims to provide non-asymptotic guarantees
for SGD and its variants in this oracle model. This paper aims to understand mini-batching and
other computational aspects of parallelizing stochastic approximation on every problem instance by
working in this practically relevant oracle model. Refer to Jain et al. (2017b) for more details.

Comparing offline and streaming algorithms: Firstly, offline algorithms require performing
multiple passes over a dataset stored in memory. Note that results and convergence rates estab-
lished in the finite sum/offline optimization context do not translate to rates on the generalization
error. Indeed, these results require going though concentration and a generalization error analysis
for this translation to occur. Refer to Frostig et al. (2015b) for more details.

8

PARALLELIZING STOCHASTIC GRADIENT DESCENT FOR LEAST SQUARES REGRESSION

Comparison to streaming SVRG: Streaming SVRG does not function in the stochastic first order
oracle model (Agarwal et al., 2012) satisfied by SGD as run in practice since it requires gradients
at two points from a single sample (Frostig et al., 2015b). Furthermore, in contrast to this work, its
depth bounds depend on a stronger fourth moment property due to lack of mini-batching.

3. Main Results

We begin by writing out the behavior of the learning rate as a function of batch size.
Maximal Learning Rates: We write out a characterization of the largest learning rate γdivb,max

that permits the convergence of the mini-batch Stochastic Gradient Descent update. The following
generalized eigenvector problem allows for the computation of γdivb,max:

2

γdivb,max
= sup

W∈S(d)

〈W,MW〉+ (b− 1) · Tr WHWH

b · Tr WHW
. (2)

This characterization generalizes the divergent stepsize characterization of Défossez and Bach (2015)
for batch sizes > 1. The derivation of the above characterization can be found in appendix A.5.1.
We note that this characterization sheds light on how the divergent learning rates interpolate from
batch size 1 (which is≤ 2/Tr H) to the batch gradient descent learning rate (setting b to∞), which
turns out to be 2/λmax(H). A property of γdivb,max worth noting is that it does not depend on properties
of the noise (Σ), and depends only on the second and fourth moment properties of the covariate x.

We note that in this paper, our interest does not lie in the non-divergent stepsizes 0 ≤ γ ≤ γdivb,max,
but in the set of (maximal) stepsizes 0 ≤ γ ≤ γb,max (< γdivb,max) that are sufficient to guarantee

minimax error rates of O(σ̂2
MLE/n). For the LSR problem, these maximal learning rates γb,max are:

γb,max
def
=

2b

R2 · ρm + (b− 1)‖H‖2
, where, ρm

def
=

d‖(HL +HR)−1Σ‖2
Tr ((HL +HR)−1Σ)

. (3)

Note that ρm ≥ 1 captures a notion of “degree” of model mismatch, and how it impacts the learning
rate γb,max; for the additive noise/well specified/homoscedastic case, ρm = 1. Thus, for problems
whereR2 and ‖H‖2 is held the same, the well-specified variant of the LSR problem admits a strictly
larger learning rate (that achieves minimax rates on the variance) compared to the mis-specified case.
Furthermore, in stark contrast to the well-specified case, γb,max in the mis-specified case depends
not just on the second and fourth moment properties of the input, but also on the noise covariance
Σ. We show that our characterization of γb,max in the mis-specified case is tight in that there exist
problem instances where γb,max (equation 3) is off the maximal learning rate in the well-specified
case (obtained by setting ρm = 1 in equation 3) by a factor of the dimension d and γb,max is still the
largest step size yielding minimax rates. We also note that there could exist mis-specified problem
instances where a step size γ exceeding γb,max achieves minimax rates. Characterizing the maximal
learning rate that achieves minimax rates on every mis-specified problem instance is an interesting
open question. We return to the characterization of γb,max in section 3.1.

Note that this paper characterizes the performance of Algorithms 1 and 2 when run with a step
size γ ≤ γb,max

2 . The proofs turn out to be significantly complicated for γ ∈
(γb,max

2 , γb,max
)

and
can be found in the initial version of this paper Jain et al. (2016b) and these were obtained through
generalizing the operator view of analyzing SGD methods introduced by Défossez and Bach (2015).
Note that for the well-specified case, this paper’s results hold for the same learning rate regimes as

9

JAIN, KAKADE, KIDAMBI, NETRAPALLI AND SIDFORD

Algorithm 1 Minibatch-TailAveraging-SGD

Input: Initial point w0, stepsize γ, minibatch size b, initial iterations s, total samples n.
1: for t = 1, 2, .., bnb c do
2: Sample “b” tuples {(xti, yti)}bi=1 ∼ Db

3: wt ← wt−1 − γ
b

∑b
i=1 ∇̂Lti(wt−1)

Output: w̄ = 1
bn
b
c−s

∑
i>s wi

Bach and Moulines (2013); Frostig et al. (2015b), that are known to admit statistical optimality. We
also note that in the additive noise case, we are unaware of a separation between γb,max and γdivb,max;
but as we will see, this is not of much consequence given that there exists a strict separation in the
learning rate γb,max between the well-specified and mis-specified problem instances.

Finally, we note that the stochastic process viewpoint allows us to work with learning rates that
are significantly larger compared to standard analyses that use function value contraction e.g., Bot-
tou et al. (2016, Theorem 4.6). To the best of our knowledge, all existing works establishing mini-
batching thresholds in the stochastic optimization setting e.g., Dekel et al. (2012) work in the worst
case (bounded noise) oracle model, with small step sizes, and draw conclusions on mini-batch
thresholds and effects by comparing weak upper bounds on the excess risk.

Mini-Batched Tail-Averaged SGD for the mis-specified case: We present our main result, which
is the error bound for mini-batch tail-averaged SGD for the general mis-specified LSR problem.

Theorem 1 Consider the general mis-specified case of the LSR problem 1. Running Algorithm 1
with a batch size b ≥ 1, step size γ ≤ γb,max/2, number of unaveraged iterations s, total number of
samples n, we obtain an iterate w satisfying the following excess risk bound:

E [L(w)]− L(w∗) ≤ 2

γ2µ2
· (1− γµ)s(

n
b − s

)2 · (L(w0)− L(w∗)
)

+ 4 ·
σ̂2

MLE
b · (nb − s)

. (4)

In particular, with γ = γb,max/2, we have the following excess risk bound:

L(w)− L(w∗) ≤
2κ2

b(
n
b − s

)2 exp

(
− s

κb

)(
L(w0)− L(w∗)

)
︸ ︷︷ ︸

T1

+ 4 ·
σ̂2

MLE
b(nb − s)︸ ︷︷ ︸

T2

,

with κb =
R2·ρm+(b−1)‖H‖2

bλmin(H) .

Note that the above theorem indicates that the excess risk is composed of two terms, namely the bias
(T1), which represents the dependence on the initial conditions w0 and the variance (T2), which
depends on the statistical noise (σ̂2

MLE); the bias decays geometrically during the “s” unaveraged
iterations while the variance is minimax optimal (up to constants) provided s = O(n). We will
understand this geometric decay on the bias more precisely.

Effect of tail-averaging SGD’s iterates: To understand tail-averaging, we specialize theorem 1
with a batch size 1 to the well-specified case, i.e., where, Σ = σ2H, σ̂2

MLE = dσ2 and ρm = 1.

10

PARALLELIZING STOCHASTIC GRADIENT DESCENT FOR LEAST SQUARES REGRESSION

Corollary 2 Consider the well-specified (additive noise) case of the streaming LSR problem (Σ =
σ2H), with a batch size b = 1. With a learning rate γ =

γ1,max
2 = 1

R2 , unaveraged iterations s and
total samples n, we have the following excess risk bound:

L(w)− L(w∗) ≤ 2κ2
1

(n− s)2 exp

(
− s

κ1

)
{L(w0)− L(w∗)}︸ ︷︷ ︸

T1

+ 4 · dσ
2

n− s︸ ︷︷ ︸
T2

,where, κ1 = R2/µ.

Tail-averaging allows for a geometric decay of the initial error T1, while tail-averaging over s = c·n
(with c < 1), allows for the variance T2 to be minimax optimal (up to constants). We note that the
work of Merity et al. (2017), which studies empirical optimization for training non-convex sequence
models (e.g. Long-Short term memory models (LSTMs)) also indicate the benefits of tail-averaging.

Note that this particular case (i.e. additive noise/well-specified case with batch size 1) with tail-
averaging from start (s = 0) is precisely the setting considered in Défossez and Bach (2015), and
their result (a) achieves a sub-linear O(1/n2) rate on the bias and (b) their variance term is shown
to be minimax optimal only with learning rates that approach zero (i.e. γ → 0).

3.1 Effects Of Learning Rate, Batch Size and The Role of Mis-specified Models

We now consider the interplay of learning rate, batch size and how model mis-specification plays
into the mix. Towards this, we split this section into three parts: (a) understanding learning rate
versus mini-batch size in the well-specified case, (b) how model mis-specification leads to a signif-
icant difference in the behavior of SGD and (c) how model mis-specification manifests itself when
considered in tradeoff between the learning rate versus batch-size.

Effects of mini-batching in the well-specified case: As mentioned previously, in the well-specified
case, Σ = σ2H and ρm = 1. For this case, equation (3) can be specialized as:

γb,max =
2b

R2 + (b− 1)‖H‖2
. (5)

Observe that the learning rate γb,max grows linearly as a function of the batch size b until a batch size
b = bthresh = 1 + R2

‖H‖2
. In the regime of batch sizes 1 < b ≤ bthresh, the resulting mini-batch SGD

updates offer near-linear parallelization speedups over SGD with a batch size of 1. Furthermore,
increasing batch sizes beyond bthresh leads to sub-linear increase in the learning rate, and this implies
that we lose the linear parallelization speedup offered by mini-batching with a batch-size b ≤ bthresh.
Losing the linear parallelization is indicative of the following: consider the case when we double
batch-size from b > bthresh to 2b. Suppose the bias error T1 is larger than the variance T2, we require
performing the same number of updates with a batch size 2b as we did with a batch size b to achieve a
similar excess risk bound; this implies we are inefficient in terms of number of samples (or, number
of gradient computations) used to achieve a given excess risk. When the estimation error (T2)
dominates the approximation error (T1), we note that larger batch sizes b (with b > bthresh) serves to
improve the variance term, thus allowing linear parallelization speedups via mini-batching.

Note that with a batch size of b = bthresh, the learning rate ofO(1/λmax(H)) employed by mini-
batch SGD resembles ones used by batch gradient descent. This mini-batching characterization
thus allows for understanding tradeoffs of learning rate versus batch size. This behavior is noted
in practice (empirically, but with no underlying rigorous theory) for a variety of problems (going
beyond linear regression/convex optimization), in the deep learning context (Goyal et al., 2017).

11

JAIN, KAKADE, KIDAMBI, NETRAPALLI AND SIDFORD

SGD’s behaviour with mis-specified models: Next, this paper attempts to shed light on some
fundamental differences in the behavior of SGD when dealing with the mis-specified case (as against
the well-specified case, which is the focus of existing results (Polyak and Juditsky, 1992; Bach and
Moulines, 2013; Dieuleveut and Bach, 2015; Défossez and Bach, 2015)) of the LSR problem. This
paper’s results in general mis-specified case with batch sizes b > 1 specialize to existing results
additive noise/well-specified case with batch size 1 (Bach and Moulines, 2013; Dieuleveut and
Bach, 2015). To understand these issues better, we consider γb,max in equation 3 with a batch size 1:

γ1,max =
2

R2 · ρm
. (6)

Recounting that ρm ≥ 1, observe that the mis-specified case admits a maximal learning rate (with a
view of achieving minimax rates) that is at most as large as the additive noise/well-specified case,
where ρm = 1. Note that when Tr

(
HL +HR)−1Σ

)
is nearly the same (say, upto constants) as the

spectral norm
∥∥HL +HR)−1Σ

∥∥
2
, then ρm = O(d) and γ1,max = O(1

R2d
). This implies that there

exist mis-specified models whose noise properties (captured through the noise covariance matrix Σ)
prevents SGD from working with large learning rates of O(1/R2) used in the well-specified case.

This notion is formalized in the following lemma, which presents an instance working with the
mis-specified case, wherein, SGD cannot employ large learning rates used by the well-specified
variant of the problem, while retaining minimax optimality. This behavior is in stark contrast to al-
gorithms such as streaming SVRG (Frostig et al. (2015b)), which work with the same large learning
rates in the mis-specified case as in the well-specified case, while guaranteeing minimax optimal
rates. The proof of lemma 3 can be found in the appendix A.5.6.

Lemma 3 Consider a Streaming LSR example with Gaussian covariates (i.e. x ∼ N (0,H)) with
a diagonal second moment matrix H that is defined by:

Hii =

{
1 if i = 1

1/d if i > 1
.

Further, let the noise covariance matrix Σ be diagonal as well, with the following entries:

Σii =

{
1 if i = 1

1/[(d− 1)d] if i > 1
.

For this problem instance, γ1,max ≤ 4
(d+2)(1+ 1

d
)

is necessary for retaining minimax rates, while the

well-specified variant of this problem permits a maximal learning rate ≤ d
(d+2)(1+ 1

d
)
, thus implying

an O(d) separation in learning rates between the well-specified and mis-specified case.

Learning rate versus mini-batch size issues in the mis-specified case: Noting that for the batch
size 1, as mentioned in equation 6, the learning rate for the mis-specified case in the most optimistic
situation (when ρm = constant) can be atmost as large as the learning rate for the well-specified
case. Furthermore, we also know from the observations in the mis-specified case that the learning
rate tends to grow linearly as a function of the batch size until it hits the limit of O(1/λmax(H)).
Combining these observations, we will revisit equation 3, which says:

γb,max
def
=

2b

R2 · ρm + (b− 1)‖H‖2
.

12

PARALLELIZING STOCHASTIC GRADIENT DESCENT FOR LEAST SQUARES REGRESSION

This implies that the mini-batching size threshold bthresh can be expressed as:

bthresh
def
= 1 +

R2

‖H‖2
· ρm. (7)

When 1 < b ≤ bthresh, we achieve near linear parallelization speedups over running SGD with a
batch size 1. Note that this characterization specializes to the batch size threshold bthresh presented
in the well-specified case (i.e. where ρm = 1). Furthermore, this batch size threshold (in the mis-
specified case) could be much larger than the threshold in the well-specified case, which is expected
since the learning rate for a batch size 1 in the mis-specified case can potentially be much smaller
than ones used in the well specified case. Furthermore, with a batch size bthresh, note that the learning
rate is O(1/λmax(H)), resembling ones used with batch gradient descent.

Behavior of the final-iterate: We now present the excess risk bound offered by the final iterate
of a stochastic gradient scheme. This result is of much practical relevance in the context of mod-
ern machine learning and deep learning, where final iterate is often used, and where the tradeoffs
between learning rate and batch sizes are discussed in great detail (Smith et al., 2017). For this dis-
cussion, we consider the well-specified case to present our results owing to its ease in presentation.
Our framework and results are generic for translating these observations to the mis-specified case.

Lemma 4 Consider the well-specified case of the LSR problem. Running Algorithm 1 with a step
size γ ≤ γb,max

2 = b
R2+(b−1)‖H‖2 , batch size b, total samples n and with no iterate averaging (i.e.

with s = n− 1) yields a result wbn/bc that satisfies the following excess risk bound:

E
[
L(wbn/bc)

]
− L(w∗) ≤ κb(1− γµ)bn/bc

(
L(w0)− L(w∗)

)
+
γ

b
σ2 Tr (H), (8)

where κb
def
= R2+(b−1)‖H‖2

bµ . In particular, with a step size γ =
γb,max

2 = b
R2+(b−1)‖H‖2 , we have:

E
[
L(wbn/bc)

]
− L(w∗) ≤ κb · e

− bn/bc
κb ·

(
L(w0)− L(w∗)

)
+

σ2 Tr (H)

R2 + (b− 1)‖H‖2
. (9)

Remarks: Noting that Tr (H) ≤ R2, the variance of the final iterate with batch size 1 is≤ σ2. Next,
with a batch size b = bthresh, the final iterate has a variance ≤ σ2/2; at cursory glance this may
appear interesting, in that by mini-batching, we do not appear to gain much in terms of the variance.
This is unsurprising given that in the regime of b ≤ bthresh, the γb,max grows linearly, thus nullifying
the effect of averaging multiple stochastic gradients. Furthermore, this follows in accordance with
the linear parallelization speedups offered by a batch size 1 < b ≤ bthresh. Note however, once
b > bthresh, any subsequent increase in batch sizes allows the variance of the final iterate to behave
as O(σ2/b). Finally, we note that once b > bthresh, doubling batch sizes b (in equation 9) possesses
the same effect as halving the learning rate from γ to γ/2 (as seen from equation 8), providing
theoretical rigor to issues explored in training practical deep models (Smith et al., 2017).

3.2 Parallelization via Doubling Batch Sizes and Model Averaging

We now elaborate on a highly parallelizable stochastic gradient method, which is epoch based and
relies on doubling batch sizes across epochs to yield an algorithm that offers the same generalization
error as that of offline (batch) gradient descent in nearly the same number of serial updates as

13

JAIN, KAKADE, KIDAMBI, NETRAPALLI AND SIDFORD

Algorithm 2 MinibatchDoublingPartialAveragingSGD

Input: Initial point w0, stepsize γ, initial minibatch size b, number of iterations in each epoch s,
number of samples n.

1: /*Run logarithmic number of epochs where each epoch runs t iterations of minibatch SGD
(with out averaging). Double minibatch size after each epoch.*/

2: for ` = 1, 2, · · · , log n
bt − 1 do

3: b` ← 2`−1b
4: w` ←Minibatch-TailAveraging-SGD(w`−1, γ, b`, t− 1, t · b`)
5: /*For the last epoch, run tail averaged minibatch SGD with initial point wt, stepsize γ, mini-

batch size 2log n
bt
−1 · b = n/2t, number of initial iterations t/2 and number of samples n/2.*/

6: w←Minibatch-TailAveraging-SGD(ws, γ, n/2t, t/2, n/2)
Output: w

batch gradient descent, while being a streaming algorithm that does not require storing the entire
dataset in memory. Following this, we present a non-asymptotic bound for parameter mixing/model
averaging, which is a communication efficient parallelization scheme that has favorable properties
when the estimation error (i.e. variance) is the dominating term of the excess risk.

(Nearly) Matching the depth of Batch Gradient Descent: The result of theorem 1 establishes
a scalar generalization error bound of Algorithm 1 for the general mis-specified case of LSR and
showed that the depth (number of sequential updates in our algorithm) is decreased to n/b. This
section builds upon this result to present a simple and intuitive doubling based streaming algorithm
that works in epochs and processes a total of n/2 points. In each epoch, the minibatch size is
increased by a factor of 2 while applying Algorithm 1 (with no tail-averaging) with twice as many
samples as the previous epoch. After running over n/2 samples using this epoch based approach, we
run Algorithm 1 (with tail-averaging) with the remaining n/2 points. Intuitively, each of the epoch
decays the bias of the previous epoch linearly and halves the statistical error (owing to doubling of
mini-batch sizes). The final tail-averaging phase ensures that the variance is small.

The next theorem formalizes this intuition and shows Algorithm 2 improves the depth exponen-
tially from n/bthresh to O

(
κ log(dκ) log(n{L(w0)− L(w∗)}/σ̂2

MLE)
)

in the presence of an error

oracle that provides us with the initial excess risk L(w0)− L(w∗) and the noise level σ̂2
MLE.

Theorem 5 Consider the general mis-specified case of LSR. Suppose in Algorithm 2, we use initial
batchsize of b = bthresh, stepsize γ =

γb,max
2 and number of iterations in each epoch being t ≥

24κ log(κ), we obtain the following excess risk bound on w:

E [L(w)]− L(w∗) ≤
(

2bt

n

) t
12κ log(κ)

·
(
L(w0)− L(w∗)

)
+ 80

σ̂2
MLE
n

.

Remarks: The final error again has two parts: the bias term that depends on the initial error
L(w0) − L(w∗) and the variance term that depends on the statistical noise σ̂2

MLE. Note that the

variance error decays at a rate of O
(
σ̂2

MLE/n
)

which is minimax optimal up to constant factors.
Algorithm 2 decays the bias at a superpolynomial rate by choosing t large enough. If Algo-

rithm 2 has access to an initial error oracle that provides L(w0) − L(w∗) and σ̂2
MLE, we can run

14

PARALLELIZING STOCHASTIC GRADIENT DESCENT FOR LEAST SQUARES REGRESSION

Algorithm 2 with a batch size bthresh until the excess risk drops to the noise level σ̂2
MLE and subse-

quently begin doubling the batch size. Such an algorithm indeed gives geometric convergence with
a generalization error bound as:

E [L(w)]− L(w∗) ≤ exp

(
−(

nλmin

R2 · log(κ)
) · 1

ρm

)
{L(w0)− L(w∗)}+ 80

σ̂2
MLE

n
,

with a depth of O
(
κ log(dκ) log n{L(w0)−L(w∗)}

σ̂2
MLE

)
. The proof of this claim follows relatively

straightforwardly from the proof of Theorem 5. We note that this depth nearly matches (up to log
factors), the depth of standard offline gradient descent despite being a streaming algorithm. This
algorithm (aside from tail-averaging in the final epoch) resembles empirically effective schemes
proposed in the context of training deep models (Smith et al., 2017).

Parameter Mixing/Model-Averaging: We consider a communication efficient method for dis-
tributed optimization which involves running mini-batch tail-averaged SGD independently on P
separate machines (each containing their own independent samples) and averaging the resulting
solution estimates. This is a well studied scheme for distributed optimization (Mann et al., 2009;
Zinkevich et al., 2011; Rosenblatt and Nadler, 2014; Zhang et al., 2015). As mentioned in Rosen-
blatt and Nadler (2014), these schemes do not appear to offer improvements in the bias error while
offering near linear parallelization speedups on the variance. We provide here a non-asymptotic
characterization of the behavior of model averaging for the general mis-specified LSR problem.

Theorem 6 Consider running Algorithm (1), i.e., mini-batch tail-averaged SGD (for the mis-specified
LSR problem (1)) independently in P machines, each of which contains N/P samples. Let al-
gorithm (1) be run with a batch size b, learning rate γ ≤ γb,max/2, tail-averaging begun after
s−iterations, and let each of these machines output {wi}Pi=1. The excess risk of the model-averaged
estimator w = 1

P

∑P
i=1 wi is upper bounded as:

E [L(w)]− L(w∗) ≤ (1− γµ)s

γ2µ2
(
n
P ·b − s

)2 · 2 + (P − 1)(1− γµ)s

P
·
(
L(w0)− L(w∗)

)

+ 4 ·
σ̂2

MLE

P · b ·
(
n
P ·b − s

) .
In particular, with γ = γb,max/2, we have the following excess risk bound:

E [L(w)]− L(w∗) ≤ exp

(
− s

κb

)
·

κ2
b(

n
P ·b − s

)2 · 2 + (P − 1) · exp(−s/κb)
P

·
(
L(w0)− L(w∗)

)
+ 4 ·

σ̂2
MLE

P · b ·
(
n
P ·b − s

) .
Remarks: We note that during the iterate-averaged phase (i.e. t > s), there is no reduction of the
bias, whereas, during the (initial) unaveraged iterations, once s > κb log(P), we achieve linear
speedups on the bias. We note that model averaging offers linear parallelization speedups on the
variance error. Furthermore, when the bias reduces to the noise level, model averaging offers linear
parallelization speedups on the overall excess risk. Note that if s = c · n/(P · b), with c < 1,
then the excess risk is minimax optimal. Finally, we note that the theorem can be generalized in a
straightforward manner to the situation when each machine has different number of examples.

15

JAIN, KAKADE, KIDAMBI, NETRAPALLI AND SIDFORD

4. Proof Outline

We present here the framework for obtaining the results described in this paper; the framework
has been introduced in the work of Défossez and Bach (2015). Towards this purpose, we begin by
introducing some notations. We begin by defining the centered estimate ηt as:

ηt
def
= wt −w∗.

Mini-batch SGD (with a batch size b) moves ηt−1 to ηt using the following update:

ηt =

(
I− γ

b
·

b∑
i=1

xti ⊗ xti

)
ηt−1 +

γ

b

b∑
i=1

εtixti = (I− γĤtb)ηt−1 + γ · ξtb,

where, Ĥtb = 1
b

∑b
i=1 xti ⊗ xti and ξtb = 1

b

∑b
i=1 εtixti. Next, the tail-averaged iterate x̄s,n

is associated with its own centered estimate η̄s,n = 1
n−s

∑n
i=s+1 ηi. The analysis proceeds by

tracking the covariance of the centered estimates ηt, i.e. by tracking E [ηt ⊗ ηt].
Bias-Variance decomposition: The main results of this paper are derived by going through

the bias-variance decomposition, which is well known in the context of Stochastic Approxima-
tion (Bach and Moulines, 2011, 2013; Frostig et al., 2015b). The bias-variance decomposition
allows for us to bound the generalization error by analyzing two sub-problems, namely, (i) The bias
sub-problem, which analyzes the noiseless/realizable (or the consistent linear system) problem, by
setting the noise εti = 0 ∀ t, i, ηbias

0 = η0 and (ii) the variance sub-problem, which involves start-
ing at the solution, i.e., ηvariance

0 = 0 and allowing the noise εti to drive the resulting process. The
corresponding tail-averaged iterates are associated with their centered estimates η̄bias

s,n and η̄variance
s,n

respectively. The bias-variance decomposition for the square loss establishes the following relation:

E
[
η̄s,n ⊗ η̄s,n

]
� 2 ·

(
E
[
η̄bias
s,n ⊗ η̄bias

s,n

]
+ E

[
η̄variance
s,n ⊗ η̄variance

s,n

])
. (10)

Using the bias-variance decomposition, we obtain an estimate of the generalization error as

E [L(x̄s,n)]− L(x∗) = 1
2 · 〈H,E

[
η̄s,n ⊗ η̄s,n

]
〉

≤ Tr
(
H · E

[
η̄bias
s,n ⊗ η̄bias

s,n

])
+ Tr

(
H · E

[
η̄variance
s,n ⊗ η̄variance

s,n

])
.

We now provide a few lemmas that help us bound the behavior of the bias and variance error.

Lemma 7 With a batch size b, step size γ = γb,max/2, the centered bias estimate ηbias
t exhibits the

following per step contraction:

〈I,E
[
ηbias
t ⊗ ηbias

t

]
〉 ≤ cκb〈I,E

[
ηbias
t−1 ⊗ ηbias

t−1

]
〉,

where, cκb = 1− 1/κb, where κb = R2·ρm+(b−1)‖H‖2
bµ .

Lemma (7) ensures that the bias decays at a geometric rate during the burn-in iterations when the
iterates are not averaged; this rate holds only when the excess risk is larger than the noise level σ2.

We now turn to bounding the variance error. It turns out that it suffices to understand the behav-
ior of limiting centered variance E

[
ηvariance
∞ ⊗ ηvariance

∞
]
.

16

PARALLELIZING STOCHASTIC GRADIENT DESCENT FOR LEAST SQUARES REGRESSION

100 101 102 103 104

Depth

10-6

10-5

10-4

10-3

10-2

10-1

100

101
(E

xc
es

s)
 B

ia
s

R
is

k
b=1 b=3 b=11 b=22 b=50

(a) Bias Risk

100 101 102 103 104

Depth

10-4

10-3

10-2

10-1

(E
xc

es
s)

 V
ar

ia
nc

e
R

is
k

b=1 b=3 b=11 b=22 b=50

(b) Variance Risk

100 101 102 103 104

Depth

10-4

10-3

10-2

10-1

100

101

T
ot

al
 (

E
xc

es
s)

 R
is

k

b=1 b=3 b=11 b=22 b=50

(c) Total Risk

Figure 1: Effect of increased batch sizes on the Algorithm’s generalization error. The variance de-
creases monotonically with increasing batch size. The bias indicates that the rate of decay increases
till the optimal bthresh. With b = bthresh, mini-batch SGD obtains the same generalization error as
batchsize 1 using smaller number of iterations (i.e. smaller depth) compared to larger batch sizes.

Lemma 8 Consider the well-specified case of the streaming LSR problem. With a batch size b, step
size γ = γb,max/2, the limiting centered variance ηvariance

∞ has an expected covariance that is upper
bounded in a psd sense as:

E
[
ηvariance
∞ ⊗ ηvariance

∞
]
� 1

R2 + (b− 1)‖H‖2
· σ2 · I.

Characterizing the behavior of the final iterate is crucial towards obtaining bounds on the behavior
of the tail-averaged iterate. In particular, the final iterate having a excess variance risk O(σ2) (as is
the case with lemma (8)) appears crucial towards achieving minimax rates of the averaged iterate.

5. Experimental Simulations

We conduct experiments using a synthetic example to illustrate the implications of our theoretical
results on mini-batching and tail-averaging. The data is sampled from a 50− dimensional Gaus-
sian with eigenvalues decaying as { 1

k}
50
k=1 (condition number κ = 50), and the variance σ2 of the

(additive noise) noise is 0.01. In this case, our estimated batch size according to Theorem 1 is
bthresh = 11. Our results are presented by averaging over 100 independent runs of the Algorithm,
and each run employs 200κ samples. All plots are log-log with x-axis being the depth, and y-axis
the excess risk. For our plots, we assume that each iteration takes constant time for all batch sizes;
this is done to present evidence regarding the tightness of our mini-batching characterization limits
that yield linear parallelization speedups over SGD with mini-batch size of 1.

We consider the effect of mini-batching (in figure 1) with batch sizes of 1, 3, bthresh = 11,
2 · bthresh = 22 and d = 50. Averaging begins after observing a fixed number of samples (set as 5κ).
We see that the rate of bias decay (figure 1a) increases until reaching a mini-batch size of bthresh,
saturating thereafter; this implies we are inefficient in terms of sample size. As expected, the rate of
decay of variance (figure 1b) is monotonic as a function of mini-batch size. Finally, the overall error
(figure 1c) shows the tightness of our mini-batching characterization: with a batch size of bthresh,
we obtain a generalization error that is the same as using batch size of 1 with the number of (serial)
iterations (i.e. depth) that is an order of magnitude smaller. Subsequently, we note that larger batch
sizes worsen generalization error thus depicting the tightness of our characterization of bthresh.

17

JAIN, KAKADE, KIDAMBI, NETRAPALLI AND SIDFORD

100 101 102 103

Depth

10-25

10-20

10-15

10-10

10-5

100
(E

xc
es

s)
 B

ia
s

R
is

k

start quarterway halfway unaveraged

(a) Bias Risk

100 101 102 103

Depth

10-5

10-4

10-3

10-2

(E
xc

e
ss

)
V

a
ria

n
ce

 R
is

k

start quarterway halfway unaveraged

(b) Variance Risk

100 101 102 103

Depth

10-5

10-4

10-3

10-2

10-1

100

T
ot

al
 (

E
xc

es
s)

 R
is

k

start quarterway halfway unaveraged

(c) Total Risk

Figure 2: [Zoom in to see detail] Effect of tail-averaging with mini-batch size of bthresh = 11.

In the next experiment, we fix batch size = bthresh and consider the effect of when tail-averaging
begins (figure 2). We consider averaging iterates from the start (as prescribed by Défossez and Bach
(2015)), after a quarter/half of total number of iterations, and unaveraged SGD as well. We see that
the bias (figure 2a) exhibits a geometric decay in the unaveraged phase while switching to an slower
O(1

t2
) rate with averaging. The variance (figure 2b) tends to increase and stabilize atO(σ2

bthresh
) in the

absence of averaging, while switching to a O(1
N) decay rate when averaging begins. The overall

generalization error (figure 2c) shows the superiority of the scheme where averaging after a burn-in
period allows the bias to decay towards the noise level at a geometric rate, following which tail-
averaging allows us to decay the variance term, providing credence to our theoretical results that
tail-averaged SGD allows us to obtain better generalization error as a function of sample size.

6. Concluding Remarks

This paper analyzes several algorithmic primitives often used in practice in conjunction with vanilla
SGD for the stochastic approximation problem. In particular, this paper provides a sharp non-
asymptotic treatment of (a) mini-batching, (b) tail-averaging, (c) effects of model mismatch, (d)
behaviour of the final iterate, (e) highly parallel SGD method based on doubling batch sizes and (f)
model-averaging/parameter mixing schemes for the strongly convex streaming LSR problem.

The effect of mini-batching and other algorithmic primitives mentioned above can be under-
stood for a variety of models and/or algorithms. In particular, future directions could include under-
standing these issues for stochastic approximation with the Logistic Loss (Bach, 2014), streaming
PCA (Jain et al., 2016a), and other algorithms such as streaming SVRG (Frostig et al., 2015b).

Acknowledgments

Sham Kakade acknowledges funding from Washington Research Foundation Fund for Innovation
in Data-Intensive Discovery and National Science Foundation (NSF) through awards CCF-1703574
and CCF-1740551. Rahul Kidambi thanks James Saunderson for useful discussions on matrix op-
erator theory.

18

PARALLELIZING STOCHASTIC GRADIENT DESCENT FOR LEAST SQUARES REGRESSION

Appendix A. Appendix

We begin with a note on the organization:

• Section A.1 introduces notations necessary for the rest of the appendix.

• Section A.2 derives the mini-batch SGD update and provides the bias-variance decomposition
and reasons about its implication in bounding the generalization error.

• Section A.3 provides lemmas that are used to bound the bias error.

• Section A.4 provides lemmas that are used to bound the variance error.

• Section A.5 uses the results of the previous sections to obtain the main results of this paper.

A.1 Notations

We begin by introducing the centered iterate ηt i.e.:

ηt
def
= wt −w∗.

In a manner similar to wt, the tail-averaged iterate wt,N is associated with its corresponding cen-

tered estimate η̄t,N
def
= wt,N −w∗ = 1

N

∑t+N−1
s=t (ws−w∗) = 1

N

∑t+N−1
s=t ηs. Next, let Φt denote

the expected covariance of the centered estimate ηt, i.e.

Φt
def
= E [ηt ⊗ ηt] ,

and in a similar way as the final iterate wt, the tail-averaged estimate wt,N is associated with its

expected covariance, i.e. Φ̄t,N
def
= E

[
η̄t,N ⊗ η̄t,N

]
.

A.2 Mini-Batch Tail-Averaged SGD: Bias-Variance Decomposition

In section A.2.1, we derive the basic recursion governing the evolution of the iterates wt and the tail-
averaged iterate ws+1,N . In section A.2.2 we provide the bias-variance decomposition of the final
iterate. In section A.2.3, we provide the bias-variance decomposition of the tail-averaged iterate.

A.2.1 THE BASIC RECURSION

At each iteration t of Algorithm 1, we are provided with b fresh samples {(xti, yti)}bi=1 drawn i.i.d.
from the distribution D. We start by recounting the mini-batch gradient descent update rule that
allows us to move from iterate wt−1 to wt:

wt = wt−1 −
γ

b

b∑
i=1

(〈wt−1,xti〉 − yti)xti,

where, 0 < γ < γb,max is the constant step size that is set to a value less than the maximum
allowed learning rate γb,max. We also recount the definition of wt,N which is the iterate obtained by
averaging for N iterations starting from the tth iteration, i.e.,

wt,N =
1

N

t+N−1∑
s=t

ws.

19

JAIN, KAKADE, KIDAMBI, NETRAPALLI AND SIDFORD

Let us first denote the residual error term by εi = yi − 〈w∗,xi〉. By the first order optimality
conditions of w∗, we observe that ε and x are orthogonal, i.e, E(x,y)∼D[ε · x] = 0. For any estimate
w, the excess risk/generalization error can be written as:

L(w)− L(w∗) =
1

2
Tr

(
H ·

(
η ⊗ η

))
, with η = w −w∗. (11)

We now write out the main recursion governing the mini-batch SGD updates in terms of η.:

ηt =
(
I− γ

b

b∑
i=1

xti ⊗ xti

)
ηt−1 +

γ

b

b∑
i=1

εtixti

=
(
I− γ

b

b∑
i=1

xti ⊗ xti

)
ηt−1 +

γ

b

b∑
i=1

ξti

= Ptbηt−1 + γζtb, (12)

where, Ptb
def
=
(
I − γ

b

∑b
i=1 xti ⊗ xti

)
and ζtb

def
= 1

b

∑b
i=1 ξti = 1

b

∑b
i=1 εtixti. Equation 12

automatically brings out the “operator” view of analyzing the (expected) covariance of the centered
estimate Φt = E [ηt ⊗ ηt] to provide an estimate of the generalization error. We now note the
following about the covariance of ζtb:

E[ζtb ⊗ ζt′b] =
1

b2

∑
i,j

E[ξti ⊗ ξt′j]

=
[1

b2

b∑
i=1

E[ξti ⊗ ξti]
]
1[t = t′] =

1

b
Σ 1[t = t′], (13)

where, 1[.] is the indicator function, and equals 1 if the argument inside [.] is true and 0 otherwise.
We note that the expectation of the cross terms in equation 13 is zero owing to independence of the
samples {xti, yti}bi=1 as well as between {xti, yti}bi=1, {xt′i, yt′i}bi=1 ∀ t 6= t′ and owing to the first
order optimality conditions. Owing to the invariance of ζtb on the iteration t, context permitting,
we sometimes drop the iteration index t from ζtb and simply refer to it as ζb.

Next we expand out the recurrence (12). Let Qj,t = (
∏t
k=j Pkb)

T with the convention that
Qt′,t = I ∀ t′ > t. With this notation we have:

ηt = Ptbηt−1 + γζtb

= PtbPt−1,b...P1,bη0 + γ
t−1∑
j=0

{Ptb....Pt−j+1,b}ζt−j,b

= Q1,tη0 + γ

t−1∑
j=0

Qt−j+1,tζt−j,b

= Q1,tη0 + γ
t∑

j=1

Qj+1,tζj,b

= ηbias
t + ηvariance

t , (14)

20

PARALLELIZING STOCHASTIC GRADIENT DESCENT FOR LEAST SQUARES REGRESSION

where, we note that

ηbias
t

def
= Q1,tη0 (15)

relates to understanding the behavior of SGD on the noiseless problem (i.e. ζ·,· = 0 a.s.) and aims
to quantify the dependence on the initial conditions. Further,

ηvariance
t

def
= γ

t∑
j=1

Qj+1,tζj,b (16)

relates to the behavior of SGD when begun at the solution (i.e. η0 = 0) and allowing the noise ζ·,·
to drive the process.

Furthermore, considering the tail-averaged iterate obtained by averaging the iterates of the SGD
procedure for N iterations starting from a certain number of iterations “s”, i.e., we examine the
quantity η̄s+1,N = ws+1,N − w∗, where ws+1,N = 1

N

∑s+N
t=s+1 wt. We write out the expression

for η̄s+1,N starting out from equation 14:

η̄s+1,N =
1

N

s+N∑
t=s+1

ηt

=
1

N

s+N∑
t=s+1

(
ηbias
t + ηvariance

t

)
(from equation 14)

= η̄bias
s+1,N + η̄variance

s+1,N . (17)

A.2.2 THE FINAL ITERATE: BIAS-VARIANCE DECOMPOSITION

The behavior of the final iterate is considered to be of great practical interest and we hope to shed
light on the behavior of this final iterate and the tradeoffs between the learning rate and batch size.
Since the generalization error of any iterate wN obtained by running mini-batch SGD with a batch
size b for a total ofN iterations can be estimated by tracking E [ηN ⊗ ηN], where, ηN = wN−w∗,
we provide a simple psd upper bound on the outer product of interest, i.e.:

E [ηN ⊗ ηN] = E
[(
ηbias
N + ηvariance

N

)
⊗
(
ηbias
N + ηvariance

N

)]
(by substituting equation 14)

� 2 ·
(
E
[(
ηbias
N ⊗ ηbias

N

)]
+ E

[(
ηvariance
N ⊗ ηvariance

N

)])
.

Using this expression, we now write out the expression for the excess risk of the final iterate:

E [L(wN)]− L(w∗) =
1

2
〈H,E [ηN ⊗ ηN]〉

≤ 1

2
〈H, 2 ·

(
E
[
ηbias
N ⊗ ηbias

N

]
+ E

[
ηvariance
N ⊗ ηvariance

N

])
〉

≤ 2 ·
(

1

2
〈H,E

[
ηbias
N ⊗ ηbias

N

]
〉+

1

2
〈H,E

[
ηvariance
N ⊗ ηvariance

N

]
〉
)

= 2 ·
((

E
[
L(wbias

N)
]
− L(w∗)

)
+
(
E
[
L(wvariance

N)
]
− L(w∗)

))
. (18)

21

JAIN, KAKADE, KIDAMBI, NETRAPALLI AND SIDFORD

A.2.3 THE TAIL-AVERAGED ITERATE: BIAS-VARIANCE DECOMPOSITION

Now, considering the fact that the excess risk/generalization error (equation 11) involves track-
ing E

[
η̄s+1,N ⊗ η̄s+1,N

]
, we see that the quantity of interest can be bounded by considering the

behavior of SGD on bias and variance sub-problem. In particular, writing out the outerproduct of
equation 17, we see the following inequality holds through a straightforward application of Cauchy-
Shwartz inequality:

E
[
η̄s+1,N ⊗ η̄s+1,N

]
� 2 ·

(
E
[
η̄bias
s+1,N ⊗ η̄bias

s+1,N

]
+ E

[
η̄variance
s+1,N ⊗ η̄variance

s+1,N

]
). (19)

The above equation is referred to as the bias-variance decomposition and is well known from previ-
ous work on Stochastic Approximation (Bach and Moulines, 2013; Frostig et al., 2015b; Défossez
and Bach, 2015). This implies that an upper bound on the generalization error (equation 11) is:

L(ws+1,N)− L(w∗) =
1

2
〈H,E

[
η̄s+1,N ⊗ η̄s+1,N

]
〉

≤ 〈H,E
[
η̄bias
s+1,N ⊗ η̄bias

s+1,N

]
〉+ 〈H,E

[
η̄variance
s+1,N ⊗ η̄variance

s+1,N

]
〉. (20)

Here, we adopt the proof approach of Jain et al. (2017a). In particular, Jain et al. (2017a) provide
a clean way to simplify the expression corresponding to the tail-averaged iterate. Let us consider
E
[
η̄s+1,N ⊗ η̄s+1,N

]
and simplify the resulting expression: in particular,

E
[
η̄s+1,N η̄

>
s+1,N

]
=

1

N2

s+N∑
l=s+1

s+N∑
k=s+1

E [ηl ⊗ ηk]

=
1

N2
·
(∑
l≥k

E [ηl ⊗ ηk] +
∑
l<k

E [ηl ⊗ ηk]

)

� 1

N2
·
(∑
l≥k

E [ηl ⊗ ηk] +
∑
l≤k

E [ηl ⊗ ηk]

)
(∗)

=
1

N2
·
(∑
l≥k

(I− γH)l−kE [ηk ⊗ ηk] +
∑
l≤k

E [ηl ⊗ ηl] (I− γH)k−l
)

(∗∗)

=
1

N2
·
∑
l≤k

(
E [ηl ⊗ ηl] (I− γH)k−l + (I− γH)k−lE [ηl ⊗ ηl]

)

=
1

N2
·
s+N∑
l=s+1

s+N∑
k=l

(
E [ηl ⊗ ηl] (I− γH)k−l + (I− γH)k−lE [ηl ⊗ ηl]

)

=
1

N2
·
s+N∑
l=s+1

∞∑
k=l

(
E [ηl ⊗ ηl] (I− γH)k−l + (I− γH)k−lE [ηl ⊗ ηl]

)

− 1

N2
·
s+N∑
l=s+1

∞∑
k=s+N+1

(
E [ηl ⊗ ηl] (I− γH)k−l + (I− γH)k−lE [ηl ⊗ ηl]

)

=
1

N2
·
s+N∑
l=s+1

(
E [ηl ⊗ ηl] (γH)−1 + (γH)−1E [ηl ⊗ ηl]

)

22

PARALLELIZING STOCHASTIC GRADIENT DESCENT FOR LEAST SQUARES REGRESSION

− 1

N2

s+N∑
l=s+1

∞∑
k=s+N+1

(
E [ηl ⊗ ηl] (I− γH)k−l + (I− γH)k−lE [ηl ⊗ ηl]

)
(∗ ∗ ∗), (21)

where, (∗) is a valid PSD upper bound as we add and subtract the diagonal terms {E
[
ηkη

>
k

]
}s+Nk=s+1.

(∗∗) follows because of the following (assume l > k; the other case follows similarly):

E [ηl ⊗ ηk] = E
[(

Plbηl−1 + γζlb
)
⊗ ηk

]
= E

[
E
[(

Plbηl−1 + γζlb
)
⊗ ηk|Fl−1

]]
= E

[
E
[(

Plbηl−1 + γζlb
)
|Fl−1

]
⊗ ηk

]
= (I− γH)E

[
ηl−1 ⊗ ηk

]
,

where, the final equation follows since E [Plb|Fl−1] = E
[
I− γ

b

∑b
i=1 xli ⊗ xli|Fl−1

]
= I − γH

and E [ζlb|Fl−1] = 0 from first order optimality conditions. Recursing over l yields the result.
(∗ ∗ ∗) follows from summing a (convergent) geometric series.

This implies that the excess risk corresponding to the bias/variance term can be obtained from
equation 21 by taking an inner product with H, i.e.:

〈H,E
[
η̄s+1,N ⊗ η̄s+1,N

]
〉 ≤ 1

N2
·
s+N∑
l=s+1

(
〈H,E [ηl ⊗ ηl] (γH)−1 + (γH)−1E [ηl ⊗ ηl]〉

)

− 1

N2
·
s+N∑
l=s+1

∞∑
k=s+N+1

(
〈H,E [ηl ⊗ ηl] (I− γH)k−l

+ (I− γH)k−lE [ηl ⊗ ηl]〉
)

≤ 1

N2
·
s+N∑
l=s+1

(
〈H,E [ηl ⊗ ηl] (γH)−1 + (γH)−1E [ηl ⊗ ηl]〉

)

=
2

γN2
·
s+N∑
l=s+1

Tr

(
E [ηl ⊗ ηl]

)
. (22)

The upper bound on the final line follows because each term within the summation in the second
line is negative owing to the following argument. Consider say,

〈H,E [ηl ⊗ ηl] (I− γH)k−l + (I− γH)k−lE [ηl ⊗ ηl]〉
= 2 Tr

[
H(I− γH)k−lE [ηl ⊗ ηl]

]
≥ 0.

Note that H and (I−γH) commute and both are psd, implying that H(I−γH)k−l is PSD. Finally,
the trace of the product of two PSD matrices is positive with H(I−γH)k−l being one of these PSD
matrices and E [ηl ⊗ ηl] being the other, thus yielding the claimed bound in equation 22.

This implies that the overall error (through equation 11) can be upperbounded as:

E [L(ws+1,N)]− L(w∗) =
1

2
· 〈H,E

[
η̄s+1,N ⊗ η̄s+1,N

]
〉

23

JAIN, KAKADE, KIDAMBI, NETRAPALLI AND SIDFORD

≤ 1

γN2

s+N∑
l=s+1

Tr
(
E [ηl ⊗ ηl]

)
≤ 2

γN2
·
s+N∑
l=s+1

(
Tr
(
E
[
ηbias
l ⊗ ηbias

l

])
+ Tr

(
E
[
ηvariance
l ⊗ ηvariance

l

]))
,

(23)

where the final line follows from equation 19. We will now bound each of these terms to precisely
characterize the excess risk of mini-batch tail-averaged SGD. We refer to the bias error of the tail-
averaged iterate as the following:

E
[
L(wbias

s+1,N)
]
− L(w∗)

def
=

2

γN2

s+N∑
l=s+1

Tr

(
E
[
ηbias
l ⊗ ηbias

l

])
. (24)

Similarly, we refer to the variance error of the tail-averaged iterate as the following:

E
[
L(wvariance

s+1,N)
]
− L(w∗)

def
=

2

γN2

s+N∑
l=s+1

Tr

(
E
[
ηvariance
l ⊗ ηvariance

l

])
. (25)

A.3 Lemmas For Bounding The Bias Error

Lemma 9 With γ ≤ γb,max
2 = b

R2·ρm+(b−1)‖H‖2 , the following bound holds:

∥∥∥∥E
(I− γ

b

b∑
j=1

xli ⊗ xli)(I−
γ

b

b∑
j=1

xli ⊗ xli)

∥∥∥∥
2

≤ 1− γµ.

Proof This lemma generalizes one appearing in Jain et al. (2017a) to the mini-batch size b case.
Denote by U the matrix of interest and consider the following:

U = E

(I− γ

b

b∑
j=1

xli ⊗ xli)(I−
γ

b

b∑
j=1

xli ⊗ xli)


= I− γH− γH +

(
γ

b

)2

·
(
bE
[
‖x‖2xx>

]
+ b(b− 1)H2

)
� I− 2γH +

γ2

b
·
(
R2H + (b− 1)‖H‖2

)
H

= I− γH,

from which a spectral norm bound implied by the lemma naturally follows.

Lemma 10 For any learning rate γ ≤ γb,max/2, the bias error of the tail-averaged iterate wbias
s+1,N

is upper bounded as:

E
[
L(wbias

s+1,N)
]
− L(w∗) ≤ 2

γ2N2µ2
(1− γµ)s+1 ·

(
L(w0)− L(w∗)

)
.

24

PARALLELIZING STOCHASTIC GRADIENT DESCENT FOR LEAST SQUARES REGRESSION

Proof Before writing out the proof of the bound in the lemma, we require to bound the per step
contraction properties of an SGD update in the case of the bias error (i.e. ζ· = 0):

E
[
‖ηl‖2

]
= E

[
η>l−1(I− γ

b

b∑
i=1

xli ⊗ xli)(I−
γ

b

b∑
i=1

xli ⊗ xli)ηl−1

]

= E

[
η>l−1E

[
(I− γ

b

b∑
i=1

xli ⊗ xli)(I−
γ

b

b∑
i=1

xli ⊗ xli)

∣∣∣∣Fl−1

]
ηl−1

]
≤ (1− γµ)E

[
‖ηl−1‖2

]
(using lemma 9).

This implies that a recursive application of the above bound yields E
[
‖ηl‖2

]
≤ (1−γµ)lE

[
‖η0‖2

]
.

Next, we consider the bias error from equation 24:

E
[
L(wbias

s+1,N)
]
− L(w∗) =

2

γN2

s+N∑
t=s+1

E
[
‖ηt‖2

]
≤ 2

γN2

∞∑
t=s+1

E
[
‖ηt‖2

]
≤ 2

γN2

∞∑
t=s+1

(1− γµ)t‖η0‖2

=
2

γN2
(γµ)−1(1− γµ)s+1‖η0‖2

=
2

γ2µN2
(1− γµ)s+1‖η0‖2

=
2

γ2µ2N2
(1− γµ)s+1 ·

(
µ · ‖η0‖2

)
≤ 2

γ2µ2N2
(1− γµ)s+1 ·

(
L(w0)− L(w∗)

)
,

where in the final line, we use the fact that µI � H. This proves the claimed bound.

Lemma 11 For any learning rate γ ≤ γb,max/2, the bias error of the final iterate wbias
N is upper

bounded as:

E
[
L(wbias

N)
]
− L(w∗) ≤ κ

2
· (1− γµ)N ·

(
L(w0)− L(w∗)

)
.

Proof Similar to the tail-averaged case, we require to bound the per step contraction properties of
an SGD update in the case of the bias error (i.e. ζ· = 0):

E
[
‖ηN‖2

]
= E

[
η>N−1(I− γ

b

b∑
i=1

xNi ⊗ xNi)(I−
γ

b

b∑
i=1

xNi ⊗ xNi)ηN−1

]

= E

[
η>N−1E

[
(I− γ

b

b∑
i=1

xNi ⊗ xNi)(I−
γ

b

b∑
i=1

xNi ⊗ xNi)

∣∣∣∣FN−1

]
ηN−1

]

25

JAIN, KAKADE, KIDAMBI, NETRAPALLI AND SIDFORD

≤ (1− γµ)E
[
‖ηN−1‖2

]
(using lemma 9).

This implies that a recursive application of the above bound yields E
[
‖ηN‖2

]
≤ (1−γµ)NE

[
‖η0‖2

]
.

Then,

E
[
L(wbias

N)
]
− L(w∗) =

1

2
Tr
(
(ηbias

N)>Hηbias
N

)
≤ λmax(H)

2
Tr
(
‖ηbias

N ‖2
)

≤ λmax(H)(1− γµ)N

2λmin(H)
Tr
(
λmin(H)‖η0‖2

)
≤ λmax(H)(1− γµ)N

2λmin(H)

(
L(w0)− L(w∗)

)
(since, w0 = wbias

0).

≤ κ

2
· (1− γµ)N

(
L(w0)− L(w∗)

)
.

A.4 Lemmas For Bounding The Variance Error

Now, we seek to understand the behavior of the variance error of the tail-averaged iterate ws+1,N .
We begin by noting here that the variance error is analyzed by beginning the optimization at the
solution, i.e. ηvariance

0 = 0 and allowing the noise to drive the process. In particular, we write out the
recursive updates that characterize the variance error:

ηvariance
t = Ptbη

variance
t−1 + γζtb, with ηvariance

0 = 0.

This implies that by defining Φvariance
t

def
= E

[
ηvariance
t ⊗ ηvariance

t

]
, we have:

Φvariance
t = E

[
ηvariance
t ⊗ ηvariance

t

]
= E

[
E
[(

Ptbη
variance
t−1 + γζtb

)
⊗
(
Ptbη

variance
t−1 + γζtb

)
|Ft−1

]]
= E

[
PtbΦ

variance
t−1 P>tb

]
+
γ2

b
Σ. (26)

where, Ft−1 is the filtration defined using the samples {xji, yji}j=t−1,i=b
j=1,i=1 . Furthermore cross terms

are zero since E [ζtb|Ft−1] = 0 owing to first order optimality conditions. Recounting that Ptb =
I− γ

b

∑b
i=1 xti ⊗ xti, we express equation 26 using a linear operator as follows:

E
[
PtbΦ

variance
t−1 P>tb

]
= E

[(
I− γ

b

b∑
i=1

xti ⊗ xti
)
Φvariance
t−1

(
I− γ

b

b∑
i=1

xti ⊗ xti
)]

def
= (I − γTb)Φvariance

t−1 ,

with Tb representing the following linear operator:

Tb = HL +HR −
γ

b
M− γ b− 1

b
HLHR,

26

PARALLELIZING STOCHASTIC GRADIENT DESCENT FOR LEAST SQUARES REGRESSION

with M = E [x⊗ x⊗ x⊗ x], HL = H ⊗ I and HR = I ⊗ H representing the left and right
multiplication linear operators corresponding to the matrix H. Given this notation, we consider
Φvariance
t :

Φvariance
t = (I − γTb)Φvariance

t−1 +
γ2

b
Σ

=
γ2

b

(t−1∑
k=0

(I − γTb)k
)

Σ. (27)

Before bounding the variance error, we will describe a lemma that shows that the expected covari-
ance of the variance error Φvariance

t initialized at 0 grows monotonically to its steady state value (in
a PSD sense).

Lemma 12 The sequence of centered variance iterates ηvariance
t have expected covariances that

monotonically grow in a PSD sense, i.e.:

0 = Φvariance
0 � Φvariance

1 � Φvariance
2 � Φvariance

∞ .

Proof This lemma generalizes the lemma appearing in Jain et al. (2017a,b). We begin by recounting
the tth variance iterate, i.e.:

ηvariance
t = γ

t∑
j=1

Qj+1,tζj,b.

This implies in particular that

Φvariance
t = E

[
ηvariance
t ⊗ ηvariance

t

]
= γ2

t∑
j=1

t∑
l=1

E
[
Qj+1,tζj,b ⊗ ζl,bQ

>
l+1,b

]
(from equation 14)

= γ2
t∑

j=1

t∑
l=1

E
[
Qj+1,tE

[
ζj,b ⊗ ζl,b|Fj−1

]
Q>l+1,b

]

= γ2
t∑

j=1

E
[
Qj+1,tζj,b ⊗ ζj,bQ

>
j+1,t

]

=
γ2

b

t∑
j=1

E
[
Qj+1,tΣQ>j+1,t

]
.

where, the third line follows since E
[
ζl,b ⊗ ζj,b

]
= 0 for j 6= l, similar to arguments in equation 13.

This immediately reveals that the sequence of covariances grows as a function of time, since,

Φvariance
t+1 −Φvariance

t =
γ2

b
E
[
Q2,t+1ΣQ>2,t+1

]
� 0.

This lemma leads to a natural upper bound on the variance error, as expressed below:

27

JAIN, KAKADE, KIDAMBI, NETRAPALLI AND SIDFORD

Lemma 13 With γ <
γb,max

2 , the variance error of the tail-averaged iterate wvariance
s+1,N is upper

bounded as:

E
[
L(wvariance

s+1,N)
]
− L(w∗) ≤ 2

Nb
Tr
(
Tb−1Σ

)
.

Proof Considering the variance error of tail-averaged iterate from equation 25:

E
[
L(wvariance

s+1,N)
]
− L(w∗) =

2

γN2
·
s+N∑
l=s+1

(
Tr
(
E
[
Φvariance
l

]))
≤ 2

γN
· Tr

(
E
[
Φvariance
∞

])
(from lemma 12)

=
2

γN
· γ

2

b
· Tr

(∞∑
k=0

(I − γTb)kΣ
)

(from equation 14)

=
2

Nb
Tr (Tb−1Σ).

Lemma 14 With γ < γb,max
2 , the variance error of the final iterate wvariance

N , obtained by running
mini-batch SGD for N steps is upper bounded as:

E
[
L(wvariance

N)
]
− L(w∗) ≤ γ

2b
Tr
(
HTb−1Σ

)
.

Proof We note that since we deal with the square loss case,

E
[
L(wvariance

N)
]
− L(w∗) =

1

2
Tr (HΦvariance

N)

≤ 1

2
Tr (HΦvariance

∞) (using lemma 12)

=
γ2

2b
Tr

(
H

∞∑
j=0

(I − γTb)jΣ
)

=
γ

2b
Tr

(
HTb−1Σ

)
.

Lemma 15 Denoting the assumption (A) γ ≤ γb,max/2,

1. With (A) in place, Tb � 0.

2. With (A) in place, Tb−1W � 0 for every W ∈ S(d), W � 0 .

3. Tr
(

(HR +HL)−1A
)

= 1
2 Tr

(
H−1A

)
∀A ∈ S+(Rd) .

28

PARALLELIZING STOCHASTIC GRADIENT DESCENT FOR LEAST SQUARES REGRESSION

4. With (A) in place,

Tr
(
Tb−1Σ

)
≤ 2 Tr

(
H−1Σ

)
.

Proof
Proof of claim 1 in Lemma 15: Tb � 0 implies that for all symmetric matrices A ∈ S(d), we

have Tr (ATbA) ≥ 0, and this is true owing to the following inequalities:

〈A, TbA〉 = 2 Tr (AHA)− γ

b
E
[
〈x,Ax〉2

]
− γ(b− 1)

b
〈H,AHA〉

≥ 2 Tr (AHA)− γ

b
E
[
‖x‖2 ‖Ax‖2

]
− γ(b− 1)

b
‖H‖Tr (AHA)

≥ 2 Tr (AHA)− γ

b
R2E

[
‖Ax‖2

]
− γ(b− 1)

b
‖H‖Tr (AHA)

≥
(

2− γ

b

(
R2 + (b− 1) ‖H‖

))
Tr (AHA) .

Using the definition of γb,max completes the proof of the claim.
Proof of claim 2 in Lemma 15: We require to prove Tb−1 operating on a PSD matrix produces a

PSD matrix, or in other words, Tb−1 is a PSD map.

Tb−1 = [HL +HR −
γ

b
(M+ (b− 1)HLHR)]−1

= (HL +HR)−
1
2 (HL +HR)

1
2 [HL +HR −

γ

b
(M+ (b− 1)HLHR)]−1·

(HL +HR)
1
2 (HL +HR)−

1
2

= (HL +HR)−
1
2 [I − γ

b
(HL +HR)−

1
2 (M+ (b− 1)HLHR)(HL +HR)−

1
2]−1(HL +HR)−

1
2 .

(28)

Now, we prove that ‖γb (HL + HR)−
1
2 (M + (b − 1)HLHR)(HL + HR)−

1
2 ‖ < 1. Given γ <

γb,max/2, we employ claim 1 to note that Tb � 0.

Tb � 0

⇒ HL +HR −
γ

b
(M+ (b− 1)HLHR) � 0

⇒ γ

b
(M+ (b− 1)HLHR) ≺ HL +HR

⇒ γ

b
(HL +HR)−

1
2 (M+ (b− 1)HLHR)(HL +HR)−

1
2 ≺ I

⇒ ‖γ
b

(HL +HR)−
1
2 (M+ (b− 1)HLHR)(HL +HR)−

1
2 ‖ < 1.

With this fact in place, we employ Taylor series to expand Tb−1 in equation 28, i.e.:

Tb−1 = (HL +HR)−
1
2

∞∑
i=0

(
γ

b
(HL +HR)−

1
2 (M+ (b− 1)HLHR)(HL +HR)−

1
2)i(HL +HR)−

1
2

=

∞∑
i=0

(
γ

b
(HL +HR)−1(M+ (b− 1)HLHR))i(HL +HR)−1.

29

JAIN, KAKADE, KIDAMBI, NETRAPALLI AND SIDFORD

The proof completes by employing the following facts: Using Lyapunov’s theorem (Bhatia (2007)
proposition A 1.2.6), we know (HL +HR)−1 is a PSD map, i.e. if (HL +HR)−1(A) = B, then,
if A is PSD =⇒ B is PSD. Furthermore, M is also a PSD map, i.e. if A1 is PSD, M(A1) =
E[(xTA1x)x ⊗ x] is PSD as well. Finally, HLHR is also a PSD map, since, if A2 is PSD, then,
HLHR(A2) = HA2H which is PSD as well. With all these facts in place, we note that each term in
the Taylor’s expansion above is a PSD map implying the overall map is PSD as well, thus rounding
up the proof to claim 2 in Lemma 15.

Proof of claim 3 in Lemma 15:
We know that the operator (HR +HL)−1 is a PSD map, i.e, it maps PSD matrices to PSD

matrices. Since A � 0, we replace this condition with U = (HR +HL)−1A � 0 implying, we
need to show the following:

Tr (U) =
1

2
Tr
(
H−1A

)
∀U � 0.

Examining the right hand side, we see the following:

1

2
Tr
(
H−1A

)
=

1

2
Tr
(
H−1(HL +HR)U

)
=

1

2
Tr
(
H−1HU + H−1UH

)
= Tr (U) .

thus wrapping up the proof of claim 4.
Proof of claim 4 in Lemma 15: Let U = HL +HR − γ

b · (b− 1)HLHR. Then,

Tb−1Σ =

(
U − γ

b
M
)−1

Σ

=
∞∑
i=0

(
γ

b
U−1M

)i
U−1Σ.

Let A = U−1Σ, A′ = U−1H. Then,

Tb−1Σ =
∞∑
i=1

(
γ

b
U−1M

)i
A.

The i = 0 term is just = A. Now, considering i = 1, we have:

γ

b
U−1MA � γ

b
‖A‖2U−1MI

� γ

b
‖A‖2R2U−1H =

γ

b
‖A‖2R2A′.

Next, considering i = 2, we have:(
γ

b
U−1M

)2

A =

(
γ

b
U−1M

)
·
(
γ

b
U−1M

)
A

30

PARALLELIZING STOCHASTIC GRADIENT DESCENT FOR LEAST SQUARES REGRESSION

�
(
γ

b
‖A‖2R2

)
·
(
γ

b
U−1M

)
A′

�
(
γ

b
‖A‖2R2

)
·
(
γ

b
U−1

)
· ‖A′‖2 ·R2H

�
(
γ

b
‖A‖2R2

)
·
(
γ

b
‖A′‖2R2

)
·A′.

Noting this recursive structure, we see that:

Tb−1Σ =
∞∑
i=0

(
γ

b
U−1M

)i
A

� A +
∞∑
i=1

(
γ

b
‖A‖2R2

)
·
(
γ

b
‖A′‖2R2

)i−1

·A′

= A +

(
γ
b ‖A‖2R

2

)
1−

(
γ
b ‖A′‖2R2

) ·A′.
Note that this summation is finite iff γ ≤ b

R2‖A′‖2 . Further, applying the trace operator on both
sides, we have:

Tr
(
Tb−1Σ

)
≤ Tr (A) +

(
γ
b ‖A‖2R

2

)
1−

(
γ
b ‖A′‖2R2

) Tr
(
A′
)
. (29)

Now, for any psd matrix B � 0, let us upperbound U−1B:

U−1B =
∞∑
j=0

(
γ · b− 1

b
· (HL +HR)−1 · HLHR

)i
(HL +HR)−1Σ.

The recursion can be bounded by analyzing i = 1:

γ · b− 1

b
· (HL +HR)−1 · HLHR · (HL +HR)−1B

� ‖(HL +HR)−1B‖2 · γ ·
b− 1

b
· (HL +HR)−1 · HLHR · I

� ‖(HL +HR)−1B‖2 · γ ·
b− 1

b
· (HL +HR)−1 · ‖H‖2H

= ‖(HL +HR)−1B‖2 · γ ·
b− 1

2b
· ‖H‖2 · I.

This indicates the means to recurse for bounding terms i ≥ 2:

U−1B �
∞∑
j=0

‖(HL +HR)−1B‖2
(
γ · b− 1

2b
· ‖H‖2

)j
· I

31

JAIN, KAKADE, KIDAMBI, NETRAPALLI AND SIDFORD

=
‖(HL +HR)−1B‖2

1− γ · (b−1)‖H‖2
2b

· I.

The upperbound above is true as long as γ < 2b
(b−1)‖H‖2 . This now allows us to obtain bounds on

‖A‖2, ‖A′‖2,Tr (A′):

‖A‖2 ≤
‖(HL +HR)−1Σ‖2
1− γ · b−1

2b · ‖H‖2

‖A′‖2 ≤
1/2

1− γ · b−1
2b · ‖H‖2

Tr
(
A′
)
≤ d/2

1− γ · b−1
2b · ‖H‖2

.

Substituting these in equation 29:

Tr
(
Tb−1Σ

)
≤ Tr (A) +

γR2

2b · d‖(HL +HR)−1Σ‖2(
1− γ

2b · (R2 + (b− 1)‖H‖2)

)
·
(

1− γ · b−1
2b ‖H‖2

) . (30)

with the conditions on γ being: γ ≤ 2b
(b−1)‖H‖2 , γ ≤ 2b

R2+(b−1)‖H‖2 , γ ≤ 2b
R2 . These are combined

using γ ≤ 2b
R2+(b−1)‖H‖2 . Once this condition is satisfied, the denominator of the second term

can be upperbounded by atmost a constant. Next, looking at the numerator of the second term,
we see that γ ≤ 2b

R2· d‖(HL+HR)−1Σ‖2
Tr((HL+HR)−1Σ)

= 2b
R2ρm

allows for the second term to be upperbounded by

O(Tr
(
(HL +HR)−1Σ

)
). This is clearly satisfied if γ ≤ 2b

R2·ρm+(b−1)‖H‖2 . In particular, setting γ
to be half of this maximum, we have:

Tr
(
Tb−1Σ

)
≤ Tr (A) + 2 Tr

(
(HL +HR)−1Σ

)
. (31)

Denoting Σ̂ = (HL+HR−γ · b−1
b ·HLHR)−1Σ, in order to bound Tr (A), we require comparing

Tr
(
Σ̂
)

with Tr
(
Σ̃
)

= Tr
(
(HL +HR)−1Σ

)
. For this, without loss of generality, we can consider

H to be diagonal, and this implies that comparing the diagonal elements of Σ̂ii = Σii/(2λi −
γ b−1

b λ
2
i) while Σ̃ii = Σii/2λi. Comparing these, we see that

Tr
(
Σ̂
)

= Tr

(
(HL +HR − γ ·

b− 1

b
· HLHR)−1Σ

)
≤ 1

1− γ b−1
2b ‖H‖2

Tr
(
Σ̃
)

=
1

1− γ b−1
2b ‖H‖2

Tr
(
(HL +HR)−1Σ

)
.

Noting that Tr (A) = Tr
(
Σ̂
)

, we see that substituting the above in equation 31, we have:

Tr
(
Tb−1Σ

)
≤ 1

1− γ b−1
2b ‖H‖2

Tr
(
(HL +HR)−1Σ

)
+ 2 Tr

(
(HL +HR)−1Σ

)
≤ 4 Tr

(
(HL +HR)−1Σ

)
= 2 Tr

(
H−1Σ

)
.

32

PARALLELIZING STOCHASTIC GRADIENT DESCENT FOR LEAST SQUARES REGRESSION

Corollary 16 Consider the mis-specified case of the streaming LSR problem. With γ ≤ γb,max
2 , the

variance error of the tail-averaged iterate wvariance
s+1,N is upper bounded as:

E
[
L(wvariance

s+1,N)
]
− L(w∗) ≤ 4

Nb
· σ̂2

MLE.

Proof The result follows in a straightforward manner by noting that γ ≤ γb,max
2 implying that

Tr
(
Tb−1Σ

)
≤ 2 Tr

(
H−1Σ

)
and by substituting into the result of lemma 13.

Corollary 17 With γ ≤ γb,max
2 , Σ = σ2H the variance error of the final iterate wvariance

N , obtained
by running mini-batch SGD for N steps is upper bounded as:

E
[
L(wvariance

N)
]
− L(w∗) ≤ γσ2

2b
Tr H.

Proof This follows from the fact that Tb−1Σ � σ2I, implying that HTb−1Σ � σ2H and then
applying the trace operator on the result of lemma 14.

A.5 Main Results

A.5.1 DERIVATION OF DIVERGENT LEARNING RATE

A necessary condition for the convergence of Stochastic Gradient Updates is Tb � 0, and this by
definition implies,

〈W, TbW〉 ≥ 0, W ∈ S(d)

=⇒ 2 Tr (WHW)− γ

b
Tr (WMW)− γ

(b− 1

b

)
Tr (WHWH) ≥ 0

=⇒ 2

γ
≥ Tr (WMW) + (b− 1) Tr (WHWH)

bTr (WHW)

=⇒ 2

γdivb,max
= sup

W∈S(d)

Tr (WMW) + (b− 1) Tr (WHWH)

bTr (WHW)
.

A.5.2 PROOF OF THEOREM 1

Proof [proof of Theorem 1] The proof of theorem 1 follows from characterizing bias-variance de-
composition for the tail-averaged iterate in section A.2.3 with equation 23.

The bias error of the tail-averaged iterate (equation 24) is bounded with lemma 9 and lemma 10
in section A.3.

The variance error of the tail-averaged iterate (equation 25) is bounded with lemma 12, lemma 13,
lemma 15 and corollary 16 in section A.4.

The final expression follows through substituting the result of lemma 10 and corollary 16 into
equation 23, with appropriate parameters of the problem, i.e., with a batch size b, number of burn-in
iterations s, number of tail-averaged iterations n/b− s to provide the claimed excess risk bound of

33

JAIN, KAKADE, KIDAMBI, NETRAPALLI AND SIDFORD

Algorithm 1:

E [L(w)]− L(w∗) ≤ 2

γ2µ2(nb − s)2
· (1− γµ)s ·

(
L(w0)− L(w∗)

)
+ 4 ·

σ̂2
MLE

b · (nb − s)
.

A.5.3 PROOF OF LEMMA 4

Proof [proof of Lemma 4] The proof of lemma 4 follows from characterizing bias-variance decom-
position for the final iterate in section A.2.2 with equation 18.

The bias error of the final iterate is bounded with lemma 9 and lemma 11 in section A.3.
The variance error of the final iterate is bounded with lemma 12, lemma 14, lemma 15 and

corollary 17 in section A.4.
The final expression follows through substituting the result of lemma 11 and corollary 17 into

equation 18, with appropriate parameters of the problem, i.e., with a batch size b, number of samples
n and number of iterations bn/bc, to provide the claimed excess risk bound:

E
[
L(wbn/bc)

]
− L(w∗) ≤ κb(1− γµ)bn/bc

(
L(w0)− L(w∗)

)
+
γ

b
σ2 Tr (H).

A.5.4 PROOF OF THEOREM 5

Proof Let L̃e = E [L(we)] − L(w∗). We will first provide a recursive bound for L̃e for e ≤
log
(
n
bt

)
− 1 using theorem 1, with a mini-batch size of be = 1 + 2e−1b, where, b = bthresh − 1,

ne = be · t, s = t− 1:

L̃e ≤ 2κ2
be exp

(
− ne
be · κbe

)
L̃e−1 + 4

σ̂2
MLE
be

≤ exp

(
− ne

3beκe log(κe)

)
· L̃e−1 + 4 ·

σ̂2
MLE
be

.

Next, denote κ = ‖H‖2 /µ; now, let us bound κbe :

κbe =
R2 · d‖(HL+HR)−1Σ‖

2
Tr((HL+HR)−1Σ)

+ (be − 1) ‖H‖2
beµ

= κ · bthresh − 1 + be − 1

be
= κ · bthresh − 1 + 2e−1(bthresh − 1)

2e−1(bthresh − 1)

= κ · 1 + 2e−1

2e−1
≤ 2κ.

34

PARALLELIZING STOCHASTIC GRADIENT DESCENT FOR LEAST SQUARES REGRESSION

This implies κbe log(κbe) ≤ 4κ log(κ). This implies, revisiting the recursion on L̃e, we have:

L̃e ≤ exp

(
− ne

12beκ log(κ)

)
· L̃e−1 + 4 ·

σ̂2
MLE
be

≤ exp

(
− t

12κ log(κ)

)
· L̃e−1 + 4 ·

σ̂2
MLE

2e−1b

≤ exp

(
− te

12κ log(κ)

)
· L̃0 +

4σ̂2
MLE
b
·

e∑
j=1

exp

(
− t(j−1)

12κ log(κ)

)
2e−j

≤ exp

(
− te

12κ log(κ)

)
· L̃0 +

4σ̂2
MLE
b
· 1/2e−1

1− 2 · exp
(
− t

12κ log κ

)
≤ exp

(
− te

12κ log(κ)

)
· L̃0 +

12σ̂2
MLE

2eb
(since t > 24κ log(κ))

= exp

(
− te

12κ log(κ)

)
· L̃0 +

12σ̂2
MLE

b · n
· (4bt) (since 2e = n/(4bt))

= exp

(
− te

12κ log(κ)

)
· L̃0 + 48 ·

σ̂2
MLEt

n
. (32)

Next, for the final epoch, we have b = n/2t, s = t/2, and a total of n/2 samples, implying:

L̃e+1 ≤
2κ2

b(
t/2

)2 · exp
(
− t

2κb

)
L̃e + 4 ·

σ̂2
MLE

b ·
(
n/4b

) =
8κ2

b

t2
· exp

(
− t

2κb

)
· L̃e + 16 ·

σ̂2
MLE
n

≤ 32κ2

t2
· exp

(
− t

4κ

)
· L̃e + 16 ·

σ̂2
MLE
n

(since κb ≤ 2κ)

≤ 32κ2

t2
· exp

(
− t

4κ

)
·
(

exp

(
− te

12κ log(κ)

)
· L̃0 + 48 ·

σ̂2
MLEt

n

)
+ 16 ·

σ̂2
MLE
n

≤ 32κ2

t2
· exp

(
− t

4κ

)
· exp

(
− te

12κ log(κ)

)
· L̃0 + 64κ exp

(
− t/4κ

)
·
σ̂2

MLE
n

+ 16 ·
σ̂2

MLE
n

≤ 32κ2

t2
· exp

(
− t

4κ

)
· exp

(
− te

12κ log(κ)

)
· L̃0 + 80

σ̂2
MLE
n

≤ exp

(
− t(e+ 1)

12κ log(κ)

)
· L̃0 + 80

σ̂2
MLE
n

=

(
2bt

n

) t
12κ log(κ)

L̃0 + 80 ·
σ̂2

MLE
n

, (33)

which rounds up the proof of the theorem.

35

JAIN, KAKADE, KIDAMBI, NETRAPALLI AND SIDFORD

A.5.5 PROOF OF THEOREM 6

Proof For analyzing the parameter mixing scheme, we require tracking the progress of the ith

machine’s SGD updates using its centered estimate η
(i)
k . Furthermore, the tail-averaged iterate for

the ith machine is representeed as η̄(i) def
= 1

N

∑s+N
k=s+1 η

(i)
k . Finally, the model averaged estimate is

represented with its own centered estimate defined as η̄ = 1
P

∑P
i=1 η̄

(i). Now, in a manner similar
to standard mini-batch tail-averaged SGD on a single machine, the model averaged iterate admits
its own bias variance decomposition, through which η̄ = η̄bias + η̄variance and an upperbound on the
excess risk is written as:

E [L(w)]− L(w∗) = E
[

1

2
〈(w −w∗),H(w −w∗)〉

]
= E

[
1

2
〈η̄,Hη̄〉

]
≤ E

[
〈η̄bias,Hη̄bias〉

]
+ E

[
〈η̄variance,Hη̄variance〉

]
.

We will first handle the variance since it is straightforward given that the noise ζ is independent for
different machines SGD runs. What this implies is the following:

η̄variance =
1

P

P∑
i=1

η̄(i),variance

E
[
η̄variance ⊗ η̄variance] =

1

P 2

∑
i,j

E
[
η̄(i),variance ⊗ η̄(j),variance

]
=

1

P 2

(∑
i

E
[
η̄(i),variance ⊗ η̄(i),variance

]
+
∑
i 6=j

E
[
η̄(i),variance ⊗ η̄(j),variance

])

=
1

P
E
[
η̄(1),variance ⊗ η̄(1),variance

]
. (34)

Where, the final line follows because ∀ i 6= j, the terms are in expectation equal to zero since
in expectation each of the noise terms is zero (from first order optimality conditions). The other
observation is that the only terms left are P independent runs of tail-averaged SGD in each of the
machine, whose risk is straightforward to bound from corollary 16. This implies

〈H,E
[
η̄variance ⊗ η̄variance]〉 ≤ 4

PNb
· σ̂2

MLE. (using corollary 16) (35)

Next, let us consider the bias error:

η̄bias =
1

P

P∑
i=1

η̄(i),bias

=⇒ E
[
η̄bias ⊗ η̄bias] =

1

P 2

∑
i,j

E
[
η̄(i),bias ⊗ η̄(j),bias

]

=
1

P 2

(P∑
i=1

E
[
η̄(i),bias ⊗ η̄(i),bias

]
︸ ︷︷ ︸

independent runs of tail-averaged SGD

+
∑
i 6=j

E
[
η̄(i),bias ⊗ η̄(j),bias

])
,

(36)

36

PARALLELIZING STOCHASTIC GRADIENT DESCENT FOR LEAST SQUARES REGRESSION

which implies that we require bounding ∀ i 6= j, E
[
η̄(i),bias ⊗ η̄(j),bias

]
.

E
[
η̄(i),bias ⊗ η̄(j),bias

]
=

1

N2

s+N∑
k,l=s+1

E
[
η

(i),bias
k ⊗ η

(j),bias
l

]

=
1

N2

s+N∑
k,l=s+1

E
[
η

(i),bias
k

]
⊗ E

[
η

(j),bias
l

]

=
1

N2

s+N∑
k,l=s+1

E
[
Q

(i)
1:kη0

]
⊗ E

[
Q

(j)
1:lη0

]
(from equation 15)

=
1

N2

(s+N∑
k=s+1

(I− γH)k
)
η0 ⊗ η0

(s+N∑
l=s+1

(I− γH)l
)

� 1

N2

(∞∑
k=s+1

(I− γH)k
)
η0 ⊗ η0

(∞∑
l=s+1

(I− γH)l
)

=
1

γ2N2
H−1(I− γH)s+1η0 ⊗ η0(I− γH)s+1H−1.

This implies that,

E
[
η̄(i),bias ⊗ η̄(j),bias

]
≤ 1

γ2N2
· 〈H,H−1(I− γH)s+1η0 ⊗ η0(I− γH)s+1H−1〉

=
1

γ2N2
· η>0 (I− γH)s+1H−1HH−1(I− γH)s+1η0

≤ (1− γµ)2s+2

µγ2N2
‖η0‖2 ≤

(1− γµ)2s+2

µ2γ2N2
·
(
L(w0)− L(w∗)

)
. (37)

Combining the bound for the cross terms in equation 37 and lemma 10 for the self-terms, we get:

〈H,E
[
η̄bias ⊗ η̄bias]〉 ≤ (1− γµ)s+1

µ2γ2N2
· 2 + (1− γµ)s+1 · (P − 1)

P
·
(
L(w0)− L(w∗)

)
. (38)

The proof wraps up by substituting the relation N = n/(P · b)− s in equations 35 and 38.

A.5.6 PROOF OF LEMMA 3

For this problem instance, we begin by noting that (HL+HR)−1Σ is diagonal as well, with entries:

{(HL +HR)−1Σ}ii =
1

2
{H−1Σ}ii =

{
1/2 if i = 1

1/2(d− 1) if i > 1
.

Let us consider the case with batch size b = 1. With the appropriate choice of step size γ that ensure
contracting operators, we require considering Tr

(
Tb−1Σ

)
as in equation 29, which corresponds to

bounding the leading order term in the variance. We employ the taylor’s expansion (just as in claim 2
of lemma 15) to expand the term of interest Tb−1Σ:

Tb−1Σ =

∞∑
i=0

(
γ(HL +HR)−1M

)i
(HL +HR)−1Σ

37

JAIN, KAKADE, KIDAMBI, NETRAPALLI AND SIDFORD

= (HL +HR)−1Σ +

∞∑
i=1

(
γ(HL +HR)−1M

)i
(HL +HR)−1Σ

⇒ Tr Tb−1Σ = Tr(HL +HR)−1Σ +

∞∑
i=1

Tr
[(
γ(HL +HR)−1M

)i
(HL +HR)−1Σ

]
Tr Tb−1Σ =

1

2
Tr H−1Σ +

∞∑
i=1

Tr
[(
γ(HL +HR)−1M

)i
(HL +HR)−1Σ

]
.

We observe that the term corresponding to i = 0 works out regardless of the choice of stepsize γ;
we then switch our attention to the second term, i.e., the term corresponding to i = 1:

Tr
(
γ(HL +HR)−1M

)
(HL +HR)−1Σ =

d+ 2

4
· Tr (Σ) .

We require that this term should be ≤ Tr(HL +HR)−1Σ, implying,

γ <
4 Tr(HL +HR)−1Σ

(d+ 2) Tr (Σ)
.

For this example, we observe that this yields γ < 4
(d+2)(1+ 1

d
)
, which clearly is off by a factor d

compared to the well-specified case which requires γ < d
(d+2)(1+ 1

d
)
, establishing a clear separation

between the step sizes required by SGD for the well-specified and mis-specified cases.

A.5.7 PROOFS OF SUPPORTING LEMMAS

Proof of lemma 7
Proof [Proof of lemma 7] We begin by considering 〈I,E

[
ηbias
t ⊗ ηbias

t

]
〉:

〈I,E
[
ηbias
t ⊗ ηbias

t

]
〉 = E

[
‖ηbias

t ‖2
]

= E

[
(ηbias

t−1)>
(

I− γ

b

b∑
i=1

xtix
>
ti

)(
I− γ

b

b∑
i=1

xtix
>
ti

)
ηbias
t−1

]
≤ (1− γµ) · E

[
‖ηbias

t−1‖2
]

(from lemma 9),

from where the lemma follows through substitution of γ = γb,max/2.

Proof of lemma 8
Proof [Proof of lemma 8] From equation 27, we have that:

Φvariance
t = E

[
ηvariance
t ⊗ ηvariance

t

]
=
γ2

b

(t−1∑
k=0

(I − γTb)k
)

Σ.

Allowing t→∞, we have:

Φvariance
∞ =

γ

b
Tb−1Σ � γ

b
· σ2I (from claim 4 in lemma 15 since γ ≤ γb,max/2, Σ = σ2H).

Substituting γ = γb,max/2, the result follows.

38

PARALLELIZING STOCHASTIC GRADIENT DESCENT FOR LEAST SQUARES REGRESSION

References

Alekh Agarwal, Peter L. Bartlett, Pradeep Ravikumar, and Martin J. Wainwright. Information-
theoretic lower bounds on the oracle complexity of stochastic convex optimization. IEEE Trans-
actions on Information Theory, 2012.

Zeyuan Allen-Zhu. Katyusha: The first direct acceleration of stochastic gradient methods. CoRR,
abs/1603.05953, 2016.

Dan Anbar. On Optimal Estimation Methods Using Stochastic Approximation Procedures. Univer-
sity of California, 1971.

Francis Bach and Eric Moulines. Non-asymptotic analysis of stochastic approximation algorithms
for machine learning. In Neural Information Processing Systems (NIPS) 24, 2011.

Francis R. Bach. Adaptivity of averaged stochastic gradient descent to local strong convexity for
logistic regression. In Journal of Machine Learning Research (JMLR), volume 15, 2014.

Francis R. Bach and Eric Moulines. Non-strongly-convex smooth stochastic approximation with
convergence rate O(1/n). In Neural Information Processing Systems (NIPS) 26, 2013.

Rajendra Bhatia. Positive Definite Matrices. Princeton Series in Applied Mathematics. Princeton
University Press, 2007.

Léon Bottou and Olivier Bousquet. The tradeoffs of large scale learning. In Neural Information
Processing Systems (NIPS) 20, 2007.

Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning. arXiv preprint arXiv:1606.04838, 2016.

Joseph K. Bradley, Aapo Kyrola, Danny Bickson, and Carlos Guestrin. Parallel coordinate descent
for l1-regularized loss minimization. In International Conference on Machine Learning (ICML),
2011.

Louis Augustin Cauchy. Méthode générale pour la résolution des systémes d’équations simultanees.
C. R. Acad. Sci. Paris, 1847.

Andrew Cotter, Ohad Shamir, Nati Srebro, and Karthik Sridharan. Better mini-batch algorithms via
accelerated gradient methods. In Neural Information Processing Systems (NIPS) 24, 2011.

Aaron Defazio. A simple practical accelerated method for finite sums. In Neural Information
Processing Systems (NIPS) 29, 2016.

Aaron Defazio, Francis R. Bach, and Simon Lacoste-Julien. SAGA: A fast incremental gradient
method with support for non-strongly convex composite objectives. In Neural Information Pro-
cessing Systems (NIPS) 27, 2014.

Alexandre Défossez and Francis R. Bach. Averaged least-mean-squares: Bias-variance trade-offs
and optimal sampling distributions. In Artifical Intelligence and Statistics (AISTATS), 2015.

39

JAIN, KAKADE, KIDAMBI, NETRAPALLI AND SIDFORD

Ofer Dekel, Ran Gilad-Bachrach, Ohad Shamir, and Lin Xiao. Optimal distributed online prediction
using mini-batches. Journal of Machine Learning Research (JMLR), volume 13, 2012.

Aymeric Dieuleveut and Francis Bach. Non-parametric stochastic approximation with large step
sizes. The Annals of Statistics, 2015.

John C. Duchi, Sorathan Chaturapruek, and Christopher Ré. Asynchronous stochastic convex opti-
mization. CoRR, abs/1508.00882, 2015.

Vaclav Fabian. Asymptotically efficient stochastic approximation; the RM case. Annals of Statistics,
1(3), 1973.

Roy Frostig, Rong Ge, Sham Kakade, and Aaron Sidford. Un-regularizing: approximate proximal
point and faster stochastic algorithms for empirical risk minimization. In International Confer-
ence on Machine Learning (ICML), 2015a.

Roy Frostig, Rong Ge, Sham M. Kakade, and Aaron Sidford. Competing with the empirical risk
minimizer in a single pass. In Conference on Learning Theory (COLT), 2015b.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, An-
drew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: training imagenet
in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

Prateek Jain, Chi Jin, Sham M. Kakade, Praneeth Netrapalli, and Aaron Sidford. Streaming pca:
Matching matrix bernstein and near-optimal finite sample guarantees for oja’s algorithm. In
Conference on Learning Theory (COLT), 2016a.

Prateek Jain, Sham M Kakade, Rahul Kidambi, Praneeth Netrapalli, and Aaron Sidford. Par-
allelizing stochastic approximation through mini-batching and tail-averaging. arXiv preprint
arXiv:1610.03774, 2016b.

Prateek Jain, Sham M Kakade, Rahul Kidambi, Praneeth Netrapalli, Venkata Krishna Pillutla, and
Aaron Sidford. A markov chain theory approach to characterizing the minimax optimality of
stochastic gradient descent (for least squares). arXiv preprint arXiv:1710.09430, 2017a.

Prateek Jain, Sham M Kakade, Rahul Kidambi, Praneeth Netrapalli, and Aaron Sidford. Accelerat-
ing stochastic gradient descent. arXiv preprint arXiv:1704.08227, 2017b.

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. In Neural Information Processing Systems (NIPS) 26, 2013.

Harold J. Kushner and Dean S. Clark. Stochastic Approximation Methods for Constrained and
Unconstrained Systems. Springer-Verlag, 1978.

Harold J. Kushner and G. Yin. Asymptotic properties of distributed and communicating stochastic
approximation algorithms. SIAM Journal on Control and Optimization, 25(5):1266–1290, 1987.

Harold J. Kushner and G. Yin. Stochastic approximation and recursive algorithms and applications.
Springer-Verlag, 2003.

40

PARALLELIZING STOCHASTIC GRADIENT DESCENT FOR LEAST SQUARES REGRESSION

Erich L. Lehmann and George Casella. Theory of Point Estimation. Springer Texts in Statistics.
Springer, 1998.

Mu Li, Tong Zhang, Yuqiang Chen, and Alexander J. Smola. Efficient mini-batch training for
stochastic optimization. In Knowledge Discovery and Data Mining (KDD), 2014.

Hongzhou Lin, Julien Mairal, and Zaı̈d Harchaoui. A universal catalyst for first-order optimization.
In Neural Information Processing Systems (NIPS), 2015.

Gideon Mann, Ryan T. McDonald, Mehryar Mohri, Nathan Silberman, and Dan Walker. Efficient
large-scale distributed training of conditional maximum entropy models. In Neural Information
Processing Systems (NIPS) 22, 2009.

Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regularizing and optimizing lstm lan-
guage models. arXiv preprint arXiv:1708.02182, 2017.

Deanna Needell, Nathan Srebro, and Rachel Ward. Stochastic gradient descent, weighted sampling,
and the randomized kaczmarz algorithm. Mathematical Programming, volume 155, 2016.

Arkadi S. Nemirovsky and David B. Yudin. Problem Complexity and Method Efficiency in Opti-
mization. John Wiley, 1983.

Yurii E. Nesterov. A method for unconstrained convex minimization problem with the rate of
convergence O(1/k2). Doklady AN SSSR, 269, 1983.

Feng Niu, Benjamin Recht, Christopher Re, and Stephen J. Wright. Hogwild: A lock-free approach
to parallelizing stochastic gradient descent. In Neural Information Processing Systems (NIPS)
24, 2011.

Boris T. Polyak. Some methods of speeding up the convergence of iteration methods. USSR Com-
putational Mathematics and Mathematical Physics, 4, 1964.

Boris T. Polyak and Anatoli B. Juditsky. Acceleration of stochastic approximation by averaging.
SIAM J Control Optim, volume 30, 1992.

Herbert Robbins and Sutton Monro. A stochastic approximation method. Ann. Math. Stat., vol. 22,
1951.

Jonathan Rosenblatt and Boaz Nadler. On the optimality of averaging in distributed statistical
learning. CoRR, abs/1407.2724, 2014.

Nicolas Le Roux, Mark Schmidt, and Francis R. Bach. A stochastic gradient method with an
exponential convergence rate for strongly-convex optimization with finite training sets. In Neural
Information Processing Systems (NIPS) 25, 2012.

David Ruppert. Efficient estimations from a slowly convergent robbins-monro process. Tech. Re-
port, ORIE, Cornell University, 1988.

Shai Shalev-Shwartz and Tong Zhang. Stochastic dual coordinate ascent methods for regularized
loss minimization. CoRR, abs/1209.1873, 2012.

41

JAIN, KAKADE, KIDAMBI, NETRAPALLI AND SIDFORD

Shai Shalev-Shwartz and Tong Zhang. Accelerated mini-batch stochastic dual coordinate ascent. In
Neural Information Processing Systems (NIPS) 26, 2013a.

Shai Shalev-Shwartz and Tong Zhang. Accelerated mini-batch stochastic dual coordinate ascent. In
Neural Information Processing Systems (NIPS) 26, 2013b.

Samuel L Smith, Pieter-Jan Kindermans, and Quoc V Le. Don’t decay the learning rate, increase
the batch size. arXiv preprint arXiv:1711.00489, 2017.

Martin Takác, Avleen Singh Bijral, Peter Richtárik, and Nati Srebro. Mini-batch primal and dual
methods for SVMs. In International Conference on Machine Learning (ICML), volume 28, 2013.

Martin Takác, Peter Richtárik, and Nati Srebro. Distributed mini-batch sdca. CoRR,
abs/1507.08322, 2015.

Aad W. van der Vaart. Asymptotic Statistics. Cambridge University Publishers, 2000.

Yuchen Zhang and Lin Xiao. Disco: Distributed optimization for self-concordant empirical loss. In
International Conference on Machine Learning (ICML), 2015.

Yuchen Zhang, John C. Duchi, and Martin Wainwright. Divide and conquer ridge regression: A dis-
tributed algorithm with minimax optimal rates. Journal of Machine Learning Research (JMLR),
volume 16, 2015.

Martin A. Zinkevich, Alex Smola, Markus Weimer, and Lihong Li. Parallelized stochastic gradient
descent. In Neural Information Processing Systems (NIPS) 24, 2011.

42

	Introduction and Problem Setup
	Problem Setup and Notations
	Assumptions
	Important quantities
	Stochastic Gradient Descent: Mini-Batching and Iterate Averaging
	Optimal Error Rates for the Stochastic Approximation problem

	This Paper's Contributions
	Related Work
	Main Results
	Effects Of Learning Rate, Batch Size and The Role of Mis-specified Models
	Parallelization via Doubling Batch Sizes and Model Averaging

	Proof Outline

	Experimental Simulations
	Concluding Remarks
	Appendix
	Notations
	Mini-Batch Tail-Averaged SGD: Bias-Variance Decomposition
	The basic recursion
	The Final Iterate: Bias-Variance Decomposition
	The Tail-Averaged Iterate: Bias-Variance Decomposition

	Lemmas For Bounding The Bias Error
	Lemmas For Bounding The Variance Error
	Main Results
	Derivation of Divergent Learning Rate
	Proof of Theorem 1
	Proof of Lemma 4
	Proof of Theorem 5
	Proof of Theorem 6
	Proof of Lemma 3
	Proofs of supporting lemmas

