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Abstract
We study the problem of solving a quadratic system of equations, i.e., recovering a vector
signal x ∈ Rn from its magnitude measurements yi = |〈ai,x〉|, i = 1, ...,m. We develop a
gradient descent algorithm (referred to as RWF for reshaped Wirtinger flow) by minimizing
the quadratic loss of the magnitude measurements. Comparing with Wirtinger flow (WF)
(Candès et al., 2015), the loss function of RWF is nonconvex and nonsmooth, but better
resembles the least-squares loss when the phase information is also available. We show that
for random Gaussian measurements, RWF enjoys linear convergence to the true signal as
long as the number of measurements is O(n). This improves the sample complexity of WF
(O(n logn)), and achieves the same sample complexity as truncated Wirtinger flow (TWF)
(Chen and Candès, 2015), but without any sophisticated truncation in the gradient loop.
Furthermore, RWF costs less computationally than WF, and runs faster numerically than
both WF and TWF. We further develop an incremental (stochastic) version of RWF (IRWF)
and connect it with the randomized Kaczmarz method for phase retrieval. We demonstrate
that IRWF outperforms existing incremental as well as batch algorithms with experiments.
Keywords: gradient descent, phase retrieval, nonconvex optimization, regularity condition,
stochastic algorithms

1. Introduction

Many problems in machine learning and signal processing can be reduced to solving a
quadratic system of equations. For instance, in phase retrieval applications, i.e., X-ray
crystallography and coherent diffraction imaging (Drenth, 2007; Miao et al., 1999, 2008),
the structure of an object is to be recovered from the measured far field diffracted intensity
when the object is illuminated by a source light. Mathematically, such a problem amounts
to recovering the signal from only the magnitudes of its linear measurements. Specifically,
the problem is formulated as follows.
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Problem 1 Recover x ∈ Rn/Cn from the measurements given as

yi = |〈ai,x〉| , for i = 1, · · · ,m, (1)

where ai ∈ Rn/Cn are known design vectors.

Various algorithms have been proposed to solve this problem since the 1970s. The
error-reduction methods (Gerchberg, 1972; Fienup, 1982) work well empirically but lack
theoretical guarantees. More recently, convex relaxation of the problem has been formulated,
for example, via PhaseLift (Candès et al., 2013; Candès and Li, 2014; Chen et al., 2015) and
PhaseCut (Waldspurger et al., 2015), and the correspondingly developed algorithms typically
come with performance guarantees. The readers can refer to the review paper (Shechtman
et al., 2015) to learn more about applications and algorithms of the phase retrieval problem.

Nonetheless, these convex approaches often suffer from high computational complexity
particularly when the signal dimension is large. It is therefore desirable to develop more
efficient nonconvex approaches that can provably recover the true signal. Netrapalli et al.
(2013) proposed the AltMinPhase algorithm, which alternates between updates of the phase
and the signal, and showed that it converges linearly and recovers the true signal with
O(n log3 n) Gaussian measurements, when ai’s are composed of independent and identically
distributed (i.i.d.) standard Gaussian entries. More recently, Candès et al. (2015) introduced
the Wirtinger flow (WF) algorithm, which guarantees signal recovery via a simple gradient
descent algorithm with only O(n logn) Gaussian measurements and attains ε-accuracy within
O(mn2 log 1/ε) flops1. More specifically, WF obtains a good initialization by the spectral
method, and then minimizes the following nonconvex loss function based on the quadratic
loss of the squared magnitude measurements

`WF (z) := 1
4m

m∑
i=1

(|aTi z|2 − |yi|2)2, (2)

via the gradient descent scheme.
WF is further improved by truncated Wirtinger flow (TWF) (Chen and Candès, 2015),

which adopts a Poisson loss function of |aTi z|2, and keeps only well-behaved measurements
based on carefully designed truncation thresholds for calculating the initialization and the
gradient updates. Such truncation assists to achieve a linear convergence rate using a fixed
step size; as a consequence, TWF reduces both the sample complexity to O(n) and the
computational complexity to O(mn log 1/ε).

Furthermore, incremental/stochastic methods have been proposed to solve Problem 1.
Specifically, the randomized Kaczmarz method has been adopted to solve the phase retrieval
problem (Wei, 2015; Li et al., 2015), which was shown to have excellent empirical performance,
but no nonasymptotic global convergence guarantee was established. Incremental truncated
Wirtinger flow (ITWF) (Kolte and Özgür, 2016) is another stochastic algorithm developed
based on TWF.
1. WF has computational cost O(mn2 log(1/ε) (Candès et al., 2015, Theorem 3.1) because it needs log(1/ε) ·

1
− log(1−c/n) ≈

n
c

log(1/ε) iterations to achieve ε-accuracy due to the convergence rate
(
1− c

n

)k and
each iteration needs O(mn) flops. Contrastingly, RWF has computational cost O(mn log 1/ε) because it
requires only c log(1/ε) iterations to achieve ε-accuracy due to the convergence rate (1− c)k.
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Figure 1: Surface of the expected loss function of (a) least-squares (mirrored symmetrically),
(b) RWF, and (c) WF when x = [1,−1]T .

1.1 Our Contribution

This paper adopts the following loss function

`(z) := 1
2m

m∑
i=1

(
|aTi z| − yi

)2
, (3)

which is the quadratic loss of the magnitude measurements. Compared to the loss function
(2) of WF that adopts the quadratic loss of |aTi z|2, the above loss function adopts the
quadratic loss of |aTi z| and hence has lower-order variables. While both loss functions are
nonconvex in z, the WF loss function (2) is a fourth-order smooth function of aTi z and our
loss function (3) in contrast is nonsmooth.

To minimize such a nonconvex and nonsmooth loss function (3), we develop a gradient
descent algorithm, which sets the “gradient” to zero corresponding to nonsmooth samples.
We refer to such an algorithm together with an initialization using a new spectral method
(different from that employed in TWF or WF) as reshaped Wirtinger flow (RWF). We
show that the new loss function has great advantage in both statistical and computational
efficiency, despite nonsmoothness. In fact, the curvature of such a loss function behaves
similarly to that of a least-squares problem with phase information in the neighborhood of
global optimizers, and hence yields faster convergence. To provide further insights, consider
the standard problem of solving x from linear measurements 〈ai,x〉, i = 1, · · · ,m, where
ai’s are composed of i.i.d. standard Gaussian entries. In this case, it is natural to use the
least-squares loss function

`LS(z) := 1
m

m∑
i=1

(
aTi z − aTi x

)2
. (4)

Examining the expected (with respect to ai’s) loss surface of min{`LS(z), `LS(−z)} (to
mimic sign ambiguity), `(z), and `WF (z) in Figure 1, whose expressions can be found in
Appendix A, it can be seen that the loss of RWF, rather than the loss of WF, has a similar
curvature to the quadratic least-squares loss around the global optimizers, which justifies its
better performance than WF.
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Figure 2: Comparison of convergence behavior between RWF and the least-squares gradient
descent with the same initialization, the same parameters n = 1000, m = 6n, and
the same step size µ = 0.8.

The nonsmoothness of the loss function (3) does not negatively impact the performance
of RWF because only with negligible probability the algorithm encounters nonsmooth points
for some samples, which furthermore are set not to contribute to the gradient direction by
RWF. The gradient of the RWF loss (3) is given as

∇`(z) := 1
m

m∑
i=1

(
aTi z − yi · sgn(aTi z)

)
ai, (5)

where sgn(0) = 0 by convention. Comparing this with the gradient of the least-squares loss

∇`LS(z) = 1
m

m∑
i=1

(
aTi z − aTi x

)
ai, (6)

one can see that RWF uses estimated phase information sgn(aTi z) to generate the gradient
updates, and the convergence behavior of RWF is much similar to that of least-squares
with phase information if initialized properly. Indeed, Figure 2 illustrates that RWF takes
almost the same number of iterations for recovering a signal (with only the magnitude
information) as the least-squares gradient descent method for recovering a signal (with both
the magnitude and the sign information).

We further develop incremental/stochastic versions of RWF using mini-batches of measure-
ments, called incremental RWF (IRWF), and show that IRWF also enjoys the advantageous
local curvature of RWF, and achieves excellent statistical and computational performance.
Along the way, we establish the performance guarantee of the Kaczmarz-PR update rule
by interpreting it as a variant of IRWF. We conduct extensive numerical experiments to
demonstrate that IRWF performs better than other competitive incremental algorithms
(ITWF and Kaczmarz-PR) as well as batch algorithms (RWF, TWF, WF and AltMinPhase).

We summarize our main results as follows.

• Statistically, we show that RWF recovers the true signal with O(n) Gaussian mea-
surements, which is order-wise optimal. Thus, RWF improves the sample complexity
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O(n logn) of WF, and achieves the same sample complexity as TWF but without
truncation in the gradient descent step.

• Computationally, RWF converges linearly to the true signal with a constant step size,
requiring O(mn log(1/ε)) flops to reach ε-accuracy. Again, without truncation in the
gradient descent step, RWF improves the computational cost O(mn2 log(1/ε)) of WF
and achieves the same computational cost as TWF.

• We also show that RWF is robust to bounded additive noise. The estimation error
is shown to diminish at a linear rate with respect to the noise level up to a scaling
difference. Experiments on Poisson noise further corroborate the stability guarantee.

• The incremental versions of RWF (IRWF) is shown to shrink the estimation error in
expectation for one update, which implies the linear convergence of the algorithm if the
iteration path lies in the neighborhood of the true signal. Furthermore, we show that
Kaczmarz-PR can be viewed as IRWF under a specific choice of step size, and establish
a similar convergence result for Kaczmarz-PR under the same sample complexity.

• Numerically, RWF and its incremental versions require fewer parameters, e.g., trunca-
tion thresholds, than TWF in practice. RWF is generally two times faster than TWF
and four to six times faster than WF in terms of both the number of iterations and
time cost. IRWF also outperforms existing incremental as well as batch algorithms.

Compared to WF and TWF, the nonsmoothness in the loss function requires new
bounding techniques in order to establish the theoretical guarantees. On the other hand,
our technical proof is much simpler, because the lower-order loss function allows to bypass
higher-order moments of variables as well as truncation of samples in the gradient descent
steps.

1.2 Related Work

The quadratic loss function of magnitudes (3) was also used in the early literature of
phase retrieval (Fienup, 1982) with Fourier magnitude measurements. However, no global
convergence guarantee was available in (Fienup, 1982). Along the line of developing nonconvex
algorithms with global performance guarantees for the phase retrieval problem, Netrapalli
et al. (2013) and Waldspurger (2016) developed alternating minimization algorithms, Candès
et al. (2015); Chen and Candès (2015); Zhang et al. (2016); Cai et al. (2016) developed
first-order algorithms, and a recent study Sun et al. (2016) characterized the geometric
structure of the nonconvex objective and designed a second-order trust-region algorithm.
This paper is closely related to (Candès et al., 2015; Chen and Candès, 2015; Zhang et al.,
2016), but develops a new gradient descent algorithm based on a lower-order nonsmooth
(as well as nonconvex) loss function that yields advantageous statistical and computational
efficiency.

Stochastic algorithms were also developed for the phase retrieval problem. Kolte and
Özgür (2016) studied the incremental truncated Wirtinger flow (ITWF) and showed that
ITWF needs much fewer passes of data than TWF to reach the same accuracy. Wei (2015)
adapted the Kaczmarz method to solve the phase retrieval problem and demonstrated its
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fast empirical convergence. We show that IRWF is closely related to Kaczmarz-PR, and
empirically runs faster than ITWF thanks to the advantageous curvature of the loss function.

After our work was posted on arXiv, an independent work (Wang et al., 2016) was
subsequently posted, which also adopts the same loss function but develops a slightly
different algorithm called TAF (i.e., truncated amplitude flow). One major difference is that
RWF does not require truncation in the gradient loops while TAF still employs truncation.
Hence, RWF has fewer parameters to tune, and is easier to implement than TAF in practice.
Furthermore, RWF demonstrates the performance advantage of adopting a lower-order loss
function even without truncation, which cannot be observed from TAF. The two algorithms
also employ different initialization strategies. Moreover, we analyze stochastic algorithms
based on the new loss function while Wang et al. (2016) do not.

More generally, various high-dimensional signal estimation problems have been studied
by minimizing nonconvex loss functions. For example, a partial list of these studies include
matrix completion (Keshavan et al., 2010; Jain et al., 2013; Sun and Luo, 2016; Hardt, 2014;
Sa et al., 2015; Zheng and Lafferty, 2016; Jin et al., 2016; Ge et al., 2016), low-rank matrix
recovery (Bhojanapalli et al., 2016; Chen and Wainwright, 2015; Tu et al., 2015; Zheng and
Lafferty, 2015; Park et al., 2016; Wei et al., 2016; Li et al., 2017), robust PCA (Netrapalli
et al., 2014), robust tensor decomposition (Anandkumar et al., 2016), dictionary learning
(Arora et al., 2015; Sun et al., 2015), community detection (Bandeira et al., 2016), phase
synchronization (Boumal, 2016), blind deconvolution (Lee et al., 2016b; Li et al., 2016), etc.

For minimizing a general nonconvex nonsmooth objective, various algorithms have been
proposed, such as gradient sampling (Burke et al., 2005; Kiwiel, 2007) and majorization-
minimization (Ochs et al., 2015). These algorithms are often shown to converge to critical
points which may be local minimizers or saddle points, without an explicit characterization
of convergence rates. In contrast, our algorithm is specifically designed for the phase retrieval
problem, and can be shown to converge linearly to the global optimum under an appropriate
initialization.

The advantage of using nonsmooth loss functions in our study is analogous in spirit
to that of the rectifier activation function (of the form max{0, ·}) in neural networks. It
has been shown that rectified linear unit (ReLU ) enjoys superb advantage in reducing the
training time (Krizhevsky et al., 2012) and promoting sparsity (Glorot et al., 2011) over
its counterparts of sigmoid and hyperbolic tangent functions, in spite of non-linearity and
non-differentiability at zero. Our results in fact also demonstrate that a nonsmooth but
simpler loss function yields improved performance.

1.3 Paper Organization and Notations

The rest of this paper is organized as follows. Section 2 describes the RWF algorithm in
detail and establishes its performance guarantee. Section 3 introduces the IRWF algorithm,
establishes its performance guarantee and compares it with existing stochastic algorithms.
Section 4 compares RWF and IRWF with other competitive algorithms numerically. Finally,
Section 5 concludes the paper with comments on future directions.

Throughout the paper, boldface lowercase letters such as ai,x, z denote vectors, and
boldface capital letters such as A,Y denote matrices. For two matrices, A ≺ B means that
B −A is positive definite. For a complex matrix and a vector, A∗ and z∗ denote conjugate
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transposes of A and z, respectively. For a real matrix and a vector, AT and zT denote
transposes of A and z, respectively. We let � denotes element-wise product. The indicator
function 1A = 1 if the event A occurs, and 1A = 0 otherwise. We let ‖x‖1 and ‖x‖ denote
the l1 norm and l2 norm of a vector x, respectively. Moreover, let ‖A‖F and ‖A‖ denote
the Frobenius norm and the spectral norm of a matrix A, respectively. We note that the
constants c, C, c0, c1, c2 may be different in different equations, for the sake of notational
simplicity.

2. Reshaped Wirtinger Flow

Consider the Problem 1 for the complex case. It can be observed that if z is a solution,
i.e., satisfying Equation (1), then ze−jφ is also the solution of the problem where φ is an
arbitrary phase constant. Therefore, the recovery is up to a phase difference. Thus, we
define the Euclidean distance between two complex vectors up to a global phase difference
(Candès et al., 2015) as,

dist(z,x) := min
φ∈[0,2π)

‖ze−jφ − x‖, (7)

which is simply min ‖z ± x‖ for the real case.
In this paper, we focus on the real-valued case in our analysis, but the algorithm designed

below is applicable to the complex-valued case and the case with other measurement vectors
such as coded diffraction pattern (CDP) as we demonstrate via numerical experiments in
Section 4.

We design RWF (see Algorithm 1) for solving the phase retrieval problem, which contains
two stages: spectral initialization and gradient loop. The suggested values for the parameters2

are given by αl = 1, αu = 5 and µ = 0.8. The rescaling coefficient in λ0 and the conjugate
transpose a∗i allow the algorithm readily applicable to the complex and CDP cases. We next
describe the two stages of RWF in details in Sections 2.1 and 2.2, respectively, and establish
the convergence guarantee in Section 2.3. Finally, we provide the stability guarantee of RWF
in Section 2.4.

2.1 Initialization via the Spectral Method

When solving nonconvex problems by iterative algorithms, the starting point is critical.
The spectral method is a popular choice in the literature (Keshavan et al., 2010; Netrapalli
et al., 2013; Candès et al., 2015; Chen and Candès, 2015), which often provides a good
initialization. Different from the spectral initialization used in AltMinPhase (Netrapalli
et al., 2013), WF (Candès et al., 2015) and TWF (Chen and Candès, 2015), which are
based on the squared magnitudes as the weight of each rank-one matrix aia

∗
i , we propose

an alternative initialization in Algorithm 1 that uses the magnitudes instead, and truncates
samples that are either too large or too small. We show that such an initialization achieves
a smaller sample complexity than WF and the same sample complexity as TWF order-wise,
and furthermore, performs better than both WF and TWF numerically.

Our initialization consists of estimation of both the norm and the direction of x. The
norm estimation of x is given by λ0 in Algorithm 1. Intuitively, with real-valued Gaussian

2. For the complex Gaussian case, we suggest µ = 1.2.
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Algorithm 1 Reshaped Wirtinger Flow
Input: y = {yi}mi=1, {ai}mi=1;
Parameters: Lower and upper thresholds αl, αu for truncation in initialization, step size µ;
Initialization: Let z(0) = λ0z̃, where λ0 = mn∑m

i=1 ‖ai‖1
·
(

1
m

∑m
i=1 yi

)
and z̃ is the leading

eigenvector of

Y := 1
m

m∑
i=1

yiaia
∗
i1{αlλ0<yi<αuλ0}. (8)

Gradient loop: for t = 0 : T − 1 do

z(t+1) = z(t) − µ

m

m∑
i=1

(
a∗i z

(t) − yi ·
a∗i z

(t)

|a∗i z(t)|

)
ai. (9)

Output z(T ).

measurement vectors (i.e., ai ∼ N (0, In×n)), the scaling coefficient mn∑m

i=1 ‖ai‖1
≈
√

π
2 .

Moreover, for i = 1, . . . ,m, yi = |aTi x| are independent sub-Gaussian random variables with
mean

√
2
π‖x‖, and thus 1

m

∑m
i=1 yi ≈

√
2
π‖x‖. Combining these two facts yields the desired

argument.
The direction of x is approximated by the leading eigenvector of Y , because Y approaches

E[Y ] by concentration of measure arguments, and the leading eigenvector of E[Y ] takes
the form cx for some scalar c ∈ R. We note that (8) involves truncation of samples from
both sides, in contrast to truncation only by an upper threshold in TWF (Chen and Candès,
2015). The truncation parameters αl and αu are related to the eigenvalue gap between the
top two eigenvalues of Y , which determines the estimation accuracy of the eigenvector after
running k iterations of the power method3. The larger the eigenvalue gap, the better the
accuracy of the power method given a number of iterations. We note that αl = 1, αu =∞
yield the largest eigenvalue gap from the developments in Appendix B. We explicitly set a
bounded αu for the development of the proof and for numerical stability.

We next provide the formal statement that with high probability, the proposed initializa-
tion lands in a small neighborhood around the true signal.

Proposition 1 Fix δ > 0, αl = 1 and αu � 1. The initialization step in Algorithm 1
yields z(0) satisfying dist(z(0),x) ≤ δ‖x‖ with the probability at least 1 − exp(−cmε2), if
m > C(δ, ε)n, where c is some positive constant and C is a positive constant affected by δ
and ε.

Proof. See Appendix B.
Finally, we numerically compare different initialization methods in Figure 3. It is

demonstrated that RWF achieves better initialization accuracy in terms of the relative error
dist(z(0),x)/‖x‖ than WF, TWF, as well as the initialization method proposed in TAF
(Wang et al., 2016).

3. Numerical linear algebra shows that after k iterations of the power method, the estimation accuracy of
the eigenvector is given by O((λ2/λ1)k), where λ1 and λ2 are the top two eigenvalues.
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Figure 3: Comparison of different initialization methods with m = 6n and under 50 iterations
of power method.

2.2 Gradient Loop

The gradient loop of Algorithm 1 is based on the loss function (3), and the update rule (9)
makes itself suitable for the complex case. For the real case the update direction is given as
follows:

∇`(z) := 1
m

m∑
i=1

(
aTi z − yi · sgn(aTi z)

)
ai = 1

m

m∑
i=1

(
aTi z − yi ·

aTi z

|aTi z|

)
ai, (10)

where sgn(·) is the sign function for nonzero arguments. We further set sgn(0) = 0 and
0
|0| = 0. In fact, ∇`(z) equals the gradient of the loss function (3) over the samples that
satisfy aTi z 6= 0. For samples corresponding to the nonsmooth point, i.e., aTi z = 0, we adopt
the Fréchet superdifferential (Kruger, 2003) for nonconvex functions to set the gradient
component to be zero (as zero is an element in the Fréchet superdifferential). With abuse of
terminology, we still refer to ∇`(z) in Equation (10) as the “gradient” for simplicity, which
rather represents the update direction in the gradient loop of Algorithm 1.

2.3 Linear Convergence of RWF

We characterize the convergence guarantee of RWF in the following theorem.

Theorem 2 Consider the problem of solving any given x ∈ Rn from a system of equations
(1) with Gaussian measurement vectors. There exist some universal constants µ0 > 0 (µ0
can be set as 0.8 in practice), 0 < ρ, ν < 1 and c0, c1, c2 > 0 such that if m ≥ c0n and
µ < µ0, then with probability at least 1− c1 exp(−c2m), Algorithm 1 yields

dist(z(t),x) ≤ ν(1− ρ)t‖x‖, ∀t ∈ N. (11)

Proof We outline the proof here with the details delegated to Appendix C. Compared to
WF and TWF, our proof is much simpler due to the lower-order loss function that RWF
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relies on. We first introduce a global phase notation for the real case as follows:

Φx(z) :=
{

0, if ‖z − x‖ ≤ ‖z + x‖,
π, otherwise.

(12)

For the sake of simplicity, we let z be e−jΦx(z)z, which indicates that z is always in the
neighborhood of x.

Here, the central idea is to show that within the neighborhood of the global minimizer,
RWF satisfies the Regularity Condition RC(µ, λ, c) (Chen and Candès, 2015), i.e.,

〈∇`(z), z − x〉 ≥ µ

2 ‖∇`(z)‖2 + λ

2 ‖z − x‖2 (13)

for all z obeying ‖z − x‖ ≤ c‖x‖, where 0 < c < 1 is some small constant. Then, as shown
in (Candès et al., 2015; Chen and Candès, 2015), once the initialization lands into this
neighborhood, linear convergence can be guaranteed with a proper choice of the constant
step size, i.e.,

dist2 (z − µ∇`(z),x) ≤ (1− µλ)dist2(z,x), (14)

for any z satisfying ‖z − x‖ ≤ c‖x‖.
Lemmas 6 and 7 in Appendix C yield that for all z satisfying ‖z − x‖ ≤ c‖x‖,

〈∇`(z), z − x〉 ≥ (1− 0.26− 3ε)‖z − x‖2 = (0.74− 3ε)‖z − x‖2

with high probability. Moreover, Lemma 8 in Appendix C further yields that

‖∇`(z)‖ ≤ (1 + δ) · 2‖z − x‖ (15)

with high probability. Therefore, the above two bounds imply that the Regularity Condition
(13) holds for µ and λ satisfying

0.74− 3ε ≥ µ

2 · 4(1 + δ)2 + λ

2 (16)

for sufficiently small ε and δ.

We note that Equation (16) implies an upper bound for the step size µ ≤ 0.74
2 = 0.37,

by taking ε and δ to be sufficiently small. However, in practice, the step size µ can be set
much larger than such a bound, say 0.8, while still keeping the algorithm convergent. This
is because the coefficients in the proof are set for the convenience of the proof rather than
being tightly chosen.

Theorem 2 indicates that RWF recovers the true signal with O(n) samples, which is
order-wise optimal. Such an algorithm improves the sample complexity O(n logn) of WF.
Furthermore, RWF does not require truncation of samples in the gradient step to achieve
the same sample complexity as TWF. This is mainly because RWF benefits from the lower-
order loss function given in Equation (3), the curvature of which behaves similarly to the
least-squares loss function locally as we explain in the introduction.

10
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Theorem 2 also suggests that RWF converges linearly with a constant step size. To reach
ε-accuracy, it requires a computational cost of O(mn log(1/ε)) flops, which is better than
WF (O(mn2 log(1/ε)) and on par with TWF. Numerically, as we demonstrate in Section 4,
RWF is two times faster than TWF and four to six times faster than WF in terms of both
the iteration counts and the time cost in various examples.

2.4 Stability to Bounded Noise

We have established that RWF guarantees exact recovery at a linear convergence rate
for noise-free measurements. We now study RWF in the presence of noise. Suppose the
measurements are corrupted by bounded noise, and are given by

yi = |aTi x|+ wi, 1 ≤ i ≤ m, (17)

where w = {wi}mi=1 denote the additive noise. Then the following theorem shows that RWF
is robust under bounded noise.

Theorem 3 Consider the model (17). Suppose that the measurement vectors are inde-
pendently Gaussian, i.e., ai ∼ N (0, I) for 1 ≤ i ≤ m, and the noise is bounded, i.e.,
‖w‖/

√
m ≤ c‖x‖ where c is a positive constant. Then there exist some universal constants

µ0 > 0 (µ0 can be set as 0.8 in practice), 0 < ρ < 1 and c0, c1, c2 > 0 such that if m ≥ c0n
and µ < µ0, then with probability at least 1− c1 exp(−c2m), Algorithm 1 yields

dist(z(t),x) . ‖w‖√
m

+ (1− ρ)t‖x‖, ∀t ∈ N. (18)

Proof See Appendix D.

Theorem 3 shows that under the same sample complexity, RWF converges at a linear rate
to a neighborhood around the true signal, whose radius is on the level of the noise. The
numerical result under the Poisson noise model in Section 4 further corroborates the stability
of RWF.

3. Incremental Reshaped Wirtinger Flow

In large-sample and online scenarios, stochastic algorithms are preferred due to their potential
advantage of faster convergence and lower memory requirement. Thus, in this section, we
develop stochastic versions of RWF, referred to as incremental reshaped Wirtinger flow
(IRWF). We show that IRWF guarantees exact recovery at a linear convergence rate under
the same sample complexity. We further draw the connection between IRWF and the
randomized Kaczmarz method recently developed for phase retrieval (Wei, 2015; Li et al.,
2015; Chi and Lu, 2016), and establish its global convergence as a side product.

3.1 (Mini-batch) IRWF: Algorithm and Convergence

In oder to fully exploit the processing throughput of CPU/GPU, we develop a mini-batch
IRWF, described in Algorithm 2. The mini-batch IRWF applies the same initialization step
as in RWF, and uses a mini-batch of measurements for each gradient update.

11
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Algorithm 2 Mini-batch Incremental Reshaped Wirtinger Flow (mini-batch IRWF)
Input: y = {yi}mi=1, {ai}mi=1, mini-batch size k;
Initialization: Same as in RWF (Algorithm 1);
Gradient loop: for t = 0 : T − 1 do
Choose Γt uniformly at random from the subsets of {1, 2, . . . ,m} with the cardinality k, and
let

z(t+1) = z(t) − µ ·A∗Γt
(
AΓtz

(t) − yΓt � Ph(AΓtz
(t))
)
, (19)

where AΓt is a matrix stacking a∗i for i ∈ Γt as its rows, yΓt is a vector stacking yi for i ∈ Γt
as its elements, and Ph(z) denotes the phase vector of z.
Output z(T ).

If the gradient update uses only a single sample, i.e., k = 1, we refer to Algorithm 2 as
IRWF, where the step (19) becomes

z(t+1) = z(t) − µ
(

a∗itz
(t) − yit ·

a∗itz
(t)

|a∗itz(t)|

)
ait . (20)

We characterize the convergence of mini-batch IRWF in the following theorem.

Theorem 4 Consider the problem of solving any given x ∈ Rn from a system of equations
(1) with independent Gaussian measurement vectors ai ∼ N (0, I). There exist some universal
constants 0 < ρ, ρ0 < 1 and c0, c1, c2 > 0 such that if m ≥ c0n and µ = ρ0/n for the update
rule (19), then with probability at least 1− c1 exp(−c2m), we have that

EΓt

[
dist2(z(t+1),x)

]
≤
(

1− kρ

n

)
· dist2(z(t),x) (21)

holds for all z(t) satisfying dist(z(t),x)
‖z‖ ≤ 1

10 .

Proof See Appendix E.1.

We suggest that ρ0 = 1 and hence the step size µ = 1
n in practice. Theorem 4

characterizes that the error decays exponentially fast in expectation if the estimate lands
into the neighborhood of the global minimizer. For a generic optimization objective, it is
not anticipated that incremental/stochastic first-order methods achieve linear convergence
due to the variance of stochastic gradients. However, for our specific problem, the variance
of stochastic gradients reduces as the estimate approaches the true signal, and hence a fixed
step size can be employed and exponential decay can be established. A result similar in
spirit was also established for the stochastic algorithm based on TWF (referred to as ITWF)
(Kolte and Özgür, 2016). We provide further comparisons between IRWF and ITWF in
Section 3.3. On the other hand, it was shown in (Moulines and Bach, 2011; Needell et al.,
2016) that stochastic gradient methods yield linear convergence to the minimizer x? if the
objective F (x) =

∑
i fi(x) is a smooth and strongly convex function and x? minimizes

12
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all components fi(x). The summands of our objective (3) also share the same minimizer
(although it is neither convex nor smooth), which also helps to explain the convergence
property of the IRWF.

3.2 Connection to the Kaczmarz Method for Phase Retrieval

The Kaczmarz method was originally developed for solving systems of linear equations
(Kaczmarz, 1937). In literature (Wei, 2015; Li et al., 2015), it was adapted to solve the phase
retrieval problem, which we refer to as Kaczmarz-PR. It has been demonstrated in Wei
(2015) that Kaczmarz-PR exhibits better empirical performance than error reduction (ER)
(Gerchberg, 1972; Fienup, 1982) and WF (Candès et al., 2015). However, global convergence
of Kaczmarz-PR has not been well established yet, although the randomized Kaczmarz
method for the least-squares problem is known to converge at a linear rate (Strohmer and
Vershynin, 2009; Zouzias and Freris, 2013). For instance, Wei (2015) obtained a bound
on the estimation error which can be as large as the signal energy no matter how many
iterations are taken. Li et al. (2015) established the asymptotic convergence in the regime
when both m and n go to infinity but their ratio is fixed.

In this section, we draw connection between IRWF and Kaczmarz-PR, which enables us
to establish the theoretical guarantee of Kaczmarz-PR by adapting that of IRWF. This is
analogous to the connection made in Needell et al. (2016) between the Kaczmarz method and
the stochastic gradient method for solving the least-squares problem. Here, the connection
is made possible due to the lower-order loss function of RWF, which was not evident in
previous studies of WF and TWF.

To be more specific, the Kaczmarz-PR (Wei, 2015, Algorithm 3) employs the following
update rule

z(t+1) = z(t) − 1
‖ait‖2

(
a∗itz

(t) − yit ·
a∗itz

(t)

|a∗itz(t)|

)
ait , (22)

where it is selected either in a deterministic manner or randomly. We focus on the randomized
case where it is selected uniformly at random from {1, . . . ,m}.

Comparing Equation (22) and Equation (20), the update rule of Kaczmarz-PR becomes
equivalent to IRWF, if we replace the step size µ by 1

‖ait‖2 . Moreover, these two update
rules are close if µ is set as suggested, i.e., µ = 1

n , because for Gaussian measurements,
‖ait‖2 concentrates around n by the law of large numbers. As we demonstrate in the
numerical experiments (see Table 1), Kaczmarz-PR and IRWF have similar performance as
anticipated. Thus, following the convergence guarantee for IRWF in Theorem 4, we establish
the convergence guarantee for the randomized Kaczmarz-PR as follows.

Theorem 5 Assume the measurement vectors are independent and each ai ∼ N (0, I).
There exist some universal constants 0 < ρ < 1 and c0, c1, c2 > 0 such that if m ≥ c0n, then
with probability at least 1− c1m exp(−c2n), the randomized Kaczmarz-PR update rule (22)
yields

Eit
[
dist2(z(t+1),x)

]
≤
(

1− ρ

n

)
· dist2(z(t),x) (23)

for all z(t) satisfying dist(z(t),x)
‖z‖ ≤ 1

10 .
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Proof See Appendix E.2.

Theorem 5 implies that as long as the iteration sequence z(t) lies in the neighborhood of
the true signal, the error decays exponentially fast in expectation. However, Theorem 5
does not guarantee the full trajectory of the estimates to be in the neighborhood of the true
signal. After submission of our work, more recent studies (Jeong and Gunturk, 2017; Tan
and Vershynin, 2017) established the convergence of full trajectory by employing martingale
theory.

Furthermore, Wei (2015) also provided a block Kaczmarz-PR (similar to the mini-batch
version), whose update rule is given by

z(t+1) = z(t) −A†Γt

(
AΓtz

(t) − yΓt � Ph(AΓtz
(t))
)
, (24)

where Γt is a selected block at iterate t containing row indices, and † represents Moore-Penrose
pseudoinverse, which is computed as follows:

A† =
{

(A∗A)−1A∗, if A has linearly independent columns;
A∗(AA∗)−1, if A has linearly independent rows.

(25)

Comparing Equation (24) and the mini-batch IRWF update in Equation (19), these two
update rules are similar to each other if AΓtA

∗
Γt approaches n

ρ0
I |Γt|. For the case with

Gaussian measurements, AΓt has linearly independent rows with high probability if |Γt| ≤ n
and hence AΓtA

∗
Γt is not far from nI |Γt|. Our numerical experiments (see Table 1) further

suggest similar convergence rates for these two algorithms with the same block/mini-batch
size.

Next, we argue that for the CDP setting, block Kaczmarz-PR is the same as the
mini-batch IRWF with µ = 1. The CDP measurements are collected in the following form

y(l) = |F D(l)x|, 1 ≤ l ≤ L, (26)

where F represents the discrete Fourier transform (DFT) matrix, D(l) denotes a diagonal
matrix (mask), and L denotes the number of masks. We choose the block size |Γt| to be
the dimension n of the signal for the convenience of Fourier transform. Then AΓt becomes
the Fourier transform composed with D(l) (mask effect) and A∗Γt becomes D(l)∗ multiplied
by the inverse Fourier transform. Therefore, (AΓtA

∗
Γt) = I if the diagonal elements of D(l)

have unit magnitude. Taking the step size µ = 1, the two algorithms are identical.
On the other hand, since the block Kaczmarz-PR needs to calculate the matrix inverse

or to solve an inverse problem, the block size cannot be too large. However, mini-batch
IRWF works well for a wide range of the mini-batch sizes, which can even grow with the
signal dimension n as long as a batch of data is loadable into the memory.

3.3 Comparison with Incremental Truncated Wirtinger Flow (ITWF)

Recently, (Kolte and Özgür, 2016) designed and analyzed an incremental algorithm based on
TWF, which is referred to as ITWF. More specifically, ITWF employs the same initialization
procedure as TWF and randomly chooses one sample with the index it selected uniformly
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at random from {1, 2, . . . ,m} for the gradient update as follows:

z(t+1) = z(t) − µ ·
|aTitz|

2 − y2
it

aTitz
ait1Eit1,t∩E

it
3
, (27)

where 1Eit1,t∩E
it
3

represents the truncation rule determined by the events E it1,t and E it3 . As a
comparison, the update rule of IRWF is much simpler due to the use of the lower-order loss
function and does not require any truncation in the gradient loop. Kolte and Özgür (2016)
proved that the update (27) shrinks the estimate error as long as m/n is large enough and
the estimate z. Compared to ITWF, the IRWF update (19) also shrinks the estimate error,
but runs faster than ITWF numerically as demonstrated in Section 4.

4. Numerical Experiments

In this section, we demonstrate the numerical efficiency of RWF and (mini-batch) IRWF
by comparing their performance with other competitive algorithms. Our experiments are
conducted not only for the real Gaussian case but also for the complex Gaussian and the
CDP cases. All the experiments are implemented in Matlab 2015b and conducted on a
computer equipped with Intel Core i7 3.4GHz CPU and 12GB RAM.

We first compare the sample complexity of RWF and IRWF with those of TWF, WF,
Kaczmarz-PR and AltMinPhase via the empirical successful recovery rate versus the number
of measurements. For RWF, we follow Algorithm 1 with the suggested parameters. For
IRWF, we adopt a block size 64 for efficiency and set the step size µ = 1/n. For WF, TWF,
we use the code provided in the original papers with the suggested parameters. For ITWF,
we also adopt a block size 64 and set the step size µ = 0.6/n (optimal step size). We conduct
the experiments for the real Gaussian, complex Gaussian and CDP cases respectively. For the
real and complex cases, we set the signal dimension n to be 1000, and set the ratio m/n to
take values from 2 to 6 with a step 0.1. For each m, we run 100 trials and count the number
of successful trials. For each trial, we run a maximal number of iterations/passes T = 10000
for all algorithms, and a trial is declared to be successful whenever the iterate satisfies
dist(z(T ),x)/‖x‖ ≤ 10−5. For the real Gaussian case, we generate the signal x ∼ N (0, In×n),
and generate the measurement vectors ai ∼ N (0, In×n) i.i.d. for i = 1, . . . ,m. For the
complex Gaussian case, we generate the signal x ∼ N (0, In×n) + jN (0, In×n) and the
measurement vectors ai ∼ 1

2N (0, In×n) + j 1
2N (0, In×n) i.i.d. for i = 1, . . . ,m. For the CDP

case (26), we set n = 1024 for the convenience of FFT and m/n = L = 1, 2, . . . , 8. All other
settings are the same as those for the real case.

We note that for the CDP case, the Kaczmarz-PR algorithm is identical to the IRWF
with step size µ = 1/n due to the argument in Section 3.2. Moreover under the CDP case,
the AltMinPhase algorithm is identical to the RWF with step size µ = 1 because the inverse
of the Fourier measurement matrix is nothing but its conjugate transpose. In the following
experiments for the CDP case, we choose the step size µ = 1/n for the IRWF and µ = 1
for the RWF, under which the Kaczmarz-PR algorithm coincides with the IRWF and the
AltMinPhase algorithm coincides with the RWF.

Figure 4 plots the fraction of successful trials out of 100 trials for all algorithms, with
respect to m/n. It can be seen that IRWF and Kaczmarz-PR exhibit a similar sample
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(a) Real Gaussian case
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(b) Complex Gaussian case
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Figure 4: Comparison of sample complexity among RWF, IRWF, TWF, ITWF, WF,
Karzmarz-PR and AltMinPhase.

complexity, which is the best for all three cases, and is close to the theoretical limit (Bandeira
et al., 2014). It can also be seen that the two incremental methods (IRWF and ITWF)
outperform the batch methods (RWF, TWF, AltMinPhase and WF). This can be due to the
inherent noise in incremental methods, which helps to escape bad local minima. This can be
extremely helpful in the regime with a small number of samples, where local minima do exist
near the global minima. Comparing among the batch methods (RWF, TWF AltMinPhase
and WF), it can be seen that although RWF outperforms only WF and AltMinPhase (not
TWF) for the real Gaussian case, it has a comparable performance for the complex case and
outperforms TWF and WF in the CDP case. An intuitive explanation for the real case is
that a substantial number of samples with small |aTi z| can deviate the gradient direction so
that truncation indeed helps to stabilize the algorithm if the number of measurements is not
large.

We next compare the convergence rate of RWF, IRWF with those of TWF, ITWF, WF,
Kaczmarcz and AltMinPhase. We run all of the algorithms with the suggested parameters
in the original code. We generate the signal and measurements in the same way as those
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Table 1: Comparison of iteration count and time cost among algorithms (n = 5000,m = 8n).

Real Gaussian Complex Gaussian
#passes time(s) # passes time(s)

RWF 72 12.66 176 122.4
Batch TWF 186 32.36 487 395.1
methods WF 319 54.83 932 887.8

AltMinPhase 6 79.58 159 9637

IRWF 9 44.77 21 233.2
mini-batch IRWF (64) 9 8.076 21 48.58

Incremental mini-batch ITWF (64) 16 37.38 29 149.5
methods Kaczmarz-PR 9 50.68 21 248.4

block Kaczmarz-PR (64) 8 28.50 22 89.31

in the first experiment with n = 5000,m = 8n. All algorithms are seeded with the RWF
initialization. In Table 1, we list the number of passes and the time cost for all the algorithms
to achieve a relative error of 10−14 averaged over 10 trials. For the incremental methods,
one update passes k samples and one pass amounts to m/k updates. Clearly, IRWF with
mini-batch size 64 runs the fastest for both the real and complex cases. Moreover, among
the batch (deterministic) algorithms, RWF takes much fewer passes as well as runs much
faster than TWF and WF. Although RWF takes more iterations than AltMinPhase, it runs
much faster than AltMinPhase due to the fact that each iteration of AltMinPhase needs to
solve a least-squares problem that takes much longer than a simple gradient update in RWF.

We also compare the performance of the above algorithms on the recovery of a real image
from the Fourier intensity measurements (the two dimensional CDP case). The image (see
Figure 5) is the Milky Way Galaxy with resolution 1920× 1080. Table 2 lists the number of
passes and the time cost for the above six algorithms to achieve the relative error of 10−15

for one R/G/B channel. All algorithms are seeded with the RWF initialization. To explore
the advantage of FFT, we run the incremental/stochastic methods with the mini-batch size
equal to the number of pixels for one R/G/B channel. We note that with such a mini-batch
size, IRWF is equivalent to block Kaczmarz-PR from the discussion in Section 3.2. It can
be seen that in general, the incremental/stochastic methods (IRWF and ITWF) run faster
than the batch methods (RWF, TWF, WF). Moreover, among the batch methods, RWF
outperforms the other three algorithms in both the number of passes and the computational
time. In particular, RWF runs two times faster than TWF and six times faster than WF in
terms of both the number of iterations and the computational time.

We next demonstrate the robustness of RWF to noise and compare it with TWF.
We consider the phase retrieval problem in imaging applications, where Poisson noise is
often used to model the sensor and electronic noise (Fogel et al., 2016). Specifically, the
noisy measurements of intensity can be expressed as yi =

√
α · Poisson

(
|aTi x|2/α

)
, for
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Figure 5: Milky way Galaxy.

Table 2: Comparison of iterations and time cost among algorithms on recovery of Galaxy
image (shown in Figure 5), where L = m/n denotes the number of CDP masks.

Algorithms RWF IRWF TWF ITWF WF

L = 6 #passes 140 24 410 41 fail
time cost(s) 110 21.2 406 43 fail

L = 12 #passes 70 8 190 12 315
time cost(s) 107 13.7 363.6 25.9 426

i = 1, 2, ...m where α denotes the level of the input noise, and Poisson(λ) denotes a random
sample generated by the Poisson distribution with mean λ. It can be observed from Figure 6
that RWF performs better than TWF in terms of the recovery accuracy under two different
noise levels.

5. Conclusion

In this paper, we proposed RWF and its incremental version IRWF to recover a signal for
the phase retrieval problem, based on a nonconvex and nonsmooth quadratic loss function of
magnitude measurements. This loss function sacrifices the smoothness but enjoys advantages
in statistical and computational efficiency. It has potential to be extended in various scenarios.
One interesting direction is to extend such an algorithm to exploit signal structures (e.g.,
non-negativity, sparsity, etc) to assist the recovery. The lower-order loss function may offer
great simplicity to prove the performance guarantee in such cases.

Another interesting direction is to study the convergence of algorithms from random
initialization. In the regime with a large sample size (m � n), the empirical loss surface
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Figure 6: Comparison of relative error under Poisson noise between RWF and TWF.

approaches the asymptotic loss Figure 1(b) and hence has no spurious local minima. Due to
the result (Lee et al., 2016a), it is conceivable that the gradient descent algorithm converges
from any random starting point. Similar phenomena have been observed in (Sun et al.,
2016; Ge et al., 2016). However, under a moderate number of measurements (m < 10n),
we observe that genuine local minima do exist and often locate not far from the global
minima. In such a regime, the batch gradient method often fails with random initialization.
As anticipated, stochastic algorithms are efficient in escaping bad local minima or saddle
points in nonconvex optimization because of the inherent noise (Ge et al., 2015; Sa et al.,
2015). We observe numerically that IRWF and block IRWF from a random starting point
still converge to a global minimum even with a very small sample size which is close to the
theoretical limit. It is of interest to analyze theoretically why stochastic methods escape
these local minima (not just saddle points) efficiently.
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Appendices

Appendix A. Expected Loss Surfaces

It is easy to check that the expectation of the least-squares loss is given by E[`LS(z)] =
‖z − x‖2. The expectation of the WF loss function (2) is given by (Sun et al., 2016) as

E[`WF (z)] = 3
4‖x‖

4 + 3
4‖z‖

4 − 1
2‖x‖

2‖z‖2 − |zTx|2. (28)

We next show that the expectation of the RWF loss function (3) has the following form:

E[`(z)] = 1
2‖x‖

2 + 1
2‖z‖

2 − ‖x‖‖z‖ · E
[
|aTi z|
‖z‖

· |a
T
i x|
‖x‖

]
, (29)

where

E
[
|aTi z|
‖z‖

· |a
T
i x|
‖x‖

]
=

 (1−ρ2)3/2

π

∫∞
0 t(eρt + e−ρt)K0(t)dt, if |ρ| < 1;

1, if |ρ| = 1;
(30)

where ρ = zTx
‖x‖‖z‖ and K0(·) is the modified Bessel function of the second kind.

In order to derive (30), we first define

u := aTi z

‖z‖
and v := aTi x

‖x‖
,

and it suffices to drive E[|uv|]. Note that (u, v) ∼ N (0,Σ), where

Σ =
[

1 ρ
ρ 1

]
, and ρ = zTx

‖x‖‖z‖
.

Following (Donahue, 1964), the density function of uv is given by

φuv(x) = 1
π
√

1− ρ2 exp
(

ρx

1− ρ2

)
K0

( |x|
1− ρ2

)
, x 6= 0.

Thus, the density function of |uv| is given by

ψ|uv|(x) = 1
π
√

1− ρ2

[
exp

(
ρx

1− ρ2

)
+ exp

(
− ρx

1− ρ2

)]
K0

( |x|
1− ρ2

)
, x > 0, (31)

for |ρ| < 1. Therefore, if |ρ| < 1, we have

E[|uv|] =
∫ ∞

0
x · ψρ(x)dx

=
∫ ∞

0
x · 1

π
√

1− ρ2

[
exp

(
ρx

1− ρ2

)
+ exp

(
− ρx

1− ρ2

)]
K0

( |x|
1− ρ2

)
dx

= (1− ρ2)3/2

π

∫ ∞
0

t(eρt + e−ρt)K0(t)dt,
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where the last step follows from change of variables.
If |ρ| = 1, then |uv| becomes a χ2

1 random variable, with the density given by

ψ|uv|(x) = 1√
2π
x−1/2 exp(−x/2), x > 0,

and hence E[|uv|] = 1.

Appendix B. Proof of Proposition 1

The idea of using truncation to bound some non-sub-Gaussian sequences has appeared in the
literature (Candès et al., 2013, Lemma 2.3) and (Chen and Candès, 2015). Compared to the
proof of the initialization for TWF (Chen and Candès, 2015), new technical developments
are needed to address the magnitude measurements and truncation from both sides.

We first estimate the norm of x as

λ0 = mn∑m
i=1 ‖ai‖1

·
(

1
m

m∑
i=1

yi

)
. (32)

Since ai ∼ N (0, In×n), by Hoeffding-type inequality, it can be shown that∣∣∣∣∣
∑m
i=1 ‖ai‖1
mn

−
√

2
π

∣∣∣∣∣ < ε

3 (33)

holds with probability at least 1− 2 exp(−c1mnε
2) for some constant c1 > 0.

Moreover, for a fixed x, yi’s are independent sub-Gaussian random variables. Thus, by
Hoeffding-type inequality, it can be shown that∣∣∣∣∣

√
π

2

(
1
m

m∑
i=1

yi

)
− ‖x‖

∣∣∣∣∣ < ε

3‖x‖ (34)

holds with probability at least 1− 2 exp(−c1mε
2) for some constant c1 > 0.

On the event E1 = {both (33) and (34) hold}, it can be argued that

|λ0 − ‖x‖| < ε‖x‖. (35)

Without loss of generality, we let ‖x‖ = 1. Then on the event E1, the truncation function
satisfies the following bounds

1{αl(1+ε)<|aTi x|<αu(1−ε)} ≤ 1{αlλ0<yi<αuλ0} ≤ 1{αl(1−ε)<|aTi x|<αu(1+ε)}.

Thus, define

Y 1 := 1
m

m∑
i=1

aia
T
i |aTi x|1{αl(1+ε)<|aTi x|<αu(1−ε)}

Y 2 := 1
m

m∑
i=1

aia
T
i |aTi x|1{αl(1−ε)<|aTi x|<αu(1+ε)},
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and we have Y 1 ≺ Y ≺ Y 2. We further compute the expectations of Y 1 and Y 2 and obtain

E[Y 1] = (β1xxT + β2I), E[Y 2] = (β3xxT + β4I), (36)

where

β1 := E[|ξ|31{αl(1+ε)<|ξ|<αu(1−ε)}]− E[|ξ|1{αl(1+ε)<|ξ|<αu(1−ε)}],
β2 := E[|ξ|1{αl(1+ε)<|ξ|<αu(1−ε)}]
β3 := E[|ξ|31{αl(1−ε)<|ξ|<αu(1+ε)}]− E[|ξ|1{αl(1−ε)<|ξ|<αu(1+ε)}],
β4 := E[|ξ|1{αl(1−ε)<|ξ|<αu(1+ε)}]

where ξ ∼ N (0, 1). For given αl and αu, a small value of ε yields arbitrarily close β1 and β3,
as well as arbitrarily close β2 and β4. For example, taking αl = 1, αu = 5 and ε = 0.01, we
have β1 = 0.9678, β2 = 0.4791, β3 = 0.9688, β4 = 0.4888.

Now applying the standard results on random matrices with non-isotropic sub-Gaussian
rows (Vershynin, 2012, equation (5.26)) and noticing that aia

T
i |aTi x|1{αl(1+ε)<|aTi x|<αu(1−ε)}

can be rewritten as bib
T
i for a sub-Gaussian vector bi := ai

√
|aTi x|1{αl(1+ε)<|aTi x|<αu(1−ε)},

one can derive

‖Y 1 − E[Y 1]‖ ≤ δ, ‖Y 2 − E[Y 2]‖ ≤ δ (37)

with probability at least 1− 4 exp(−c1(δ)m) for some positive c1 which is only affected by δ,
provided that m/n exceeds a certain constant. Furthermore, when ε is sufficiently small, one
further has ‖E[Y 1]− E[Y 2]‖ ≤ δ. Combining the above facts together, one can show that

‖Y − (β1xxT + β2I)‖ ≤ 3δ. (38)

Let z̃(0) be the normalized leading eigenvector of Y . Following the arguments in (Candès
et al., 2015, Section 7.8) and taking δ and ε to be sufficiently small, one has

dist(z̃(0),x) ≤ δ̃, (39)

for a given δ̃ > 0, as long as m/n exceeds a certain constant.

Appendix C. Proof of Theorem 2

The general structure of the proof follows that for WF in (Candès et al., 2015) and TWF in
(Chen and Candès, 2015). However, the proof requires the development of new bounds due
to the nonsmoothness of the loss function and the magnitude measurements. On the other
hand, the proof is much simpler due to the lower-order loss function adopted in RWF.

The idea of the proof is to show that within the neighborhood of the global optimizers,
RWF satisfies the Regularity Condition RC(µ, λ, c) , i.e.,

〈∇`(z),h〉 ≥ µ

2 ‖∇`(z)‖2 + λ

2 ‖h‖
2 (40)
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for all z and h = z − x obeying ‖h‖ ≤ c‖x‖, where 0 < c < 1 is some constant. Then, as
shown in (Chen and Candès, 2015), once the initialization lands into the neighborhood that
satisfies ‖z − x‖ ≤ c‖x‖, linear convergence can be guaranteed, i.e.,

dist2 (z − µ∇`(z),x) ≤ (1− µλ)dist2(z,x), (41)

for any z with ‖z − x‖ ≤ c‖x‖.
To show the regularity condition, we first define a set S := {i : 1 ≤ i ≤ m, (aTi z)(aTi x) <

0} (which depends on x and z), and then derive the following bound:

〈∇`(z),h〉 = 1
m

m∑
i=1

(
aTi z − |aTi x|sgn(aTi z)

)
(aTi h)

= 1
m

[
m∑
i=1

(aTi h)2 + 2
∑
i∈S

(aTi x)(aTi h)
]

≥ 1
m

[
m∑
i=1

(aTi h)2 − 2
∣∣∣∣∣∑
i∈S

(aTi x)(aTi h)
∣∣∣∣∣
]

≥ 1
m

[
m∑
i=1

(aTi h)2 −
∑
i∈S

2
∣∣∣(aTi x)(aTi h)

∣∣∣] . (42)

The first term in (42) can be bounded using Lemma 3.1 in (Candès et al., 2013), which we
state below.

Lemma 6 For any 0 < ε < 1, there exist constants c0, c1 > 0 such that if m > c0nε
−2, then

with probability at least 1− 2 exp(−c1ε
2m),

(1− ε)‖h‖2 ≤ 1
m

m∑
i=1

(aTi h)2 ≤ (1 + ε)‖h‖2 (43)

holds for all non-zero vectors h ∈ Rn.

For the second term in (42), we derive∑
i∈S

2
∣∣∣aTi x

∣∣∣ ∣∣∣aTi h
∣∣∣ ≤∑

i∈S

[
(aTi x)2 + (aTi h)2

]
=

m∑
i=1

[(aTi x)2 + (aTi h)2] · 1{(aTi x)(aTi z)<0}

=
m∑
i=1

[(aTi x)2 + (aTi h)2] · 1{(aTi x)2+(aTi x)(aTi h)<0}

≤
m∑
i=1

[(aTi x)2 + (aTi h)2] · 1{|aTi x|<|aTi h|}

≤ 2
m∑
i=1

(aTi h)2 · 1{|aTi x|<|aTi h|}. (44)

The right hand side of the above equation can be further upper bounded by the following
lemma.
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Lemma 7 For any ε > 0, there exist constants c0, c1, C > 0 such that if m > c0nε
−2 log ε−1,

then with probability at least 1− C exp(−c1ε
2m),

1
m

m∑
i=1

(aTi h)2 · 1{|aTi x|<|aTi h|} ≤ (0.13 + ε) ‖h‖2 (45)

holds for all non-zero vectors h ∈ Rn satisfying ‖h‖ ≤ 1
10‖x‖.

Proof See Section C.1.

Therefore, combining Lemmas 6 and 7 with (42) yields

〈∇`(z),h〉 ≥ (1− 0.26− 3ε)‖h‖2 = (0.74− 3ε)‖h‖2. (46)

We further provide an upper bound on ‖∇`(z)‖ in the following lemma.

Lemma 8 Fix δ > 0. There exist constatnts c0, c, C > 0 such that if m ≥ c0n then with
probability at least 1− C exp(−cm),

‖∇`(z)‖ ≤ (1 + δ) · 2‖h‖ (47)

holds for all non-zero vectors h, z ∈ Rn satisfying z = x + h and ‖h‖ ≤ 1
10‖x‖.

Proof See Section C.2.

Thus, applying Lemma 8 and (46) to (40), we conclude that Regularity Condition holds
for µ and λ satisfying

0.74− 3ε ≥ µ

2 · 4(1 + δ)2 + λ

2 , (48)

which concludes the proof.

C.1 Proof of Lemma 7

We first prove bounds for any fixed h ≤ 1
10‖x‖, and then develop a uniform bound later on.

We introduce a series of auxiliary random Lipschitz functions to approximate the indicator
functions. For i = 1, . . . ,m, define

χi(t) :=


t, if t > (aTi x)2;
1
δ (t− (aTi x)2) + (aTi x)2, if (1− δ)(aTi x)2 ≤ t ≤ (aTi x)2;
0, else;

(49)

and then χi(t)’s are random Lipschitz functions with Lipschitz constant 1
δ . We further have

|aTi h|21{|aTi x|<|aTi h|} ≤ χi(|a
T
i h|2) ≤ |aTi h|21{(1−δ)|aTi x|2<|aTi h|2}. (50)
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For convenience, we denote γi := |aTi h|2
‖h‖2 1{(1−δ)|aTi x|2<|aTi h|2} and θ := ‖h‖/‖x‖. We next

estimate the expectation of γi, by the following conditional expectation,

E[γi] =
∫

Ω
γidP =

∫∫ ∞
−∞

E
[
γi
∣∣aTi x = τ1‖x‖,aTi h = τ2‖h‖

]
· f(τ1, τ2)dτ1dτ2, (51)

where f(τ1, τ2) is the density of two joint Gaussian random variables with the correlation
ρ = hTx

‖h‖‖x‖ 6= ±1. We then continue to derive

E[γi] =
∫∫ ∞
−∞

τ2
2 · 1{√1−δ|τ1|<|τ2|θ} · f(τ1, τ2)dτ1dτ2

= 1
2π
√

1− ρ2

∫ ∞
−∞

τ2
2 exp

(
−τ

2
2
2

)
·
∫ |τ2|θ√

1−δ

−|τ2|θ√
1−δ

exp
(
−(τ1 − ρτ2)2

2(1− ρ2)

)
dτ1dτ2 (52)

= 1
2π

∫ ∞
−∞

τ2
2 exp

(
−τ

2
2
2

)
·
∫ |τ2|θ√

1−δ
−ρτ2

√
1−ρ2

− |τ2|θ√
1−δ
−ρτ2

√
1−ρ2

exp
(
−τ

2

2

)
dτdτ2 by change of variables

= 1
2π

∫ ∞
−∞

τ2
2 exp

(
−τ

2
2
2

)
·
√
π

2

erf

 |τ2|θ√
1−δ − ρτ2√

1− ρ2

− erf

− |τ2|θ√
1−δ − ρτ2√
1− ρ2

 dτ2

= 1√
2π

∫ ∞
0

τ2
2 exp

(
−τ

2
2
2

)
·

erf

( θ√
1−δ − ρ)τ2√

1− ρ2

+ erf

( θ√
1−δ + ρ)τ2√

1− ρ2

 dτ2. (53)

For |ρ| < 1, E[γi] is a continuous function of ρ. For |ρ| = 1, E[γi] = 0. The last integral
(53) can be calculated numerically. Figure 7 plots E[γi] for θ = 0.1 and δ = 0.01 over
ρ ∈ [−1, 1]. Furthermore, (52) indicates that E[γi] is monotonically increasing with both θ
and δ. Thus, we obtain a universal bound

E[γi] ≤ 0.13 for θ < 0.1 and δ = 0.01, (54)

which implies E[χi(|aTi h|2)] ≤ 0.13‖h‖2 for θ < 0.1 and δ = 0.01.
Furthermore, χi(|aTi h|2)’s are sub-exponential with the sub-exponential norm O(‖h‖2).

By the sub-exponential tail bound (Bernstein type) (Vershynin, 2012), we have

P
[

1
m

m∑
i=1

χi(|aTi h|2)
‖h‖2

> (0.13 + ε)
]
< exp(−cmε2), (55)

for some universal constant c, as long as ‖h‖ ≤ 1
10‖x‖.

We have proved so far that the claim holds for a fixed h. We next obtain a uniform
bound over all h satisfying ‖h‖ ≤ 1

10‖x‖. We first show the claim holds for all h with
‖h‖ = 1

10‖x‖ and then argue that the claim holds when ‖h‖ < 1
10‖x‖ towards the end of

the proof. Let ε′ = ε‖x‖10 and we construct an ε′-net Nε′ covering the sphere with the radius
1
10‖x‖ in Rn with the cardinality |Nε′ | ≤ (1 + 2

ε )
n. Then for any ‖h‖ = 1

10‖x‖, there exists
an h0 ∈ Nε′ such that ‖h− h0‖ ≤ ε‖h‖. Taking the union bound for all the points on the
net, we claim that

1
m

m∑
i=1

χi
(
|aTi h0|2

)
≤ (0.13 + ε) ‖h0‖2, ∀h0 ∈ Nε′ (56)
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Figure 7: E[γi] with respect to ρ.

holds with probability at least 1− (1 + 2/ε)n exp(−cmε2).
Since χi(t)’s are Lipschitz functions with the constant 1/δ, we have the following bound∣∣∣χi(|aTi h|2)− χi(|aTi h0|2)

∣∣∣ ≤ 1
δ

∣∣|aTi h|2 − |aTi h0|2
∣∣. (57)

Moreover, by (Chen and Candès, 2015, Lemma 1), we have

1
m

m∑
i=1
|aTi Mai| ≤ c2‖M‖F , for all symmetric rank-2 matrices M ∈ Rn×n, (58)

holds with probability at least 1 − C exp(−c1m) as long as m > c0n for some constants
C, c0, c1, c2 > 0. Consequently, on the event that (58) holds, we have∣∣∣∣∣ 1

m

m∑
i=1

χi
(
|aTi h|2

)
− 1
m

m∑
i=1

χi
(
|aTi h0|2

)∣∣∣∣∣
≤ 1
m

m∑
i=1

∣∣∣χi (|aTi h|2
)
− χi

(
|aTi h0|2

)∣∣∣
≤ 1
δ
· 1
m

m∑
i=1

∣∣∣aTi (hhT − h0hT0 )ai
∣∣∣ because of (57)

≤ 1
δ
· c2‖hhT − h0hT0 ‖F because of (58)

≤ 1
δ
· 3c2‖h− h0‖ · ‖h‖

≤ 3c2ε

δ
‖h‖2,

where the second to last inequality is due to (Chen and Candès, 2015, Lemma 2).
On the intersection of the events over which (56) and (58) hold respectively, we have

1
m

m∑
i=1

χi
(
|aTi h|2

)
≤ (0.13 + ε+ 3c2ε/δ) ‖h‖2, (59)
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for all h with ‖h‖ = 1
10‖x‖.

For the case when ‖h′‖ < 1
10‖x‖, h′ = ωh for some h satisfying ‖h‖ = 1

10‖x‖ and
0 < ω < 1. By the definition of χi(·), it can be verified that

χi(|aTi h′|2) = χi(|aTi (ωh)|2) ≤ ω2χi(|aTi h|2). (60)

Applying (59), on the same event over which (56) and (58) hold, we have

1
m

m∑
i=1

χi
(
|aTi h′|2

)
≤ (0.13 + ε+ 3c2ε/δ) ‖h′‖2, (61)

for all ‖h′‖ < 1
10‖x‖. Since ε can be arbitrarily small, the proof is completed.

C.2 Proof of Lemma 8

Denote vi := aTi z − |aTi x|sgn(aTi z) for i = 1, · · · ,m. Then

∇`(z) = 1
m

ATv, (62)

where A is a matrix with each row being aTi and v = [v1, · · · , vm]T . Thus,

‖∇`(z)‖ =
∥∥∥∥ 1
m

ATv

∥∥∥∥ ≤ 1
m
‖A‖ · ‖v‖ ≤ (1 + δ) ‖v‖√

m
(63)

as long as m ≥ c1n for some sufficiently large c1 > 0, where the spectral norm bound
‖A‖ ≤

√
m(1 + δ) follows from (Vershynin, 2012, Theorem 5.32).

We next bound ‖v‖. Let v = v(1)+v(2), where v(1)
i = aTi h and v(2)

i = 2aTi x1{(aTi z)(aTi x)<0}.
By the triangle inequality, we have ‖v‖ ≤ ‖v(1)‖ + ‖v(2)‖. Furthermore, given m > c0n,
following from (Candès et al., 2013, Lemma 3.1), with probability at least 1− exp(−cm),
we have

1
m
‖v(1)‖2 = 1

m

m∑
i=1

(aTi h)2 ≤ (1 + δ)‖h‖2. (64)

By Lemma 7, we have with probability at least 1− C exp(−c1m)

1
m
‖v(2)‖2 = 1

m

m∑
i=1

4(aTi x)2 · 1{(aTi x)(aTi z)<0} ≤ 4(0.13 + ε)‖h‖2. (65)

Hence,

‖v‖√
m
≤
(√

1 + δ + 2
√

0.13 + ε
)
‖h‖. (66)

This concludes the proof.
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Appendix D. Proof of Theorem 3

The initialization analysis is similar to Appendix B and is hence omitted. To analyze the
gradient loop, we consider the following two regimes.
• Regime 1: c4‖z‖ ≥ ‖h‖ ≥ c3

‖w‖√
m

. In this regime, the error contraction by each
gradient descent step is given by

dist (z − µ∇`(z),x) ≤ (1− ρ)dist(z,x). (67)

It suffices to justify that ∇`(z) satisfies the RC. We first have

∇`(z) = 1
m

m∑
i=1

(
aTi z − yi ·

aTi z

|aTi z|

)
ai

= 1
m

m∑
i=1

(
aTi z − |aTi x| · aTi z

|aTi z|

)
ai︸ ︷︷ ︸

∇clean`(z)

− 1
m

m∑
i=1

(
wi ·

aTi z

|aTi z|

)
ai︸ ︷︷ ︸

∇noise`(z)

. (68)

All the proofs for Lemmas 6, 7 and 8 are still valid for ∇clean`(z), and thus we have

〈∇clean`(z),h〉 ≥ 0.74‖h‖2, (69)∥∥∥∇clean`(z)
∥∥∥ ≤ 2(1 + δ)‖h‖. (70)

Next, we analyze the contribution of the noise. Let w̃i = wi
aTi z

|aTi z| , and then for sufficiently
large m/n, we have

‖∇noise`(z)‖ =
∥∥∥∥ 1
m

AT w̃

∥∥∥∥ ≤ ∥∥∥∥ 1√
m

AT

∥∥∥∥ ∥∥∥∥ w̃√
m

∥∥∥∥ ≤ (1 + δ)‖w̃‖√
m
≤ (1 + δ)‖w‖√

m
, (71)

where the second inequality is due to the spectral norm bound ‖A‖ ≤
√
m(1 + δ) (Vershynin,

2012, Theorem 5.32). Given the regime condition ‖h‖ ≥ c3
‖w‖√
m

, we further have

‖∇noise`(z)‖ ≤ (1 + δ)
c3

‖h‖, (72)∣∣∣〈∇noise`(z),h
〉∣∣∣ ≤ ∥∥∥∇noise`(z)

∥∥∥ · ‖h‖ ≤ (1 + δ)
c3

‖h‖2. (73)

Combining these together, one has

〈∇`(z),h〉 ≥
〈
∇clean`(z),h

〉
−
∣∣∣〈∇noise`(z),h

〉∣∣∣ ≥ (0.74− (1 + δ)
c3

)
‖h‖2, (74)

and

‖∇`(z)‖ ≤
∥∥∥∇clean`(z)

∥∥∥+
∥∥∥∇noise`(z)

∥∥∥ ≤ (1 + δ)
(

2 + 1
c3

)
‖h‖. (75)

The RC is guaranteed if µ, λ are chosen properly, c3 is sufficiently large, and δ is sufficiently
small.
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• Regime 2: Once the iterate enters the regime with ‖h‖ ≤ c3‖w‖√
m

, the gradient descent
update may not reduce the estimation error. However, in this regime, the size µ∇`(z) of
each move is at most O(‖w‖/

√
m). Then the estimation error cannot increase by more than

‖w‖/
√
m with a constant factor. Thus, one has

dist (z + µ∇`(z),x) ≤ c5
‖w‖√
m

(76)

for some constant c5. As long as ‖w‖/
√
m is sufficiently small, it is guaranteed that

c5
‖w‖√
m
≤ c4‖x‖. If the iterate jumps out of Regime 2, it falls back into Regime 1.

Appendix E. Convergence of Mini-batch IRWF and Kaczmarz-PR

E.1 Proof of Theorem 4

Without loss of generality, we assume z(t) is in the neighborhood of x (otherwise it is in the
neighborhood of −x). Let h = z(t) − x. We follow the notations in Appendix C and let
S = {i : (aTi x)(aTi z(t)) < 0}. Then we have

EΓt

[
dist2

(
z(t+1),x

)]
= EΓt

[∥∥∥z(t) − µAT
Γt

(
AΓtz

(t) − yΓt � sgn(AΓtz
(t))
)
− x

∥∥∥2
]

= ‖h‖2 − 2µEΓt

[(
AΓtz

(t) − yΓt � sgn(AΓtz
(t))
)T

AΓth

]
+ µ2EΓt

[(
AΓtz

(t) − yΓt � sgn(AΓtz
(t))
)T

AΓtA
T
Γt

(
AΓtz

(t) − yΓt � sgn(AΓtz
(t))
)]

(a)= ‖h‖2 − 2µk
m

m∑
i=1

aTi h

(
aTi z(t) − yi ·

aTi z(t)

|aTi z(t)|

)
+ µ2k

m

m∑
i=1
‖ai‖2

(
aTi z(t) − yi ·

aTi z(t)

|aTi z(t)|

)2

= ‖h‖2 − 2µk
m

(
m∑
i=1

(aTi h)2 +
∑
i∈S

2(aTi h)(aTi x)
)

+ µ2k

m

(
m∑
i=1
‖ai‖2(aTi h)2 + 4

∑
i∈S
‖ai‖2(aTi x)(aTi z(t))

)

≤ ‖h‖2 − 2µk
m

m∑
i=1

(aTi h)2 + 4µk
m

∑
i∈S

∣∣∣(aTi h)(aTi x)
∣∣∣+ µ2k

m

m∑
i=1
‖ai‖2(aTi h)2, (77)

where (a) is due to the fact that Γt is uniformly chosen from all subsets of {1, 2, . . . ,m}
with the cardinality k.

By Lemma 6, we have that if m ≥ c0ε
−2n then with probability 1− 2 exp(−c1mε

2)

(1− ε)‖h‖2 ≤ 1
m

m∑
i=1

(aTi h)2 ≤ (1 + ε)‖h‖2.

holds for all vectors h. By Lemma 7, we have that with probability 1− C exp(−c1mε
2)

1
m

∑
i∈S

∣∣∣(aTi h)(aTi x)
∣∣∣ ≤ (0.13 + ε)‖h‖2
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holds for all h satisfying ‖h‖/‖x‖ ≤ 1
10 .

Define an event E1 := {max1≤i≤m ‖ai‖2 ≤ 6n}. It can be shown that E1 holds with
probability 1−m exp(−1.5n). Then on the event E1, Equation (77) is further upper bounded
by

EΓt

[
dist2

(
z(t+1),x

)]
≤
(
1− 2µk(1− ε) + 4µk(0.13 + ε) + µ2k · 6n(1 + ε)

)
‖h‖2

≤
(
1− 2µk(0.74− 3ε− 3nµ(1 + ε))

)
‖h‖2. (78)

By choosing the step size µ ≤ 0.24
n , the proposition is proved.

E.2 Proof of Theorem 5

Without loss of generality, we assume the z(t) is in the neighborhood of x (otherwise it is in
the neighborhood of −x). Let h = z(t) − x. We follow the notations in Appendix C and let
S = {i : (aTi x)(aTi z(t)) < 0}. Then we have

Eitdist2
(
z(t+1),x

)
= Eit

∥∥∥∥∥z(t) − 1
‖ait‖2

(
aTitz

(t) − yit ·
aTitz

(t)

|aTitz(t)|

)
ait − x

∥∥∥∥∥
2

= ‖h‖2 − 2Eit
(aTith)
‖ait‖2

(
aTitz

(t) − yit ·
aTitz

(t)

|aTitz(t)|

)
+ Eit

1
‖ait‖2

(
aTitz

(t) − yit ·
aTitz

(t)

|aTitz(t)|

)2

(a)= ‖h‖2 − 2
m

m∑
i=1

(aTi h)
‖ai‖2

(
aTi z(t) − yi ·

aTi z(t)

|aTi z(t)|

)
+ 1
m

m∑
i=1

1
‖ai‖2

(
aTi z(t) − yi ·

aTi z(t)

|aTi z(t)|

)2

= ‖h‖2 − 2
m

(
m∑
i=1

(aTi h)2

‖ai‖2
+
∑
i∈S

2(aTi h)(aTi x)
‖ai‖2

)
+ 1
m

(
m∑
i=1

(aTi h)2

‖ai‖2
+ 4

∑
i∈S

(aTi x)(aTi z(t))
‖ai‖2

)

= ‖h‖2 − 1
m

m∑
i=1

(aTi h)2

‖ai‖2
+ 4
m

∑
i∈S

(aTi x)2

‖ai‖2
(79)

where (a) is due to the fact that it is sampled uniformly at random from {1, 2, · · · ,m}. By
the special case of Lemma 5.20 in (Vershynin, 2012), {

√
n ai
‖ai‖}

m
i=1 are independent isotropic

random vectors in Rn and hence

E
[
n

(aTi h)2

‖ai‖2

]
= ‖h‖2.

Moreover, {
√
n ai
‖ai‖}

m
i=1 are sub-Gaussian and the sub-Gaussian norm is bounded by an abso-

lute constant. Thus, we have that if m ≥ c0ε
−2n, then with probability 1− 2 exp(−c1mε

2),

1
m

m∑
i=1

(aTi h)2

‖ai‖2
≥ (1− ε)

n
‖h‖2.

holds for all vectors h. By Lemma 7, we have that with probability 1− C exp(−c1mε
2)

1
m

∑
i∈S

∣∣∣aTi x
∣∣∣2 ≤ 1

m

m∑
i=1

∣∣∣aTi h
∣∣∣2 1{|aTi x|<|aTi h|} ≤ (0.13 + ε)‖h‖2
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holds for all h satisfying ‖h‖/‖x‖ ≤ 1
10 .

Define an event E2 := {min1≤i≤m ‖ai‖2 ≥ 2
3n}. It can be shown that P{E2} ≥ 1 −

m exp(−n/12). Then on the event E2, (79) is further upper bounded by

Eit
[
dist2

(
z(t+1),x

)]
≤
(

1− 1− ε
n

+ 6(0.13 + ε)
n

)
‖h‖2 ≤

(
1− 0.22− 7ε

n

)
‖h‖2, (80)

which concludes the proof.
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Ritesh Kolte and Ayfer Özgür. Phase retrieval via incremental truncated Wirtinger flow.
arXiv preprint arXiv:1606.03196, 2016.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems
(NIPS), 2012.
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