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Abstract

This paper considers inference over distributed linear Gaussian models using factor graphs
and Gaussian belief propagation (BP). The distributed inference algorithm involves only
local computation of the information matrix and of the mean vector, and message passing
between neighbors. Under broad conditions, it is shown that the message information
matrix converges to a unique positive definite limit matrix for arbitrary positive semidefinite
initialization, and it approaches an arbitrarily small neighborhood of this limit matrix at
an exponential rate. A necessary and sufficient convergence condition for the belief mean
vector to converge to the optimal centralized estimator is provided under the assumption
that the message information matrix is initialized as a positive semidefinite matrix. Further,
it is shown that Gaussian BP always converges when the underlying factor graph is given
by the union of a forest and a single loop. The proposed convergence condition in the setup
of distributed linear Gaussian models is shown to be strictly weaker than other existing
convergence conditions and requirements, including the Gaussian Markov random field
based walk-summability condition, and applicable to a large class of scenarios.
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1. Introduction

Inference based on a set of measurements from multiple agents on a distributed network is
a central issue in many problems. While centralized algorithms can be used in small-scale
networks, they face difficulties in large-scale networks, imposing a heavy communication
burden when all the data is to be transported to and processed at a central processing unit.
Dealing with highly distributed data has been recognized by the U.S. National Research
Council as one of the big challenges for processing big data (National Research Council,
2013). Therefore, distributed inference techniques that only involve local communication
and computation are important for problems arising in distributed networks.

In large-scale linear parameter learning with Gaussian measurements, Gaussian Belief
Propagation (BP) (Weiss and Freeman, 2001a) provides an efficient distributed algorithm
for computing the marginal means of the unknown parameters, and it has been adopted
in a variety of topics including image interpolation (Xiong et al., 2010), distributed power
system state inference (Hu et al., 2011), distributed beamforming (Ng et al., 2008), dis-
tributed synchronization (Du and Wu, 2013b), fast solver for system of linear equations
(Shental et al., 2008a), distributed rate control in ad-hoc networks (Zhang et al., 2010),
factor analyzer network (Frey, 1999), sparse Bayesian learning (Tan and Li, 2010), inter-
cell interference mitigation (Lehmann, 2012), and peer-to-peer rating in social networks
(Bickson and Malkhi, 2008).

Although with great empirical success (Murphy et al., 1999), it is known that a major
challenge that hinders BP is the lack of theoretical guarantees of convergence in loopy net-
works (Chertkov and Chernyak, 2006; Gómez et al., 2007). Convergence of other forms of
loopy BP are analyzed by Ihler et al. (2005), Mooij and Kappen (2005, 2007), Noorshams
and Wainwright (2013), and Ravanbakhsh and Greiner (2015), but their analyses are not
directly applicable to Gaussian BP. Sufficient convergence conditions for Gaussian BP have
been developed in Weiss and Freeman (2001a); Malioutov et al. (2006); Moallemi and Roy
(2009a); Su and Wu (2015) when the underlying Gaussian distribution is expressed in terms
of pairwise connections between scalar variables, i.e., it is a Markov random field (MRF).
However, depending on how the underlying joint Gaussian distribution is factorized, Gaus-
sian BP may exhibit different convergence properties as different factorizations (different
Gaussian models) lead to fundamentally different recursive update structures. In this pa-
per, we study the convergence of Gaussian BP derived from the distributed linear Gaussian
model. The motivation is twofold. From the factorization viewpoint, by specifically em-
ploying a factorization based on the linear Gaussian model, we are able to bypass difficulties
in existing convergence analyses ((Malioutov et al., 2006) and references therein) based on
Gaussian Markov random field factorization. From the distributed inference viewpoint, the
linear Gaussian model and associated message passing requirements for implementing the
Gaussian BP readily conform to the physical network topology arising in large-scale net-
works such as in (Hu et al., 2011; Ng et al., 2008; Du and Wu, 2013b; Shental et al., 2008a;
Zhang et al., 2010; Frey, 1999; Tan and Li, 2010; Lehmann, 2012; Bickson and Malkhi,
2008), thus it is practically important.

Recently, Giscard et al. (2012, 2013, 2016) present a path-sum method to compute the
information matrix inverse of a joint Gaussian distribution. Then, the marginal mean is
obtained using the information matrix inverse. The path-sum method converges for an
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arbitrary valid Gaussian model, however, it is not clear how to adapt it to the distributed
and parallel inference setup. In contrast, Gaussian BP is a parallel and fully distributed
method that computes the marginal means by computing only the block diagonal elements of
the information matrix inverse. Though the block diagonal elements computed by Gaussian
BP may not be correct, it is shown that the belief mean still converges to the correct value
once Gaussian BP converges. This explains the popularity of Gaussian BP in distributed
inference applications, even though its convergence properties are not fully understood.

To fill this gap, this paper studies the convergence of Gaussian BP for linear Gaussian
models. Specifically, for the first time, by establishing certain contractive properties of
the distributed information matrix (inverse covariance matrix) updates with respect to the
Birkhoff metric, we show that, with arbitrary positive semidefinite (p.s.d.) initial message
information matrix, the belief covariance for each local variable converges to a unique posi-
tive definite limit, and it approaches an arbitrarily small neighborhood of this limit matrix
at an exponential rate. Consequently, the recursive equation for the message mean, which
depends on the information matrix, can be reduced to a linear recursive equation. Further,
we derive a necessary and sufficient convergence condition for this linear recursive equation
under the assumption that the initial message information matrix is p.s.d. Furthermore,
we show that, when the structure of the factor graph is the union of a single loop and a
forest, Gaussian BP always converges. Finally, it is demonstrated that the proposed conver-
gence condition for the linear Gaussian model encompasses the walk-summable convergence
condition for Gaussian MRFs (Malioutov et al., 2006).

Note that there exist other distributed estimation frameworks, e.g., consensus+inn-
ovations (Kar and Moura, 2013; Kar et al., 2013) and diffusion algorithms (Cattivelli and
Sayed, 2010) that enable distributed estimation of parameters and processes in multi-agent
networked environments. The consensus+innovation algorithms converge in mean square
sense to the centralized optimal solution under the assumption of global observability of
the (aggregate) sensing model and connectivity (on the average) of the inter-agent com-
munication network. In particular, these algorithms allow the communication or message
exchange network to be different from the physical coupling network of the field being es-
timated where either networks can be arbitrarily connected with cycles. The results in
Kar and Moura (2013); Kar et al. (2013) imply that the unknown field or parameter can
be reconstructed completely at each agent in the network. For large-scale networks with
high dimensional unknown variable, it may be impractical though to estimate all the un-
knowns at every agent. Reference (Kar, 2010, section 3.4) develops approaches to address
this problem, where under appropriate conditions, each agent can estimate only a subset
of the unknown parameter variables. This paper studies a different distributed inference
problem where each agent learns only its own unknown random variables; this leads to lower
dimensional data exchanges between neighbors.

The rest of this paper is organized as follows. Section 2 presents the system model for
distributed inference. Section 3 derives the vector-valued distributed inference algorithm
based on Gaussian BP. Section 4 establishes convergence conditions, and Section 5 discloses
the relationship between the derived results and existing convergence conditions of Gaussian
BP. Finally, Section 6 presents our conclusions.

Notation: Boldface uppercase and lowercase letters represent matrices and vectors, re-
spectively. For a matrix A, A−1 and AT denote its inverse (if it exists) and transpose,
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respectively. The symbol IN denotes the N ×N identity matrix, and N (x|µ,R) stands for
the probability density function (PDF) of a Gaussian random vector x with mean µ and
covariance matrix R. The notation ||x− y||2W stands for (x− y)T W (x− y). The symbol
∝ represents the linear scalar relationship between two real valued functions. For Hermitian
matrices X and Y, X � Y (X � Y) means that X −Y is positive semidefinite (definite).
The sets [A,B] are defined by [A,B] = {X : B � X � A}. The symbol Bdiag {·} stands
for block diagonal matrix with elements listed inside the bracket; ⊗ denotes the Kronecker
product; and Xi,j denotes the component of matrix X on the i-th row and j-th column.

2. Problem Statement and Markov Random Field

Consider a general connected network1 of M agents, with V = {1, . . . ,M} denoting the set
of agents, and ENet ⊂ V × V the set of all undirected communication links in the network,
i.e., if i and j can communicate or exchange information directly, (i, j) ∈ ENet. At every
agent n ∈ V, the local observations are given by a linear Gaussian model:

yn =
∑

i∈n∪I(n)

An,ixi + zn, (1)

where I (n) denotes the set of neighbors of agent n (i.e., all agents i with (n, i) ∈ ENet), An,i

is a known coefficient matrix with full column rank, xi is the local unknown parameter at
agent i with dimension Ni×1 and with prior distribution xi ∼ N (xi|0,Wi) (Wi � 0), and
zn is the additive noise with distribution zn ∼ N (zn|0,Rn), where Rn � 0. It is assumed
that p (xi,xj) = p (xi) p (xj) and p (zi, zj) = p (zi) p (zj) for i 6= j, and the xi’s and zj ’s are
independent for all i and j. The goal is to learn xi, based on yn, p (xi), and p (zn).2

In centralized estimation, all the observations yn’s at different agents are forwarded to
a central processing unit. Define vectors x, y, and z as the stacking of xn, yn, and zn in
ascending order with respect to n, respectively; then, we obtain

y = Ax + z, (2)

where A is constructed from An,i, with specific arrangement dependent on the network
topology. Assuming A is of full column rank, and since (2) is a standard linear model,

the optimal minimum mean squared error estimate x̂ ,
[
x̂T1 , . . . , x̂

T
M

]T
of x is given by

(Murphy, 2012)

x̂ =

∫
x

p (x) p (y|x)∫
p (x) p (y|x) dx

dx =
(
W−1 + ATR−1A

)−1
ATR−1y, (3)

where W and R are block diagonal matrices containing Wi and Ri as their diagonal blocks,
respectively. Although well-established, centralized estimation in large-scale networks has

1. A connected network is one where any two distinct agents can communicate with each other through a
finite number of hops.

2. By slightly modifying (1), the local model would allow two neighboring agents to share a common
observation and the analyses in the following sections still apply. Please refer to Du et al. (2017b) for
details, and Du et al. (2017a) for the corresponding models and associated (distributed) convergence
conditions.

4



Guassian BP Convergence Analysis

several drawbacks including: 1) the transmission of yn, An,i and Rn from peripheral agents
to the computation center imposes large communication overhead; 2) knowledge of global
network topology is needed in order to construct A; 3) the computation burden at the
computation center scales up due to the matrix inversion required in (3) with complexity

order O
((∑|V|

i=1Ni

)3
)

, i.e., cubic in the dimension in general.

On the other hand, Gaussian BP running over graphical models representing the joint
posterior distribution of all xi’s provides a distributed way to learn xi locally, thereby
mitigating the disadvantages of the centralized approach. In particular, with Gaussian
MRF, the joint distribution p (x) p (y|x) is expressed in a pairwise form (Malioutov et al.,
2006):

p (x) p (y|x) =
∏
n∈V

ψn

(
xn, {yi}i∈{n∪I(n)}

) ∏
(n,i)∈EMRF

ψn,i (xn,xi) , (4)

where

EMRF , ENet ∪ {(n, i) |∃k, k 6= n, k 6= i, such that (n, k) ∈ ENet, and (i, k) ∈ ENet} ; (5)

ψn

(
xn, {yi}i∈n∪I(n)

)
= exp

1

2

xTnW−1
n xn +

∑
i∈n∪I(n)

yTi R−1
i xn

 (6)

is the potential function at agent n, and

ψn,i(xn,xi) = exp−
{

1

2

[
(An,nxn)TR−1

n (An,ixi) + (Ai,nxn)TR−1
i (Ai,ixi)

+
∑

k∈{k̃|(k̃,i)∈ENet,

(k̃,n)∈ENet}

(Ak,nxn)TR−1
k (Ak,ixi)

]} (7)

is the edge potential between xn and xi. After setting up the graphical model representing
the joint distribution in (4), messages are exchanged between pairs of agents n and i with
(n, i) ∈ EMRF. More specifically, according to the standard derivation of Gaussian BP, at
the `-th iteration, the message passed from agent n to agent i is

w
(`)
n→i (xi) =

∫
ψn

(
xn, {yk}k∈n∪I(n)

)
ψn,i (xn,xi)

∏
k∈I(n)\i

w
(`−1)
k→n (xn) dxn. (8)

As shown by (8), Gaussian BP is iterative with each agent alternatively receiving mes-
sages from its neighbors and forwarding out updated messages. At each iteration, agent i
computes its belief on variable xi as

b
(`)
MRF (xi) ∝ ψi

(
xi, {yn}n∈i∪I(i)

) ∏
k∈I(n)

w
(`)
k→i (xi) . (9)

It is known that, as the messages (8) converge, the mean of the belief (9) is the exact mean
of the marginal distribution of xi (Weiss and Freeman, 2001a).
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It might seem that our distributed inference problem is now solved, as a solution is read-
ily available. However, there are two serious limitations for the Gaussian MRF approach.

First, messages are passed between pairs of agents in EMRF, which according to the
definition (5) includes not only those direct neighbors, but also pairs that are two hops
away but share a common neighbor. This is illustrated in Fig. 1, where Fig. 1(a) shows a
network of 4 agents with a line between two neighboring agents indicating the availability
of a physical communication link, and Fig. 1(b) shows the equivalent pairwise graph. For
this example, in the physical network, there is no direct connection between agents 1 and
4, nor between agents 1 and 3. But in the pairwise representation, those connections are
present. We summarize the above observations in the following remark.

Remark 1 For a network with communication edge set ENet and local observations follow-
ing (1), the corresponding MRF graph edge set satisfies EMRF ⊇ ENet. Thus, Gaussian BP
for Gaussian MRFs cannot be applied to the distributed inference problem with the local
observation model (1).3

The consequence of the above findings is that, not only does information need to be
shared among agents two hops away from each other to construct the edge potential func-
tion in (7), but also the messages (8) may be required to be exchanged among non-direct
neighbors, where a physical communication link is not available. This complicates signifi-
cantly the message exchange scheduling.

Secondly, even if the message scheduling between non-neighboring agents can be re-
alized, the convergence of (8) is not guaranteed in loopy networks. For Gaussian MRF
with scalar variables, sufficient convergence conditions have been proposed in (Weiss and
Freeman, 2001a; Malioutov et al., 2006; Su and Wu, 2015). However, depending on how
the factorization of the underlying joint Gaussian distribution is performed, Gaussian BP
may exhibit different convergence properties as different factorizations (different Gaussian
models) lead to fundamentally different recursive update structures. Furthermore, these
results apply only to scalar Gaussian BP, and extension to vector-valued Gaussian BP is
nontrivial as we show in this paper.

The next section derives distributed vector inference based on Gaussian BP with high
order interactions (beyond pairwise connections), where information sharing and message
exchange requirement conform to the physical network topology. Furthermore, convergence
conditions will be studied in Section 4, and we show in Section 5 that the convergence
condition obtained is strictly weaker than, i.e., subsumes the convergence conditions in
(Weiss and Freeman, 2001a; Malioutov et al., 2006; Su and Wu, 2015).

3. In Section 5, we further show that the convergence condition of Gaussian BP obtained in this paper
for model (1) encompasses all existing convergence conditions of Gaussian BP for the corresponding
Gaussian MRF.
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(a)

(b)

(c)

Figure 1: (a) A physical network with 4 agents, where {1, 2} and {2, 3, 4} are two groups
of agents that are within the communication range of each other, respectively.
xi is the local unknown vector, and yi is the local observation at agent i that

follows (1); (b) The corresponding MRF of Fig. 1 (a) with ψn

(
xn, {yi}i∈n∪I(n)

)
and ψn,i (xn,xi) defined in (6) and (7), respectively. (c) The corresponding factor
graph of Fig. 1 (a) with fi defined in (10). Since p(xi) does not involve message
passing, the p(xi) associated to each variable node is not drawn to keep the figure
simple.
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3. Distributed Inference with Vector-Valued Gaussian BP and
Non-Pairwise Interaction

The joint distribution p (x) p (y|x) is first written as the product of the prior distribution
and the likelihood function of each local linear Gaussian model in (1) as

p (x) p (y|x) =
∏
n∈V

p (xn)
∏
n∈V

p
(
yn| {xi}i∈n∪I(n)

)
︸ ︷︷ ︸

,fn

. (10)

To facilitate the derivation of the distributed inference algorithm, the factorization in (10) is
expressed in terms of a factor graph (Kschischang et al., 2001), where every vector variable
xi is represented by a circle (called variable node) and the probability distribution of a vector
variable or a group of vector variables is represented by a square (called factor node). A
variable node is connected to a factor node if the variable is involved in that particular
factor. For example, Fig. 1(c) shows the factor graph representation for the network in
Fig. 1(a).

We derive the Gaussian BP algorithm over the corresponding factor graph to learn xn
for all n ∈ V (Kschischang et al., 2001). It involves two types of messages: one is the
message from a variable node xj to its neighboring factor node fn, defined as

m
(`)
j→fn (xj) = p (xj)

∏
fk∈B(j)\fn

m
(`−1)
fk→j (xj) , (11)

where B (j) denotes the set of neighbouring factor nodes of xj , and m
(`−1)
fk→j (xj) is the

message from fk to xj at time `− 1. The second type of message is from a factor node fn
to a neighboring variable node xi, defined as

m
(`)
fn→i (xi) =

∫
· · ·
∫
fn ×

∏
j∈B(fn)\i

m
(`)
j→fn (xj) d {xj}j∈B(fn)\i , (12)

where B (fn) denotes the set of neighboring variable nodes of fn. The process iterates
between equations (11) and (12). At each iteration `, the approximate marginal distribution,
also referred to as belief, on xi is computed locally at xi as

b
(`)
BP (xi) = p (xi)

∏
fn∈B(i)

m
(`)
fn→i (xi) . (13)

In the sequel, we derive the exact expressions for the messages m
(`)
j→fn (xj), m

(`)
fn→i (xi),

and belief b
(`)
BP (xi). First, let the initial messages at each variable node and factor node be

in Gaussian function forms as

m
(0)
fn→i (xi) ∝ exp

{
−1

2
||xi − v

(0)
fn→i||

2

J
(0)
fn→i

}
. (14)

In Appendix A, it is shown that the general expression for the message from variable node
j to factor node fn is

m
(`)
j→fn (xj) ∝ exp

{
−1

2
||xj − v

(`)
j→fn ||

2

J
(`)
j→fn

}
, (15)
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with
J

(`)
j→fn = W−1

j +
∑

fk∈B(j)\fn

J
(`−1)
fk→j , (16)

v
(`)
j→fn =

[
J

(`)
j→fn

]−1

 ∑
fk∈B(j)\fn

J
(`−1)
fk→jv

(`−1)
fk→j

 , (17)

where J
(`−1)
fk→j and v

(`−1)
fk→j are the message information matrix (inverse of covariance ma-

trix) and mean vector received at variable node j at the (`− 1)-th iteration, respectively.
Furthermore, the message from factor node fn to variable node i is given by

m
(`)
fn→i (xi) ∝ α(`)

fn→i exp

{
−1

2
||xi − v

(`)
fn→i||

2

J
(`)
fn→i

}
, (18)

with

J
(`)
fn→i = AT

n,i

Rn +
∑

j∈B(fn)\i

An,j

[
J

(`)
j→fn

]−1
AT
n,j

−1

An,i, (19)

v
(`)
fn→i =

[
J

(`)
fn→i

]−1
AT
n,i

Rn +
∑

j∈B(fn)\i

An,j

[
J

(`)
j→fn

]−1
AT
n,j

−1yn −
∑

j∈B(fn)\i

An,jv
(`)
j→fn

 ,

(20)

and

α
(`)
fn→i ∝

∫
. . .

∫
exp

{
−1

2
zTΛ

(`)
fn→iz

}
dz. (21)

In (21), Λ
(`)
fn→i is a diagonal matrix containing the eigenvalues of AT

n,{B(fn)\i}R
−1
n An,{B(fn)\i}+

J
(`)
{B(fn)\i}→fn , with An,{B(fn)\i} denoting a row block matrix containing An,j as row elements

for all j ∈ B (fn)\i arranged in ascending order, and J
(`)
{B(fn)\i}→fn denoting a block diagonal

matrix with J
(`)
j→fn as its block diagonal elements for all j ∈ B (fn)\ i arranged in ascending

order.
Obviously, the validity of (18) depends on the existence of α

(`)
fn→i. It is evident that

(21) is the integral of a Gaussian distribution and equals to a constant when Λ
(`)
fn→i � 0

or equivalently AT
n,{B(fn)\i}R

−1
n An,{B(fn)\i} + J

(`)
{B(fn)\i}→fn � 0. Otherwise, α

(`)
fn→i does not

exist. Therefore, the necessary and sufficient condition for the existence of m
(`)
fn→i (xi) is

AT
n,{B(fn)\i}R

−1
n An,{B(fn)\i} + J

(`)
{B(fn)\i}→fn � 0. (22)

In general, the necessary and sufficient condition is difficult to be verified, as J
(`)
{B(fn)\i}→fn

changes in each iteration. However, as R−1
n � 0, it can be decomposed as R−1

n = R̃
T

n R̃n.
Then

AT
n,{B(fn)\i}R

−1
n An,{B(fn)\i} =

(
R̃nAn,{B(fn)\i}

)T (
R̃nAn,{B(fn)\i}

)
� 0.

9
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Hence, one simple sufficient condition to guarantee (22) is J
(`)
{B(fn)\i}→fn � 0 or equivalently

its diagonal block matrix J
(`)
j→fn � 0 for all j ∈ B (fn) \ i. The following lemma shows that

setting the initial message covariances J
(0)
fn→i � 0 for all (n, i) ∈ ENet guarantees J

(`)
j→fn � 0

for ` ≥ 1 and all (n, j) ∈ ENet.

Lemma 2 Let the initial messages at factor node fk be in Gaussian forms with the initial

message information matrix J
(0)
fk→j � 0 for all k ∈ V and j ∈ B (fk). Then J

(`)
j→fn � 0

and J
(`)
fk→j � 0 for all ` ≥ 1 with j ∈ V and fn, fk ∈ B (j). Furthermore, in this case, all

messages m
(`)
j→fn (xj) and m

(`)
fk→j (xi) are well defined.

Proof See Appendix B.

For this factor graph based approach, according to the message updating procedure (15)
and (18), message exchange is only needed between neighboring agents (an agent refers to
a variable-factor pair as shown in Fig. 1 (c)). For example, the messages transmitted from

agent n to its neighboring agent i are m
(`)
fn→i (xi) and m

(`)
n→fi (xn). Thus, the factor graph

does impose a clear messaging schedule, and the message passing scheme given in (11)

and (12) conforms with the network topology. Furthermore, if the messages m
(`)
j→fn (xj)

and m
(`)
fn→i (xi) exist for all ` (which can be achieved using Lemma 2), the messages are

Gaussian, therefore only the corresponding mean vectors and information matrices (inverse
of covariance matrices) are needed to be exchanged.

Finally, if the Gaussian BP messages exist, according to the definition of belief in (13),

b
(`)
BP (xi) at iteration ` is computed as

b
(`)
BP (xi) = p (xi)

∏
fn∈B(i)

m
(`)
fn→i (xi) ,

∝ N
(
xi|µ(`)

i ,P
(`)
i

)
,

where the belief covariance matrix

P
(`)
i =

W−1
i +

∑
fn∈B(i)

J
(`)
fn→i

−1

, (23)

and mean vector

µ
(`)
i = P

(`)
i

 ∑
fn∈B(i)

J
(`)
fn→iv

(`)
fn→i

 . (24)

The iterative algorithm based on Gaussian BP is summarized as follows. The algorithm
is started by setting the messages from factor nodes to variable nodes as in (14). At
each round of message exchange, every variable node computes the output messages to its
neighboring factor nodes according to (16) and (17). After receiving the messages from its
neighboring variable nodes, each factor node computes its output messages according to
(19) and (20). The iterative computation terminates when the iterates in (15) or (18) tend
to approach a fixed value or the maximum number of iterations is reached.

10
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Remark 3 We assume that Rn � 0 in this paper. If, however, some of the observa-
tions are noiseless, for example, Rn = 0, the local observation is yn =

∑
i∈n∪I(n) An,ixi.

Then the corresponding local likelihood function is represented by the Dirac measure δ(yn−∑
i∈n∪I(n) An,ixi). Suppose, for example, there is only one agent with Rn = 0, and all

others are Ri � 0. The the joint distribution is written as

p (x) p (y|x) = δ(yn −
∑

i∈n∪I(n)

An,ixi)
∏
j∈V

p (xj)
∏
k∈V

p
(
yk| {xi}i∈k∪I(k)

)
.

In this case, if An,n is invertible, then, by the definition of the Dirac measure, we have xn =

A−1
n,n

(
yn −

∑
i∈I(n) An,ixi

)
. By substituting this equation into all of the likelihood functions

involving xn, we have the equivalent joint distribution as in (10) with all the likelihood
functions having a positive definite noise covariance. We thereafter can apply Gaussian BP
to this new factorization and the convergence analysis in this paper still applies. Therefore,
without loss of generality, we assume all Rn � 0. Note that when Rn = 0 for all n, this
problem is equivalent to solving algebraic equations, which has been studied in (Shental et al.,
2008b) using Gaussian BP.

4. Convergence Analysis

The challenge of deploying the Gaussian BP algorithm for large-scale networks is in de-
termining whether it will converge or not. In particular, it is generally known that if the
factor graph contains cycles, the Gaussian BP algorithm may diverge. Thus, determining
convergence conditions for the Gaussian BP algorithm is very important. Sufficient condi-
tions for the convergence of Gaussian BP with scalar variables in loopy graphs are available
in (Weiss and Freeman, 2001a; Malioutov et al., 2006; Su and Wu, 2015). However, these
conditions are derived based on pairwise graphs with local functions in the form of (6) and
(7). This contrasts with the model considered in this paper, where the fn in (10) involves
high-order interactions between vector variables, and thus the convergence results in (Weiss
and Freeman, 2001a; Malioutov et al., 2006; Su and Wu, 2015) cannot be applied to the
factor graph based vector-form Gaussian BP.

Due to the recursive updating property of m
(`)
j→fn (xj) and m

(`)
fn→i (xi) in (15) and (18),

the message evolution can be simplified by combining these two kinds of messages into one.

By substituting J
(`)
j→fn in (16) into (19), the updating of the message covariance matrix

inverse, referred to as message information matrix in the following, can be denoted as

J
(`)
fn→i = AT

n,i

[
Rn +

∑
j∈B(fn)\i

An,j

[
W−1

j +
∑

fk∈B(j)\fn

J
(`−1)
fk→j

]−1

AT
n,j

]−1

An,i

, Fn→i
({

J
(`−1)
fk→j

}
(fk,j)∈B̃(fn,i)

)
, (25)

where B̃ (fn, i) = {(fk, j) |j ∈ B (fn) \ i, fk ∈ B (j) \ fn}. Observing that J
(`)
fn→i in (25) is

independent of v
(`)
j→fn and v

(`)
fn→i in (17) and (18), so we can first focus on the convergence

property of J
(`)
fn→i alone and then later on that of v

(`)
fn→i. With the convergence characteri-

11
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zation of J
(`)
fn→i and v

(`)
fn→i, we will further investigate the convergence of belief covariances

and means in (23) and (24), respectively.

Note that computing P
(`)
j requires all the incoming messages from neighboring nodes

including J
(`)
fn→j as shown in (23) by replacing the subscript i with j in (23). However,

according to (25), when computing J
(`)
fn→i the quantity J

(`−1)
fn→j is excluded, i.e., the quantity

inside the inner square brackets equals [P
(`−1)
j ]−1 − J

(`−1)
fn→j . Therefore, one cannot compute

J
(`)
fn→i from P

(`)
j alone.

4.1 Convergence of Message Information Matrices

To efficiently represent the updates of all message information matrices, we introduce the
following definitions. Let

J(`−1) , Bdiag

({
J

(`−1)
fn→i

}
n∈V,i∈B(fn)

)
be a block diagonal matrix with diagonal blocks being the message information matrices
in the network at time ` − 1 with index arranged in ascending order first on n and then

on i. Using the definition of J(`−1), the term
∑

fk∈B(j)\fn J
(`−1)
fk→j in (25) can be written as

Ξn,jJ
(`−1)ΞT

n,j , where Ξn,j is for selecting appropriate components from J(`−1) to form the

summation. Further, define Hn,i =
[
{An,j}j∈B(fn)\i

]
, Ψn,i = Bdiag

({
W−1

j

}
j∈B(fn)\i

)
and Kn,i = Bdiag

(
{Ξn,j}j∈B(fn)\i

)
, all with component blocks arranged with ascending

order on j. Then (25) can be written as

J
(`)
fn→i = AT

n,i

{
Rn + Hn,i

[
Ψn,i + Kn,i

(
I|B(fn)|−1 ⊗ J(`−1)

)
KT
n,i

]−1
HT
n,i

}−1

An,i. (26)

Now, we define the function F , {F1→k, . . . ,Fn→i, . . . ,Fn→M} that satisfies J(`) =

F
(
J(`−1)

)
. Then, by stacking J

(`)
fn→i on the left side of (26) for all n and i as the block

diagonal matrix J(`), we obtain

J(`) = AT
{
Ω + H

[
Ψ + K

(
Iϕ ⊗ J(`−1)

)
KT
]−1

HT
}−1

A,

, F
(
J(`−1)

)
, (27)

where A, H, Ψ, and K are block diagonal matrices with block elements An,i, Hn,i, Ψn,i, and
Kn,i, respectively, arranged in ascending order, first on n and then on i (i.e., the same order

as J
(`)
fn→i in J(`)). Furthermore, ϕ =

∑M
n=1 |B (fn) | (|B (fn) | − 1) and Ω is a block diagonal

matrix with diagonal blocks I|B(fn)|⊗Rn with ascending order on n. We first present some
properties of the updating operator F (·), the proofs being provided in Appendix C.

Proposition 4 The updating operator F (·) satisfies the following properties:

12
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P 4.1: F
(
J(`)
)
� F

(
J(`−1)

)
, if J(`) � J(`−1) � 0.

P 4.2: αF
(
J(`)
)
� F

(
αJ(`)

)
and F

(
α−1J(`)

)
� α−1F

(
J(`)
)

, if J(`) � 0 and α > 1.

P 4.3: Define U , ATΩ−1A and L , AT
[
Ω + HΨ−1HT

]−1
A. With arbitrary J(0) � 0,

F
(
J(`)
)

is bounded by U � F
(
J(`)
)
� L � 0 for ` ≥ 1.

Based on the above properties of F (·), we can establish the convergence of the infor-
mation matrices.

Theorem 5 There exists a unique positive definite fixed point J∗ for the mapping F (·).

Proof The set [L,U] is a compact set. Further, according to Proposition 4, P 4.3, for
arbitrary J(0) � 0, F maps [L,U] into itself starting from ` ≥ 1. Next, we show that
[L,U] is a convex set. Suppose that X, Y ∈ [L,U], and 0 ≤ t ≤ 1, then tX − tL and
(1− t) Y − (1− t) L are positive semidefinite (p.s.d.) matrices. Since the sum of two
p.s.d. matrices is a p.s.d. matrix, tX + (1− t) Y � L. Likewise, it can be shown that
tX + (1− t) Y � U. Thus, the continuous function F maps a compact convex subset of
the Banach space of positive definite matrices into itself. Therefore, the mapping F has a
fixed point in [L,U] according to Brouwer’s Fixed-Point Theorem (Zeidler, 1985), and the
fixed point is positive definite (p.d.).

Next, we prove the uniqueness of the fixed point. Suppose that there exist two fixed
points J∗ � 0 and J̃

∗
� 0. Since J∗ and J̃

∗
are p.d., their components J∗fn→i and J̃

∗
fn→i are

also p.d. matrices. For the component blocks of J∗ and J̃
∗
, there are two possibilities: 1)

J̃
∗
fn→i−J∗fn→i � 0 or J̃

∗
fn→i−J∗fn→i is indefinite for some n, i ∈ V, and 2) J̃

∗
fn→i−J∗fn→i � 0

for all n, i ∈ V.
For the first case, there must exist ξfn,i > 1 such that ξfn,iJ

∗
fn→i − J̃

∗
fn→i has one or

more zero eigenvalues, while all other eigenvalues are positive. Pick the component matrix
with the maximum ξfn,i among those falling into this case, say ξf%,τ , then, we can write

ξf%,τJ
∗
f%→τ − J̃

∗
f%→τ � 0, (28)

or in terms of the information matrices for the whole network

ξf%,τJ
∗ � J̃

∗
� 0, ξf%,τ > 1. (29)

Applying F on both sides of (29), according to the monotonic property of F (·) as shown
in Proposition 4, P 4.1, we have

F
(
ξf%,τJ

∗) � F (J̃
∗)

= J̃
∗
, (30)

where the equality is due to J̃
∗

being a fixed point. According to Proposition 4, P 4.2,
ξf%,τF (J∗) � F

(
ξf%,τJ

∗). Therefore, from (30), we obtain ξf%,τJ
∗ � J̃

∗
. Consequently,

ξf%,τJ
∗
f%,τ � J̃

∗
f%,τ .

But this contradicts with ξf%,τJ
∗
f%,τ − J̃

∗
f%,τ having one or more zero eigenvalues as discussed

before (28). Therefore, we must have J∗ = J̃
∗
.

13
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On the other hand, if we have case two, which is J̃
∗
fn→i − J∗fn→i � 0 for all n, i ∈ V, we

can repeat the above derivation with the roles of J̃
∗

and J∗ reversed, and we would again
obtain J∗ = J̃

∗
. Consequently, J∗ is unique.

Lemma 2 states that with arbitrary p.s.d. initial message information matrices, the
message information matrices will be kept as p.d. at every iteration. On the other hand,
Theorem 5 indicates that there exists a unique fixed point for the mapping F . Next, we
will show that, with arbitrary initial value J(0) � 0, J(`) converges to a unique p.d. matrix.

Theorem 6 The matrix sequence
{
J(`)
}
l=0,1,...

defined by (27) converges to a unique pos-

itive definite matrix J∗ for any initial covariance matrix J(0) � 0.

Proof With arbitrary initial value J(0) � 0, following Proposition 4, P 4.3, we have
U � J(1) � L � 0. On the other hand, according to Theorem 5, (27) has a unique fixed
point J∗ � 0. Notice that we can always choose a scalar α > 1 such that

αJ∗ � J(1) � L. (31)

Applying F (·) to (31) ` times, and using Proposition 4, P 4.1, we have

F ` (αJ∗) � F `+1
(
J(0)

)
� F ` (L) , (32)

where F ` (X) denotes applying F on X ` times.

We start from the left inequality in (32). According to Proposition 4, P 4.2, αJ∗ �
F (αJ∗). Applying F again gives F (αJ∗) � F2 (αJ∗). Applying F (·) repeatedly, we can
obtain F2 (αJ∗) � F3 (αJ∗) � F4 (αJ∗), etc. Thus F ` (αJ∗) is a non-increasing sequence
with respect to the partial order induced by the cone of p.s.d. matrices as ` increases. Fur-
thermore, since F (·) is bounded below by L, F ` (αJ∗) converges. Finally, since there exists
only one fixed point for F (·), liml→∞F ` (αJ∗) = J∗. On the other hand, for the right hand
side of (32), as F (·) � L, we have F (L) � L. Applying F repeatedly gives successively
F2 (L) � F (L), F3 (L) � F2 (L), etc. So, F ` (L) is an non-decreasing sequence (with
respect to the partial order induced by the cone of p.s.d. matrices). Since F (·) is upper
bounded by U, F ` (L) is a convergent sequence. Again, due to the uniqueness of the fixed
point, we have liml→∞F ` (L) = J∗. Finally, taking the limit with respect to ` on (32), we

have liml→∞F `
(
J(0)

)
= J∗, for arbitrary initial J(0) � 0.

Remark 7 According to Theorem 6, the information matrix J
(`)
fn→i converges if all initial

information matrices are p.s.d., i.e., J
(0)
fn→i � 0 for all i ∈ V and fn ∈ B (i). However,

for the pairwise model, the messages are derived based on the classical Gaussian MRF
based factorization (in the form of equations (6) and (7)) of the joint distribution. This
differs from the model considered in this paper, where the factor fn follows equation (10),
which leads to intrinsically different recursive equations. More specifically, for BP on the

14



Guassian BP Convergence Analysis

Gaussian MRF based factorization, the information matrix does not necessarily converge for
all initial nonnegative values (for the scalar variable case) as shown in (Malioutov et al.,
2006; Moallemi and Roy, 2009a).

Remark 8 Due to the computation of J
(`)
fn→i being independent of the local observations

yn, as long as the network topology does not change, the converged value J∗fn→i can be
precomputed offline and stored at each agent, and there is no need to re-compute J∗fn→i
even if yn varies.

Another fundamental question is how fast the convergence is, and this is the focus of the
discussion below. Since the convergence of a dynamic system is often studied with respect
to the part metric (Chueshov, 2002), in the following, we start by introducing the part
metric.

Definition 9 Part (Birkhoff) Metric (Chueshov, 2002): For arbitrary symmetric matrices
X and Y with the same dimension, if there exists α ≥ 1 such that αX � Y � α−1X, X
and Y are called the parts, and d (X,Y) , inf

{
logα : αX � Y � α−1X, α ≥ 1

}
defines a

metric called the part metric.

As it is useful to have an estimate of the convergence rate of J(`) in terms of the more
standard induced matrix norms, we further introduce the notion of monotone norms. The
norms || · ||2 and || · ||F (Frobenus norm) are monotone norms.

Definition 10 Monotone Norm (Ciarlet, 1989, 2.2-10): A matrix norm ‖ · ‖ is monotone
if

X � 0,Y � X⇒ ‖Y‖ ≥ ‖X‖.

Next, for arbitrary ε > 0, we will show that
{

J(`)
}
l=1,..

approaches the ε-neighborhood

of the fixed point J? exponentially fast with respect to the monotone norm. To this end,
for a fixed ε > 0, define the set

C =
{

J(`)|U � J(`) � J∗ + εI
}
∪
{

J(`)|J∗ − εI � J(`) � L
}
. (33)

Theorem 11 With the initial message information matrix set to be an arbitrary p.s.d.

matrix, i.e., J
(0)
fn→i � 0, the sequence

{
J(`)
}
l=0,1,...

approaches an arbitrarily small neigh-

borhood of the fixed positive definite matrix J∗ at an exponential rate with respect to any
matrix norm.

Proof Fix ε > 0 and consider the set C defined in (33). It suffices to show that the quantity
‖J(`)−J∗‖, where ‖ ·‖ is a monotone norm as defined in Definition 10, decays exponentially
as long as J(s) ∈ C for all s ∈ {0, 1, · · · `}. To this end, for J(`) ∈ C, and J∗ 6∈ C (necessarily),

according to Definition 9, we have d
(
J(`),J∗

)
, inf

{
logα : αJ(`) � J∗ � α−1J(`)

}
. Since

d
(
J(`),J∗

)
is the smallest number satisfying αJ(`) � J∗ � α−1J(`), this is equivalent to

exp
{

d
(
J(`),J∗

)}
J(`) � J∗ � exp

{
−d
(
J(`),J∗

)}
J(`). (34)
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Applying Proposition 4, P 4.1 to (34), we have

F
(

exp
{

d
(
J(`),J∗

)}
J(`)
)
� F (J∗) � F

(
exp

{
−d
(
J(`),J∗

)}
J(`)
)
.

Then applying Proposition 4, P 4.2 and considering that exp
{

d
(
J(`),J∗

)}
> 1 and

exp
{
−d
(
J(`),J∗

)}
< 1, we obtain

exp
{

d
(
J(`),J∗

)}
F
(
J(`)
)
� F (J∗) � exp

{
−d
(
J(`),J∗

)}
F
(
J(`)
)
.

Notice that, for arbitrary p.d. matrices X and Y, if X − kY � 0, then, by definition, we
have xTXx − kxTYx > 0 for arbitrary x 6= 0. Then, there must exist o > 0 that is small
enough such that xTXx−(k + o) xTYx > 0 or equivalently X � (k + o) Y. Thus, as exp (·)
is a continuous function, there must exist some 4d > 0 such that

exp
{
−4d + d

(
J(`),J∗

)}
F
(
J(`)
)
� F (J∗) � exp

{
4d− d

(
J(`),J∗

)}
F
(
J(`)
)
. (35)

Now, using the definition of the part metric, (35) is equivalent to

−4d + d
(
J(`),J∗

)
≥ d

(
F
(
J(`)
)
,F (J∗)

)
.

Hence, we obtain d
(
F
(
J(`)
)
,F (J∗)

)
< d

(
J(`),J∗

)
. Since this result holds for any J(`) ∈

C, we also have d
(
F
(
J(`)
)
,F (J∗)

)
< cd

(
J(`),J∗

)
, where c = supJ(`)∈C

d(F(J(`)),F(J∗))
d(J(`),J∗)

<

1. Since J(`+1) = F
(
J(`)
)

and J∗ = F (J∗), we have

d
(
J(`),J∗

)
< c`d

(
J(0),J∗

)
. (36)

According to (Krause and Nussbaum, 1993, Lemma 2.3), the convergence rate of ||J(`)−
J∗|| can be determined by that of d

(
J(`),J∗

)
. More specifically,

||J(`) − J∗|| ≤
(

2 exp
{

d
(
J(`),J∗

)}
− exp

{
−d
(
J(`),J∗

)}
− 1
)

min
{
||J(`)||, ||J∗||

}
, (37)

where || · || is a monotone norm defined on the p.s.d. cone:
As we show in Proposition 4, P 4.3 that J(`) is bounded, then ||J(`)|| and ||J∗|| must be

finite. Let ζ be the largest value of min
{
||J(`)||, ||J∗||

}
for all {J(`)} with ` ≥ 0, then ζ > 0.

According to (36) and (37), we have that

||J(`) − J∗|| < ζ
(

2 exp
{
c`d0

}
− exp

{
−c`d0

}
− 1
)
, (38)

with 0 < c < 1 and d0 = d
(
J(0),J∗

)
, which is a constant. The above inequality is

equivalent to

||J(`) − J∗|| < ζ
(

3 exp
{
c`d0

}
− exp

{
c`d0

}
− exp

{
−c`d0

}
− 1
)
. (39)
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Since both exp
{
c`d0

}
and exp

{
−c`d0

}
are positive and exp

{
c`d0

}
exp

{
−c`d0

}
= 1, ac-

cording to the arithmetic-geometric mean inequality, we have exp
{
c`d0

}
+ exp

{
−c`d0

}
≥

2
(
exp

{
c`d0

}
exp

{
−c`d0

})1/2
= 2. Then, the right-hand side of (39) is further amplified,

and we obtain

||J(`) − J∗|| < ζ
(

3 exp
{
c`d0

}
− 3
)

= 3ζ
(

exp
{
c`d0

}
− 1
)
.

Therefore, the sequence
{

J(`)
}
l=0,1,...

approaches the ε-neighborhood (and hence any arbi-

trarily small neighborhood) of the fixed positive definite matrix J∗ at an exponential rate
with respect to any matrix norm.

The physical meaning of Theorem 11 is that the distance between J(`) and J∗ decreases ex-
ponentially fast before J(`) enters J∗’s neighborhood, which can be chosen to be arbitrarily
small. Next, we study how to choose the initial value J(0) so that J(`) converges faster.

Theorem 12 With 0 � J(0) � L, J(`) is a monotonic increasing sequence, and J(`) con-
verges most rapidly with J(0) = L. Moreover, with J(0) � U, J(`) is a monotonic decreasing
sequence, and J(`) converges most rapidly with J(0) = U.

Proof Following Proposition 4, P 4.3, it can be verified that for 0 � J(0) � L, we have
J(1) � J(0). Then, according to Proposition 4, P 4.1, and by induction, this relationship
can be extended to J(`) � . . .J(1) � J(0), which states that J(`) is a monotonic increasing

sequence. Now, suppose that there are two sequences J(`) and J̃
(`)

that are started with

different initial values 0 � J(0) ≺ L and 0 � J̃
(0)
≺ L, respectively. Then these two

sequences are monotonically increasing and bounded by J∗. To prove that J(0) = L leads to

the fastest convergence, it is sufficient to prove that J(`) � J̃
(`)

for ` = 0, 1 . . .. First, note

that J(0) � J̃
(0)

. Assume J(n) � J̃
(n)

for some n ≥ 0. According to Proposition 4, P 4.1,

we have F
(
J(n)

)
� F

(
J̃

(n)
)

, or equivalently J(n+1) � J̃
(n+1)

. Therefore, by induction, we

have proven that, with J(0) = L, J(`) converges more rapidly than with any other initial
value 0 � J(0) ≺ L.

With similar logic, we can show that, with J(0) � U, J(`) is a monotonic decreasing
sequence; and, with J(0) = U, J(`) converges more rapidly than that with any other initial
value J(0) � U.

Notice that it is a common practice in the Gaussian BP literature that the initial infor-

mation matrix (or inverse variance for the scalar case) is set to be 0, i.e., J
(0)
fn→i = 0 (Weiss

and Freeman, 2001a; Malioutov et al., 2006). Theorem 12 reveals that there is a better
choice to guarantee faster convergence.

4.2 Convergence of Message Mean Vector

According to Theorems 6 and 11, as long as we choose J
(0)
fk→j � 0 for all j ∈ V and

fk ∈ B (j), the distance between J
(`)
fk→j and J∗fk→j decreases exponentially fast before J

(`)
fk→j

enters J∗fk→j ’s neighborhood, which can be chosen to be arbitrarily small. Furthermore,
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according to (16),
[
J

(`)
j→fn

]−1
also converges to a p.d. matrix once J

(`)
fk→j converges, and the

converged value for
[
J

(`)
j→fn

]−1
is denoted by

[
J∗j→fn

]−1
. Then for arbitrary initial value

v
(0)
fk→j , the evolution of v

(`)
j→fn in (17) can be written in terms of the converged message

information matrices, which is

v
(`)
j→fn =

[
J∗j→fn

]−1
∑

fk∈B(j)\fn

J∗fk→jv
(`−1)
fk→j . (40)

Using (20), and replacing indices j, i, n with z, j, k respectively, v
(`−1)
fk→j is given by

v
(`−1)
fk→j = [J∗fk→j ]

−1AT
k,j

[
Rk +

∑
z∈B(fk)\j

Ak,z

[
J∗z→fk

]−1
AT
k,z︸ ︷︷ ︸

,Mk,j

]−1
yk −

∑
z∈B(fk)\j

Ak,zv
(`−1)
z→fk

 .

(41)

Putting (41) into (40), we have

v
(`)
j→fn = bj→fn −

∑
fk∈B(j)\fn

∑
z∈B(fk)\j

[J∗j→fn ]−1AT
k,jM

−1
k,jAk,zv

(`−1)
z→fk , (42)

where bj→fn = [J∗j→fn ]−1
∑

fk∈B(j)\fn AT
k,jM

−1
k,jyk. The above equation can be further

written in compact form as

v
(`)
j→fn = bj→fn −Qj→fnv(`−1),

with the column vector v(`−1) containing v
(`−1)
z→fk for all z ∈ V and fk ∈ B (z) as subvector

with ascending index first on z and then on k. The matrix Qj→fn is a row block matrix

with component block [J∗j→fn ]−1AT
k,jM

−1
k,jAk,z if fk ∈ B (j) \ fn and z ∈ B (fk) \ j, and 0

otherwise. Let Q be the block matrix that stacks Qj→fn with the order first on j and then
on n, and b be the vector containing bj→fn with the same stacking order as Qj→fn . We
have

v(`) = −Qv(`−1) + b, ` ≥ 1, 2, . . . . (43)

It is known that for arbitrary initial value v(0), v(`) converges if and only if the spectral

radius ρ (Q) < 1 (Demmel, 1997, pp. 280). Since the elements of v(0), i.e., v
(0)
j→fn , depends

on v
(0)
fk→j , we can choose arbitrary v

(0)
fk→j . Furthermore, as v(`) depends on the convergence

of J(`), we have the following result.

Theorem 13 The vector sequence
{
v(`)
}
l=1,2,...

defined by (43) converges to a unique value

under any initial value
{
v

(0)
fk→j

}
k∈V,j∈B(fk)

and initial message information matrix J(0) � 0

if and only if ρ (Q) < 1.
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The row block matrix Qj , a row block of Q, contains only block entries 0 and Qj→fn .
When the observation model (1) reduces to the pairwise model, where only two unknown
variables are involved in each local observation, it can be shown that Qj and Qi are or-
thogonal if i 6= j. A distributed convergence condition is obtained utilizing this orthogonal
property in Du et al. (2017a). However, for the more general case studied in this paper,
properties of Qj and Q need to be further exploited to show when ρ(Q) < 1 is satisfied.

In the sequel, we will show that ρ (Q) < 1 is satisfied for a single loop factor graph with
multiple chains/trees (an example is shown in Fig. 2), thus Gaussian BP converges in such
a topology. Although Weiss (2000) shows the convergence of Gaussian BP on the MRF
with a single loop, the analysis cannot be applied here since the local observations model
(1) is different from the pairwise model in (Weiss, 2000).

Theorem 14 For any factor graph that is the union of a single loop and a forest, with

arbitrary positive semi-definite initial information matrix, i.e., J
(0)
fn→i � 0 for all i ∈ V and

fn ∈ B (i), the message information matrix J
(`)
fn→i and mean vector v

(`)
i→fn is guaranteed to

converge to their corresponding unique points.

Proof In this proof, Fig. 2 is being used as a reference throughout. For a single loop
factor graph with chains/trees as shown in Fig. 2 (a), there are two kinds of nodes. One
is the factors/variables in the loop, and they are denoted by fn/xj . The other is the

factors/variables on the chains/trees but outside the loop, denoted as f̃k/z̃i. Then message
from a variable node to a neighboring factor node on the graph can be categorized into
three groups:

1) message on a tree/chain passing towards the loop, e.g., m∗z̃→fk (x̃z) and m∗
s̃→f̃k

(x̃s) ;

2) message on a tree/chain passing away from the loop, e.g., m
(`)

j→f̃k
(xj), m

(`)

s̃→f̃s
(xs) and

m
(`)

z̃→f̃z
(xz);

3) message in the loop, e.g., m
(`)
j→fn (xj), m

(`)
z→fk (xz) and m

(`)
i→fn (xi).

According to (11), computation of the messages in the first group does not depend on
messages in the loop and is thus convergence guaranteed. Therefore, the message iteration
number is replaced with a ∗ to denote the converged message. Also, from the definition
of message computation in (11), if messages in the third group converge, the second group
messages should also converge. Therefore, we next focus on showing the convergence of
messages in the third group.

For a factor node fk in the loop with xz and xj being its two neighboring variable nodes
in the loop and x̃z being its neighboring variable node outside the loop, according to the
definition of message computation in (12), we have

m
(`)
fk→j (xj) =

∫ ∫
fk ×m

(`)
z→fk (xz)

∏
z̃∈B(fk)\j

m∗z̃→fk (x̃z) d {x̃z}z̃∈B(fk)\j dxz,

=

∫
m

(`)
z→fk (xz)

∫ fk ×
∏

z̃∈B(fk)\j

m∗z̃→fk (x̃z) d {x̃z}z̃∈B(fk)\j

 dxz.

(44)
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(a)

(b)

Figure 2: (a) An example of factor graph with a single loop and chains/trees topology,
where the dashed line indicates possible chains/trees; (b) The equivalent factor
graph of Fig 2 (a) with new factor functions that do not have neighboring variable
nodes except those in the loop.

20



Guassian BP Convergence Analysis

As shown in Lemma 2, m∗z̃→fk (x̃z) must be in Gaussian function form, which is denoted by

m∗z̃→fk (x̃z) ∝ N
(

x̃z|v∗z̃→fk ,
[
J∗z̃→fk

]−1
)

. Besides, from (1) we obtain

fk = N

yk|Ak,zxz + Ak,jxj +
∑

z̃∈B(fk)

Ak,z̃x̃z,Rk

 .

It can be shown that the inner integration in the second line of (44) is given by

N
(
yk|Ak,zxz + Ak,jxj ,Rk

)
, fk,

where the overbar is used to denote the new constant matrix or vector. Then (44) can be
written as

m
(`)
fk→j (xj) =

∫
fk ×m

(`)
z→fk (xz) dxz. (45)

Comparing (45) with (12), we obtain m
(`)
fk→j (xj) as if m

(`)

fk→j
(xj) is being passed to a factor

node fk. Therefore, a factor graph with a single loop and multiple trees/chains is equivalent
to a single loop factor graph in which each factor node has no neighboring variable node
outside the loop. As a result, the example of Fig. 2 (a) is equivalent to Fig. 2 (b). In the
following, we focus on this equivalent topology for the convergence analysis.

Note that, for arbitrary variable node j in the loop, there are two neighboring factor
nodes in the loop. Further, using the notation for the equivalent topology, (42) is reduced
to

v
(`)

j→fn
=−

[
J∗
j→fn

]−1
A
T
k,jT

−1
k,jAk,zv

(`−1)

z→fk

+ bj→fn
−

∑
f̃k∈B(j)\fn

∑
s̃∈B(f̃k)\j

[
J∗
j→fn

]−1
A
T
k,jM

−1
k,jAk,s̃v

∗
s̃→f̃k︸ ︷︷ ︸

,cj→fn

, (46)

where v∗
s̃→f̃k

is the converged mean vector on the chain/tree;

bj→fn
=
[
J∗
j→fn

]−1 ∑
fk∈B(j)\fn

A
T
k,jM

−1
k,jyk

with Mk,j = Rk +
∑

s̃∈B(f̃k)\j
Ak,s̃

[
J∗
s̃→f̃k

]−1
A
T
k,s̃, and

Tk,j = Rk + Ak,z

[
J∗
z→fk

]−1
A
T
k,z, (47)

with xz and fk in the loop where fk ∈ B (j) \ fn and xz ∈ B
(
fk
)
\ j. By multiplying[

J∗
j→fn

]1/2
on both sides of (46), and defining β

(`)

j→fn
=
[
J∗
j→fn

]1/2
v

(`)

j→fn
, we have

β
(`)

j→fn
= −

[
J∗
j→fn

]−1/2
A
T
k,jT

−1
k,jAk,z

[
J∗
z→fk

]−1/2
β

(`−1)

z→fk
+
[
J∗
j→fn

]1/2
cj→fn

, (48)
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Let β(`−1) contain β
(`−1)

z→fk
for all xz with z ∈ B

(
fk
)

and fk being in the loop, and the index

is arranged first on k and then on z. Then, the above equation is written in a compact form
as

β
(`)

j→fn
= −Qj→fn

β(`−1) +
[
J∗
j→fn

]1/2
cj→fn

, (49)

where Qj→fn
is a row block matrix with the only nonzero block[

J∗
j→fn

]−1/2
A
T
k,jT

−1
k,jAk,z

[
J∗
z→fk

]−1/2

located at the position corresponding to the position β
(`)

z→fk
in β(`). Then let Q be a matrix

that stacks Qj→fn
as its row, where j and fn are in the loop with j ∈ B

(
fn
)
. Besides, let

c be the vector containing the subvector
[
J∗
j→fn

]1/2
cj→fn

with the same order as Qj→fn
in Q. We have

β(`) = −Qβ(`−1) + c. (50)

Since Q is a square matrix, ρ (Q) ≤
√
ρ
(
QQT

)
and therefore ρ

(
QQT

)
< 1 is the sufficient

condition for the convergence of β(`). We next investigate the elements in QQT .

Due to the single loop structure of the graph, every β
(`)

j→fn
in (48) would be dependent

on a unique β
(`)

z→fk
, where fk ∈ B (j) \ fn and z ∈ B

(
fk
)
\ j (i.e., the message two hops

backward along the loop in the factor graph). Thus, the position of the non-zero block
in Qj→fn

will be different and non-overlapping for different combinations of (j, fn). As
a result, there exists a column permutation matrix Ξ such that QΞ is a block diagonal
matrix. Therefore, (QΞ) (QΞ)T = QQT is also a diagonal matrix, and we can write

QQT = Bdiag
{

Qj→fn
QT
j→fn

}
j ∈ B

(
fn

)
.

As a consequence, ρ
(
QQT

)
< 1 is equivalent to ρ

(
Qj→fn

QT
j→fn

)
< 1 for all j and fn in

the loop with j ∈ B
(
fn
)
. Following the definition of Qj→fn

below (49), we obtain

Qj→fn
QT
j→fn

=
[
J∗
j→fn

]−1/2
A
T
k,jT

−1
k,jAk,z

[
J∗
z→fk

]−1
A
T
k,zT

−1
k,jAk,j

[
J∗
j→fn

]−1/2

=
[
J∗
j→fn

]−1/2
A
T
k,jT

−1
k,j

(
Tk,j −Rk

)
T−1
k,jAk,j

[
J∗
j→fn

]−1/2
,

(51)

where the second equation follows from the definition of Tk,j in (47). Besides, since Rk � 0,
we have Tk,j − Rk ≺ Tk,j . Following P B.2 in Appendix B, and due to Tk,j = TT

k,j , we
have

T
−1/2
k,j

(
Tk,j −Rk

)
T
−1/2
k,j ≺ I. (52)

Applying P B.2 in Appendix B again to (52), and making use of (51), we obtain

Qj→fn
QT
j→fn

≺
[
J∗
j→fn

]−1/2
A
T
k,jT

−1
k,jAk,j

[
J∗
j→fn

]−1/2
. (53)
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According to (47), we have

A
T
k,jT

−1
k,jAk,j = A

T
k,j

[
Rk + Ak,z

[
J∗
z→fk

]−1
A
T
k,z

]−1

Ak,j . (54)

On the other hand, using (19), due to B
(
fk
)
\ j = xz in the considered topology, the right

hand side of (54) is J∗
fk→j

. Therefore, (53) is further written as

Qj→fn
QT
j→fn

≺
[
J∗
j→fn

]−1/2
J∗
fk→j

[
J∗
j→fn

]−1/2
. (55)

From (16), J∗
j→fn

= W−1
j + J∗

fk→j
+
∑

f̃k∈B(j)\fn
J∗
f̃k→j

, thus J∗
fk→j

� J∗
j→fn

. Therefore,[
J∗
j→fn

]−1/2
J∗
fk→j

[
J∗
j→fn

]−1/2
� I, and, together with (55), we have

Qj→fn
QT
j→fn

≺ I.

Hence ρ
(
Qj→fn

QT
j→fn

)
< 1 for all j and fn in the loop and j ∈ B

(
fn
)
, and equivalently

ρ (Q) < 1. This completes the proof.

4.3 Convergence of Belief Covariance and Mean Vector

As the computation of the belief covariance P
(`)
i depends on the message information matrix

J
(`)
fn→i, using Theorems 6 and 11, we can derive the convergence and uniqueness properties

of P
(`)
i .

Before we present the main result, we first present some properties of the part metric
d (X,Y), with positive definite arguments X, Y, and 4X. The proofs are provided in
Appendix D.

Proposition 15 The part metric d (X,Y) satisfies the following properties

P 15.1: d (X1 + X2,Y1 + Y2) ≤ d (X1,Y1) + d (X2,Y2);

P 15.2: d (X,Y) = d
(
X−1,Y−1

)
.

We now have the following result.

Corollary 16 With arbitrary initial message information matrix J
(0)
fn→i � 0 for all i ∈ V

and fn ∈ B (i), the belief covariance matrix P
(`)
i converges to a unique p.d. matrix at an

exponential rate with respect to any matrix norm before P
(`)
i enters P∗i ’s neighborhood, which

can be chosen to be arbitrarily small.

Proof Since J
(`)
fn→i converges to a p.d. matrix, and according to (23), P

(`)
i also converges.

Below, we study the convergence rate of P
(`)
i . According to the definition of P

(`)
i in (23)
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and part metric in Definition 9, we have

d
(

[P
(`)
i ]−1, [P∗i ]

−1
)

= d

W−1
i +

∑
fn∈B(i)

J
(`)
fn→i,W

−1
i +

∑
fn∈B(i)

J∗fn→i

 .

By applying P 15.1 to the above equation, we obtain

d
(

[P
(`)
i ]−1, [P∗i ]

−1
)
≤ d

(
W−1

i ,W−1
i

)
+
∑

fn∈B(i)

d
(
J

(`)
fn→i,J

∗
fn→i

)
=

∑
fn∈B(i)

d
(
J

(`)
fn→i,J

∗
fn→i

)
.

According to (36), for all i ∈ V and fn ∈ B(i), there exist a c < 1 such that

d
(
J

(`)
fn→i,J

∗
fn→i

)
< c`d

(
J

(0)
fn→i,J

∗
fn→i

)
.

Applying the above inequality to compute
[
P

(`)
i

]−1
in (24), we obtain

d
(

[P
(`)
i ]−1, [P∗i ]

−1
)
< c`

∑
fn∈B(i)

d
(
J

(0)
fn→i,J

∗
fn→i

)
.

Following P 15.2, the above inequality is equivalent to

d
(
P

(`)
i ,P∗i

)
< c`

∑
fn∈B(i)

d
(
J

(0)
fn→i,J

∗
fn→i

)
,

where
∑

fn∈B(i) d
(
J

(0)
fn→i,J

∗
fn→i

)
is a constant. Following the same procedure as that from

(36) to (38), we can prove that P
(`)
i converges at an exponential rate with respect to the

monotone norm before P
(`)
i enters P∗i ’s neighborhood, which can be chosen to be arbitrarily

small.

On the other hand, as shown in (24), the computation of the belief mean µ
(`)
i depends

on the belief covariance P
(`)
i and the message mean v

(`)
fn→i. Thus, under the same condition

as in Theorem 13, µ
(`)
i is convergence guaranteed. Moreover, it is shown in (Weiss and

Freeman, 2001b, Appendix) that, for Gaussian BP over a factor graph, the converged value
of belief mean equals the optimal estimate in (3). Together with the convergence guaranteed
topology revealed in Theorem 14, we have the following Corollary.

Corollary 17 With arbitrary J
(0)
fn→i � 0 and arbitrary v

(0)
fn→i for all i ∈ V and fn ∈ B (i),

the mean vector µ
(`)
i in (24) converges to the optimal estimate x̂i in (3) if and only if

ρ (Q) < 1, where Q is defined in (43). Furthermore, a sufficient condition to guarantee
ρ (Q) < 1 is when the factor graph contains only one single loop connected to multiple
chains/trees.
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5. Relationships with Existing Convergence Conditions

In this section, we show the relationship between our convergence condition for Gaussian
BP and the recent proposed path-sum method (Giscard et al., 2016). We also show that
our convergence condition is more general than the walk-summable condition (Malioutov
et al., 2006) for the scalar case.

5.1 Relationship with the Path-sum Method

The path-sum method is proposed in (Giscard et al., 2012, 2013, 2016) to compute
(
W−1 + ATR−1A

)−1

in (3), in which the matrix inverse
(
W−1 + ATR−1A

)−1
is interpreted as the sum of simple

paths and simple cycles on a weighted graph. The resulting formulation is guaranteed to
converge to the correct value for any valid multivariate Gaussian distribution.

The BP message update equations (16), (17), (19), and (20) can be seen as a cut-off of
path-sum by retaining only self-loops and backtracks (simple cycles of lengths one and two).
In the presence of a graph with one or more loops, equations (16), (17), (19), and (20) do not
include the terms related to simple cycles with length larger than 2. This may be a potential
cause for the possible divergence of the Gaussian BP algorithm. From this perspective, the
divergence can be averted if none of the walks going around the loop(s) have weight greater
than one, or equivalently, that the spectral radius of the block matrix representing the
loop(s) is strictly less than one. This is an intuitive explanation of the condition ρ(Q) < 1
obtained in Theorem 13. It also immediately follows from these considerations that the
convergence rate is at least geometric, with a cut-off of order ` yielding an O(ρ(Q)`) error4.

While the path-sum framework provides an insightful interpretation of the results ob-
tained in this paper, the path-sum algorithm may not be efficiently implementable in dis-
tributed and parallel settings, as it requires the summation over all the paths of any length.
In contrast, Gaussian BP, while paying the price of non-convergence in general loopy mod-
els, makes it possible to realize parallel and fully distributed inference. In summary, though
the path-sum method converges for arbitrary valid Gaussian models, it is difficult to be
adapted to a distributed and parallel inference setup as the Gaussian BP method.

5.2 Relationship with the Walk-Summable Condition

We show next that, in the setup of linear Gaussian models, the condition ρ(Q) < 1 as
in Corollary 17 encompasses the Gaussian MRF based walk-summable (Malioutov et al.
(2006)) in terms of convergence. As all existing results on Gaussian BP convergence
(Malioutov et al., 2006; Moallemi and Roy, 2009b) only apply to scalar variables, we restrict
the following discussion to only the scalar case. In (Malioutov et al., 2006), the starting
point for the convergence analysis for Gaussian MRF is a joint multivariate Gaussian dis-
tribution

q(x) ∝ exp
{
− 1

2
xTJx + hTx

}
, (56)

4. We thank an anonymous reviewer for this interpretation.
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expressed in the normalized information form such that Ji,i = 1 for all i. The underlying
Gaussian distribution is factorized as (Malioutov et al. (2006))

q (x) ∝
∏
i∈V

ψi (xi)
∏

Ji,j 6=0;i≤j
ψi,j (xi,xj) , (57)

where

ψi (xi) = exp

{
−1

2
Ji,ix

2
i + hi

}
and ψi,j (xi,xj) = exp {−xiJi,jxj} .

In Malioutov et al. (2006, Proposition 1), based on the interpretation that
[
J−1

]
i,j

is
the sum of the weights of all the walks from variable j to variable i on the corresponding
Gaussian MRF, a sufficient Gaussian BP convergence condition known as walk-summability
is provided, which is equivalent to

I− |R| � 0, (58)

together with the initial message variance inverse being set to 0, where R = I− J and |R|
is matrix of entrywise absolute values of R. In the following, we establish the relationship
between walk-summable Gaussian MRF and linear Gaussian model by utilizing properties
of H-matrices (Boman et al., 2005). We show that, with Gaussian MRF satisfying the walk-
summable condition, the joint distribution q(x) in (57) can be reformulated as a special case
of the linear Gaussian model based factorization in (10). Moreover, Gaussian BP on this
particular linear Gaussian model always converges.

Definition 18 H-Matrices (Boman et al., 2005): A matrix X is an H-matrix if all eigen-
values of the matrix H(X), where [H(X)]i,i = |Xi,i|, and [H(X)]i,j = −|Xi,j | have positive
real parts.

Proposition 19 Factor width at most 2 factorization (Boman et al., 2005, Theorem 9):
A symmetric H-matrix X that has non-negative diagonals can always be factorized as X =
VVT , where V is a real matrix with each column of V containing at most 2 non-zeros.

Let ω be an arbitrary positive value that is smaller than the minimum eigenvalue of
I − |R| and also satisfies 0 < ω < 1. According to (58), we have (1 − ω)I − |R| � 0.
Furthermore, by applying H(·) to (1 − ω)I − R, we have [H((1 − ω)I − R)]i,i = |(1 −
ω)I − R|i,i = 1 − ω and [H((1 − ω)I − R)]i,j = −|[(1 − ω)I − R)]i,j | = −|Ri,j |. Thus,
H((1− ω)I−R) = (1− ω)I− |R| � 0, and we conclude that (1− ω)I−R is an H-matrix.
According to Proposition 19, (1 − ω)I − R = J − ωI = VVT , where each column of V
contains at most 2 non-zeros. Now, we can rewrite the joint distribution in (57) as

q(x) ∝ exp

{
−1

2
xT (J− ωI) x− 1

2
ωxTx + hTx

}
= exp

{
−1

2

(
VTx

)T (
VTx

)
− 1

2

(
ωxTx− 2hTx

)}
∝ exp

{
−1

2

M∑
n=1

(
Vn,nixni + Vn,njxnj

)2 − 1

2

M∑
n=1

ω(xn −
hn
ω

)2

}
,

(59)
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where Vn,ni and Vn,nj denote the two possible non-zero elements on the n-th column and
ni-th and nj-th rows, and M is the dimension of x. Thus, a walk-summable Gaussian MRF
in (56) (or equivalently (57)) can always be written as

q(x) ∝
M∏
n=1

N (xn|
1

ω
hn,

1

ω
)︸ ︷︷ ︸

p(xn)

M∏
n=1

N (0|Vn,nixni + Vn,njxnj , 1)︸ ︷︷ ︸
fn

. (60)

Note that, in the above equation, p(xn) serves as the prior distribution for xn as that in
(10) and fn is the local likelihood function with local observation being yn = 0 and noise
distribution zn ∼ N (zn|0, 1)5. Thus the above equation is a special case of the linear
Gaussian model based factorization in (10) with the local likelihood function fn containing
only a pair of variables. For this pairwise linear Gaussian model with scalar variables,
it is shown in (Moallemi and Roy, 2009b) that ρ(Q) < 1 is fulfilled. Thus by Corollary
17, Gaussian BP always converges. In summary, for the factorization based on Gaussian
MRF, if the walk-summable convergence condition is fulfilled, there is an equivalent joint
distribution factorization based on linear Gaussian model; and Gaussian BP is convergence
guaranteed for this linear Gaussian model.

In the following, we further demonstrate through an example that there exist Gaussian
MRFs, in which the information matrix J fails to satisfy the walk-summable condition, but a
convergence guaranteed Gaussian BP update based on the distributed linear Gaussian model
representation can still be obtained. More specifically, consider the following information
matrix J in a Gaussian MRF:

J =


1 1

3
√
2

1√
3

√
2
3

1
3
√
2

1 0 1
3

1√
3

0 1 1√
6√

2
3

1
3

1√
6

1

 . (61)

The eigenvalues of I − |R| to 4 decimal places are −0.0754, 0.9712, 1.4780, and 1.6262.
According to the walk-summable definition in (58), it is non walk-summable and the con-
vergence condition in (Malioutov et al., 2006) is inconclusive as to whether Gaussian BP
converges. On the other hand, we can study the Gaussian BP convergence of this example by
employing a linear Gaussian model representation, and rewriting J as J = ATR−1A+W−1,
where

A =


2√
6

0 1√
2

1√
3

1√
6

1√
3

0 0

0 1√
3

0 1√
3

 , W =


6 0 0 0
0 3 0 0
0 0 2 0
0 0 0 3

 ,
and R = I. In Fig. 3, the joint distribution of this example with Gaussian MRF and
the corresponding linear Gaussian model are represented by factor graphs. As it is shown
in Corollary 17, for a factor graph that is the union of a forest and a single loop, as in
Fig. 3(b), Gaussian BP always converges to the exact value. This is in sharp contrast to

5. For a particular fn, if there is only one non-zero coefficient, fn ×N (xn| 1ωhn,
1
ω

) is also proportional to
a Gaussian distribution, which can be seen as a prior distribution in (10).
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Figure 3: The Gaussian MRF corresponding to J in (61) with the factorization following (4);
(b) The factor graph corresponding to J in (61) with the factorization following
(10).

Figure 4: Venn diagram summarizing various subclasses of Gaussian models: the three
inner most conditions are all for the BP algorithm while the path-sum in general
does not constitute a BP algorithm.

the inconclusive convergence property when the same joint distribution is expressed using
the classical Gaussian MRF in (4).

In summary, we have shown that the linear Gaussian model with ρ(Q) < 1 encompasses
walk-summable Gaussian MRF. Further, it is shown in (Malioutov et al., 2006) that the
diagonally dominant convergence condition in (Weiss and Freeman, 2001a) for Gaussian BP
is a special case of the walk-summable condition. Also, the convergence condition in (Su
and Wu, 2015) is encompassed by walk-summable condition. Therefore, we have the Venn
diagram in Fig. 4 summarizing the relations (in terms of convergence guarantees) between
the convergence condition proposed in this paper and existing conditions.

6. Conclusions

This paper shows that, depending on how the factorization of the underlying joint Gaussian
distribution is performed, Gaussian belief propagation (BP) may exhibit different conver-
gence properties as different factorizations lead to fundamentally different recursive update
structures. The paper studies the convergence of Gaussian BP derived from the factorization
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based on the distributed linear Gaussian model. We show that the condition we present for
convergence of the marginal mean based on factorizations using the linear Gaussian model
is more general than the walk-summable condition (Malioutov et al., 2006) (and references
therein) that is based on the Gaussian Markov random field factorization. Further, the lin-
ear Gaussian model that is studied in this paper readily conforms to the physical network
topology arising in large-scale networks.

Further, the paper analyzes the convergence of the Gaussian BP based distributed infer-
ence algorithm. In particular, we show analytically that, with arbitrary positive semidefinite
matrix initialization, the message information matrix exchanged among agents converges
to a unique positive definite matrix, and it approaches an arbitrarily small neighborhood
of this unique positive definite matrix at an exponential rate (with respect to any matrix
norm). Regarding the initial information matrix, there exist positive definite initializa-
tions that guarantee faster convergence than the commonly used all-zero matrix. Moreover,
under the positive semidefinite initial message information matrix condition, we present
a necessary and sufficient condition of the belief mean vector to converge to the optimal
centralized estimate. We also prove that Gaussian BP always converges if the correspond-
ing factor graph is a union of a single loop and a forest. In particular, we show that the
proposed convergence condition for Gaussian BP based on the linear Gaussian model leads
to a strictly larger class of models in which Gaussian BP converges than those postulated
by the Gaussian Markov random field based walk-summable condition. Finally, we discuss
connections of Gaussian BP with the general path-sum algorithm. In the future, it will
be interesting to explore if these path-sum interpretations can lead to modifications of the
standard Gaussian BP algorithm that guarantee the convergence of Gaussian BP for larger
classes of topologies while being also parallel and fully distributed.
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Appendix A.

We first compute the first round updating message from variable node to factor node.

Substituting m
(0)
fn→i (xi) ∝ exp

{
−1

2 ||xj − v
(0)
fn→i||

2

J
(0)
fn→i

}
into (11) and, after algebraic ma-

nipulations, we obtain

m
(1)
j→fn (xj) ∝ exp

{
−1

2
||xj − v

(1)
j→fn ||

2

J
(1)
j→fn

}
, (62)

with
J

(1)
j→fn = W−1

j +
∑

fk∈B(j)\fn

J
(0)
fk→j ,

and

v
(1)
j→fn =

[
J

(1)
j→fn

]−1

 ∑
fk∈B(j)\fn

J
(0)
fk→jv

(0)
fk→j

 .
Next, we evaluate m

(1)
fn→i (xi). By substituting m

(1)
j→fn (xj) in (62) into (12), we obtain

m
(1)
fn→i (xi) ∝

∫
. . .

∫
exp

{
− 1

2

(
yn −

∑
j∈B(fn)

An,jxj
)T

R−1
(
yn −

∑
j∈B(fn)

An,jxj
)}
×

∏
j∈B(fn)\i

exp
{
− 1

2
||xj − v

(1)
j→fn ||

2

J
(1)
j→fn

}
d{xj}j∈B(fn)\i.

(63)

Let x{B(fn)\i} and v
(1)
{B(fn)\i}→fn be stacked vectors containing xj and v

(1)
j→fn as vector

elements for all j ∈ B (fn) \ i arranged in ascending order on j, respectively; An,{B(fn)\i}
denotes a row block matrix containing An,j as row elements for all j ∈ B (fn) \ i arranged

in ascending order; and J
(1)
{B(fn)\i}→fn is a block diagonal matrix with J

(1)
j→fn as its block

diagonal elements for all j ∈ B (fn) \ i arranged in ascending order. Then, (63) can be
reformulated as

m
(1)
fn→i(xi) ∝

∫
. . .

∫
exp

{
−1

2
||yn −An,ixi −An,{B(fn)\i}x

T
{B(fn)\i}||

2
R−1

}
× exp

{
−1

2
||x{B(fn)\i} − v

(1)
{B(fn)\i}→fn)||2

J̃
(1)
{B(fn)\i}→fn

}
dx{B(fn)\i}

∝ exp

{
−1

2
||yn −An,ixi||2R−1

}
×
∫
. . .

∫
exp

{
−1

2
(xT{B(fn)\i}K

(1)
fn→ix{B(fn)\i}−2[h

(1)
fn→i]

Tx{B(fn)\i})

}
dx{B(fn)\i},(64)

where
K

(1)
fn→i = AT

n,{B(fn)\i}R
−1An,{B(fn)\i} + J

(1)
{B(fn)\i}→fn

and
h

(1)
fn→i = AT

n,{B(fn)\i}R
−1 (yn −An,ixi) + J

(1)
{B(fn)\i}→fnv

(1)
{B(fn)\i}→fn .
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By completing the square for the integrand of (64), we obtain

m
(1)
fn→i (xi) ∝ α

(1)
fn→i exp

{
−1

2
||yn −An,ixi||2R−1

n
+

1

2

[
h

(1)
fn→i

]T [
K

(1)
fn→i

]−1
h

(`)
fn→i

}
,(65)

with

α
(1)
fn→i =

∫
. . .

∫
exp

{
−1

2
||x{B(fn)\i} −

[
K

(1)
fn→i

]−1
h

(1)
fn→i||

2

K
(1)
fn→i

}
dx{B(fn)\i}.

Next, by applying the spectral theorem to K
(1)
fn→i and after some algebraic manipula-

tions, we simplify (65) as

m
(1)
fn→i (xi) ∝ α(1)

fn→i exp

{
−1

2
||xi − v

(1)
fn→i||J(1)

fn→i

}
,

with the inverse of the covariance, the information matrix

J
(1)
fn→i = AT

n,i

Rn +
∑

j∈B(fn)\i

An,j

[
J

(1)
j→fn

]−1
AT
n,j

−1

An,i,

and the mean vector

v
(1)
fn→i =

[
J

(1)
fn→i

]−1
AH
n,i

Rn +
∑

j∈B(fn)\i

An,j

[
J

(1)
j→fn

]−1
AT
n,j

−1yn −
∑

j∈B(fn)\i

An,jv
(1)
j→fn

 ,

and

α
(1)
fn→i ∝

∫
. . .

∫
exp

{
− 1

2
zTΛ

(1)
fn→iz

}
dz, (66)

where Λ
(1)
fn→i is a diagonal matrix containing the eigenvalues of AT

n,{B(fn)\i}R
−1
n An,{B(fn)\i}+

J
(1)
{B(fn)\i}→fn .

By induction, and following similar derivations as in (62) to (66), we obtain the general
updating expressions as in (15) to (21).

Appendix B.

Before going into the proof of Lemma 2, we note the following properties of positive definite
(p.d.) matrices. If X � 0, Y � 0, Z � 0 are of the same dimension, then we have (Du and
Wu, 2013a):
P B.1: X + Y � 0 and X + Z � 0.
P B.2: ATXA � 0, ATZA � 0, AXAT � 0 and AZAT � 0 for any full column rank
matrix A with compatible dimension.

Now, we prove Lemma 2. If J
(`−1)
fk→j � 0 for all fk ∈ B (j) \ fn, according to P B.1,∑

fk∈B(j)\fn J
(`−1)
fk→j � 0. As W−1

j � 0, we have W−1
j +

∑
fk∈B(j)\fn J

(`−1)
fk→j � 0, which, accord-

ing to (16), is equivalent to J
(`)
j→fn � 0. Besides, as An,j is full column rank, if

[
J

(`)
j→fn

]−1
� 0
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for all j ∈ B (fn)\i, according to P B.2, An,j

[
J

(`)
j→fn

]−1
AT
n,j � 0. With Rn � 0, following P

B.1, we have

[
Rn +

∑
j∈B(fn)\i An,j

[
J

(`)
j→fn

]−1
AT
n,j

]−1

� 0. As An,i is of full column rank,

by applying P B.2 again, we have AT
n,i

[
Rn +

∑
j∈B(fn)\i An,j

[
J

(`)
j→fn

]−1
AT
n,j

]−1

An,i � 0,

which according to (19) is equivalent to J
(`)
fn→i � 0.

In summary, we have proved that 1) if J
(`−1)
fk→j � 0 for all fk ∈ B (j)\fn, then J

(`)
j→fn � 0;

2) if
[
J

(`)
j→fn

]−1
� 0 for all j ∈ B (fn) \ i, then J

(`)
fn→i � 0. Therefore, by setting J

(0)
fk→j � 0

for all k ∈ V and j ∈ B (fk), according to the results of the first case, we have J
(1)
j→fn � 0

for all j ∈ V and fn ∈ B (j). Then, applying the second case, we further have J
(1)
fn→i � 0 for

all n ∈ V and i ∈ B (fn). By repeatedly using the above arguments, it follows readily that

J
(`)
fk→j � 0 and J

(`)
j→fn � 0 for ` ≥ 1 and with j ∈ V, fn, fk ∈ B (j). Furthermore, according

to the discussion before Lemma 2, all messages m
(`)
j→fn (xj) and m

(`)
fn→i (xi) exist, and are

in Gaussian form as in (15) and (18).

Appendix C.

First, Proposition 4, P 4.1 is proved. Suppose that J(`) � J(`−1) � 0, i.e., J
(`)
fk→j � J

(`−1)
fk→j �

0 for all (fk, j) ∈ B̃ (fn, i), we have

W−1
j +

∑
fk∈B(j)\fn

J
(`)
fk→j �W−1

j +
∑

fk∈B(j)\fn

J
(`−1)
fk→j � 0.

Then, according to the fact that if X � Y � 0, Y−1 � X−1 � 0, we haveW−1
j +

∑
fk∈B(j)\fn

J
(`−1)
fk→j

−1

�

W−1
j +

∑
fk∈B(j)\fn

J
(`)
fk→j

−1

� 0.

Since An,j is of full column rank and following P B.2 in Appendix B, we have

An,j

W−1
j +

∑
fk∈B(j)\fn

J
(`−1)
fk→j

−1

AT
n,j � An,j

W−1
j +

∑
fk∈B(j)\fn

J
(`)
fk→j

−1

AT
n,j � 0.

Following the same procedure of the proof above and due to R � 0, we can further prove
that

AT
n,i

Rn +
∑

j∈B(fn)\i

An,j

W−1
j +

∑
fk∈B(j)\fn

J
(`)
fk→j

−1

AT
n,j

−1

An,i

�AT
n,i

Rn +
∑

j∈B(fn)\i

An,j

W−1
j +

∑
fk∈B(j)\fn

J
(`−1)
fk→j

−1

AT
n,j

−1

An,i,
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which is equivalent to

Fn→i
({

J
(`)
fk→j

}
(fk,j)∈B̃(fn,i)

)
� Fn→i

({
J

(`−1)
fk→j

}
(fk,j)∈B̃(fn,i)

)
.

Since F contains Fn→i (·) as its component, Proposition 4, P 4.1 is proved.

Next, Proposition 4, P 4.2 is proved. Suppose that J
(`)
fk→j � 0 for all (fk, j) ∈ B̃ (fn, i).

As α > 1, we have

αW−1
j +

∑
fk∈B(j)\fn

αJ
(`)
fk→j �W−1

j +
∑

fk∈B(j)\fn

αJ
(`)
fk→j � 0,

where the equality holds when W−1
j = 0, which corresponds to non-informative prior for

xj . Applying the fact that if X � Y � 0, Y−1 � X−1 � 0, and, according to P B.2 in
Appendix B, we obtain

An,j

W−1
j +

∑
fk∈B(j)\fn

αJ
(`)
fk→j

−1

AT
n,j � An,j

αW−1
j +

∑
fk∈B(j)\fn

αJ
(`)
fk→j

−1

AT
n,j � 0.

Since Rn � 1
αRn � 0, we have 1

α
Rn +

∑
j∈B(fn)\i

An,j

αW−1
j +

∑
fk∈B(j)\fn

αJ
(`)
fk→j

−1

AT
n,j

−1

�

Rn +
∑

j∈B(fn)\i

An,j

W−1
j +

∑
fk∈B(j)\fn

αJ
(`)
fk→j

−1

AT
n,j

−1

.

Finally, applying P B.2 in Appendix B to the above equation and taking out the common
factor α, we obtain

αAT
n,i

Rn +
∑

j∈B(fn)\i

An,j

W−1
j +

∑
fk∈B(j)\fn

J
(`)
fk→j

−1

AT
n,j

−1

An,i

� AT
n,i

Rn +
∑

j∈B(fn)\i

An,j

W−1
j +

∑
fk∈B(j)\fn

αJ
(`)
fk→j

−1

AT
n,j

−1

An,i.

Therefore, αFn→i
({

J
(`)
fk→j

}
(fk,j)∈B̃(fn,i)

)
� Fn→i

({
αJ

(`)
fk→j

}
(fk,j)∈B̃(fn,i)

)
if J

(`)
fk→j � 0

for all (fk, j) ∈ B̃ (fn, i) and α > 1. As F contains Fn→i (·) as its component, Proposition

4, P 4.2 is proved. In the same way, we can prove F
(
α−1J(`)

)
� α−1F

(
J(`)
)

if J(`) � 0

and α > 1.
At last, Proposition 4, P 4.3 is proved. From Lemma 2, if we have initial message

information matrix J
(0)
fk→j � 0 for all j ∈ V and fk ∈ B (j), then we have J

(`)
fk→j � 0 for all
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j ∈ V and fk ∈ B (j). In such case, obviously, J(`) � 0. Applying F to both sides of this

equation, and using Proposition 4, P 4.1, we have F
(
J(`)
)
� F (0). On the other hand,

using (27), it can be easily checked that F (0) = AT
[
Ω + HΨ−1HT

]−1
A � 0, where the

inequality is from Lemma 2. For proving the upper bound, we start from the fact that

∑
j∈B(fn)\i

An,j

W−1
j +

∑
fk∈B(j)\fn

J
(`−1)
fk→j

−1

AT
n,j

in (25), and equivalently the corresponding term

Hn,i

[
Wn,i + Kn,i

(
I|B(fn)|−1 ⊗ J(`−1)

)
KT
n,i

]−1
HT
n,i

in (26), are p.s.d. matrices. In (27), since

H
[
Ψ + K

(
I∑M

n=1 |B(fn)|(|B(fn)|−1) ⊗ J(`−1)
)

KT
]−1

HT

contains Hn,i

[
Wn,i + Kn,i

(
I|B(fn)|−1 ⊗ J(`−1)

)
KT
n,i

]−1
HT
n,i as its block diagonal elements,

it is also a p.s.d. matrix. With Ω � 0, adding to the above result gives

Ω + H
[
Ψ + K

(
Iϕ ⊗ J(`)

)
KT
]−1

HT � Ω � 0.

Inverting both sides, we obtain Ω−1 �
[
Ω + H

[
Ψ + K

(
Iϕ ⊗ J(`)

)
KT
]−1

HT

]−1

. Finally,

applying P B.2 again gives

ATΩ−1A � AT

[
Ω + H

[
Ψ + K

(
Iϕ ⊗ J(`)

)
KT
]−1

HT

]−1

AT = F
(
J(`)
)
.

Therefore, we have ATΩ−1A � F
(
J(`)
)
� AT

[
Ω + HΨ−1HT

]−1
A � 0.

Appendix D.

Let d (X1,Y1) = exp{a1} and d (X2,Y2) = exp{a2}, and d (X1 + X2,Y1 + Y2) = exp{a3}.
First, P 15.1 is proved. According to the definition of part metric in Definition 9, for
arbitrary symmetric p.d matrix X1, X2, Y1, and Y2, we have d (X1,Y1), d (X2,Y2), and
d (X1 + X2,Y1 + Y2) correspond to

a1X1 � Y1 �
1

a1
X1, a2X2 � Y2 �

1

a2
X2, (67)

a3(X1 + X2) � Y1 + Y2 �
1

a3
(X1 + X2) . (68)
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Since d (X1,Y1) > 0 and d (X2,Y2) > 0, we have a1, a2 ≥ 1. And therefore a1 + a2 > a1

and a1 + a2 > a2. Then, according to (67), we have

(a1 + a2) (X1 + X2) � Y1 + Y2 �
1

a1 + a2
(X1 + X2). (69)

Following the definition of part matric, a3 is the smallest value satisfy the inequality in (68).
Thus, by comparing (69) with (68), we obtain a1 +a2 ≥ a3 Hence, d (X1 + X2,Y1 + Y2) ≤
d (X1,Y1) + d (X2,Y2).

Next, P 15.2 is proved. Following the part metric definition of d (X1,Y1), a1X1 �
Y1 � 1

a1
X1, which is equivalent to Y−1

1 � 1
a1

X−1
1 and a1X

−1
1 � Y−1

1 . Thus, d (X,Y) =

d
(
X−1,Y−1

)
.
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