
Journal of Machine Learning Research 18 (2018) 1-28 Submitted 11/16; Revised 8/17; Published 4/18

Surprising properties of dropout in deep networks

David P. Helmbold dph@soe.ucsc.edu
Department of Computer Science
University of California, Santa Cruz
Santa Cruz, CA 95064, USA

Philip M. Long plong@google.com

Google

1600 Amphitheatre Parkway

Mountain View, CA 94043, USA

Editor: Sanjoy Dasgupta

Abstract

We analyze dropout in deep networks with rectified linear units and the quadratic loss. Our
results expose surprising differences between the behavior of dropout and more traditional
regularizers like weight decay. For example, on some simple data sets dropout training
produces negative weights even though the output is the sum of the inputs. This provides
a counterpoint to the suggestion that dropout discourages co-adaptation of weights. We also
show that the dropout penalty can grow exponentially in the depth of the network while the
weight-decay penalty remains essentially linear, and that dropout is insensitive to various
re-scalings of the input features, outputs, and network weights. This last insensitivity
implies that there are no isolated local minima of the dropout training criterion. Our work
uncovers new properties of dropout, extends our understanding of why dropout succeeds,
and lays the foundation for further progress.

Keywords: Dropout, deep neural networks, regularization, learning theory.

1. Introduction

The 2012 ImageNet Large Scale Visual Recognition challenge was won by the University
of Toronto team by a surprisingly large margin. In an invited talk at NIPS, Hinton (2012)
credited the dropout training technique for much of their success. Dropout training is
a variant of stochastic gradient descent (SGD) where, as each example is processed, the
network is temporarily perturbed by randomly “dropping out” nodes of the network. The
gradient calculation and weight updates are performed on the reduced network, and the
dropped out nodes are then restored before the next SGD iteration. Since the ImageNet
competition, dropout has been successfully applied to a variety of domains (Dahl, 2012;
Deng et al., 2013; Dahl et al., 2013; Kalchbrenner et al., 2014; Chen and Manning, 2014),
and is widely used (Schmidhuber, 2015; He et al., 2015; Szegedy et al., 2015; Yang et al.,
2016; Havaei et al., 2017); for example, it is incorporated into popular packages such as
TensorFlow, Torch, and Caffe. It is intriguing that crippling the network during training
often leads to such dramatically improved results, and dropout has also sparked substantial

c©2018 David P. Helmbold and Philip M. Long.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v18/16-549.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v18/16-549.html

Helmbold and Long

research on related methods (for example, (Goodfellow et al., 2013; Wan et al., 2013; Gal
and Ghahramani, 2016)).

In this work, we examine the effect of dropout on the inductive bias of the learning
algorithm. A match between dropout’s inductive bias and some important applications
could explain the success of dropout, and its popularity also motivates the study of its
properties.

Weight decay training optimizes the empirical error plus an L2 regularization term,
λ
2 ||w||

2
2, so we call λ2 ||w||

2
2 the L2 penalty of w since it is the difference between training cri-

terion evaluated at w and the empirical loss of w. By analogy, we define the dropout penalty
of w to be the difference between the dropout training criterion and the empirical loss of w
(see Section 2). Dropout penalties measure how much dropout discriminates against weight
vectors, so they are key to understanding dropout’s inductive bias.

Even in one-layer networks, conclusions drawn from (typically quadratic) approxima-
tions of the dropout penalty can be misleading (Helmbold and Long, 2015). Therefore we
focus on exact formal analysis of dropout in multi-layer networks. Theoretical analysis of
deep networks is notoriously difficult, so we might expect that a thorough understanding of
dropout in deep networks must be achieved in stages. In this paper we further the process
by exposing some of the surprising ways that the inductive bias of dropout differs from L2

and other standard regularizers. These include the following:

• We show that dropout training can lead to negative weights even when the output is a
positive multiple of the the inputs. Arguably, such use of negative weights constitutes
co-adaptation – this adds a counterpoint to previous analyses showing that dropout
discourages co-adaptation (Srivastava et al., 2014; Helmbold and Long, 2015).

• Unlike weight decay and other p-norm regularizers, dropout training is insensitive
to the rescaling of input features, and largely insensitive to rescaling of the outputs;
this may play a role in dropout’s practical success. Dropout is also unaffected if the
weights in one layer are scaled up by a constant c, and the weights of another layer
are scaled down by c; this implies that dropout training does not have isolated local
minima.

• The dropout penalty grows exponentially in the depth of the network in cases where
the L2 regularizer grows linearly. This may enable dropout to penalize the complexity
of the network in a way that more meaningfully reflects the richness of the network’s
behaviors. (The exponential growth with d of the dropout penalty is reminiscent of
some regularizers for deep networks studied by Neyshabur et al. (2015).)

• Dropout in deep networks has a variety of other behaviors different from standard
regularizers. In particular: the dropout penalty for a set of weights can be negative;
the dropout penalty of a set of weights depends on both the training instances and
the labels; and although the dropout probability intuitively measures the strength of
dropout regularization, the dropout penalties are often non-monotonic in the dropout
probability. In contrast, Wager et al. (2013) show that when dropout is applied to
generalized linear models, the dropout penalty is always non-negative and does not
depend on the labels.

2

Dropout in Deep Networks

Our analysis is for multilayer neural networks with the square loss at the output node.
The hidden layers use the popular rectified linear units (Nair and Hinton, 2010) outputting
σ(a) = max(0, a) where a is the node’s activation (the weighted sum of its inputs). We
study the minimizers of a criterion that may be viewed as the objective function when using
dropout. This abstracts away sampling and optimization issues to focus on the inductive
bias, as in some previous work (Breiman, 2004; Zhang, 2004; Bartlett et al., 2006; Long and
Servedio, 2010; Helmbold and Long, 2015). See Section 2 for a complete explanation.

Related work

A number of possible explanations have been suggested for dropout’s success. Hinton et al.
(2012) suggest that dropout controls network complexity by restricting the ability to co-
adapt weights and illustrate how it appears to learn simpler functions at the second layer.
Others (Baldi and Sadowski, 2013; Bachman et al., 2014) view dropout as an ensemble
method combining the different network topologies resulting from the random deletion of
nodes. Wager et al. (2014) observe that in 1-layer networks dropout essentially forces
learning on a more challenging distribution akin to ‘altitude training’ of athletes.

Most formal analysis of the inductive bias of dropout has concentrated on the single-
layer setting, where a single neuron combines the (potentially dropped-out) inputs. Wager
et al. (2013) considered the case that the distribution of label y given feature vector x is a
member of the exponential family, and the log-loss is used to evaluate models. They pointed
out that, in this situation, the criterion optimized by dropout can be decomposed into the
original loss and a term that does not depend on the labels. They then gave approximations
to this dropout regularizer and discussed its relationship with other regularizers. As we have
seen, many aspects of the behavior of dropout and its relationship to other regularizers are
qualitatively different when there are hidden units.

Wager et al. (2014) considered dropout for learning topics modeled by a Poisson gener-
ative process. They exploited the conditional independence assumptions of the generative
process to show that the excess risk of dropout training due to training set variation has
a term that decays more rapidly than the straightforward empirical risk minimization, but
also has a second additive term related to document length. They also discussed situations
where the model learned by dropout has small bias.

Baldi and Sadowski (2014) analyzed dropout in linear networks, and showed how dropout
can be approximated by normalized geometric means of subnetworks in the nonlinear case.
Gal and Ghahramani (2015) described an interpretation of dropout as an approximation to
a deep Gaussian process.

The impact of dropout (and its relative dropconnect) on generalization (roughly, how
much dropout restricts the search space of the learner) was studied in (Wan et al., 2013).

In the on-line learning with experts setting, Van Erven et al. (2014) showed that applying
dropout in on-line trials leads to algorithms that automatically adapt to the input sequence
without requiring doubling or other parameter-tuning techniques.

The rest of the paper is organized as follows. Section 2 introduces our notation and
formally defines the dropout model. We prove that dropout enjoys several scaling invari-
ances that weight-decay doesn’t in Section 3, and that dropout requires negative weights
even in very simple situations in Section 4. Section 5 uncovers various properties of the

3

Helmbold and Long

dropout penalty function. Section 6 describes some simulation experiments. We provide
some concluding remarks in Section 7.

2. Preliminaries

Throughout, we will analyze fully connected layered networks with K inputs, one output,
d layers (counting the output, but not the inputs), and n nodes in each hidden layer.
We assume that n is a positive multiple of K and that K is a perfect square and a
power of two to avoid unilluminating floor/ceiling clutter in the analysis. We will call
this the standard architecture. We use W to denote a particular setting of the weights
and biases in the network and W(x) to denote the network’s output on input x using W.
The hidden nodes are ReLUs, and the output node is linear. W can be decomposed as
(W1,b1, ...,Wd−1,bd−1,w, b), where each Wj is the matrix of weights on connections from
the j−1st into the jth hidden layer, each bj is the vector of bias inputs into the jth hidden
layer, w are the weights into the output node, and b is the bias into the output node.

An example distribution is a joint probability distribution over (x, y) pairs We focus on
square loss, so the loss of W on example (x, y) is (W(x) − y)2. The risk is the expected

loss with respect to an example distribution P , we denote the risk of W as RP (W)
def
=

E(x,y)∼P
(
(W(x)− y)2

)
. The subscript will often be omitted when P is clear from the

context.

The goal of L2 training is to find weights and biases minimizing the L2 criterion with

regularization strength λ: J2(W)
def
= R(W)+ λ

2 ||W||
2. Here and throughout, we use ||W||2 to

denote the sum of the squares of the weights ofW. (As usual, the biases are not penalized.)
We use WL2 to denote a minimizer of this criterion. The L2 penalty, λ

2 ||W||
2, is non-

negative. This is useful, for example, to bound the risk of a minimizer WL2 of J2, since
R(W) ≤ J2(W).

Dropout training independently removes nodes in the network. In our analysis each
non-output node is dropped out with the same probability q, so p = 1− q is the probability
that a node is kept. (The output node is always kept; dropping it out has the effect of
cancelling the training iteration.) When a node is dropped out, the node’s output is set to
0. To compensate for this reduction, the values of the kept nodes are multiplied by 1/p.
With this compensation, the dropout can be viewed as injecting zero-mean additive noise
at each non-output node (Wager et al., 2013). 1

A dropout pattern is a boolean vector indicating the choices, for each node in the net-
work, of whether the node is kept (1) or dropped out (0). For a network W, an input
x, and dropout pattern R, let D(W,x,R) be the output of W when nodes are dropped
out or not following R (including the 1/p rescaling of kept nodes’ outputs). The goal of
dropout training on an example distribution P is to find weights and biases minimizing the
dropout criterion for a given dropout probability:

JD(W)
def
= ERE(x,y)∼P

(
(D(W,x,R)− y)2

)
.

1. Some authors use a similar adjustment where the weights are scaled down at prediction time instead of
inflating the kept nodes’ outputs at training time.

4

Dropout in Deep Networks

output

1

x1

-1

x2

1
11

1

1 1

Figure 1: A network where the dropout penalty is negative.

This criterion is equivalent to the expected risk of the dropout-modified network, and we
use WD to denote a minimizer of it. Since the selection of dropout pattern and example
from P are independent, the order of the two expectations can be swapped, yielding

JD(W) = E(x,y)∼PER
(
(D(W,x,R)− y)2

)
. (1)

Equation (1) is a key property of the dropout criterion. It indicates when something is
true about the dropout criterion for a family of distributions concentrated on single exam-
ples, then (usually) the same thing will be true for any mixture of these single-example
distributions.

Consider now the example network in Figure 1. The weight parametersW1 and w are all-
1’s, and all of the biases are 0. W(1,−1) = 0 as each hidden node computes 0. Each dropout
pattern indicates the subset of the four lower nodes to be kept, and when q = p = 1/2 each
subset is equally likely to be kept. IfR is the dropout pattern where input x2 is dropped and
the other nodes are kept, then the network computes D(W, (1,−1),R) = 8 (recall that when
p = 1/2 the values of non-dropped out nodes are doubled). Only three dropout patterns
produce a non-zero output, so if P is concentrated on the example x = (1,−1), y = 8 the
dropout criterion is:

JD(W) =
1

16
(8− 8)2 +

2

16
(4− 8)2 +

13

16
(0− 8)2 = 54.

As mentioned in the introduction, the dropout penalty of a weight vector for a given
example distribution and dropout probability is the amount that the dropout criterion
exceeds the risk, JD(W) − R(W). Wager et al. (2013) show that for 1-layer generalized
linear models, the dropout penalty is non-negative.

Since W(1,−1) = 0, we have R(W) = 64, and the dropout penalty is negative in our
example. This is because the variance in the output due to dropout causes the network to
better fit the data (on average) than the network’s non-dropout evaluation. In Section 5.2,
we give a necessary condition for this variance to be beneficial. As with the dropout crite-
rion, the dropout penalty decomposes into an expectation of penalties over single examples:

JD(W)−R(W) = E(x,y)∼P
(
ER

(
(D(W,x,R)− y)2

)
− (W(x)− y)2

)
.

Definition 1 Define P(x,y) as the distribution with half of its weight on example (x, y) and
half of its weight on example (0, 0).

5

Helmbold and Long

Unless indicated otherwise, we assume p = q = 1/2 for simplicity, although this is not
crucial for our results.

3. Scaling inputs, weights and outputs

This section compares the sensitivity of dropout and weight decay on the scale of the training
data.

3.1 Dropout is scale-free

Here we prove that dropout regularizes deep networks in a manner that is independent of
the scale of the input features. In other words, training under dropout regularization does
not penalize the use of large weights when needed to compensate for small input values.

Definition 2 For any example distribution P , define the dropout aversion of P to be the
maximum, over minimizersWD of the dropout criterion JD(WD), of RP (WD)−infW RP (W).

The dropout aversion of P measures the extent to which P is incompatible with the
inductive bias of dropout, measured by the risk gap between the true risk minimizer and
the optimizers of the dropout criterion.

Definition 3 For example distribution P and square matrix A, denote by A ◦P the distri-
bution obtained by sampling (x, y) from P , and outputting (Ax, y).

When A is diagonal and has full rank, then A ◦ P is a rescaling of the inputs, like
changing one input from minutes to seconds and another from feet to meters.

Theorem 4 For any example distribution P , and any diagonal full-rank K ×K matrix A,
the dropout aversion of P equals the dropout aversion of A ◦ P .

Proof: Choose a network

W = (W1,b1, ...,Wd−1,bd−1,w, b).

Let
W ′ = (W1A

−1,b1...,Wd−1,bd−1,w, b).

For any x, W(x) = W ′(Ax), as A−1 undoes the effect of A before it gets to the rest
of the network, which is unchanged. Furthermore, for any dropout pattern R, we have
D(W,x,R) = D(W ′, Ax,R). Once again A−1 undoes the effects of A on kept nodes (since
A is diagonal), and the rest of the network W ′ is modified by R an a manner paralleling
W. Thus, there is bijection between networks W and networks W ′ with JD(W ′) = JD(W)
and R(W ′) = R(W), yielding the theorem.

Theorem 4 indicates that some common normalizations of the input features (for ex-
ample, to have unit variance) do not affect the quality of the dropout criterion minimizers,
but normalization might change the speed of convergence and which minimizer is reached.
Centering the features has slightly different properties. Although it is easy to use the biases
to define a W ′ that “undoes” the centering in the non-dropout computation, different W ′
appear to be required for different dropout patterns, breaking the bijection exploited in
Theorem 4.

As we will see in Section 3.4, weight decay does not enjoy such scale-free status.

6

Dropout in Deep Networks

3.2 Dropout’s invariance to parameter scaling

Next, we describe an equivalence relation among parameterizations for dropout networks of
depth d ≥ 2. Basically, scaling the parameters at a level creates a corresponding scaling of
the output. (A similar observation was made in a somewhat different context by Neyshabur
et al. (2015).)

Theorem 5 For any input x, dropout pattern R, any network

W = (W1,b1, ...,Wd−1,bd−1,w, b),

and any positive c1, ..., cd, if

W ′ =

c1W1, c1b1, c2W2, c1c2b2, ..., cd−1Wd−1,

d−1∏
j=1

cj

bd−1, cdw,

 d∏
j=1

cj

 b

 , (2)

then D(W ′,x,R) =
(∏d

j=1 cj

)
D(W,x,R). In particular, if

∏d
j=1 cj = 1, then for any ex-

ample distribution P , networksW andW ′ have the same dropout criterion, dropout penalty,
and expected loss.

Note that the re-scaling of the biases at layer j depends not only on the rescaling of the
connection weights at layer j, but also the re-scalings at lower layers.

Proof: Choose an input x and a dropout pattern R. Define W ′ as in (2). For each
hidden layer j, let (hj1, ..., hjn) be the jth hidden layer when applyingW to x with R, and
let (h̃j1, ..., h̃jn) be the jth hidden layer when applying W ′ instead. By induction, for all i,

h̃ji =
(∏

`≤j c`

)
hji; the key step is that the pre-rectified value used to compute h̃ji has the

same sign as for hji, since rescaling by cj preserves the sign. Thus the same units are zeroed
out in W and W ′ and D(W,x,R) = (

∏
j cj)D(W ′,x,R). When

∏
j cj = 1, this implies

D(W,x,R) = D(W ′,x,R). Since this is true for all x and R, we have JD(W) = JD(W ′).
Since, similarly, W(x) =W ′(x) for all x, so R(W) = R(W ′), the dropout penalities for W
and W ′ are also the same.

Theorem 5 implies that the dropout criterion never has isolated minimizers, since one
can continuously up-scale the weights on one layer with a compensating down-scaling at
another layer to get a contiguous family of networks computing the same function and
having the same dropout criterion. It may be possible to exploit the parameterization
equivalence of Theorem 5 in training by using canonical forms for the equivalent networks
or switching to an equivalent networks whose gradients have better properties. We leave
this question for future work.

3.3 Output scaling with dropout

Scaling the output values of an example distribution P does affect the aversion, but in a
very simple and natural way.

Theorem 6 For any example distribution P , if P ′ is obtained from P by scaling the outputs
of P by a positive constant c, the dropout aversion of P ′ is c2 times the dropout aversion of
P .

7

Helmbold and Long

Proof: If a networkW minimizes the dropout criterion for P , then the networkW ′ obtained
by scaling up the weights and bias for the output unit by c minimizes the dropout criterion
for P ′, and for any x, y, and dropout patternR, (D(W,x,R)−y)2 = (D(W ′,x,R)−cy)2/c2.

3.4 Scaling properties of weight decay

Weight decay is not scale-free. Define the weight-decay aversion analogously to the dropout
aversion: the weight-decay aversion with P is the maximum, over minimizersW∗ of J2(W∗),
of RP (W∗)− infW RP (W).

We analyze the L2 criterion for depth-2 networks in Appendix B, resulting in the fol-
lowing theorem. Our proof shows that, despite the non-convexity of the L2 criterion, it is
still possible to identify a closed form for one of its optimizers.

Theorem 7 Choose an arbitrary number n of hidden nodes, λ > 0 and x ∈ RK other than
(0, 0, ..., 0).

The weight-decay aversion of P(x,1) is min(14 ,
λ2

x·x).

Theorem 7 shows that, unlike dropout, the weight decay aversion does depend on the
scaling of the input features.

Furthermore, when 2λ >
√

x · x, the weight-decay criterion for P(x,1) has only a single
isolated optimum weight setting2 – all weights set to zero and bias 1/2 at the output node.
This means that weight-decay in 2-layer networks can completely regularize away significant
signal in the sample even when λ is finite, contrasting starkly with weight-decay’s behavior
in 1-layer networks.

The “vertical” flexibility to rescale weights between layers enjoyed by dropout (Theo-
rem 5) does not hold for L2: one can always drive the L2 penalty to infinity by scaling one
layer up by a large enough positive c, even while scaling another down by c. On the other
hand, the proof of Theorem 7 shows that the L2 criterion has an alternative “horizontal”
flexibility involving the rescaling of weights across nodes on the hidden layer (under the
theorem’s assumptions). Lemma 31 shows that at the optimizers each hidden node’s con-
tributions to the output are a constant (depending on the input) times their contribution
to the the L2 penalty. Shifting the magnitudes of these contributions between hidden nodes
leads to alternative weights that compute the same value and have the same weight decay
penalty. This is a more general observation than the permutation symmetry between hid-
den nodes because any portion of a hidden node’s contribution can be shifted to another
hidden node.

2. Since the output node puts weight 0 on each hidden node and the biases are unregularized, this optimum
actually represents a class of networks differing only in the irrelevant biases at the hidden nodes. One
can easily construct other cases when weight-decay has isolated minima in this sense, for example when
n = 2 and there is equal probability on x and −x, both with label 1.

8

Dropout in Deep Networks

4. Negative weights for monotone functions

If the weights of a unit are non-negative, then the unit computes a monotone function, in
the sense that increasing any input while keeping the others fixed increases the output. The
bias does not affect a node’s monotonicity. A network of monotone units is also monotone.

We first present our theoretical results for many features (Section 4.1) and few features
(Section 4.2), and then discuss the implication of these results in Section 4.3.

4.1 The basic case – many features

In this section, we analyze the simple distribution P(1,1) that assigns probability 1/2 to
the example (0, ..., 0), 0, and probability 1/2 to the example (1, ..., 1), 1. The support of
P(1,1) is arguably the simplest monotone function. Nevertheless, we prove that dropout
uses negative weights to fit this data.

The key intuition is that optimizing the dropout criterion requires controlling the vari-
ance. Negative weights at the hidden nodes can be used to control the variance due to
dropout at the input layer. When there are enough hidden nodes this becomes so beneficial
that every minimizer of the dropout criterion uses such negative weights.

Theorem 8 For the standard architecture, if K > 18 and n is large enough relative to K
and d, every optimizer of the dropout criterion for P(1,1) uses at least one negative weight.

To prove Theorem 8, we first calculate JD(Wneg) for a network Wneg that uses negative
weights, and then prove a lower bound greater than this value that holds for all networks
using only non-negative weights.

All of the biases in Wneg are 0.
A key building block in the definition of Wneg is a block of hidden units that we call

the first-one gadget. Each such block has K hidden nodes, and takes its input from the K
input nodes. The ith hidden node in the block takes the value 1 if the ith input node is 1,
and all inputs xi′ for i′ < i are 0; otherwise it takes the value 0. This can be accomplished
with a weight vector w with wi′ = −1 for i′ < i, with wi = 1, and with wi′ = 0 for i′ > i.
The first hidden layer of Wneg comprises n/K copies of the first-one gadget.

Informally, this construction removes most of the variance in the number of 1′s in the
input, as recorded in the following lemma.

Lemma 9 On any input x ∈ {0, 1}n except (0, 0, ..., 0), the sum of the values on the first
hidden layer of Wneg is exactly n/K.

The weights into the remaining hidden layers of Wneg are all 1, and all the weights into

the output layer take a value c
def
= K2

2nd−1(1+K
n)(1+ 1

n)
d−2 , chosen to minimize the dropout

criterion for the network. The following lemma analyzes Wneg.

Lemma 10 JD(Wneg) = 1
2

(
1− (1−2−K)

(1+K
n)(1+ 1

n)
d−2

)
.

When n is large relative to K and d, the
(
1 + K

n

) (
1 + 1

n

)d−2
denominator in Lemma 10

approaches 1, so JD(Wneg) approaches 2−K/2 in this case. Lemma 16 below gives a larger

9

Helmbold and Long

lower bound for any network with all positive weights. In the concrete case when d = 2 and
n = K3, then Lemma 10 implies JD(Wneg) < 1/K2.

Proof (of Lemma 10): Consider a computation of Wneg(1, 1, ..., 1) under dropout and
let ŷ be the (random) output. Let k0 be the number of input nodes kept, and, for each j ≥ 2,
let kj be the number of nodes in the jth hidden layer kept. Call the node in each first-one
gadget that computes 1 a key node, and if no node in the gadget computes 1 because the
input is all dropped, arbitrarily make the gadget’s first hidden node the key node. This
ensures there is exactly one key node per gadget, and every non-key node computes 0. Let
k1 be the number of kept key nodes on the first hidden layer. If k0 = 0, the output ŷ of the
network is 0. Otherwise, ŷ = c2d

∏d−1
j=1 kj .

Note that k0 is zero with probability 2−K . Whenever k0 ≥ 1, k1 is distributed as
B(n/K, 1/2). Each other kj is distributed as B(n, 1/2), and k1, k2, ..., kd−1 are independent
of one another.

E(ŷ) = Pr(k0 ≥ 1)c2dE[k1|k0 ≥ 1]
d−1∏
j=2

E[kj]

= (1− 2−K)c2d
(n

2K

)(n
2

)d−2
=

2c

K
(1− 2−K)nd−1.

Using the value of the second moment of the binomial, we get

E(ŷ2) = E

1k0≥1c2
d
d−1∏
j=1

kj

2 = 4c2(1− 2−K)
(n
K

)(n
K

+ 1
)
nd−2(n+ 1)d−2

=
4c2(1− 2−K)

K2
n2(d−1)

(
1 +

K

n

)(
1 +

1

n

)d−2
.

Thus,

JD(Wneg) =
1

2

(
1− 2E(ŷ) + E(ŷ2)

)
=

1

2

(
1− 4c

K
(1− 2−K)nd−1 +

4c2(1− 2−K)

K2
n2(d−1)

(
1 +

K

n

)(
1 +

1

n

)d−2)

=
1

2

(
1− (1− 2−K)(

1 + K
n

) (
1 + 1

n

)d−2
)
,

since c = K

2nd−1(1+K
n)(1+ 1

n)
d−2 , completing the proof.

Next we prove a lower bound on JD for networks with nonnegative weights. Let W be
an arbitrary such network.

Our lower bound will use a property of the function computed byW that we now define.

Definition 11 A function φ : RK → R is supermodular if for all x, δ1, δ2 ∈ RK where
δ1, δ2 ≥ 0

φ(x) + φ(x + δ1 + δ2) ≥ φ(x + δ1) + φ(x + δ2),

10

Dropout in Deep Networks

or equivalently:

φ(x + δ1 + δ2)− φ(x + δ2) ≥ φ(x + δ1)− φ(x)

The latter indicates that adding δ1 to the bigger input x + δ2 has at least as large an effect
as adding it to the smaller input x.

SinceW has all non-negative weights, it computes a supermodular function of its inputs.
(This fact may be of independent interest.)

Lemma 12 If a network has non-negative weights and its activation functions σ(·) are con-
vex, continuous, non-decreasing, and differentiable except on a finite set, then the network
computes a supermodular function of its input x.

Proof: We will prove by induction over the layers that, for any unit h in the network, if
h(x) is the output of unit h when x is the input toW, then h(·) is a supermodular function
of its input.

The base case holds since each input node h outputs the corresponding component of
the input, and (x + δ1)− x = (x + δ1 + δ2)− (x + δ2).

Now, for the inductive step, let w be the weight vector for node h, let b be its bias, and
σ(·) be its activation function. Let I(x), I(x + δ1), I(x + δ2), and I(x + δ1 + δ2) be the
inputs to node h when the inputs to the network are x, x + δ1, x + δ2 and x + δ1 + δ2
respectively.

By induction, these inputs to node h (componentwise) satisfy

I(x + δ1)− I(x) ≤ I(x + δ1 + δ2)− I(x + δ2).

Therefore, since w, δ1, and δ2 are non-negative, the interval [w ·I(x+δ2)+b,w ·I(x+δ1 +
δ2)+b] is at least as long and starts at least as high as the interval [w·I(x)+b,w·I(x+δ1)+b].
Since σ is continuous and differentiable except on a finite set, we have

h(I(x + δ1))− h(I(x)) =

∫ w·I(x+δ1)+b

w·I(x)+b
σ′(z)dz

≤
∫ w·I(x+δ1+δ2)+b

w·I(x+δ2)+b
σ′(z)dz (since σ′ is non-decreasing)

= h(I(x + δ1 + δ2))− h(I(x + δ2)).

Definition 13 Let r0 ∈ {0, 1}K be the dropout pattern concerning the input layer, and let
R′ be the dropout pattern concerning the rest of the network, so that the dropout pattern
R = (r0,R′).

For each ` ∈ {0, ...,K}, let ψW(`) be the average output of W under dropout when ` of
the inputs are kept: that is,

ψW(`) = E

D(W, 1K , (r0,R′))

∣∣∣∣∣∣
∑
j

r0j = `

 .

11

Helmbold and Long

Lemma 14 For any ` ∈ {1, ...,K − 1},

ψW(`+ 1)− ψW(`) ≥ ψW(`)− ψW(`− 1).

Proof: Generate u, i and j randomly by, first choosing u uniformly at random from among
bit vectors with ` ones, then choosing i uniformly from the 0-components of u, and j
uniformly from the 1-components of u. By Lemma 12,

W(u + ei)−W(u) ≥ W(u− ej + ei)−W(u− ej) (3)

always holds. Furthermore, u + ei is uniformly distributed among bit vectors with ` + 1
ones, u− ej is uniformly distributed among bit vectors with `− 1 ones, and u + ei − ej is
uniformly distributed among bit vectors with ` ones. This is true for W, but it is also true
for any network obtained by dropping out some of the hidden nodes of W. Thus

ψW(`+ 1)− ψW(`)

= E(D(W, 1K , (r0,R′)|
∑
j

r0j = `+ 1))−E(D(W, 1K , (r0,R′)|
∑
j

r0j = `))

= E(D(W, r0, (1
K ,R′)|

∑
j

r0j = `+ 1))−E(D(W, r0, (1
K ,R′)|

∑
j

r0j = `))

≥ E(D(W, r0, (1
K ,R′)|

∑
j

r0j = `))−E(D(W, r0, (1
K ,R′)|

∑
j

r0j = `− 1)),

by (3)) and the distributions of u + ei, u− ej + ei and u− ej . Since

E(D(W, r0, (1
K ,R′)|

∑
j

r0j = `))−E(D(W, r0, (1
K ,R′)|

∑
j

r0j = `− 1))

= ψW(`)− ψW(`− 1),

this completes the proof.

We will use the following lower bound on the tail of the binomial. (Many similar lower
bounds are known.)

Lemma 15 If X is distributed according to Bin(n, 1/2), then

Pr(X < n/2−
√
n/4) = Pr(X > n/2 +

√
n/4) ≥ 1/4.

Proof: Using the fact that, for any i, Pr(X = i) ≤ 1/
√
n, we get Pr(|X−n/2| <

√
n/4) ≤

1/2, so Pr(X < n/2−
√
n/4) ≥ 1/4.

Now we are ready for the lower bound on JD(W).

Lemma 16 If K > 18 and the weights in W are non-negative, then JD(W) ≥ 1
36K .

Proof: Assume to the contrary that JD(W) < 1
36K . First, note that ψW(0) ≤

√
1

18K ,

or else the contribution to JD(W) due to the (0, 0), 0 example is at least 1
36K . Applying

Lemma 15, we have

ψW(K/2−
√
K/4) > 1−

√
2

9K
and ψW(K/2 +

√
K/4) < 1 +

√
2

9K
(4)

12

Dropout in Deep Networks

as otherwise the contribution of one of the tails to JD(W) will be at least 1
36K for the

(1, . . . , 1), 1 example. We will contradict this small variation of ψW(`) around K/2. The
bounds on ψW(0) and ψ(K/2 −

√
K/4) and Lemma 14 imply that ψW(`) grows rapidly

when ` is around K/2, in particular:

ψ(K/2−
√
K/4 + 1)− ψ(K/2−

√
K/4) ≥

1−
√

2
9K −

√
1

18K

K/2−
√
K/4

>
1√

9/32K
,

since K > 18. Now using Lemma 14 repeatedly shows that

ψ(K/2 +
√
K/4)− ψ(K/2−

√
K/4) >

√
K

2
× 1√

9/32K
= 2

√
2

9K
,

which contradicts (4), completing the proof.

Putting together Lemmas 10 and 16 immediately proves Theorem 8, since for K > 18
and large enough n, the criterion for Wneg must be less than the criterion for any network
with all non-negative weights.

4.2 The case when K = 2

Theorem 8 uses the assumption that K > 18 and n is large enough; is the lower bound on
K really necessary? Here we show that it is not, by treating the case that K = 2.

Theorem 17 For the standard architecture, if K = 2, for any fixed d and large enough n,
every optimizer of the dropout criterion for P(1,1),1 uses negative weights.

Proof: Define Wneg as in the proof of Lemma 10, except that the output layer has a bias
of 1/5.

We claim that
lim
n→∞

JD(Wneg) = 1/10. (5)

To see this, consider the joint input/label distribution under dropout:

Pr((0, 0), 0) = 1/2

Pr((0, 0), 1) = 1/8

Pr((2, 0), 1) = 1/8

Pr((0, 2), 1) = 1/8

Pr((2, 2), 1) = 1/8.

Due to the bias of 1/5 on the output, Wneg(0, 0) = 1/5. Thus, contribution to JD from
examples with x = (0, 0) in this joint distribution is 1/2× (1/5)2 + 1/8× (4/5)2 = 1/10.

Now, choose x 6= (0, 0). If, after dropout, the input is x, each node in the hidden layer
closest to the input computes 1. Arguing exactly as in the proof of Lemma 10, in such
cases,

E((ŷ − 1)2) = 1− 1(
1 + 2

n

) (
1 + 1

n

)d−2 .
13

Helmbold and Long

This proves (5).

Now, let W be an arbitrary network with non-negative weights.

For our distribution,

JD(W) =
ER

(
(D(W, (0, 0),R)− 0)2

)
+ ER

(
(D(W, (1, 1),R)− 1)2

)
2

.

Let V00 = E(W(0, 0)), V22 = E(W(2, 2)), V20 = E(W(2, 0)), V02 = E(W(0, 2)) where
the expectations are taken with respect to the dropout patterns at the hidden nodes (with
no dropout at the inputs). Since each dropout pattern over the hidden nodes defines a
particular network, and Lemma 12 holds for all of them, the relationships also hold for the
expectations, so

V22 ≥ V20 + V02 − V00.

Using this V notation, handling the dropout at the input explicitly, and the bias-variance
decomposition keeping just the bias terms we get:

JD(W) ≥
(V00 − 0)2 +

(
(V00 − 1)2 + (V22 − 1)2 + (V20 − 1)2 + (V02 − 1)2

)
/4

2
8JD(W) ≥ 4(V00 − 0)2 + (V00 − 1)2 + (V22 − 1)2 + (V20 − 1)2 + (V02 − 1)2.

We will continue lower bounding the RHS. We can re-write V22 as V20 + V02 − V00 + ε
where ε ≥ 0. This is convex and symmetric in V02 and V20 so they both take the same value
at the minimizer of the RHS, so we proceed using V20 for this common minimizing value.

8JD(W) ≥ (2V20 − V00 + ε− 1)2 + 2(V20 − 1)2 + (V00 − 1)2 + 4V 2
00.

Differentiating with respect to V20, we see that the RHS is minimized when V20 =
(2 + V00 − ε)/3, giving

8JD(W) ≥ (V00 − ε− 1)2

3
+ (V00 − 1)2 + 4V 2

00.

If V00 ≥ 1, then JD ≥ 1/2 (just from the (0,0),0 example) and when V00 < 1 the RHS
of the above is minimized for non-negative ε when ε = 0. Using this substitution, the
minimizing value of V00 is 1/4 giving

8JD(W) ≥ 1

JD(W) ≥ 1/8.

Combining this with (5) completes the proof.

14

Dropout in Deep Networks

4.3 More general distributions and implications

In the previous sub-section we analyzed the distribution P over the 2-feature examples
(1, 1), 1 and (0, 0), 0. However, these two examples can be embedded in a larger feature space
by using any fixed vector of additional feature values, creating, for instance, a distribution
over (0, 1, 0, 0, 0, 1/2, 1), 0 and (0, 1, 1, 1, 0, 1/2, 1), 1 (with the additional features underlined)
The results of Section 4.2 still apply to distribution over these extended examples after
definingWneg network to have zero weight on the additional features, and noticing that any
weight on the additional features in the positive-weight network W can be simulated using
the biases at the hidden nodes.

It is particularly interesting when the additional features all take the value 0, we call
these zero-embeddings. Every network W with non-negative weights has JD(W) ≥ 1/8 on
each of these zero-embeddings of P . On the other hand, a single Wneg network with n/K
copies of the K-input first-one gadget has JD(Wneg) ≈ 1/10 simultaneously for all of these
zero-embeddings of P (when n >> K).

Any source distribution over {0, 1}K × {0, 1} that puts probability 1/2 on the the 0, 0
example and distributes the other 1/2 probability over examples where exactly two inputs
are one is a mixture of zero-embeddings of P , and thus JD(W) ≥ 1/8 while JD(Wneg) ≈ 1/10
for this mixture and optimizing the dropout criterion requires negative weights.

In our analysis the negative weights used by dropout are counterintuitive for fitting
monotone behavior, but are needed to control the variance due to dropout. This suggests
that dropout may be less effective when layers with sparse activation patterns are fed into
wider layers, as dropout training can hijack part of the expressiveness of the wide layer to
control the artificial variance due to dropout rather than fitting the underlying patterns in
the data.

5. Properties of the dropout penalty

This section examines some properties of the dropout penalty applied to deep networks with
ReLUs and the quadratic loss, which are often different than the case of networks without
hidden layers.

5.1 Growth of the dropout penalty as a function of d

Weight-decay penalizes large weights, while Theorem 5 shows that compensating rescaling of
the weights does not affect the dropout penalty or criterion. On the other hand, dropout can
be more sensitive to the calculation of large outputs than weight decay, and large outputs
can be produced in deep networks using only small weights. We make this observation
concrete by exhibiting a family of networks where the depth and desired output are linked
while the size of individual weights remains constant. For this family, the dropout penalty
grows exponentially in the depth d (as opposed to linearly for weight-decay), suggesting
that dropout training is less willing to fit the data in this kind of situation.

Theorem 18 If x = (1, 1, ..., 1) and 0 ≤ y ≤ Knd−1, for Px,y there are weights W for the
standard architecture with R(W) = 0 such that (a) every weight has magnitude at most one,

but (b) JD(W) ≥ y2

K , whereas (c) J2(W) ≤ λy2/d

2 (Kn+ n2(d− 2) + n).

15

Helmbold and Long

Proof: Let W be the network whose weights are all c = y1/d

K1/dn(d−1)/d and biases are all 0,

so that the L2 penalty is the number of weights times λc2/2. It is a simple induction to
show that, for these weights and input (1, 1, ..., 1), the value computed at each hidden node
on level j is cjKnj−1, so the the network outputs cdKnd−1, and has zero square loss (since
W(x) = cdKnd−1 = y).

Consider now dropout on this network. This is equivalent to changing all of the weights
from c to 2c and, independently with probability 1/2, replacing the value of each node
with 0. For a fixed dropout pattern, each node on a given layer has the same weights, and
receives the same (kept) inputs. Thus, the value computed at every node on the same layer
is the same. For each j, let Hj be the value computed by the units in the jth hidden layer.

If k0 is the number of input nodes kept under dropout, and, for each j ∈ {1, ..., d− 1},
kj is the number of hidden nodes kept in layer j, a straightforward induction shows that,

for all `, we have H` = (2c)`
∏`−1
j=0 kj , so that the output ŷ of the network is (2c)d

∏d−1
j=0 kj .

Using a bias-variance decomposition,

E((ŷ − y)2) = (E[ŷ]− y)2 + Var(ŷ).

Since each kj is binomially distributed, and k0, ..., kd−1 are independent, we have

E(ŷ) = (2c)d(K/2)(n/2)d−1 = cdKnd−1 = y,

so

E((ŷ − y)2) = Var(ŷ).

Since

E(ŷ2) = (2c)2d(K(K + 1)/4)(n(n+ 1)/4)d−1 = y2(1 + 1/K)(1 + 1/n)d−1,

we have

Var(ŷ) = E(ŷ2)−E(ŷ)2 = y2((1 + 1/K)(1 + 1/n)d−1 − 1) ≥ y2/K,

completing the proof.

Theorem 18 shows that if y = exp(Θ(d)), the dropout penalty grows exponentially in
d, whereas the L2 penalty grows polynomially. Since the dropout penalty of a distribution
decomposes into the expectation over single examples, the dropout penalty for any distri-
bution P that puts positive probability on this ((1, 1, . . . , 1), y) example has a term that
grows exponentially in the depth.

5.2 A necessary condition for negative dropout penalty

Section 2 contains an example where the dropout penalty is negative. The following theorem
provides a necessary condition.

Theorem 19 The dropout penalty can be negative. For all example distributions, a neces-
sary condition for this in rectified linear networks is that either a weight, input, or bias is
negative.

16

Dropout in Deep Networks

Proof: Baldi and Sadowski (2014) show that for networks of linear units (as opposed to the
non-linear rectified linear units we focus on) the network’s output without dropout equals
the expected output over dropout patterns, so in our notation: W(x) equals ER(D(W,x,R)).
Assume for the moment that the network consists of linear units and the example distri-
bution is concentrated on the single example (x, y). Using the bias-variance decomposition
for square loss and this property of linear networks,

JD(W)=ER
(
(D(W,x,R)−y)2

)
=(ER(D(W,x,R)−y)2+VarR(D(W,x,R))≥(W(x)−y)2

and the dropout penalty is again non-negative. Since the same calculations go through
when averaging over multiple examples, we see that the dropout penalty is always non-
negative for networks of linear nodes. When all the weights, biases and inputs in a network
of rectified linear units are positive, then the rectified linear units behave as linear units, so
the dropout penalty will again be non-negative.

5.3 Multi-layer dropout penalty does depend on labels

In contrast with its behavior on a variety of linear models including logistic regression
(Wager et al., 2013), the dropout penalty can depend on the value of the response variable
in deep networks with ReLUs and the quadratic loss. Thus in a fundamental and important
respect, dropout differs from traditional regularizers like weight-decay or an L1 penalty.

Theorem 20 There are joint distributions P and Q, and weights W such that, for all
dropout probabilities q ∈ (0, 1), (a) the marginals of P and Q on the input variables are
equal, but (b) the dropout penalties of W with respect to P and Q are different.

We will prove Theorem 20 by describing a general, somewhat technical, condition that
implies that P and Q are witnesses to Theorem 20.

For each input x and dropout pattern R, let H(W,x,R) be the values presented to the
output node with dropout. As before, let w ∈ Rn be those weights of W on connections
directly into the output node and let b be the bias at the output node. Let r ∈ {0, 1}n
be the indicator variables for whether the various nodes connecting to the output node are
kept.

Proof (of Theorem 20): Suppose that P is concentrated on a single (x, y) pair. We will
then get Q by modifying y.

Let h be the values coming into the output node in the non-dropped out network.
Therefore the output of the non-dropout network is w · h + b while the output of the
network with dropout is w · H(W,x,R) + b. We now examine the dropout penalty, which
is the expected dropout loss minus the non-dropout loss. We will use δ as a shorthand for
w · (H(W,x,R)− h).

dropout penalty = E
(
(w · H(W,x,R) + b− y)2

)
− (w · h + b− y)2

= E
(
(w · H(W,x,R) + b−w · h + w · h− y)2

)
− (w · h + b− y)2

= E
(
δ2
)

+ 2(w · h + b− y)E(δ)

which depends on the label y unless E(δ) = 0.
Typically E(δ) 6= 0. To prove the theorem, consider the case where

17

Helmbold and Long

• there are two inputs and one hidden layer,

• x = (1,−2),

• all weights in the network are 1, and

• all biases are 0.

Without dropout h = (0, 0), but with dropout the hidden nodes are never negative and
compute positive values when only the negative input is dropped, so that the expectation
of δ is positive.

6. Experiments

To complement our theoretical results we performed two sets of experiments. The first set
tests the scale dependence of dropout and weight decay, while the the second set examines
its promotion of negative weights even when learning monotone functions. The code is
accessible at

https://www.dropbox.com/sh/6s2lcfrq17zshmp/AAAQ06uDa4gOAuAnw2MAghEMa?dl=0

6.1 Scale (in)sensitivity

The scale dependence simulations were implemented using Torch. Our experiment used
the standard architecture with K = 5 inputs, depth d = 2, n = 5 hidden nodes. We used
stochastic gradient using the optim package for Torch, with learning rate 0.01

1+0.00001t and
momentum of 0.5, and a maximum of 100000 iterations.

We performed 10 sets of training runs. In each run:

• Ten training examples were generated uniformly at random from [−1, 1]K .

• Target outputs were assigned using y =
∏
i sign(xi).

• Five training sets S1, ..., S5 with ten examples each were obtained by rescaling the
inputs by {0.5, 0.75, 1, 1.25, 1.5} and leaving the outputs unchanged.

• The weights of a network Winit were initialized using the default initialization from
Torch.

• For each Si:

– Winit was cloned three times to produceWD,W2 andWnone with identical start-
ing parameters.

– WD was trained with dropout probability 1/2 and no weight decay.

– W2 was trained with weight decay with λ = 1/2 and no dropout.

– Wnone was trained without any regularization.

18

Dropout in Deep Networks

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0.4 0.6 0.8 1 1.2 1.4 1.6

T
ra

in
in

g
 e

rr
o

r

Input Scale

Dropout
Weight Decay

Figure 2: Training error as a function of the scale of the inputs for Dropout and Weight
Decay in the experiment of Section 3.

The average training losses of WD and W2, over the 10 runs, are shown in Figure 2.
(The average training loss of Wnone was less than 0.05 at all scales.)

The theoretical insensitivity of dropout to the scale of the inputs described in Theorem 4
is also seen here, along with the contrast with weight decay analyzed in Theorem 7.

The scale of the inputs also affects the dynamics of stochastic gradient descent. With
very small inputs, convergence is very slow, and with very large inputs, SGD is unstable.
The effects of the scale of the inputs on inductive bias analyzed in this paper are visible at
the scales where optimization can be done effectively.

6.2 Negative Weights

Here we demonstrate dropout’s propensity to use negative weights even when the function
to be learned is monotonic. These experiments were implemented with Keras on top of
TensorFlow and using SGD optimization with a learning rate of 0.005. Weight decay learn-
ing used a parameter of 0.05, and dropout training used a dropout rate of 0.5. We used the
standard architecture with six inputs, 12 hidden nodes, and one output. The training set
consists of six inputs as follows:

inputs label multiplicity

(0,0,0,0,0,0) 0 ×3
(1,1,0,0,0,0) 1 ×1
(0,0,1,1,0,0) 1 ×1
(0,0,0,0,1,1) 1 ×1

A natural network for this data uses all weights set to the same value w =
√

1/24 (with
the biases set to 0). This network computes the correct labels for all of the training inputs.
We ran each of dropout and weight-decay for 10,000 epochs from 10 different initial weight
settings created by by sampling the weights independently from the uniform distribution

19

Helmbold and Long

Table 1: Summary of weights resulting from noisy “all same” initialization
weights num below −1.0 −0.1 −0.001 0 0.001 0.1 above

from neg −1.0 to to to to to to 1.0
−0.1 −0.001 0 0.001 0.1 1.0

initial wts 76 0 0 75 1 1 166 597 0
weight-decay 7 0 0 0 7 1 276 556 0

dropout 82 0 70 12 0 0 146 612 0

Table 2: Summary of weights resulting from noisy “first-one” initialization
weights num below −1.0 −0.1 −0.001 0 0.001 0.1 above

from neg −1.0 to to to to to to 1.0
−0.1 −0.001 0 0.001 0.1 1.0

initial wts 204 90 80 34 180 1 47 232 176
weight-decay 111 0 0 57 68 68 298 349 0

dropout 303 91 93 119 5 0 168 189 175

over [−0.2w, 2.2w]. This randomization gives a one-in-twelve chance of changing the weight’s
sign.

Table 1 summarizes the initial weights, weights learned by weight-decay, and weights
learned by dropout aggregated over the 10 initializations. This table shows that dropout not
only (slightly) increases the number of negative weights, but also tends to greatly increase
their magnitude. As expected, weight-decay eliminates almost all negative weights, and the
few remaining negative weights have very small magnitudes.

We also ran a similar experiment based on the “first-one” gadget construction of Sec-
tion 4.1. The hidden nodes are organized into six groups of two, with each group imple-
menting three first-one gadgets – one for each of the input “pairs”. Now the uncorrupted
weights into the hidden layer are 0, 1, or −1, and those at the output node are 1/6 so
that the network computes the labels in the training set. As before, 10 noisy initial weight
settings are chosen by selecting each weight uniformly from [−0.2w, 2.2w], where w is the
corresponding uncorrupted weight.

Table 2 summarizes the initial weights, weights learned by weight-decay, and weights
learned by dropout aggregated over the 10 initializations. From this initialization, dropout
tends to preserve the magnitudes of the negative weights. Although dropout increases the
number of small-magnitude negative weights, much of this increase can be explained by
half of the 180 weights initialized to exactly zero becoming negative. Again, weight-decay
dramatically decreases both the number of the negative weights and their magnitudes.

7. Conclusions

The reasons behind dropout’s surprisingly good performance in training deep networks
across a variety of applications are somewhat mysterious and there is relatively little existing
formal analysis. A variety of explanations have been offered (Bachman et al., 2014; Baldi
and Sadowski, 2014, 2013; Gal and Ghahramani, 2015; Wager et al., 2014), including the

20

Dropout in Deep Networks

possibility that dropout reduces the amount of coadaptation in a network’s weights (Hinton
et al., 2012).

The dropout criterion is an expected loss over dropout patterns, and the variance in the
output values over dropout patterns contributes to this expected loss. Therefore dropout
may co-adapt weights in order to reduce this (artificial) variance. We prove that this
happens even in very simple situations where nothing in the training data justifies negative
weights (Theorem 8). This indicates that the relationship between dropout and co-adaption
is not a simple one.

The effects of dropout in deep neural networks are rather complicated, and approxi-
mations can be misleading since the dropout penalty is very non-convex even in 1-layer
networks (Helmbold and Long, 2015). In Section 3 we show that dropout does enjoy sev-
eral scale-invariance properties that are not shared by weight-decay. A perhaps surprising
consequence of these invariances is that there are never isolated local minima when learning
a deep network with dropout. Further exploration of these scale invariance properties is
warranted to see if they are a contributor to dropout’s empirical success or can be exploited
to facilitate training. While contrasting dropout to weight-decay in simple situations, we
found that a degenerate all-zero network results (Theorem 7) when the L2 regularization
parameter is above a threshold. This is in dramatic contrast to our previous intuition from
the 1-layer case.

In (Wager et al., 2013), dropout was viewed as a regularization method, adding a data
dependent penalty to the empirical loss of (presumably) undesirable solutions. Section 5
shows that, unlike the generalized linear models case analyzed there, the dropout penalty
in deeper networks can be negative and depends on the labels in the training data, and
thus behaves unlike most regularizers. On the other hand, the dropout penalty can grow
exponentially in the depth of the network, and thus may better reflect the complexity of
the underlying model space than L2 regularization.

This paper uncovers a number of dropout’s interesting fundamental properties using
formal analysis of simple cases. However, the effects of using dropout training in deep
networks are subtle and complex, and we hope that this paper lays a foundation to promote
further formal analysis of dropout’s properties and behavior.

Acknowledgments

We are very grateful to Peter Bartlett, Seshadhri Comandur, and anonymous reviewers for
valuable communications. We would like to acknowledge support for this project from the
National Science Foundation (NSF grant IIS-9988642) and the Multidisciplinary Research
Program of the Department of Defense (MURI N00014-00-1-0637).

21

Helmbold and Long

Appendix A. Table of Notation

Notation Meaning

1set indicator function for “set”
(x, y) an example with feature vector x and label y
σ(·) the rectified linear unit computing max(0, ·)
W an arbitrary weight setting for the network
w, v specific weights, often subscripted
W(x) the output value produced by weight setting W on input x

P an arbitrary source distribution over (x, y) pairs
Px,y the source distribution concentrated on the single example (x, y)

RP (W) the risk (expected square loss) of W under source P

q, p probabilities that a node is dropped out (q) or kept (p)
R a dropout pattern, indicates the kept nodes
r, s dropout patterns on subsets of the nodes

D(W,x,R) Output with weights W, input x, and dropout pattern R
JD(W) the dropout criterion
J2(W) the L2 criterion
λ the L2 regularization strength parameter
WD an optimizer of the dropout criterion
WL2 an optimizer of the L2 criterion

n, d the network width and depth
K the number of input nodes

Appendix B. Proof of Theorem 7

Here we prove Theorem 7, showing that the weight-decay aversion depends on the values
of the inputs and the number of input nodes K. Furthermore, unlike the single-layer case,
the L2 regularization strength has a threshold where the minimizer of the L2 criterion
degenerates to the all-zero network.

We will focus on the standard architecture with depth d = 2. Recall that we are
analyzing the distribution P(x,1) that assigns probability 1/2 to (x, 1) and probability 1/2
to (0, 0).

Also, recall that, for P(x,1), the weight-decay aversion is the maximum risk incurred by
a minimizer of J2.

The proof of Theorem 7 involves a series of lemmas, in which we show that there is a
minimizer of J2 of a special form, and then relate any hidden node’s effect on the output
to the regularization penalty on the weights in and out of that node. This will allow us to
treat optimizing the L2 criterion as a one-dimensional problem, whose solution yields the
theorem.

For some minimizer WL2 of J2, let v∗j denote the vector of weights into hidden node j

and w∗j denote the weight from j to the output node. Let a∗j be the bias for hidden node

j and let b∗ be the bias for the output node. Let hj be the function computed by hidden
node j.

22

Dropout in Deep Networks

Lemma 21 We may assume without loss of generality that for each hidden node j, there
is an input x̃ ∈ {0,x} such that hj(x̃) = 0.

Proof: Suppose neither of hj(0) or hj(x) was 0. If w∗j = 0, then replacing both with 0 does
not affect the output ofWL2 , and does not increase the penalty. If w∗j 6= 0, then subtracting
min{hj(0), hj(x)} from a∗j and adding w∗j ·min{hj(0), hj(x)} to b does not affect the output
of WL2 or the penalty, but, after this transformation, min{hj(0), hj(x)} = 0.

Lemma 22 We may assume without loss of generality that for each hidden node j, we have
|v∗j · x| = max{hj(0), hj(x)}.

Proof: If hj(x) ≥ hj(0) = 0, then bias a∗j = 0, and hj(x) = v∗j · x.
If hj(0) > hj(x) = 0. Then, a∗j > 0, and v∗j · x ≤ −a∗j . If needed, the magnitude of v∗j

can be decreased to make v∗j · x = −a∗j . This decrease does not affect WL2(x) or WL2(0),
and can only reduce the L2 penalty.

Lemma 23 We may assume without loss of generality that for each hidden node j, we have
hj(0) = 0.

Proof: Suppose hj(0) > 0. Let z be this old value of hj(0). Then hj(x) = 0 and
z = hj(0) = −v∗j · x. If we negate v∗ and set aj = 0, then Lemma 22 implies that we swap
the values of hj(x) and hj(0).

Then, by adding zw∗j to b∗ and negating w∗j , we correct for this swap at the output node
and do not affect the function computed by WL2 or the penalty.

Note that Lemma 23 implies that, without loss of generality, a∗1 = ... = a∗K = 0. We
continue with that assumption.

Lemma 24 For all j, v∗j · x ≥ 0.

Proof: Since a∗j = 0, if v∗j · x < 0, we could make WL2 compute the same function with a
smaller penalty by replacing v∗j with 0.

Lemma 24 implies that the optimal WL2 computes the linear function:

WL2(x̃) = (w∗)TV ∗x̃ + b∗,

when x̃ is a non-negative multiple of x. Later we will call (w∗)TV ∗x̃ the activation at the
output node.

Lemma 25 b∗ = 1−(w∗)TV ∗x
2 .

Proof: Minimize J2 (wrt distribution P(x,1)) as a function of b using Calculus.

Now, for x̃ a non-negative multiple of x,

WL2(x̃) =
1

2
+ (w∗)TV ∗(x̃− x/2) (6)

which immediately implies
WL2(0) = 1−WL2(x). (7)

23

Helmbold and Long

Lemma 26 Each v∗j is a (positive) rescaling of x.

Proof: Projecting v∗j onto the span of x does not affect hj , and cannot increase the penalty.

Lemma 27 WL2(x) ≤ 1.

Proof: By (7), if WL2(x) > 1 then WL2(0) < 0 and the loss and the penalty would both
be reduced by scaling down w∗.

Lemma 28 WL2 maximizes W(x) over those weight vectors W that have the same penalty
as WL2 and compute a function of the form W(x̃) = 1

2 + (w)TV (x̃ − x/2) (that is, Equa-
tion 6).

Proof: Let W maximize W(x) over the networks considered. If WL2(x) <W(x) ≤ 1, then
W would have the same penalty as WL2 but smaller error, contradicting the optimality of
WL2 .

If W(x) > 1, then the network W̃ obtained by scaling down the weights in the output

layer so that W̃(x) = 1 has a smaller penalty than WL2 and smaller error, again contra-
dicting WL2 ’s optimality.

Informally, Lemmas 27 and 28 engender a view of the learner straining against the yolk
of the L2 penalty to produce a large enough output on x. This motivates us to ask how
large W(x) can be, for a given value of ||W||22 (recall that Lemma 24 allows us to assume
that the biases at the hidden nodes are all 0).

Definition 29 For each hidden node j, let αj be the constant such v∗j = αjx, so that

hj(x) = αjx · x.

Recall that the activation at the output node on input x is the weighted sum of the
hidden-node outputs, (w∗)TV ∗x.

Definition 30 The contribution to the activation at the output due to hidden node j is

w∗jhj(x) = w∗jαjx · x

and the contribution to the L2 penalty from these weights is

λ

2

(
(w∗j)

2 + α2
jx · x

)
.

We now bound the contribution to the activation in terms of the contribution to the
L2 penalty. Note that as the L2 “budget” increases, so does the the maximum possible
contribution to the output node’s activation.

24

Dropout in Deep Networks

Lemma 31 If B is hidden node j’s weight-decay contribution, (w∗j)
2 +α2

jx ·x, then hidden

node j’s contribution to the output node’s activation is maximized when w∗j =
√

B
2 and

αj =
√

B
2x·x , where it achieves the value B

√
x · x/2

Proof: Since α2
jx · x + (w∗j)

2 = B, we have w∗j =
√
B − α2

jx · x, so the contribution to

the activation can be re-written as αjx ·x
√
B − α2

jx · x. Taking the derivative with respect

to αj , and solving, we get αj = ±
√

B
2x·x and we want the positive solution (otherwise the

node outputs 0). When αj =
√

B
2x·x we have w∗j =

√
B
2 and thus the node’s maximum

contribution to the activation is√
B

2

√
B

2x · x
(x · x) =

B
√

x · x
2

.

Lemma 32 The minimum sum-squared weights for a network W (without biases at the
hidden nodes) that has an activation A at the output node on input x is 2A√

x·x .

Proof: When maximized, the contribution of each hidden node to the activation at the
output is

√
x · x/2 times the hidden node’s contribution to the sum of squared-weights.

Since each weight in W is used in exactly one hidden node’s contribution to the output
node’s activation, this completes the proof.

Note that this bound is independent of n, the number of hidden units, but does depend
on the input x.

Proof (of Theorem 7): Let A ≥ 0 be the activation at the output node for WL2 on
input x. From Lemma 25 we get that b∗ = 1−A

2 . Combining Lemmas 27 , 28 and 32, we
can re-write the J2 criterion for WL2 and distribution P(x,1) in terms of A as follows.

J2(WL2) =
1

2
(b∗ − 0)2 +

1

2
(WL2(x)− 1)2 +

λ

2
||W||22

=
1

2

((
1−A

2

)2

+

(
1 +A

2
− 1

)2

+ λ
2A√
x · x

)
. (8)

Differentiating with respect to A, we see that the criterion is minimized when

A = 1− 2λ√
x · x

when
2λ√
x · x

≤ 1

A = 0 when
2λ√
x · x

> 1

since we assumed A ≥ 0; when A = 0 then WL2 has all zero weights with a bias of 1/2 at
the output.

25

Helmbold and Long

The risk part of (8) simplifies to

(1−A)2

4
=

λ2

x · x
,

so the overall the risk of WL2 , which minimizes J2, is min

{
1

4
,
λ2

x · x

}
.

References

P. Bachman, O. Alsharif, and D. Precup. Learning with pseudo-ensembles. NIPS, 2014.

P. Baldi and P. Sadowski. The dropout learning algorithm. Artificial intelligence, 210:
78–122, 2014.

Pierre Baldi and Peter J Sadowski. Understanding dropout. In Advances in Neural Infor-
mation Processing Systems, pages 2814–2822, 2013.

P. L. Bartlett, M. I. Jordan, and J. D. McAuliffe. Convexity, classification, and risk bounds.
Journal of the American Statistical Association, 101(473):138–156, 2006.

L. Breiman. Some infinity theory for predictor ensembles. Annals of Statistics, 32(1):1–11,
2004.

Caffe. Caffe, 2016. http://caffe.berkeleyvision.edu.

Danqi Chen and Christopher D Manning. A fast and accurate dependency parser using
neural networks. In EMNLP, pages 740–750, 2014.

G. E. Dahl. Deep learning how I did it: Merck 1st place interview, 2012.
http://blog.kaggle.com.

G. E. Dahl, T. N. Sainath, and G. E. Hinton. Improving deep neural networks for LVCSR
using rectified linear units and dropout. ICASSP, 2013.

L. Deng, J. Li, J. Huang, K. Yao, D. Yu, F. Seide, M. L. Seltzer, G. Zweig, X. He,
J. Williams, Y. Gong, and A. Acero. Recent advances in deep learning for speech re-
search at microsoft. ICASSP, 2013.

Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian approximation: Representing
model uncertainty in deep learning. arXiv:1506.02142, 2015.

Yarin Gal and Zoubin Ghahramani. A theoretically grounded application of dropout in
recurrent neural networks. In Advances in Neural Information Processing Systems, pages
1019–1027, 2016.

Ian J. Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron C. Courville, and Yoshua
Bengio. Maxout networks. In ICML, pages 1319–1327, 2013.

26

Dropout in Deep Networks

Mohammad Havaei, Axel Davy, David Warde-Farley, Antoine Biard, Aaron Courville,
Yoshua Bengio, Chris Pal, Pierre-Marc Jodoin, and Hugo Larochelle. Brain tumor seg-
mentation with deep neural networks. Medical image analysis, 35:18–31, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. In ICCV, pages 1026–
1034, 2015.

D. P. Helmbold and P. M. Long. On the inductive bias of dropout. JMLR, 16:3403–3454,
2015.

G. E. Hinton. Dropout: a simple and effective way to improve neural networks, 2012.
videolectures.net.

G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov. Im-
proving neural networks by preventing co-adaptation of feature detectors, 2012. Arxiv,
arXiv:1207.0580v1.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. A convolutional neural network
for modelling sentences. In ACL, pages 655–665, 2014.

P. M. Long and R. A. Servedio. Random classification noise defeats all convex potential
boosters. Machine Learning, 78(3):287–304, 2010.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann
machines. In ICML, pages 807–814, 2010.

Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. Norm-based capacity control in
neural networks. In COLT, pages 1376–1401, 2015.

Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural Networks,
61:85–117, 2015.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A
simple way to prevent neural networks from overfitting. JMLR, 15:1929–1958, 2014.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper
with convolutions. CVPR, 2015.

TensorFlow. Tensorflow, 2016. https://www.tensorflow.org.

Torch. Torch, 2016. http://torch.ch.

T. Van Erven, W. Kotowski, and M. K. Warmuth. Follow the leader with dropout pertur-
bations. COLT, pages 949–974, 2014.

S. Wager, S. Wang, and P. Liang. Dropout training as adaptive regularization. NIPS, 2013.

S. Wager, W. Fithian, S. Wang, and P. S. Liang. Altitude training: Strong bounds for
single-layer dropout. NIPS, 2014.

27

Helmbold and Long

L. Wan, M. Zeiler, S. Zhang, Y. Le Cun, and R. Fergus. Regularization of neural networks
using dropconnect. In ICML, pages 1058–1066, 2013.

Zichao Yang, Xiaodong He, Jianfeng Gao, Li Deng, and Alex Smola. Stacked attention net-
works for image question answering. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 21–29, 2016.

T. Zhang. Statistical behavior and consistency of classification methods based on convex
risk minimization. Annals of Statistics, 32(1):56–85, 2004.

28

	Introduction
	Preliminaries
	Scaling inputs, weights and outputs
	Dropout is scale-free
	Dropout's invariance to parameter scaling
	Output scaling with dropout
	Scaling properties of weight decay

	Negative weights for monotone functions
	The basic case – many features
	The case when K=2
	More general distributions and implications

	Properties of the dropout penalty
	Growth of the dropout penalty as a function of d
	A necessary condition for negative dropout penalty
	Multi-layer dropout penalty does depend on labels

	Experiments
	Scale (in)sensitivity
	Negative Weights

	Conclusions
	Table of Notation
	Proof of Theorem 7

