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Abstract

We present the Wright-Fisher Indian buffet process (WF-IBP), a probabilistic model for
time-dependent data assumed to have been generated by an unknown number of latent
features. This model is suitable as a prior in Bayesian nonparametric feature allocation
models in which the features underlying the observed data exhibit a dependency structure
over time. More specifically, we establish a new framework for generating dependent Indian
buffet processes, where the Poisson random field model from population genetics is used
as a way of constructing dependent beta processes. Inference in the model is complex,
and we describe a sophisticated Markov Chain Monte Carlo algorithm for exact posterior
simulation. We apply our construction to develop a nonparametric focused topic model for
collections of time-stamped text documents and test it on the full corpus of NIPS papers
published from 1987 to 2015.

Keywords: Bayesian nonparametrics, Indian buffet process, topic model, Markov chain
Monte Carlo, Poisson random field

1. Introduction

The Indian buffet process (IBP) (Griffiths and Ghahramani, 2011) is a distribution for
sampling binary matrices with any finite number of rows and an unbounded number of
columns, such that rows are exchangeable while columns are independent. It is used as a
prior in Bayesian nonparametric models where rows represent objects and columns represent
an unbounded array of features. In many settings the prevalence of features exhibits some
sort of dependency structure over time and modeling data via a set of independent IBPs
may not be appropriate. There has been previous work dedicated to extending the IBP
to dependent settings (e.g., Williamson et al., 2010a; Zhou et al., 2011; Miller et al., 2012;
Gershman et al., 2015). In this paper we present a novel approach that achieves this by
means of a particular time-evolving beta process, which has a number of desirable properties
and is better-suited for a different range of applications.
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For each discrete time tg, ..., t7 at which the data is observed, denote by Z; the feature
allocation matrix whose entries are binary random variables such that Z;;; = 1 if object ¢
possesses feature k at time ¢ and 0 otherwise. Denote by X (¢) the probability that Z;z; = 1,
namely the probability that feature k is active at time ¢, and by X (¢) the collection of these
probabilities at time ¢. The idea is to define a prior over the stochastic process {X (¢)}+>0
which governs its evolution in continuous time. In particular, for each feature k, Xj(t)
evolves independently, while features are born and die over time. This is a desirable property
in several applications such as in topic modeling, where at some point in time a new topic
may be discovered (birth) or forsaken (death). Our model benefits from these properties
while retaining a very simple prior where sample paths are continuous and Markovian.
Finally, we show that our construction defines a time-dependent beta process from which
the two-parameter generalization of the IBP is marginally recovered for every fixed time ¢
(Ghahramani et al., 2007).

The stochastic process we use is a modification of the so-called Poisson Random Field
(PRF), a model widely used in population genetics (e.g., Sawyer and Hartl, 1992; Hartl
et al., 1994; Bustamante et al., 2001, 2003; Williamson et al., 2005; Boyko et al., 2008;
Gutenkunst et al., 2009; Amei and Sawyer, 2010, 2012). In this setting, new features can
arise over time and each of them evolves via an independent Wright-Fisher (W-F) diffusion.
The PRF model describes the evolution of feature probabilities within the interval [0, 1],
allows for flexible boundary behaviours and gives access to several off-the-shelf results from
population genetics about quantities of interest, such as the expected lifetime of features or
the expected time feature probabilities spend in a given subset of [0, 1] (see Ewens, 2004).

We apply the WF-IBP to a topic modeling setting, where a set of time-stamped docu-
ments is described using a collection of latent topics whose probabilities evolve over time.
The WF-IBP prior allows us to incorporate time dependency into the focused topic model
construction described in Williamson et al. (2010b), where the IBP is used as a prior on
the topic allocation matrix determining which topics underlie each observed document. As
opposed to several existing approaches to topic modeling, which require specifying the total
number of topics in the corpus in advance (see for instance Blei et al., 2003), adopting a non-
parametric approach saves expensive model selection procedures (such as the one described
in Griffiths and Steyvers, 2004). This is also reasonable in view of the fact that the total
number of topics in a corpus is expected to grow as new documents accrue. Most existing
nonparametric approaches to topic modeling are not designed to capture the evolution of
the popularity of topics over time and may thus not be suitable for corpora that span large
time periods. On the other hand, existing nonparametric and time-dependent topic models
are mostly based on the Hierarchical Dirichlet Process (HDP) (Teh et al., 2006), which
implicitly assumes a coupling between the probability of topics and the proportion of words
that topics explain within each document. This assumption is undesirable since rare topics
may account for a large proportion of words in the few documents in which they appear.
Our construction inherits from the static model presented in Williamson et al. (2010b)
the advantage of eliminating this coupling. Moreover, it keeps inference straightforward
while using an unbounded number of topics and flexibly capturing the evolution of their
popularity continuously over time.

Section 2 introduces the beta process construction of the IBP and the PRF, providing
the background for Section 3 where we modify the PRF to construct the WF-IBP, our
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novel time-varying feature allocation model. Section 4 describes a fixed-K approximation
and an intuitive inference scheme that is built upon in Section 5 to develop an exact MCMC
algorithm for posterior inference with the WF-IBP. Section 6 combines the model with a
linear-Gaussian likelihood and evaluates it on a range of synthetic data sets. Finally, Section
7 illustrates the application of the WF-IBP to topic modeling and presents results obtained
on both synthetic data and on the real-world data set consisting of the full text of papers
from the NIPS conferences between the years 1987 and 2015.

2. Background

Before introducing our time-varying feature allocation model we first review its two building
blocks, namely the IBP and the PRF. We show how the beta process connects these two
models, and we adjust the PRF to develop a time-dependent extension of the two-parameter
IBP in the next section.

2.1 The beta and Indian buffet processes

A completely random measure B over a measurable space (£2,X) is a random measure
that assigns independent masses to disjoint subsets of ). Any positive completely random
measure is uniquely characterized by a certain Levy measure on £ x RT (see Kingman,
1967). Denote by ¢ a positive function over € (concentration function) and by By a fixed
measure on {2 (base measure), and assume the base measure By is continuous. A beta
process B ~ BP(c, By) on (2 is a completely random measure uniquely characterized by the
Levy measure

v(dw,dz) = By(dw)e(w)z (1 — )@z,

where z € [0,1] and w € Q. This completely random measure can be represented via a
Poisson process. In order to draw B ~ BP(c, By), draw a set of points (w;, z;) € Q x [0, 1]
from a Poisson point process with base measure v(dw, dx) and let

o
B = Z Zi0wy »
k=1

where {w;} are the atoms of the measure B and {z;} their respective weights. Given a
realization B of a beta process BP(c,aBy) with o > 0, one can obtain a draw from the
IBP (Thibaux and Jordan, 2007). This is done by sampling each row z;, ¢ = 1,..., N, of
an allocation matrix Z from a Bernoulli process z; | B ~ BeP(B) defined as

oo
z; = Zpikéwk, Dik i Bernoulli(xy).
k=1
Notice that as the location of the atoms is not in fact relevant for constructing the matrix
Z, the IBP depends only on the so-called mass parameter By({2) = « and on c¢(w). In the
standard IBP, ¢(w) is set to be identically 1, so that the Levy measure of the corresponding
one-parameter beta process is

v(dw,dz) = Bo(dw)z ' dz. (1)
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If ¢(w) is equal to a constant S we have the two-parameter generalization of the IBP
(Thibaux and Jordan, 2007).

2.2 The Wright-Fisher model

The starting point of the PRF is the Wright-Fisher (W-F) model from population genetics
(Ewens, 2004), which we briefly summarize here. Consider a finite population of organisms
of size G such that i € {0,1,...,G} individuals have the mutant version of a gene at
generation k, while the rest has the non-mutant variant. Assume that each individual
produces an infinite number of gametes such that the gametes yielded by a non-mutant
become mutant with probability ug and, conversely, those yielded by a mutant become
non-mutant with probability Sg. Finally, assume that the next generation of GG individuals
is formed by simple random sampling from this infinite pool of gametes. The evolution of
the number YG(k) of mutant genes at time k is described by a Markov chain on the discrete
space {0,...,G}. The transition probability p;; of switching from ¢ mutants (at time k) to
j mutants (at time k + 1) is given by the following binomial sampling formula:

pij = (?) (W) (1= W;)9,

(1= Ba) + (G~ g

v;
G

Assume the initial state is Y% (0) = yo and denote the resulting Markov chain by Y& =
(Y4 (k))g=1.2.. ~ W-F%(ug, Bc). Notice that, if ue = 0 and/or B¢ = 0, the states 0 and/or
G are absorbing states that respectively correspond to the extinction and fixation of the
mutation.

A continuous-time diffusion limit of the W-F model can be obtained, by rescaling time
as t = k/G, and taking G — oo. The Markov chain Y9(|Gt])/G converges to a diffusion
process on [0,1] (see Ethier and Kurtz, 1986; Sawyer and Hartl, 1992) which obeys the
one-dimensional stochastic differential equation

dX (t) =y(X(8)dt + o(X (1))dB(2),

where

Sl — ) — pa], 2)
o(x) =z(l—z), (3)

with some initial state X (0) = x¢, over the time interval ¢ € [0, T, with rescaled parameters
p = limg00 2Gug, B = limgo0 2GBg, and with B(t) denoting a standard Brownian
motion. The terms vy(z) and o(z) are respectively referred to as the drift term and the
diffusion term. Denote the diffusion process as X ~ W-F(u, 3).

When z(t) — 0 (respectively z(¢) — 1), then the diffusion term tends to 0 while the
drift term tends to % (respectively —g), preventing absorption at 0 or 1 provided that p > 0
(respectively 8 > 0). Otherwise, 0 is an absorbing extinction state (respectively, 1 is an
absorbing fixation state). Moreover, if both p, 8 > 0 then the diffusion is ergodic and has
a stationary distribution that is a Beta(u, ).
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As there exists no closed form expression for its transition function, simulating from the
W-F diffusion requires non-trivial computational techniques. The method we used is out-
lined in Dangerfield et al. (2012), a stochastic Taylor scheme tailored to the W-F diffusion.
A novel alternative approach that allows for exact simulation has very recently been pro-
posed by Jenkins and Spano (2017). Finally, note that simulating from the W-F diffusion
implies doing so for a given diffusion time unit A¢. While in population genetics diffusion
time is related to the population size, in different applications it can be used to regulate
the degree of sample path variance, which is linear in time and equal to Var(z(1 — z)At).

2.3 The Poisson random field

The W-F model describes the evolution of a gene at one particular site. The PRF generalizes
it to modeling an infinite collection of sites, each of which evolves independently according
to the W-F model. As before, we start with a model with a population of finite size G,
before taking the diffusion limit as G — oo. For a site ¢ at which some individuals carry the
mutant gene, denote by X;(k) the fraction of mutants in generation k. Each site evolves
independently according to the W-F&(0, 0) model. Further suppose that at each generation
k a number of mutations M ~ Poisson(vg) arise in new sites with indices j1, jo, ... jam-
Vg is referred to as the immigration parameter of the PRF. Assume that each of the new
mutations occurs at a new site in a single individual, with initial frequency X, (k) =1/G.
Subsequently, each new process X, (k+1), X, (k+2),... evolves independently according
to the W-F&(0,0) model as well (Figure 1). As with pre-existing mutant sites, each process
eventually hits one of the boundaries {0,1} and stays there (we say that the mutation is
extinct/has been fixed).

Pre-limiting PRF (1/G = 0.05)

0.25

propanility

time

Figure 1: Evolution of mutant sites over time in the pre-limiting PRF model. The blue
circles indicate mutations arising at a new site.

Consider the limit G — oo, so that after the same rescaling ¢t = k/G of time as in Section
2.2 each site evolves as an independent W-F diffusion X; ~ W-F(0,0). We also assume that
vg — a as G — oo. This means that in the diffusion time scale the immigration rate is
Gvg — oo, which suggests that the number of sites with mutant genes should explode.
However, the initial frequency of each diffusion is 1/G — 0 as G — oo, and moreover 0 is an
absorbing state. It can be shown (Sawyer and Hartl, 1992; Amei and Sawyer, 2010) that only
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O(G™1) of the newborn processes are not almost immediately absorbed. Therefore, there
is a balance between the infinite number of newborn mutations and the infinite number of
them going extinct in the first few generations, in such a way that the net immigration rate
is O(Grg x G™1) = O(a), and hence the limiting stationary measure is nontrivial. Provided
that we remove from the model all sites whose frequency hits either the boundary 1 or 0,
Sawyer and Hartl (1992) prove that the limiting distribution of the fractions of mutants in
the interval [0, 1] is a Poisson random field with mean density

oz L. (4)

Interestingly, the rate measure of the PRF coincides with the distribution of weights in
the one-parameter beta process given in Equation (1). This means that at equilibrium the
number of sites whose frequencies X;(¢) are in any given interval (a, b] is Poisson distributed
with rate « f; 7 1dz, and these are independent for nonoverlapping intervals. Integrating
(4) over [0, 1] shows that the number of mutations in the population that has not been fixed
or gone extinct is infinite. However, most mutations are present in a very small proportion
of the population.

3. Time-Varying Feature Allocation Model

The derivation of the PRF in the previous section shows that, as long as sites reaching
frequency 1 or 0 are removed from the model, the equilibrium distribution of the PRF
is related to the one-parameter beta process. In this section we generalize the PRF so
that it is better adapted to applications in feature allocation modeling. Specifically, we
identify mutant sites with features, and identify the proportion of the population having
the mutant gene with the probability of the feature occurring in a data observation. The
PRF can be then used in a time-varying feature allocation model whereby features arise at
some unknown time point, change their probability smoothly according to a W-F diffusion
process and eventually die when their probability reaches zero.

3.1 The WF-IBP

Recall from the previous section that mutant sites whose frequency hits 1 are removed
from the PRF model. This means that features with high probability of occurrence can be
removed from the model instantaneously, which does not make modeling sense. Instead,
one expects a feature probability to change smoothly and to be removed from the model
only once its probability of occurrence is small. A simple solution to this conundrum is
to prevent 1 from being an absorbing state by using instead a W-F(0,3) diffusion with
B > 0. This is a departure from Sawyer and Hartl (1992), due to the differing modeling
requirements of genetics versus feature allocation modeling. At the same time, both models
let features disappear once their probability gets to 0, which is suitable from a feature
allocation perspective and, as we now see, allows for a nontrival equilibrium mean density.
We shall denote the modified stochastic process as PRF(a, 8). The following theorem
derives the equilibrium mean density of PRF(«, ), with proof given in Appendix A:

Theorem 1 The equilibrium mean density of the PRF(a, ) is
I(z) = az™ (1 — z)PLdz. (5)
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In other words, the mean density of the PRF(a, 8) is the Lévy measure of the two-parameter
beta process, with the immigration rate « identified with the mass parameter, and g identi-
fied with the concentration parameter of the beta process. When 5 = 1 the one-parameter
beta process is recovered. We assume that the initial distribution of PRF(«, ) is its equi-
librium distribution, that is, a Poisson random field with mean density (5), so that the
marginal distribution of the PRF at any point in time is the same.

We will now make the connection more precise by specifying how a PRF can be used
in a time-varying feature allocation model. Denote by Xj(¢) the probability of feature
k being active at time ¢ and define our PRF as the stochastic process X = {Xy(¢)}.

Assume that at a finite number of time points ¢ = tg,..., {7 there are Ny objects whose
observable properties depend on a potentially infinite number of latent features. Let D
be the observation associated with object i = 1,..., N; at time t = tg,...,tp. Consider a

set of random feature allocation matrices Z; such that entry Z;; is equal to 1 if object i at
time t possesses feature k, and 0 otherwise. Let Z := {Z;;;}. Finally, let py be some latent
parameters of feature k and p = {px} be the set of all feature parameters. Our complete
WEF-IBP model is given as follows.

X ~ PRF(q, B),
Ziw | X "™ Bernoulli(X, (¢)),
or X H,
ind
Dit | p, Ziw ~ F({pr : Zirt = 1}), (6)

where ¢ = 1,..., Ny, t =tg,...,tr and k = 1,2,..., H is the prior distribution for feature
parameters, and where F(p) is the observation model for an object with a set of features
with parameters p.

Since the feature probabilities X have marginal density (5), at each time ¢ the feature
allocation matrix Z; has marginal distribution given by the two-parameter Indian buffet
process (Thibaux and Jordan, 2007). Further, since X varies over time, the complete
model is a time-varying Indian buffet process feature allocation model. The corresponding
De Finetti measure would then be a time-varying beta process. More precisely, this is the
measure-valued stochastic process G = {G(t)} where

G(t) = Y X(t)dy,,
k=1

which has marginal distribution given by a beta process with parameters «, 8 and base
distribution H. We denote the distribution of G as WFBP(a, 8, H). We can also express
the feature allocations using random measures as well. In particular, let

o0
Bt =Y ZikiOp,
k=1

be a Bernoulli process BeP(G(t)) with mean measure given by the beta process G(t) at
time t. An equivalent way to express our model (6) using the introduced random measures
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is then

G ~ WFBP(a, 8, H),
Bu | G ~ BeP(G(1)),
Dy | Byt ~ F(Bit),

where WFBP denotes our time-varying beta process, and we have used F'(B) to denote the
same observation model as before, but with B being a random measure with an atom for
each feature, and whose location is the corresponding feature parameter. In the following,
we use the notation introduced in (6) instead of in terms of beta and Bernoulli processes
for simplicity.

As in the two-parameter IBP, o and 3 separately control the distribution of the number
of features per object and the total number of features. In addition, the discrete time points
to,...,tr at which the observations are given influence the number of time units for which
the W-F diffusions should be simulated. This introduces a parameter that regulates the
strength of the time-dependency or accounts for gaps of varying sizes between successive
observations. The time parameter can also be chosen according to the expected life time
of features (see Chapter 15 of Karlin and Taylor, 1981). A detailed description of how to
simulate from the model is given in Appendix B.

3.2 Related models

The WF-IBP fits a line of research that aims at introducing dependency structures into the
IBP. A number of these extensions are designed to drop the exchangeability assumption
from the IBP by coupling the rows and columns of the feature allocation matrix, and are
thus orthogonal to our work (see Zhou et al., 2011; Miller et al., 2012; Gershman et al.,
2015). What we are rather interested in achieving is partial exchangeabilty, whereby objects
can be permuted independently at each time point without changing the probability of the
process. This is necessary for time-dependent topic models where each time has a different
set of documents and there is no correspondence between documents at different times.
One example that is more closely related to our model is the dependent Indian buf-
fet process (dIBP) (Williamson et al., 2010a), which can also be applied to the partially
exchangeable case. The dIBP uses a hierarchical Gaussian process to introduce couplings
between features and items in such a way that, for an appropriate choice of the kernel,
items can be permuted independently at each time. Although both the dIBP and the WF-
IBP try to achieve the same goal, their methodologies are substantially different: while
the former introduces dependencies at the feature-matrix level, the latter does so at the
beta-process level. The construction of a dependent beta process represents a significantly
different research direction, and is indeed anticipated as future work in Williamson et al.
(2010a). First, an important consequence is that the WF-IBP prior describes the evolution
of feature probabilities explicitly, whereas the dIBP fixes them and effectively describes a
time-evolving Bernoulli process. The WF-IBP is then preferable in all settings where one
is interested in a direct interpretation of the evolution of features. Second, the dIBP suffers
from a less flexible boundary behaviour as it does not allow features to be born and die
over time. Third, the dIBP is based on the stick-breaking construction of the IBP, which is
only available for the one-parameter IBP; instead, our approach extends the two-parameter
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IBP and models the dimensionality of the feature allocation matrix and its sparsity inde-
pendently.

4. Fixed-K approximation

In order to give more intuition on the exact inference with the WF-IBP that is developed in
Section 5, we first describe a finite-dimensional approximation where the number of features
is a finite number K, and show that this marginally converges to the WF-IBP as K — co.

Assume that the random feature allocation matrix Z; has a fixed number of features,
say K. First, let a, 8 > 0 and consider the beta-binomial model

Zita | {X0(t) = 2x(8)} " Bernoulli(zy (1)),
X (t) 1 Beta (22
k( ) eta < K’ )
Vk = 1,...,K,Vi = 1,...,N;. This coincides with the pre-limiting model of the two-
parameter IBP presented in Ghahramani et al. (2007). Then, for each feature, think of the
Beta(O‘—KB, ) distribution as the stationary distribution of a W-F diffusion with parameters
a—KB > 0 and 8 > 0. This suggests making the model time-dependent by letting each feature

evolve, starting at stationarity, as an independent W-F diffusion with these parameters.
Generate for all times ¢ = tg,...,tr the binary variables z;;; as

Ziwe | {X6(t) = 2(t)} ¢ Bernoulli(zx (1)),
af
X, ~ WF (K > ,

Vk =1,...,K,Vi = 1,...,N;. In this way, the closer two time points, the stronger the
dependency between the probabilities of a given feature (Figure 2). Moreover, as we assume
the W-F diffusion to start at stationarity, this construction coincides marginally with the
beta-binomial model. The parameters of the W-F diffusion are positive, so that neither
fixation nor absorption ever occurs and the number K of features remains constant.

4.1 Fixed-K MCMC inference

Given a set of observations D, a natural inference problem would be to recover the latent
feature allocation matrices Z = {Zt}gto responsible for generating the observed data, the
underlying feature probabilities X and their parameters p. Inference is straightforward; we
propose the following updates.

e 7 | X,D,p via Gibbs sampling.
e p| D, Z according to the likelihood model.
e X | Z via Particle Gibbs.

Consider first the Gibbs sampling step to perform posterior inference over the matrices
Z. Denote by Z,(ik)t all the components of the matrix Z; excluding Z;i:, and by Z;_x; all
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Figure 2: Left: underlying feature probabilities over time. Right: corresponding feature
allocation matrices. Rows represent objects and columns features, which can be active
(blue) or inactive (white).

the components in row ¢ excluding k. We can easily derive for all ¢ the distribution of a
given component Z;x; conditioning on the state of all other components Z_;3,)¢, on data Djt,
on the parameters p and on the prior probability X (¢) of feature k. The full conditional
probability of the entry Z;z; being active is equal to

P(Zike = 11 Z_(irye, Xk(t), Dit, p) o< 2 () P(Dit | Zi—kt, Zikt = 1, p). (7)
By the same token, the full conditional probability of the entry Z;;; being inactive is
P(Zire = 0| Z_(iiye, Xie(t), Dit, p) o< (1 — 2x(t)) P(Dit | Zi—it; Zikt = 0, p). (8)

As the matrices Z are conditionally independent given the feature probabilities X, equations
(7) and (8) can be used to sample the matrices Z independently given the respective feature
probabilities at each time. Note that the likelihood P(Dy | Zi, p) needs to be specified
according to the problem at hand. A typical choice, detailed in Section 6, is the linear-
Gaussian likelihood model, whose parameters can easily be integrated out (Griffiths and
Ghahramani, 2011). The update p | D, Z over the feature parameters is also specific to the
likelihood model and, as we will illustrate, can easily be derived in conjugate models such
as the linear-Gaussian one.

Consider now the Particle Gibbs (PG) step (Andrieu et al., 2010) to perform Bayesian
inference on the feature trajectories continuously over the interval [to,t7]. As the prior

probability of each feature is a Beta (%, B) and the column-wise sums of Z;, are realizations
from binomial distributions, by conjugacy we have
af

X (to) | {Zty = 2} ~ Beta ( i

+nktoaﬂ+ Nto - nk‘to) )

10
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where £k = 1,..., K, and ng = vaztl zikt denotes the number of objects in matrix Z;
possessing feature k. This posterior distribution can be therefore used to draw the whole
set of features at time tp and the trajectories in the interval [to, ¢7] can be obtained via PG.

More precisely, start with an initial reference trajectory xzoktT = (xzok, . ,ac;Tk) for
k=1,...,K and, independently for each feature, iterate the following procedure. Draw a

given number of particles from the posterior beta distribution at time ¢y and propagate them
forward to time ¢; according to WF( %, ). At time 7, assign each of these particles and
the reference feature a weight given by the binomial likelihood of seeing that feature active
in n(t) objects out of N(t) in Z(t), i.e., x(t)™ (1 — x5 (¢))Nt ™. Sample the weighted
particles with replacement and propagate the off-springs forward. This corresponds to
using a bootstrap filter with multinomial resampling, but other choices to improve on the
performance of the sampler can be made (see Andrieu et al., 2010). Repeat this procedure
up to time ¢t and sample only one particle at that time. Reject all the others and keep the
trajectory that led to the sampled particle as the reference trajectory for the next iteration.
Notice that the reference feature is kept intact throughout each iteration of the algorithm.

This procedure is illustrated more precisely by Algorithm 1, which needs to be iterated
independently for each feature to provide posterior samples from their trajectories. To
simplify the notation, we drop the index k and write x|z} ~ WF(%, ) for t € [to, t1]
to denote the following: simulate from a W-F diffusion with initial value z(tg) and set
X(t1) = z(t1), the value of the diffusion at time ¢;.

4.2 Approximation for large K

As already noted, the marginal distribution with the fixed-K approximation corresponds
to the beta-binomial model, which is the pre-limiting model of the two-parameter IBP. As
a consequence, at any fixed time ¢ and as K — oo, the fixed-K approximation converges
to the two-parameter generalization of the IBP, which in turns coincides with the marginal
distribution of the WF-IBP. An aspect of interest is then whether the whole dynamics of
the fixed-K approximation can be used as a finite approximation of the infinite model in
such a way that, the larger K, the better the approximation. Two caveats need to be noted.
First, only in the infinite model can features be born. For large K, however, the number of
particles in the fixed-K approximation whose mass is close to zero becomes so large that,
with a sufficient amount of time, some of them gain enough mass to become ‘visible’. The
behavior of these particles resembles the behavior of the newborn features of the infinite
model. Second, as the fixed-K approximation has an upwards drift equal to a3/ K, only the
infinite model allows for features to be absorbed at 0. This discrepancy is however overcome
by the fact that, when K goes to infinity, 0 behaves like an absorbing boundary, in that
features get trapped at probabilities close to 0. For these reasons, a comparison of the two
models requires relabeling the particles in the finite model in such a way that, whenever a
particle goes below a certain threshold € ~ 0, it is considered to have gone extinct, while if
its probability is below € and later exceeds € the particle is labeled as newborn. We choose
this threshold to be e = 1/K, as then limg_, € = 0.

Taking these caveats into account, we performed an empirical comparison of the fixed-K
approximation with the infinite model. Consider the joint distribution at two given time
points t9 = 0 and ¢; = 1 of the feature probabilities, first in the fixed-K and then in the

11



PERRONE, JENKINS, SPANO AND TEH

Algorithm 1: Particle Gibbs

Input: Reference trajectory xy . .; M.
Set x,{\g = zj;
Draw z}, ~ Beta(% + ey B+ Nyg — ) fori=1,..., M —1;
Simulate z}|z] ~ WF(%, ) for t € [to,t1] fori=1,...,M —1;
Set o} = af ;
Compute wj, = (z} )™ (1 —zj )Na~™1 fori=1,..., M;
Sample z; with P(z} =} ) oxwj fori=1,...,M —1;
Set :Ei\l/[ =z} ;
Simulate z}|z] ~ WF(%,B) for t € [t1,te] fori=1,...,.M — 1;
Set j + 2;
while tj < tr do
Set oM = a7 ;

J J

Compute w}:j = (xij)n‘j (1- x%j)N%‘ e

J’w,fj,fl fori=1,..., M;
Sample Eij with P(Eij = xij) x w,fj fori=1,...,M —1,

Set #M = a7 ;

Simulate :cﬂ:ffa ~ WF(%,ﬂ) for t € [tj,tjq1) fori=1,....M —1,

Set j «+— 7+ 1;
end
Compute wf, = (z})"7 (1 — xféT)NfT_"twaéT71 fori=1,..., M;
Sample ey With P(rpew = i) o< wy,., where i = 1,..., M;
Output: New reference trajectory ;.

12
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Figure 3: Scatterplot of the log feature probabilities greater than 1/K at time ¢ty = 0 and
at time ¢; = 1 to compare the fixed-K (K = 1000) and infinite model.

infinite model. Separately for each model, we took 1000 samples of the feature probabilities
at time 0 and at time 1, excluding the ones below 1/K. Figure 3 shows the logarithm of these
values for the two models, suggesting a remarkable similarity between the two underlying
joint distributions. The validity of this comparison is supported by the maximum mean
discrepancy (mmd) test (Gretton et al., 2006), which does not reject the null hypothesis
of the two joint distributions being the same. Although this suggests a strong similarity
between the dynamics of the fixed- K approximation and the infinite model, we leave a proof
of the convergence of these joint distributions as K — oo for future work.

5. Exact MCMC inference

Building on the fixed-K approximation, we now develop a sophisticated MCMC algorithm
for exact inference with the WF-IBP. The first point to notice is that, while in the fixed- K
approximation the total number of features is constant over time and equal to K, in the
WE-IBP model this is not a finite number. In order to use the WF-IBP for inference it
is necessary to augment the state space with the features that are not seen in the feature
allocation matrices, but simulating the dynamics of the PRF would require generating an
infinite number of features, which is clearly unfeasible. One way to deal with this could be to
resort to some sort of truncation, considering only features whose probability is greater than
a given threshold and are likely to be seen in the data. We rather choose this truncation level
adaptively by introducing a collection of slice variables {St}zL and adopting conditional
slice sampling (Walker, 2007; Teh et al., 2007). This scheme, which is detailed in Section
5.1, has the advantage of making inference tractable without introducing approximations.

Partition the set of features into two subsets, one containing the features that have been
seen at least once among times t = tg,...,tr, and the other containing the features that
have never been seen for all t = tg,...,tp, so that X = Xgeen U Xunseen. Since the unseen
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features cannot be identified individually based on the matrices Z, and as all features are
conditionally independent given Z, we consider seen and unseen features separately. As for
the seen features, we use the same Particle Gibbs scheme as in the fixed-K approximation.
As for the unseen features, we simulate them via a thinning scheme. The exact MCMC
inference scheme can be then summarized by the following updates.

e 7| X,S, D,p via Gibbs sampling.

e S| Z, X via slice sampling.

e p| D, Z according to the likelihood model.
e Xeeen | Z via Particle Gibbs.

® Xinseen | S via thinning.

We present each of these steps in Sections 5.1 and 5.2, which build on the simpler
inference scheme developed in Section 4.

5.1 Gibbs and slice sampling

The first step is to augment the parameter space with a set of slice variables. Given
the feature allocation matrices Z; at times t = tg,...,tp, draw a slice variable S; ~
Uniform|[0, 2™ (Z;)] for each time ¢, where 2™"(Z;) is the minimum among the proba-
bilities of the features seen in the feature matrix Z;. In this way, when conditioning on the
value s; of the slice variable, we have a truncation level s; and only need to sample the
finite number of features whose probability is above this threshold (Teh et al., 2007). In
other words, for all ¢t = tg,...,tp, we only need to update the columns of Z; whose corre-
sponding feature probability x(¢) is greater than or equal to the slice variable s; (note that
these include both seen and currently unseen features). Observe that we defined a different
slice variable for each time point, while an alternative choice could have been drawing a
single slice from a uniform between 0 and the minimum feature probability across all times.
Having multiple slice variables makes it possible to simulate fewer feature trajectories while
keeping inference exact, reducing the computational cost of simulating features with small
probabilities of being active. Although this comes at the cost of a larger number of param-
eters, in experiments we find that having multiple slices does not compromise mixing nor
predictive performance.

Accounting for the slice variables, the full conditional probability of the entry Z;i; being
active is directly proportional to

P(Zike = 1| Z—(iyt X (), Die, p)P(St | Zike = 1, Z_ikye) o
10 < s¢ < 2™ (Z_(inyt> Zier = 1)] (9)
ﬂcmn(Z—(ik)ta Zigg = 1) ’

i (t)P(Dit | Zizit, Zike = 1, p)

while the full conditional probability of the entry Z;i; being inactive is directly propor-
tional to
P(Zikt = 0| Z_(igye, Xi(t), Dit, p)P(St | Zint = 0, Z_(ipeye) o
10 < st < 2™ (Z_(igyes Zikt = 0)] (10)
T Z_ itoyes Zikt = 0) '

(1 = 2(t))P(Dst | Zi—kt Zine = 0, p)

14
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The term P(S; | Z;) is not constant as updating Z;; for a currently unseen feature may
modify the value of the minimum probability of the active features.

5.2 Particle Gibbs and thinning

Assume that the feature allocation matrices Z; are given at the time points ¢t = tg,..., i1
and we are interested in inferring the probabilities X of the underlying features. This
section gives the details of inference for each of the following subpartitions of seen and
unseen features: features seen for the first time at a given time t; (for j = 0,...,7"), unseen
features alive at time ¢y and unseen features born between any two consecutive times ¢; and
tj+1 (fOI‘j = 0,...,T— 1).

5.2.1 SEEN FEATURES

As already mentioned, we can apply PG to sample from the posterior trajectories of the seen
features. In particular, for features that are seen at time tg we can simply apply Algorithm
1 as in the fixed-K approximation by replacing the term % with 0. This is possible as
observing a feature allocation matrix Z; updates the prior probability of features as in the
posterior beta process (Thibaux and Jordan, 2007), meaning that we can draw each seen
feature k from a Beta(ngs, 8+ Ny — nge) (recall that ng; is the number of objects in which
feature k is active at time t).

More generally, consider features that are seen for the first time at a given time ¢;. As
they cannot be identified individually based on any feature matrix Z;, for k& < j, these
features need to be drawn from the posterior beta process at time ¢; and propagated both
forward and backwards. Note that simulating from the W-F diffusion backwards in time is
not a problem as each W-F(0, §) diffusion is time-reversible with respect to the speed density
of the PRF (Griffiths, 2003). The additional backward propagation requires adjusting
Algorithm 1, already modified by replacing % with 0, by further replacing the steps before
the while loop with Algorithm 2, where for simplicity we describe the particular case of
features seen for the first time at time t;. This description can be easily generalized to
features that are seen for the first time at a generic time point ¢ € {tg,...,tp}.

5.2.2 UNSEEN FEATURES

We now describe a thinning scheme to simulate the unseen features alive at time #g. Denote
the slice variable values at each time by sy, ..., st and note that sampling the set of unseen
features from the truncated posterior beta process at time ¢t means drawing samples from
a Poisson process on [s;, 1) with rate measure = (1 — z)?+N~1dg (Thibaux and Jordan,
2007), which yields only a finite number of features whose probability is larger than s;.
First, draw the unseen features from the truncated posterior beta process at time tg. Then,
propagate them forward to time ¢; according to the W-F diffusion and accept them with
probability (1—z(t1))N®), namely the binomial likelihood of not seeing them in any object
at time t1. Finally, iterate this propagation and rejection steps up to time ¢7. The details
of this thinning scheme are given in Algorithm 3.

Notice that simulating the trajectories of the unseen features born between time g and
t1 is equivalent to Algorithm 3 from time t; onwards. The only difference is that these
features, drawn at time ¢, need to be simulated backwards to time ¢y as well, hence the
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Algorithm 2: PG: features seen for the first time at time ;.

Input: Reference trajectory @y ....; M.

Set z}! = af ;

Draw z} ~ Beta(n,, 8+ Ny —ng,) fori=1,..., M — 1;

Set zp! =y ;

Simulate x}|z}, ~ WF(0, 8) backwards for ¢ € [t1,to] for i =1,...,M — 1;
Set z) =y ;

Simulate x}|z;, ~ WF(0,8) for t € [t1,to] fori=1,..., M — 1;

Compute wj, = (1 —j )0 fori=1,..., M;
Compute wy, = (27,)"2(1 — miQ)Nf2*”f2w§0 fori=1,..., M,
Draw 7y, with P(z}, = x},) ocwy, fori=1,..., M —1;

Set zp = af ;
Simulate x|z}, ~ WF(0,8) for t € [tg, t3] fori=1,...,M — 1;
Set j + 3;

Algorithm 3: Thinning: unseen features alive at time tg

Draw from a Poisson process on [s,, 1) with rate measure az~!(1 — 2)%*Mo~1dz and
denote by {:L‘fto }ica the resulting candidate particles;
Set j « 1;
while ¢; < t7 do
Simulate xi]mig ~ WEF(0,B) for t € [tj,t;41] for all i € A;
Accept x}éﬂ . with probability (1 — :p};jH)N ti+1 for all i € A;
Remove from A the indices of the rejected particles;
Set j < 7+ 1;
end

Output: Trajectories {xio:tT }iea of the unseen features alive at time ¢y from the
truncated PRF(a, 3).
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Algorithm 4: Thinning: unseen features born between time to and ¢;

Draw from a Poisson process on [s;,, 1) with rate measure az=! (1 — z)#+N1~1dz and
denote by {xél}ie A the resulting candidate particles;
Simulate zj|z}, ~ WEF(0, 3) for t € [to, 1] for all i € A;
for alli e A do
if aj, > 54, then
Reject zj;
Set A+ A\ {i};
else
‘ Accept zj, with probability (1 — f,)
end

Ny, .
)

end

Set j + 1;

while tj < tr do
Simulate xﬂxij ~ WEF(0, ) for t € [t;,t;41] for all i € A;

, With probability (1 — x%jﬂ)N ti+1 for all i € A;
Remove from A the indices of the rejected particles;
Set j « j + 1;

end

Output: Trajectories {xioth }ica of the unseen features born between time ¢y and 1
from the truncated PRF(a, §).

Accept :cf;j N

additional backward simulation followed by the rejection step in the for loop of Algorithm
4. If a feature that is simulated backwards from time ¢; to tg has probability 0 by time %,
then it is a newborn feature and is accepted with probability 1. On the other hand, if its
probability at time t( is between 0 and s;,, the particle belongs to the category of features
that were alive and unseen at time tg. Accepting them with probability (1 — x(tp))™o
compensates for the features that were below the truncation level s;, in Algorithm 3 and
were thus not simulated at time ty. In this way, only the features whose mass is below the
slice variables s; at all times t € {tg,...,tr} are not simulated. The exactness of the overall
MCMC scheme is preserved by the fact that those features are inactive in all the feature
allocation matrices by the definition of slice variable.

Finally note that, for simplicity’s sake, Algorithm 4 describes only how to simulate the
unseen features that were born between times tg and t1, but the procedure needs to be
generalized to account for the features born between any two consecutive time points ¢;
and tj41, where j = 0,...,7 — 1. In order to do this, it is sufficient to draw the candidate
particles at every time t;;q, with j = 0,...,T — 1, propagate them backwards until time
to and thin them as follows: if their mass exceeds s; at any ¢t € {fg,...,tr}, then they
are rejected; otherwise, at each backward propagation to time t € {t¢,...,tr_1} they are
accepted with probability (1 — z(t))Me.
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6. Application: linear-Gaussian likelihood model

The WF-IBP we have described defines a prior over latent feature allocation matrices Z
and the corresponding feature probabilities X exhibiting a dependency structure over time.
The next step is to relate Z to the observed data by means of a given likelihood model.
The first model we explore is the linear-Gaussian likelihood, a very common choice in latent
feature models (e.g., Doshi-Velez and Ghahramani, 2009; Griffiths and Ghahramani, 2011;
Gershman et al., 2015).

Assume that the collection of observations Oy at time t = tg,..., ¢ is in the form of an
N x D matrix generated by the matrix product Oy = Z; X A+ €. Z; is the N x K binary
matrix of feature assignments at time ¢ and A is a K x D factor matrix whose rows represent
the feature parameters p. The matrix product is the way Z; determines which features are
active in each observation, and € is a N x D Gaussian noise matrix, whose entries are
assumed to be distributed as independent A/ (0, ag(). A typical inference problem is to infer
both the feature allocation matrices Z and the factor matrix A. In order to achieve this,
we place on each element of A an independent prior N (0, 0124) and on the hyper-parameter
0124 an inverse-gamma prior I'"'(1,1). This choice of priors is convenient as it is easy to
obtain the posterior distributions of ai and A (for the case T" = 1, see Doshi-Velez and
Ghahramani, 2009).

For simplicity of notation, consider a fixed number of features K. Denote by Z the
TN x K matrix obtained by concatenating the feature matrices Z vertically, and by O the
TN x D matrix obtained by combining the observations {Ot}zto in the same way. The
posterior of A is matrix Gaussian with the following mean y* (a K x D matrix) and, for
each column of A, the following covariance matrix ¥4 (a K x K matrix).

2 -1
uh = (ZTZ n “?;1) 770
A

By conjugacy, the posterior distribution for 0'124 is still inverse gamma with updated param-
eters, namely

1 1
2 —1 2
o4 ~T <1+2KD,1+2§k Ed Akd).

6.1 Simulations and results

We tested the WF-IBP combined with a linear-Gaussian likelihood on a variety of synthetic
data sets. Starting from the fixed-K approximation, we generated N = 50 observations at
each of 40 equally-spaced time points as in the linear-Gaussian model. The true factor
matrix A contained K = 3 latent features in the form of binary vectors of length D =
30. Their probability of being active was determined continuously over time by three
independent W-F(1, 1) diffusions, simulated for 0.01 diffusion time-units between every two
consecutive time points. The resulting observations were corrupted by a large amount of
noise (ox = 0.5). 1000 iterations of the overall algorithm were performed, choosing a
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burn-in period of 100 iterations and setting the time-units and drift parameters of the W-F
diffusion equal to the true ones in the PG update. As ground truth was available, we were
able to test the ability of the algorithm to recover the true feature allocation matrices, the
latent feature parameters and their probabilities over time.

Figure 4-top-left compares the true underlying feature matrices at times t = {1, 14, 27,40}
in terms of the most frequently active features in the posterior mean matrices, where a fea-
ture is set to be active if that is the case in more than half of the samples of the Markov
chain. The resulting mean matrices almost perfectly match the true underlying feature
matrices. Figure 4-top-right compares the trajectories over time of the true feature prob-
abilities with the inferred ones. The latter tend to be less than two standard deviations
away from the former, meaning that the true feature trajectories are closely tracked. Figure
4-bottom-left compares the three features represented by the true factor matrix A and the
ones in the posterior mean matrix A, showing that the algorithm was able to recover accu-
rately the hidden features underlying the noisy observations. Figure 4-bottom-right plots
the log-likelihood at each iteration, showing that the algorithm converged quickly, namely
in fewer than 50 iterations.

Then, we tested the ability of the slice sampler-based algorithm to recover the correct
number of latent features when given a similar set of synthetic data, this time consisting
of 4 latent features evolving over 6 time points. The algorithm was initialized with one
feature and run for 3300 iterations with a burn-in period of 1000 iterations. As in the finite
case, the true underlying feature allocation matrices and feature probabilities were closely
recovered as illustrated by the top row of Figure 5. The bottom row of Figure 5 shows that
the features were reconstructed accurately and their correct number detected in about 700
iterations.

Finally, we focused on the ability of Particle Gibbs to track the feature trajectories in a
wider variety of settings and under model misspecification. We generated a set of feature
allocation matrices obtained by letting three feature probabilities evolve over time, first by
simulating standard W-F diffusions and then by introducing jumps and spikes. Figure 6
confirms the robustness of the algorithm in the presence of mismatches between the W-F
diffusion and the true process determining the feature trajectories. We simulated a set of
20 feature allocation matrices under an increasing amount of mismatch, first by introducing
a jump of increasing size from time 10 to 11, and then by adding a spike of increasing
sharpness at time 10. Figure 6-left shows that, although larger jump sizes lead to larger
discrepancies between the true and inferred trajectories around the jump, the former are
always less than two standard deviations away from the latter. Figure 6-right shows that in
all three cases the algorithm is able to detect the presence of the spike at time 10. Figure 7
illustrates the performance of the algorithm on a decreasing number of observations. The
results show that the posterior mean of the target distribution closely corresponds to the
true feature probabilities and, given a sufficient number of observations, always fall within
the interval given by two standard deviations about the posterior mean.
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Figure 4: Fixed-K approximation. Top-Left: Subset of true feature allocation matrices vs
inferred ones. Top-Right: True vs inferred feature probabilities over time (the dark and the
light shaded areas respectively indicate one and two standard deviations about the poste-
rior mean). Bottom-Left: True vs inferred features (black and white entries respectively
correspond to 0 and 1, while the shades of grey to the values in between). Bottom-Right:
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Figure 5: WF-IBP. Top-Left: True vs inferred feature allocation matrices. Top-Right: True
vs posterior mean feature trajectories (the shaded areas represent one standard deviation).

Bottom-Left: Comparison between true and inferred features. Bottom-Right: Convergence
to the true number of features.
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Figure 6: Comparison between the posterior means and the true feature probabilities under
an increasing amount of model misspecification. The dark and light shaded areas respec-
tively correspond to 1 and 2 standard deviations about the posterior mean. Left: Jump of
increasing size between times 10 and 11. Right: Spike of increasing sharpness at time 10.
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Figure 7: Comparison between true feature probabilities and posterior means obtained via
Particle Gibbs for a varying number of observations. The dark and light shaded areas
respectively correspond to 1 and 2 standard deviations about the posterior mean.
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7. Topic modeling application

In this section we apply the WF-IBP to the modeling of corpora of time-stamped text
documents. This is a natural application as documents can be seen as arising from an
unknown number of latent topics whose popularity is evolving over time. A related model
to achieve this goal is described in Blei and Lafferty (2006), where a Gaussian state space
model captures the evolution of topics in such a way that both the content of topics and
their proportions evolve over time. This work has had a great impact in the topic modeling
community, and anticipates a number of directions for future work that we address here.
Specifically their model is parametric, in that the number of topics K is fixed and needs to
be pre-specified. The authors claim that it would desirable to drop this assumption to have a
more flexible model and, in particular, foresee a process involving births and deaths of topics.
The WF-IBP topic model elegantly achieves these goals. Unlike Blei and Lafferty (2006)
we focus on the evolution of topic probabilities rather than topic contents, noting that the
modeling of time-varying topic contents is orthogonal to our work and could be incorporated
into the WF-IBP in future developments. Another class of models called Dirichlet processes
aim at modeling the evolution of topics in a time-dependent and nonparametric way. Some
of these models, however, assume the evolution of topic probabilities to be unimodal (e.g.,
Rao and Teh, 2009), while others are HDP-based (Ahmed and Xing, 2012; Dubey et al.,
2013) and implicitly assume a positive correlation between the probability of a topic being
active and the proportion of that topic within each document. Coupling topic proportions
and topic probabilities is undesirable as rare topics may account for a large proportion of
words in the few documents in which they appear. Our nonparametric topic model decouples
the probability of a topic and its proportion within documents and offers a flexible way to
model topic evolutions over time. We achieve this by incorporating time-dependency into
the focused topic model presented in Williamson et al. (2010b), which makes use of the IBP
to select the finite number of topics that each document treats.

7.1 The WF-IBP topic model
First consider the case in which the number of topics K underlying the corpus of seen
documents is known. Define topics as probability distributions over a dictionary of D

words and model them as (pg)5_, ud Dirichlet(7), given a vector 77 of length D. Let p be
the resulting vector and assume the components of 77 to be all equal to a constant n > 0.
Consider the usual setting in which the time-dependent popularity of topic (feature) k is
denoted by X and the binary variables Z;;; indicate whether document ¢ contains topic k
at time ¢t. Then, for all t =tg,...,tr and k= 1,..., K, sample

Qit | {th = Zit, d)t = gb;} ~ Dirichlet(zit ©) gf)é), Vi = 1, PN ,Nt,
¢rt ~ Gamma(y, 1),
(Ziet) N, | {X5 = 2(t)} “ Bernoulli(zy(£)),

af
X ~WF | —
k W <Ka>7

where ¢y is the kth component of ¢;, a K-long vector of topic proportions, and 6;; the
ith row of 0;, a N; x K matrix with the distributions over topics for each document at
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time t. The operation z;; o ¢; stands for the Hadamard product between z; and ¢; and
the Dirichlet is defined over the positive components of the resulting vector. While the
topic allocation matrix Z; encodes which subset of the K topics appears in each document
at time ¢, the variables ¢y; are related to the proportion of words that topic k£ explains
within each document. Unlike HDP-based models, these two quantities are here modeled
independently.

For every document ¢ = 1,..., Ny, draw the total number of words from a negative-
binomial Wy ~ NB(D . zikt®kt, 1/2) and, for each word wy;, [ =1, ..., Wy, sample first the
topic assignment

agy | {0i = 0.} ~ Categorical(6},)
and then the word
wig | {age = ajy,p=p'} ~ Categorical(p;;lt).

Assume now that the number of potential topics K needs to be learned from the data.
The nonparametric extension of this model is easily obtained by replacing the process
generating the topic allocation matrices with the WF-IBP, so that topics arise as in the
PRF and evolve as independent WF(0, ). The feature allocation matrices can be drawn
as described in Section 8. In this way, we obtain a time-dependent extension of the IBP
compound Dirichlet process presented in Williamson et al. (2010b).

7.2 Posterior inference

In order to infer the latent variables of the model, it is convenient to integrate out the
parameters p and 6. This can be done easily thanks to the conjugacy between the Dirichlet
and the Categorical distribution. In this way, we can run a Gibbs sampler for posterior
inference only over the remaining latent variables and are able to follow the derivation of
conditionals given by Williamson et al. (2010a). Note that, in our case, we have introduced
the slice variable and do not integrate out the topic allocation matrix. Denote by W the
complete set of words and by A the complete set of topic assignments a;; for all times
t =ty,...,tp, documents ¢ = 1,..., Ny and words [ = 1,..., W;. Denote by S; the slice
variable and by W; the complete set of words at time ¢. The conditional distributions that
we need to sample from for all times ¢t = {g,...,tp are

P(A¢ | Zi,w, ¢y),
p(de, v | Ay, Wy, Zy),
p(Se | Zi, X()),

p(Ze | At, X(2), bt, St).

Conditioning on all the other topic assignments a_;;, each topic assignment a;; can be
sampled from

Ny, + Okt Zikt

plaie = k | a—i, Z, W, ) oc (mip* + )M B
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where n}:“ denotes the number of times that word w;; has been assigned to topic k exclud-
ing assignment a;, nj, the number of words assigned to topic & in document i excluding
assignment a; and ni the total number of words assigned to topic k.

After placing a hyper-prior on p(7), we can sample ¢ and 7 via a Metropolis-Hastings
step. Indeed, we know that

-1 _ N, ,
ol e Pkt T C(¢rezine + nyy)

p(Pke, v | A, Zp) p(y :
(w7 ) F(V) i1 F(gf)ktzikt)n2t!2¢kzzikt+nkt

Conditioning on Z;, the slice variable is sampled according to its definition:

1

p(Se | 21, X (1)) = L, ([0, 2™ (t)]),

where 2" (¢) is the minimum among the probabilities of the active topics at time t. As
for the feature allocation matrices Z, we sample only the finite number of its components
whose topic probability xy(t) is greater than the slice variable S;. Assume we are sampling
each entry Z, sequentially and denote respectively by x7*"(¢) and " (¢) the minimum
active topic probability in the cases Z;;; = 1 and Z;x; = 0. Let n;;; denote the total number

of words assigned to topic k£ in document i at time ¢. Then we have that

17 if Nigt > 0
P(Zit = 1| A, wp(t), re) = e (8)amin (1)
z () zF 0 (8) 429kt (1—m (1)) (t)

0, if g > 0
P(Zit = 0| A, i (t), Pre) = 20kt (1—ag ()27 (1)
Tk (t)acomm (t)+2%kt (1—ag (t))zTin(t)’

if Nkt = 0.

The full conditional distributions presented so far are derived in Appendix C. As in the
linear-Gaussian case, when considering the probability of setting Z;;; = 1 for a feature that
is currently inactive across all observations at time ¢, it is necessary to jointly propose a
new value ¢g; by drawing it from its prior distribution Gamma(-y, 1). Finally, inference on
the trajectories of the topic probabilities is a direct application of the Particle Gibbs and
thinning scheme outlined for the general case.

7.3 Topic model: simulation and results

At each of 4 time points, a small corpus of N = 30 documents was simulated by selecting up
to K = 4 latent topics for each document and picking words from a dictionary of D = 100
words. The hyper-parameter of the Dirichlet prior over words was chosen to be a vector
with components equal to n = 0.1, a Gamma(5,1) hyper-prior was placed on v and we let
topic probabilities evolve as independent W-F(1, 1) diffusions with 0.1 diffusion time-units
between each observation. Assume K is known and focus on inference over the remaining
parameters. Fix the time-units and drift parameters of the W-F diffusion to their true
values in the PG update. We ran the Gibbs sampler for 3000 iterations with a burn-in
period of 300 iterations. The log-likelihood converged in about 500 iterations (Figure 8)
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and the algorithm was able to infer closely the latent topic allocation matrices (Figure 9-
left). The percentage of words assigned to the correct topics were 81% at t1, 82% at ta,
83% at t3 and 85% at t4.

A Monte Carlo estimate for the probability of word w = 1,..., D under topic k is

where n}’ is the number of times word w has been assigned to topic k, ny, is the total number
of words assigned to topic k and D is the number of words in the dictionary. A Monte Carlo
estimate for the probability of topic k£ in document 7 is

A Nikt + Zikt Pht
Oine = ! . 11
w >k (Mikt + Zikt it ) (11)

These two quantities are given by the posterior mean of the Dirichlet distribution under a
categorical likelihood. pg, has been used to plot the posterior distribution over words in
Figure 9-right. These results confirm the ability of the algorithm to recover ground truth
and provide useful information both at word and topic level.

Finally, we tested the ability of the algorithm to reconstruct topics when presented with
a decreasing number of observed documents. 100 documents were simulated at each of
two time points as described above. Figure 10 shows how well the probability of the 10
most likely words of the first topic was reconstructed for N = 60, 40, 20 and 10 observed
documents per time point. As expected, the more documents are observed the more accurate
the reconstruction of topics is, with a drop in performance when only 10 documents per
time point are observed.

train negative log-likelihood

40 41 42

39

I I I I I I I
0 500 1000 1500 2000 2500 3000

iterations

Figure 8: Convergence of the train negative log-likelihood.
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Inferred Z,t=1 Inferred Z, =2 Inferred Z,t=3

nferred Z,t=4

Figure 9: Left: Comparison between the true and the posterior mean topic allocation
matrices at each time. Right: True vs inferred distributions over words for each topic.
Each row is a topic (K = 4) and each column is a word from the dictionary (D = 100) (the
darker the green, the larger the probability of the corresponding word).
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Figure 10: Comparison, given different numbers IV of observed documents, between the true
probabilities of the 10 most likely words within a given topic and the inferred probabilities of
those words for that topic. The more documents are observed, the better the reconstruction
of the topic is.
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7.3.1 COMPARISON: STATIC MODEL AND HIERARCHICAL MODEL

We now demonstrate the advantages of modeling time-dependency by comparing our model
with two alternative versions. First, we consider a static counterpart where time is not mod-
eled and thus information about the time-stamp of documents is not exploited. Second, we
consider a hierarchical model where feature probabilities at each time point are distributed
as conditionally independent beta processes given a lower-layer beta process (Thibaux and
Jordan, 2007); note that in this model observations at different time points are modeled
separately, but information on the order of the time points is ignored.

In particular, we investigate whether incorporating time into the model improves upon
test-set perplexity, a measure widely used in topic modeling settings that assesses the ability
of topic models to generalize to unseen data. Given the model parameters ®, perplexity on
documents Djegt 1= {di}f\il is defined as

M
i1 | d; | ®
perplexity(Diest | ) = exp <_Zzl og p(d; | )> 7

Zi\il Wi

where W; denotes the number of words in document d;. As we assume that words within
each document are drawn independently given the model parameters ®, the probability of
document d; can be computed as

W;

p(d; | ®) = [ plwi | 9),

=1

where

plwq | @) Z@kﬁkz,

recalling that 6, is the probability of a generic word belonging to topic k in document 7 and
pri is the probability of word [ under topic k. These two quantities can be approximated
at each iteration of the MCMC algorithm by their current values éflj) and ,E),(jl), so that we
can approximate the probability of each word by averaging over S samples of the Markov

Chain.
K

s
Z kkl

s=1 k=1

plwy | @) =

0| =

Note that the perplexity is inversely proportional to the likelihood of the data and thus lower
values indicate better performance. Chance performance, namely assuming each word to
be picked uniformly at random from the dictionary, yields a perplexity equal to the size D
of the dictionary.

Different percentages of words were held-out and the model was trained on the remaining
data. Testing the model on held-out words is a way to avoid comparing different hyper-
parameters, as different treatments of the hyper-parameters could strongly affect the results
(Asuncion et al., 2009). For all three models, a dictionary of D = 1000 words was used
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to generate 30 documents at each of 9 time points. The number of features was fixed
to 4 and the algorithms were run 3000 iterations with a burn-in period of 300 iterations.
Even though all three algorithms approximately recover the true topic allocations matrices,
incorporating time leads to a closer match. This can be measured, for instance, by the
Frobenius norm of the difference between each true and inferred Z;. Table 1 shows that at
each time the dynamic model leads to a lower discrepancy with the true topic allocation
matrix. Figure 11 shows the posterior trajectories of topic probabilities inferred by the
dynamic model and compares them with the posterior feature probabilities inferred by the
hierarchical model and the constant values inferred by the static model. It can be observed
that the trajectories inferred by the dynamic model are both smoother and closer to the
ground truth. Finally, Figure 12 compares the test-set perplexity of the three models (recall
that in this case chance performance results in a perplexity of D = 1000). As expected,
although the hierarchical version performs better than the static counterpart that neglects
time-stamp information, it is outperformed by our dynamic model. Indeed, while in the
WE-IBP observations that are closer in time exhibit a stronger dependency, the HBP does
not explicitly impose an ordering of the time points. The results show that having a suitable
model for time dependencies improves on the ability to recover ground truth as well as to
generalize to unseen data.

Table 1: Frobenius norm of the difference with the true Z;. The lower, the better.

11 2 i3 2! U5 l6 7 18 lg
Dynamic 1.78 | 1.37 | 0.72 | 2.99 | 3.24 | 2.01 | 2.59 | 2.45 | 2.88
Hierarchical | 1.94 | 1.51 | 2.80 | 3.11 | 3.52 | 2.91 | 2.65 | 2.59 | 3.24
Static 3.63 | 4.23 | 2.84 |3.01 |3.55 |527 | 489 |3.31 | 590
Dynamic model Hierarchical model Static model

probability
0.6 0.8 1.0
1

0.4

0.2

0.0
1

time time time

Figure 11: Comparison between true and inferred feature probabilities (respectively contin-
uous and dotted lines) in our fixed-K topic model (left), in the hierarchical version (center)
and in the static version (right).
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Figure 12: Boxplots of test-set perplexity for different percentages of held-out data for the
true model (true), our dynamic model (dyn), the hierarchical version (hbp) and the static
version (stat). Each boxplot was obtained by computing the perplexity after holding-out 10
different random subsets of words in the data. Lower values indicate better performance.

7.3.2 REAL-WORLD DATA EXPERIMENTS

We used the WF-IBP topic model to explore the data set consisting of the full text of 5811
NIPS conference papers published between 1987 to 2015.1 We pre-processed the data and
removed words appearing more than 5000 times or fewer than 250 times. The remaining
number of word tokens was 4 728 892 with a vocabulary size of 348 672 unique words. Our
goal was to discover what topics appear in the corpus and to track the evolution of their
popularity over these 29 years.

We set the hyperparameters  and 5 equal to 1 and the time step to 0.12 diffusion
time-units per year so as to reflect realistic evolutions of topic popularity. The Markov
chain was run for 2000 iterations with a burn-in period of 200 iterations, setting n = 0.001
and placing a Gamma(5,1) hyper-prior on 7.

Qualitative results One of the qualitative advantages of modeling time dependency
explicitly is that interesting insights into the evolution of topics underlying large collections
of documents can be obtained automatically, and uncertainty in the predictions naturally
incorporated. The 12 most likely words of 32 topics found in the corpus together with
the evolution of their topic proportions are given in Figure 13, where the shaded areas

1. The data set is available at https://archive.ics.uci.edu/ml/datasets/NIPS+Conference+Papers+
1987-2015.
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represent one standard deviation around the posterior means. As topics are defined by their
distribution over words, it is possible to label them by looking at their most likely words. We
observe that, with very few exceptions, the topics detected in the corpus are meaningful and
easily interpretable. Figure 14 compares how the popularity of three different approaches
to machine learning evolved over time. The results indicate that standard neural networks
('NNs backpropagation’) were extremely popular until the early 90s. After this, they went
through a steady decline, only to increase in popularity later on. This confirms the well
known fact that NNs were largely forsaken in the machine learning community in the late
90s (see LeCun et al., 2015). On the other hand, it can be observed that the popularity
of deep architectures and convolutional neural networks (’deep learning’) steadily increased
over these 29 years, to the point that deep learning became the most popular among all
topics in NIPS 2015.

Another key benefit of the WF-IBP over alternative nonparametric topic models is
that the overall probability of topics and their proportion within documents are modeled
separately, which allows rare topics to be the predominant subject within a few documents.
This can be observed by comparing the rarest topic probabilities with the corresponding
within-document topic proportions. In a number of documents WF-IBP reveals that the
predominant topic is among the rarest topics in the corresponding year, such as in “Text
Classification using String Kernels” (information retrieval), “Playing is Believing: The Role
of Beliefs in Multi-Agent Learning” (game theory), and “Relative Density Nets: A New
Way to Combine Backpropagation with HMMs” (speech recognition).

We then compared the document representations learned by WF-IBP with the ones
obtained by Dynamic Topic Models (DTM) (Blei and Lafferty, 2006). One of the benefits
of WF-IBP is that it provides sparse and less noisy representations. This is due to the
fact that, while DTM assigns a positive probability to all topics within each document, the
WE-IBP selects only a subset of topics with positive probability via the feature allocation
matrices Z. Recall that DTM requires fixing the number of topics K a priori, hence in our
experiments we set K = 50. For instance, “Recursive Training of 2D-3D Convolutional Net-
works for Neuronal Boundary Prediction”, “Exploring Models and Data for Image Question
Answering” and “Are You Talking to a Machine? Dataset and Methods for Multilingual Im-
age Question Answering” are respectively assigned to deep learning, image recognition and
NLP by both models; however, they are respectively explained by 9,8 and 10 topics in WF-
IBP, as opposed to 50 in DTM. While it is possible to order the topic proportions in DTM
and only consider the ones greater than an arbitrary threshold, WF-IBP automatically sets
the probability of irrelevant topics to 0 and offers a more interpretable representation.

Quantitative results We then compared the predictive performance of our fixed-K ap-
proximation with its static and hierarchical counterparts. Recall that time-stamps are not
used in the static model and their ordering is neglected in the hierarchical model. The
results in Figure 15 were obtained by holding out different percentages of words (50%, 60%,
70% and 80%) from all the papers published in 1999 and by training the model over the
papers published in the time range 1987-1999. The goal was to investigate whether incor-
porating time dependency improves the predictions on future documents at time ¢+ 1 when
given the documents up to time ¢. The held-out words were then used to compute the test-
set perplexity after 5 repeated runs with random initializations (the error bars represent
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one standard deviation). The dynamic model led to consistently better results, especially
as the number of held-out words was increased. This follows from the fact that, the less
training data is available in the year in which the models are tested, the more important
capturing time-dependence to yield sensible predictions.
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Figure 13: Posterior topic proportions over the years 1987-2015 and 12 most likely words

for each topic (NIPS data set).
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models, with a substantial difference when the percentage of held-out words is large.
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8. Conclusion

We have presented a new framework for generating dependent IBPs by means of a novel
time-evolving beta process, whereby feature probabilities evolve over time and are marginally
distributed as in the beta process. At each time point items are exchangeable, and the two-
parameter IBP is recovered. The key insight has been building on the PRF from population
genetics to derive a suitable model for the prevalence and evolution of features over continu-
ous time. We have developed an interesting MCMC framework for exact posterior inference
with this model, and presented an alternative finite-dimensional approximation where the
number of features is fixed.

As an application of the WF-IBP, we have described a time-dependent focused topic
model that builds on Williamson et al. (2010b). The WF-IBP topic model allows for a
flexible evolution of the popularity of an unknown number of topics over time, and compares
favorably to HDP models by decoupling topic probabilities and within-document topic
proportions. We have used our model to explore the data set consisting of the full text
of NIPS conference papers from 1987 to 2015 and obtained an interesting visualization of
how the popularity of the underlying topics evolved over these 29 years. In addition, test-
set perplexity results have shown that incorporating time also improves on the predictive
performance of the model.

A number of directions for future work are open. First, as K — oo the fixed-K ap-
proximation marginally converges to the infinite model, and simulations showed that their
dynamics are remarkably similar; further work could formally investigate the exact re-
lationship between the two dynamics. Second, the current MCMC framework could be
generalized to include inference on the IBP parameters and the W-F diffusion time step.
Third, an extension of this work could modify the PRF by letting features evolve accord-
ing to a more general W-F diffusion with selection and recombination, which would allow
for feature-specific drifts in popularity and the coupled evolution of different features, re-
spectively. Finally, our novel time-dependent beta process is a general construction with
applications not limited to topic modeling. Different data and likelihood models could be
explored following our work, for applications such as the modeling of time-evolving social
networks or gene expression patterns.
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Appendix A. Proof of Theorem 1

The mean density of a PRF with immigration parameter « is
l(x) = am(z)dz,

where

el "2y
2(2)’ with I(x) .—/0 UQ(y)dy’ (12)

is the speed density of the process (see Griffiths, 2003). v and o are the drift and diffusion
terms as defined in (2) and (3). Plugging (2) with ¢ = 0 and (3) into the integral, we have

m(x) =

I(z) = fln(1l — x)
so that

(1-a)

R i € B
z(1—x) (1-=)

m(x) =
It follows that
I(x) = am(z)ds = az™ (1 — z)°Ldz
is the resulting mean density, which completes the proof.

Remark 2 When u, 8 = 0 it is necessary to condition each diffusion on hitting the bound-
ary 0 before 1 in reverse time, which leads to an extra term in the analogous result in Sawyer
and Hartl (1992).

Appendix B. Simulating from the model

Consider the problem of simulating from the model, namely generating feature probabilities
and the corresponding feature allocation matrices at a discrete set of time points.

Simulating X Set a truncation level u > 0 and consider the task of simulating features
whose probability is above the threshold w at two times ¢ty and t;. As we know how to
simulate marginally from the beta process, we can first generate the feature probabilities
above u at time ¢y and let them evolve independently to time ¢;. This yields features whose
probability is greater than u at time tg, meaning that we are still missing those features
whose probability is below u at time tg. To simulated these, we proceed as follows: we
generate these features by drawing them from the beta process at time t; and propagate
them backwards to time ¢y. Finally, in order not to double-count features, all features that
in the reverse simulation have probability greater than u at time ty have to be rejected.

Now translate these ideas into the following sampling scheme. At time tg, sample from
a truncated version of the PRF, namely from a Poisson process on [u, 1) with rate measure
ar (1 — $)5*1d$. This can be done, for instance, via an adaptive thinning scheme as
described in Ogata (1981). As the truncation level u eliminates the point zero which has
an infinite mass, this sampling procedure yields an almost surely finite number of samples.
Denote by K the resulting set of feature indices and proceed as follows.
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1. For all k € K, simulate Xy(t) | {Xk(to) = xr(to)} ~ WF(0, ) for t € [to, t1].

2. At time ¢1, sample the candidate newborn features X (¢1) from the truncated PRF as
above. Let £ denote the resulting set of features.

3. For all [ € £, simulate X;(t) | {X;(t1) = z1(t1)} ~ WF(0, 5) backwards for ¢ € [¢1, to]
and remove from £ the indices in the set {l : z;(t9) > u}.

4. Generate Zi | {Xn(t) = zx(t)} Y Bernoulli(zy(t)), for t = to,t1, ¥k € K U £ and
Vi=1,...,N,.

As mentioned previously, the idea behind steps 2 and 3 is to compensate for the features
with probability smaller than u that were discarded when generating features at time tg.

This construction generalizes to a set of time points ¢ = ty,...,tp, observing that at a
given time t;« € {t1,...,tr} step 3 needs to be modified by simulating the W-F diffusions
backwards to time tg and removing from £ the indices such that 3t € {tg,...,t+_1} such
that x;(t) > u.

Simulating 7 and the underlying X Consider now the more complex task of simulating
both the feature allocation matrices Z and the features X appearing in them. First note
that, although the PRF describes the evolution of an infinite number of features, we can
sample the feature allocation matrices Z;, and Z;, at two times ?p and t; exactly, as a
property of the IBP is that the number of observed features is almost surely finite (Griffiths
and Ghahramani, 2011). It is then possible to sample the features that are active in at
least one object at times tp and t; and the corresponding allocation matrices Z;, and Zy,
as follows. First, draw Z;, from the IBP, and use its realisation to draw the posterior
probabilities X (t9) of the features seen in Z;, as in the posterior beta process. Then,
simulate from the W-F diffusion to propagate these features to time ¢; and generate Zy,
using these feature probabilities. We are now only missing the columns of Z;, corresponding
to the features that were seen at time t; but not at time ty3. To add those columns,
first draw a candidate Zg from the IBP and the corresponding feature probabilities; then,
simulate these candidate features backwards to time ¢y and accept them with probability
(1 — X(tp))Mo to account for the fact that they were not seen at time to. The columns
of Zg corresponding to the rejected features are deleted. Translating these ideas into an
algorithm, consider the following steps.

1. Draw Z;, ~ IBP(a, 8) and index the resulting columns as 1, ..., K.

2. For k=1,...,K; draw the corresponding feature probabilities

Xi(to) | {Zs, = 2t} ~ Beta (ngyy, B+ Nty — Nty -

3. For k = 1,..., K; simulate Xy(t) | {Xx(to) = zx(to)} ~ WF(0, ) for t € [to,t1] and
set Xk(tl) = a:k(tl).

4. Sample Z{, by drawing each component Zilkt1 | {X(t1) = z(t1)} i Bernoulli(x (1)),
where k=1,...,K;andi=1,...,Ny.
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Then, to sample the features that are active only at time t1, add the following steps.

5. Draw a candidate Zg ~ IBP(a, 8) and index the resulting columns as K1 +1,..., Ks.
6. For k= K1 +1,..., Ko draw the corresponding candidate feature probabilities

X]S(t1> ’ {Ztcf = zg} ~ Beta (nkt17/B+Nt1 _nktl) .

7. For k = K; + 1,..., Ky, simulate Xy(t) | {Xk(t1) = zx(t1)} ~ WF(0, 5) backwards
for t € [tl,to] and set Xk(to) = $k(t0).

8. Accept the candidate columns of Z{ with probability (1 — z{ (o)) and let Z;, be
the matrix obtained by the union of the columns of Z} with the accepted columns of
2.

Note that the rejection in the last step is a way to account for the fact that we are considering
features that are active for the first time at time ¢;. When considering a general set of time
points tg, ..., ¢, it is necessary to account for the features that are active for the first time
at each time t1,...,¢p. In this more general case, features seen for the first time at time ;+
need to be accepted with probability Hizt’ol(l — 2 ()N, as they were not seen in any of
the feature allocation matrices at the time points before t*.

Appendix C. Derivation of full conditionals

As observed in Williamson et al. (2009), in this topic modeling setting there are two equiv-
alent ways of generating documents. Either the total number of words is sampled from a
negative binomial NB(} ;. zikt®kt, 1/2) and then the topic and word assignments are drawn,
or the number of words generated by each topic is drawn from NB(z;xdxe, 1/2) and then
the word assignments are picked. Following Williamson et al. (2009) closely, we make use
of the latter construction to derive the full conditional distributions for the Gibbs sampler
of the WF-IBP topic model.

Full conditional of a;; Recall that a;;; = k indicates that the {th word in document 7 at
time t is assigned to topic k. We have

plaie =k | a_ig, Ze, wipe, @) & p(wire | age = k)plae =k | a_it, Zike, Okt
o< p(wiy | age = k)(nhy + Grezire),

where the last step is given by integrating out 6;;, namely the distribution over topics in
document ¢ at time ¢, and using the Dirichlet-Categorical conjugacy. Recall that n};t denotes
the number of words assigned to topic k in document ¢ at time ¢ and that ng; denotes the
total number of words assigned to topic k at time ¢, both excluding the assignment a;.
Similarly, integrating out the parameter p; representing the distribution over words of

topic k£ and using the Dirichlet-Categorical conjugacy, we have that
(ng™ +n)
p(wi | a ) np+ 0D — 1’

which, plugged into the previous equation, gives the desired full conditional.
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Full conditional of ¢ and v We have that

(O, | Maets X (t), Zt) X p(Dret, ¥, e, X (), Zy)
o< p(we | VIP(V) P (ke | Zt, Pre ) (13)

where

Nt Nt
Pt | Zo, ére) = [ [ p(nke | Zines d1e) = [ [ NB(niss Zinedre, 1/2).

i=1 =1

Note that p(¢x: | v) is distributed according to its prior Gamma(y, 1) and v according to
a chosen hyper-prior. The result follows immediately by plugging these three distributions
into (13).

Full conditional of Z;;; Recall that n;;; denotes the total number of words assigned to
topic k£ in document ¢ at time ¢. If n;; > 0, then the corresponding entry Z;; is active
with probability 1. If n;,; = 0, we have

P(Zike = 1| Z_(iye> Nike = 0, Xp(t), dnt, St) =

P(Zike = 1, Z_(itye> Mike = 0, Xi (), ke, St)
p(Z—(ik)t7 Nkt = 0) Xk(t)) d)ktv St)

The numerator is equal to

P(ike = 0| Zike = 1, 0x)p(St | Zike = 1, Z_ i1y )P(Zike = 1 | X (8))0(Prts Xk (1), Z_(itye) =

1
NB(0; pxt, 1/2)W$k(t)17(¢kt, X (t), Zf(z‘k)t)
" (t)

Denoting by C' the product of all terms not depending on z;x¢, we have

1 1

P(Zike = 1| Z_gigyes nike = 0, Xi(t), Pre, St) = C@:ﬂlnm(t)

(t). (14)

By the same token, we have

p(Zit =0 | Z—(ik)bnikt =0, Xk (t), ¢, St) = C (1 —zx(t)). (15)

As the two probabilities must sum to 1, we have that

200 ()2 (1)

= T Dan(l) + 2 (01— 2a0)

which, plugged into equations 14 and 15, gives the result.
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