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Abstract

The scale of modern datasets necessitates the development of efficient distributed optimiza-
tion methods for machine learning. We present a general-purpose framework for distributed
computing environments, CoCoA, that has an efficient communication scheme and is ap-
plicable to a wide variety of problems in machine learning and signal processing. We extend
the framework to cover general non-strongly-convex regularizers, including L1-regularized
problems like lasso, sparse logistic regression, and elastic net regularization, and show how
earlier work can be derived as a special case. We provide convergence guarantees for the
class of convex regularized loss minimization objectives, leveraging a novel approach in
handling non-strongly-convex regularizers and non-smooth loss functions. The resulting
framework has markedly improved performance over state-of-the-art methods, as we illus-
trate with an extensive set of experiments on real distributed datasets.
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1. Introduction

Distributed computing architectures have come to the fore in modern machine learning, in
response to the challenges arising from a wide range of large-scale learning applications.
Distributed architectures offer the promise of scalability by increasing both computational
and storage capacities. A critical challenge in realizing this promise of scalability is to de-
velop efficient methods for communicating and coordinating information between distributed
machines, taking into account the specific needs of machine-learning algorithms.

On most distributed systems, the communication of data between machines is vastly
more expensive than reading data from main memory and performing local computation.
Moreover, the optimal trade-off between communication and computation can vary widely
depending on the dataset being processed, the system being used, and the objective be-
ing optimized. It is therefore essential for distributed methods to accommodate flexible
communication-computation profiles while still providing convergence guarantees.

Although numerous distributed optimization methods have been proposed, the mini-
batch optimization approach has emerged as one of the most popular paradigms for tack-
ling this communication-computation tradeoff (e.g., Dekel et al., 2012; Shalev-Shwartz and
Zhang, 2013b; Shamir and Srebro, 2014; Qu et al., 2015; Richtárik and Takáč, 2016). Mini-
batch methods are often developed by generalizing stochastic methods to process multiple
data points at a time, which helps to alleviate the communication bottleneck by enabling
more distributed computation per round of communication. However, while the need to re-
duce communication would suggest large mini-batch sizes, the theoretical convergence rates
of these methods tend to degrade with increased mini-batch size, reverting to the rates of
classical (batch) gradient methods. Empirical results corroborate these theoretical rates,
and in practice, mini-batch methods have limited flexibility to adapt to the communication-
computation tradeoffs that would maximally leverage parallel execution. Moreover, because
mini-batch methods are typically derived from a specific single-machine solver, these meth-
ods and their associated analyses are often tailored to specific problem instances and can
suffer both theoretically and practically when applied outside of their restricted setting.

In this work, we propose a framework, CoCoA1, that addresses these two fundamental
limitations. First, we allow arbitrary local solvers to be used on each machine in paral-
lel. This allows the framework to directly incorporate state-of-the-art, application-specific
single-machine solvers in the distributed setting. Second, the framework shares information
between machines through a highly flexible communication scheme. This allows the amount
of communication to be easily tailored to the problem and system at hand, in particular
allowing for the case of significantly reduced communication in the distributed environment.

A key step in providing these features in the framework is to first define meaningful
subproblems for each machine to solve in parallel, and to then combine updates from the
subproblems in an efficient manner. Our method and convergence results rely on noting
that, depending on the distribution of the data (e.g., by feature or by training point), and
whether we solve the problem in the primal or the dual, certain machine learning objectives

1. CoCoA-v1 (Jaggi et al., 2014) and CoCoA+ (Ma et al., 2017b, 2015a) are predecessors of this work.
We continue to use the name CoCoA for the more general framework proposed here, and show how
earlier work can be derived as a special case (Section 4). Portions of this newer work additionally appear
in SF’s master’s thesis (Forte, 2015) and Smith et al. (2015).
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can be more easily decomposed into subproblems in the distributed setting. In particular,
we categorize common machine learning objectives into several cases, and use duality to help
decompose these objectives. Using primal-dual information in this manner not only allows
for efficient methods (achieving, e.g., up to 50x speedups compared to state-of-the-art), but
also allows for strong primal-dual convergence guarantees and practical benefits such as
computation of the duality gap for use as an accuracy certificate and stopping criterion.

1.1 Contributions

General framework. We develop a communication-efficient primal-dual framework that
is applicable to a broad class of convex optimization problems. Notably, in contrast to ear-
lier work of Yang (2013), Jaggi et al. (2014), Ma et al. (2017b) and Ma et al. (2015a), our
generalized, cohesive framework: (1) specifically incorporates difficult cases of L1 regulariza-
tion and other non-strongly-convex regularizers; (2) allows for the flexibility of distributing
the data by either feature or training point; and (3) can be run in either a primal or dual
formulation, which we show to have significant theoretical and practical implications.

Flexible communication and local solvers. Two key advantages of the proposed frame-
work are its communication efficiency and ability to employ off-the-shelf single-machine
solvers internally. On real-world systems, the cost of communication versus computation
can vary widely, and it is thus advantageous to permit a flexible amount of communication
depending on the setting at hand. Our framework provides exactly such control. Moreover,
we allow arbitrary solvers to be used on each machine, which permits the reuse of existing
code and the benefits from multi-core or other optimizations therein. We note that beyond
the selection of the local solver and communication vs. computation profile, there are no
required hyperparameters to tune; the provided default parameters ensure convergence and
are used throughout our experiments to achieve state-of-the-art performance.

Convergence guarantees. We derive convergence rates for the framework, guaranteeing,
e.g., a O(1/t) rate of convergence in terms of communication rounds for convex objectives
with Lipschitz continuous losses, and a faster linear rate for strongly convex losses. Impor-
tantly, our convergence guarantees do not degrade with the number of machines, K, and
allow for subproblems to be solved to arbitrary accuracies, which allows for highly flexi-
ble computation vs. communication profiles. Additionally, we leverage a novel approach in
the analysis of primal-dual rates for non-strongly-convex regularizers. The proposed tech-
nique is an improvement over simple smoothing techniques used in, e.g., Nesterov (2005),
Shalev-Shwartz and Zhang (2014) and Zhang and Lin (2015) that enforce strong convex-
ity by adding a small L2 term to the objective. Our results include primal-dual rates and
certificates for the general class of linear regularized loss minimization, and we show how
earlier work can be derived as a special case of our more general approach.

Experimental comparison. The proposed framework yields order-of-magnitude speedups
(as much as 50× faster) compared to state-of-the-art methods for large-scale machine learn-
ing. We demonstrate these gains with an extensive experimental comparison on real-world
distributed datasets. We additionally explore properties of the framework itself, including
the effect of running the framework in the primal or the dual, and the impact of subproblem
accuracy on convergence. All algorithms for comparison are implemented in Apache Spark
and run on Amazon EC2 clusters. Our code is available at: gingsmith.github.io/cocoa/.
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2. Background and Setup

In this paper we develop a general framework for minimizing problems of the following form:

`(u) + r(u) , (I)

for convex functions ` and r. Frequently the term ` is a loss function, taking the form∑
i `i(u), and the term r is a regularizer, e.g., r(u) = λ‖u‖p. This formulation includes

many popular methods in machine learning and signal processing, such as support vector
machines, linear and logistic regression, lasso and sparse logistic regression, and many others.

2.1 Definitions

The following standard definitions will be used throughout the paper.

Definition 1 (L-Lipschitz Continuity). A function h : Rm → R is L-Lipschitz continuous
if ∀u,v ∈ Rm, we have

|h(u)− h(v)| ≤ L‖u− v‖ . (1)

Definition 2 (L-Bounded Support). A function h : Rm → R ∪ {+∞} has L-bounded
support if its effective domain is bounded by L, i.e.,

h(u) < +∞ ⇒ ‖u‖ ≤ L . (2)

Definition 3 ((1/µ)-Smoothness). A function h : Rm → R is (1/µ)-smooth if it is differ-
entiable and its derivative is (1/µ)-Lipschitz continuous, or equivalently

h(u) ≤ h(v) + 〈∇h(v),u− v〉+
1

2µ
‖u− v‖2 ∀u,v ∈ Rm . (3)

Definition 4 (µ-Strong Convexity). A function h : Rm → R is µ-strongly convex for µ ≥ 0
if

h(u) ≥ h(v) + 〈s,u− v〉+
µ

2
‖u− v‖2 ∀u,v ∈ Rm , (4)

for any s ∈ ∂h(v), where ∂h(v) denotes the subdifferential of h at v.

2.2 Primal-Dual Setting

Numerous methods have been proposed to solve (I), and these methods generally fall into
two categories: primal methods, which run directly on the primal objective, and dual meth-
ods, which instead run on the dual formulation of the primal objective. In developing our
framework, we present an abstraction that allows for either a primal or a dual variant of our
framework to be run. In particular, to solve the input problem (I), we consider mapping the
problem to one of the following two general problems:

min
α∈Rn

[
OA(α) := f(Aα) + g(α)

]
(A)

min
w∈Rm

[
OB(w) := f∗(w) + g∗(−A>w)

]
. (B)

In general, our aim will be to compute a minimizer of the problem (A) in a distributed
fashion; the main difference will be whether we initially map the primal (I) to (A) or (B).
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Here α ∈ Rn and w ∈ Rm are parameter vectors, A := [x1; . . . ;xn] ∈ Rm×n is a data
matrix with column vectors xi ∈ Rm, i ∈ {1, . . . , n}, and the functions f∗ and g∗i are the
convex conjugates of f and gi, respectively.

The dual relationship between problems (A) and (B) is known as Fenchel-Rockafellar
duality (Borwein and Zhu, 2005, Theorem 4.4.2). We provide a self-contained derivation
of the duality in Appendix B. Note that while dual problems are typically presented as a
pair of (min, max) problems, we have equivalently reformulated (A) and (B) to both be
minimization problems in accordance with their roles in our framework.

Given α ∈ Rn in the context of (A), a corresponding vector w ∈ Rm for problem (B) is
obtained by:

w = w(α) := ∇f(Aα) . (5)

This mapping arises from first-order optimality conditions on the f -part of the objective.
The duality gap, given by:

G(α) := OA(α)− [−OB(w(α))] , (6)

is always non-negative, and under strong duality, the gap will reach zero only for an optimal
pair (α?,w?). The duality gap at any point provides a practically computable upper bound
on the unknown primal as well as dual optimization error (suboptimality), since

OA(α) ≥ OA(α?) ≥ −OB(w?) ≥ −OB(w(α)) .

In developing the proposed framework, noting the duality between (A) and (B) has many
benefits, including the ability to compute the duality gap, which acts as a certificate of the
approximation quality. It is also useful as an analysis tool, helping us to present a cohesive
framework and relate this work to the prior work of Yang (2013), Jaggi et al. (2014) and Ma
et al. (2015a, 2017b). As a word of caution, note that we avoid prescribing the name “primal”
or “dual” directly to either of the problems (A) or (B), as we demonstrate below that their
role as primal or dual can change depending on the application problem of interest.

2.3 Assumptions and Problem Cases

Assumptions. Our main assumptions on problem (A) are that f is (1/τ)-smooth, and
the function g is separable, i.e., g(α) =

∑
i gi(αi), with each gi having L-bounded support.

Given the duality between the problems (A) and (B), this can be equivalently stated as
assuming that in problem (B), f∗ is τ -strongly convex, and the function g∗(−A>w) =∑

i g
∗
i (−x>i w) is separable with each g∗i being L-Lipschitz.

Problem cases. Suppose, as in equation (I), we would like to find a minimizer of the
general objective `(u) + r(u). Depending on the smoothness of the function ` and the
strong convexity of the function r, we will be able to map the input function (I) to one (or
both) of the objectives (A) and (B) based on our assumptions. In particular, we outline
three separate cases: Case I, in which the function ` is smooth and the function r is strongly
convex; case II, in which ` is smooth, and r is non-strongly convex and separable; and
case III, in which ` is non-smooth and separable, and r is strongly convex. These cases are
summarized in Table 1. Note that the union of these cases captures most commonly-used
applications of linear regularized loss minimization problems.
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In Section 3, we will see that different variants of the framework may be realized de-
pending on which of these three cases we consider when solving the input problem (I).

Table 1: Criteria for Objectives (A) and (B).

Smooth ` Non-smooth, separable `

Strongly convex r Case I: Obj (A) or (B) Case III: Obj (B)

Non-strongly convex, separable r Case II: Obj (A) –

2.4 Running Examples

To illustrate the cases in Table 1, we consider several examples below. Those interested in
details of the framework itself may skip to Section 3. These applications will serve as running
examples throughout the paper, and we will revisit them in our experiments (Section 6).
For further applications and details, see Section 5.

1. Elastic Net Regression (Case I: map to either (A) or (B)). We can map elastic-net
regularized least squares regression,

min
u∈Rp

1
2‖Au− b‖22 + ηλ‖u‖1 + (1− η)

λ

2
‖u‖22 , (7)

to either objective (A) or (B). To map to objective (A), we let: f(Aα) = 1
2‖Aα−b‖22

and g(α) =
∑

i gi(αi) =
∑

i ηλ|αi| + (1 − η)λ2α
2
i , setting n to be the number of

features and m the number of training points. To map to (B), we let: g(−A>w) =∑
i g
∗
i (−x>i w) =

∑
i

1
2(x>i w − bi)2 and f∗(w) = ηλ‖w‖1 + (1 − η)λ2‖w‖

2
2, setting m

to be the number of features and n the number of training points. We discuss in
Section 3 how the choice of mapping to either (A) or to (B) can have implications on
the distribution scheme and overall performance of the framework.

2. Lasso (Case II: map to (A)). We can represent L1-regularized least squares regression
by mapping the model:

min
u∈Rp

1
2‖Au− b‖22 + λ‖u‖1 (8)

to objective (A), letting f(Aα) = 1
2‖Aα − b‖22 and g(α) =

∑
i gi(αi) =

∑
i λ|αi|.

In this mapping, n represents the number of features, and m the number of training
points. Note that we cannot map the lasso objective to (B) directly, as f∗ must be
τ -strongly convex and the L1-norm is non-strongly convex.

3. Support Vector Machine (Case III: map to (B)). We can represent a hinge loss support
vector machine (SVM) by mapping the model:

min
u∈Rp

1

m

m∑
i=1

max
{

0, 1− yi(x>i u)
}

+ λ
2‖u‖

2
2 , (9)

to objective (B), letting g∗(−A>w) =
∑

i g
∗
i (−x>i w) =

∑
i

1
n max{0, 1− yix>i w} and

f∗(w) = λ
2‖w‖

2
2. In this mapping, m represents the number of features, and n the

number of training points. Note that we cannot map the hinge loss SVM primal to
objective (A) directly, as f must be (1/τ)-smooth and the hinge loss is non-smooth.
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2.5 Data Partitioning

In this work, we are interested in the setting where the dataset at hand is distributed across
multiple machines. We assume that the dataset A is distributed over K machines according
to a partition {Pk}Kk=1 of the columns of A ∈ Rm×n. We denote the size of the partition on
machine k by nk = |Pk|. For machine k ∈ {1, . . . ,K} and weight vector α ∈ Rn, we define
α[k] ∈ Rn as the n-vector with elements (α[k])i := αi if i ∈ Pk and (α[k])i := 0 otherwise.
Analogously, we write A[k] for the corresponding group of columns of A, and zeros elsewhere
(note that columns can correspond to either training examples or features, depending on
the application). We discuss these distribution schemes in greater detail in Section 3.

3. The CoCoA Method

In the following sections, we describe the proposed framework, CoCoA, at a high level, and
then discuss two approaches for using the framework in practice: CoCoA in the primal,
where we consider (A) to be the primal objective and run the framework on this problem
directly, and CoCoA in the dual, where we instead consider (B) to be the primal objective,
and then run the framework on the dual (A).

Note that in both approaches, the aim will be to compute a minimizer of the problem (A)
in a distributed fashion; the main difference will be whether we view (A) as the primal
objective or as the dual objective.

3.1 The Generalized Framework

The goal of the CoCoA framework is to find a global minimizer of the objective (A), while
distributing computation based on the partitioning of the dataset A across machines (Sec-
tion 2.5). As a first step, note that distributing the update to the function g in objective (A)
is straightforward, as we have required that this term is separable according to the parti-
tioning of our data, i.e., g(α) =

∑n
i=1 gi(αi). However, the same does not hold for the

term f(Aα). To minimize this part of the objective in a distributed fashion, we propose
minimizing a quadratic approximation of the function, which allows the minimization to
separate across machines. We make this approximation precise in the following subsection.

Data-local quadratic subproblems. In the general CoCoA framework (Algorithm 1),
we distribute computation by defining a data-local subproblem of the optimization prob-
lem (A) for each machine. This simpler problem can be solved on machine k and only
requires accessing data which is already available locally, i.e., the columns A[k]. More for-
mally, each machine k is assigned the following local subproblem, which depends only on
the previous shared vector v := Aα ∈ Rm, and the local data A[k]:

min
∆α[k]∈Rn

Gσ′k (∆α[k];v,α[k]) , (10)

where

Gσ′k (∆α[k];v,α[k]) :=
1

K
f(v) + w>A[k]∆α[k] +

σ′

2τ

∥∥∥A[k]∆α[k]

∥∥∥2
+
∑
i∈Pk

gi(αi + ∆α[k]i
),

7
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Algorithm 1 Generalized CoCoA Distributed Framework

1: Input: Data matrix A distributed column-wise according to partition {Pk}Kk=1, aggrega-
tion parameter γ∈(0, 1], and parameter σ′ for the local subproblems Gσ′k (∆α[k];v,α[k]).
Starting point α(0) := 0 ∈ Rn, v(0) := 0 ∈ Rm.

2: for t = 0, 1, 2, . . . do
3: for k ∈ {1, 2, . . . ,K} in parallel over computers do
4: call local solver, returning a Θ-approximate solution ∆α[k] of the local subprob-

lem (10)
5: update local variables α(t+1)

[k] := α
(t)
[k] + γ∆α[k]

6: return updates to shared state ∆vk := A[k]∆α[k]

7: end for
8: reduce v(t+1) := v(t) + γ

∑K
k=1 ∆vk

9: end for

andw := ∇f(v). Here we let ∆α[k] denote the change of local variables αi for indices i ∈ Pk,
and we set (∆α[k])i := 0 for all i /∈ Pk. It is important to note that the subproblem (10)
is simple in the sense that it is always a quadratic objective (apart from the gi term). The
subproblem does not depend on the function f itself, but only its linearization at the fixed
shared vector v. This property additionally simplifies the task of the local solver, especially
for cases of complex functions f .

Framework parameters γ and σ′. There are two parameters that must be set in the
framework: γ, the aggregation parameter, which controls how the updates from each machine
are combined, and σ′, the subproblem parameter, which is a data-dependent term measuring
the difficulty of the data partitioning {Pk}Kk=1. These terms play a crucial role in the
convergence of the method, as we demonstrate in Section 4. In practice, we provide a simple
and robust way to set these parameters: For a given aggregation parameter γ ∈ (0, 1], the
subproblem parameter σ′ will be set as σ′ := γK, but can also be improved in a data-
dependent way as we discuss below. In general, as we show in Section 4, setting γ := 1 and
σ′ := K will guarantee convergence while delivering our fastest convergence rates.

Definition 5 (Data-dependent aggregation parameter). In Algorithm 1, the aggregation
parameter γ controls the level of adding (γ := 1) versus averaging (γ := 1

K ) of the partial
solutions from all machines. For our convergence results (Section 4) to hold, the subproblem
parameter σ′ must be chosen not smaller than

σ′ ≥ σ′min := γ max
α∈Rn

‖Aα‖2∑K
k=1 ‖A[k]α[k]‖2

. (11)

The simple choice of σ′ := γK is valid for (11), i.e.,

γK ≥ σ′min .

In some cases, it will be possible to give a better (data-dependent) choice for σ′, closer to
the actual bound given in σ′min.

8



CoCoA: A General Framework for Communication-Efficient Distributed Optimization

Subproblem interpretation. Here we provide further intuition behind the data-local
subproblems (10). The local objective functions Gσ′k are defined to closely approximate the
global objective in (A) as the “local” variable ∆α[k] varies, which we will see in the analysis
(Appendix D, Lemma 1). In fact, if the subproblem were solved exactly, this could be
interpreted as a data-dependent, block-separable proximal step, applied to the f part of the
objective (A) as follows:

K∑
k=1

Gσ′k (∆α[k];v,α[k]) = R+f(v)+∇f(v)>A∆α+
σ′

2τ
∆α>

A
>
[1]A[1] 0

. . .
0 A>[K]A[K]

∆α, (12)

where R =
∑

i∈[n] gi(−αi −∆αi) .
However, note that in contrast to traditional proximal methods, CoCoA does not as-

sume that this subproblem is solved to high accuracy, as we instead allow the use of local
solvers of any approximation quality Θ.

Reusability of existing single-machine solvers. The local subproblems (10) have the
appealing property of being very similar in structure to the global problem (A), with the
main difference being that they are defined on a smaller (local) subset of the data, and
are simpler because they are not dependent on the shape of f . For a user of CoCoA, this
presents a significant advantage in that existing single machine-solvers can be directly re-used
in our distributed framework (Algorithm 1) by employing them on the subproblems Gσ′k .

Therefore, problem-specific tuned solvers which have already been developed, along with
associated speed improvements (such as multi-core implementations), can be easily leveraged
in the distributed setting. We quantify the dependence on local solver performance with
the following assumption and remark, and relate this performance to our global convergence
rates in Section 4.

Assumption 1 (Θ-approximate solution). We assume that there exists Θ ∈ [0, 1) such
that ∀k ∈ [K], the local solver at any outer iteration t produces a (possibly) randomized
approximate solution ∆α[k], which satisfies

E
[
Gσ′k (∆α[k];v,α[k])− Gσ

′
k (∆α?

[k];v,α[k])
]

Gσ′k ( 0 ;v,α[k])− Gσ
′

k (∆α?
[k];v,α[k])

≤ Θ , (13)

where
∆α?

[k] ∈ arg min
∆α∈Rn

Gσ′k (∆α[k];v,α[k]), ∀k ∈ [K] . (14)

Remark 1. In practice, the time spent solving the local subproblems in parallel should be
chosen comparable to the time of a communication round, for best overall efficiency on a
given system. We study this trade-off in theory (Section 4) and experiments (Section 6).

Remark 2. Note that the accuracy parameter Θ does not have to be chosen a priori: Our
convergence results (Section 4) are valid if Θ is an upper bound on the actual empirical
values Θ in Algorithm 1. This allows for some of the K machines to at times deliver better
or worse accuracy Θ (e.g., this would allow a slow local machine to be stopped early during
a specific round in order to avoid stragglers). See (Smith et al., 2017) for more details.

9
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Remark 3. From a theoretical perspective, the multiplicative notion of accuracy is advan-
tageous over classical additive accuracy as existing convergence results for first- and second-
order optimization methods typically appear in multiplicative form, i.e., relative to the error
at the initialization point (here ∆α[k] = 0). This accuracy notion Θ is also useful beyond
the distributed setting (see, e.g., Karimireddy et al., 2018a,b). We discuss local solvers and
associated rates to achieve accuracy Θ for particular applications in Section 5.

With this general framework in place, we next discuss two variants of our framework,
CoCoA-Primal and CoCoA-Dual. In running either the primal or dual variant of the
framework, the goal will always be to solve objective (A) in a distributed fashion. The
main difference will be whether this objective is viewed as the primal or dual of the input
problem (I). We make this mapping technique precise and discuss its implications in the
following subsections (Sections 3.2–3.4).

3.2 Primal Distributed Optimization

In the primal distributed version of the framework (Algorithm 2), the framework is run by
mapping the initial problem (I) directly to objective (A) and then applying the generalized
CoCoA framework described in Algorithm 1. In other words, we view problem (A) as the
primal objective, and solve this problem directly.

From a theoretical perspective, viewing (A) as the primal will allow us to consider non-
strongly convex regularizers, since we allow the terms gi to be non-strongly convex. This
setting was not covered in earlier work of Yang (2013); Jaggi et al. (2014); Ma et al. (2015a);
and Ma et al. (2017b), and we discuss it in detail in Section 4, as additional machinery must
be introduced to develop primal-dual rates for this setting.

Running the primal version of the framework has important practical implications in the
distributed setting, as it typically implies that the data is distributed by feature rather than
by training point. In this setting, the amount of communication at every outer iteration will
be O(# of training points). When the number of features is high (as is common when using
sparsity-inducing regularizers) this can help to reduce communication and improve overall
performance, as we demonstrate in Section 6.

Algorithm 2 CoCoA-Primal (Mapping Problem (I) to (A))

1: Map: Input problem (I) to objective (A)
2: Distribute: Dataset A by columns (here typically features) according to par-

tition {Pk}Kk=1

3: Run: Algorithm 1 with aggregation parameter γ and subproblem parameter σ′

3.3 Dual Distributed Optimization

In the dual distributed version of the framework (Algorithm 3), we run the framework by
mapping the original problem (I) to objective (B), and then solve the problem by running
Algorithm 1 on the dual (A). In other words, we view problem (B) as the primal, and solve
this problem via the dual (A).

10
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This version of the framework will allow us to consider non-smooth losses, such as the
hinge loss or absolute deviation loss, since the terms g∗i can be non-smooth. From a practical
perspective, this version of the framework will typically imply that the data is distributed
by training point, and for a vector O(# of features) to be communicated at every outer
iteration. This variant may therefore be preferable when the number of training points
exceeds the number of features.

Algorithm 3 CoCoA-Dual (Mapping Problem (I) to (B))

1: Map: Input problem (I) to objective (B)
2: Distribute: Dataset A by columns (here typically training points) according

to partition {Pk}Kk=1

3: Run: Algorithm 1 with aggregation parameter γ and subproblem parameter σ′

3.4 Primal vs. Dual

In Table 2, we revisit the three cases from Section 2, showing how the primal and dual
variants of CoCoA can be applied to various input problems `(u) + r(u), depending on
properties of the functions ` and r. In particular, in the setting where ` is smooth and r
is strongly convex, the user may choose whether to run the framework in the primal (Algo-
rithm 2), or in the dual (Algorithm 3).

Intuitively, Algorithm 2 will be preferable as r loses strong convexity, and Algorithm 3
will be preferable as ` loses smoothness. However, there are also systems-related aspects to
consider. In Algorithm 2, we typically distribute the data by feature, and in Algorithm 3,
by training point (this distribution depends on how the terms n and m are defined in our
mapping; see Section 5). Depending on whether the number of features or number of training
points is the dominating term, we may chose to run Algorithm 2 or Algorithm 3, respectively,
in order to reduce communication costs. We validate these ideas empirically in Section 6 by
comparing the performance of each variant (primal vs. dual) on real distributed datasets.

Table 2: Criteria for Running Algorithms 2 vs. 3.

Smooth ` Non-smooth and separable `

Strongly convex r Case I: Alg. 2 or 3 Case III: Alg. 3

Non-strongly convex and separable r Case II: Alg. 2 –

In the following subsection, we provide greater insight into the CoCoA framework and
its relation to prior work. An extended discussion on related work is available in Section 7.

3.5 Interpretations of CoCoA

There are numerous methods that have been developed to solve (A) and (B) in parallel and
distributed environments. We describe related work in detail in Section 7, and here briefly
position CoCoA and in relation to other widely-used parallel and distributed methods.

11
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CoCoA in the context of classical parallelization schemes. We first contrast Co-
CoA with common distributed mini-batch and batch methods, such as mini-batch stochastic
gradient descent or coordinate descent, gradient descent, and quasi-Newton methods.

CoCoA is similar to these methods in that they are all iterative, i.e., they make progress
towards the optimal solution by updating the parameter vector α according to some func-
tion h: Rn→Rn at each iteration t: α(t+1)=h(α(t)), t=0, 1, . . . , until convergence is reached.
From a coordinate-wise perspective, two approaches to update α iteratively include the Ja-
cobi “all-at-once” and Gauss-Seidel “one-at-a-time” methods (Bersekas and Tsitsiklis, 1989):

Jacobi: α
(t+1)
i = hi(α

(t)
1 , . . . , α(t)

n ), i = 1, . . . , n,

Gauss-Seidel: α
(t+1)
i = hi(α

(t+1)
1 , . . . , α

(t+1)
i−1 , α

(t)
i , . . . , α

(t)
n ), i = 1, . . . , n.

The Jacobi method does not require information from the other coordinates to update
coordinate i, which makes this style of method well-suited for parallelization. However, the
sequential Gauss-Seidel-style method tends to converge faster in terms of iterations, as it is
able to incorporate information from the updates of other coordinates more quickly. This
difference is well-known and evident in single machine solvers, where stochastic methods
(benefiting from fresh updates) tend to outperform their batch counterparts.

Typical mini-batch methods, e.g., mini-batch coordinate descent, perform a Jacobi-style
update on a subset of the coordinates at each iteration. This makes these methods amenable
to high levels of parallelization. However, they are unable to incorporate information as
quickly as their serial counterparts in terms of number of data points accessed, as synchro-
nization is required before updating the coordinates. As the size of the mini-batch grows,
this can increase the runtime and even lead to divergence (Richtárik and Takáč, 2016).

CoCoA instead aims to combine attractive properties of both of these update paradigms.
In CoCoA, Jacobi-style updates are applied in parallel to blocks of the coordinates of α to
distribute the method, while allowing for (though not necessarily requiring) faster Gauss-
Seidel-style updates on each machine. This change in parallelization scheme is one of the
key reasons for improved performance over simpler mini-batch or batch style methods.

Two extremes: from distributed CD to one-shot communication. In addition to
the parallel block-Jacobi updating scheme described above, CoCoA incorporates an ad-
ditional level of flexibility by allowing for an arbitrary number of sequential Gauss-Seidel
iterations (or any local solver for that matter) to be performed locally on each machine.
This flexibility is critical in the distributed setting, as one of the key indicators of parallel
efficiency is the time spent on local computation vs. communication. In particular, the
flexibility to solve each subproblem to arbitrary accuracy, Θ, allows CoCoA to scale from
low-communication environments, where more iterations can be performed before commu-
nicating, to high communication environments, where fewer local iterations are necessary.

In comparison with other distributed methods, this flexibility also affords an explanation
of CoCoA as a method that can freely move between two extremes. On one extreme, if
the subproblems (10) are solved exactly, CoCoA recovers block coordinate descent, where
the coordinate updates are applied as part of a block-separable proximal step (12). If
only one outer round of communication is performed, this is similar in spirit to one-shot
communication schemes, which attempt to completely solve for and then combine locally-
computed models (see, e.g., Mann et al., 2009; Zhang et al., 2013; Heinze et al., 2016). While
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these one-shot communication schemes are ideal in terms of reducing communication, they
are, in contrast to CoCoA, generally not guaranteed to converge to the optimal solution.

On the other extreme, if just a single update (i.e., with respect to one coordinate αi)
is performed at each communication round, this recovers traditional distributed coordinate
descent. In comparison to CoCoA, vanilla distributed coordinate descent can suffer from
a high communication bottleneck due to the low relative amount of local computation.
Even in the case of mini-batch coordinate descent, the most amount of work that can be
performed locally at each round includes a single pass through the data, whereas CoCoA
has the flexibility to take multiple passes. We empirically compare to mini-batch distributed
coordinate descent in Section 6 to demonstrate the effect of this issue in practice.

Comparison to ADMM. Finally, we provide a direct comparison between CoCoA and
the alternating direction method of multipliers (ADMM), a well-established framework for
distributed optimization (Boyd et al., 2010). Similar to CoCoA, ADMM defines a sub-
problem for each machine to solve in parallel, rather than parallelizing a mini-batch update.
ADMM also leverages duality structure, similar to that presented in Section 2. For consensus
ADMM (Mota et al., 2013), (B) is decomposed with a re-parameterization:

max
w1,...wK ,w

K∑
k=1

∑
i∈Pk

g∗(−x>i wk) + f∗(w) s.t. wk = w, k = 1, . . . ,K.

This problem is then solved by constructing the augmented Lagrangian, which yields the
following decomposable updates:

w
(t+1)
k = arg min

wk

∑
i∈Pk

g∗i (−x>i wk) + ρu
(t)
k

>
(wk −w(t)) +

ρ

2
‖wk −w(t)‖2,

w(t+1) = arg min
w

f∗(w) +
ρK

2
‖w − (w̄

(t+1)
k + ū

(t)
k )‖2,

u
(t+1)
k = u

(t)
k + w

(t+1)
k −w(t+1),

where ρ is a penalty parameter that must be tuned for best performance. It can be shown
that the update to wk can be reformulated in terms of the conjugate functions gi as:

arg min
α[k]

∑
i∈Pk

gi(α[k]i
) + (w(t) − u

(t)
k )>A[k]α[k] +

1

2ρ
‖A[k]α[k]‖2 . (15)

Thus, we see that the update to wk closely matches the CoCoA subproblem (10), where
ρ := τ

σ′ . This is intuitive as both methods use proximal steps to derive the subproblem, and
a similar result can be shown when applying ADMM to the (A) formulation, which can be
seen as an instantiation of the sharing variant of ADMM (Boyd et al., 2010, Section 7.3).

However, there remain major differences between the methods despite this connection.
First, CoCoA has a more direct and simplified scheme for updating the global weight
vector w, as the additional proximal step is not required. Second, in CoCoA, there is
no need to tune any parameters such as ρ, as the method can be run simply using σ′=K.
Finally, in the CoCoA method and theory, the subproblem can be solved approximately
to any accuracy Θ, rather than requiring a full batch update as in ADMM. We will see in
our experiments that these differences have a substantial impact in practice (Section 6). We
provide a full derivation of the comparison to ADMM for reference in Appendix C.
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4. Convergence Analysis

In this section, we provide convergence rates for the proposed framework and introduce a
key theoretical technique in analyzing non-strongly convex terms in the primal-dual setting.

For simplicity of presentation, we assume in the analysis that the data partitioning is
balanced, i.e., nk = n/K for all k. Furthermore, we assume that the columns of A satisfy
‖xi‖ ≤ 1 for all i ∈ [n], and OB contains the average term 1

n

∑n
i=1 g

∗
i (·), as is common in

ERM-type problems. We present rates for the case where γ := 1 in Algorithm 1, and where
the subproblems (10) are defined using the corresponding safe bound σ′ := K. This case
will guarantee convergence while delivering our fastest rates in the distributed setting, which
in particular do not degrade as the number of machines K increases and n remains fixed.
More general rates and all proof details can be found in the appendix.

4.1 Proof Strategy: Relating Subproblem Approximation to Global Progress

To guarantee convergence, it is critical to show how progress made on the local subprob-
lems (10) relates to the global objective OA. Our first lemma provides exactly this informa-
tion. In particular, we see that if the aggregation and subproblem parameters are selected
according to Definition 5, the sum of the subproblem objectives,

∑K
k=1 Gσ

′
k , will form a

block-separable upper bound on the global objective OA.

Lemma 1. For any weight vector α,∆α ∈ Rn, v = v(α) := Aα, and real values γ, σ′

satisfying (11), it holds that

OA
(
α + γ

K∑
k=1

∆α[k]

)
≤ (1− γ)OA(α) + γ

K∑
k=1

Gσ′k (∆α[k];v,α[k]) . (16)

A proof of Lemma 1 is provided in Appendix D. We use this main lemma, in combination
with our measure of quality of the subproblem approximations (Assumption 1), to deliver
global convergence rates.

4.2 Rates for General Convex gi, L-Lipschitz g∗i
Our first main theorem provides convergence guarantees for objectives with general convex gi
(or, equivalently, L-Lipschitz g∗i ), including models with non-strongly convex regularizers
such as lasso and sparse logistic regression, or models with non-smooth losses, such as the
hinge loss support vector machine.

Theorem 2. Consider Algorithm 1 with γ := 1, and let Θ be the quality of the local solver
as in Assumption 1. Let gi have L-bounded support, and let f be (1/τ)-smooth. Then after T
iterations, where

T ≥ T0 + max{
⌈ 1

1−Θ

⌉
,

4L2

τεG(1−Θ)
} , (17)

T0 ≥ t0 +
[ 2

1−Θ

(
8L2

τεG
− 1

)]
+
,

t0 ≥ max(0,
⌈

1
(1−Θ) log

(
τn(OA(α(0))−OA(α?))

2L2K

)⌉
) ,
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we have that the expected duality gap satisfies

E
[
OA(α)− (−OB(w(α)))

]
≤ εG ,

where α is the averaged iterate: 1
T−T0

∑T−1
t=T0+1 α

(t).

Providing primal-dual rates and globally defined primal-dual accuracy certificates for
these objectives may require a theoretical technique that we introduce below, in which we
show how to satisfy the notion of L-bounded support for gi, as stated in Definition 2.

4.2.1 Bounded support modification

Additional work is necessary if Theorem 2 is to be applied to non-strongly convex regularizers
such as the L1 norm, which do not have L-bounded support for each gi, and thus violate the
main assumptions. Note for example that the conjugate function of gi = | · |, which is the
indicator function of an interval, is not defined globally over R, and thus (without further
modification) the duality gap G(α):=OA(α)-(-OB(w(α))) is not defined at all points α.

Smoothing. To address this problem, existing approaches typically use a simple smooth-
ing technique (e.g., Nesterov, 2005; Shalev-Shwartz and Zhang, 2014): by adding a small
amount of L2 regularization, the functions gi become strongly convex. Following this change,
the methods are run on the dual instead of the original primal problem. While this modifi-
cation satisfies the necessary assumptions for convergence, this smoothing technique is often
undesirable in practice, as it changes the iterates, the algorithms at hand, the convergence
rate, and the tightness of the resulting duality gap compared to the original objective. Fur-
ther, the amount of smoothing can be difficult to tune and has a large impact on empirical
performance. We perform experiments to highlight these issues in practice in Section 6.

Bounded support modification. In contrast to smoothing, our approach preserves all
solutions of the original objective, leaves the iterate sequence unchanged, and allows for
direct reusability of existing solvers for the original gi objectives (such as L1 solvers). It
also removes the need for tuning a smoothing parameter. To achieve this, we modify the
function gi by imposing an additional weak constraint that is inactive in our region of
interest. Formally, we replace gi(αi) by the following modified function:

ḡi(αi) :=

{
gi(αi) : αi ∈ [−B,B]

+∞ : otherwise.
(18)

For large enough B, this problem yields the same solution as the original objective. Note
also that this only affects convergence theory, in that it allows us to present a strong primal-
dual rate (Theorem 2 for L=B). The modification of gi does not affect the algorithms for
the original problems. Whenever a monotone optimizer is used, we will never leave the level
set defined by the objective at the starting point.

Using the resulting modified function will allow us to apply the results of Theorem 2
for general convex functions gi. This technique can also be thought of as “Lipschitzing”
the dual g∗i , because of the general result that g∗i is L-Lipschitz if and only if gi has L-
bounded support (Rockafellar, 1997, Corollary 13.3.3). We derive the conjugate function ḡ∗i
for completeness in Appendix B (Lemma 6). In Section 5, we show how to leverage this
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technique for a variety of application input problems. See also Dünner et al. (2016) for a
follow-up discussion of this technique in the non-distributed case.

4.3 Rates for Strongly Convex gi, Smooth g∗i

For the case of objectives with strongly convex gi (or, equivalently, smooth g∗i ), e.g., elastic
net regression or logistic regression, we obtain the following faster linear convergence rate.

Theorem 3. Consider Algorithm 1 with γ := 1, and let Θ be the quality of the local solver
as in Assumption 1. Let gi be µ-strongly convex ∀i ∈ [n], and let f be (1/τ)-smooth. Then
after T iterations where

T ≥ 1
(1−Θ)

µτ+1
µτ log 1

εOA
, (19)

it holds that
E
[
OA(α(T ))−OA(α?)

]
≤ εOA .

Furthermore, after T iterations with

T ≥ 1
(1−Θ)

µτ+1
µτ log

(
1

(1−Θ)
µτ+1
µτ

1
εG

)
,

we have the expected duality gap

E
[
OA(α(T ))− (−OB(w(α(T )))

]
≤ εG .

We provide proofs of both Theorem 2 and Theorem 3 in Appendix D.

4.4 Convergence Cases

Revisiting Table 1 from Section 2, we summarize our convergence guarantees for the three
cases of input problems (I) in the following table. In particular, we see that for cases II and
III, we obtain a sublinear convergence rate, whereas for case I we can obtain a faster linear
rate, as provided in Theorem 3.

Table 3: Applications of Convergence Rates.

Smooth ` Non-smooth, separable `

Strongly convex r Case I: Theorem 3 Case III: Theorem 2

Non-strongly convex, separable r Case II: Theorem 2 –

4.5 Recovering Earlier Work as a Special Case

As a special case, the proposed framework and rates directly apply to L2-regularized loss-
minimization problems, including those presented in the earlier work of Jaggi et al. (2014)
and Ma et al. (2015a).

Remark 4. If we run Algorithm 3 (mapping (I) to (B)) and restrict f∗(·) := λ
2‖·‖

2 (so that
τ = λ), Theorem 2 recovers as a special case the CoCoA+ rates for general L-Lipschitz `∗i
losses (see Ma et al., 2015a, Corollary 9). The earlier work of CoCoA-v1 (Jaggi et al.,
2014) did not provide rates for L-Lipschitz `∗i losses.
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Remark 5. If we run Algorithm 3 (mapping (I) to (B)) and restrict f∗(·) := λ
2‖·‖

2 (so that
τ = λ), Theorem 3 recovers as a special case the CoCoA+ rates for (1/`∗i )-smooth losses
(see Ma et al., 2015a, Corollary 11). The earlier rates of CoCoA-v1 can be obtained by
setting γ:= 1

K and σ′=1 in Algorithm 1 (Jaggi et al., 2014, Theorem 2).

These cases follow since g∗i is L-Lipschitz if and only if gi has L-bounded support (Rock-
afellar, 1997, Corollary 13.3.3), and g∗i is µ-strongly convex if and only if gi is (1/µ)-smooth
(Hiriart-Urruty and Lemaréchal, 2001, Theorem 4.2.2).

5. Applications

In this section we detail example applications that can be cast within the general CoCoA
framework. For each example, we describe the primal-dual setup and algorithmic details,
discuss the convergence properties our framework for the application, and include practical
concerns such as information on state-of-the-art local solvers. We discuss examples according
to the three cases defined in Table 1 of Section 2 for finding a minimizer of the general
objective `(u) + r(u), and provide a summary of these common examples in Table 4.

Table 4: Common Losses and Regularizers.

(i) Losses

Loss Obj f / g∗

Least Squares (A) f= 1
2
‖Aα− b‖22

(B) g∗= 1
2
‖A>w − b‖22

Logistic Reg. (A) f= 1
m

∑
j log(1+exp(bjx

>
j α))

(B) g∗= 1
n

∑
ilog(1+exp(bix

>
i w))

SVM (B) g∗= 1
n

∑
imax(0, 1−yix>i w)

Absolute Dev. (B) g∗ = 1
n

∑
i |x
>
i w − yi|

(ii) Regularizers

Regularizer Obj g / f∗

Elastic Net (A) g=λ(η‖α‖1+ 1−η
2
‖α‖22)

(B) f∗=λ(η‖w‖1+ 1−η
2
‖w‖22)

L2 (A) g=λ
2
‖α‖22

(B) f∗=λ
2
‖w‖22

L1 (A) g=λ‖α‖1
Group Lasso (A) g=λ

∑
p‖αIp‖2, Ip ⊆ [n]

5.1 Case I: Smooth `, Strongly convex r

For input problems (I) with smooth ` and strongly convex r, Theorem 3 from Section 4 gives
a global linear (geometric) convergence rate. Smooth loss functions can be mapped either
to the function f in objective (A), or g∗ in (B). Similarly, strongly convex regularizers can
be mapped either to function g in objective (A), or f∗ in (B). To illustrate the role of f as
a smooth loss function and g as a strongly convex regularizer in objective (A), contrasting
with their traditional roles in prior work (Yang, 2013; Jaggi et al., 2014; Ma et al., 2015a,
2017b), we consider the following examples. Note that mapping to objective (B) instead
will follow trivially assuming that the loss is separable across training points (see Table 4).

For the examples in this subsection, we use m to represent the number of training points
and n the number of features. Note that these definitions may change in the following sub-
sections: this flexibility is useful so that we can present both the primal and dual variations
of our framework (Algorithms 2 and 3) via a single abstract method (Algorithm 1).
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Smooth `: least squares loss. Let b ∈ Rm be labels or response values, and consider
the least squares objective, f(v) := 1

2‖v − b‖22, which is 1-smooth. We obtain the familiar
least-squares regression objective in our optimization problem (A), using

f(Aα) := 1
2‖Aα− b‖22 . (20)

Observing that the gradient of f is ∇f(v) = v−b, the primal-dual mapping is given by:
w(α) := Aα−b, which is well known as the residual vector in least-squares regression.

Smooth `: logistic regression loss. For classification, we consider a logistic regression
model with m training examples, yj ∈ Rn for j ∈ [m], collected as the rows of the data
matrix A. For each training example, we are given a binary label, which we collect in the vec-
tor b ∈ {−1, 1}m. Formally, the objective is defined as f(v) :=

∑m
j=1 log (1 + exp (−bjvj)),

which is again a separable function. The classifier loss is given by

f(Aα) :=
m∑
j=1

log (1 + exp (−bjy>j α)) , (21)

where α ∈ Rn is the parameter vector. It is not hard to show that f is 1-smooth if the
labels satisfy bj ∈ [−1, 1]. The primal-dual mapping is given by wj(α) :=

−bj
1+exp (bjy>j α)

.

Strongly convex r: elastic net regularizer. An application we can consider for a
strongly convex regularizer, g in (A) or f∗ in (B), is elastic net regularization, ηλ‖u‖1 +
(1− η)λ2‖u‖

2
2, for fixed parameter η ∈ (0, 1]. This can be obtained in (A) by setting

g(α) =
n∑
i=1

gi(αi) :=
n∑
i=1

ηλ|αi|+ (1− η)λ2α
2
i . (22)

For the special case η = 1, we obtain the L1-norm, and for η = 0, we obtain the L2-norm.
The conjugate of gi is given by: g∗i (x) := 1

2(1−η)

([
|x| − η

]
+

)2, where [.]+ is the positive part
operator, [s]+ = s for s > 0, and zero otherwise.

5.2 Case II: Smooth `, Non-Strongly Convex Separable r

In case II, we consider mapping the input problem (I) to objective (A), where ` is assumed
to be smooth, and r non-strongly convex and separable. For smooth losses in (A), we can
consider as examples those provided in Subsection 5.1, e.g., the least squares loss or logistic
loss. For an example of a non-strongly convex regularizer, we consider the important case
of L1 regularization below. Again, we note that this application cannot be realized by
objective (B), where it is assumed that the regularization term f∗ is strongly convex.

Non-strongly convex r: L1 regularizer. L1 regularization is obtained in objective (A)
by letting gi(·) := λ| · |. However, an additional modification is necessary to obtain primal-
dual convergence and certificates for this setting. In particular, we employ the modification
introduced in Section 4, which will guarantee L-bounded support. Formally, we replace
gi(·) = | · | by

ḡ(α) :=

{
|α| : α ∈ [−B,B],

+∞ : otherwise.
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For large enough B, this problem yields the same solution as the original L1-regularized
objective. Note that this only affects convergence theory, in that it allows us to present
a strong primal-dual rate (Theorem 2 for L=B). With this modified L1 regularizer, the
optimization problem (A) with regularization parameter λ becomes

min
α∈Rn

f(Aα) + λ
n∑
i=1

ḡ(αi) . (23)

For large enough choice of the value B, this problems yields the same solution as the original
objective: f(Aα) + λ

∑n
i=1 |αi|. The modified ḡ is simply a constrained version of the

absolute value to the interval [−B,B]. Therefore by setting B to a large enough value that
the values of αi will never reach it, ḡ∗ will be continuous and at the same time make (23)
equivalent to the original objective.

Formally, a simple way to obtain a large enough value of B, so that all solutions are
unaffected, is the following: If we start the algorithm at α = 0, for every point encountered
during execution of a monotone optimizer, the objective values will never become worse
than OA(0). Formally, under the assumption that f is non-negative, we will have that (for
each i):

λ|αi| ≤ f(0) = OA(0) =⇒ |αi| ≤
f(0)

λ
.

We can therefore safely set the value of B as f(0)
λ . For the modified ḡi, the conjugate ḡ∗i is

given by:

ḡ∗i (x) :=

{
0 : x ∈ [−1, 1],

B(|x| − 1) : otherwise.

We provide a proof of this in Appendix B (Lemma 6).

Non-strongly convex r: group lasso. The group lasso penalty can be mapped to
objective (A), with:

g(α) := λ
P∑
p=1

‖αIp‖2 with
P⋃
p=1

Ip = {1, . . . , n} , (24)

where the disjoint sets Ip ⊆ {1, . . . , n} represent a partitioning of the total set of variables.
This penalty can be viewed as an intermediate between a pure L1 or L2 penalty, performing
variable selection only at the group level. The term αIp ∈ R|Ip| denotes part of the vector α
with indices Ip. The conjugate is given by:

g∗(w) = I{w|maxIp∈[n] ‖αIp‖2≤λ}(w).

For details, see, e.g., Dünner et al. (2016) or Boyd and Vandenberghe (2004, Example 3.26).

5.3 Case III: Non-Smooth Separable `, Strongly Convex r

Finally, in case III, we consider mapping the input problem (I) to objective (B), where ` is
assumed to be non-smooth and separable, and r strongly convex. We discuss two common
cases of general non-smooth losses `, including the the hinge loss for classification and
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absolute deviation loss for regression. When paired with a strongly convex regularizer, the
regularizer via f gives rise to the primal-dual mapping, and Theorem 2 provides a sublinear
convergence rate for objectives of this form. We note that these losses cannot be realized
directly by objective (A), where it is assumed that the loss term f is smooth.

Non-smooth `: hinge loss. For classification problems, we can consider a hinge loss
support vector machine model, on n training points in Rm, given with the loss:

g∗(−A>w) =

n∑
i=1

g∗i (−x>i w) :=
1

n

n∑
i=1

max{0, 1− yix>i w}. (25)

The conjugate function of the hinge loss φ(a) = max{0, 1 − b} is given by φ∗(b) = {b if
b ∈ [−1, 0], else ∞}. When using the L2 norm for regularization in this problem: f∗(w) :=
λ‖w‖22, a primal-dual mapping is given by: w(α) := 1

λnAα.

Non-smooth `: absolute deviation loss. The absolute deviation loss, used, e.g., in
quantile regression or least absolute deviation regression, can be realized in objective (B) by
setting:

g∗(−A>w) =
n∑
i=1

g∗i (−x>i w) :=
1

n

n∑
i=1

∣∣∣x>i w − yi∣∣∣ . (26)

The conjugate function of the absolute deviation loss φ(a) = |a − yi| is given by φ∗(−b) =
−byi, with b ∈ [−1, 1].

5.4 Local Solvers

As discussed in Section 3, the subproblems solved on each machine in the CoCoA framework
are appealing in that they are very similar in structure to the global problem (A), with the
main difference being that they are defined on a smaller (local) subset of the data, and
have a simpler dependence on the term f . Therefore, solvers which have already proven
their value in the single machine or multicore setting can be easily leveraged within the
framework. We discuss some specific examples of local solvers below, and point the reader
to Ma et al. (2017b) for an empirical exploration of these choices.

Local solvers for Algorithm 2. In the primal setting (Algorithm 2), the local sub-
problem (10) becomes a simple quadratic problem on the local data, with regularization
applied only to local variables α[k]. For the L1-regularized examples discussed, existing fast
L1-solvers for the single-machine case, such as glmnet variants (Friedman et al., 2010)
or blitz (Johnson and Guestrin, 2015) can be directly applied to each local subproblem
Gσ′k ( · ;v,α[k]) within Algorithm 1. The sparsity induced on the subproblem solutions of
each machine naturally translates into the sparsity of the global solution, since the local
variables α[k] will be concatenated.

In terms of the approximation quality parameter Θ for the local problems (Assump-
tion 1), we can apply existing recent convergence results from the single machine case. For
example, for randomized coordinate descent (as part of glmnet), Lu and Xiao (2013, The-
orem 1) gives a O(1/t) approximation quality for any separable regularizer, including L1

and elastic net; see also Tappenden et al. (2015) and Shalev-Shwartz and Tewari (2011).
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Local solvers for Algorithm 3. In the dual setting (Algorithm 3) for the discussed
examples, the losses are applied only to local variables α[k], and the regularizer is approx-
imated via a quadratic term. Current state of the art for the problems of the form in (B)
are variants of randomized coordinate ascent—Stochastic Dual Coordinate Ascent (SDCA)
(Shalev-Shwartz and Zhang, 2013a). This algorithm and its variants are increasingly used in
practice (Wright, 2015), and extensions such as accelerated and parallel versions can directly
be applied (Shalev-Shwartz and Zhang, 2014; Fan et al., 2008) in our framework. For non-
smooth losses such as SVMs, the analysis of Shalev-Shwartz and Zhang (2013a) provides a
O(1/t) rate, and for smooth losses, a faster linear rate. There have also been recent efforts
to derive a linear convergence rate for problems like the hinge-loss support vector machine
that could be applied, e.g., by using error bound conditions (Necoara and Nedelcu, 2014;
Wang and Lin, 2014), weak strong convexity conditions (Ma et al., 2015b; Necoara, 2015)
or by considering Polyak-Łojasiewicz conditions (Karimi et al., 2016).

6. Experiments

In this section we demonstrate the empirical performance of CoCoA in the distributed
setting. We first compare CoCoA to competing methods for two common machine learning
applications: lasso regression (Section 6.1) and support vector machine (SVM) classification
(Section 6.2). We then explore the performance of CoCoA in the primal versus the dual
directly by solving an elastic net regression model with both variants (Section 6.3). Finally,
we illustrate general properties of the CoCoA method empirically in Section 6.4.

Experimental setup. We compare CoCoA to numerous state-of-the-art general-purpose
methods for large-scale optimization, including:

• Mb-SGD: Mini-batch stochastic gradient. For our experiments with lasso, we compare
against Mb-SGD with an L1-prox.

• GD: Full gradient descent. For lasso we use the proximal version, Prox-GD.

• L-BFGS: Limited-memory quasi-Newton method. For lasso, we use OWL-QN (orthant-
wise limited quasi-Newton).

• ADMM: Alternating direction method of multipliers. We use conjugate gradient inter-
nally for the lasso experiments, and SDCA for SVM experiments.

• Mb-CD: Mini-batch parallel coordinate descent. For SVM experiments, we implement
Mb-SDCA (mini-batch stochastic dual coordinate ascent).

The first three methods are optimized and implemented in Apache Spark’s MLlib (v1.5.0)
(Meng et al., 2016). We test the performance of each method in large-scale experiments fit-
ting lasso, elastic net regression, and SVM models to the datasets shown in Table 5. In com-
paring to other methods, we plot the distance to the optimal primal solution. This optimal
value is calculated by running all methods for a large number of iterations (until progress has
stalled), and then selecting the smallest primal value amongst the results. All code is written
in Apache Spark and experiments are run on public-cloud Amazon EC2 m3.xlarge machines
with one core per machine. Our code is publicly available at gingsmith.github.io/cocoa/.
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Table 5: Datasets for Empirical Study.

Dataset Training Size Feature Size Sparsity

url 2 M 3 M 3.5e-5
epsilon 400 K 2 K 1.0
kddb 19 M 29 M 9.8e-7
webspam 350 K 16 M 2.0e-4

We carefully tune each competing method in our experiments for best performance.
ADMM requires the most tuning, both in selecting the penalty parameter ρ and in solving
the subproblems. Solving the subproblems to completion for ADMM is prohibitively slow,
and we thus use an iterative method internally and improve performance by allowing early
stopping. We also use a varying penalty parameter ρ — practices described in Boyd et al.
(2010, Sections 4.3, 8.2.3, 3.4.1). For Mb-SGD, we tune the step size and mini-batch size
parameters. For Mb-CD and Mb-SDCA, we scale the updates at each round by β

b for mini-
batch size b and β ∈ [1, b], and tune both parameters b and β. Further implementation details
for all methods are given in Section 6.5. For simplicity of presentation and comparison, in all
of the following experiments, we restrict CoCoA to only use simple coordinate descent as
the local solver. We note that even stronger empirical results for CoCoA could be obtained
by plugging in state-of-the-art local solvers for each application at hand.

6.1 CoCoA in the Primal: An Application to Lasso Regression

We first demonstrate the performance of CoCoA in the primal (Algorithm 2) by applying
CoCoA to a lasso regression model (8) fit to the datasets in Table 5. We use stochastic co-
ordinate descent as a local solver for CoCoA, and select the number of local iterations H (a
proxy for subproblem approximation quality, Θ) from several options with best performance.

We compare CoCoA to the general methods listed above, including Mb-SGD with
an L1-prox, Prox-GD, OWL-QN, ADMM, and Mb-CD. We provide a comparison with
Shotgun (Bradley et al., 2011), a popular method for solving L1-regularized problems in
the multicore environment, as an extreme case to highlight the detrimental effects of frequent
communication in the distributed environment. For Mb-CD, Shotgun, and CoCoA in the
primal, datasets are distributed by feature, whereas for Mb-SGD, Prox-GD, OWL-QN
and ADMM they are distributed by training point.

In analyzing the performance of each algorithm (Figure 1), we measure the improvement
to the primal objective given in (A) (OA(α)) in terms of wall-clock time in seconds. We
see that both Mb-SGD and Mb-CD are slow to converge, and come with the additional
burden of having to tune extra parameters (though Mb-CD makes clear improvements
over Mb-SGD). As expected, naively distributing Shotgun (single coordinate updates per
machine) does not perform well, as it is tailored to shared-memory systems and requires
communicating too frequently. OWL-QN performs the best of all compared methods, but
is still much slower to converge than CoCoA, and converges, e.g., 50× more slowly for the
webspam dataset. The optimal performance of CoCoA is particularly evident in datasets
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Figure 1: Suboptimality in terms of OA(α) for fitting a lasso regression model to four
datasets: url (K=4, λ=1e-4), kddb (K=4, λ=1e-6), epsilon (K=8, λ=1e-5), and web-
spam (K=16, λ=1e-5) datasets. CoCoA applied to the primal formulation converges more
quickly than all other compared methods in terms of the time in seconds.

with large numbers of features (e.g., url, kddb, webspam), which are exactly the datasets
where L1 regularization would most typically be applied.

Results are shown for regularization parameters λ such that the resulting weight vector α
is sparse. However, our results are robust to varying values of λ as well as to various problem
settings, as we illustrate in Figure 2.

A case against smoothing. We additionally motivate the use of CoCoA in the primal
by showing how it improves upon CoCoA in the dual (Yang, 2013; Jaggi et al., 2014; Ma
et al., 2015a, 2017b) for non-strongly convex regularizers. First, CoCoA in the dual cannot
be included in the set of experiments in Figure 1 because it cannot be directly applied to
the lasso objective (recall that Algorithm 3 only allows for strongly convex regularizers).

To get around this requirement, previous work has suggested implementing the smooth-
ing technique used in, e.g., Shalev-Shwartz and Zhang (2014); Zhang and Lin (2015) —
adding a small amount of strong convexity δ‖α‖22 to the objective for lasso regression. In
Figure 3 we demonstrate the issues with this approach, comparing CoCoA in the primal
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Figure 2: Suboptimality in terms of OA(α) for solving lasso for the epsilon dataset (left,
K=8) and elastic net for the url dataset, (right, K=4, λ=1e-4). Speedups are robust over
different regularizers λ (left), and across problem settings, including varying η parameters
of elastic net regularization (right).
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CoCoA-Dual /=.01 Table 6: Sparsity of Final Iterates.

Method Sparsity

CoCoA-Primal 0.6030
CoCoA-Dual: δ = 0.0001 0.6035
CoCoA-Dual: δ = 0.001 0.6240
CoCoA-Dual: δ = 0.01 0.6465

Figure 3 & Table 6: For pure L1 regularization, smoothing is not an effective option for
CoCoA in the dual. It either modifies the solution (Figure 3) or slows convergence (Table
6). This motivates running CoCoA instead on the primal for these problems.

on a pure L1-regularized regression problem to CoCoA in the dual for decreasing levels of
δ. The smaller we set δ, the less smooth the problem becomes. As δ decreases, the final
sparsity of running CoCoA in the dual starts to match that of running pure L1 (Table 6),
but the performance also degrades (Figure 3). We note that by using CoCoA in the primal
with the modification presented in Section 4, we can deliver strong rates without having to
make any compromises in terms of the training speed or accuracy.

6.2 CoCoA in the Dual: An Application to SVM Classification

Next we present results on CoCoA in the dual against competing methods, for a hinge
loss support vector machine model (9) on the datasets in Table 5. We use stochastic dual
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coordinate ascent (SDCA) as a local solver for CoCoA in this setting, again selecting the
number of local iterations H from several options with best performance. We compare
CoCoA to the general methods listed above, including Mb-SGD, GD, L-BFGS, ADMM,
and Mb-SDCA. All datasets are distributed by training point for these methods.
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Figure 4: Suboptimality in terms of OB(w) for solving a hinge-loss support vector machine
model: url (K=4, λ=1e-4), kddb (K=4, λ=1e-6), epsilon (K=8, λ=1e-5), and webspam
(K=16, λ=1e-5) datasets. CoCoA applied to the dual formulation converges more quickly
than all other compared methods in terms of the time in seconds.

In comparing methods in this setting (Figure 4), we measure the improvement to the
primal objective OB(w) in terms of wall-clock time in seconds. We see again that Mb-SGD
and Mb-CD are slow to converge, and come with the additional burden of having to tune
extra parameters. ADMM performs the best of the methods other than CoCoA, followed by
L-BFGS. However, both are still much slower to converge than CoCoA in the dual. ADMM
in particular is affected by the fact that many internal iterations of SDCA are necessary in
order to guarantee convergence. In contrast, CoCoA can incorporate arbitrary amounts of
work locally and still converge. We note that although CoCoA, ADMM, and Mb-SDCA
run in the dual, Figure 4 tracks progress towards the primal objective, OB(w).
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6.3 Primal vs. Dual: An Application to Elastic Net Regression

To compare primal vs. dual optimization for CoCoA, we explore both variants by fitting
an elastic net regression model (7) to two datasets. We use coordinate descent (with closed-
form updates) as the local solver in both variants. From the results in Figure 5, we see that
CoCoA in the dual tends to perform better on datasets with a large number of training
points (relative to the number of features), and that the performance deteriorates as the
strong convexity in the problem disappears. In contrast, CoCoA in the primal performs
well on datasets with a large number of features relative to training points, and is robust to
changes in strong convexity. These changes in performance are to be expected, as we have
discussed that CoCoA in the primal is more suited for non-strongly convex regularizers
(Section 6.1), and that the feature size dominates communication for CoCoA in the dual,
as compared to the training point size for CoCoA in the primal (Section 3.4).
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Figure 5: The convergence of CoCoA in the primal versus dual for various values of η in an
elastic net regression model. CoCoA in dual performs better on the Epsilon dataset, where
the training point size is the dominating term, and CoCoA in the primal performs better
on the Webspam dataset, where the feature size is the dominating term. For both datasets,
CoCoA in the dual is susceptible to changes in strong convexity—converging more quickly
as the problem becomes more strongly convex (η → 0), whereas CoCoA in the primal
remains robust to changes in strong convexity.

6.4 General Properties: Effect of Communication

Finally, we note that in contrast to the compared methods from Sections 6.1 and 6.2, Co-
CoA comes with the benefit of having only a single parameter to tune: the subproblem
approximation quality, Θ, which we control in our experiments via the number of local
subproblem iterations, H, for the example of local coordinate descent. We further explore
the effect of this parameter in Figure 6, and provide a general guideline for choosing it in
practice (see Remark 1). In particular, we see that while increasing H always results in bet-
ter performance in terms of the number of communication rounds, smaller or larger values
of H may result in better performance in terms of wall-clock time, depending on the cost
of communication and computation. The flexibility to fine-tune H is one of the reasons for
CoCoA’s significant performance gains.
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Figure 6: Suboptimality in terms of OA(α) for solving lasso for the webspam dataset (K=16,
λ=1e-5). Here we illustrate how the work spent in the local subproblem (given by H) affects
the total performance of CoCoA in terms of number of rounds as well as wall time.

6.5 Experiment Details

In this subsection we provide thorough details on the experimental setup and methods used
in our comparison. All experiments are run on Amazon EC2 clusters of m3.xlarge machines,
with one core per machine. The code for each method is written in Apache Spark, v1.5.0.
Our code is open source and publicly available at gingsmith.github.io/cocoa/.

ADMM. ADMM (Boyd et al., 2010) is a popular method that lends itself naturally to
the distributed environment. For lasso regression, implementing ADMM for the problems
of interest requires solving a large linear system Cx = d on each machine, where C ∈ Rn×n
with n scaling beyond 107 for the datasets in Table 5, and with C being possibly dense. It is
prohibitively slow to solve this directly on each machine, and we therefore employ conjugate
gradient with early stopping (see, e.g., Boyd et al., 2010, Section 4.3). For SVM classification,
we use stochastic dual coordinate ascent as an internal optimizer, which is shown in Zhang
et al. (2012) to have superior performance. We further improve performance with a varying
rather than constant penalty parameter, as suggested in Boyd et al., 2010, Section 3.4.1.

Mini-batch SGD and proximal GD. Mini-batch SGD is a standard and widely used
method for parallel and distributed optimization. We use the optimized code provided in
Spark’s machine learning library, MLlib, v1.5.0 (Meng et al., 2016). We tune both the size of
the mini-batch and SGD step size using grid search. For lasso, we use the proximal version
of the method. Full gradient descent can be seen as a specific setting of mini-batch SGD,
where the mini-batch size is equal to the total number of training points. We thus also use
the implementation in MLlib for full GD, and tune the step size parameter using grid search.

Mini-batch CD and SDCA. Mini-batch CD (for lasso) and SDCA (for SVM) aim
to improve mini-batch SGD by employing coordinate descent, which has theoretical and
practical justifications (Shalev-Shwartz and Tewari, 2011; Takáč et al., 2013; Fercoq and
Richtárik, 2015). We implement mini-batch CD and SDCA in Spark and scale the updates
made at each round by β

b for mini-batch size b and β ∈ [1, b], tuning both parameters b and
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β via grid search. For the case of lasso regression, we implement Shotgun (Bradley et al.,
2011), which is a popular method for parallel optimization. Shotgun can be seen an extreme
case of mini-batch CD where the mini-batch is set to K, i.e., there is a single update made
by each machine per round. We see in the experiments that communicating this frequently
becomes prohibitively slow in the distributed environment.

OWL-QN. OWN-QN (Yu et al., 2010) is a quasi-Newton method optimized in Spark’s
spark.ml package (Meng et al., 2016). Outer iterations of OWL-QN make significant progress
towards convergence, but the iterations themselves can be slow as they require processing
the entire dataset. CoCoA, the mini-batch methods, and ADMM with early stopping all
improve on this by allowing the flexibility to process only a subset of the dataset at each
iteration. CoCoA and ADMM have even greater flexibility by allowing internal methods
to process the dataset more than once. CoCoA makes this approximation quality explicit,
both in theoretical convergence rates and via guidelines for setting the parameter.

CoCoA. We implement CoCoA with coordinate descent as the local solver. We note
that since the framework and theory allow any internal solver to be used, CoCoA could
benefit even beyond the results shown, e.g., by using existing fast L1-solvers for the single-
machine case, such as glmnet variants (Friedman et al., 2010) or blitz (Johnson and
Guestrin, 2015) or SVM solvers like liblinear (Fan et al., 2008). The only parameter
influencing the overall performance of CoCoA is the level of approximation quality, which
we parameterize in the experiments throughH, the number of local iterations of the iterative
method run locally. Our theory relates local approximation quality to global convergence
(Section 4), and we provide a guideline for how to choose this value in practice that links
the parameter to the systems environment at hand (Remark 1).

7. Related Work

There exist myriad optimization methods for the distributed setting; the following section
is not meant to be wholly comprehensive, but to provide an overview of the most prevalent
and related approaches. We additionally note that many new methods have been proposed
since the time of submission of this manuscript in October 2016, including several exten-
sions of the presented CoCoA framework—e.g., for federated learning (Smith et al., 2017),
computing over heterogeneous systems (Dünner et al., 2017), second-order algorithm ex-
tensions (Gargiani, 2017; Lee and Chang, 2017; Dünner et al., 2018; Lee et al., 2018), and
accelerated methods (Ma et al., 2017a; Zheng et al., 2017). We defer the readers to these
follow-up works for the most current literature review.

Single-machine coordinate solvers. For strongly convex regularizers, state-of-the-art
for empirical loss minimization is randomized coordinate ascent on the dual (SDCA) (Shalev-
Shwartz and Zhang, 2013a) and accelerated variants (e.g., Shalev-Shwartz and Zhang, 2014).
In contrast to primal stochastic gradient descent (SGD) methods, the SDCA family is often
preferred as it is free of learning rate parameters and has faster (geometric) convergence
guarantees. Interestingly, a similar trend in coordinate solvers exists in recent lasso liter-
ature, but with the roles of primal and dual reversed. For those problems, primal-based
coordinate descent methods are state-of-the-art, as in glmnet (Friedman et al., 2010) and
extensions (Yuan et al., 2012); see, e.g., the overview in Yuan et al. (2010). However, primal-
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dual rates for unmodified coordinate methods have to our knowledge only been obtained for
strongly convex regularizers to date (Shalev-Shwartz and Zhang, 2014; Zhang and Lin, 2015).

Coordinate descent on L1-regularized problems (i.e., (A) with g(·) = λ‖ · ‖1) can be
interpreted as the iterative minimization of a quadratic approximation of the smooth part
of the objective, followed by a shrinkage step. In the single-coordinate update case, this is
at the core of glmnet (Friedman et al., 2010; Yuan et al., 2010), and widely used in, e.g.,
solvers based on the primal formulation of L1-regularized objectives (Shalev-Shwartz and
Tewari, 2011; Yuan et al., 2012; Bian et al., 2013; Fercoq and Richtárik, 2015; Tappenden
et al., 2015). When changing more than one coordinate at a time, again employing a
quadratic upper bound on the smooth part, this results in a two-loop method as in glmnet
for the special case of logistic regression. In the distributed setting, when the set of active
coordinates coincides with the ones on the local machine, these single-machine approaches
closely resemble the distributed framework proposed here.

Parallel methods. For the general regularized loss minimization problems of interest,
methods based on stochastic subgradient descent (SGD) are well-established. Several vari-
ants of SGD have been proposed for parallel computing, many of which build on the idea of
asynchronous communication (Niu et al., 2011; Duchi et al., 2013). Despite their simplicity
and competitive performance on shared-memory systems, the downside of this approach in
the distributed environment is that the amount of required communication is equal to the
amount of data read locally, since one data point is accessed per machine per round (e.g.,
mini-batch SGD with a batch size of one per worker). These variants are in practice not
competitive with the more communication-efficient methods considered in this work, which
allow more local updates per communication round.

For the specific case of L1-regularized objectives, parallel coordinate descent (with and
without using mini-batches) was proposed in Bradley et al. (2011) (Shotgun) and generalized
in Bian et al. (2013) , and is among the best performing solvers in the parallel setting.
Our framework reduces to Shotgun as a special case when the internal solver is a single-
coordinate update on the subproblem (10), γ = 1, and for a suitable σ′. However, Shotgun
is not covered by our convergence theory, since it uses a potentially unsafe upper bound
of β instead of σ′, which isn’t guaranteed to satisfy our condition for convergence (11). We
compare empirically with Shotgun in Section 6 to highlight the detrimental effects of running
this high-communication method in the distributed environment.

One-shot communication schemes. At the other extreme, there are distributed meth-
ods that use only a single round of communication, such as Mann et al. (2009); Zinkevich
et al. (2010); Zhang et al. (2013); McWilliams et al. (2014); and Heinze et al. (2016). These
methods require additional assumptions on the partitioning of the data, which are usually
not satisfied in practice if the data are distributed “as is”, i.e., if we do not have the op-
portunity to distribute the data in a specific way beforehand. Furthermore, some cannot
guarantee convergence rates beyond what could be achieved if we ignored data residing on all
but a single computer, as shown in Shamir et al. (2014). Additional relevant lower bounds on
the minimum number of communication rounds necessary for a given approximation quality
are presented in Balcan et al. (2012) and Arjevani and Shamir (2015).

Mini-batch methods. Mini-batch methods (which use updates from several training
points or features per round) are more flexible and lie within the two extremes of paral-
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lel and one-shot communication schemes. However, mini-batch versions of both SGD and
coordinate descent (CD) (e.g., Dekel et al., 2012; Takáč et al., 2013; Shalev-Shwartz and
Zhang, 2013b; Shamir and Srebro, 2014; Qu et al., 2015; Richtárik and Takáč, 2016; Dé-
fossez and Bach, 2017) suffer from their convergence rate degrading towards the rate of
batch gradient descent as the size of the mini-batch is increased. This follows because mini-
batch updates are made based on the outdated previous parameter vector w, in contrast to
methods that allow immediate local updates like CoCoA.

Another disadvantage of mini-batch methods is that the aggregation parameter is more
difficult to tune, as it can lie anywhere in the order of mini-batch size. The optimal choice
is often either unknown or too challenging to compute in practice. In the CoCoA frame-
work there is no need to tune parameters, as the aggregation parameter and subproblem
parameters can be set directly using the safe bound discussed in Section 3 (Definition 5).

Batch solvers. ADMM (Boyd et al., 2010), gradient descent, and quasi-Newton methods
such as L-BFGS and are also often used in distributed settings because of their relatively
low communication requirements. However, they require at least a full (distributed) batch
gradient computation at each round, and therefore do not allow the gradual trade-off between
communication and computation provided by CoCoA. In Section 6, we include experimental
comparisons with ADMM, gradient descent, and L-BFGS variants, including orthant-wise
limited memory quasi-Newton (OWL-QN) for the L1 setting (Andrew and Gao, 2007).

Finally, we note that while the convergence rates provided for CoCoA mirror the con-
vergence class of classical batch gradient methods in terms of the number of outer rounds,
existing batch gradient methods come with a weaker theory, as they do not allow general
inexactness Θ for the local subproblem (10). In contrast, our convergence rates incorporate
this approximation directly, and, moreover, hold for arbitrary local solvers of much cheaper
cost than batch methods (where in each round, every machine has to process exactly a full
pass through the local data). This makes CoCoA more flexible in the distributed setting,
as it can adapt to varied communication costs on real systems. We have seen in Section 6
that this flexibility results in significant performance gains over the competing methods.

Distributed solvers. By making use of the primal-dual structure in the line of work
of Yu et al. (2012); Pechyony et al. (2011); Yang (2013); Yang et al. (2013) and Lee and
Roth (2015), the CoCoA-v1 and CoCoA+ frameworks (which are special cases of the
presented framework, CoCoA) are the first to allow the use of any local solver—of weak
local approximation quality—in each round in the distributed setting. The practical variant
of the DisDCA (Yang, 2013), called DisDCA-p, allows for additive updates in a similar
manner to CoCoA, but is restricted to coordinate decent (CD) being the local solver,
and was initially proposed without convergence guarantees. DisDCA-p, CoCoA-v1, and
CoCoA+ are all limited to strongly convex regularizers, and therefore are not as general as
the CoCoA framework discussed in this work.

In the L1-regularized setting, an approach related to our framework includes distributed
variants of glmnet as in Mahajan et al. (2017). Inspired by glmnet and Yuan et al.
(2012), the works of Bian et al. (2013) and Mahajan et al. (2017) introduced the idea of a
block-diagonal Hessian upper approximation in the distributed L1 context. The later work
of Trofimov and Genkin (2014, 2016) specialized this approach to sparse logistic regression.
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If hypothetically each of our quadratic subproblems Gσ′k (∆α[k]) as defined in (10) were
to be minimized exactly, the resulting steps could be interpreted as block-wise Newton-type
steps on each coordinate block k, where the Newton-subproblem is modified to also contain
the L1-regularizer (Mahajan et al., 2017; Yuan et al., 2012; Qu et al., 2016). While Mahajan
et al. (2017) allows a fixed accuracy for these subproblems, but not arbitrary approximation
quality Θ as in our framework, the works of Trofimov and Genkin (2016); Yuan et al. (2012);
and Yen et al. (2015) assume that the quadratic subproblems are solved exactly. Therefore,
these methods are not able to freely trade off communication and computation. Also, they
do not allow the re-use of arbitrary local solvers. On the theoretical side, the convergence
rate results provided by Mahajan et al. (2017); Trofimov and Genkin (2016); and Yuan
et al. (2012) are not explicit convergence rates but only asymptotic, as the quadratic upper
bounds are not explicitly controlled for safety as with our σ′.

8. Discussion

To enable large-scale machine learning and signal processing, we have developed, analyzed,
and evaluated a general-purpose framework for communication-efficient primal-dual opti-
mization in the distributed environment. Our framework, CoCoA, takes a unique ap-
proach by using duality to derive subproblems for each machine to solve in parallel. These
subproblems closely match the global problem of interest, which allows for state-of-the-art
single-machine solvers to easily be re-used in the distributed setting. Further, by allowing
the local solvers to find solutions of arbitrary approximation quality to the subproblems
on each machine, our framework permits a highly flexible communication scheme. In par-
ticular, as the local solvers make updates directly to their local parameters, the need to
communicate reduces and can be adapted to the system at hand, which helps to manage
the communication bottleneck in the distributed setting.

We analyzed the impact of the local solver approximation quality and derived global
primal-dual convergence rates for our framework that are agnostic to the specifics of the
local solvers. We have taken particular care in extending our framework to the case of non-
strongly convex regularizers, where we introduced a bounded-support modification technique
to provide robust convergence guarantees. Finally, we demonstrated the efficiency of our
framework in an extensive experimental comparison with state-of-the-art distributed solvers.
Our framework achieves up to a 50× speedup over other widely-used methods on real-world
distributed datasets.
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Appendix A. Convex Conjugates

The convex conjugate of a function f : Rm → R is defined as

f∗(v) := max
u∈Rm

v>u− f(u) . (27)

Below we list several useful properties of conjugates (see, e.g., Boyd and Vandenberghe,
2004, Section 3.3.2):

• Double conjugate: (f∗)∗ = f if f is closed and convex.

• Value Scaling: (for α > 0) f(v) = αg(v) ⇒ f∗(w) = αg∗(w/α) .

• Argument Scaling: (for α 6= 0) f(v) = g(αv) ⇒ f∗(w) = g∗(w/α) .

• Conjugate of a separable sum: f(v) =
∑

i φi(vi) ⇒ f∗(w) =
∑

i φ
∗
i (wi) .

Lemma 4 (Duality between Lipschitzness and L-Bounded Support, (Rockafellar, 1997,
Corollary 13.3.3)). Given a proper convex function f , it holds that f is L-Lipschitz if and
only if f∗ has L-bounded support.

Lemma 5 (Duality between Smoothness and Strong Convexity, (Hiriart-Urruty and Lemaréchal,
2001, Theorem 4.2.2)). Given a closed convex function f , it holds that f is µ strongly convex
w.r.t. the norm ‖ · ‖ if and only if f∗ is (1/µ)-smooth w.r.t. the dual norm ‖ · ‖∗.

Appendix B. Proofs of Primal-Dual Relationships

In the following subsections we provide derivations of the primal-dual relationship of the
general objectives (A) and (B), and then show how to derive the conjugate of the modified
L1-norm, as an example of the bounded-support modification introduced in Section 4.

B.1 Primal-Dual Relationship

The relation of the original formulation (A) to its dual formulation (B) is standard in convex
analysis. Using the linear map A as in our case, the relationship is an instance of Fenchel-
Rockafellar Duality, see e.g. Borwein and Zhu (2005, Theorem 4.4.2) or Bauschke and
Combettes (2011, Proposition 15.18). For completeness, we illustrate this correspondence
with a self-contained derivation of the duality.

Starting with the original formulation (A), we introduce an auxiliary vector v ∈ Rm
representing v = Aα. Then optimization problem (A) becomes:

min
α,v

f(v) + g(α) such that v = Aα . (28)

Introducing Lagrange multipliers w ∈ Rm, the Lagrangian is given by:

L(α,v;w) := f(v) + g(α) + w> (Aα− v) .
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The dual problem of (A) follows by taking the infimum with respect to both α and v:

inf
α,v

L(w,α,v) = inf
v

{
f(v)−w>v

}
+ inf

α

{
g(α) + w>Aα

}
= − sup

v

{
w>v − f(v)

}
− sup

α

{
(−w>A)α− g(α)

}
= −f∗(w)− g∗(−A>w) . (29)

We change signs and turn the maximization of the dual problem (29) into a minimization,
thereby arriving at the dual formulation (B) as claimed:

min
w∈Rm

[
OB(w) := f∗(w) + g∗(−A>w)

]
.

B.2 Continuous Conjugate Modification for Indicator Functions

Lemma 6 (Conjugate of the modified L1-norm). The convex conjugate of the bounded
support modification of the L1-norm, as defined in (18), is:

ḡ∗i (x) :=

{
0 : x ∈ [−1, 1],

B(|x| − 1) : otherwise,

and is B-Lipschitz.

Proof. We start by applying the definition of convex conjugate:

ḡi(α) = sup
x∈R

[αx− ḡ∗i (x)] .

We begin by looking at the case in which α ≥ B; in this case it’s easy to see that when
x→ +∞, we have:

αx−B(|x| − 1) = (α−B)x−B → +∞ ,

as α − B ≥ 0. The case α ≤ −B holds analogously. We’ll now look at the case α ∈ [0, B];
in this case it is clear we must have x? ≥ 0. It also must hold that x? ≤ 1, since

αx−B(x− 1) < αx ,

for every x > 1. Therefore the maximization becomes

ḡi(α) = sup
x∈[0,1]

αx ,

which has maximum α at x = 1. The remaining α ∈ [−B, 0] case follows in similar fashion.
Lipschitz continuity of ḡ∗i follows directly, or alternatively also from the general result

that g∗i is L-Lipschitz if and only if gi has L-bounded support (Rockafellar, 1997, Corollary
13.3.3) or (Dünner et al., 2016, Lemma 5).

33



Smith, Forte, Ma, Takáč, Jordan, and Jaggi

Appendix C. Comparison to ADMM

C.1 ADMM Applied to the OB(·) Formulation

Here we compare consensus ADMM (Mota et al., 2013) applied to the problem (B) to the
CoCoA framework, as discussed in Section 3.5. For consensus ADMM, the objective OB(·)
can be decomposed using the following re-parameterization:

min
w1,...wK ,w

K∑
k=1

∑
i∈Pk

g∗i (−x>i wk) + f∗(w)

s.t. wk = w, k = 1, . . . ,K.

To solve this problem, we construct the augmented Lagrangian:

Lρ(w1, . . . ,wk,w,u1, . . . ,uk) :=

K∑
k=1

∑
i∈Pk

g∗i (−x>i wk)

+ f∗(w) +

K∑
k=1

u>k (wk −w) +
ρ

2

K∑
k=1

‖wk −w‖2 ,

which yields the following decomposable updates:

w
(t+1)
k = arg min

wk

∑
i∈Pk

g∗i (−x>i wk) + u
(t)
k

>
(wk −w(t)) +

ρ

2
‖wk −w(t)‖2,

w(t+1) = arg min
w

f∗(w) +

K∑
k=1

u
(t)
k

>
(w

(t+1)
k −w) +

ρ

2

K∑
k=1

‖w(t+1)
k −w‖2,

u
(t+1)
k = u

(t)
k + ρ(w

(t+1)
k −w(t+1)).

These updates can be further simplified by using the scaled form of uk and combining terms
for w using the averages w̄k and ūk:

w
(t+1)
k = arg min

wk

∑
i∈Pk

g∗i (−x>i wk) + ρu
(t)
k

>
(wk −w(t)) +

ρ

2
‖wk −w(t)‖2,

w(t+1) = arg min
w

f∗(w) +
ρK

2
‖w − (w̄

(t+1)
k + ū

(t)
k )‖2,

u
(t+1)
k = u

(t)
k + w

(t+1)
k −w(t+1).

To compare this to the CoCoA subproblems (10), we will derive the dual form of the update
to wk. Suppressing the iteration counter for simplicity, the minimization is of the form:

min
wk

∑
i∈Pk

g∗i (−x>i wk) + ρuk
>(wk −w) +

ρ

2
‖wk −w‖2

= min
wk

∑
i∈Pk

max
αi
−x>i wkαi − gi(αi) + ρuk

>(wk −w) +
ρ

2
‖wk −w‖2

= max
α[k]

min
wk
−w>k A[k]α[k] −

∑
i∈Pk

gi(α[k]i
) + ρuk

>(wk −w) +
ρ

2
‖wk −w‖2 .
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Solving the minimization yields: wk = 1
ρA[k]α[k] − uk + w. Plugging this back in, we have:

max
α[k]

∑
i∈Pk

−gi(α[k]i
)− (

1

ρ
A[k]α[k] − uk + w)>A[k]α[k] + ρuk

>(
1

ρ
A[k]α[k] − uk) +

ρ

2
‖1

ρ
A[k]α[k] − uk‖2

= max
α[k]

∑
i∈Pk

−gi(α[k]i
) + u>k A[k]α[k] −w>A[k]α[k] −

1

2ρ
‖A[k]α[k]‖2

= min
α[k]

∑
i∈Pk

gi(α[k]i
) + (w − uk)

>A[k]α[k] +
1

2ρ
‖A[k]α[k]‖2 .

We therefore see that the update to wk has a similar form to the CoCoA subproblem (10),
where ρ := τ

σ′ .

C.2 ADMM Applied to the OA(·) Formulation

We can also compare CoCoA to ADMM as applied to the (A) problem. For consensus
ADMM, the objective OA(·) can be decomposed using the following re-parametrization,
which introduces local copies αk of the global variable α, and a set of consensus constraints
to achieve the equality between them:

min
α,α1,...αK

f(Aα) +

K∑
k=1

∑
i∈Pk

gi(αk,i)

s.t. A[k]α = A[k]αk, k = 1, . . . ,K.

To solve this problem, we construct the augmented Lagrangian with a penalty parameter ρ:

Lρ(α̃,α1, . . . ,αK ,w1, . . . ,wk) := f(Aα̃)+

K∑
k=1

∑
i∈Pk

gi(αk,i) + w>k A[k](αk −α) +
ρ

2
‖A[k](αk −α)‖22


which yields to the following decomposable updates:

α
(t)
k = arg min

αk

∑
i∈Pk

gi(αk,i) + w
(t−1)
k

>
A[k](αk −α(t−1)) +

ρ

2
‖A[k](αk −α(t−1))‖22,

α(t) = arg min
α

f(Aα) +
K∑
k=1

[
w

(t−1)>
k A[k](α

(t)
k −α) +

ρ

2
‖A[k](α

(t)
k −α)‖22

]
,

w
(t)
k = w

(t−1)
k + ρA[k](α

(t)
k −α(t)).

The first minimization is solved locally in a distributed manner by the K partitions. By
setting ρ := σ′

τ and applying the change of variables ∆α[k] = (αk − α(t−1)), we can obtain
the CoCoA local subproblems (10):

∆α[k]
(t) = arg min

∆α[k]

∑
i∈Pk

g(α
(t−1)
i + ∆α[k]i

) + w(t−1)>A[k]∆α[k] +
σ′

2τ
‖A[k]∆α[k]‖2
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Note that the update to α in its current form is not separable and must be solved via
some distributed optimization procedure. The comparison to the OB(·) formulation is more
natural in this sense, as it captures a setting and formulation in which distributed ADMM
would more commonly be applied. However, the above formulation is closely related to
the sharing variant of ADMM (Boyd et al., 2010, Section 7.3), where data for canonical
regularized loss minimization problems is assumed to be distributed via features (see, e.g.,
Boyd et al., 2010, Section 8.3).

Appendix D. Convergence Proofs

In this section we provide proofs of our main convergence results. The arguments follow the
reasoning in Ma et al. (2015a, 2017b), but where we have generalized them to be applicable
directly to (A). We provide full details of Lemma 1 as a proof of concept, but omit details
in later proofs that can be derived using the arguments in Ma et al. (2015a) or earlier work
of Shalev-Shwartz and Zhang (2013a), and instead outline the proof strategy and highlight
sections where the theory deviates.

D.1 Approximation of OA(·) by the Local Subproblems Gσ′k (·)

Our first lemma in the overall proof of convergence helps to relate progress on the local
subproblems to the global objective OA(·).

Lemma’ 1. For any dual variables α,∆α ∈ Rn, v = v(α) := Aα, and real values γ, σ′

satisfying (11), it holds that

OA
(
α + γ

K∑
k=1

∆α[k]

)
≤ (1− γ)OA(α) + γ

K∑
k=1

Gσ′k (∆α[k];v,α[k]) . (30)

Proof. In this proof we follow the line of reasoning in Ma et al. (2015a, Lemma 4) with a
more general (1/τ) smoothness assumption on f(·). An outer iteration of CoCoA performs
the following update:

OA(α + γ

K∑
k=1

∆α[k]) = f(v(α + γ

K∑
k=1

∆α[k]))︸ ︷︷ ︸
A

+

n∑
i=1

gi(αi + γ(

K∑
k=1

∆α[k])i)︸ ︷︷ ︸
B

. (31)

We bound A and B separately. First we bound A using (1/τ)-smoothness of f :

A = f
(
v(α + γ

K∑
k=1

∆α[k])
)

= f
(
v(α) + γ

K∑
k=1

v(∆α[k])
)

smoothness of f as in (3)
≤ f(v(α)) +

K∑
k=1

γ∇f(v(α))>v(∆α[k]) +
γ2

2τ
‖

K∑
k=1

v(∆α[k])‖2

definition of w as in (5)
= f(v(α)) +

K∑
k=1

γv(∆α[k])
>w(α) +

γ2

2τ
‖

K∑
k=1

v(∆α[k])‖2

36



CoCoA: A General Framework for Communication-Efficient Distributed Optimization

safe choice of σ′ as in (11)
≤ f(v(α)) +

K∑
k=1

γv(∆α[k])
>w(α) +

1

2τ
γσ′

K∑
k=1

‖v(∆α[k])‖2 .

Next we use Jensen’s inequality to bound B:

B =
K∑
k=1

∑
i∈Pk

gi(αi + γ(∆α[k])i)

 =
K∑
k=1

∑
i∈Pk

gi((1− γ)αi + γ(αi + (∆α[k])i))


≤

K∑
k=1

∑
i∈Pk

(1− γ)gi(αi) + γgi(αi + (∆α[k])i)

 .

Plugging A and B back into (31) yields:

OA
(
α + γ

K∑
k=1

∆α[k]

)
≤ f(v(α))± γf(v(α)) +

K∑
k=1

γv(∆α[k])
>w(α) +

1

2τ
γσ′

K∑
k=1

‖v(∆α[k])‖2

+
K∑
k=1

∑
i∈Pk

(1− γ)gi(αi) + γgi(αi + (∆α[k])i)

= (1− γ)f(v(α)) +

K∑
k=1

∑
i∈Pk

(1− γ)gi(αi)


︸ ︷︷ ︸

(1−γ)OA(α)

+ γ

K∑
k=1

 1

K
f(v(α)) + v(∆α[k])

>w(α) +
σ′

2τ
‖v(∆α[k])‖2 +

∑
i∈Pk

gi(αi + (∆α[k])i)


(10)
= (1− γ)OA(α) + γ

K∑
k=1

Gσ′k (∆α[k];v,α[k]) ,

where the last equality is by the definition of the subproblem objective Gσ′k (.) as in (10).

D.2 Proof of Main Convergence Result (Theorem 2)

Before proving the main convergence results, we introduce several useful quantities, and
establish the following lemma, which characterizes the effect of iterations of Algorithm 1 on
the duality gap for any chosen local solver of approximation quality Θ.

Lemma 7. Let gi be strongly convex 2 with convexity parameter µ ≥ 0 with respect to the
norm ‖ · ‖, ∀i ∈ [n]. Then at each iteration of Algorithm 1 under Assumption 1, and any
s ∈ [0, 1], it holds that

E[OA(α(t))−OA(α(t+1))] ≥ γ(1−Θ)
(
sG(α(t))− σ′s2

2τ
R(t)

)
, (32)

2. Note that the case of weakly convex gi(.) is explicitly allowed here as well, as the Lemma holds for the
case µ = 0.
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where

R(t) := − τµ(1−s)
σ′s ‖u

(t) −α(t)‖2 +
∑K

k=1‖A[k](u
(t) −α(t))[k]‖2 , (33)

for u(t) ∈ Rn with

u
(t)
i ∈ ∂g

∗
i (−x>i w(α(t))) . (34)

Proof. This proof is motivated by Shalev-Shwartz and Zhang (2013a, Lemma 19) and fol-
lows Ma et al. (2015a, Lemma 5), with a difference being the extension to our generalized
subproblems Gσ′k (·;v,α[k]) along with the mappings w(α) := ∇f(v(α)) with v(α) := Aα.

For simplicity, we write α instead of α(t), v instead of v(α(t)), w instead of w(α(t)) and
u instead of u(t). We can estimate the expected change of the objective OA(α) as follows.
Starting from the definition of the update α(t+1) := α(t) + γ

∑
k ∆α[k] from Algorithm 1,

we apply Lemma 1, which relates the local approximation Gσ′k (α;v,α[k]) to the global ob-
jective OA(α), and then bound this using the notion of quality of the local solver (Θ), as in
Assumption 1. This gives us:

E
[
OA(α(t))−OA(α(t+1))

]
= E

[
OA(α)−OA

(
α + γ

K∑
k=1

∆α[k]

)]

≥ γ(1−Θ)

OA(α)−
K∑
k=1

Gσ′k (∆α?
[k];v,α[k])︸ ︷︷ ︸

C

 . (35)

We next upper bound the C term, denoting ∆α? =
∑K

k=1 ∆α?
[k]. We first plug in the

definition of the objective OA in (A) and the local subproblems (10), and then substitute
s(ui − αi) for ∆α?i and apply the µ-strong convexity of the gi terms. This gives us:

C =

n∑
i=1

(gi(αi)− gi(αi + ∆α?i ))− (A∆α?)>w(α)−
K∑
k=1

σ′

2τ

∥∥∥A[k]∆α?
[k]

∥∥∥2

=
n∑
i=1

(gi(αi)− gi(sui + (1− s)αi))−A(s(u−α))>w(α)−
K∑
k=1

σ′

2τ

∥∥∥A[k]s(u−α)[k]

∥∥∥2

≥
n∑
i=1

(
sgi(αi)− sgi(ui) +

µ

2
(1− s)s(ui − αi)2

)
−A(s(u−α))>w(α)−

K∑
k=1

σ′

2τ

∥∥∥A[k](s(u−α)[k])
∥∥∥2
. (36)
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From the definition of the optimization problems (A) and (B), and definition of convex
conjugates, we can write the duality gap as:

G(α) := OA(α)− (−OB(w(α))
(A),(B)

=

n∑
i=1

(
g∗i (−x>i w(α)) + gi(αi)

)
+ f∗(w(α)) + f(Aα))

=
n∑
i=1

(
g∗i (−x>i w(α)) + gi(αi)

)
+ (Aα)>w(α)

=
n∑
i=1

(
g∗i (−x>i w(α)) + gi(αi) + αix

>
i w(α)

)
. (37)

The convex conjugate maximal property from (34) implies that

gi(ui) = ui(−x>i w(α))− g∗i (−x>i w(α)) . (38)

Using (38) and (37), we therefore have:

C
(38)
≥

n∑
i=1

(
sgi(αi)− sui(−x>i w(α)) + sg∗i (−x>i w(α)) +

µ

2
(1− s)s(ui − αi)2

)
−A(s(u−α))>w(α)−

K∑
k=1

σ′

2τ

∥∥∥A[k](s(u−α)[k])
∥∥∥2

=

n∑
i=1

[
sgi(αi) + sg∗i (−x>i w(α)) + sx>i w(α)αi

]
−

n∑
i=1

[
sx>i w(α)(αi − ui)−

µ

2
(1− s)s(ui − αi)2

]
−A(s(u−α))>w(α)−

K∑
k=1

σ′

2τ

∥∥∥A[k](s(u−α)[k])
∥∥∥2

(37)
= sG(α) +

µ

2
(1− s)s‖u−α‖2 − σ′s2

2τ

K∑
k=1

‖A[k](u−α)[k]‖2 . (39)

The claimed improvement bound (32) then follows by plugging (39) into (35).

The following Lemma provides a uniform bound on R(t).

Lemma 8. If g∗i are L-Lipschitz continuous for all i ∈ [n], then

∀t : R(t) ≤ 4L2
K∑
k=1

σknk︸ ︷︷ ︸
=:σ

, (40)

where

σk := max
α[k]∈Rn

‖A[k]α[k]‖2

‖α[k]‖2
. (41)

39



Smith, Forte, Ma, Takáč, Jordan, and Jaggi

Proof. (Ma et al., 2015a, Lemma 6). For general convex functions, the strong convexity
parameter is µ = 0, and hence the definition (33) of the complexity constant R(t) becomes

R(t) =

K∑
k=1

‖A[k](u
(t) −α(t))[k]‖2

(41)
≤

K∑
k=1

σk‖(u(t) −α(t))[k]‖2 ≤
K∑
k=1

σk|Pk|4L2 .

Here the last inequality follows from (Shalev-Shwartz and Zhang, 2013a, Lemma 21), which
shows that for g∗i : R→ R being L-Lipschitz, it holds that for any real value a with |a| > L
one has that gi(a) = +∞.

Remark 6. (Ma et al., 2015a, Remark 7) If the data points xi are normalized such that
‖xi‖ ≤ 1, ∀i ∈ [n], then σk ≤ |Pk| = nk. Furthermore, if we assume that the data partition
is balanced, i.e., that nk = n/K for all k, then σ ≤ n2/K. This can be used to bound the
constants R(t), above, as R(t) ≤ 4L2n2

K .

Theorem 9. Consider Algorithm 1, using a local solver of quality Θ (See Assumption 1).
Let g∗i (·) be L-Lipschitz continuous, and εG > 0 be the desired duality gap (and hence an
upper-bound on suboptimality εOA). Then after T iterations, where

T ≥ T0 + max{
⌈ 1

γ(1−Θ)

⌉
,
⌈ 4L2σσ′

τεGγ(1−Θ)

⌉
} , (42)

T0 ≥ t0 +
[ 2

γ(1−Θ)

(
8L2σσ′

τεG
− 1

)]
+
, t0 ≥ max(0,

⌈
1

γ(1−Θ) log
(
τ(OA(α(0))−OA(α?))

2L2σσ′

)⌉
) ,

we have that the expected duality gap satisfies

E[OA(α)− (−OB(w(α)))] ≤ εG

at the averaged iterate
α := 1

T−T0
∑T−1

t=T0
α(t) . (43)

Proof. We begin by estimating the expected change of feasibility for OA. We can bound this
above by using Lemma 7 and the fact that the OB(·) is always a lower bound for −OA(·),
and then applying (40) to find:

E[OA(α(t+1))−OA(α?)] = E[−OA(α?) +OA(α(t+1))−OA(α(t)) +OA(α(t))]

≤ (1− γ(1−Θ)s) (OA(α(t))−OA(α?)) + γ(1−Θ)σ
′s2

2τ 4L2σ .
(44)

Using (44) recursively we have

E[OA(α(t))−OA(α?)] ≤ (1− γ(1−Θ)s)t (OA(α(0))−OA(α?)) + s
4L2σσ′

2τ
. (45)

Choosing s = 1 and t = t0 := max{0, d 1
γ(1−Θ) log(2(OA(α(0))−OA(α?))/(4L2σσ′))e} leads

to

E[OA(α(t))−OA(α?)] ≤ (1− γ(1−Θ))t0 (OA(α(0))−OA(α?)) +
4L2σσ′

2τ
≤ 4L2σσ′

τ
.

(46)
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Next, we show inductively that

∀t ≥ t0 : E[OA(α(t))−OA(α?)] ≤ 4L2σσ′

τ(1 + 1
2γ(1−Θ)(t− t0))

. (47)

Clearly, (46) implies that (47) holds for t = t0. Assuming that it holds for any t ≥ t0, we
show that it must also hold for t+ 1. Indeed, using

s =
1

1 + 1
2γ(1−Θ)(t− t0)

∈ [0, 1] , (48)

we obtain

E[OA(α(t+1))−OA(α?)] ≤ 4L2σσ′

τ

(
1 + 1

2γ(1−Θ)(t− t0)− 1
2γ(1−Θ)

(1 + 1
2γ(1−Θ)(t− t0))2

)
︸ ︷︷ ︸

D

,

by applying the bounds (44) and (47), plugging in the definition of s (48), and simplifying.
We upper bound the term D using the fact that geometric mean is less or equal to arithmetic
mean:

D =
1

1 + 1
2γ(1−Θ)(t+ 1− t0)

(1 + 1
2γ(1−Θ)(t+ 1− t0))(1 + 1

2γ(1−Θ)(t− 1− t0))

(1 + 1
2γ(1−Θ)(t− t0))2︸ ︷︷ ︸

≤1

≤ 1

1 + 1
2γ(1−Θ)(t+ 1− t0)

.

If α is defined as (43), we apply the results of Lemma 7 and Lemma 8 to obtain

E[G(α)] = E

G
T−1∑
t=T0

1
T−T0α

(t)

 ≤ 1
T−T0E

T−1∑
t=T0

G
(
α(t)

)
≤ 1

γ(1−Θ)s

1

T − T0
E
[
OA(α(T0))−OA(α?)

]
+ 4L2σσ′s

2τ . (49)

If T ≥ d 1
γ(1−Θ)e+ T0 such that T0 ≥ t0 we have

E[G(α)]
(49),(47)
≤ 1

γ(1−Θ)s

1

T − T0

(
4L2σσ′

τ(1 + 1
2γ(1−Θ)(T0 − t0))

)
+

4L2σσ′s

2τ

=
4L2σσ′

τ

(
1

γ(1−Θ)s

1

T − T0

1

1 + 1
2γ(1−Θ)(T0 − t0)

+
s

2

)
. (50)

Choosing

s =
1

(T − T0)γ(1−Θ)
∈ [0, 1] (51)

41



Smith, Forte, Ma, Takáč, Jordan, and Jaggi

gives us

E[G(α)]
(50),(51)
≤ 4L2σσ′

τ

(
1

1 + 1
2γ(1−Θ)(T0 − t0)

+
1

(T − T0)γ(1−Θ)

1

2

)
. (52)

To have right hand side of (52) smaller then εG it is sufficient to choose T0 and T such that

4L2σσ′

τ

(
1

1 + 1
2γ(1−Θ)(T0 − t0)

)
≤ 1

2
εG , (53)

4L2σσ′

τ

(
1

(T − T0)γ(1−Θ)

1

2

)
≤ 1

2
εG . (54)

Hence if T0 ≥ t0 + 2
γ(1−Θ)

(
8L2σσ′

τεG
− 1
)

and T ≥ T0 + 4L2σσ′

τεGγ(1−Θ) then (53) and (54) are
satisfied.

The following main theorem simplifies the results of Theorem 9 and is a generalization
of Ma et al. (2015a, Corollary 9) for general f∗(·) functions:

Theorem’ 2. Consider Algorithm 1 with γ := 1, using a local solver of quality Θ (see
Assumption 1). Let g∗i (·) be L-Lipschitz continuous, and assume that the columns of A
satisfy ‖xi‖ ≤ 1, ∀i ∈ [n] and g∗i is of the form 1

ng
∗
i , as is common in ERM-type problems.

Let εG > 0 be the desired duality gap (and hence an upper-bound on primal sub-optimality).
Then after T iterations, where

T ≥ T0 + max{
⌈ 1

1−Θ

⌉
,

4L2

τεG(1−Θ)
} , (55)

T0 ≥ t0 +
[ 2

1−Θ

(
8L2

τεG
− 1

)]
+
,

t0 ≥ max(0,
⌈

1
(1−Θ) log

(
τn(OA(α(0))−OA(α?))

2L2K

)⌉
) ,

we have that the expected duality gap satisfies

E[OA(α)− (−OB(w(α)))] ≤ εG ,

where α is the averaged iterate returned by Algorithm 1.

Proof. Plug in parameters γ := 1, σ′ := γK = K, L̃ := 1
nL to the results of Theorem 9, and

note that for balanced datasets with g∗i := 1
ng
∗
i we have σ ≤ n

K (see Remark 6). We can
further simplify the rate by noting that τ = 1 for the 1-smooth losses (least squares and
logistic) given as examples in this work.

D.3 Proof of Convergence Result for Strongly Convex gi

Our second main theorem follows reasoning in Shalev-Shwartz and Zhang (2013a) and is a
generalization of Ma et al. (2015a, Corollary 11). We first introduce a lemma to simplify
the proof.
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Lemma 10. Assume that gi(0) ∈ [0, 1] for all i ∈ [n], then for the zero vector α(0) := 0 ∈
Rn, we have

OA(α(0))−OA(α?) = OA(0)−OA(α?) ≤ n . (56)

Proof. Since −OA(·) is always a lower bound on OB(·), and by definition of the objectives
OA and OB given in (A) and (B) respectively, for α := 0 ∈ Rn,

0 ≤ OA(α)−OA(α?) ≤ OA(0)− (−OB(w(0)))
(A),(B)

=

(A),(B)
= f(0) + f∗(w(0)) + g(0) + g∗(−A>w(0)) .

Since f∗(w(0)) = f∗(∇f(0)) = 0>∇f(0)−f(0) = −f(0), and given our initial assumption
on g(0), the duality gap reduces to:

0 ≤ g(0) + g∗(−A>w(0)) ≤ n.

Theorem 11. Assume that gi are µ-strongly convex ∀i ∈ [n]. We define σmax = maxk∈[K] σk.
Then after T iterations of Algorithm 1, with

T ≥ 1
γ(1−Θ)

µτ+σmaxσ′

µτ log n
εOA

,

it holds that
E[OA(α(T ))−OA(α?)] ≤ εOA .

Furthermore, after T iterations with

T ≥ 1
γ(1−Θ)

µτ+σmaxσ′

µτ log
(

1
γ(1−Θ)

µτ+σmaxσ′

µτ
n
εG

)
,

we have the expected duality gap

E[OA(α(T ))− (−OB(w(α(T ))))] ≤ εG .

Proof. Given that gi(.) is µ-strongly convex, we can apply (33) and the definition of σk to
find:

R(t) ≤ − τµ(1−s)
σ′s ‖u

(t) −α(t)‖2 +
∑K

k=1
σk‖u(t) −α

(t)
[k]‖

2

≤
(
− τµ(1−s)

σ′s + σmax

)
‖u(t) −α(t)‖2 , (57)

where σmax = maxk∈[K] σk. If we plug the following value of s

s =
τµ

τµ+ σmaxσ′
∈ [0, 1] (58)

into (57) we obtain that ∀t : R(t) ≤ 0. Putting the same s into (32) will give us

E[OA(α(t))−OA(α(t+1))]
(32),(58)
≥ γ(1−Θ)

τµ

τµ+ σmaxσ′
G(α(t))

≥ γ(1−Θ)
τµ

τµ+ σmaxσ′
(OA(α(t))−OA(α?)) . (59)
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Using the fact that E[OA(α(t))−OA(α(t+1))] = E[OA(α?)−OA(α(t+1))]+OA(α(t))−OA(α?)
we have

E[OA(α?)−OA(α(t+1))] +OA(α(t))−OA(α?)
(59)
≥ γ(1−Θ)

τµ

τµ+ σmaxσ′
(OA(α(t))−OA(α?)) ,

which is equivalent to

E[OA(α(t+1))−OA(α?)] ≤
(

1− γ(1−Θ)
τµ

τµ+ σmaxσ′

)
(OA(α(t))−OA(α?)) . (60)

Therefore if we denote ε(t)OA = OA(α(t))−OA(α?) we have recursively that

E[ε
(t)
OA ]

(60)
≤
(

1− γ(1−Θ)
τµ

τµ+ σmaxσ′

)t
ε
(0)
OA

(56)
≤
(

1− γ(1−Θ)
τµ

τµ+ σmaxσ′

)t
n

≤ exp

(
−tγ(1−Θ)

τµ

τµ+ σmaxσ′

)
n .

The right hand side will be smaller than some εOA if

t ≥ 1

γ(1−Θ)

τµ+ σmaxσ
′

τµ
log

n

εOA
.

Moreover, to bound the duality gap, we have

γ(1−Θ)
τµ

τµ+ σmaxσ′
G(α(t))

(59)
≤ E[OA(α(t))−OA(α(t+1))] ≤ E[OA(α(t))−OA(α?)] .

Thus, G(α(t)) ≤ 1
γ(1−Θ)

τµ+σmaxσ′

τµ ε
(t)
OA . Hence if εOA ≤ γ(1−Θ) τµ

τµ+σmaxσ′
εG then G(α(t)) ≤

εG. Therefore after

t ≥ 1

γ(1−Θ)

τµ+ σmaxσ
′

τµ
log

(
1

γ(1−Θ)

τµ+ σmaxσ
′

τµ

n

εG

)
iterations we have obtained a duality gap less than εG.

Theorem’ 3. Consider Algorithm 1 with γ := 1, using a local solver of quality Θ (see
Assumption 1). Let gi(·) be µ-strongly convex, ∀i ∈ [n], and assume that the columns of
A satisfy ‖xi‖ ≤ 1 ∀i ∈ [n] and and g∗i is of the form 1

ng
∗
i , as is common in ERM-type

problems. Then we have that T iterations are sufficient for suboptimality εOA, with

T ≥ 1
(1−Θ)

τµ+1
τµ log 1

εOA
.

Furthermore, after T iterations with

T ≥ 1
(1−Θ)

τµ+1
τµ log

(
1

(1−Θ)
τµ+1
τµ

1
εG

)
,

we have the expected duality gap

E[OA(α(T ))− (−OB(w(α(T ))))] ≤ εG .

Proof. Plug in parameters γ := 1, σ′ := γK = K, µ̃ = nµ to the results of Theorem 11 and
note that for balanced datasets with g∗i := 1

ng
∗
i we have σmax ≤ n

K (see Remark 6). We can
further simplify the rate by noting that τ = 1 for the 1-smooth losses (least squares and
logistic) given as examples in this work.
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