Journal of Machine Learning Research 18 (2017) 1-40 Submitted 9/16; Revised 8/17; Published 11/17

Second-Order Stochastic Optimization for Machine Learning
in Linear Time

Naman Agarwal NAMANA@QCS.PRINCETON.EDU
Computer Science Department
Princeton University

Princeton, NJ 08540, USA

Brian Bullins BBULLINSQCS.PRINCETON.EDU
Computer Science Department

Princeton University
Princeton, NJ 08540, USA

Elad Hazan EHAZAN@CS.PRINCETON.EDU
Computer Science Department

Princeton University
Princeton, NJ 08540, USA

Editor: Tong Zhang

Abstract

First-order stochastic methods are the state-of-the-art in large-scale machine learning op-
timization owing to efficient per-iteration complexity. Second-order methods, while able to
provide faster convergence, have been much less explored due to the high cost of computing
the second-order information. In this paper we develop second-order stochastic methods
for optimization problems in machine learning that match the per-iteration cost of gradient
based methods, and in certain settings improve upon the overall running time over pop-
ular first-order methods. Furthermore, our algorithm has the desirable property of being
implementable in time linear in the sparsity of the input data.

Keywords: second-order optimization, convex optimization, regression

1. Introduction

In recent literature stochastic first-order optimization has taken the stage as the primary
workhorse for training learning models, due in large part to its affordable computational
costs which are linear (in the data representation) per iteration. The main research effort
devoted to improving the convergence rates of first-order methods have introduced elegant
ideas and algorithms in recent years, including adaptive regularization (Duchi et al., 2011),
variance reduction (Johnson and Zhang, 2013; Defazio et al., 2014), dual coordinate ascent
(Shalev-Shwartz and Zhang, 2013), and many more.

In contrast, second-order methods have typically been much less explored in large scale
machine learning (ML) applications due to their prohibitive computational cost per itera-
tion which requires computation of the Hessian in addition to a matrix inversion. These
operations are infeasible for large scale problems in high dimensions.

(©2017 Naman Agarwal, Brian Bullins and Elad Hazan.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v18/16-491.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v18/16-491.html

AGARWAL, BULLINS AND HAZAN

In this paper we propose a family of novel second-order algorithms, LiSSA (Linear time
Stochastic Second-Order Algorithm) for convex optimization that attain fast convergence
rates while also allowing for an implementation with linear time per-iteration cost, matching
the running time of the best known gradient-based methods. Moreover, in the setting where
the number of training examples m is much larger than the underlying dimension d, we show
that our algorithm has provably faster running time than the best known gradient-based
methods.

Formally, the main optimization problem we are concerned with is the empirical risk
minimization (ERM) problem:

i = mi l v X X
irélﬂ%rbf(x)—glﬂ%%{m;fk() + R()}

where each fi(x) is a convex function and R(x) is a convex regularizer. The above opti-
mization problem is the standard objective minimized in most supervised learning settings.
Examples include logistic regression, SVMs, etc. A common aspect of many applications
of ERM in machine learning is that the loss function f;(x) is of the form I(x"v;, ;) where
(vi, ;) is the i*" training example-label pair. We call such functions generalized linear mod-
els (GLM) and will restrict our attention to this case. We will assume that the regularizer
is an /5 regularizer,! typically ||x||?.

Our focus is second-order optimization methods (Newton’s method), where in each
iteration, the underlying principle is to move to the minimizer of the second-order Taylor
approximation at any point. Throughout the paper, we will let V=2f(x) £ [V2 f (x)]_l.
The update of Newton’s method at a point x; is then given by

Xer1 = x¢ — V2 f(x¢)V f (). (1)

Certain desirable properties of Newton’s method include the fact that its updates are in-
dependent of the choice of coordinate system and that the Hessian provides the necessary
regularization based on the curvature at the present point. Indeed, Newton’s method can
be shown to eventually achieve quadratic convergence (Nesterov, 2013). Although Newton’s
method comes with good theoretical guarantees, the complexity per step grows roughly as
Q(md?+d“) (the former term for computing the Hessian and the latter for inversion, where
w & 2.37 is the matrix multiplication constant), making it prohibitive in practice. Our main
contribution is a suite of algorithms, each of which performs an approximate Newton update
based on stochastic Hessian information and is implementable in linear O(d) time. These
algorithms match and improve over the performance of first-order methods in theory and
give promising results as an optimization method on real world data sets. In the following
we give a summary of our results. We propose two algorithms, LiSSA and LiSSA-Sample.

LiSSA: Algorithm 1 is a practical stochastic second-order algorithm based on a novel
estimator of the Hessian inverse, leading to an efficient approximate Newton step (Equation
1). The estimator is based on the well known Taylor approximation of the inverse (Fact 2)
and is described formally in Section 3.1. We prove the following informal theorem about
LiSSA.

1. It can be seen that some of these assumptions can be relaxed in our analyses, but since these choices are
standard in ML, we make these assumptions to simplify the discourse.

SECOND-ORDER STOCHASTIC OPTIMIZATION FOR MACHINE LEARNING IN LINEAR TIME

Theorem 1 (Informal) LiSSA returns a point x; such that f(x¢) < mings f(x*) + ¢ in

total time
0) <(m + Sik) dlog (i))

where Kk is the underlying condition number of the problem and S1 is a bound on the variance
of the estimator.

The precise version of the above theorem appears as Theorem 7. In theory, the best
bound we can show for Si is O(x?); however, in our experiments we observe that setting
S7 to be a small constant (often 1) is sufficient. We conjecture that S; can be improved to
O(1) and leave this for future work. If indeed S} can be improved to O(1) (as is indicated
by our experiments), LiSSA enjoys a convergence rate comparable to first-order methods.
We provide a detailed comparison of our results with existing first-order and second-order
methods in Section 1.2. Moreover, in Section 7 we present experiments on real world data
sets that demonstrate that LiSSA as an optimization method performs well as compared to
popular first-order methods. We also show that LiSSA runs in time proportional to input
sparsity, making it an attractive method for high-dimensional sparse data.

LiSSA-Sample: This variant brings together efficient first-order algorithms with matrix
sampling techniques (Li et al., 2013; Cohen et al., 2015) to achieve better runtime guarantees
than the state-of-the-art in convex optimization for machine learning in the regime when
m > d. Specifically, we prove the following theorem:

Theorem 2 (Informal) LiSSA-Sample returns a point x; such that f(x:) < ming- f(x*)+

€ n total time

0, (m + \/@) dlog? (i) log log (i) .
The above result improves upon the best known running time for first-order methods
achieved by acceleration when we are in the setting where x > m >> d. We discuss
the implication of our bounds and further work in Section 1.3.

In all of our results stated above x corresponds to the condition number of the underlying
problem. In particular we assume some strong convexity for the underlying problem. This
is a standard assumption which is usually enforced by the addition of the ¢5 regularizer.
In stating our results formally we stress on the nuances between different notions of the
condition number (ref. Section 2.1), and we state our results precisely with respect to these
notions. In general, all of our generalization /relaxations of the condition number are smaller
than % where A is the regularization parameter, and this is usually taken to be the condition
number of the problem. The condition of strong convexity has been relaxed in literature by
introducing proximal methods. It is an interesting direction to adapt our results in those
setting which we leave for future work.

We also remark that all of our results focus on the very high accuracy regime. In general
the benefits of linear convergence and second-order methods can be seen to be effective only
when considerably small error is required. This is also the case for recent advances in
fast first-order methods where their improvement over stochastic gradient descent becomes
apparent only in the high accuracy regime. Our experiments also demonstrate that second-
order methods can improve upon fast first-order methods in the regime of very high accuracy.

AGARWAL, BULLINS AND HAZAN

While it is possible that this regime is less interesting for generalization, in this paper we
focus on the optimization problem itself.

We further consider the special case when the function f is self-concordant. Self-
concordant functions are a sub-class of convex functions which have been extensively stud-
ied in convex optimization literature in the context of interior point methods (Nemirovski,
2004). For self-concordant functions we propose an algorithm (Algorithm 5) which achieves
linear convergence with running time guarantees independent of the condition number. We
prove the formal running time guarantee as Theorem 25.

We believe our main contribution to be a demonstration of the fact that second-order
methods are comparable to, or even better than, first-order methods in the large data
regime, in both theory and practice.

1.1 Overview of Techniques

LiSSA: The key idea underlying LiSSA is the use of the Taylor expansion to construct a
natural estimator of the Hessian inverse. Indeed, as can be seen from the description of the
estimator in Section 3.1, the estimator we construct becomes unbiased in the limit as we
include additional terms in the series. We note that this is not the case with estimators that
were considered in previous works such as that of Erdogdu and Montanari (2015), and so we
therefore consider our estimator to be more natural. In the implementation of the algorithm
we achieve the optimal bias/variance trade-off by truncating the series appropriately.

An important observation underlying our linear time O(d) step is that for GLM func-
tions, V2f;(x) has the form OzViViT where « is a scalar dependent on viTx. A single step
of LiSSA requires us to efficiently compute V?2f;(x)b for a given vector b. In this case it
can be seen that the matrix-vector product reduces to a vector-vector product, giving us
an O(d) time update.

LiSSA-Sample: LiSSA-Sample is based on Algorithm 2, which represents a general
family of algorithms that couples the quadratic minimization view of Newton’s method
with any efficient first-order method. In essence, Newton’s method allows us to reduce (up
to loglog factors) the optimization of a general convex function to solving intermediate
quadratic or ridge regression problems. Such a reduction is useful in two ways.

First, as we demonstrate through our algorithm LiSSA-Sample, the quadratic nature
of ridge regression problems allows us to leverage powerful sampling techniques, leading to
an improvement over the running time of the best known accelerated first-order method.
On a high level this improvement comes from the fact that when solving a system of m
linear equations in d dimensions, a constant number of passes through the data is enough
to reduce the system to O(dlog(d)) equations. We carefully couple this principle and the
computation required with accelerated first-order methods to achieve the running times
for LiSSA-Sample. The result for the quadratic sub-problem (ridge regression) is stated in
Theorem 15, and the result for convex optimization is stated in Theorem 16.

The second advantage of the reduction to quadratic sub-problems comes from the obser-
vation that the intermediate quadratic sub-problems can potentially be better conditioned
than the function itself, allowing us a better choice of the step size in practice. We define
these local notions of condition number formally in Section 2.1 and summarize the typical
benefits for such algorithms in Theorem 13. In theory this is not a significant improve-

SECOND-ORDER STOCHASTIC OPTIMIZATION FOR MACHINE LEARNING IN LINEAR TIME

ment; however, in practice we believe that this could be significant and lead to runtime
improvements.?

To achieve the bound for LiSSA-Sample we extend the definition and procedure for
sampling via leverage scores described by Cohen et al. (2015) to the case when the matrix
is given as a sum of PSD matrices and not just rank one matrices. We reformulate and
reprove the theorems proved by Cohen et al. (2015) in this context, which may be of
independent interest.

1.2 Comparison with Related Work

In this section we aim to provide a short summary of the key ideas and results underlying op-
timization methods for large scale machine learning. We divide the summary into three high
level principles: first-order gradient-based methods, second-order Hessian-based methods,
and quasi-Newton methods. For the sake of brevity we will restrict our summary to results
in the case when the objective is strongly convex, which as justified above is usually ensured
by the addition of an appropriate regularizer. In such settings the main focus is often to
obtain algorithms which have provably linear convergence and fast implementations.

First-Order Methods: First-order methods have dominated the space of optimization
algorithms for machine learning owing largely to the fact that they can be implemented in
time proportional to the underlying dimension (or sparsity). Gradient descent is known to
converge linearly to the optimum with a rate of convergence that is dependent upon the
condition number of the objective. In the large data regime, stochastic first-order meth-
ods, introduced and analyzed first by Robbins and Monro (1951), have proven especially
successful. Stochastic gradient descent (SGD), however, converges sub-linearly even in the
strongly convex setting. A significant advancement in terms of the running time of first-
order methods was achieved recently by a clever merging of stochastic gradient descent with
its full version to provide variance reduction. The representative algorithms in this space
are SAGA (Roux et al., 2012; Defazio et al., 2014) and SVRG (Johnson and Zhang, 2013;
Zhang et al., 2013). The key technical achievement of the above algorithms is to relax the
running time dependence on m (the number of training examples) and x (the condition
number) from a product to a sum. Another algorithm which achieves similar running time
guarantees is based on dual coordinate ascent, known as SDCA (Shalev-Shwartz and Zhang,
2013).

Further improvements over SAGA, SVRG and SDCA have been obtained by applying
the classical idea of acceleration emerging from the seminal work of Nesterov (1983). The
progression of work here includes an accelerated version of SDCA (Shalev-Shwartz and
Zhang, 2016); APCG (Lin et al., 2014); Catalyst (Lin et al., 2015), which provides a generic
framework to accelerate first order algorithms; and Katyusha (Allen-Zhu, 2016), which
introduces the concept of negative momentum to extend acceleration for variance reduced
algorithms beyond the strongly convex setting. The key technical achievement of accelerated
methods in general is to reduce the dependence on condition number from linear to a square
root. We summarize these results in Table 1.

2. While this is a difficult property to verify experimentally, we conjecture that this is a possible explanation
for why LiSSA performs better than first-order methods on certain data sets and ranges of parameters.

AGARWAL, BULLINS AND HAZAN

LiSSA places itself naturally into the space of fast first-order methods by having a
running time dependence that is comparable to SAGA/SVRG (ref. Table 1). In LiSSA-
Sample we leverage the quadratic structure of the sub-problem for which efficient sampling
techniques have been developed in the literature and use accelerated first-order methods to
improve the running time in the case when the underlying dimension is much smaller than
the number of training examples. Indeed, to the best of our knowledge LiSSA-Sample is the
theoretically fastest known algorithm under the condition m >> d. Such an improvement
seems out of hand for the present first-order methods as it seems to strongly leverage the
quadratic nature of the sub-problem to reduce its size. We summarize these results in Table
1.

Algorithm Runtime Reference
Johnson and Zhang (2013)
. Zhang et al. (2013)
1
SVRG, SAGA, SDCA (md + O(kd))log (1) Rou et al. (2012)
Shalev-Shwartz and Zhang (2013) |
LiSSA (md + O(#)S1d) log (1) Corollary 8
) ~ Shalev-Shwartz and Zhang (2016) |
ACCS]I){S‘;A,Hs(;gcabet O (md + dv /%m) log (é) Lin et al. (2015)
Y Allen-Zhu (2016)
LiSSA-Sample 0] (md + d /Hsampzed) log2 (%) Theorem 16

Table 1: Run time comparisons. Refer to Section 2.1 for definitions of the various notions
of condition number.

Second-Order Methods: Second-order methods such as Newton’s method have classi-
cally been used in optimization in many different settings including development of interior
point methods (Nemirovski, 2004) for general convex programming. The key advantage of
Newton’s method is that it achieves a linear-quadratic convergence rate. However, naive
implementations of Newton’s method have two significant issues, namely that the standard
analysis requires the full Hessian calculation which costs O(md?), an expense not suitable
for machine learning applications, and the matrix inversion typically requires O(d?) time.
These issues were addressed recently by the algorithm NewSamp (Erdogdu and Montanari,
2015) which tackles the first issue by subsampling and the second issue by low-rank pro-
jections. We improve upon the work of Erdogdu and Montanari (2015) by defining a more
natural estimator for the Hessian inverse and by demonstrating that the estimator can be
computed in time proportional to O(d). We also point the reader to the works of Martens
(2010); Byrd et al. (2011) which incorporate the idea of taking samples of the Hessian;
however, these works do not provide precise running time guarantees on their proposed
algorithm based on problem specific parameters. Second-order methods have also enjoyed
success in the distributed setting (Shamir et al., 2014).

Quasi-Newton Methods: The expensive computation of the Newton step has also been
tackled via estimation of the curvature from the change in gradients. These algorithms
are generally known as quasi-Newton methods stemming from the seminal BFGS algo-

SECOND-ORDER STOCHASTIC OPTIMIZATION FOR MACHINE LEARNING IN LINEAR TIME

rithm (Broyden, 1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970). The book of Nocedal
and Wright (2006) is an excellent reference for the algorithm and its limited memory vari-
ant (L-BFGS). The more recent work in this area has focused on stochastic quasi-Newton
methods which were proposed and analyzed in various settings by Schraudolph et al. (2007);
Mokhtari and Ribeiro (2014); Byrd et al. (2016). These works typically achieve sub-linear
convergence to the optimum. A significant advancement in this line of work was provided
by Moritz et al. (2016) who propose an algorithm based on L-BFGS by incorporating ideas
from variance reduction to achieve linear convergence to the optimum in the strongly convex
setting. Although the algorithm achieves linear convergence, the running time of the algo-
rithm depends poorly on the condition number (as acknowledged by the authors). Indeed,
in applications that interest us, the condition number is not necessarily a constant as is
typically assumed to be the case for the theoretical results in Moritz et al. (2016).

Our key observation of linear time Hessian-vector product computations for machine
learning applications provides evidence that in such instances, obtaining true Hessian infor-
mation is efficient enough to alleviate the need for quasi-Newton information via gradients.

1.3 Discussion and Subsequent Work

In this section we provide a brief survey of certain technical aspects of our bounds which
have since been improved by subsequent work.

An immediate improvement in terms of Sy ~ k (in fact suggested in the original
manuscript) was achieved by Bollapragada et al. (2016) via conjugate gradient on a sub-
sampled Hessian which reduces this to y/k. A similar improvement can also be achieved
in theory through the extensions of LiSSA proposed in the paper. As we show in Section
7, the worse dependence on condition number has an effect on the running time when x is
quite large.®> Accelerated first-order methods, such as APCG (Lin et al., 2014), outperform
LiSSA in this regime. To the best of our knowledge second-order stochastic methods have
so far not exhibited an improvement in that regime experimentally. We believe a more
practical version of LiSSA-Sample could lead to improvements in this regime, leaving this
as future work.

To the best of our knowledge the factor of S; = k2 that appears to reduce the variance
of our estimator has yet not been improved despite it being O(1) in our experiments. This
is an interesting question to which partial answers have been provided in the analysis of Ye
et al. (2017).

Significant progress has been made in the space of inexact Newton methods based on
matrix sketching techniques. We refer the reader to the works of Pilanci and Wainwright
(2015); Xu et al. (2016); Cohen (2016); Luo et al. (2016); Ye et al. (2017) and the references
therein.

We would also like to comment on the presence of a warm start parameter HLM in
our proofs of Theorems 7 and 15. In our experiments the warm start we required would
be quite small (often a few steps of gradient descent would be sufficient) to make LiSSA
converge. The warm start does not affect the asymptotic results proven in Theorems 7 and
15 because getting to such a warm start is independent of £. However, improving this warm
start, especially in the context of Theorem 15, is left as interesting future work.

3. Equivalently, A is small.

AGARWAL, BULLINS AND HAZAN

On the complexity side, Arjevani and Shamir (2016) proved lower bounds on the best
running times achievable by second-order methods. In particular, they show that to get
the faster rates achieved by LiSSA-Sample, it is necessary to use a non-uniform sampling
based method as employed by LiSSA-Sample. We would like to remark that in theory,
up to logarithmic factors, the running time of LiSSA-Sample is still the best achieved so
far in the setting m >> d. Some of the techniques and motivations from this work were
also generalized by the authors to provide faster rates for a large family of non-convex
optimization problems (Agarwal et al., 2017).

1.4 Organization of the Paper

The paper is organized as follows: we first present the necessary definitions, notations and
conventions adopted throughout the paper in Section 2. We then describe our estimator for
LiSSA, as well as state and prove the convergence guarantee for LiSSA in Section 3. After
presenting a generic procedure to couple first-order methods with Newton’s method in 4,
we present LiSSA-Sample and the associated fast quadratic solver in Section 5. We then
present our results regarding self-concordant functions in Section 6. Finally, we present an
experimental evaluation of LiSSA in Section 7.

2. Preliminaries

We adopt the convention of denoting vectors and scalars in lowercase, matrices in uppercase,
and vectors in boldface. We will use ||| without a subscript to denote the ¢, norm for vectors
and the spectral norm for matrices. Throughout the paper we denote x* £ argmin,cx f(x).
A convex function f is defined to be a-strongly convex and -smooth if, for all x,y,

VS0 ly %)+ Dlly —x[2 fly) — £(x) 2 V10 (y) + Sy — x|

The following is a well known fact about the inverse of a matrix A s.t. ||A|| <1 and A > 0:

o0

A=D1 - A (2)

=0

2.1 Definition of Condition Numbers

We now define several measures for the condition number of a function f. The differences
between these notions are subtle and we use them to precisely characterize the running time
for our algorithms.*

For an a-strongly convex and 8-smooth function f, the condition number of the function
is defined as x(f) £ g, or £ when the function is clear from the context. Note that by
definition this corresponds to the following notion:

a MaXy Amax (V2 f(x))
ming Apin(V2f(x))

K

4. During initial reading we suggest the reader to skip the subtlety with these notions with the knowledge
that they are all smaller than the pessimistic bound one can achieve by considering a value proportional
to O(A™!), where X is the coefficient of the £» regularizer.

SECOND-ORDER STOCHASTIC OPTIMIZATION FOR MACHINE LEARNING IN LINEAR TIME

We define a slightly relaxed notion of condition number where the max moves out of the
fraction above. We refer to this notion as a local condition number k; as compared to the
global condition number x defined above:

K] = max —)\max(v2f(x))
x Amin(V2f(x))
It follows that k; < k. The above notions are defined for any general function f, but

m
in the case of functions of the form f(x) = 1 > fi(x), a further distinction is made
k=1

with respect to the component functions. We refer to such definitions of the condition
number by &. In such cases one typically assumes the each component is bounded by
Bmaz(X) £ max Amax (V2 fr(x)). The running times of algorithms like SVRG depend on the

following notion of condition number:

maXy Bmax (X)

miny Amin(V2f(x))

k=

Similarly, we define a notion of local condition number for 4, namely

N ﬁmax(x)

Ry = max ———————
X Amin(V2f(x))
and it again follows that £; < k.

For our (admittedly pessimistic) bounds on the variance we also need a per-component
strong convexity bound iy (x) £ mkin Amin (V2 fx(x)). We can now define

/%;nax 2 max M)
x amin(x)

Assumptions: In light of the previous definitions, we make the following assumptions

m
about the given function f(x) = L Y fi(x) to make the analysis easier. We first assume
k=1

that the regularization term has been divided equally and included in fj(x). We further
assume that each V2 f,(x) < I.5 We also assume that f is a-strongly convex and 3-smooth,
k7 is the associated local condition number and V2 f has a Lipschitz constant bounded by
M.

We now collect key concepts and pre-existing results that we use for our analysis in the
rest of the paper.

Matriz Concentration: The following lemma is a standard concentration of measure
result for sums of independent matrices.® An excellent reference for this material is by
Tropp (2012).

5. The scaling is without loss of generality, even when looking at additive errors, as this gets picked up in
the log-term due to the linear convergence.

6. The theorem in the reference states the inequality for the more nuanced bounded variance case. We only
state the simpler bounded spectral norm case which suffices for our purposes.

AGARWAL, BULLINS AND HAZAN

Theorem 3 (Matrix Bernstein, Tropp, 2012) Consider a finite sequence {Xy} of in-
dependent, random, Hermitian matrices with dimension d. Assume that

Define Y =), Xj. Then we have for allt >0,
—¢2
> < —] .
Pr(|Y| >1t) <dexp <4R2)
Accelerated SVRG: The following theorem was proved by Lin et al. (2015).

Theorem 4 Given a function f(x) = = > fu(x) with condition number &, the acceler-

ated version of SVRG via Catalyst (Lin et al., 2015) finds an e-approximate minimum with
probability 1 — § in time

O(md + min(y/rm, £)d) log (1> .

€
Sherman-Morrison Formula: The following is a well-known expression for writing the
inverse of rank one perturbations of matrices:

o, AtwwTAat

1 _ _
(Atvvl) =4 14+ vlA-Iv

3. LiSSA: Linear (time) Stochastic Second-Order Algorithm

In this section, we provide an overview of LiSSA (Algorithm 1) along with its main conver-
gence results.

3.1 Estimators for the Hessian Inverse

Based on a recursive reformulation of the Taylor expansion (Equation 2), we may describe
an unbiased estimator of the Hessian. For a matrix A, define Aj_1 as the first j terms in
the Taylor expansion, i.e.,

J
Aj_l 2 Z(I — A)’, or equivalently Aj_1 21+ (I- A)Aj__ll .
=0

Note that lim;_, A;l — A1, Using the above recursive formulation, we now describe an
unbiased estimator of V~2f by first deriving an unbiased estimator V2 fj for V2 fi-

Definition 5 (Estimqtor) Gen j independent and unbiased samples {X1...X,} of the
Hessian V2 f, define {NVN"2fo,...,V2f;} recursively as follows:

V2fo=Tand V2f;=1+(I—X)V2fi_y for t=1,...,].

It can be readily seen that E[@ij] = V2f;, and so E[@*ij] — V72fasj — oo,
providing us with an unbiased estimator in the limit.

10

SECOND-ORDER STOCHASTIC OPTIMIZATION FOR MACHINE LEARNING IN LINEAR TIME

Algorithm 1 LiSSA: Linear (time) Stochastic Second-Order Algorithm

Input: T, f(x) == > fu(x), S1, Sz, T
k=1

x1 = FO(f(x),T1)
fort=1to T do
for i =1 to S do
Xjio) = Vf(xt)
fOI'jth?SQdO
Sample VQf[Z-J} (x¢) uniformly from {V2fy(x¢) | k € [m]}
Xpij) = VI(xe) + (I = V2 fi.5(x0)) X i jog
end for
end for
X =1/5 (Ziﬂ X[z‘,sz})
X4l = X¢ — Xy
end for
return X741

Remark 6 One can also define and analyze a simpler (non-recursive) estimator based on
directly sampling terms from the series in Equation (2). Theoretically, one can get similar
guarantees for the estimator; however, empirically our proposed estimator exhibited better
performance.

3.2 Algorithm

Our algorithm runs in two phases: in the first phase it runs any efficient first-order method
FO for 17 steps to shrink the function value to the regime where we can then show linear
convergence for our algorithm. It then takes approximate Newton steps based on the esti-
mator from Definition 5 in place of the true Hessian inverse. We use two parameters, Sp
and Sy, to define the Newton step. S represents the number of unbiased estimators of the
Hessian inverse we average to get better concentration for our estimator, while Sy represents
the depth to which we capture the Taylor expansion. In the algorithm, we compute the
average Newton step directly, which can be computed in linear time as observed earlier,
instead of estimating the Hessian inverse.

3.3 Main Theorem

In this section we present our main theorem which analyzes the convergence properties of
LiSSA. Define FO(M, ;) to be the total time required by a first-order algorithm to achieve
accuracy ﬁ

Theorem 7 Consider Algorithm 1, and set the parameters as follows: Ty = FO(M, k),
S, = O((/%flax)2ln(%l)), Sy > 2k In(4R;). The following guarantee holds for every t > T}
with probability 1 — ¢,

e =]

s — 7)) <

11

AGARWAL, BULLINS AND HAZAN

Moreover, we have that each step of the algorithm takes at most O(md+ (A"®)? Ryd?) time.

Additionally if f is GLM, then each step of the algorithm can be run in time O(md +
(Ama)2 1 d).

As an immediate corollary, we obtain the following:

Corollary 8 For a GLM function f(x), Algorithm 1 returns a point x; such that with
probability at least 1 — ¢,

Flxi) < min f(x") +
in total time O(m + (/%f“ax)2 f)dIn (1) fore — 0.

In the above theorems O hides log factors of &, d, 3. We note that our bound (#}"**)2 on
the variance is possibly pessimistic and can likely be improved to a more average quantity.
However, since in our experiments setting the parameter S; ~ O(1) suffices, we have not
tried to optimize it further.

We now prove our main theorem about the convergence of LiSSA (Theorem 7).
Proof [Proof of Theorem 7|

Note that since we use a first-order algorithm to get a solution of accuracy at least
we have that

_1
I7, M

(3)

x1 — x| < .
1 =X € g7
As can be seen from Definition 5, a single step of our algorithm is equivalent to x; 11 =
x;—V 2 f(x;)Vf(x¢), where V2 f(x;) is the average of S1 independent estimators V=2 f(x;)s, -

We now make use of the following lemma.

Lemma 9 Let x;11 = x; — V2f(x,)Vf(x;), as per a single iteration of Algorithm 1, and
suppose S1,Sy are as defined in Algorithm 1. Then if we choose Sy > 2&;In(2k;) we have
the following guarantee on the convergence rate for every step with probability 1 —§:

e+t — x| < yllxe = x| + MV f () |l — x|

where v = 164%%4/ 7111(6?;1) + 1—16.

Substituting the values of S; and S2, combining Equation (3) and Lemma 9, and noting
that |[V=2f(x;)|| < #;, we have that at the start of the Newton phase the following inequality
holds:

[Ix: — x| [[x: — x|
4 2

It can be shown via induction that the above property holds for all ¢ > 717, which concludes
the proof.]

41 = x| < + MA™|x —x"||* <

We now provide a proof of Lemma 9.

12

SECOND-ORDER STOCHASTIC OPTIMIZATION FOR MACHINE LEARNING IN LINEAR TIME

Proof [Proof of Lemma 9] Define x(x;) = fol V2 f(x* +7(x; —x*))dr. Note that Vf(x;) =
X(x¢)(x¢ — x*). Following an analysis similar to that of Nesterov (2013), we have that

%1 = x| = % = x" = V2 f(x) Vf (x|
= xe = x" = V72 () x(x0) (¢ — X))
<= V72 F(xe)x (e[| — x|
Following from the previous equations, we have that

[xe1 — x|
I3 — x|

< 1=V 2 f(xe)x(xo)ll = 11 = V2 (x)x(xi) = (V72 (xe) = V72 ()) xx0) -

a

b

We now analyze the above two terms a and b separately:

lall = |1 = V72f(xe)x(xe)|
1V =2 f(x) /01 (V2F(x0) — V2F(x* + (31 — x*))d7) |
< M|IV72F(x)llllxe — x|

IN

The second inequality follows from the Lipschitz bound on the Hessian. The second term
can be bounded as follows:

ol < (I (V=2 Gx) = V72 6x0)) o)l) <

The previous claim follows from Lemma 10 which shows a concentration bound on the
sampled estimator and by noting that due to our assumption on the function, we have that
for all x, ||[V2f(x)|| < 1, and hence [|x(x)| < 1.

Putting the above two bounds together and using the triangle inequality, we have that

HXt+1 - X*H

< M|V fxo)lllxe = x|+
I — x|

which concludes the proof. |

Lemma 10 Let V2f(x;) be the average of Sy independent samples of V=2f(xs)s,, as
defined in Definition 5 and used in the per-step update of Algorithm 1, and let V?f(x;) be
the true Hessian. If we set Sy > 2k In(k;S1), then we have that

ln(%)
S1

Pr<||62f(xt) — V72 (xy)|| > 16/ + 1/16> <.

Proof [Proof of Lemma 10| First note the following statement which is a straightforward
implication of our construction of the estimator:

Sa

E[V 2 f(x)] = EV 2 (xe)s,] = Y (1 = V2f(x0))".

=0

13

AGARWAL, BULLINS AND HAZAN

We also know from Equation (2) that for matrices X such that || X|| <1 and X > 0,

o0

X t=>(1-X).

=0
Since we have scaled the function such that ||V2fi|| < 1, it follows that
V2f(x,) = E [@—2f(xt)52] + 3 (- V(x) (4)
i=Sa+1

Also note that since V2f(x;) = ;%Ll’ it follows that ||[I — V2f(x;)| <1 — %l Observing the
second term in the above equation,

1D U=V < U= V2 ()| (Z 1= VQf(Xt)W)
=0

=952

IA
—
|
D=
&
VRS
T'Mg
—
|
D=
~_

IN
—~
—

|
| =
N—
n

V]

x>

< (52>A
< exp (-2) AL
Ri

Since we have chosen Sy > 24;1n(44;), we get that the above term is bounded by %. We
will now show, using the matrix Bernstein inequality (Theorem 3), that the estimate V=2f
is concentrated around its expectation. To apply the inequality we first need to bound the
spectral norm of each random variable. To that end we note that V2 fs, has maximum
spectral norm bounded by

So

1972 5,11 < 31— 1/Ap=) < e,
1=0

We can now apply Theorem 3, which gives the following:

~ = —6251
Pr <||v 2f B[V > e) < 2d exp <W> .

max ln(%)

Setting ¢ = 164; 5
together the bounds and Equation (4) we get the required result. |

gives us that the probability above is bounded by §. Now putting

3.4 Leveraging Sparsity

A key property of real-world data sets is that although the input is a high dimensional
vector, the number of non-zero entries is typically very low. The following theorem shows

14

SECOND-ORDER STOCHASTIC OPTIMIZATION FOR MACHINE LEARNING IN LINEAR TIME

that LiSSA can be implemented in a way to leverage the underlying sparsity of the data.
Our key observation is that for GLM functions, the rank one Hessian-vector product can
be performed in O(s) time where s is the sparsity of the input xy.

Theorem 11 For GLM functions Algorithm 1 returns a point x; such that with probability
at least 1 — 0

f(x¢) < min f(x¥) + €
X
in total time O(ms + (k"*¥)%fys) In (1) fore—o.
We will prove the following theorem, from which Theorem 11 will immediately follow.

Theorem 12 Consider Algorithm 1, let f be of the form described above, and let s be such
that the number of non zero entries in x; is bounded by s. Then each step of the algorithm
can be implemented in time O(ms + (K"*)?k;s).

Proof [Proof of Theorem 12] Proof by induction. Let ¢g = 1, dy = 1, vo = 0, and
consider the update rules cj11 = 1+ (1 — A¢j, djy1 = (1 — N)dj, and v = vj —
u_il/\)djVQf[i’jH] (x)(¢;V f(x)+d;v;), where X is the regularization parameter. For the base
case, note that X; o) = coV f(x)+dovo = V f(x), as is the case in Algorithm 1. Furthermore,
suppose X[; j = ¢;Vf(x) + d;jv;. Then we see that

Xiij+1 = Vf(x) + T =M - @2f[i,j+l] (%)) X[ij
= Vf(x)+ (1= NI = V2 f01(X)(¢;Vf(x) + djv;)
= (14 (1= Nep) V() + (L= A)(djv;) — V2 fli) (x) (¢ VF(x) + djv;)

= ¢V I(X) + dj1vip

Note that updating cj4+1 and dj4q takes constant time, and @Qf[i,jﬂ] (x)(¢;V f(x)) and
@zf[i,jﬂ} (x)v; can each be calculated in O(s) time. It can also be seen that each product
gives an s-sparse vector, so computing v, takes time O(s). Since V f(x) can be calculated
in O(ms) time, and since vq is O-sparse which implies the number of non-zero entries of v;
is at most js, it follows that the total time to calculate X; is O(ms + (K"#)2r;s). []

4. LiSSA: Extensions

In this section we first describe a family of algorithms which generically couple first-order
methods as sub-routines with second-order methods. In particular, we formally describe
the algorithm LiSSA-Quad (Algorithm 2) and provide its runtime guarantee (Theorem
13). The key idea underlying this algorithm is that Newton’s method essentially reduces a
convex optimization problem to solving intermediate quadratic sub-problems given by the
second-order Taylor approximation at a point, i.e., the sub-problem @); given by

YV f(xi1)y

Quly) = f(xi-1) + Vf(xe-1) Ty + 5

15

AGARWAL, BULLINS AND HAZAN

Algorithm 2 LiSSA-Quad

Input: T, f(x) = > fr(x), ALG, ALGparams, 11, €
k=1

xo = ALG (f(x),T1)

fort=1toT do
Quly) = V(1) Ty + ¥y
Xt = A(Qb 52> Aparams)

end for

return xp

where y £ x—x;_1. The above ideas provide an alternative implementation of our estimator
for V=2 f(x) used in LiSSA. Consider running gradient descent on the above quadratic Q;,

and let y? be the i'* step in this process. By definition we have that

il =yl = VQiyi) = (I = V2 (x))yi = VI (xe-1).

It can be seen that the above expression corresponds exactly to the steps taken in LiSSA
(Algorithm 2, line 8), the difference being that we use a sample of the Hessian instead of
the true Hessian. Therefore LiSSA can also be interpreted as doing a partial stochastic
gradient descent on the quadratic Q. It is partial because we have a precise estimate of
gradient of the function f and a stochastic estimate for the Hessian. We note that this is
essential for the linear convergence guarantees we show for LiSSA.

The above interpretation indicates the possibility of using any first-order linearly con-
vergent scheme for approximating the minimizer of the quadratic ;. In particular, consider
any algorithm ALG that, given a convex quadratic function @; and an error value ¢, pro-
duces a point y such that

ly —yill <e ()

with probability at least 1 — darq, where y; = argmin ;. Let the total time taken by the
algorithm ALG to produce the point be Thrg(e,04LG). For our applications we require
ALG to be linearly convergent, i.e. T 47 is proportional to log(%) with probability at least
1—dara-

Given such an algorithm ALG, LiSSA-Quad, as described in Algorithm 2, generically
implements the above idea, modifying LiSSA by replacing the inner loop with the given

algorithm ALG. The following is a meta-theorem about the convergence properties of
LiSSA-Quad.

Theorem 13 Given the function f(x) = > fi(x) which is a-strongly convex, let x* be the
minimizer of the function and {x;} be defined as in Algorithm 2. Suppose the algorithm ALG
satisfies condition (5) with probability 1 — darc under the appropriate setting of parameters
ALGparams- Set the parameters in the algorithm as follows: T1 = Targ(l/4aM), T =
loglog(1/e), darg = 0/T, where ¢ is the final error guarantee one wishes to achieve. Then
we have that after T steps, with probability at least 1 — 6,

min_|[|x; — x| <e.
t={1...T}

16

SECOND-ORDER STOCHASTIC OPTIMIZATION FOR MACHINE LEARNING IN LINEAR TIME

In particular, LiSSA-Quad(ALG) produces a point x such that
Ix - x| < =
in total time O(Tarc(e,darc)loglog(1/e)) with probability at least 1 —§ for e — 0.

Note that for GLM functions, the VQ(y) at any point can be computed in time linear in d.
In particular, a full gradient of @)y can be computed in time O(md) and a stochastic gradient
(corresponding to a stochastic estimate of the Hessian) in time O(d). Therefore, a natural
choice for the algorithm ALG in the above are first-order algorithms which are linearly
convergent, for example SVRG, SDCA, and Acc-SDCA. Choosing a first-order algorithm
FO gives us a family of algorithms LiSSA-Quad(FO), each with running time comparable to
the running time of the underlying FO, up to logarithmic factors. The following corollary
summarizes the typical running time guarantees for LiSSA-Quad(FO) when FO is Acc-
SVRG.

Corollary 14 Given a GLM function f(x), if ALG is replaced by Acc-SVRG (Lin et al.,
2015), then under a suitable setting of parameters, LiSSA-Quad produces a point X such
that

flx)—f(x") <e
with probability at least 1 — &, in total time O(m + min {VFRim, i })dlog(1/e) loglog(1/e).

Here the O above hides logarithmic factors in &, d, §, but not in €. Note that the above
running times depend upon the condition number &; which as described in Section 2 can
potentially provide better dependence compared to its global counterpart. In practice this
difference could lead to faster running time for LiSSA-Quad as compared to the underlying
first-order algorithm FO. We now provide a proof for Theorem 13.

Proof [Proof of Theorem 13| We run the algorithm A to achieve accuracy €2 on each of the
intermediate quadratic functions @, and we set 4 = §/T which implies via a union bound
that for all t < T,

xe1 — x| < €2 (6)

with probability at least 1 — §.
Assume that for all ¢t < T, ||x; —x*|| > ¢ (otherwise the theorem is trivially true). Using
the analysis of Newton’s method as before, we get that for all ¢t < T,

[xepr =7 < I = x|+ [Jxe — %7
< lxe = V7 (x0) VI (xe) = X5+ [Ixeen — %7
M
< = o *|2 2
< 4ath x*|*+e
M
< [—=+1 — x*|?
< (Gar1) -l

where the second inequality follows from the analysis in the proof of Theorem 7 and Equa-
tion (6). We know that ||xo — x| < /5% from the initial run of the first-order algorithm
FO. Applying the above inductively and using the value of T prescribed by the theorem
statement, we get that ||xp — x*|| < e. [|

17

AGARWAL, BULLINS AND HAZAN

5. Runtime Improvement through Fast Quadratic Solvers

The previous section establishes the reduction from general convex optimization to quadratic
functions. In this section we show how we can leverage the fact that for quadratic functions
the running time for accelerated first-order methods can be improved in the regime when
Kk > m >> d. In particular, we show the following theorem.

Theorem 15 Given a vector b € R? and a matriz A =Y A; where each A; is of the form
A; = vivl + M for some v; € R ||vi|| < 1 and X\ > 0 a fized parameter, Algorithm /
computes a vector v such that |A™1b — V|| < & with probability at least 1 — & in total time

O (mdlog (i) + <d+ ﬁsample(A)d> dlog? (i)) .

O() contains factors logarithmic in m, d, ksampie(A), ||, 9.

Ksample(A) is the condition number of an O(dlog(d)) sized sample of A and is formally
defined in Equation (11). We can now use Algorithm 4 to compute an approximate Newton
step by setting A = V2f(x) and b = Vf(x). We therefore propose LiSSA-Sample to be a
variant of LiSSA-Quad where Algorithm 4 is used as the subroutine ALG and any first-order
algorithm can be used in the initial phase. The following theorem bounding the running
time of LiSSA-Sample follows immediately from Theorem 13 and Theorem 15.

Theorem 16 Given a GLM function f(x) = Y, fi(x), let x* = argmin f(x). LiSSA-
Sample produces a point x such that

[x = x| <e

with probability at least 1 — § in total time

O <<mdlog (i) + (d + nsample(f)d> dlog? <i>) log log <i>> .

O() contains factors logarithmic in m, d, Ksample(f), G, 0.

5.1 Fast Quadratic Solver - Outline

In this section we provide a short overview of Algorithm 4. To simplify the discussion,
lets consider the case when we have to compute A™'b for a d x d matrix A given as
A= 221 viviT = VVT where the i column of V is v;. The computation can be recast

as minimization of a convex quadratic function Q(y) = y and can be solved

up to accuracy ¢ in total time <m + \/K:(A)m) dlog(1/e) as can be seen from Theorem

4 Algorithm 4 improves upon the running time bound in the case when m > d. In the
following we provide a high level outline of the procedure which is formally described as
Algorithm 4.

18

SECOND-ORDER STOCHASTIC OPTIMIZATION FOR MACHINE LEARNING IN LINEAR TIME

e Given A we will compute a low complexity constant spectral approximation B of A.
Specifically B = Zioz(flog(d)) uiu;ff and B < A < 2B. This is achieved by techniques
developed in matrix sampling/sketching literature, especially those of Cohen et al.
(2015). The procedure requires solving a constant number of O(dlog(d)) sized linear
systems, which we do via Accelerated SVRG.

e We use B as a preconditioner and compute BA~!'b by minimizing the quadratic
% + bTy. Note that this quadratic is well conditioned and can be minimized
using gradient descent. In order to compute the gradient of the quadratic which is
given by AB~ 'y, we again use Accelerated SVRG to solve a linear system in B.

e Finally, we compute A~'b = B~'BA~'b using Accelerated SVRG to solve a linear
system in B.

In the rest of the section we formally describe the procedure outlined and provide the
necessary definitions. One key nuance we must take into account is the fact that based
on our assumption we have included the regularization term into the component functions.
Due to this, the Hessian does not necessarily look like a sum of rank one matrices. Of
course, one can decompose the identity matrix that appears due to the regularizer as a sum
of rank one matrices. However, note that the procedure above requires that each of the
sub-samples must have good condition number too in order to solve linear systems on them
with Accelerated SVRG. Therefore, the sub-samples generated must look like sub-samples
formed from the Hessians of component functions. For this purpose we extend the procedure
and the definition for leverage scores described by Cohen et al. (2015) to the case when the
matrix is given as a sum of PSD matrices and not just rank one matrices. We reformulate
and reprove the basic theorems proved by Cohen et al. (2015) in this context. To maintain
computational efficiency of the procedure, we then make use of the fact that each of the
PSD matrices actually is a rank one matrix plus the Identity matrix. We now provide the
necessary preliminaries for the description of the algorithm and its analysis.

5.2 Preliminaries for Fast Quadratic Solver

For all the definitions and preliminaries below assume we are given a d x d PSD matrix
A £ 3" A; where A; are also PSD matrices. Let A- B £ Tr(BTA) be the standard
matrix dot product. Given two matrices A and B we say B is a A-spectral approximation
of Aif {A <X B = A.

Definition 17 (Generalized Matrix Leverage Scores) Define

TZ(A) £ A+ . Al (7)
P (A) 2 B A, (8)
Then we have the following facts:
Fact 18 .
3 m(A) =Tr (Z A*AZ-) = Tr(A* A) = rank(A) < d. (9)

=1

19

AGARWAL, BULLINS AND HAZAN

Fact 19 If B is a A-spectral approzimation of A, then 7;(A) < 78(A) < Ar;(A).

Given A of the form A = > A;, we define a sample of A of size r as the following.
Consider a subset of indices of size r, I = {i1...i,} C [m]. For every such sample I and
given a weight vector w € R”, we can associate the following matrix:

Sample(w, I) = ijAj. (10)
jel
When the sample is unweighted, i.e., w = 1, we will simply denote the above as Sample([I).
We can now define Ksgmpic(A,) to be
Ksample(A,T) £ max k(Sample(r, I)). (11)
L:[1|>r
This is the worst-case condition number of an unweighted sub-sample of size r of the matrix
A. For our results we will be concerned with a Q(dlog(d)) sized sub-sample, i.e., the quantity
Ksample (A, O(dlog(d))). We remind the reader that by definition Kggmpie for Hessians of the
functions we are concerned with is always larger than 1/A, where A is the coefficient of the
{5 regularizer.
The following lemma is a generalization of the leverage score sampling lemma (Lemma
4, Cohen et al. 2015). The proof is very similar to the original proof by Cohen et al. (2015)
and is included in the Appendix for completeness.

Lemma 20 (Spectral Approximation via Leverage Score Sampling) Given an er-
ror parameter 0 < e < 1, let u be a vector of leverage score overestimates, i.e., T;(A) < u;,
for all i € [m]. Let « be a sampling rate parameter and let ¢ be a fized positive constant.
For each matriz A;, we define a sampling probability p;(a) = min{1, au;clogd}. Let I be
a random sample of indices drawn from [m] by sampling each index with probability p;(«).
Define the weight vector w(«a) to be the vector such that w(a); = ﬁ. By definition of
weighted samples we have that

1
Sample(w(a), I) = Z Ailﬂ?i’vpi(a) (i =1)

where xz; is a Bernoulli random variable with probability p;(a).
If we set a = e72, S = Sample(w(a), I) is formed by at most Y, min{1, au;clog(d)} <
1+e

aclog(d)||lully entries in the above sum, and 1—#5’ is a 1= spectral approzimation for A
—c/3

with probability at least 1 — d

The following theorem is an analogue of the key theorem regarding uniform sampling
(Theorem 1, Cohen et al. 2015). The proof is identical to the original proof and is also
included in the appendix for completeness.

Theorem 21 (Uniform Sampling) Given any A = Y ", A; as defined above, let S =
> j=1X; be formed by uniformly sampling r matrices X1 ... X, ~ {A;} without repetition.
Define

TiS(A) Zfﬂ] s.t. Xj = Az
{ TZ-S+Ai (A) otherwise

20

SECOND-ORDER STOCHASTIC OPTIMIZATION FOR MACHINE LEARNING IN LINEAR TIME

Then 7°(A) > 7;(A) for all i, and

E < md.
T

S A)
=1

Unlike the case of rank one matrices as was done by Cohen et al. (2015), it is not
immediately clear how to efficiently compute 7; as we cannot directly apply the Sherman-
Morrison formula. In our case though, since we have that each A; = ViVZT + Al we define
slightly different estimates which are efficiently computable and prove that they work as
well.

Theorem 22 Suppose we are given any A = > " | A; where each A; is of the form A; =
vivl + M. Let S = Z;nzl X, be formed by uniformly sampling r matrices X1 ... X, ~ {A;}
without repetition. Define

S vIStvl + g if37 st. X;=A4,;
77 (A) = — L+ otherwise
1+v;.T(S+AI)+vZT "

Then #°(A) > 7;(A) for all i, and

n

> A

=1

E

Proof [Proof of Theorem 22| We will prove that
— >75(A) - 77(A) > 0. (12)
Consider the case when 3 j s.t. X; = A;. By definition of 77(A),

FE(A) =77(A) =81 Ay =81 (vivI + M) = vISTv; + ASH AT

d
<vIStVI + (rADT - T =vIstv] + o= 75 (A).

()

The above follows by noting that S > rAI. It also follows from the definition that
#9(A); — 79(A); < 4

In the other case a similar inequality can be shown by noting via the Sherman-Morrison
formula that

S+ AN vvE(S+ AT

V; = .
L+ vI(S+ M)ty) 14+ 7V.T(s+1m+vr

1

vI(SHM+vivi) Ty, =v] <(S + AT — (

This proves Equation (12). A direct application of Theorem 21 now finishes the proof. W

21

AGARWAL, BULLINS AND HAZAN

Algorithm 3 REPEATED HALVING
Input: A=Y", (vivl +)
Output: B an O(dlog(d)) size weighted sample of A and B < A < 2B
Take a uniformly random unweighted sample of size % of A to form A’
if A’ has size > O(dlog(d)) then
Recursively compute an 2-spectral approximation A’ of A’
end if
Compute estimates 7; of generalized leverage scores {%Z-A/(A)} s.t. the following are
satisfied

Yi = 7A'2‘A/(A)

d <) 1670 (A4) +1

8: Use these estimates to sample matrices from A to form B

5.3 Algorithms

In the following we formally state the two sub-procedures: Algorithm 4, which solves the
required system, and Algorithm 3, which is the sampling routine for reducing the size of
the system.

We prove the following theorem regarding the above algorithm REPEATED HALVING
(Algorithm 3).

Theorem 23 REPEATED HALVING (Algorithm 3) produces an O(d) sized sample B
such that % =< A <X 2B and can be implemented in total time

o) (md +d msample(O(dlog(d)))d) .

The O in the above contains factors logarithmic in m,d, || A||p. Note that the Frobenius
norm of A is bounded by d||A|| which is bounded in our case by d.

Algorithm 4 Fast Quadratic Solver (FQS)

: Input: A=3",(vivl +Al), b, ¢

: Output : vs.t. |[A7b—v|<e¢

: Compute B s.t. 2B = A = B using REPEATED HALVING(Algorithm 3)
T -1

Qy) =47 +bly '

: Compute y such that ||y —argmin Q(y)| < 4”3571”

: Output v such that |B~ly —v|| <¢/2

A S CR R

We first provide the proof of Theorem 15 using Theorem 23 and then provide the proof
for Theorem 23. For the purpose of clarity of discourse we hide the terms that appear due
to the probabilistic part of the lemmas. We can take a union bound to bound the total
probability of failure, and those terms show up in the log factor.

22

SECOND-ORDER STOCHASTIC OPTIMIZATION FOR MACHINE LEARNING IN LINEAR TIME

Proof [Proof of Theorem 15| We will first prove correctness which follows from noting that
argming Q(y) = BA~'b. Therefore we have that

/2> || B~Y(y — argmin Q(y))|| = ||[B~'y — A70]|.
Yy

A simple application of the triangle inequality proves that [|[A~1b — V|| < e.

Running Time Analysis: We now prove that the algorithm can be implemented effi-
ciently. We first note the following two simple facts: since B is a 2-approximation of A,
k(B) < 2k(A); furthermore, the quadratic Q(y) is 1-strongly convex and 2-smooth. Next,
we consider the running time of implementing step 5. For this purpose we will perform
gradient descent over the quadratic Q(y). Note that the gradient of Q(y) is given by

VQ(y) = AB"'y —b.

2
Let yp =0, = (ﬁ) and Gg be a bound on the gradient of the quadratic Q(y). Let
vy and y;41 be such that

g
_ < - -
vill < 100]|A[[Gq
Vir1 =yt — 1 (Ave —b).

1By

Define hy = Q(y¢) — miny Q(y). Using the standard analysis of gradient descent, we show
that the following holds true for ¢ > 0:

hy < max{&, (0.9)ho}.

This follows directly from the gradient descent analysis which we outline below. To make
the analysis easier, we define a true gradient descent series:

zi1 =yt —NVQ(yt).

Note that

g
10GQ'

|Ze41 — yerill = A (v — B lyy) || <
We now have that

hiyir —he = Q(yir1) — Q(ye)

< (YQU. et~ ¥ + Sy — yill?

= (VQyt)zt11 —yt) +(VQ(¥t),yt+1 — Zt41) + §||Zt+1 — ¥t + Vi1 — zep|?

< =nIVQYII® + (VQ(yi), yitr1 — zes1) + B2 IVQ(y)I* + Bllyis1 — zes)
1 2

< BHVQ(.‘)’DH2 + 108 ((IVQ(yo)ll + 1)é)

< ah 15

= TFM 5B

23

AGARWAL, BULLINS AND HAZAN

where 8 > 1 and a < 2 are the strong convexity and smoothness parameters of Q(y).
Therefore, we have that
hit1 < 0.75h; + 0.08¢.

Using the inductive assumption that ||h¢|| < max{&, (0.9)tho}, it follows easily that
hip1 < max{Z, (0.9) 1hg}.

Using the above inequality, it follows that for ¢ > O(log()), we have that & is less than or
equal to £. By the 1-strong convexity of Q(y), we have that if hy < £, then

ly: — argmin Q(y)|| < V& <
y 4HBH 4|B[—

The running time of the above sub-procedure is bounded by the time to multiply a vector

with A, which takes O(md) time, and the time required to compute v;, which involves

solving a linear system in B at each step. Finally, in step 6 we once again compute the

solution of a linear system in B. Combining these we get that the total running time is

O(md + LIN(B, ¢))log C)

. _ (72
where & = W = Q(m) Now we can bound LIN(B,e) by O(d* +

d\/k(A)d)log(1/e) by using Acc-SVRG to solve the linear system and by noting that B is
an O(dlog(d)) sized 2-approximation sample of A. The bound G can be taken as a bound
on the gradient of the quadratic at the start of the procedure, as the norm of gradient only
shrinks along the gradient descent path. It is therefore enough to take Gg < ||b||, which
finishes the proof. |

Proof [Proof of Theorem 23]

The correctness of the algorithm is immediate from Theorems 22 and 20. The key chal-
lenge in the proof lies in proving that there is an efficient way to implement the algorithm,
which we describe next.

Runtime Analysis: To analyze the running time of the algorithm we consider the running
time of the computation required in step 7 of the algorithm. We will show that there exists
an efficient algorithm to compute numbers ~; such that

Vi 2T, AA/ (A)

S v <167 (A) + ke Al

First note that by recursion, A’ is a 2-spectral approximation of A’, and so we have that

#(4) < 27 (4) < 27 (A).

7

We also know that A’ is an O(dlog(d)) sized weighted sub-sample of A’, and so it is of
the form

O(dlog(d)) O(dlog(d))
A= " vl +Aar= Y bd]
=1 1=1

24

SECOND-ORDER STOCHASTIC OPTIMIZATION FOR MACHINE LEARNING IN LINEAR TIME

where such a decomposition can be achieved easily via decomposing the identity into canon-
ical vectors. Therefore, any such A’ can be written as BBT | where the columns of B are
b;.

To compute 7/ (A), we need to compute the value of vI(A')tv; = || BT(A)Tv|3.
Indeed, computing this directly for all vectors v; may be inefficient, but one can compute a
constant approximation using the following procedure outlined by Cohen et al. (2015).

To compute a constant approximation, we randomly sample a Gaussian matrix G con-
sisting of k rows and compute instead the norms +/(i) = |GBT(A")*v;||3. By the Johnson-
Lindenstrauss lemma, setting & = O(log(md)), we have that with high probability,

1/2|BY (A vill3 < +'(0) < 2] BT(A) Fvil 3.
Consider the following procedure for the computation of +/(i):
1. Compute the matrix G/ = GB” first which takes O(kd?) time.

2. For each row G} of G’ compute a vector G such that |G — G' A ||? < e. This takes
a total time of kLIN (A’ ¢).

3. For each v; compute 7/ £ Z?Zl < GY, v >2. This takes a total time of O(kmd).

Here, LIN(S,¢) is the running time of solving a linear system in S with error . There-
fore, substituting k£ = O(log(md)), the total running time of the above algorithm is

O(md +d? + LIN(A',¢)).
It is now easy from the definitions of 7/ and 4/ to see that
v € [vi = kellvill, v + kellvill?]
Setting 7; = 4(v! + kel|vi||?), it follows from the definitions that
% > 7Y (A)

D 7 < 167 (A) + 8ke|| Al
Now setting € = W satisfies the required inequality for +;. This implies that when
F

sampling from ~;, we will have a 2-approximation, and the number of matrices will be
bounded by O(dlog(d)).

To solve the linear systems required above we use Accelerated SVRG (Theorem 4) which
ensures that the running time of LIN(S,¢) < O(d? + d\/k(S)d) log(2). This follows by
noting that in our case S is a sum of O(dlog(d)) matrices. To bound the condition number
of S, note that it is a 2-approximation of some unweighted sample of the matrix A of size
greater than O(dlog(d)). Therefore, we have that £(S) < Ksample(A).

Putting the above arguments together we get that the total running time of the proce-

dure is bounded by
Omd + (¢ + d\ [ampte) D),

which proves the theorem. |

25

AGARWAL, BULLINS AND HAZAN

6. Condition Number Independent Algorithms

In this section we state our main result regarding self-concordant functions and provide the
proof. The following is the definition of a self-concordant function:

Definition 24 (Self-Concordant Functions) Let K C R" be a non-empty open conver
set, and let f : K+ R be a C® convex function. Then, f is said to be self-concordant if

V() [, b, h]| < 2(h7 V2 f(x)h)*?,

where we have

akz

k L
\Y% f(X) [hl, ceey hk] = atl — atk ‘tlz"':tk

f(x +tihy + -+ tkhk).

Our main theorem regarding self-concordant functions is as follows:

Theorem 25 Let 0 < r < 1, let v > 1, and let v be a constant depending on ~,r. Set
n=10(1-r)2, 81 =c¢, = %, where ¢, s a constant depending onr, andT = M
Then, after t > T steps, the following linear convergence guarantee holds between two full
gradient steps for Algorithm 5:

E[f(ws) = f(w)] < SE[f(ws-1) — f(w")].

N | =

Moreover, the time complexity of each full gradient step is O(md + c.d?), where c, is a
constant depending on r (independent of the condition number).

To describe the algorithm we first present the requisite definitions regarding self-concordant
functions.

6.1 Self-Concordant Functions Preliminaries

An excellent reference for this material is the lecture notes on this subject by Nemirovski
(2004).

A key object in the analysis of self-concordant functions is the notion of a Dikin ellipsoid,
which is the unit ball around a point x in the norm given by the Hessian || - [[g2(x) at the
point. We will refer to this norm as the local norm around a point and denote it as || - ||x.
Formally, we have:

Definition 26 (Dikin ellipsoid) The Dikin ellipsoid of radius r centered at a point x is
defined as

We(x) £ {y | Iy = xllvzse < 7}
One of the key properties of self-concordant functions is that inside the Dikin ellipsoid, the
function is well conditioned with respect to the local norm at the center, and furthermore,

the function is smooth. The following lemmas makes these notions formal, and the proofs
of these lemmas can be found in the lecture notes of Nemirovski (2004).

26

SECOND-ORDER STOCHASTIC OPTIMIZATION FOR MACHINE LEARNING IN LINEAR TIME

Lemma 27 (Nemirovski 2004) For all h such that |h|x < 1 we have that
1

(1= [h[x)?
Lemma 28 (Nemirovski 2004) For all h such that |h|x < 1 we have that

fx+h) < f(x) + (VF(x),h) + p ([[h]x)
where p(z) = —In(1l — z) — x.

(1~ Ih[lx)*V2f(x) < V2f(x +h) = V2 f(x).

Another key quantity which is used both as a potential function as well as a dampening
for the step size in the analysis of Newton’s method in general is the Newton decrement
which is defined as A(x) £ ||[Vf(x)||L = /Vf(x)TV2f(x)Vf(x). The following lemma
quantifies how A(x) behaves as a potential by showing that once it drops below 1, it ensures
that the minimum of the function lies in the current Dikin ellipsoid. This is the property
which we use crucially in our analysis.

Lemma 29 (Nemirovski 2004) If A\(x) < 1 then

. A(x)
[x —x[|x < m

6.2 Condition Number Independent Algorithms

In this section we describe an efficient linearly convergent method (Algorithm 5) for op-
timization of self-concordant functions for which the running time is independent of the
condition number. We have not tried to optimize the complexity of the algorithms in terms
of d as our main focus is to make it condition number independent.

The key idea here is the ellipsoidal view of Newton’s method, whereby we show that
after making a constant number of full Newton steps, one can identify an ellipsoid and a
norm such that the function is well conditioned with respect to the norm in the ellipsoid.
This is depicted in Figure 1.

At this point one can run any desired first-order algorithm. In particular, we choose
SVRG and prove its fast convergence. Algorithm 6 (described in the appendix) states the
modified SVRG routine for general norms used in Algorithm 5.

We now state and prove the following theorem regarding the convergence of Algorithm
d.

Proof It follows from Lemma 31 that at ¢ = M, the minimizer is contained in the
Dikin ellipsoid of radius r, where v is a constant depending on -, r. This fact, coupled with
Lemma 30, shows that the function satisfies the following property with respect to W,:

Vx € Wy, (1—7)2V2f(xr) < V2f(x) < (1 —7)2V2f(x7).

Using the above fact along with Lemma 32, and substituting for the parameters, concludes
the proof.]

We describe the Algorithm N-SVRG (Algorithm 6 in the appendix). Since the algorithm
and the following lemmas are minor variations of their original versions, we include the
proofs of the following lemmas in the appendix for completeness.

27

AGARWAL, BULLINS AND HAZAN

5P

Figure 1: Visualization of the steps taken in Algorithm 5.

{,U*

Lemma 30 Let f be a self-concordant function over IC, let 0 < r < 1, and consider x € K.
Let W,.(x) be the Dikin ellipsoid of radius v, and let « = (1 —7)% and 8 = (1 —r)~2. Then,
for allh s.t. x+h e W,(x),

aV2f(x) < V2f(x +h) < BV2f(x).

Lemma 31 Let f be a self-concordant function over IC, let 0 < r < 1, let v > 1, and
consider following the damped Newton step as described in Algorithm 5 with initial point
x1. Then, the number of steps t of the algorithm before the minimizer of f is contained
in the Dikin ellipsoid of radius v of the current iterate, i.e. x* € W,(x¢), is at most

t= M, where v is a constant depending on vy, r.

Algorithm 5 ellipsoidCover

1: Input : Self-concordant f(x) =

n, T
Initialize: Xcurr = X1
while A(Xcure) > 77 do
step = (1 + AMXeurr))
Xcurr = Xcurr — ﬁv_%f(xcurr)vf(xcurr)
end while
x741 = N — SVRG(W,.(x), f(x), V2f (Xcurr), S1,1, T)

return xr

fi(x), T, r € {0, 1}, initial point x; € IC, v > 1, Sy,

s

I
—

(2

28

SECOND-ORDER STOCHASTIC OPTIMIZATION FOR MACHINE LEARNING IN LINEAR TIME

LR, Mushrooms, Lambda = 1E-3 LR, MNIST, Lambda = 1E-3 LR, Covertype, Lambda = 1E-4 LR, RealSIM, Lambda = 1E-4

log(error)
log(error)
log(error)

4 6 8
epochs # epochs # epochs

o B LR, Covertype, Lambda = 1E-5 o LR, RealSIM, Lambda = 1E-5
-
\ AN
2t \
\
5 3 \ 5 \\
- - - -~ - >
s s g+ ~ s N
s & s N s N
> > 5.5 = N >
2 2 2 \ 2 ~
. R ~
10 © \ 10 \ ~a
) N \
7 ~ \ N
— — SAGA S~ p—TY \ ~
8 SVRG — — SAGA
LSSA SVRG N
N
15 9 15 !
0 5 10 15 20 0 2 4 6 8 0 1z 0 5 10 15 20
epoch: epochs epoch:

Figure 2: Performance of LiSSA as compared to a variety of related optimization methods
for different data sets and choices of regularization parameter A\. S; = 1, Sy ~
kIn(k).

Lemma 32 Let f be a convex function. Suppose there exists a convex set K and a positive
semidefinite matriz A such that for all x € K, aA < V2f(x) =< BA. Then the following
holds between two full gradient steps of Algorithm 6:

1 2n6
an(l—=2nB)n = (1 —2n08)

B [f(x) - F(x")] < () E[f(xe) — f(x)].

7. Experiments

In this section we present experimental evaluation for our theoretical results.” We perform
the experiments for a classification task over two labels using the logistic regression (LR)
objective function with the fo regularizer. For all of the classification tasks we choose two
values of /\:% and }n—o, where m is the number of training examples. We perform the above
classification tasks over four data sets: MNIST, CoverType, Mushrooms, and RealSIM.
Figure 2 displays the log-error achieved by LiSSA as compared to two standard first-order
algorithms, SVRG and SAGA (Johnson and Zhang, 2013; Defazio et al., 2014), in terms
of the number of passes over the data. Figure 3 presents the performance of LiSSA as
compared to NewSamp (Erdogdu and Montanari, 2015) and standard Newton’s method
with respect to both time and iterations.

7. Our code for LiSSA can be found here: https://github.com/brianbullins/lissa_code.

29

https://github.com/brianbullins/lissa_code

AGARWAL, BULLINS AND HAZAN

o LR, MNIST, Lambda = 1E-4 . LR, MNIST, Lambda = 1E-4
0
2 2 -
R
=~ ~
-+ “ \
\
— — N\
§° 2 ° N
s 3 \
g 8 s \
\
\
-10 10
\
12| [= NewionMetod , | [—= = NewionMeod \
NewSamp 12 NewSamp
LiSSA LiSSA

0 2 4 6 8 10 0 1 2 3 4 5
Time (s) Iterations

Figure 3: Convergence of LiSSA over time/iterations for logistic regression with MNIST,
as compared to NewSamp and Newton’s method.

7.1 Experiment Details

In this section we describe our experiments and choice of parameters in detail. Table 2
provides details regarding the data sets chosen for the experiments. To make sure our
functions are scaled such that the norm of the Hessian is bounded, we scale the above data
set points to unit norm.

Table 2: A description of data sets used in the experiments.

DATA SET M D REFERENCE
MNIST4-9 11791 784 LeCUN AND CORTES (1998)
MusHrRoOMS 8124 112 LicHMAN (2013)
CovERTYPE 100000 54 BLACKARD AND DEAN (1999)
REALSIM 72309 20958 McCALLuM (1997)

7.2 Comparison with Standard Algorithms

In Figures 2 and 4 we present comparisons between the efficiency of our algorithm with
different standard and popular algorithms. In both cases we plot log(CurrentValue —
OptimumV alue). We obtained the optimum value for each case by running our algorithm
for a long enough time until it converged to the point of machine precision.

Epoch Comparison: In Figure 2, we compare LiSSA with SVRG and SAGA in terms of
the accuracy achieved versus the number of passes over the data. To compute the number
of passes in SVRG and SAGA, we make sure that the inner stochastic gradient iteration in
both the algorithms counts as exactly one pass. This is done because although it accesses
gradients at two different points, one of them can be stored from before in both cases. The
outer full gradient in SVRG counts as one complete pass over the data. We set the number
of inner iterations of SVRG to 2m for the case when A = 1/m, and we parameter tune
the number of inner iterations when A = 10/m. The stepsizes for all of the algorithms are
parameter tuned by an exhaustive search over the parameters.

Time Comparison: For the comparison with respect to time (Figure 4), we consider the
following algorithms: AdaGrad (Duchi et al., 2011), BFGS (Broyden, 1970; Fletcher, 1970;

30

SECOND-ORDER STOCHASTIC OPTIMIZATION FOR MACHINE LEARNING IN LINEAR TIME

Goldfarb, 1970; Shanno, 1970), gradient descent, SGD, SVRG (Johnson and Zhang, 2013)
and SAGA (Defazio et al., 2014). The log(Error) is plotted as a function of the time elapsed
from the start of the run for each algorithm. We next describe our choice of parameters for
the algorithms. For AdaGrad we used the faster diagonal scaling version proposed by Duchi
et al. (2011). We implemented the basic version of BFGS with backtracking line search. In
each experiment for gradient descent, we find a reasonable step size using parameter tuning.
For stochastic gradient descent, we use the variable step size 7; = «/+/t which is usually the
prescribed step size, and we hand tune the parameter . The parameters for SVRG and
SAGA were chosen in the same way as before.

Choice of Parameters for LiSSA: To pick the parameters for our algorithm, we observe
that it exhibits smooth behavior even in the case of S1 = 1, so this is used for the experi-
ments. However, we observe that increasing S has a positive effect on the convergence of
the algorithm up to a certain point, as a higher Sy leads to a larger per-iteration cost. This
behavior is consistent with the theoretical analysis. We summarize the comparison between
the per-iteration convergence and the value of S5 in Figure 5. As the theory predicts So
to be of the order x1In(k), for our experiments we determine an estimate for x and set Sy
to around kIn(k). This value is typically equal to m in our experiments. We observe that
setting Sy in this way resulted in the experimental results displayed in Figure 2.

Comparison with Second-Order Methods: Here we present details about the comparison
between LiSSA, NewSamp (Erdogdu and Montanari, 2015), and standard Newton’s method,
as displayed in Figure 3. We perform this experiment on the MNIST data set and show
the convergence properties of all three algorithms over time as well as over iterations. We
could not replicate the results of NewSamp on all of our data sets as it sometimes seems
to diverge in our experiments. For logistic regression on the MNIST data set, we could get
it to converge by setting the value of S; to be slightly higher. We observe as is predicted
by the theory that when compared in terms of the number of iterations, NewSamp and
LiSSA perform similarly, while Newton’s method performs the best as it attains a quadratic
convergence rate. This can be seen in Figure 3. However, when we consider the performance
in terms of time for these algorithms, we see that LiSSA has a significant advantage.

Comparison with Accelerated First-Order Methods: Here we present experimental results
comparing LiSSA with a popular accelerated first-order method, APCG (Lin et al., 2014),
as seen in Figure 6. We ran the experiment on the RealSIM data set with three settings of
A =107%, 1075, 1077, to account for the high condition number setting. We observe a trend
that can be expected from the runtime guarantees of the algorithms. When X is not too
low, LiSSA performs better than APCG, but as A gets very low we see that APCG performs
significantly better than LiSSA. This is not surprising when considering that the running
time of APCG grows proportional to /km, whereas for LiSSA the running time can at best
be proportional to k. We note that for accelerated first-order methods to be useful, one
needs the condition number to be quite large which is not often the case for applications.
Nevertheless, we believe that an algorithm with running time guarantees similar to LiSSA-
Sample can get significant gains in these settings, and we leave this exploration as future
work.

31

AGARWAL, BULLINS AND HAZAN

LR, Mushrooms, Lambda = 1E-3 2 LR, MNIST, Lambda = 1E-3 o LR, Covertype, Lambda = 1E-4
H 5 s
g K g
-16 -14
0 05 1 15 2 25 0 5 10 15
Time (s) Time (s) Time (s)
LR, Mushrooms, Lambda = 1E-4 2 LR, MNIST, Lambda = 1E-4 o LR, Covertype, Lambda = 1E-5

g g 5

8 s s

5 g g

18 -16
0 05 1 15 2 25 3 0 1 2 3 4 5
Time (s) Time (s)

Figure 4: Performance of LiSSA as compared to a variety of related optimization methods
for different data sets and choices of regularization parameter A. S; = 1, Sy ~

kIn(k).

LR, MNIST, Lambda = 1E-4

LR, MNIST, Lambda = 1E-4
0

log(error)
log(error)

.. LiSSA. 5, =5000 A

. NS
7 — — LiSSA, S, =10000 __
LISSA, S, =20000 \
-8
0 1 2 3 4
Time (s)

Iterations

Figure 5: Differing convergence rates for LiSSA based on different choices of the Ss param-

eter.

32

SECOND-ORDER STOCHASTIC OPTIMIZATION FOR MACHINE LEARNING IN LINEAR TIME

o LR, RealSIM, Lambda = 1E-5 , LR, RealSIM, Lambda = 1E-6 LR, RealSIM, Lambda = 1E-7
. -1
151
-2 “ .
5
25 . \\m_______ﬂ
. _ 5
S s 5 -3 2
s § - 2 T
> 5 1
F; b3 g 35 =
5, 7
-4 _— ‘7‘“
o
45
b-a
-5 LiSSA “
» =— APCG
. € 55
0 5 10 15 0 2 4 6 8 10 12 1] 5 10 15
epochs # epochs #epochs

Figure 6: Comparison with accelerated first-order methods in ill-conditioned settings.

Acknowledgments

The authors would like to thank Zeyuan Allen-Zhu, Dan Garber, Haipeng Luo and David
McAllester for several illuminating discussions and suggestions. We would especially like
to thank Aaron Sidford and Yin Tat Lee for discussions regarding the matrix sampling

approach.

33

AGARWAL, BULLINS AND HAZAN

Appendix A. Remaining Proofs

Here we provide proofs for the remaining lemmas.

A.1 Proof of Lemma 20

Proof The proof is almost identical to the proof of Lemma 4 by Cohen et al. (2015). As
in there we will use the following lemma on matrix concentration, which appears as Lemma
11 in the work of Cohen et al. (2015).

Lemma 33 (Cohen et al. 2015) Let Y7 ...Y) be independent random positive semidefi-
nite matrices of size d x d. Let Y =3 Y; and let Z = EY|. If Y; 2 R- Z, then

P[S Y2 (- 0)7] < defn

Py vi=(+e)7] < desr.

For every matrix A; choose Y; = % with probability p; and 0 otherwise. Therefore we

need to bound > Y;. Note that E[Y;] = A. We will now show that

Vi Y; <

clog de—2
which will finish the proof by a direct application of Lemma 33. First we will show that

A;

= (A) < A.

We need to show that ¥x x A;x < 7;(A)xT Ax. By noting that the A; are PSD we have
that if xZAx = 0 then Vi,x? A;x = 0. We can now consider x = A1/2y. Therefore, we
need to show that

yAT2AAT 2y < 1i(A)|ly|%.

This is true because the maximum eigenvalue of A1/24;A1/2 is bounded by its
Trace(A+/2A; AT/2) (due to positive semidefiniteness), which is equal to 7;(A) by definition.
Therefore when p; < 1, i.e., acu;log(d) < 1, the facts 7;(A) < u; immediately provide

‘ 1

"~ clogde2""
When p; = 1 the above does not hold, but we can essentially replace Y; = A; with clog de ™2
variables each equal to Clog‘#, each being sampled with probability 1. This does not

change E[YY;] but proves concentration. Now a direct application of Lemma 33 finishes
the proof. Also note that a standard Chernoff bound proves the required bound on the
sample size. [|

34

SECOND-ORDER STOCHASTIC OPTIMIZATION FOR MACHINE LEARNING IN LINEAR TIME

A.2 Proof of Lemma 21

Proof The proof is almost identical to the proof of Theorem 1 by Cohen et al. (2015). We
include the proof here for completeness. Define S; to be S if Jj such that X; = A;, and
S + A; otherwise. Now since S? < A, we have that 7°(A) > 7;(A). To bound the expected
sum we break it down into two parts:

DA =) F A+) T
i ics ¢S
The first part is a sum of the leverage scores of S, and so it is bounded by d. To bound the
second term, consider a random process that first selects S, then selects a random i ¢ S and
returns %ZS (A). There are always exactly m —r such i, so the value returned by this random
process is, in expectation, exactly equal to ﬁE [ZZ¢ g 75(A)]. This random process is also
equivalent to randomly selecting a set S of size r + 1, then randomly choosing an i € S’
and returning its leverage score. In expectation it is therefore equal to the average leverage
score in S. S’ has size r + 1, and its leverage scores sum to its rank, so we can bound its

average leverage score by ril' Overall, we have that

ED) #(A)]=d+ d(m —) <0 <md> .

r+1 r

%

A.3 Proof of Ellipsoidal Cover Lemma

Proof [Proof of Lemma 31| Let A(x) be the Newton decrement at x. By Lemma 29, we
know that if A(x) < 135 <1, then
‘ A(x)
- s i

HX X HX— 1—)\(X) r
Consider a single iteration of the algorithm at time ¢. If A(x) < {1, then we may conclude
that x* € W;(x;). Therefore, it is only when A(x;) > {5 that x* may not be contained
within W, (x;). Since our update is of the form

1

Xi+1 = X¢ — mvfzf(xt)Vf(xt),
we have the following:
B 1 T (192 £ -1Y £(x A(xt)
i) £ 10) =~ s V) (V1) + o 2)
O AGx)
=16 = S A) *”(w T A(xt»)
B <) — ()\(Xt))Q —In .)\(Xt) o)\(Xt)
=1t = Sy ! (1 v(lﬂ(xt))) T+ AGx))
N _)\(Xt) 0)\(Xt)
=fo) == (”ww—m(xt))

35

AGARWAL, BULLINS AND HAZAN

where the first inequality follows from Lemma 28. It now follows that

A(x¢) I A(x¢)
1 (1 G- m(xt))
Axe) A(xt)
v v+ (v = DA(xe)

= \(x¢) (i Tt 0 —1 1)>\(Xt)>

_or (11
147\ 7+(71:-17ﬂ)r

f(xe) = f(xe41) 2

>0

where the second inequality comes from the fact that, for all z € R, In(1 +) <1+ z. Let

_ _r 1 _ 1
V=15 <7 e) Then we see that after

f(x1) — f(x")

14

steps, we can guarantee that we have arrived at x; such that x* € W,.(x). [|

Algorithm 6 N-SVRG

m
% p fx(x), Norm A > 0, update frequency S, and learning
=1

Input: Convex set K, f(x) =
rate n
Initialize X
for s=1,2...do

X =X 1
=55 2y VIr(%)
X0 =X

fort =1 to S; do
Randomly choose i; € {1...m}
9=Vfi,(x¢m1) = Vfi,(X) + fi
Xy = Hé (Xt—l - 7714_19)
end for
X5 = x; for randomly chosen t € {1,...,m}
end for

A.4 Proof of SVRG Lemma

Proof [Proof of Lemma 32| The proof follows the original proof of SVRG (Johnson and
Zhang, 2013) with a few modifications to take the general norm into account. For any i,
consider

9i(x) = fi(x) = fi(x") = (V[i(x"),x — x7).

36

SECOND-ORDER STOCHASTIC OPTIMIZATION FOR MACHINE LEARNING IN LINEAR TIME

We know that g;(x*) = ming g;(x) since Vg;(x*) = 0. Therefore,
0=gi(x") < mnin (gi(x - nA_IVgi(x*)))

< min (g:(x) = nllg: ()51 + 0.587°llgs(x)-1)

gi(x) - ;ﬁugl-(x)ni_l |

The second inequality follows from smoothness of g;, where we note that g; is as smooth
as f;. Summing the above inequality over ¢ and setting x* to be the minimum of f so that
Vi(x*) =0, we get

m (x) = V(x93
> izt Vi ;mﬁw()1 < F)— F),

Define v; = Vf;,(x¢—1) — Vfi,(X) + . Conditioned on x;_1, we can take the expectation
with respect to i; and obtain

E[oli~] < 2BE[IVfi(x-1) = Vi, () 3] + 2B [[Vfi, (%) = Vi (x7) = V) [51]
< 2E (Vi (xim1) = Vi,)] + 2B IV i, (%) = Vi ()[5]
< A (f(xe1) — FX) + F(x) = F(XT)).-

The above inequalities follow by noting the following three facts:

o lla+b% s <2lal} s + 2Bl -
o 1 =Vf(x).
e E[|X —EX|%_] <E|X|%, .
Now note that conditioned on x;_1, we have that Ev; = V f(x;—1), and so
Elx; —x% < b1 —nA o — x4
= lxe—1 = X% = 2n(xs-1 — X", AA Eug) + 77 E|fve |51
Ixe—1 = x*[1% = 2n{xe—1 — X, Vf(xe-1)) + 460% (f (x-1) = f(x*) + f(%) = f(x))
Ixe—1 = x*|1% = 20 (f (xe—1) = F(x*) + 4807 (f(xe-1) = F(X) + f(X) = f(x7))
= lxe—1 = X% = 20(1 = 208) (f (xe—1) — F(x)) +480* (f(%) — f(x7)).
The first inequality uses the Pythagorean inequality for norms, the second inequality uses
the derived inequality for E||th2A,1, and the third inequality uses the convexity of f(x).
Consider a fixed stage s, so that x = x;_1 and X, are selected after all of the updates have

been completed. By summing the previous inequality over ¢ and taking an expectation over
the history, we get

Ellx, = x5 + 201~ 209)0B [f(x) — /()] < Blixo —x"IA + 48wPE /() - f(x')
= % - X[+ 48nPBIF(R) — f6)
< BB IO | gm0 — 1)

= 2(3+ 26m?) BIGO - 16

37

AGARWAL, BULLINS AND HAZAN

The second inequality uses the strong convexity property. Therefore, we have that

1 n 2np
an(l—=2nB)n = (1 —2npB)

E[f(x.) - f(x")] < () B [f(xo_1) — £(x")].

References

Naman Agarwal, Zeyuan Allen-Zhu, Brian Bullins, Elad Hazan, and Tengyu Ma. Finding
approximate local minima faster than gradient descent. In Proceedings of the 49th Annual
ACM SIGACT Symposium on Theory of Computing, pages 1195-1199. ACM, 2017.

Zeyuan Allen-Zhu. Katyusha: The first direct acceleration of stochastic gradient methods.
arXiw preprint arXiw:1605.05953, 2016.

Yossi Arjevani and Ohad Shamir. Oracle complexity of second-order methods for finite-sum
problems. arXiv preprint arXiv:1611.04982, 2016.

Jock A. Blackard and Denis J. Dean. Comparative accuracies of artificial neural networks
and discriminant analysis in predicting forest cover types from cartographic variables.
Computers and Electronics in Agriculture, 24(3):131-151, 1999.

Raghu Bollapragada, Richard Byrd, and Jorge Nocedal. Exact and inexact subsampled
Newton methods for optimization. arXiv preprint arXiv:1609.08502, 2016.

Charles G. Broyden. The convergence of a class of double-rank minimization algorithms:
2. the new algorithm. IMA Journal of Applied Mathematics, 6(3):222-231, 1970.

Richard H. Byrd, Gillian M. Chin, Will Neveitt, and Jorge Nocedal. On the use of stochastic
Hessian information in optimization methods for machine learning. SIAM Journal on
Optimization, 21(3):977-995, 2011.

Richard H. Byrd, Samantha L. Hansen, Jorge Nocedal, and Yoram Singer. A stochastic
quasi-Newton method for large-scale optimization. SIAM Journal on Optimization, 26
(2):1008-1031, 2016.

Michael B. Cohen. Nearly tight oblivious subspace embeddings by trace inequalities. In Pro-
ceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 278-287. Society for Industrial and Applied Mathematics, 2016.

Michael B. Cohen, Yin Tat Lee, Cameron Musco, Christopher Musco, Richard Peng, and
Aaron Sidford. Uniform sampling for matrix approximation. In Proceedings of the 2015
Conference on Innovations in Theoretical Computer Science, pages 181-190. ACM, 2015.

Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. Saga: A fast incremental gradient
method with support for non-strongly convex composite objectives. In Advances in Neural
Information Processing Systems, pages 1646-1654, 2014.

38

SECOND-ORDER STOCHASTIC OPTIMIZATION FOR MACHINE LEARNING IN LINEAR TIME

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online
learning and stochastic optimization. Journal of Machine Learning Research, 12(Jul):
2121-2159, 2011.

Murat A. Erdogdu and Andrea Montanari. Convergence rates of sub-sampled Newton
methods. In Advances in Neural Information Processing Systems, pages 3034-3042, 2015.

Roger Fletcher. A new approach to variable metric algorithms. The Computer Journal, 13
(3):317-322, 1970.

Donald Goldfarb. A family of variable-metric methods derived by variational means. Math-
ematics of Computation, 24(109):23-26, 1970.

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive
variance reduction. In Advances in Neural Information Processing Systems, pages 315—
323, 2013.

Yann LeCun and Corinna Cortes. The MNIST database of handwritten digits. 1998. URL
http://yann.lecun.com/exdb/mnist/.

Mu Li, Gary L. Miller, and Richard Peng. Iterative row sampling. In IEEFE 54th Annual
Symposium on Foundations of Computer Science, pages 127-136. IEEE, 2013.

Moshe Lichman. UCI machine learning repository, 2013. URL http://archive.ics.uci.
edu/ml.

Hongzhou Lin, Julien Mairal, and Zaid Harchaoui. A universal catalyst for first-order
optimization. In Advances in Neural Information Processing Systems, pages 3384—-3392,
2015.

Qihang Lin, Zhaosong Lu, and Lin Xiao. An accelerated proximal coordinate gradient
method. In Advances in Neural Information Processing Systems, pages 3059-3067, 2014.

Haipeng Luo, Alekh Agarwal, Nicolo Cesa-Bianchi, and John Langford. Efficient second
order online learning by sketching. In Advances in Neural Information Processing Systems,
pages 902-910, 2016.

James Martens. Deep learning via Hessian-free optimization. In International Conference
on Machine Learning, pages 735-742, 2010.

Andrew McCallum. Real-sim, 1997. Available at https://www.csie.ntu.edu.tw/~cjlin/
libsvmtools/datasets/binary.html#real-sim.

Aryan Mokhtari and Alejandro Ribeiro. RES: regularized stochastic BFGS algorithm. IEEFE
Transactions on Signal Processing, 62(23):6089-6104, 2014.

Philipp Moritz, Robert Nishihara, and Michael Jordan. A linearly-convergent stochastic
L-BFGS algorithm. In Artificial Intelligence and Statistics, pages 249-258, 2016.

Arkadi Nemirovski. Interior point polynomial time methods in convex programming. Lecture
notes, 2004.

39

http://yann.lecun.com/exdb/mnist/
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#real-sim
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#real-sim

AGARWAL, BULLINS AND HAZAN

Yurii Nesterov. A method of solving a convex programming problem with convergence rate
O(1/k2). In Soviet Mathematics Doklady, volume 27, pages 372-376, 1983.

Yurii Nesterov. Introductory Lectures on Convexr Optimization: A Basic Course. Springer
Science & Business Media, 2013.

Jorge Nocedal and Stephen Wright. Numerical Optimization. Springer Science & Business
Media, 2006.

Mert Pilanci and Martin J. Wainwright. Newton sketch: A linear-time optimization algo-
rithm with linear-quadratic convergence. arXiv preprint arXiv:1505.02250, 2015.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The Annals of
Mathematical Statistics, pages 400407, 1951.

Nicolas L. Roux, Mark Schmidt, and Francis R. Bach. A stochastic gradient method with an
exponential convergence rate for finite training sets. In Advances in Neural Information
Processing Systems, pages 2663-2671, 2012.

Nicol N. Schraudolph, Jin Yu, and Simon Giinter. A stochastic quasi-Newton method for
online convex optimization. In Artificial Intelligence and Statistics, pages 436—443, 2007.

Shai Shalev-Shwartz and Tong Zhang. Stochastic dual coordinate ascent methods for regu-
larized loss minimization. Journal of Machine Learning Research, 14(Feb):567-599, 2013.

Shai Shalev-Shwartz and Tong Zhang. Accelerated proximal stochastic dual coordinate
ascent for regularized loss minimization. Mathematical Programming, 155(1-2):105-145,
2016.

Ohad Shamir, Nathan Srebro, and Tong Zhang. Communication-efficient distributed op-
timization using an approximate Newton-type method. In International Conference on
Machine Learning, pages 1000-1008, 2014.

David F. Shanno. Conditioning of quasi-Newton methods for function minimization. Math-
ematics of Computation, 24(111):647-656, 1970.

Joel A Tropp. User-friendly tail bounds for sums of random matrices. Foundations of
Computational Mathematics, 12(4):389-434, 2012.

Peng Xu, Jiyan Yang, Farbod Roosta-Khorasani, Christopher Ré, and Michael W. Ma-
honey. Sub-sampled Newton methods with non-uniform sampling. In Advances in Neural
Information Processing Systems, pages 3000-3008, 2016.

Haishan Ye, Luo Luo, and Zhihua Zhang. A unifying framework for convergence analysis
of approximate Newton methods. arXiv preprint arXiv:1702.08124, 2017.

Lijun Zhang, Mehrdad Mahdavi, and Rong Jin. Linear convergence with condition num-
ber independent access of full gradients. In Advances in Neural Information Processing
Systems, pages 980-988, 2013.

40

	Introduction
	Overview of Techniques
	Comparison with Related Work
	Discussion and Subsequent Work
	Organization of the Paper
	Preliminaries
	Definition of Condition Numbers

	LiSSA: Linear (time) Stochastic Second-Order Algorithm
	Estimators for the Hessian Inverse
	Algorithm
	Main Theorem
	Leveraging Sparsity

	LiSSA: Extensions
	Runtime Improvement through Fast Quadratic Solvers
	Fast Quadratic Solver - Outline
	Preliminaries for Fast Quadratic Solver
	Algorithms

	Condition Number Independent Algorithms
	Self-Concordant Functions Preliminaries
	Condition Number Independent Algorithms

	Experiments
	Experiment Details
	Comparison with Standard Algorithms

	Remaining Proofs
	Proof of Lemma 20
	Proof of Lemma 21
	Proof of Ellipsoidal Cover Lemma
	Proof of SVRG Lemma

