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Abstract

We consider the task of learning the parameters of a single component of a mixture model,
for the case when we are given side information about that component; we call this the
“search problem” in mixture models. We would like to solve this with computational
and sample complexity lower than solving the overall original problem, where one learns
parameters of all components.

Our main contributions are the development of a simple but general model for the
notion of side information, and a corresponding simple matrix-based algorithm for solving
the search problem in this general setting. We then specialize this model and algorithm to
four common scenarios: Gaussian mixture models, LDA topic models, subspace clustering,
and mixed linear regression. For each one of these we show that if (and only if) the side
information is informative, we obtain parameter estimates with greater accuracy, and also
improved computation complexity than existing moment based mixture model algorithms
(e.g. tensor methods). We also illustrate several natural ways one can obtain such side
information, for specific problem instances. Our experiments on real data sets (NY Times,
Yelp, BSDS500) further demonstrate the practicality of our algorithms showing significant
improvement in runtime and accuracy.

Keywords: mixture models, search, side information, semi-supervised, method of mo-
ments

1. Introduction

Mixture models denote the statistical setting where observed samples can come from one of
several distinct underlying populations—each typically with its own probability distribution—
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but are not labeled as separate in the data presented. They have been used to model a wide
variety of phenomena, and have seen great success in practice, going back as far as Pear-
son (1894). In this paper we consider (what we call) the search problem in the mixture
model setting: given some special side information about one of the mixture components,
is it possible to efficiently learn the parameters of that component only? Given that there
are known methods for learning the entire set of parameters of various mixture models,
“efficient” here means more efficient (statistically and/or computationally) than existing
methods for learning all the parameters.

As an example, we consider the “latent Dirichlet allocation” model for document gener-
ation. In this model, “underlying population” means the set of topics in a document, which
determines the frequencies of different words in the document. “Side information” could
be a word that is more common in the topic of interest than it is in any other topic: for
example, the word “semi-supervised” might work if the topic of interest is machine learning.

Side information could also consist of a small number of labelled examples. We might
have a small collection of documents about machine learning and also a much larger corpus
that includes documents from many topics. Our methods will allow us to leverage the
large, unlabelled corpus to obtain good estimates for word frequencies in machine learning
articles—and these estimates will be much better than anything that could be learned from
the small labelled sample.

Main contributions: We propose a general setting for side information in mixture
models, and show how to solve the search problem by estimating certain matrices of mo-
ments. We prove error bounds on the resulting estimates; our rates have a sharp dependence
on the sample size (although they are possibly not sharp in the other parameters).

We then specialize our approach to four popular families of mixture models: Gaussian
mixture models with spherical covariances, latent Dirichlet allocation for topic models,
mixed linear regression, and subspace clustering. We give concrete algorithms for these
four families. Our results also include new moment derivations for mixed linear regression
and subspace clustering models.

Finally, we simulate our algorithm on both real and synthetic data sets for the Gaussian
mixture model, topic model, and subspace clustering applications. For synthetic data set we
compare its performance to the tensor decomposition methods discussed by Anandkumar
et al. (2014) in both GMM and LDA models, and k-means for subspace clustering. We
show that our methods outperform the baseline when the side information is informative.
We also demonstrate the practical applicability of our algorithms on three real data sets—
the NY Times data set of news articles, Yelp data set of business reviews, and BSDS500
data set of images. In the first two text corpus, we show our algorithm recovers more
coherent topics than topic modeling algorithm by Arora et al. (2013). In the BSDS500 data
set, we demonstrate how our algorithm can be used for parallel image segmentation. In
all three cases, our algorithm also exhibits significant computational gains over competing
unsupervised and semi-supervised algorithms.
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1.1 Related Work

There is a vast literature on mixture models; too much to even summarize here. We will
therefore focus this section on two more closely related areas: method of moments estimators
for mixture models, and learning with side information.

Mixture models and method of moments: A common method for learning mixture
models is the EM algorithm of Dempster et al. (1977), which outputs a complete set of
model parameters. However, EM may converge slowly (or not at all) [Redner and Walker
1984]; this weakness of EM has spurred a resurgence in method-of-moments estimators for
mixture models. Although these methods go back to the pioneering work of Pearson (1894)
on Gaussian mixture models, the last several years have seen important advances. Moitra
and Valiant (2010), and Hardt and Price (2015) showed that Gaussian mixture models with
two components can be learned in polynomial time. Hsu and Kakade (2013) considered
mixtures of more Gaussians, but constrained to have spherical covariances. They gave a
method based on third-order tensor decompositions, which was later generalized to other
models in Anandkumar et al. (2014).

Learning with side information: As has been observed many times, often in practice
one has access to a set of data that is somewhat richer than standard models of data in
learning theory. The term side information is used as a catch-all for extra data that doesn’t
fit into pre-existing models; as such, the literature contains many incomparable models of
side information.

Xing et al. (2002) and Yang et al. (2010) took unsupervised clustering as their starting
point. For them, side information arrived as pairs of points that were known to belong to
the same cluster; they showed how this extra information could substantially improve the
performance of the k-means algorithm.

Kuusela and Ocone (2004) developed a framework for side information in the PAC
learning model, in which extra samples with a particular dependence on the original samples
could sometimes give a substantial benefit.

Many different types of metadata have been proposed for the latent Dirichlet allocation
(LDA) model of document generation. Mcauliffe and Blei (2008) introduced the supervised
LDA model, in which each document comes with an additional response variable from a
generalized linear model. On the other hand Rosen-Zvi et al. (2004) proposed the author-
topic model, in which the metadata (author names) affects the distribution of the documents
themselves. From a more experimental point of view, Lu and Zhai (2008) used long, detailed
product reviews as side information for categorizing short snippets and blog entries.

The notion of semi-supervised learning (see the book by Chapelle et al. (2006)) is also
related to our framework of side information. In semi-supervised learning, the learner has
access to a small number of labelled examples and a large number of unlabelled examples.
This setting is useful for us too, although our general method does not strictly require data
of this form.

2. Basic Idea and Algorithm

We now first briefly describe the basic mixture model setting, and then describe our method.
These descriptions cover several popular specific examples for mixture models, and we detail
the application to each of them in Section 3.
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Setting: We are interested in the standard statistical setting of (parametric) mixture
models: that is, samples are drawn i.i.d. from a distribution f given by

f(x) =
k∑
i=1

αi g(x;µi).

Here g corresponds to a known parametric class of distributions, and k is the number
of mixture components. The corresponding parameter vectors are µ1, . . . , µk, and their
mixture weights / probabilities are α1, . . . , αk. So, for example, in the case of the standard
(spherical) Gaussian mixture model, g(x;µi) is the Gaussian pdfN (µi, I). Thus each sample
can be considered to be drawn by first selecting a mixture component µi with probability
αi, and then drawing the sample x according to g(x;µi). We assume all the µi’s are linearly
independent. This is a common assumption for learning mixture models using spectral
methods.

Search problem: The standard parameter estimation problem is to find all the µi
vectors given samples. In this paper we are interested in the search problem: we are given
side information about one of the vectors—say µ1, without loss of generality—and we would
like to recover only µ1. Of course, we would like to do this with sample and computational
complexity lower than what would be required to estimate all parameter vectors (i.e., lower
complexity than the standard case).

Side information: Our general procedure requires the following model for side infor-
mation: we assume that we have access to a vector v such that the inner product with the
parameter vector µ1—the special one we are searching for—is higher than the inner product
with any of the other µi; i.e. there exists δ > 0 such that;

〈µ1, v〉 ≥ (1 + δ)〈µi, v〉 for all i 6= 1

Section 3 shows how to obtain such side information in some specific models of interest:
spherical Gaussian mixture models, mixed linear regression, subspace clustering and the
LDA topic model.

We remark that it’s also possible (and perhaps more intuitive in some situations) to ask
for side information satisfying |〈µ1, v〉| ≥ (1 + δ)|〈µi, v〉|. However, our assumption above is
slightly weaker, since for any v satisfying the latter assumption, either v or −v satisfies the
former assumption. Later, we show the above condition is sufficient for uniquely identifying
the required parameter µ1 (but it may not be necessary). We refer side information vector
v as informative about µ1 if it satisfies the above condition.

2.1 General Procedure

The main idea behind method of moments is to use samples to estimate certain moments
of the distribution f(x), using which we can recover the parameters of interest. For many
mixture models (including the four common examples we detail), it is possible to easily and
directly estimate using first and second order moments, given sufficient samples, the vector

m :=
k∑
i=1

αiµi. (1)

4



The Search Problem in Mixture Models

and the matrix

A :=
k∑
i=1

αiµiµ
T
i . (2)

For example, in many models the estimate of vector m is simply the sample mean, and
matrix A can be derived from the sample covariance matrix. The exact procedure for
estimating m and A varies according to the particular parametric model g. The fact that
m and A (and also higher-order tensors) can be estimated from samples is well known for
many models, see Anandkumar et al. (2014) for a treatment of several different models, and
for other pointers to the literature.

Typically, all mixture model components cannot be identified from just the first and
second order moments (or m and A). It is often necessary to compute even higher order
moment terms. In our search problem, given the side information, we develop procedures
to estimate an alternative matrix B, using higher order moments, given by

B :=

k∑
i=1

αi〈µi, v〉µiµTi (3)

Again, the exact procedure for estimating B from samples depends on the particular para-
metric model g.

For this section, we assume we are able to estimate A,B,m to within some accuracy. We
will use the notation Â, B̂, m̂ to denote these finite sample estimates of A,B,m respectively,
and n denotes the number of samples used to compute these estimates. With this in hand, we
outline two general procedures for estimating µ1 (i.e. the component that we are interested
in). The first procedure is based on a whitening step, much like the one that is used in
the spectral algorithms in Hsu and Kakade (2013); Anandkumar et al. (2012), and tensor
decomposition methods of Anandkumar et al. (2014) (please see remarks in Section 3 for
the differences for specific models). The second procedure uses a line search instead, and
may be computationally favorable when k is large, because it avoids the need to invert a
k × k matrix. Both Algorithms 1 and 2 take as input the estimates Â, B̂, m̂ (where B̂ is
constructed using side information vector v) and they output estimates of the first mixture
component µ̂1, and also the proportion of the first component α̂1.

2.1.1 The Whitening Method

Our main result about Algorithm 1 is that if Â and B̂ are good estimates of A and B
then Algorithm 1 outputs good estimates for µ1 and α1. In order to interpret Theorem 1
as an error rate, note that if all parameters but ε are fixed then the error is O(ε). Since
standard concentration results yield ε = O(n−1/2), where n is the number of samples; our
error rate in terms of n is also O(n−1/2). This rate is sharp, since it is also the rate for
estimating the mean of a single Gaussian vector (i.e. a GMM with only one component).

Theorem 1 Suppose that µ1, . . . , µk are linearly independent, and that Â is positive semi-
definite. Also suppose that 〈µ1, v〉 ≥ (1 + δ)〈µi, v〉 for all i 6= 1. Assume that

max{‖A− Â‖, ‖B − B̂‖, ‖m− m̂‖} ≤ ε < σk(A)/4,
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Algorithm 1 Extracting a mixture component from side information: the whitening
method.

Input: Â, B̂, m̂
Output: µ̂1, α̂1

1: let {σj , vj} be the singular values and singular vectors of Â, in non-increasing order
2: let V be the d× k matrix whose jth column is vj
3: let D be the k × k diagonal matrix with Djj = σj
4: let u be the largest eigenvector of D−1/2V T B̂V D−1/2

5: let w = V D1/2u
6: let E be the span of {V D1/2v : v ⊥ u}
7: write V V T m̂ (uniquely) as aw + y, where y ∈ E
8: return w/a and a2

and that the right hand side of (4) is at most α1. Then

‖µ1 − µ̂1‖ ≤ CR|α−1/21 − α̂−1/21 |+ C

√
σ1(A)
√
α1

η , and

|α1 − α̂1| ≤
C
√
α1(α1R+ η)

σk(A)

(
η +R

ε

σk(A)
+ ε

)
(4)

where η = εσ1

δσ
5/2
k

, R = maxi ‖µi‖, σ1(A) ≥ · · · ≥ σk(A) > 0 are the non-zero singular values

of A =
∑

i αiµiµ
T
i , and C is a universal constant.

Our error bounds are somewhat complicated, and depend on many different parameters,
so let us elaborate on them slightly. First of all, the dependence on σ1(A) and σk(A) is
of the order ‖µ1 − µ̂1‖ . σ1(A)3/2/σk(A)5/2, which is probably an artifact of the analysis,
and not the true behavior of the algorithm. On the other hand, our dependence on ε is
optimal: we have |α1 − α̂1| . ε and ‖µ1 − µ̂1‖ . ε. Note also that our bound has no
explicit dependence on k; this feature comes from the fact that our method is targeted at a
single mixture component. By comparison, other methods typically give bounds in which
the averaged per-mixture-component error does not depend on k. In terms of dependence
on k, therefore, our bounds are better than previous bounds if there is only one component
of interest.

Finally, let us remark on the assumption that the right hand side of (4) is at most
α1. This amounts to an assumption that ε is sufficiently small compared to all the other
parameters. Without this assumption, the bound in (4) would not be very interesting, since
|α1 − α̂1| ≤ α1 is too weak to give useful information about α̂1 (it could even be zero).

We defer the actual analysis of Algorithm 1 to the appendix, but we will motivate the
algorithm and give the basic idea of the proof by showing that if Â, B̂, and m̂ are equal to
A,B and m respectively then Algorithm 1 outputs µ1 and α1 exactly.

Lemma 2 Let m, A, and B be defined by in (1), (2), and (3), where µ1, . . . , µk are linearly
independent. If 〈µ1, v〉 > 〈µi, v〉 for all i 6= 1 and we apply Algorithm 1 to A, B, and m,
then it returns µ1 and α1.
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Proof Let V and D be as defined in Algorithm 1. Since A has rank k,

k∑
i=1

αiD
−1/2V Tµiµ

T
i V D

−1/2 = D−1/2V TAVD−1/2 = Ik.

Defining ui :=
√
αiD

−1/2V Tµi, we have
∑

i uiu
T
i = Ik, which implies that the ui are

orthonormal in Rk. Now,

D−1/2V TBVD−1/2 =
k∑
i=1

αi〈µi, v〉D−1/2V Tµiµ
T
i V D

−1/2 =
k∑
i=1

〈µi, v〉uiuTi .

Since 〈µ1, v〉 was assumed to be larger than all other 〈µi, v〉, it follows that u1 is the largest
eigenvector of D−1/2V TBVD−1/2. Now, if w = V D1/2u1 then w =

√
α1µ1.

Now, note that since the µi are linearly independent, there is a unique way to write
m = V V Tm =

∑
i αiµ1 as aw+y, where y belongs to the span of {µ2, . . . , µk} (which is the

same as the span of {V D1/2ui : i ≥ 2}. Moreover, the unique choice of a that allows this
representation must satisfy aw = α1µ1, which implies that a =

√
α1. Therefore, w/a = µ1

and a2 = α1.

The proof of Lemma 2 is crucial to understanding the algorithm, and also the broader
message of this article: if we can get hold of two different normalizations of something, then
we can learn something about it. In the proof of Lemma 2, this happens twice: first, we use
the fact that A and B contain the same components (but with differing normalizations) to
extract the span of a single component of interest. The differing normalization is crucial,
because A by itself does not uniquely determine the set {µ1, . . . , µk}, much less single out
a specific component of interest.

In the second step of Lemma 2, we know
√
α1µ1, which is not enough to determine

either α1 or µ1. However, we also have access to m, which involves a contribution of α1µ1.
Exploiting the difference between these two normalizations, we recover both α1 and µ1.

2.1.2 The Cancellation Method

Our second method avoids the matrix inversion in Algorithm 1, preferring a line search
instead.

In the above Algorithm 2, we assume 〈µ1, v〉 > 0. When this is not the case and B is
a negative semi-definite matrix, we simply have to change the line search step to search
for the smallest λ < 0 such that V̂ V̂ T (Â − λB̂)V̂ V̂ T is PSD. Theorem 3 shows that with
m,A,B estimated up to O(ε) error, the parameter estimation error in Algorithm 2 is also
bounded as O(ε).

Theorem 3 Suppose {µ1, . . . , µk} are linearly independent and v satisfies 〈µ1, v〉 ≥ (1 +
δ)〈µi, v〉 for all i 6= 1. Suppose that max{‖Â − A‖, ‖B̂ − B‖, ‖m̂ − m‖} < ε, and λ1 :=
1/〈µ1, v〉. Then Algorithm 2 returns µ̂1, α̂1 with

‖µ̂1 − µ1‖ <
Cε

α2
1a

2
1

(
σ1(A)

(
1 +

α1a1
σk−1(Zλ1)

)
+
σ1(A)η3R

σk−1(Zλ1)

)
|α̂1 − α1| <

Cσ1(A)ε

α1a31

(
η1 +

η2Rη3
σk−1(Zλ1)

)
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Algorithm 2 Extracting a mixture component from side information: the cancellation
method.

Input: Â, B̂, m̂
Output: µ̂1, α̂1

1: let V̂ be the d× k matrix of k largest eigenvectors of Â;
2: search over λ to find the largest λ = λ∗ such that V̂ V̂ T (Â− λB̂)V̂ V̂ T is PSD;
3: let Ẑλ∗ = Â− λ∗B̂, and let {v2, . . . , vk} be the top k − 1 singular vectors of Ẑλ∗

4: let V1:(k−1) be the d× (k − 1) matrix with columns {v2, . . . , vk}
5: let x1 = m̂− V1:(k−1)V T

1:(k−1)m̂

6: let v1 = x1/‖x1‖
7: compute ci = vT1 Âvi for i = 1 to k
8: let ai = ci/‖x1‖ for i = 1 to k
9: return µ̂1 =

∑k
i=1 aivi and α̂1 = c1/a

2
1

where η1 := max{α1a1(2a1 + 1), 20}, η2 := max{α1a
2
1, 10}, η3 = max {1, λ1, σ1(B)} , R =

max ‖µi‖, a1 = ‖µ1−
∏
V µ1‖, where V = span{µ2, . . . , µk}, and C is an universal constant.

Again, we will defer the actual analysis to the appendix, and instead show that Algo-
rithm 2 returns the exact answer when fed exact initial data. We will do this in two lemmas:
Lemmas 4 and 5.

Lemma 4 Let Z =
∑k

i=1 γiµiµ
T
i where {µ1, . . . , µk} are linearly independent, µi ∈ Rd, γi ∈

R and d > k. If γ1 < 0 and γi > 0 for all i 6= 1 then Z is not positive semi-definite.

Proof Let Π denote the projection onto the orthogonal complement of span{µ2, . . . , µk}.
Let x = Πµ1, and note that 〈x, µ1〉 > 0 but 〈x, µi〉 = 0 for all i 6= 1. Hence, xTZx =
γ1〈x, µ1〉2 < 0 and so Z is not positive semi-definite.

Lemma 5 Let m, A, and B be defined by in (1), (2), and (3), where µ1, . . . , µk are linearly
independent. If 〈µ1, v〉 > 〈µi, v〉 for all i 6= 1 and we apply Algorithm 2 to A, B, and m,
then it returns µ1 and α1.

Proof Define wi = 〈µi, v〉 and let γi = αi(1− λwi), so that

Zλ = A− λB =

k∑
i=1

γiµiµ
T
i .

Note that, in our case where Â = A, and B̂ = B, columns of V̂ simply form a common
orthonormal bases of the row/column space of both matrices A,B. Therefore the matrix
V̂ V̂ T (A− λB)V̂ V̂ T = A− λB = Zλ. Now for λ > 1

w1
, γ1 < 0 and for all λ ≤ 1

w1
, γi ≥ 0 for

all i since w1 > wi, for every i 6= 1. By Lemma 4, λ∗ = 1
w1

is the largest λ such that Zλ is
PSD; hence,

Zλ∗ =
k∑
i=2

αi(1− λ∗wi)µiµTi .
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From Lemma 26 in Appendix E.2 it follows that k − 1 singular vectors {v2, . . . , vk} of Zλ∗

form a basis of the subspace V = span{µ2, . . . , µk}. Let V⊥ be the perpendicular space of
V, and write Π = I − V1:(k−1)V T

1:(k−1) for the orthogonal projection onto V⊥. Since Πµi = 0
for i 6= 1, we have x1 = Πm = αΠµ1.

Now define b1, . . . , bk by µ1 =
∑k

i=1 bivi. In order to prove that the algorithm returns
µ1 correctly, we need to show that bi = ai := ci/‖x1‖. Indeed,

ci := vT1 Avi =

k∑
j=1

αjv
T
1 µjµ

T
j vi = α1b1bi,

since vT1 µj = 0 for j 6= 1. On the other hand, ‖x1‖ = α‖Πµ1‖ = αb1, and so bi = ai, as
claimed. Moreover, α̂1 = c1

a21
= α1, as claimed.

Optimization for λ∗: The first step of Algorithm 2 involves finding a smallest λ∗ such
that Ẑ ′λ∗ = V̂ V̂ T (Â − λ∗B̂)V̂ V̂ T is PSD using line search. Although Ẑ ′λ is a d × d matrix,

this step can be performed efficiently as follows. Instead of searching for λ directly for Ẑ ′λ,

we do this for a smaller k × k matrix V̂ T Ẑ ′λV̂ = V̂ T (Â − λ∗B̂)V̂ . This optimization step
using line search can be performed in just O(k3 log |λ∗|) time.

3. Specific Models

In this section we discuss how the search algorithms can be applied in four specific mixture
models.

3.1 Gaussian Mixture Model with Spherical Covariance

The model: Besides the mixture parameters α1, . . . , αk, the Gaussian mixture model
(GMM) has mean parameters µ1, . . . , µk ∈ Rd and variance parameters σ1, . . . , σk ∈ R. The
conditional densities g(·;µi, σi) are Gaussian, with mean µi and covariance σ2i Id. Explicitly,

g(x;µi, σi) =
1

(2πσ2i )
d/2

e
− ‖x−µi‖

2

2σ2
i .

Matrices A and B: We fix a vector v ∈ Rd, with the assumption that 〈v, µ1〉 > 〈v, µi〉
for i 6= 1. Recall (from Section 2.1) that m = E[x] =

∑
i αiµi, A =

∑k
i=1 αiµiµ

T
i , and

B =
∑k

i=1 αi〈µi, v〉µiµTi . To compute these quantities, we first define σ2 to be the (k+1)th-
largest eigenvalue of the mixture covariance matrix E[(x − m)(x − m)T ], and let u be a
corresponding eigenvector. Then let m̃ = E[x(uT (x −m))2]. Then it follows from moment
computations (see Hsu and Kakade (2013)) that:

A = E[xxT ]− σ2Id
B = E[〈x, v〉xxT ]− m̃vT − vm̃T − 〈m̃, v〉Id,

Given the samples {x̂i}, we can now empirically evaluate these quantities (denoted by
m̂, Â, B̂ respectively) by replacing expectations above by the corresponding sample averages;
for instance we replace E[xxT ] by Ê[xxT ]

.
= (1/n)

∑n
j=1 x̂j x̂

T
j .

9



Ray, Neeman, Sanghavi, and Shakkottai

Examples of v: Assuming that ‖µ1‖2 > 〈µ1, µi〉 for all i 6= 1—this will be true, for
example, if ‖µi‖ are all the same—one can find a suitable vector v given a relatively small
number of samples from the first mixture component. Specifically, if ‖µ1‖2 ≥ 〈µ1, µi〉 + δ
and ‖µi‖ ≤ R for all i 6= 1 then standard Gaussian tail bounds imply the following: if
v := `−1

∑`
j=1 xj where ` = Ω(R2δ−2 log k) and x1, . . . , xm are drawn independently from

the distribution g(·;µ1, σ1) then with high probability v satisfies 〈v, µ1〉 > 〈v, µi〉 for all
i 6= 1. Here, “high probability” means probability converging to 1 as the hidden constant
in ` = Ω(·) grows. Note here that the number of tagged samples is nowhere near sufficient
to estimate µ1 by direct averaging; indeed to do so would require the number of samples to
grow with the size of the underlying dimension.

Remarks: We note that spectral algorithms which uses the whitening procedure has
been proposed before in the context of GMM e.g. Hsu and Kakade (2013). The primary
difference between the algorithm in Hsu and Kakade (2013) and Algorithm 1 is that the for-
mer, in absence of side information, takes a projection of the third order moment tensor M3

on a random unit vector to obtain the second matrix, where as our matrix B can be viewed
as a projection of M3 on the side information vector v. The main advantage of projecting
onto v is that, when we have reliable side information, this will give a good singular value
separation resulting in better empirical performance. The Cancellation algorithm however
is distinctly different from both and has not been studied before.

3.2 Latent Dirichlet Allocation

The model: In the LDA model with k topics and a dictionary of size d, the parame-
ters µ1, . . . , µk ∈ ∆d−1 are the probability distributions corresponding to each topic (∆d−1
denotes the probability simplex {y ∈ Rd :

∑
i yi = 1,mini yi ≥ 0}). The LDA model intro-

duced in Blei et al. (2003) differs slightly from the other models as the mixture distribution
cannot be expressed exactly in the parametric form in Section 2. Instead we have a two level
hierarchy as follows. Given ᾱ = (α1, . . . , αk), we first draw a topic distribution θ from the
Dirichlet(ᾱ) distribution. Given this θ = (θ1, . . . , θk) each word in the document is drawn
i.i.d. from the distribution

∑k
i=1 θiµi. However still we can compute the vector m and the

matrices A,B as shown below. Then with an appropriate v our algorithms can recover the
topic distribution µ1.

Matrices A and B: Let x1 denote the random vector with x1(w) = 1 if the first
word is w, and 0 otherwise. Similarly define vectors x2, x3 corresponding to the second and
third word respectively, and let α0 =

∑k
i=1 αi. Then, moment computations under the LDA

distribution yields the following expressions for (m,A,B), defined in (1), (2), (3):

m = α0E[x1], A = α0(α0 + 1)E[x1x
T
2 ]−mmT

B =
α0(α0 + 1)(α0 + 2)

2
E[〈x3, v〉x1xT2 ]− α0(α0 + 1)

2

(
〈m, v〉E[x1x

T
2 ] + E[〈x3, v〉x1mT ]

+ E[〈x3, v〉mxT2 ]
)

+ 〈m, v〉mmT .

With the given document samples, let x̂i denote the normalized empirical word frequencies
in the document i. Then, m̂ = α0

n

∑n
i=1 x̂i, and Â, B̂ can be immediately estimated using

the above expressions by replacing expectations with sample averages.

10
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Using labeled words to find v: In order to recover the topic distribution µ1 we
now require a vector v which satisfies 〈µ1, v〉 > 〈µi, v〉 for i 6= 1. Now suppose we are
given a labeled word ` such that its occurrence probability in topic 1 is the highest, i.e.,
µ1(`) > µi(`) for i 6= 1 (note that this does not mean ` is the most frequent word in topic 1,
there may be words with higher occurrence probability in this topic). Then we can simply
choose v = e` (the standard basis element with 1 in the `-th coordinate). For most topics
of practical interest it is possible to find such labeled words. For example the word “ball”
can be a labeled word for topic sport, “party” is a labeled word for topic politics and so
on. However, a labeled word is merely indicative of a topic and is not exclusive to a topic
(e.g. the word “ball” can occur in other contexts as well). In this sense, the labelled word
is quite different from the “anchor word” described in Arora et al. (2013). Note however
that anchor words are also labeled words (but not vice-versa) since for an anchor word `,
µ1(`) > 0 and µi(`) = 0 for i 6= 1.

Using labeled documents to find v: If the different topics are not too similar, then
we can estimate a suitable vector v from a small collection of documents that are mostly
about the topic of interest. For example, if 〈µi, µj〉 ≤ η‖µi‖‖µj‖ for all i 6= j, and if we
observe a total of m words from some collection of documents with θ1 ≥ (1 + δ)(1/2 + η)
then about m = Ω(δ−2 log k) words will suffice to find a suitable vector v.

Remarks: Similar to the case of GMM, a spectral algorithm using whitening procedure
to estimate LDA components have been presented before in Anandkumar et al. (2012).
Again the main difference with our Whitening algorithm being the fact that in Anandkumar
et al. (2012) the second matrix is constructed by taking a random projection of the third
order moment tensor Triples, and in Algorithm 1 this is constructed as a projection onto
v. Empirically this results is a more stable algorithm due to guaranteed singular value
separation. The Cancellation algorithm has not been previously studied in LDA model.

3.3 Mixed Regression

The model: In mixed linear regression the mixture samples generated are of the form
y = 〈x, µi〉+ ξ, where x ∼ N (0, I) and noise ξ ∼ N (0, σ2). As before, a sample is generated
using the i-th linear component µi, with probability αi. We have access to the observations
(y, x) but the particular µi and ξ are unknown. Hence the conditional density g(x, y;µi, σ)
is a multivariate Gaussian where x ∼ N (0, I), y ∼ N (0, ‖µi‖2 + σ2), and Cov(x, y) = µi.

Matrices A and B: To compute A and B, we consider the following moments (for
more detailed derivations, see Appendix C):

11
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M1,1 = E[yx] =

k∑
i=1

αiµi

M2,2 = E[y2xxT ] = 2
k∑
i=1

αiµiµ
T
i +

k∑
i=1

αi(σ
2 + ‖µi‖2)I

M3,1 = E[y3x] = 3
k∑
i=1

αi(σ
2 + ‖µi‖2)µi

M3,3 = E[y3〈x, v〉xxT ] = 6

k∑
i=1

αi〈µi, v〉µiµTi +
(
M3,1v

T + vMT
3,1 + 〈M3,1, v〉I

)

Let τ2 be the smallest singular value of the matrix M2,2. Then we can compute m,A,B
as follows.

m = M1,1, A =
1

2
(M2,2 − τ2I)

B =
1

6
(M3,3 − (M3,1v

T + vMT
3,1 + 〈M3,1, v〉I))

As in the previous cases with finite samples the estimates m̂, Â, B̂ can be computed
by taking their empirical expectations e.g., M̂1,1 = Ê[yx] = 1

n

∑n
i=1 ŷix̂i and so on, where

(ŷi, x̂i) denote the i-th sample.

Examples of v: Suppose we are given a few random labeled examples from the first
component. Then assuming ‖µ1‖2 > 〈µ1, µi〉 + δ, ‖µi‖2 ≤ R, similar to the GMM case we
can estimate a v := 1

`

∑`
j=1 ŷj x̂j using only ` = Ω

(
R4δ−2 log k

)
labeled samples so that

〈µ1, v〉 > 〈µi, v〉 holds with high probability.

Remarks: Our construction of the second matrix B is a consequence of some new
moment results for the mixed linear regression model. We present these detailed moment
derivations in Appendix C.4. This also results in improved sample complexity bounds over
previous moment based algorithms (discussed in Section 3.5).

3.4 Subspace Clustering

The model: Besides the mixture parameters α1, . . . , αk, the subspace clustering model has
parameters U1, . . . , Uk ∈ Rd×m and σ ∈ R, where the matrices U1, . . . , Uk have orthonormal
columns. The conditional distribution g(·;Ui) is a standard Gaussian variable supported
on the column space of Ui, plus independent Gaussian noise. More precisely, we sample
y ∼ N (0, Id) and set x = UiU

T
i y + ξ, where ξ ∼ N (0, σ2Id) is independent of y.

Matrices A and B: The subspace clustering model does not quite fit into the basic
method of Section 2; one motivation for presenting it is to show that the basic ideas in
Section 2 are more flexible than they first appear. Suppose v ∈ Rd satisfies ‖UT1 v‖ > ‖UTi v‖

12
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for all i 6= 1. We consider

A := E[xxT ]− σ2Id =
k∑
i=1

αiUiU
T
i

B := E[〈x, v〉2xxT ]− σ2vTAvId − σ2‖v‖2A− σ4(‖v‖2Id + vvT )− 2σ2(AvvT + vvTA)

=
k∑
i=1

αi‖UTi v‖2UiUTi + 2
k∑
i=1

αiUiU
T
i vv

TUiU
T
i

and their empirical versions Â and B̂ (the computation giving the claimed formula for B
is carried out in Appendix C). Now with these Â and B̂, we can recover the subspace U1

using Algorithm 3. This algorithm uses the same principle behind the whitening method in
Section 2.1.1, the key difference is that here we pick the top m eigenvectors of the whitened
B matrix.

Algorithm 3 Subspace clustering algorithm

Input: Â, B̂
Output: Û

1: let {σj , vj} be the singular values and singular vectors of Â, in non-increasing order
2: let V be the d×mk matrix whose jth column is vj
3: let D be the mk ×mk diagonal matrix with Djj = σj
4: let Y = [u1, . . . , um] be the matrix of m largest eigenvectors of D−1/2V T B̂V D−1/2

5: let Z = V D1/2Y
6: let the columns of Û be the m eigenvectors of the matrix ZZT

The following perturbation theorem guarantees that if the side information vector v
is substantially more aligned with the subspace spanned by U1 than it is with any other
subspace, and the matrices A,B are estimated within ε accuracy, then Algorithm 3 can
recover the required subspace with a small error.

Theorem 6 Suppose that ‖Â−A‖ ≤ ε and ‖B̂−B‖ ≤ ε. Suppose that the side information
vector v satisfies ‖Uiv‖2 ≤ (1/3− δ)‖U1v‖2. Then output Û of Algorithm 3 satisfies

‖Û ÛT − U1U
T
1 ‖ ≤ Cεα−11 σ1(A)2σmk(A)−2δ−1.

We prove Theorem 6 in Appendix F. Note that the conditions on v can be satisfied if
the spaces Ui satisfy a certain affinity condition and we have a few labelled samples from
U1. Specifically, suppose that 〈u,w〉 < ( 1√

3
− η)‖u‖‖w‖ for every u ∈ U1 and w ∈ Ui, i 6= 1.

Then any v ∈ U1 will satisfy the assumption of Theorem 6. Hence, a single labelled sample
from U1 (or several—depending on η—noisy samples) is enough to find a suitable v.

Remarks: To the best of our knowledge Algorithm 3 is the first moment based algo-
rithm for the subspace clustering model. The detailed moment derivations are presented
in Appendix C.5. Also our generative model allows samples to be noisy, hence they do not
lie exactly on the subspace but close to it. Such a setting has not been considered in most
subspace clustering literature.
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3.5 Comparison

In this section we compare the theoretical performance of the Whitening and Cancellation
algorithms with other algorithms. Both Whitening and Cancellation algorithms require
estimating the quantities m,A,B by computing moments from the samples. Therefore the
sample complexity primarily depends on how well these quantities concentrate. We compute
the specific sample complexities for each model in Appendix G.

For Gaussian mixture model the sample complexity of our algorithm scales as Ω̃(dε−2 log d)
similar to moment based algorithm by Hsu and Kakade (2013) and tensor decomposition
based algorithm by Anandkumar et al. (2014). In terms of runtime the Whitening algorithm
is faster than the tensor decomposition based algorithm by Anandkumar et al. (2014). This
can be viewed as follows. The first step in both the algorithms take O(d2k) time to compute
the whitening matrix and in subsequent whitening steps. However, computing the largest
eigenvector in Algorithm 1 takes only O(k2) time, faster than O(k5 log k) time required for
rank-k tensor power iteration (we also verify this in our experiments in Section 4).

In LDA topic model our algorithms have a sample complexity of Ω̃(ε−2 log d), again
similar to tensor decomposition based algorithm by Anandkumar et al. (2014), and non-
negative matrix factorization (NMF) based algorithm by Arora et al. (2013). The Whitening
algorithm again is faster than tensor decomposition as argued for GMM case. The NMF
based algorithm using optimization based RecoverKL/RecoverL2 procedures also has a
runtime of O(d2k) similar to our algorithms (in Section 4 again we observe our algorithm to
be faster in practice). The spectral topic modeling algorithm in Anandkumar et al. (2012)
also has a computation complexity O(d2k) similar to our algorithms. However, its sample
complexity has a high Ω(k5) dependence on the number of components. This spectral
algorithm also suffer from instability in practice due to the random projection step (as
noted in Anandkumar et al. 2014).

In the case of mixed linear regression again our method has a sample complexity of
Ω̃(dε−2 log d) similar (upto log factors) to the convex optimization based approach by Chen
et al. (2014), alternating minimization based approach by Yi et al. (2014), but better than
tensor decomposition based method of Sedghi et al. (2016) which has a sample complexity
of Ω̃(d3ε−2). However unlike the convex optimization and alternating minimization based
techniques our method is also applicable when the number of components k > 2. As argued
in GMM case the Whitening algorithm is again faster than the tensor algorithm by Sedghi
et al. (2016).

Subspace clustering algorithms like greedy subspace clustering by Park et al. (2014),
optimization based algorithms by Elhamifar and Vidal (2009), Soltanolkotabi and Candes
(2012), requires the samples to exactly lie on a subspace. In contrast our moment based
algorithm works even when the samples are noisy and perturbed from the actual subspace.
Our subspace clustering algorithm also has a sample complexity of Ω̃(mε−2 log d) which is
similar (up to log factors) to greedy subspace clustering algorithm by Park et al. (2014).

We note that it is possible to use approximation methods like randomized svd to fur-
ther speed up the Whitening, Cancellation and tensor decomposition based algorithms by
Anandkumar et al. (2014), however this will result in decreased accuracy in both algorithms.
We refer to Huang et al. (2015) for such stochastic optimization, and parallelization tech-
niques used to speed up the tensor algorithms.
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In a setting where side information is provided on each of the k components, observe
that we can run the Whitening algorithm independently for each of the k components,
possibly in parallel. Hence we can recover all k components, without loosing the runtime
advantage of the Whitening algorithm. We demonstrate this application on real data set
in Section 4.2. In terms of the overall computation time, it can be shown that running
the Whitening algorithm for all k components is still faster than the tensor decomposition
based algorithm by Anandkumar et al. (2014), when k = Ω(n

1
3d

1
3 ).

4. Experiments

In this section we present the empirical performance of our Whitening, Cancellation, and
Subspace clustering algorithms. We consider three of the settings: the Gaussian Mixture
Model (GMM), and Latent Dirichlet Allocation (LDA), and Subspace clustering, and vali-
date our algorithms on both real and synthetic data sets.

4.1 Synthetic Data Set

First we compare the sample complexity and runtime of our algorithms with the robust
tensor decomposition algorithm by Anandkumar et al. (2014), which is based on tensor
power iteration, for learning mixture models (we refer to this as the TPM algorithm). Our
second baseline algorithm is a faster heuristic of TPM where we start the tensor power
iterations initialized with side information vector v, and recover just the first component.
We refer this as the Fast-TPM algorithm. For the Cancellation algorithm we compute the
optimum λ for cancellation using two different techniques as follows. First, let Ẑ ′λ = V T ẐλV,
where V is the matrix of top k singular vectors of Â. In the first method, we perform a
line search over positive λ to find the minimum λ such that σk(Ẑ

′
λ) falls below certain

threshold. This method works well in GMM case. In a second method we minimize the
convex function ‖Ẑ ′λ‖∗ + λ, subject to λ ≥ 0. This method performs better in the case of
LDA. Note that for the Cancellation algorithm after estimating λ, instead of using m and
A to find µ1 we can follow the same steps using m′ = Av and B to recover µ1. Theoretically
it has the same performance, however empirically we observe this to work slightly better
and we use this version for our experiments. We implement all algorithms for our synthetic
data experiments using MATLAB.

Performance metric: We compute the estimation error of parameter µ1 as E =
‖µ̂1 − µ1‖. In our figures we plot the quantity “percentage relative error gain” which is
defined as G = 100(ET − EA)/ET , where ET is the TPM error and EA is the error for
Whitening / Cancellation / Fast-TPM algorithm. Note that a positive error gain implies
that the TPM error is greater than that of the competing algorithm. In the subspace
clustering model we plot similar percentage relative error gain over the baseline k-means
algorithm.

Gaussian mixture model: We generate synthetic data sets for GMM with different k,
d, αi, σ, and v. Figure 1 shows the percentage relative error gains of the Whitening, Cancel-
lation, and Fast-TPM algorithms over the TPM algorithm in a GMM with various values of
k, d, αi, σ, and n. The µi were generated randomly over the sphere of norm r = 10. We define
αmin := mini αi. The side information vector v was chosen as follows. Let {v1, . . . , vk} be a
orthonormal basis of span{µ1, . . . , µk}, such that {v2, . . . , vk} ∈ span{µ2, . . . , µk}. Then we
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Figure 1: Figure showing the percentage relative error gain by the Whitening, Cancellation,
and Fast-TPM algorithm over the TPM algorithm for 5 components of increasing
size, in a GMM with k = 10, d = 500, σ ∈ {.4, .5}, and three different sample
complexities (a) n = 6000 (b) n = 8000 (c) n = 10000. Our algorithms shows
increasingly better gain over TPM and Fast-TPM as αi, σ and n increase.

choose v =
√
γv1 +

√
(1− γ)/(k − 1)

∑k
i=2 vi for some γ ∈ (0, 1) such that the condition

〈µ1, v〉 > 〈µi, v〉 is satisfied. We observe that in all the cases, our algorithms have lower error
(positive error gain) than both the tensor algorithms. Moreover, our methods’ advantage
increases with increasing proportion αi, increasing sample size n, and increasing variance
σ. We also observe that the Fast-TPM algorithm has the same error performance as TPM
(error gain close to zero).

Figure 2 gives an example where the Whitening algorithm can successfully recover even
rare components. Here we consider a GMM with k = 10, d = 500 with the rarest component
having probability αmin = .0037. Again we observe positive relative error gains over TPM
algorithm for increasing number of samples n.

In Figure 3 we plot the speedup of the algorithms over TPM, and observe that the
Whitening and Cancellation algorithms are much faster (high speedup) than the TPM
algorithm. We also observe that the Fast-TPM algorithm is faster than TPM and Cancella-
tion algorithms, but slower than Whitening algorithm. Note that, while it is also possible to
speed up the basic TPM algorithm compared here using techniques such as randomized svd
and stochastic tensor gradient descent [Huang et al. 2015], such approximate methods will
reduce the overall accuracy. Moreover the randomized svd techniques can also be applied
to the search algorithms presented in this paper, to obtain further speedups.

Topic Modeling: We generate a synthetic LDA document corpus according to the
model in Blei et al. (2003). The lengths of the documents are generated using a Poission(L)
distribution where L is the mean document length. In Figure 4 we plot the percentage
relative error gain of the Whitening, Cancellation, and Fast-TPM algorithms over the TPM
algorithm. Our side information was a labeled word w satisfying µ1(w) > µi(w) for i 6= 1.
Again we observe positive error gains over the TPM algorithm. Although the Fast-TPM
algorithm sometimes perform better than TPM for more frequent topics, the Whitening
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Figure 2: Figure showing the percentage relative error gain of the Whitening algorithm
over the TPM algorithm in presence of rare components (αmin = .0037), for
a GMM with k = 10, d = 500, σ ∈ {.3, .4, .5, .6}, and number of samples (a)
n = 5000 (b) n = 6000 (c) n = 8000. The Whitening algorithm recovers even the
rarest component with increasing error gain over TPM as the number of samples
increase.

GMM K=10, d=500, 
min

 =.0253, n=6000

1 2 3 4 5

Components

0

5

10

15

20

25

A
ve

ra
g

e
 s

p
e

e
d

u
p

 o
ve

r 
T

P
M

Whitening,  = .4
Whitening,  = .5
Cancellation,  = .4
Cancellation,  = .5
Fast-TPM,  = .4
Fast-TPM,  = .5

(a)

GMM K=10, d=500, 
min

 =.0253, n=8000

1 2 3 4 5

Components

0

5

10

15

20

A
ve

ra
g

e
 s

p
e

e
d

u
p

 o
ve

r 
T

P
M

Whitening,  = .4
Whitening,  = .5
Cancellation,  = .4
Cancellation,  = .5
Fast-TPM,  = .4
Fast-TPM,  = .5

(b)

GMM K=10, d=500, 
min

 =.0253, n=10000

1 2 3 4 5

Components

0

5

10

15

20

A
ve

ra
g

e
 s

p
e

e
d

u
p

 o
ve

r 
T

P
M

Whitening,  = .4
Whitening,  = .5
Cancellation,  = .4
Cancellation,  = .5
Fast-TPM,  = .4
Fast-TPM,  = .5

(c)

Figure 3: Figure showing the average speedup of Whitening, Cancellation, and Fast-TPM
algorithms over TPM, for 5 components of increasing size, in a GMM with k =
10, d = 500, σ ∈ {.4, .5}, and three different sample complexities (a) n = 6000 (b)
n = 8000 (c) n = 10000. The Whitening algorithm is the fastest.

algorithm still outperforms it. Note that the performance varies across topics since the
probability of the labeled word is different for each topic.

Subspace Clustering: We generate synthetic data for the subspace clustering model
described in section 3.4 using parameters d = 500, k = 5,m = 10, and αi ∈ [.1, .3]. First
we generate k = 5 random subspaces with orthonormal basis {Ui}ki=1, each of dimension
m = 10. Then we generate random points on these subspaces, and add white Gaussian
perturbations with σ ∈ {.1, .2}. We choose the side information vector v similar to the
sensitivity experiment in GMM, and ensuring ‖UT1 v‖ > ‖UTi v‖, for i 6= 1. Note that due to
the added Gaussian noise, our samples do not lie exactly on the subspaces {Ui}ki=1, but close
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LDA K=5 Topics, d=500 Words, 6000 samples
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LDA K=5 Topics, d=500 Words, 8000 samples
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Figure 4: Figure showing the percentage relative error gain in each component of the
Whitening, Cancellation, and Fast-TPM algorithms over the TPM algorithm in
an LDA model with k = 5, d = 500, mean document length L ∈ {2000, 3000},
and number of documents (a) n = 4000 (b) n = 6000 (c) n = 8000. The Whiten-
ing algorithm show an improvement over TPM and Fast-TPM with increasing
samples.

to it. Traditional subspace clustering algorithms, which assume points to lie exactly on the
subspace, may not perform well. The TPM algorithm is also not well suited for this model
since (a) the required moment tensor will be of 4th order resulting in high computation cost
(b) even if mk basis of the tensor are recovered, finding the target subspace will involve
a further combinatorial search of

(
mk
m

)
subspaces and finding the one having the strongest

projection of v. Therefore we choose the k-means algorithm as our baseline for this model
and compare with Algorithm 3. First we compute k clusters using k-means, then we find
an m dimensional basis for each cluster using svd, finally we choose the target subspace as
the one having the largest projection of v. If Û1 is the estimated orthonormal basis for the
target subspace U1, we compute the error as E = ‖Û1Û

T
1 − U1U

T
1 ‖/‖U1U

T
1 ‖.

Figure 5 shows that Algorithm 3 has a much better error performance over k-means. In
the speedup plots in Figure 6 we also observe that our subspace search algorithm is over
4X times faster than k-means.

4.2 Real Data Sets

Topic Modeling: In this section we compare the performance of Whitening algorithm
with a recent non-negative matrix factorization based topic modeling algorithm by Arora
et al. (2013) (we refer this as NMF algorithm), and also the semi-supervised version of
this NMF algorithm (we refer to this as SS-NMF). We test on two real large data sets;
(a) New York Times news article data set [UCI 2008] (300, 000 articles) (b) Yelp data set
of business reviews [Yelp 2014] (335, 022 reviews). We run both algorithms for k = 100
topics. For this experiment we do not consider the TPM algorithm by Anandkumar et al.
(2014) since its runtime with k = 100 topics becomes extremely large on these data sets.1

1. To be more precise, with just k = 10 topics, the tensor algorithm takes 908 seconds in NY Times data
set, compared to just 188 seconds for the Whitening algorithm (using MATLAB).
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Subspace Clustering K=5, m=10, d=500, n=6000
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Subspace Clustering K=5, m=10, d=500, n=8000
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Subspace Clustering K=5, m=10, d=500, n=10000
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Figure 5: Figure showing the percentage relative error gain by our subspace search al-
gorithm (Algorithm 3) over k-means for 5 components of increasing size, in a
subspace clustering model with k = 5,m = 10, d = 500, σ ∈ {.1, .2}, and three
different sample complexities (a) n = 6000 (b) n = 8000 (c) n = 10000. Our
algorithm shows much better error performance than k-means.
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Figure 6: Figure showing the average speedup of our subspace search algorithm (Algorithm
3) over k-means, for 5 components of increasing size, in a subspace clustering
model with k = 5,m = 10, d = 500, σ ∈ {.1, .2}, and three different sample
complexities (a) n = 6000 (b) n = 8000 (c) n = 10000. Our subspace clustering
algorithm shows high speedup over k-means.

In contrast, the NMF algorithm is known to be faster, and produce topics of comparable
quality to more popular variational inference based algorithms [Blei et al. 2003]. The
side information for this experiment are chosen as follows. First from the set of topics
produced by NMF algorithm we choose a subset of interpretable topics, then we choose
labeled words representative of these topics. We test with a set of 62 labeled words for NY
Times data set and 54 labeled words for Yelp data set. Note that given labeled word wl
the whitening algorithm produces one topic distribution µ1, but the NMF algorithm finds
k topics. Therefore for NMF algorithm the target topic i is the one which has the highest
probability of the labeled word i.e., µi(wl). For the semi-supervised NMF we first compute
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the weighted word-word co-occurrence matrix Qw where we re-weigh each document by the
normalized frequency of the labeled word wl. Then we apply the NMF algorithm [Arora
et al. 2013] on this weighted matrix Qw. All three algorithms were implemented in Python.

Performance metric: We compare the quality of the topics returned by Whitening, NMF,
and SS-NMF algorithms using the pointwise mutual information (PMI) score, known to be
a good metric for topic coherence [Newman et al. 2010; Röder et al. 2015]. However in order
to also capture the relevance of the estimated topic to the labeled word we compute PMI
score for topic i as,

PMI(topic i) =
1

20

∑
w∈T i20

log
p(wl, w)

p(wl)p(w)

where wl is the labeled word, T i20 is the set of top 20 words in the i-th topic. The
probabilities p(wl, w), p(w), p(wl) are computed over a larger data set of English Wikipedia
articles to reduce noise [Newman et al. 2011]. For whitening algorithm we choose α0 = .01.
Note that other supervised topic modeling algorithms e.g. supervised LDA by Mcauliffe
and Blei (2008), labeled LDA by Ramage et al. (2009) require a much stronger notion of
side-information than just labeled words, hence we could not compare with them.

(a) (b)

Figure 7: Figure comparing the performance of Whitening, NMF [Arora et al. 2013], and
semi-supervised NMF (SS-NMF) algorithms on NY Times and Yelp data sets.
(a) Topics estimated by Whitening algorithm have the best PMI score in 40 out
of 62 labeled words for NY Times data set, and 35 out of 54 labeled words in Yelp
data set. (b) Whitening shows more than 2X speedup over competing algorithm
in both data sets.

In Figure 7 (a) we plot the percentage of labeled words for which each algorithm has the
best PMI score. Observe that for most labeled words (40 out of 62 labeled words for NY
Times data set, and 35 out of 54 labeled words in Yelp data set) the Whitening algorithm
estimates topic with better PMI score over NMF and SS-NMF algorithms. The Whitening
algorithm is also more than twice as fast as NMF and SS-NMF2 as shown in Figure 7 (b).

2. For large corpus the NMF algorithm runs much faster than Gibbs sampling and variational inference
based algorithms [Arora et al. 2013].
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A complete list of topics and PMI scores returned by the algorithms for every labeled word
is presented in Tables 2, 3 of Appendix B. Notice that the Whitening algorithm often esti-
mates more coherent topics which are more relevant to the given labeled word than topics
produced by the NMF/SS-NMF algorithm. For example in NY Times data set with the
labeled word student the Whitening algorithm returns top five words in the topic as stu-
dent, school, teacher, percent, program; however those returned by NMF algorithm are test,
school, student, ignore, export; and those by SS-NMF algorithm are student, university,
shooting, shot, rampage.

Parallel image segmentation: One method to perform image segmentation is to use
GMM clustering. In this experiment we demonstrate how GMM search algorithm can be
used to parallelize image segmentation in vision applications. For this we consider the
BSDS500 data set introduced in Arbelaez et al. (2011) and choose a subset of 70 images
having less than 4 segments in the ground truth. Note that this data set has up to six ground
truth segmentation by human users for each image. We randomly choose one pixel from
each segment in ground truth as side-information v. We compare our Whitening algorithm
with the seeded k-means clustering [Basu et al. 2002] where the centers are initialized by
these side-information pixels (we refer to this as s-Kmeans). The Whitening algorithm uses
one pixel from the i-th cluster to compute µi, in parallel for every i, and then it assigns
each pixel to its closest µi. The segmentation quality is compared using normalized mutual
information (NMI) metric [Manning et al. 2008]. To avoid local minimum in s-Kmeans we
consider the maximum NMI over 5 initializations of side-information for each ground truth,
and then we compute average NMI over all ground truths for an image.

Figure 8: Figure comparing the performance of image segmentation by Whitening (row
3) and s-Kmeans (row 2) algorithms, with images selected from the BSDS500
data set. The side-information pixels are shown in red plus in the original image
(row 1). In the segmented images (rows 2, 3) the segments are shown in differ-
ent shades. Observe that the Whitening algorithm often isolates the foreground
segment better than s-Kmeans.

We summarize our result in Table 1. Observe that the Whitening algorithm has a slightly
better NMI performance over s-Kmeans in the BSDS test data set and similar performance
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Data set N NW NK TW (s) TK (s) NMIW NMIK

BSDS test 30 17 13 6.7 81.5 0.17 0.13

BSDS train 25 12 13 8.2 89.8 0.15 0.15

BSDS val 15 8 7 10.6 117.2 0.11 0.09

Table 1: Table comparing the performance of Whitening and s-Kmeans algorithm on BSDS
data set. N is the total number of images, NW is the number of images where
segmentation produced by Whitening has a better NMI than s-Kmeans, and NK

is the number of images where segmentation of s-Kmeans has a better NMI. TW
is the median runtime of Whitening algorithm and TK is the median runtime of
s-Kmeans. NMIW and NMIK are the median NMI scores for the Whitening and
s-Kmeans algorithms respectively. Whitening runs much faster than s-Kmeans.

in BSDS train and BSDS val data sets. However the Whitening algorithm runs an order of
magnitude faster than s-Kmeans.

5. Conclusion and Discussion

In this paper we developed a new, simple and flexible framework for incorporating side
information into mixture model learning. The underlying motivation was to provide a
principled way to take into account extra input (e.g. generated by human data analysts
etc.). Even for cases where this input is very limited compared to the size/dimensionality of
the data, we show meaningful statistical and computational performance improvement over
baseline unsupervised and semi-supervised methods. More generally, developing methods
which work with very limited human input is a promising research endeavor, in our opinion.
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Appendix A. More Experiments for Gaussian Mixture Models

In Figure 9 we show the sensitivity of the Whitening and Cancellation algorithms in GMM
with k = 20, d = 500, all equal probability components, and two different values of σ and n.
Observe that the percentage error gain of the algorithms decreases with decreasing values
of δ = mini 6=1

〈µ1,v〉
〈µi,v〉 , as we would expect, and it eventually becomes negative when the

performance become worse than TPM algorithm. Also here the Cancellation algorithm
shows lesser sensitivity, hence better performance compared to the Whitening algorithm.
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Figure 9: Sensitivity plots showing how the percentage relative error gain of the Whitening
and Cancellation algorithms over the TPM algorithm decrease with decreasing
values of the parameter δ = mini 6=1

〈µ1,v〉
〈µi,v〉 , in GMM with k = 20, d = 500, all

equal probability components, for different values of variance σ ∈ {.5, .6}, and
two different sample complexities (a) n = 6000 (b) n = 8000.

Appendix B. Complete Results on New York Times and Yelp Data Set

In this section we provide more detailed result of our experiments on NY Times and Yelp
data sets. In Tables 2, 3 we show for every labeled word, the top five words in the topics
computed by Whtening, NMF, and SS-NMF algorithms along with their corresponding PMI
scores.

Table 2: Results of topic search by Whitening and NMF algo-
rithms on NYtimes data set of 300, 000 news articles using
K = 100 topics and 62 labeled words.

NY Times data set

Label
word

Algo topword-1 topword-2 topword-3 topword-4 topword-5 PMI

passenger
Whitening flight security passenger airport hour 0.1424
NMF security government official percent bill 0.0499
SSNMF passenger plane flight fire crash 0.1711

coach
Whitening coach season job team head 0.2637
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Label
word

Algo topword-1 topword-2 topword-3 topword-4 topword-5 PMI

NMF team coach season player jet 0.1740
SSNMF coach arrived assistant defenseman ended 0.1756

art
Whitening information question today eastern daily 0.0255
NMF art show dessert book home 0.0769
SSNMF art artist show painting museum 0.1250

campaign
Whitening campaign al gore money political republican 0.1530
NMF al gore campaign george bush president bush 0.1608
SSNMF nra florida article senator presidential 0.0926

energy
Whitening corp meeting list dividend partial 0.0815
NMF corp meeting list group dividend 0.0570
SSNMF partial energy dividend meeting corp 0.0254

tax
Whitening tax cut taxes percent income 0.2126
NMF graf president bush mail information 0.0722
SSNMF tax income cut taxes site 0.2279

chef
Whitening cup minutes food article add 0.0227
NMF buy panelist flavor thought product 0.0130
SSNMF tobacco chef restaurant pastry article 0.1495

oil
Whitening oil cup minutes prices companies 0.1460
NMF oil million prices percent market 0.0928
SSNMF oil company listing largest brazil 0.0902

court
Whitening court case law decision lawyer 0.2288
NMF official court case attack government 0.1285
SSNMF chicago court decision ruling justices 0.1834

election
Whitening election ballot vote voter florida 0.2132
NMF election ballot al gore bush vote 0.2155
SSNMF gained election article presidential independence 0.1702

lawyer
Whitening case court lawyer death trial 0.1830
NMF official court case attack government 0.1017
SSNMF lawyer rat legal client jokes 0.1314

anthrax
Whitening mail official anthrax attack worker 0.0600
NMF anthrax official mail worker letter 0.0156
SSNMF anthrax poverty cb show return -0.0776

golf
Whitening tiger wood shot round player tour 0.1288
NMF tiger wood shot round player play 0.1356
SSNMF misstated master tee hit golf 0.1356

bacteria
Whitening mail anthrax official test found -0.0763
NMF anthrax official mail worker letter -0.1097
SSNMF mas bacteria con una anos -0.2420

film
Whitening film movie director character actor 0.1906
NMF article misstated new york company million 0.0288
SSNMF kiss film actress article role 0.1295

tourist
Whitening million www percent building night 0.0481
NMF team tour lance arm-

strong
won race -0.0405

SSNMF tourist million visitor official campaign 0.0995

horse
Whitening race won win run track 0.1129
NMF race won horse win kentucky

derby
0.1338

SSNMF horse truck road official killed 0.0433

republican
Whitening campaign george bush bush election republican 0.2449
NMF al gore campaign george bush president bush 0.1868
SSNMF republican democrat democratic house parties 0.1053

computer
Whitening computer system microsoft program software 0.1904
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Label
word

Algo topword-1 topword-2 topword-3 topword-4 topword-5 PMI

NMF company computer microsoft system companies 0.1533
SSNMF computer chip mail program buy 0.1903

palestinian
Whitening palestinian israel israeli yasser

arafat
peace 0.2189

NMF palestinian israel official israeli yasser arafat 0.1950
SSNMF palestinian reformer reform authority arab 0.1519

movie
Whitening film movie director character actor 0.1492
NMF film show actor movie thought 0.0901
SSNMF red sox movie interview seattle host 0.0388

tennis
Whitening player play won game women 0.1054
NMF game play player point andre agassi 0.1187
SSNMF motif tennis season pros image 0.1480

fight
Whitening won night fight win sport 0.0566
NMF fight mike tyson lennox lewis million round 0.1181
SSNMF fight pound fighter beat boxing 0.1254

music
Whitening music song record album band 0.2298
NMF music company million companies napster 0.0812
SSNMF music mp3 customer digital online 0.0150

tablespoon
Whitening cup minutes add oil tablespoon 0.0608
NMF cup minutes add tablespoon water 0.0431
SSNMF coffee bean tablespoon cup ground -0.0765

nuclear
Whitening bush US official system administration 0.1223
NMF official bush government US nuclear 0.1356
SSNMF ibm nuclear computer research fastest -0.0253

racing
Whitening race car driver team season 0.1443
NMF car race driver team season 0.1319
SSNMF sport file los angeles racing notebook -0.0640

war
Whitening military taliban war afghanistan us 0.0916
NMF taliban official afghanistan government us 0.0796
SSNMF russian war chechnya army veteran 0.1296

quarterback
Whitening yard season game play team 0.2389
NMF game team play yard season 0.1773
SSNMF effort quarterback ucla heroic alabama 0.1472

stock
Whitening stock market percent company fund 0.1585
NMF percent stock market company companies 0.1338
SSNMF stock market price shares investment 0.0507

ball
Whitening game run yard play hit 0.1782
NMF run game inning hit season 0.1361
SSNMF ball hit run inning home 0.1708

patient
Whitening patient doctor care health drug 0.2532
NMF official virus percent new york found 0.1003
SSNMF patient study doctor article brain 0.1334

champion
Whitening won win round shot tiger wood 0.1029
NMF fight mike tyson lennox lewis million round 0.0955
SSNMF olympic champion final meet medalist 0.1177

business
Whitening business company question information companies 0.0887
NMF information eastern commentary daily business 0.0311
SSNMF publication business send released businesses 0.0996

government
Whitening government official country federal political 0.1524
NMF graf president bush mail information 0.0767
SSNMF program government computer local newspaper 0.0784

season
Whitening season team game games play 0.1799
NMF team game season play games 0.1406
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Label
word

Algo topword-1 topword-2 topword-3 topword-4 topword-5 PMI

SSNMF season cotton fact simple variety 0.0626

prison
Whitening death case lawyer court trial 0.1333
NMF advise spot earlier held today -0.0340
SSNMF prison inmates security population bed 0.1472

internet
Whitening file spot internet read output 0.0359
NMF file spot new york sport los angeles 0.0228
SSNMF wonderful mail al gore george bush message 0.0766

rain
Whitening air part high wind rain 0.1963
NMF air wind shower rain storm 0.1939
SSNMF chicago sun

times
nominated rain east thought 0.0179

game
Whitening game team play games season 0.2000
NMF team game season play games 0.1722
SSNMF covering game tonight coverage celebration 0.0531

voter
Whitening election ballot vote percent voter 0.2068
NMF election ballot al gore bush vote 0.1870
SSNMF voter poll percent primary election 0.2067

baseball
Whitening player team season game sport 0.1691
NMF team chicago

white sox
mariner season player 0.1803

SSNMF velocity baseball air shot test 0.0629

student
Whitening student school teacher percent program 0.2077
NMF test school student ignore export 0.0729
SSNMF student university shooting shot rampage 0.1396

president
Whitening president vice white house george bush executive 0.2116
NMF graf president bush mail information 0.0758
SSNMF hedge president television broadway produced 0.0226

afghan
Whitening taliban afghanistan military us war 0.1684
NMF taliban official afghanistan government us 0.1413
SSNMF afghan afghanistan blanket friend country 0.0577

medal
Whitening team games won women american 0.1822
NMF team tour lance arm-

strong
won race 0.0348

SSNMF endit medal honor winner newspaper 0.0786

teacher
Whitening school student teacher high program 0.1566
NMF test school student ignore export 0.0388
SSNMF teacher program pay school teaching 0.1499

television
Whitening show home network television night 0.1721
NMF los angeles

daily new
spot newspaper new york show 0.1456

SSNMF clinton home television survived tonight -0.0090

democratic
Whitening al gore campaign election political republican 0.1837
NMF al gore campaign george bush president bush 0.1677
SSNMF environmental democratic national

committee
nominee fund 0.0813

onion
Whitening cup minutes add oil tablespoon 0.1039
NMF cup minutes add tablespoon water 0.1072
SSNMF flavor panelist ounces buy onion 0.1188

campus
Whitening student school college teacher program 0.1314
NMF game season team play coach -0.0595
SSNMF campus operation aol building center 0.0645

car
Whitening car driver race racing seat 0.2047
NMF car race driver team season 0.1222
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Label
word

Algo topword-1 topword-2 topword-3 topword-4 topword-5 PMI

SSNMF car team race driver winston cup 0.1516

industry
Whitening companies percent company business industry 0.1430
NMF music company million companies napster 0.0821
SSNMF xxx show trade software entertainment 0.1161

planet
Whitening film today system movie team -0.0054
NMF wire inadvertently kill mandatory today -0.0750
SSNMF captor planet film kill astronomer 0.0949

credit
Whitening bill money member system number 0.1257
NMF bill tax bush member percent 0.0287
SSNMF donation card credit account voted 0.1382

race
Whitening race car driver won win 0.1917
NMF car race driver team season 0.1814
SSNMF amazing race show tonight sit 0.0502

wine
Whitening cup minutes food add oil 0.0499
NMF wine wines percent company million 0.0748
SSNMF wine wines bottle bottles age 0.1082

prosecutor
Whitening case death lawyer court trial 0.1952
NMF official court case attack government 0.1363
SSNMF prosecutor lawyer attorney incorrectly general 0.1406

team
Whitening team season game player play 0.1654
NMF team game season play games 0.1558
SSNMF team qualify olympic article member 0.1530

economy
Whitening percent market economy stock cut 0.1528
NMF percent stock market company companies 0.1048
SSNMF percent economy quarter rate recession 0.1452

wind
Whitening air high part wind rain 0.1909
NMF air wind shower rain storm 0.1895
SSNMF wash wind school winter white 0.1902

software
Whitening microsoft computer system company software 0.1981
NMF company computer microsoft system companies 0.1911
SSNMF xxx software industry show trade 0.1222

Table 3: Results of topic search by Whitening and NMF al-
gorithms on Yelp data set of 335, 022 reviews of businesses
using K = 100 topics and 54 labeled words.

Yelp data set

Label
word

Algo topword-1 topword-2 topword-3 topword-4 topword-5 PMI

cheese
Whitening cheese pizza time sandwich back 0.1842
NMF bagel coffee bagels cheese sandwich 0.1666
SSNMF bartender cheese tasty made server 0.0555

salon
Whitening hair salon nails nail back 0.0678
NMF hair absolute cut beautiful salon -0.0192
SSNMF salon manicure back nail clean 0.0375

mexican
Whitening mexican burrito tacos salsa cheese 0.0506
NMF mexican fresh burrito tacos time 0.0389
SSNMF exit mexican bland restaurants world -0.0720

chinese
Whitening chicken chinese rice hot fast 0.0978
NMF chicken chinese fast rice time 0.0717
SSNMF chinese area type lot east 0.0455
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Label
word

Algo topword-1 topword-2 topword-3 topword-4 topword-5 PMI

tea
Whitening coffee find things tea starbucks 0.1079
NMF find store things tea oil 0.0470
SSNMF tea coffee starbucks safeway ice 0.1787

sushi
Whitening sushi roll happy rolls fish 0.0330
NMF cooks fun hash browns reasonable -0.0441
SSNMF 2nd sushi time location amazing -0.1112

nail
Whitening nails nail pedicure salon time 0.1385
NMF nails nail pedicure time salon 0.1316
SSNMF nail nails grandma cut make 0.0658

wash
Whitening car wash clean time job 0.0617
NMF car wash back time job 0.0583
SSNMF car wash feels clean time 0.0290

insurance
Whitening years business office recommend family 0.0856
NMF office work walk time insurance 0.0189
SSNMF insurance years business steve saved 0.0459

cream
Whitening ice cream chocolate cold wait 0.1739
NMF ice cream school cone kids 0.1111
SSNMF cream ice wait stone cold 0.1494

hair
Whitening hair beautiful absolute years salon 0.0749
NMF hair absolute cut beautiful salon 0.0507
SSNMF beautiful hair years cut time 0.0532

yoga
Whitening classes class yoga studio gym 0.0928
NMF yoga classes class studio time 0.0816
SSNMF yoga practice dave feel amazing 0.0391

tire
Whitening tire tires oil car discount 0.0739
NMF tire car tires back time 0.0634
SSNMF tire tires car discount time 0.0274

vietnamese
Whitening time chicken thai rice chinese -0.0442
NMF pho chicken rice sauce back 0.0825
SSNMF vietnamese cake chinese back fresh -0.0105

donuts
Whitening donuts fresh coffee donut chocolate -0.0349
NMF donuts coffee donut store location -0.0040
SSNMF donuts donut chocolate time selection -0.1298

crust
Whitening pizza crust wings sauce cheese 0.0068
NMF pizza crust wings time cheese -0.0503
SSNMF min pizza crust hut pretty -0.1131

ice
Whitening ice cream cold chocolate flavors 0.1234
NMF ice cream school cone kids 0.0718
SSNMF ice cream wait stone cold 0.1312

pharmacy
Whitening store location big feel kids 0.0075
NMF store time location pharmacy helpful 0.0049
SSNMF pharmacy customer clean safeway rude -0.0127

beer
Whitening bar time beer wings drinks 0.0900
NMF pizza brick pretty bar box -0.0190
SSNMF beers beer operated hand locally 0.0817

bike
Whitening bike shop guys tires back 0.0053
NMF bike shop back bikes time 0.0525
SSNMF bike time gun pretty store -0.0293

yogurt
Whitening yogurt flavors toppings frozen chocolate 0.0659
NMF yogurt flavors toppings frozen chocolate 0.0420
SSNMF yogurt flavors back ice shop -0.1370

korean
Whitening sushi chinese time fresh rice -0.0311
NMF magazine market farmer farmers boston -0.0702
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Label
word

Algo topword-1 topword-2 topword-3 topword-4 topword-5 PMI

SSNMF korean chicken pretty fried spicy 0.0376

pizza
Whitening pizza crust wings time cheese 0.1491
NMF pizza brick pretty bar box 0.0582
SSNMF pizza ride brick long red 0.0518

coffee
Whitening coffee starbucks donuts tea time 0.2728
NMF coffee busy starbucks ice cream 0.2613
SSNMF coffee starbucks drinks latte work 0.0974

sandwich
Whitening sandwich subway sandwiches bread time 0.1714
NMF sandwich subway fresh bread location 0.1311
SSNMF sandwich sandwiches ham chips limited 0.0083

pho
Whitening time thai rice sauce back -0.2046
NMF pho chicken rice sauce back -0.1096
SSNMF pho rice beef vietnamese sauce -0.0911

gym
Whitening classes class work gym yoga 0.1518
NMF link open isn working fast -0.0304
SSNMF gym fitness work open time 0.1117

park
Whitening dog park dogs area kids 0.1099
NMF park dog time area trail 0.1023
SSNMF park dog dogs lake area 0.1303

latte
Whitening coffee starbucks drink time make -0.1617
NMF coffee busy starbucks ice cream 0.0802
SSNMF latte location work drink drinks -0.0539

trail
Whitening park area phoenix time lot 0.1356
NMF park dog time area trail 0.1049
SSNMF trail parking street major easy 0.0267

dentist
Whitening office years dentist experience work 0.0734
NMF office dentist time work years 0.1169
SSNMF dentist office insurance made teeth 0.0766

starbucks
Whitening starbucks drink coffee drinks times -0.0972
NMF coffee busy starbucks ice cream -0.0477
SSNMF starbucks drink argue smile times -0.1099

taco
Whitening taco bell tacos fast sauce 0.0994
NMF mexican fresh burrito tacos time 0.1875
SSNMF taco bell ghetto pizza location -0.0042

salsa
Whitening mexican burrito tacos salsa fresh 0.0887
NMF mexican fresh burrito tacos time 0.0267
SSNMF salsa fresh tacos baja fish -0.0697

thai
Whitening thai rice chinese hot chicken 0.0691
NMF thai chicken rice back sauce 0.1164
SSNMF thai pad tea dish green 0.0275

chocolate
Whitening yogurt flavors chocolate cream ice 0.1923
NMF gelato flavors chocolate ice cream 0.1641
SSNMF chocolate caramel factory dark covered 0.1943

bar
Whitening bar drinks night time beer 0.0142
NMF pizza brick pretty bar box -0.0143
SSNMF bar bit big seating beer -0.0086

noodle
Whitening chicken chinese rice thai sauce 0.2423
NMF pho chicken rice sauce back 0.2630
SSNMF chicken noodle rice back sauces 0.0910

burrito
Whitening burrito mexican stars tacos salsa 0.1320
NMF mexican fresh burrito tacos time 0.0638
SSNMF stars burrito green sauce mexican 0.0467

salad
Whitening salad chicken fresh sandwich bar 0.1780
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Label
word

Algo topword-1 topword-2 topword-3 topword-4 topword-5 PMI

NMF pizza brick pretty bar box -0.0220
SSNMF salad bar salads soup competitors -0.0123

burger
Whitening burger fries burgers fast time 0.1489
NMF link open isn working fast 0.0159
SSNMF stale burger meat bite king 0.0322

hike
Whitening park area time lot back 0.0572
NMF park dog time area trail 0.0747
SSNMF hike park rock mountain water 0.1255

pedicure
Whitening nails nail pedicure job salon 0.0189
NMF nails nail pedicure time salon 0.0158
SSNMF pedicure job nail close home -0.0931

fries
Whitening burger fries burgers fast cheese -0.0413
NMF cut wait time hair manager -0.2616
SSNMF fries grease dirty dark slow -0.1629

dog
Whitening dog dogs park pet hot 0.1501
NMF dog tony cut dogs style 0.0751
SSNMF dog door tie made serve 0.0080

panda
Whitening chicken fast chinese rice time -0.1488
NMF chicken chinese fast rice time -0.1291
SSNMF panda orange rice fried bad -0.1327

beans
Whitening mexican burrito chicken tacos salsa -0.0550
NMF mexican fresh burrito tacos time -0.1419
SSNMF trouble beans rice chicken marinated -0.1233

subway
Whitening subway sandwich clean fresh location -0.0074
NMF sandwich subway fresh bread location -0.0445
SSNMF subway location clean super sandwich -0.0524

car
Whitening car wash back time work 0.1064
NMF car wash back time job 0.0874
SSNMF visited car back job weeks 0.0353

cake
Whitening found cake chocolate shop yogurt 0.0754
NMF back time shop cake found 0.0099
SSNMF cake wanted wedding flavor perfect 0.0416

steak
Whitening location fast makes feel quality -0.0672
NMF prices selection quality family helpful -0.1569
SSNMF difference fast steak sandwiches subs -0.1672

curry
Whitening thai chicken rice chinese hot 0.1482
NMF thai chicken rice back sauce 0.1903
SSNMF chicken stew brown curry rice 0.0047

massage
Whitening massage back amazing years spa 0.1359
NMF massage time back amazing hour -0.0035
SSNMF massage arts experience amazing hour -0.0168

italian
Whitening sandwich pizza time back bread -0.0254
NMF gelato flavors chocolate ice cream 0.0241
SSNMF ice italian flavors cream chocolate -0.0231

Appendix C. Computation of A,B for Different Models

This section outlines the construction of matrices A,B in various models via different mo-
ment computations. First we introduce some notations which we use in Appendices C, D,
E, F, and G.
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C.1 Notations

For a vector x, ‖x‖ denotes its `2 norm. For a matrix X, ‖X‖ represents the spectral
norm of the matrix. We use the notation X̂ or Ê[X] to represent the sample estimate of
a quantity X, unless mentioned otherwise. For a matrix M let σk(M) denote the k−th
largest singular value of M, and σ̃k(M) denote the k−th largest eigenvalue. n represents
the number of samples used to obtain the sample estimates. Next, we introduce some
basic tensor notations. Let x, y, z ∈ Rd be three d dimensional vectors. Then the order-3
tensor T3 = x ⊗ y ⊗ z is defined as T3(i, j, k) = x(i)y(j)z(k), for i, j, k ∈ [d]. Similarly the
order-2 tensor T2 = x ⊗ y is equivalent to the matrix outer product T2 = xyT . Finally let
v ∈ Rd be another d dimensional vector, I be the d dimensional identity matrix. The tensor
contraction T3(I, I, v) is equal to the order-2 tensor T3(I, I, v) = 〈z, v〉x⊗ y, which is again
equivalent to the matrix T3(I, I, v) = 〈z, v〉xyT . For order-2 tensors we will use the tensor
and matrix notations interchangeably.

C.2 GMM Moments

In this section we prove how the required matricesA,B can be computed in the GMM model.
We restate the following useful theorem from Hsu and Kakade (2013) which computes three
tensor moments for the GMM model.

Theorem 7 (Hsu and Kakade (2013)) Consider the GMM model with means {µ1, . . . , µk}
and corresponding variances {σ21, . . . , σ2k}, and αi denote the proportion of the i-th compo-

nent in the mixture. Let σ2 =
∑k

i=1 αiσ
2
i be the smallest eigenvalue of the covariance

matrix E[(x − E[x])(x − E[x])T ] ( note that since
∑
αiµiµ

T
i has rank k, this is the same

as the k + 1th-largest eigenvalue), and u be a unit norm eigenvector corresponding to the
eigenvalue σ2. Define

m̃ = E[x(uT (x− E[x]))2], M2 = E[x⊗ x]− σ2I

M3 = E[x⊗ x⊗ x]−
d∑
i=1

(m̃⊗ ei ⊗ ei + ei ⊗ m̃⊗ ei + ei ⊗ ei ⊗ m̃)

where {e1, . . . , ed} form standard basis of Rd. Then,

m̃ =
k∑
i=1

αiσ
2
i µi, M2 =

k∑
i=1

αiµi ⊗ µi, M3 =
k∑
i=1

αiµi ⊗ µi ⊗ µi.

Theorem 8 In the GMM model define

m = E[x], A = E[xxT ]− σ2Id
B = E[〈x, v〉xxT ]− m̃vT − vm̃T − 〈m̃, v〉Id

Then, m =
∑

i αiµi, A =
∑k

i=1 αiµiµ
T
i and B =

∑k
i=1 αi〈µi, v〉µiµTi

Proof The expression for m, A follows directly from Theorem 7 by noting that A = M2

and µi ⊗ µi = µiµ
T
i . To compute B consider the tensor contraction M3(I, I, v), M3 as in
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Theorem 7. Then,

M3(I, I, v) = E[〈x, v〉x⊗ x]−
d∑
i=1

(v(i)m̃⊗ ei + v(i)ei ⊗ m̃+ 〈m̃, v〉ei ⊗ ei)

= E[〈x, v〉xxT ]−
d∑
i=1

(v(i)m̃eTi + v(i)eim̃
T + 〈m̃, v〉eieTi )

= E[〈x, v〉xxT ]− m̃vT − vm̃T − 〈m̃, v〉Id = B

Also from Theorem 7, M3(I, I, v) =
∑k

i=1 αi〈µi, v〉µi ⊗ µi =
∑k

i=1 αi〈µi, v〉µiµTi . There-

fore B =
∑k

i=1 αi〈µi, v〉µiµTi .

C.3 LDA Moments

In this section we show the m,A,B computation corresponding to the LDA model. Again
we restate the following theorem from Anandkumar et al. (2014) which computes the first
three tensor moments for LDA distribution.

Theorem 9 (Anandkumar et al. (2014)) In an LDA model with parameters ᾱ = (α1, . . . , αk) ,
topic distributions µ1, . . . , µk. Let α0 =

∑k
i=1 αi. Define

M1 = E[x1], M2 = E[x1 ⊗ x2]−
α0

1 + α0
M1 ⊗M1

M3 = E[x1 ⊗ x2 ⊗ x3]−
α0

α0 + 2
(E[x1 ⊗ x2 ⊗M1] + E[x1 ⊗M1 ⊗ x3] + E[M1 ⊗ x2 ⊗ x3])

+
2α2

0

(α0 + 1)(α0 + 2)
M1 ⊗M1 ⊗M1

Then,

M1 =
k∑
i=1

αi
α0
µi, M2 =

k∑
i=1

αi
α0(α0 + 1)

µi ⊗ µi

M3 =

k∑
i=1

2αi
α0(α0 + 1)(α0 + 2)

µi ⊗ µi ⊗ µi

Theorem 10 For an LDA model for any v ∈ Rd suppose m,A,B be defined as

m = α0E[x1]

A = α0(α0 + 1)E[x1x
T
2 ]−mmT

B =
α0(α0 + 1)(α0 + 2)

2
E[〈x3, v〉x1xT2 ]− α0(α0 + 1)

2

(
〈m, v〉E[x1x

T
2 ] + E[〈x3, v〉x1mT ]

+E[〈x3, v〉mxT2 ]
)

+ 〈m, v〉mmT .
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Then we can express m,A,B as follows.

m =

k∑
i=1

αiµi, A =

k∑
i=1

αiµiµ
T
i , B =

k∑
i=1

αi〈µi, v〉µiµTi

Proof The expressions for m and A follows easily from Theorem 9 since m = α0M1 and
A = α0(α0+1)M2. To show the expression for B consider the tensor contraction M3(I, I, v),
M3 defined as in Theorem 9. Then we have

M3(I, I, v) = E[〈x3, v〉x1 ⊗ x2]−
α0

α0 + 2
(E[〈M1, v〉x1 ⊗ x2] + E[〈x3, v〉x1 ⊗M1]

+E[〈x3, v〉M1 ⊗ x2 ⊗ x3]) +
2α2

0

(α0 + 1)(α0 + 2)
〈M1, v〉 ⊗M1 ⊗M1

=
2

α0(α0 + 1)(α0 + 2)
B

where we used x1 ⊗ x2 is same as x1x
T
2 and so on. We also get from Theorem 9

M3(I, I, v) =
∑k

i=1
2αi

α0(α0+1)(α0+2)〈µi, v〉µi ⊗ µi. Therefore we have

B =
α0(α0 + 1)(α0 + 2)

2
M3(I, I, v) =

k∑
i=1

αi〈µi, v〉µiµTi .

C.4 Mixed Regression Moments

Recall in mixed regression we have y = 〈x, µi〉 + ξ where x ∼ N (0, I) and ξ ∼ N (0, σ2).
In the following Lemmas we compute the various moments M1,1,M2,2,M3,1,M3,3 and show
how they are used to compute m,A,B.

Lemma 11 In mixed linear regression define M1,1 = E[yx], M2,2 = E[y2xxT ], M3,1 =
E[y3x] and M3,3 = E[y3〈x, v〉xxT ]. Then,

M1,1 =
k∑
i=1

αiµi

M2,2 = 2

k∑
i=1

αiµiµ
T
i + (σ2 +

k∑
i=1

αi‖µi‖2)I

M3,1 = 3

k∑
i=1

αi(σ
2 + ‖µi‖2)µi

M3,3 = 6

k∑
i=1

αi〈µi, v〉µiµTi +
(
M3,1v

T + vMT
3,1 + 〈M3,1, v〉I

)
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Proof
We compute the moments as shown below.

M1,1 = E[yx] =
k∑
i=1

αiE[xTµix+ ξx] =
k∑
i=1

αiµi

M2,2 = E[y2xxT ] =

k∑
i=1

αiE[〈µi, x〉2xxT ] + E[ξ2]E[xxT ]

=
k∑
i=1

αiE[〈µi, x〉2xxT ] + σ2I

=
k∑
i=1

αi(2µiµ
T
i + ‖µi‖2I) + σ2I

= 2

k∑
i=1

αiµiµ
T
i +

k∑
i=1

αi(σ
2 + ‖µi‖2)I

Using the fact that all odd moments of normal random variable are zero.

M3,1 = E[y3x] =

k∑
i=1

αiE[(〈x, µi〉+ ξ)3x]

=
k∑
i=1

αiE[〈x, µi〉3x] + 3
k∑
i=1

αiE[ξ2]E[〈x, µi〉x]

= 3
k∑
i=1

αi‖µi‖2µi + 3
k∑
i=1

αiσ
2µi = 3

k∑
i=1

αi(σ
2 + ‖µi‖2)µi

We use the fact that for even p the moment E[zp] = (p − 1)!! for a standard normal
random variable z and !! denote the double factorial. Next we compute M3,3.

M3,3 = E[y3〈x, v〉xxT ] =

k∑
i=1

αiE[(〈x, µi〉+ ξ)3〈x, v〉xxT ]

=
k∑
i=1

αiE[〈x, µi〉3〈x, v〉xxT ] + 3
k∑
i=1

αiE[ξ2]E[〈x, v〉〈x, µi〉xxT ]

=
k∑
i=1

αiE[〈x, µi〉3〈x, v〉xxT ] + 3σ2
k∑
i=1

αiE[〈x, v〉〈x, µi〉xxT ] (5)

Now we compute these individual moments.

E[〈x, v〉〈x, µi〉xxT ] = µTi v + vµTi + 〈µi, v〉I
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Using the fact that any odd combination of the variables in x will be zero in expectation.
Also,

E[〈x, µi〉3〈x, v〉xxT ] = 6〈v, µi〉µiµTi + 3‖µi‖2[µTi v + vµTi + 〈µi, v〉I]

Again by using the moments of standard normal variable. This can be verified by
considering the (a, b)-th entry of the matrix on the right as a polynomial in µi(l), the l-
th component of µi, and matching the corresponding coefficients from both sides of the
equation.

Combining with equation (5) we get,

M3,3 =
k∑
i=1

αi
[
6〈v, µi〉µiµTi + 3‖µi‖2(µTi v + vµTi + 〈µi, v〉I)

]
+3σ2

k∑
i=1

αi[µ
T
i v + vµTi + 〈µi, v〉I]

= 6
k∑
i=1

αi〈v, µi〉µiµTi + 3
k∑
i=1

αi(σ
2 + ‖µi‖2)[µTi v + vµTi + 〈µi, v〉I]

= 6
k∑
i=1

αi〈v, µi〉µiµTi +
(
M3,1v

T + vMT
3,1 + 〈M3,1, v〉I

)

Theorem 12 Let m,A,B be defined as

m = M1,1, A =
1

2
(M2,2 − τ2I),

B =
1

6
(M3,3 − (M3,1v

T + vMT
3,1 + 〈M3,1, v〉I))

where τ2 is the smallest singular value of M2,2. Then,

m =

k∑
i=1

αiµi, A =

k∑
i=1

αiµiµ
T
i , B =

k∑
i=1

αi〈µi, v〉µiµTi

Proof The proof follows directly from Lemma 11. Note that since µi-s are linearly in-
dependent the smallest singular vector τ2 of M2,2 is equal to

∑k
i=1 αi(σ

2 + ‖µi‖2). Then

A = 1
2

(
M2,2 − τ2I

)
=
∑k

i=1 αiµiµ
T
i . Similarly the expression for B holds.
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C.5 Subspace Clustering Moments

In this section we derive the necessary moments required for subspace clustering. Recall that
in the subspace clustering model we have k dimension—m subspaces U1, . . . , Uk ∈ Rd×m
(matrices U1, . . . , Uk have orthonormal columns). The data is generated as follows. We
sample y ∼ N (0, Id) and set x = UiU

T
i y + ξ, where ξ ∼ N (0, σ2Id) is additive noise.

Theorem 13 Consider the subspace clustering model. Let M2, A,B be defined as,

M2 := E[xxT ], A := M2 − σ2Id
B := E[〈x, v〉2xxT ]− σ2(vTAv)Id − σ2‖v‖2A− σ4(‖v‖2Id + vvT )− 2σ2(AvvT + vvTA)

where σ2 = σmk+1(M2). Then,

A =
k∑
i=1

αiUiU
T
i

B =
k∑
i=1

αi‖UTi v‖2UiUTi + 2
k∑
i=1

αiUiU
T
i vv

TUiU
T
i

Proof First we compute M2.

M2 = E(xxT ) =
k∑
i=1

αiE
[
UiU

T
i yy

TUiU
T
i

]
+ E[ξξT ] =

k∑
i=1

αiUiU
T
i + σ2Id

Using E[yyT ] = I as y ∼ N (0, I) and UTi Ui = I since the columns are orthogonal. Since
αi > 0, the mk + 1-th singular value of M2, σmk+1(M2) = σ2. Therefore it follows that,

A = M2 − σ2Id =

k∑
i=1

αiUiU
T
i

Now we compute the moment E[〈x, v〉2xxT ]. Given a sample x = UiU
T
i y + ξ from the

i-th subspace we have,

〈x, v〉2 = vTUiU
T
i yy

TUiU
T
i v + vT ξξT v + 2vT ξvTUiU

T
i y

xxT = UiU
T
i yy

TUiU
T
i + UiU

T
i yξ

T + ξyTUiU
T
i + ξξT

Then we can write,

E[〈x, v〉2xxT ]

=
k∑
i=1

αi
(
E[vTUiU

T
i yy

TUiU
T
i vUiU

T
i yy

TUiU
T
i ] + E[vTUiU

T
i yy

TUiU
T
i v]E[ξξT ]

+E[vT ξξT v]E[UiU
T
i yy

TUiU
T
i ] + E[vT ξξT vξξT ] + 2E[(vT ξvTUiU

T
i y)UiU

T
i yξ

T ]

+2E[(vT ξvTUiU
T
i y)ξyTUiU

T
i ]
)

= T1 + T2 + T3 + T4 + T5 + T6 (6)
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where T1, . . . , T6 are as follows. We define vi := UiU
T
i v, we use the Gaussian moment

results E[〈v, z〉z] = σ2v, and E[〈v, z〉2zzT ] = σ4(‖v‖2Id + vvT ) whenever z ∼ N (0, σ2Id).

T1 =

k∑
i=1

αiE
[
vTUiU

T
i yy

TUiU
T
i vUiU

T
i yy

TUiU
T
i

]
=

k∑
i=1

αiE[〈y, vi〉2UiUTi yyTUiUTi ] =
k∑
i=1

αiUiU
T
i E[〈y, vi〉2yyT ]UiU

T
i

=
k∑
i=1

αiUiU
T
i (‖vi‖2Id + 2viv

T
i )UiU

T
i

=

n∑
i=1

αi‖vi‖2UiUTi + 2

k∑
i=1

αiUiU
T
i vv

TUiU
T
i

=

k∑
i=1

αi‖UTi v‖2UiUTi + 2
k∑
i=1

αiUiU
T
i vv

TUiU
T
i

since ‖vi‖ = ‖UiUTi v‖ = ‖UTi v‖.

T2 =

k∑
i=1

αiE[vTUiU
T
i yy

TUiU
T
i v]E[ξξT ] =

k∑
i=1

αiv
TUiU

T
i v × σ2Id = σ2(vTAv)Id

T3 =
k∑
i=1

αiE[vT ξξT v]E[UiU
T
i yy

TUiU
T
i ] = σ2‖v‖2

k∑
i=1

αiUiU
T
i = σ2‖v‖2A

T4 =
k∑
i=1

αiE[vT ξξT vξξT ] = E[〈v, ξ〉2ξξT ] = σ4(‖v‖2Id + 2vvT )

T5 =

k∑
i=1

αi2E[(vT ξvTUiU
T
i y)UiU

T
i yξ

T ] = 2

k∑
i=1

αiE[(vTUiU
T
i y)UiU

T
i y]E[〈v, ξ〉ξT ]

= 2

k∑
i=1

αiE[(vTUiU
T
i y)UiU

T
i y]× σ2vT = 2σ2

k∑
i=1

αiE[(vTUiU
T
i y)UiU

T
i yv

T ]

= 2σ2
k∑
i=1

αiE[UiU
T
i 〈v, y〉yvT ] = 2σ2

k∑
i=1

αiUiU
T
i vv

T = 2σ2AvvT

T6 = 2

k∑
i=1

αiE[(vT ξvTUiU
T
i y)ξyTUiU

T
i ] = 2

k∑
i=1

αiE[〈v, ξ〉ξ]E[〈vi, y〉yTUiUTi ]

= 2σ2
k∑
i=1

αivv
T
i UiU

T
i = σ2

k∑
i=1

αivv
TUiU

T
i = σ2vvT

k∑
i=1

αiUiU
T
i = 2σ2vvTA

Therefore,

37



Ray, Neeman, Sanghavi, and Shakkottai

B = E[〈x, v〉2xxT ]− σ2(vTAv)Id − σ2‖v‖2A− σ4(‖v‖2Id + vvT )− 2σ2(AvvT + vvTA)

= E[〈x, v〉2xxT ]− T2 − T3 − T4 − T5 − T6 = T1

=
k∑
i=1

αi‖UTi v‖2UiUTi + 2
k∑
i=1

αiUiU
T
i vv

TUiU
T
i

Appendix D. Finite-sample Analysis of the Whitening Method

Suppose that

A =
∑
i

αiµiµ
T
i

B =
∑
i

βiµiµ
T
i

‖A− Â‖ ≤ ε
‖B − B̂‖ ≤ ε,

where σk is the kth singular value of A. Let V be the n× k matrix whose columns are the
first k singular vectors of A, and let V̂ be the same for Â. Let D be the diagonal matrix of
singular values of A, and let D̂ be the diagonal matrix of the first k singular values of Â.
Then A = V DV T and V TV = V̂ T V̂ = Ik. This entire section is under the assumptions of
Theorem 1; in particular, recall that ε ≤ σk(A)/4.

It will be technically convenient for us to assume that ‖B‖ ≤ ‖A‖ = σ1(A). This
assumption holds without loss of generality: if not, simply rescale the side information,
setting vnew = v ‖A‖‖B‖ . This has the effect of rescaling B, so that ‖Bnew‖ = ‖A‖; define also

B̂new = B̂ ‖A‖‖B‖ . Note that

‖Bnew − B̂new‖ = ‖B − B̂‖‖A‖
‖B‖

≤ ε

under the assumption ‖B − B̂‖ ≤ ε. Now, the algorithm is homogeneous in B̂: it will
produce the same output given either B̂ or B̂new; hence, it suffices to prove Theorem 1 with
v, B, and B̂ replaced by their new versions. Since the new versions satisfy ‖Bnew‖ ≤ ‖A‖,
we may assume this without loss of generality. From now on, we will drop the notation
Bnew, and we will simply prove Theorem 1 under the assumption ‖B‖ ≤ ‖A‖.

Our basic tool is Wedin’s theorem:

Theorem 14 For a matrix A, let PA≥s be the orthogonal projection onto the subspace

spanned by singular vectors of A with singular value at least s. Let PA≤s be the orthogo-
nal projection onto the subspace spanned by singular vectors with singular value at most s.
Then for any matrices A and B, and for any s < t,

‖PA≤sPB≥t‖ ≤
2‖A−B‖
t− s

.
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In applying Wedin’s theorem, the following geometric lemma will be useful. In what
follows, PE denotes the orthogonal projection onto E.

Lemma 15 Let E and F be subspaces of Rn with ‖PE⊥PF ‖ ≤ δ. Then ‖PF v‖2 ≤ ‖PEv‖2+
3δ‖v‖2 for every v ∈ Rn.

Lemma 16 If ε < σk/4 then for any u ∈ Rk,√
1− 16ε2

σ2k
‖u‖ ≤ ‖V̂ TV u‖ ≤ ‖u‖.

By a simple change of variables, if we define

O = D−1/2V̂ TV D1/2

then O is also an almost-isometry: for every u ∈ Rk,√
1− 16ε2

σ2k
‖u‖ ≤ ‖Ou‖ ≤ ‖u‖. (7)

Proof First, note that σk(Â) ≥ σk(A) − ‖A − Â‖ ≥ σk − ε. If ε < σk/4, we also have

σk+1(Â) ≤ σk+1(A) + ε ≤ σk/4 < σk − ε, which implies that V̂ V̂ T = P Â≥σk−ε.

Let Ŵ be a d × (d − k) matrix whose columns form an orthonormal basis for the
orthogonal complement of the column span of V̂ . Note that if ε < σk/2 then the kth
singular value of Â is strictly larger than σk/2 and the (k + 1)th singular value is at most

ε. Then P Â≤ε = ŴŴ T . By Wedin’s theorem,

‖ŴŴ TV V T ‖ = ‖P Â≤εPA≥σk‖ ≤
2ε

σk − ε
≤ 4ε

σk

Now, Ŵ T and V have norm 1, and so it follows that

‖Ŵ TV ‖ = ‖Ŵ T (ŴŴ TV V T )V ‖ ≤ 4ε

σk
.

For any u ∈ Rk with ‖u‖ = 1, we have

‖V̂ TV u‖2 = 1− ‖Ŵ TV u‖2 ≥ 1− 16ε2/σ2k,

from which the claimed lower bound follows. On the other hand, ‖V̂ TV u‖ ≤ u because
both V̂ T and V have norm 1.

Let M = D−1/2V TBVD−1/2 and M̂ = D̂−1/2V̂ T B̂V̂ D̂−1/2. Then M is the infinite-
sample version of A’s whitening matrix applied to B, and M̂ is the finite-sample analogue.
Recall from (7) that O = D−1/2V̂ TV D1/2 is an almost-isometry of Rk.

Lemma 17
‖OMOT − M̂‖ ≤ C εσ1

σ2k
.
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Proof The first step is to approximate OMOT by D−1/2V̂ TBV̂ D−1/2. To this end, note
that

OMOT = D−1/2V̂ TV V TBV V T V̂ D−1/2.

Now, V̂ is an isometry of Rk into Rn; hence,

‖V̂ TV V T − V̂ T ‖ = ‖V̂ V̂ TV V T − V̂ V̂ T ‖ = ‖P Â≥σk−εP
A
≥σk − P

Â
≥σk−ε‖ = ‖P Â≥σk−εP

A
≤0‖,

where the last equality used the fact that A has rank exactly k, and hence I −PA≥σk = PA≤0.
Now, Wedin’s theorem applied to the computation above implies that

‖V̂ TV V T − V̂ T ‖ ≤ 2ε

σk − ε
≤ 4ε

σk

(recalling that ε ≤ σk/4).
Now, for general matrices X,Y, Ỹ , Z we have

‖XTY TZY X −XT Ỹ TZỸ X‖ ≤ ‖XT (Y − Ỹ )TZY X‖+ ‖XT Ỹ TZ(Y − Ỹ )X‖
≤ ‖Y − Ỹ ‖‖X‖2‖Z‖(‖Y ‖+ ‖Ỹ ‖).

We apply this with X = D−1/2, Y = V̂ , Ỹ = V̂ V V T , and Z = B; since ‖D−1/2‖ = σ
−1/2
k ,

‖B‖ ≤ σ1, and ‖V̂ ‖, ‖V ‖, ‖V T ‖ = 1,

‖OMOT −D−1/2V̂ TBV̂ D−1/2‖ ≤ 8εσ1
σ2k

Next, we will replace B by B̂ in the above inequality. Since ‖V̂ ‖ = ‖V̂ T ‖ = 1 and

‖D−1/2‖ = σ
−1/2
k ,

‖D−1/2V̂ TBV̂ D−1/2 −D−1/2V̂ T B̂V̂ D−1/2‖ = ‖D−1/2V̂ T (B − B̂)V̂ D−1/2‖

≤ σ−1k ‖B − B̂‖ ≤
ε

σk
.

Putting this together with the previous bound yields

‖OMOT −D−1/2V̂ T B̂V̂ D−1/2‖ ≤ ε

σk
+

8εσ1
σ2k

(8)

It remains to relate D−1/2V̂ T B̂V̂ D−1/2 to M̂ (which is the same, but with D̂ instead of
D). Now, Weyl’s inequality implies that

‖D−1/2 − D̂−1/2‖ ≤ σ−1/2k − (σk − ε)−1/2 ≤ εσ
−3/2
k ,

where the second inequality follows from a first-order Taylor expansion and the fact that
ε ≤ σk/2. Hence,

‖D−1/2V̂ T B̂V̂ D−1/2 − M̂‖ ≤ ‖D−1/2 − D̂−1/2‖‖V̂ T B̂V̂ D−1/2‖
+‖D̂−1/2V̂ T B̂V̂ ‖‖D−1/2 − D̂−1/2‖

≤ 4εσ1σ
−2
k .
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Combining this with (8) and the triangle inequality, we have

‖OMOT − M̂‖ =
ε

σk
+ 12

εσ1
σ2k
≤ C εσ1

σ2k
.

Since O is almost an isometry, it follows that there is an orthogonal matrix Õ that is
close to O (for example, if UDV T = O is an SVD, let Õ = UV T ). In this way, we may find
an orthogonal Õ such that

‖O − Õ‖ ≤ 1−

√
1− 16ε2

σ2k
≤ 16ε2

σ2k
.

Now let u be the top eigenvector of M and let uO be the top eigenvector of OMOT . Then
Õu is the top eigenvector of ÕMÕT . The triangle inequality implies that

‖OMOT − ÕMÕT ‖ ≤ 2‖M‖‖O − Õ‖ ≤ 32ε2

σ2k
‖M‖.

On the other hand, M was assumed to have a spectral gap of δ‖M‖. By Wedin’s theorem,
it follows that

‖u− ÕTuO‖ = ‖Õu− uO‖ ≤
64ε2

δσ2k
.

Finally, let û be the top eigenvector of M̂ . By Lemma 17 and Wedin’s theorem,

‖û− uO‖ ≤
Cεσ1
δσ2k

.

Then

‖Ou− û‖ ≤ ‖O − Õ‖+ ‖Õu− ĥ‖ ≤ C max

{
εσ1
δσ2k

,
ε2

δσ2k

}
≤ Cεσ1

δσ2k
, (9)

where the last inequality follows because ε ≤ σk/2 ≤ σ1/2.
Next, we unpack O. Weyl’s inequality implies that

‖D−1/2 − D̂−1/2‖ ≤ σ−1/2k − (σk − ε)−1/2 ≤ εσ
−3/2
k ,

where the second inequality follows from a first-order Taylor expansion and the fact that
ε ≤ σk/4. Hence,

‖O − D̂−1/2V̂ TV D1/2‖ ≤ ‖D1/2‖‖D−1/2 − D̂−1/2‖ ≤
ε
√
σ1

σ
3/2
k

.

The right hand side is smaller than εσ1
σ2
k

, and so we may plug it into (9) to obtain

‖D̂−1/2V̂ TV D1/2u− û‖ ≤ Cεσ1
δσ2k

.
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Finally, (again because ε ≤ σk/2), ‖D̂−1/2‖ ≤ (σk/2)−1/2, and so

‖V D1/2u− V̂ D̂1/2û‖ ≤ Cεσ1

δσ
5/2
k

. (10)

Setting w = V D1/2u and ŵ = V̂ D̂1/2û and comparing this to the setting of Algorithm 1, (10)
shows that the finite-sample algorithm gets almost the same w as the infinite-sample version.

It remains to check the last few lines of Algorithm 1; i.e., to see that we recover the
right scaling of w.

Lemma 18 Let M be a symmetric matrix of rank k−1 and let E be the span of its columns.
Then ‖w‖ dist(w,E) ≥ σk(M + wwT ).

Proof It suffices to consider the case ‖w‖ = 1 (for a general w, apply the special case
of the lemma to w/‖w‖ and M/‖w‖2). Let PE denote the orthogonal projection onto E,
and note that ‖w − PEw‖ = dist(w,E) Let F = span{E,w}. Since F has dimension
k and y ∈ F⊥ implies ‖(M + wwT )y‖ = 0, it suffices to find some y ∈ F such that
‖(M + wwT )y‖ ≤ dist(w,E)‖y‖. Choose y = w − PEw. Then My = 0 and so

‖(M + wwT )y‖ = |wT y| = ‖w − PEw‖2 = dist(w,E)‖y‖.

Lemma 19 Let E be a subspace and take w 6∈ E. For x ∈ span{E,w}, let a(x) ∈ R be the
unique solution to x = aw + e, e ∈ E. Then |a(x)− a(y)| ≤ ‖x− y‖/dist(w,E).

Proof Given x, y ∈ span{E,w}, we can write x− y = (a(x)− a(y))w+ e, where e ∈ E. It
follows that

‖x− y‖ = ‖(a(x)− a(y))w + e‖ ≥ inf
e∈E
‖(a(x)− a(y))w + e‖

= |a(x)− a(y)| dist(w,E).

Finally, we apply the preceding two lemmas to show that α̂1 is accurate in Algorithm 1.
Together with (10) (whose right hand side provides the value of η that we will use), this
completes the proof of Theorem 1.

Lemma 20 Let m =
∑

i αiµi. If ‖Â−A‖ ≤ ε, ‖m̂−m‖ ≤ ε and ‖ŵ −√α1µ1‖ ≤ η then

|α̂1 − α1| ≤
C
√
α1|α1R+ η|
σk

(
η +R

ε

σk
+ ε

)
,

where R = maxi ‖µi‖, provided that the right hand side above is at most α1.

42



The Search Problem in Mixture Models

Proof By Wedin’s theorem,

‖V V T − V̂ V̂ T ‖ ≤ 2‖Â−A‖
σk − ‖Â−A‖

≤ 4
ε

σk

if ε ≤ σk/2. Hence,

‖m− V̂ V̂ T m̂‖ = ‖V V Tm− V̂ V̂ T m̂‖
≤ ‖(V V T − V̂ V̂ T )m‖+ ‖V̂ V̂ T (m− m̂)‖

≤ 4
ε

σk
‖m‖+ ε.

Now, let y =
√
α1ŵ + V̂ V̂ T

∑k
i=2 αiµi. Then

‖m− y‖ ≤
√
α1‖ŵ −

√
α1µ1‖+

∥∥∥∥∥
k∑
i=2

αi(µi − V̂ V̂ Tµi)

∥∥∥∥∥
≤ η + max

i
‖µi‖‖V V T − V̂ V̂ T ‖

≤ η + 4 max
i
‖µi‖

ε

σk
.

Defining R = maxi ‖µi‖, we have

‖y − V̂ V̂ T m̂‖ ≤ η + 8R
ε

σk
+ ε.

Now, let Ê be the span of {V̂ D̂1/2v : v ∈ Rk, v ⊥ û}, and note that Ê may also be written as
the column space of V̂ D̂1/2(Ik− ûûT )D̂1/2V̂ T = V̂ D̂V̂ T − ŵŵT . Since V̂ D̂1/2 is injective, Ê
has dimension k−1 and does not contain ŵ = V̂ D̂1/2û. Hence, y =

√
α1ŵ+ e is the unique

way to decompose y in span{ŵ}⊕ Ê. If we define a by the decomposition m̂ = aŵ+ e then
Lemma 19 implies

|a−
√
α1| ≤ ‖y − m̂‖/dist(ŵ, Ê)

≤ 1

dist(ŵ, Ê)

(
η + 8R

ε

σk
+ ε

)
.

On the other hand, Lemma 18 applied to V̂ D̂V̂ T − ŵŵT and ŵ implies (because the kth
singular value of V̂ D̂V̂ T ≥ σk − ε ≥ σk/2) that ‖ŵ‖ dist(ŵ, Ê) ≥ σk/2. Therefore,

|a−
√
α1| ≤

2‖ŵ‖
σk

(
η + 8R

ε

σk
+ ε

)
≤ 2(α1‖µ1‖+ η)

σk

(
η + 8R

ε

σk
+ ε

)
.

Finally, note that |α̂1 − α1| = |a2 − α1| = |a − √α1|(a +
√
α1). We consider two cases: if

a ≤ C√α1 then |α̂1 − α1| ≤ (1 +C)
√
α1|a−

√
α1|, which completes the proof. In the other

case, we have
|α̂1 − α1| ∼ α̂1 ≤ C

√
α̂1|a−

√
α1|,

which implies that
|α̂1 − α1| ≤ C|a−

√
α1|2
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for some other constant C. This implies

|α̂1 − α1| ≤ C
[

(α1R+ η)

σk

(
η +R

ε

σk
+ ε

)]2
≤ C
√
α1

[
(α1R+ η)

σk

(
η +R

ε

σk
+ ε

)]
,

where the second inequality comes from the assumption that the right hand side in the
lemma is bounded by α1.

As we pointed out in Section 2, spectral algorithms similar to Algorithm 1 has been
proposed before for GMM [Hsu and Kakade 2013] and LDA [Anandkumar et al. 2012]
models, the main difference being how the second matrix (equivalent to B) is constructed.
Since the underlying whitening procedure is the same in all these algorithms, the proof
approach presented above is similar to those in Hsu and Kakade (2013); Anandkumar et al.
(2012). The proofs diverge when computing the perturbation of the second matrix, matrix
B in our algorithm, which introduces different dependence on various parameter models in
the overall error bound. For example the error bound in Theorem 4.1 of Anandkumar et al.
(2012) has a slightly worse dependence on k and σk than Theorem 1.

Appendix E. Finite-sample Analysis of the Cancellation Method

In this section we analyze the performance of Algorithm 2 when we have finite sample esti-
mates of the matrices A,B and vector m. For ease of exposition we replaced the quantities
V1:(k−1), vi, ai, ci in Algorithm 2 with the notation representing estimate V̂1:(k−1), v̂i, âi, ĉi re-

spectively, since these are computed from sample estimates Â, B̂. First, we show in Lemma
21 that we can have a good estimate for Ẑλ∗ using good estimates for A,B and λ1.

Lemma 21 Let Ẑλ = Â − λB̂, Zλ = A − λB. Suppose max{‖Â − A‖, ‖B̂ − B‖} < ε and
λ1 = 1/w1. Then,

‖Ẑλ − Zλ1‖ < ε

(
2 +

1

w1

)
+ ε1σ1(B)

when |λ1 − λ| < ε1 < 1.

Proof We have,

‖Ẑλ − Zλ1‖ ≤ ‖Â−A‖+ ‖λB̂ − λ1B‖
< ‖Â−A‖+ λ1‖B̂ −B‖+ |λ1 − λ|‖B̂‖
≤ ε+ λ1ε+ ε1(σ1(B) + ε)

< ε(1 + 1/w1 + ε1) + ε1σ1(B) < ε

(
2 +

1

w1

)
+ ε1σ1(B)

since ε1 < 1.

The following lemma will show that even with noisy estimates of A,B, the estimated
λ∗ is close to λ1.
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Lemma 22 Let max{‖Â−A‖, ‖B̂ −B‖} < ε < σk(A)/2, and λ1 = 1/w1 > 0. Then,

|λ∗ − λ1| = O(ε)

Proof Define Z ′λ = V V TAV V T − λV V TBV V T , V being the d × k matrix of top k

eigenvectors of A. The corresponding empirical estimate Ẑ ′λ = V̂ V̂ T ÂV̂ V̂ T −λV̂ V̂ T B̂V̂ V̂ T .
The main proof idea is the following. We try to find λ2, λ3 > 0 such that:

1. ∀λ > λ2, Ẑ
′
λ is not PSD.

2. ∀λ < λ3, Ẑ
′
λ is PSD.

The above two conditions imply that the optimum λ∗ is bounded as λ3 ≤ λ∗ ≤ λ2. We then
simply bound λ∗ − λ1 as λ3 − λ1 ≤ λ∗ − λ1 ≤ λ2 − λ1. We now elaborate the above two
steps. First, we bound the perturbation of empirical matrix Ẑ ′λ as follows. Using Wedin’s

theorem we have ‖V̂ V̂ T − V V T ‖ ≤ 4ε
σk(A)

. Using this and the theorem assumptions we can
compute the following bounds.

‖V̂ V̂ T ÂV̂ V̂ T − V V TAV V T ‖ ≤ 13ε

‖V̂ V̂ T B̂V̂ V̂ T − V V TBV V T ‖ ≤
(

1 +
12σk(B)

σk(A)

)
ε

Combining, we have

‖Ẑ ′λ−Z ′λ‖ ≤ ‖V̂ V̂ T ÂV̂ V̂ T−V V TAV V T ‖+λ‖V̂ V̂ T B̂V̂ V̂ T−V V TBV V T ‖ ≤ c1(1+λ)ε (11)

where c1 = max{13, 1 + 12σk(B)
σk(A)

}.
Step 1: Since matrices A and B share the same column and row space, V V TAV V T =

A, V V TBV V T = B, and Z ′λ = Zλ =
∑k

i=1(1 − λwi)αiµiµ
T
i , wi = 〈µi, v〉. Recall, V =

span{µ2, . . . , µk} and Π denote the projection onto V⊥, its perpendicular space. Let x1 =
Πµ1/‖Πµ1‖, and x1 = V x̃1, ‖x1‖ = ‖x̃1‖ = 1. Consider the eigenvalues of the k × k
Hermitian matrix V TZλV. Using variational theorem we can write:

σ̃k(V
TZλV ) = min

x 6=0,‖x‖=1
xTV TZλV x ≤ x̃T1 V TZλV x̃1 = xT1 Zλx1 = (1− λw1)α1a

′
1 (12)

where a′1 = |〈x1, µ1〉|2 > 0. Now note that the matrices Z ′λ = V V TZλV V
T and V TZλV have

the same set of non-zero eigenvalues since V forms an orthonormal basis of the row/column
space of Zλ. Therefore we can write from above,

σ̃k(Z
′
λ) = σ̃k(V

TZλV ) ≤ (1− λw1)α1a
′
1 (13)

For λ = λ1 = 1/w1, Z
′
λ1

is a rank k − 1 matrix, and for any λ > λ1, Z
′
λ has at least one

negative eigenvalue. Consider λ2 > λ1 such that Z ′λ2 has one negative eigenvalue and k− 1

positive eigenvalues. Since Ẑ ′λ2 , Z
′
λ2

are symmetric matrices, using Weyl’s inequality we get,

σ̃k(Ẑ
′
λ2) ≤ σ̃k(Z

′
λ2) + ‖Ẑ ′λ2 − Z

′
λ2‖ ≤ σ̃k(Z

′
λ2) + c1(1 + λ2)ε

≤ (1− λ2w1)α1a
′
1 + c1(1 + λ2)ε

≤ a′1[(α1 + ε)− λ2(w1α1 − ε)] (14)
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using equations (11), (13), and assuming a′1 > c1 (else we can simply rescale ε). Now for
any λ > λ2 = α1+ε

α1w1−ε we get

σ̃k(Ẑ
′
λ) ≤ a′1[(α1 + ε)− λ(w1α1 − ε)] ≤ a′1[(α1 + ε)− λ2(w1α1 − ε)] = 0

Therefore, when λ > λ2 = α1+ε
α1w1−ε , Ẑ

′
λ is not PSD. This implies that λ2 ≥ λ∗. Then,

λ∗ − λ1 ≤ λ2 − λ1 =
α1 + ε

α1w1 − ε
− 1

w1
=

ε(w1 + 1)

(α1w1 − ε)w1
(15)

Step 2: Consider λ3 < λ1 such that Z ′λ3 is PSD. Then we lower bound σ̃k(Z
′
λ3

) as
follows. Let ṽk,λ3 be the k−th eigenvector of Z ′λ3 having eigenvalue σ̃k(Z

′
λ3

). Then,

σ̃k(Z
′
λ3) = ṽTk,λ3Z

′
λ3 ṽk,λ3 =

k∑
i=1

αi(1− λ3wi)ṽTk,λ3µiµ
T
i ṽk,λ3

≥ (1− λ3w1)

k∑
i=1

αi|〈ṽk,λ3 , µi〉|2 ≥ (1− λ3w1)a
′
2 (16)

since w1 > wi, i 6= 1, and where a′2 = infλ≥0
∑k

i=1 αi|〈ṽk,λ, µi〉|2 > 0. Now using the lower
bound of Weyl’s inequality,

σ̃k(Ẑ
′
λ3) ≥ σ̃k(Z

′
λ3)− ‖Ẑ ′λ3 − Z

′
λ3‖

≥ σ̃k(Z
′
λ3)− c1(1 + λ3)ε

≥ (1− λ3w1)a
′
2 − c1(1 + λ3)ε

≥ c1[(1− ε)− λ3(w1 + ε)]

using equation (16), and assuming c1 < a′2 (else we can simply rescale ε). Then, for any

λ < λ3 = (1−ε)
(w1+ε)

we have σ̃k(Ẑ
′
λ) > 0, or Ẑ ′λ is PSD. This implies λ∗ > λ3. Therefore,

λ∗ − λ1 ≥ λ3 − λ1 =
(1− ε)

(w1 + ε)
− 1

w1
= − (w1 + 1)ε

(w1 + ε)w1
(17)

Combining equations (15), (17) we get,

|λ∗ − λ1| ≤ c3ε = O(ε)

where c3 = max
(

(w1+1)
(w1+ε)w1

, (w1+1)
(α1w1−ε)w1

)
.

In Lemma 22 we assume w1 = 〈µ1, v〉 is positive. When w1 < 0, we have to modify the
line search and find the smallest λ < 0 such that Ẑ ′λ is PSD. However we can still apply
similar arguments and prove that as long as the estimates of A,B, are within ε in spectral
norm, Algorithm 2 can estimate λ∗ within an O(ε) accuracy of λ1. Lemma 21 and 22
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together implies that ‖Ẑλ∗ − Zλ1‖ = O(ε) as follows, which will be used to prove Theorem
3. We have,

‖Ẑλ∗ − Zλ1‖ < ε

(
2 +

1

w1

)
+ ε1σ1(B)

≤ ε

(
2 +

1

w1

)
+ c3εσ1(B)

≤ 3η3ε (18)

where in the last inequality we assume ε < α1w1/2, and η3 = max
{

2, 1
w1
, c3σ1(B)

}
.

Lemma 23 Let ‖m̂ −m‖ < ε, ‖Ẑλ∗ − Zλ1‖ < ε2 < σk−1(Zλ1)/2 for λ1 = α1/β1. V1:(k−1)
denote the d × (k − 1) matrix of k − 1 largest singular vectors of Zλ1 and V̂1:(k−1) be the

d× (k − 1) matrix of k − 1 largest singular vectors of Ẑλ∗ . Then,

‖x̂1 − x1‖ < 2ε+
4ε2R

σk−1(Zλ1)
= ε3

‖v̂1 − v1‖ <
2ε3
α1a1

= ε4

where R = maxi∈[k] ‖µi‖.

Proof Since, ‖Ẑλ∗ − Zλ1‖ < ε2 < σk−1(Zλ1)/2, applying Wedin’s theorem we get,

‖V̂1:(k−1)V̂ T
1:(k−1) − V1:(k−1)V

T
1:(k−1)‖ ≤

2‖Ẑλ∗ − Zλ1‖
σk−1(Zλ1)− ‖Ẑλ∗ − Zλ1‖

≤ 4ε2
σk−1(Zλ1)

(19)

since ε2 < σk−1(Zλ1)/2. Now,

‖x̂1 − x1‖ = ‖m̂− V̂1:(k−1)V̂ T
1:(k−1)m̂−m+ V1:(k−1)V

T
1:(k−1)m‖

≤ ‖m̂−m‖+ ‖(V̂1:(k−1)V̂1:(k−1) − V1:(k−1)V T
1:(k−1))m‖+ ‖V̂1:(k−1)V̂ T

1:(k−1)(m− m̂)‖

< 2‖m− m̂‖+
4ε2‖m‖
σk−1(Zλ1)

< 2ε+
4ε2R

σk−1(Zλ1)
:= ε3

where we used equation 19 and ‖m‖ ≤ R. Recall that x1 = α1
∏
V µ1 = α1a1v1, where

V = span{µ2, . . . , µk} and a1 = 〈µ1, v1〉. To show the second bound,

‖v̂1 − v1‖ =

∥∥∥∥ x̂1
‖x̂1‖

− x1
‖x1‖

∥∥∥∥
≤ ‖x̂1 − x1‖

‖x1‖
+ ‖x̂1‖

∣∣∣∣ 1

‖x1‖
− 1

‖x̂1‖

∣∣∣∣
<
‖x̂1 − x1‖
‖x1‖

+
|‖x̂1‖ − ‖x1‖|
‖x1‖

≤ 2
‖x̂1 − x1‖
‖x1‖

<
2ε3
α1a1

:= ε4
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Lemma 24 Let ‖Â − A‖ < ε, ‖v̂1 − v1‖ < ε4. Define d × k matrices V = [v1V1:(k−1)] and

V̂ = [v̂1V̂1:(k−1)]. Then,

‖V̂ V̂ T Âv̂1 − V V TAv1‖ < σ1(A)

(
3ε4 +

4ε

σk−1(Zλ1)

)
+ ε(1 + ε4)

Proof Similar to Lemma 23 we have from Wedin’s theorem ‖V̂1:(k−1)V̂ T
1:(k−1)−V1:(k−1)V

T
1:(k−1)‖ <

4ε
σk−1(Zλ1 )

. Then we can bound,

‖V̂ V̂ T − V V T ‖ ≤ ‖v̂1v̂T1 − v1vT1 ‖+ ‖V̂1:(k−1)V̂1:(k−1) − V1:(k−1)V T
1:(k−1)‖

< 2‖v̂1 − v1‖+
4ε

σk−1(Zλ1)

< 2ε4 +
4ε

σk−1(Zλ1)
(20)

Now,

‖V̂ V̂ T Âv̂1 − V V TAv1‖ ≤ ‖(V̂ V̂ T − V V T )Av1‖+ ‖V̂ V̂ T (A− Â)v1‖
+‖V̂ V̂ T Â(v1 − v̂1)‖

≤ ‖V̂ V̂ T − V V T ‖‖A‖+ ‖A− Â‖+ ‖Â‖‖v1 − v̂1‖

< σ1(A)

(
2ε4 +

4ε

σk−1(Zλ1)

)
+ ε+ (σ1(A) + ε)ε4

where we use inequality (20), ‖Av1‖ ≤ σ1(A) as v1 is unit norm, ‖V̂ V̂ T ‖ < 1 since V̂ is
orthonormal, and ‖Â‖ < ‖A‖+ ε. Combining,

‖V̂ V̂ T Âv̂1 − V V TAv1‖ < σ1(A)

(
3ε4 +

4ε

σk−1(Zλ1)

)
+ ε(1 + ε4)

Lemma 25 Let ‖Â−A‖ < ε, ‖x̂1 − x1‖ < ε3 <
α1a1
2 , and ‖v̂1 − v1‖ < ε4. Then,

|â1 − a1| <
α1a1 (2σ1(A)ε4 + ε(1 + ε4)) + 2(σ1(A) + ε)ε3

α2
1a

2
1

Proof We first compute,

|v̂T1 Âv̂1 − vT1 Av1| ≤ |(vT1 − v̂T1 )Av1|+ |v̂T1 (A− Â)v1|+ |v̂T1 Â(v1 − v̂1)|
≤ ‖vT1 − v̂T1 ‖σ1(A) + ‖A− Â‖+ σ1(Â)‖v1 − v̂1‖
< σ1(A)ε4 + ε+ (σ1(A) + ε)ε4 = 2σ1(A)ε4 + ε(1 + ε4) (21)
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using the fact that v1, v̂1 have unit norms. Now we can bound the error |â1−a1| as follows.

|â1 − a1| =

∣∣∣∣∣ v̂T1 Âv̂1‖x̂1‖
− vT1 Av1
‖x1‖

∣∣∣∣∣
≤ 1

‖x1‖
|v̂T1 Âv̂1 − vT1 Av1|+ |v̂T1 Âv̂1|

|‖x1‖ − ‖x̂1‖|
‖x1‖‖x̂1‖

From equation (21) and using |‖x1‖ − ‖x̂1‖| < ‖x̂1 − x1‖ < ε3, ‖x1‖ = α1a1 we get,

|â1 − a1| <
2σ1(A)ε4 + ε(1 + ε4)

α1a1
+

(σ1(A) + ε)ε3
α1a1(α1a1 − ε3)

<
α1a1 (2σ1(A)ε4 + ε(1 + ε4)) + 2(σ1(A) + ε)ε3

α2
1a

2
1

since ε3 <
α1a1
2 .

Note that from Lemma 23 taking 2ε3
α1a1

= ε4 the above bound becomes |â1 − a1| <
6σ1(A)ε3+εα1a1+4εε3

α2
1a

2
1

.

E.1 Proof of Theorem 3

We now proof Theorem 3. Assume ‖Ẑλ∗ −Zλ1‖ ≤ ε2. Under the assumptions we have using
Lemma 23 ‖x̂1− x1‖ < ε3 = 2ε+ 4ε2R

σk−1(Zλ1 )
, ‖v̂1− v1‖ < ε4 = 2ε3

α1a1
. Also from Lemma 24 we

have ‖V̂ V̂ T Âv̂1−V V TAv1‖ < σ1(A)
(

3ε4 + 4ε
σk−1(Zλ1 )

)
+ ε(1 + ε4). Using these we compute

the first bound as follows.

‖µ̂1 − µ1‖ =

∥∥∥∥∥ V̂ V̂ T Âv̂1
‖x̂1‖

− V V TAv1
‖x1‖

∥∥∥∥∥
≤ ‖V̂ V̂ T Âv̂1‖

∣∣∣∣ 1

‖x̂1‖
− 1

‖x1‖

∣∣∣∣+
1

‖x1‖
‖V̂ V̂ T Âv̂1 − V V TAv1‖

≤ ‖Â‖‖x̂1 − x1‖
‖x̂1‖‖x1‖

+
1

‖x1‖
‖V̂ V̂ T Âv̂1 − V V TAv1‖

Now using bounds from Lemma 23, 24 we get,

‖µ̂1 − µ1‖ <
(σ1(A) + ε)ε3
α1a1(α1a1 − ε3)

+
σ1(A)

(
3ε4 + 4ε

σk−1(Zλ1 )

)
+ ε(1 + ε4)

α1a1

<
2

α2
1a

2
1

[(σ1(A) + ε) ε3 + α1a1 ((3σ1(A) + ε)ε4

+ε (1 + 4σ1(A)/σk−1(Zλ1)))]

<
2

α2
1a

2
1

[(σ1(A) + ε) ε3 + 2 (3σ1(A) + ε) ε3

+α1a1ε (1 + 4σ1(A)/σk−1(Zλ1))]

≤ 2
10σ1(A)ε3 + 5α1a1ε

σ1(A)
σk−1(Zλ1 )

α2
1a

2
1
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assuming ε3 ≤ α1a1
2 , σ1(A) ≥ ε, and σ1(A) > σk−1(Zλ1). Now expanding ε3 and rear-

ranging terms we have,

‖µ̂1 − µ1‖ <
1

α2
1a

2
1

((
40 + 10

α1a1
σk−1(Zλ1)

)
σ1(A)ε+ 80

σ1(A)Rε2
σk−1(Zλ1)

)
<

80

α2
1a

2
1

(
σ1(A)ε

(
1 +

α1a1
σk−1(Zλ1)

)
+
σ1(A)ε2R

σk−1(Zλ1)

)
(22)

To prove the second bound from Lemma 25 and assuming ε < σ1(A) we have |â1−a1| ≤
10σ1(A)ε3+α1a1ε

α2
1a

2
1

. Then,

â1(α1 − α̂1) = â1α1 − â1α̂1

= a1α1 − â1α̂1 + â1α1 − a1α1

â1|α1 − α̂1| ≤ |a1α1 − â1α̂1|+ α1|â1 − a1|

|α1 − α̂1| ≤
1

â1
(‖x1 − x̂1‖+ α1|â1 − a1|)

<
ε3 + α1|â1 − a1|
a1 − |â1 − a1|

≤ 2
ε3 + (10σ1(A)ε3+α1a1ε)

α1a21

a1

using |â1 − a1| < a1
2 . We have,

|α1 − α̂1| ≤ 2
α1a

2
1ε3 + 10σ1(A)ε3 + α1a1ε

α1a31

<
2

α1a31

((
α1a

2
1 + 10σ1(A)

)
(2ε+ 4Rε2/σk−1(Zλ1)) + α1a1ε

)
≤ 4σ1(A)

α1a31

(
η1ε+

η2Rε2
σk−1(Zλ1)

)
(23)

where η1 := max{α1a1(2a1 + 1), 20}, and η2 := max{α1a
2
1, 10}.

Finally using equation (18) we can bound ‖Ẑλ∗ − Zλ1‖ ≤ ε2 ≤ 3η3ε, where η3 =

max
{

1, 1
w1
, c3σ1(B)

}
. Using this in equations (22) and (23) proves the theorem.

E.2 Related Lemmas

In this section we prove a supporting lemma for Lemma 5.

Lemma 26 Let {µ2, . . . , µk} be linearly independent. Suppose matrix Zλ∗ be expressed as,

Zλ∗ =

k∑
i=2

αi(1− λ∗wi)µiµTi = V1:(k−1)Σ1:(k−1)V
T
1:(k−1) =

k∑
i=2

σi−1(Zλ∗)viv
T
i , (24)

where wi = 〈µi, v〉, V1:(k−1) = [v2, . . . , vk] the matrix of k−1 singular vectors, and Σ1:(k−1) is
a diagonal matrix of singular values of Zλ∗ . Then {v2, . . . , vk} forms a basis of span{µ2, . . . , µk}.
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Proof Define VZλ∗ as the column space of matrix Zλ∗ . First observe that from equation
(24) each column of Zλ∗ can be written as a linear combination of {µ2, . . . , µk}. Therefore
any vector in the column space VZλ∗ can be written as a linear combination of {µ2, . . . , µk}.
this implies,

VZλ∗ ⊆ span{µ2, . . . , µk} (25)

Now any vector y ∈ VZλ∗ can be written as y = Zλ∗x =
∑k

i=2 σi−1(Zλ∗)〈vi, x〉vi using
equation (24). This implies,

VZλ∗ ⊆ span{v2, . . . , vk} (26)

Conversely any vector s ∈ span{v2, . . . , vk} can be written as s = V1:(k−1)r = Zλ∗V1:(k−1)Σ
−1
1:(k−1)r =

Zλ∗r
′, using equation (24), where r′ = V1:(k−1)Σ

−1
1:(k−1)r. This implies,

span{v2, . . . , vk} ⊆ VZλ∗ (27)

Therefore combining equations (25),(26),(27) we get,

span{v2, . . . , vk} = VZλ∗ ⊆ span{µ2, . . . , µk} (28)

Note that both the vector spaces span{v2, . . . , vk} and span{µ2, . . . , µk} have rank k − 1
since {v2, . . . , vk} are orthonormal, and {µ2, . . . , µk} are linearly independent. Then from
this rank constraint and equation (28) we must have:

span{v2, . . . , vk} = span{µ2, . . . , µk}

This implies {v2, . . . , vk} forms a basis of span{µ2, . . . , µk}.

Appendix F. Subspace Clustering Proofs

In this section we prove Theorem 6 and the necessary lemmas. The main point is the
following infinite-sample analysis, which shows that the top m eigenvectors of the whitened
matrix B can be used to recover the subspace U1.

Theorem 27 Suppose that there is some δ > 0 such that ‖Uiv‖2 ≤ (1/3− δ)‖U1v‖2 for all
i 6= 1. Let Y = [u1, ..., um] be the matrix of top m eigenvectors of R = D−1/2V TBVD−1/2

and Z = V D1/2Y. Let Z be the subspace spanned by columns of Z. Then,

1. Z = U1

2. σm(R)− σm+1(R) ≥ 3δ‖U1v‖2

Proof Define wi = ‖UiUTi v‖ = ‖UTi v‖, and Ũi :=
√
αiD

−1/2V TUi; note that
∑k

i=1 ŨiŨ
T
i

is the (km) × (km) identity matrix, which implies that each Ũi has orthonormal columns.
Consider the whitened B matrix. Using Theorem 13,

D−1/2V TBVD−1/2 =

k∑
i=1

w2
i ŨiŨ

T
i + 2

k∑
i=1

ŨiU
T
i vv

TUiŨ
T
i

=

k∑
i=1

w2
i ŨiŨ

T
i + 2

k∑
i=1

ṽiṽ
T
i =

k∑
i=1

(w2
i ŨiŨ

T
i + 2ṽiṽ

T
i )
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where ṽi = ŨiU
T
i v. Note that ṽi are orthogonal to each other and each ṽi is in the space

Ũi, the span of corresponding Ũi. Moreover, ‖ṽi‖ = wi. Now for each i consider a different
orthonormal basis Ṽi of Ũi such that in this basis the first unit vector is aligned along ṽi.
Define a rotation Ri such that Ṽi = ŨiRi. Then ṼiṼ

T
i = ŨiŨ

T
i . Therefore we can write the

above equation as

R = D−1/2V TBVD−1/2 =
k∑
i=1

ṼiD̃iṼ
T
i (29)

where each D̃i is a diagonal matrix with one maximum value of 3w2
i and all other values w2

i ,
and also the matrices Ṽi are orthogonal. Under the assumption that w2

i ≤ (1/3 − δ)w2
1, it

follows that the top m eigenvectors of R are the columns of Ṽi, and that the corresponding
eigenvalues are 3w2

1 and then w2
1 repeated m − 1 times. Therefore we can write Y = ŨiO,

where O is an m×m orthogonal matrix. Then,

Z = V D1/2Y = V D1/2ŨiO =
√
α1U1O

This proves the first statement that Z, the span of the columns of Z, is the subspace U1, the
span of columns of U1. The second statement follows from equation (29) since the maximum
value of the m+ 1-th eigenvalue is 3w2

i for some i 6= 1. Hence,

σm(R)− σm+1(R) ≥ w2
1 − 3 max

i 6=1
w2
i ≥ 3δw2

1 = 3δ‖U1v‖2.

Lemma 28 Let ‖Â − A‖ < ε < σmk(A)/4. A = V DV T and Â = V̂ D̂V̂ T be the eigen
decompositions of A, Â. Let Ŵ = V̂ D̂−1/2 be the whitening matrix. Then,

‖Ik − (Ŵ TAŴ )−1/2‖ ≤ 4ε

σmk(A)

Proof We prove this along the lines in Hsu and Kakade (2013). The matrix Ŵ whitens Â
since,

Ŵ T ÂŴ = D̂−1/2V̂ T ÂV̂ D̂−1/2 = Ik

Also ε < σmk(A)/2, hence using Weyl’s inequality σmk(Â) ≥ σmk(A)/2. This implies

‖Ik − Ŵ TAŴ‖ = ‖Ŵ T (Â−A)Ŵ‖ ≤ ‖Ŵ‖2‖Â−A‖

<
2ε

σmk(A)

Therefore all eigenvalues of the matrix Ŵ TAŴ lie in the interval (1− 2ε/σmk(A), 1 + 2ε/σmk(A)) .
This implies the eigenvalues of (Ŵ TAŴ )−1 lie in the interval (1/(1 + 2ε/σmk(A)), 1/(1− 2ε/σmk(A))).
Then,
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(Ik − (Ŵ TAŴ )−1/2)(Ik + (Ŵ TAŴ )−1/2) = Ik − (Ŵ TAŴ )−1

Ik − (Ŵ TAŴ )−1/2 =
(
Ik − (Ŵ TAŴ )−1

)
(Ik + (Ŵ TAŴ )−1/2)−1

‖Ik − (Ŵ TAŴ )−1/2‖ ≤ ‖Ik − (Ŵ TAŴ )−1‖

≤ 1

1− 2ε/σmk(A)
− 1 ≤ 4ε

σmk(A)

Lemma 29 (Whitening matrix perturbation) Assume ‖Â−A‖ < ε < σmk(A)/4. Let
Ŵ = V̂ D̂−1/2 be the whitening matrix. Define W := Ŵ (Ŵ TAŴ )−1/2 . Then,

‖Ŵ −W‖ ≤ 8ε

σmk(A)3/2

Proof We note that the matrix W whitens the matrix A, since

W TAW = (Ŵ TAŴ )−1/2Ŵ TAŴ (Ŵ TAŴ )−1/2 = Ik

We can bound the perturbation as follows.

‖Ŵ −W‖ = ‖Ŵ (Ik − (Ŵ TAŴ )−1/2)‖
≤ ‖Ŵ‖‖Ik − (Ŵ TAŴ )−1/2‖

≤ 2√
σmk(A)

4ε

σmk(A)
=

8ε

σmk(A)3/2

where the last inequality follows from Lemma 28.

Lemma 30 Let max{‖Â − A‖, ‖B̂ − B‖} < ε, and also let ε < min{σ1(B)/2, σmk(A)16 }.
W = Ŵ (Ŵ TAŴ )−1/2 be the whitening matrix. Define R = W TBW as the whitened B
matrix, and R̂ = Ŵ T B̂Ŵ is its estimate. Then,

‖R̂−R‖ < 51σ1(B)ε

σmk(A)2
:= ε1

Proof From Lemma 29 we have ‖Ŵ −W‖ ≤ 8ε
σmk(A)3/2

< ‖Ŵ‖/2. Also we know ‖Ŵ‖ ≤√
2/σmk(A). We obtain the required bound as follows.
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‖R̂−R‖ = ‖Ŵ T B̂Ŵ −W TBW‖
≤ ‖(Ŵ −W )T B̂Ŵ‖+ ‖W T (B̂ −B)Ŵ‖+ ‖W TB(Ŵ −W )‖

≤ 3

2
‖Ŵ −W‖‖B‖‖Ŵ‖+

3

2
‖Ŵ‖2‖B̂ −B‖+

3

2
‖Ŵ T ‖‖B‖‖Ŵ −W‖

= 3‖Ŵ −W‖‖B‖‖Ŵ‖+
3

2
‖Ŵ‖2‖B̂ −B‖

< 48
σ1(B)ε

σmk(A)2
+

3ε

σmk(A)
<

51σ1(B)ε

σmk(A)2

Lemma 31 Suppose Y = [u1, . . . , um] be the matrix of m largest eigenvectors of R =
W TBW, and Ŷ be that of R̂ = Ŵ T B̂Ŵ . Let Ẑ = V̂ D̂1/2Ŷ . Then,

‖ẐẐT − ZZT ‖ ≤ C1
σ1(A)σ1(B)ε

(σm(R)− σm+1(R))σmk(A)2

where Z satisfies Y = W TZ, and C1 is a constant.

Proof First using Wedin’s theorem for the matrix A and Â we get

‖V̂ V̂ T − V V T ‖ < 4ε

σmk(A)
. (30)

From Lemma 30 we have ‖R̂−R‖ < 51σ1(B)ε
σmk(A)2

= ε1. Therefore we can again use Wedin’s

theorem on the matrices R, R̂ to bound the perturbation of the subspace spanned by Y.

‖Ŷ Ŷ T − Y Y T ‖ ≤ 4‖R̂−R‖
σm(R)− σm+1(R)

=
4ε1

σm(R)− σm+1(R)
. (31)

We now bound the following term.

‖V̂ D̂1/2W T − V̂ V̂ T ‖ = ‖V̂ D̂1/2(Ŵ TAŴ )−1/2Ŵ T − V̂ V̂ T ‖
= ‖V̂ D̂1/2(Ŵ TAŴ )−1/2D̂−1/2V̂ T − V̂ V̂ T ‖
≤ ‖D̂1/2(Ŵ TAŴ )−1/2D̂−1/2 − Ik‖
≤ ‖D̂1/2‖‖(Ŵ TAŴ )−1/2 − Ik‖‖D̂−1/2‖

≤

√
σ1(Â)

σmk(Â)

4ε

σmk(A)
≤ 8σ1(A)1/2ε

σmk(A)3/2
(32)

where the second to last inequality follows from Lemma 28. Next we show that ẐẐT is
close to the projection of ZZT onto the subspace V̂ V̂ T .
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‖ẐẐT − V̂ V̂ TZZT V̂ V̂ T ‖
= ‖V̂ D̂1/2Ŷ Ŷ T D̂1/2V̂ T − V̂ V̂ TZZT V̂ V̂ T ‖
≤ ‖V̂ D̂1/2(Ŷ Ŷ T − Y Y T )D̂1/2V̂ T ‖+ ‖V̂ D̂1/2Y Y T D̂1/2V̂ T − V̂ V̂ TZZT V̂ V̂ T ‖
≤ σ1(Â)‖Ŷ Ŷ T − Y Y T ‖+ ‖V̂ D̂1/2W TZZTWD̂1/2V̂ T − V̂ V̂ TZZT V̂ V̂ T ‖ (33)

We bound the second term as follows. Observe that the matrix D−1/2V T also whitens
the matrix A. Therefore Z can be expressed as Z = V D1/2U ′ where U ′ is a matrix with
orthonormal columns. This implies ‖ZZT ‖ = ‖V D1/2U ′U ′TD1/2V T ‖ ≤ σ1(A).

‖V̂ D̂1/2W TZZTWD̂1/2V̂ T − V̂ V̂ TZZT V̂ V̂ T ‖
≤ ‖(V̂ D̂1/2W T − V̂ V̂ T )ZZTWD̂1/2V̂ T ‖+ ‖V̂ V̂ TZZT (WD̂1/2V̂ T − V̂ V̂ T )‖
≤ ‖(V̂ D̂1/2W T − V̂ V̂ T )ZY T D̂1/2V̂ T ‖+ ‖ZZT ‖‖WD̂1/2V̂ T − V̂ V̂ T ‖
≤ ‖V̂ D̂1/2W T − V̂ V̂ T ‖‖Z‖‖D̂1/2‖+ ‖ZZT ‖‖WD̂1/2V̂ T − V̂ V̂ T ‖

≤ 8σ1(A)1/2ε

σmk(A)3/2
× 2σ1(A) + σ1(A)× 8σ1(A)1/2ε

σmk(A)3/2

= 24
σ1(A)3/2ε

σmk(A)3/2

The second to last step follows from equation 32. Now using the above bound in equation
33 we get,

‖ẐẐT − V̂ V̂ TZZT V̂ V̂ T ‖ ≤ σ1(Â)‖Ŷ Ŷ T − Y Y T ‖+ 24
σ1(A)3/2ε

σmk(A)3/2

≤ 8σ1(A)ε1
σm(R)− σm+1(R)

+ 24
σ1(A)3/2ε

σmk(A)3/2
(34)

where the last step follows from inequalities (31). We compute the required bound by
combining equations (30) and (34) as follows.

‖ẐẐT − ZZT ‖ = ‖ẐẐT − V V TZZTV V T ‖
≤ ‖ẐẐT − V̂ V̂ TZZT V̂ V̂ T ‖+ 3‖V V T − V̂ V̂ T ‖‖ZZT ‖

≤ 8σ1(A)ε1
σm(R)− σm+1(R)

+ 24
σ1(A)3/2ε

σmk(A)3/2
+

12σ1(A)ε

σmk(A)

≤ C1
σ1(A)σ1(B)ε

(σm(R)− σm+1(R))σmk(A)2

where C1 is a constant.
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F.1 Proof of Theorem 6

The proof follows from Theorem 27 and Lemma 31. Note that the matrix Z has all singular
values equal to

√
α1, therefore ZZT has singular values α1. Under the affinity condition

from Theorem 27, we have

σm(R)− σm+1(R) ≥ 3δ‖U1v‖2

Combining with Lemma 31 we get

‖ẐẐT − ZZT ‖ ≤ C2σ1(A)σ1(B)ε

δ‖U1v‖2σmk(A)2

where C2 is a constant. Finally applying Wedin’s theorem for the matrices ẐẐT and ZZT ,
we have

‖Û ÛT − U1U
T
1 ‖ ≤

C3σ1(A)σ1(B)ε

α1δ‖U1v‖2σmk(A)2
≤ Cσ1(A)2ε

α1δσmk(A)2

where C3 = 4C2.

Appendix G. Sample Complexity Analysis

Since the basic application of our method requires the estimation of certain covariance
matrices, we need to show that one can estimate these matrices. There is a large literature
on estimating covariance matrices, but for simplicity we will only focus on the simplest
estimator: the sample covariance matrix. By well-known matrix concentration inequalities,
one can show that the sample covariance matrix will be close to the covariance matrix with
high probability if the sample size is large enough:

Theorem 32 Tropp (2015) Let A1, . . . , An be i.i.d. symmetric random d × d matrices. If
‖A1‖ ≤ L a.s. then

Pr

(∥∥∥∥∥ 1

n

n∑
i=1

Ai − EAi

∥∥∥∥∥ ≥ t
)
≤ 8d exp

(
−nt

2

L2

)
.

G.1 Truncation

Unfortunately, the matrices we will be dealing with do not usually have almost sure bounds
on their norm. Here, we develop some straightforward truncation arguments in order to
adapt Theorem 32.

Theorem 33 Suppose that A1, . . . , An are i.i.d. symmetric random d×d matrices satisfying
the tail bound

Pr(‖A1‖ ≥ t) ≤ Ce−ct
α

for some α > 0. Then for any ε, δ > 0, if n ≥ Ω̃α(ε−2 log(d/δ)) then

Pr(‖ÊA− EA‖ ≥ ε) ≤ δ,

where Ω̃α(k) means C(α)Ω(k logC(α) k).
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Proof Fix L > 0 (to be determined later) and define the random matrix Bi by Bi =
Ai1{‖Ai‖≤L}. Then Theorem 32 applies to Bi: if n ≥ Ω(L2ε−2 log(d/δ)) then

Pr(‖ÊB − EB‖ ≥ ε) ≤ δ.

To compare this with the similar quantity involving A, we will consider Ê(A − B) and
E(A−B) separately.

First, note that Pr(Ai 6= Bi) = Pr(‖A‖ ≥ L) ≤ C exp(−cLα). If L = Ω(log1/α(n/δ))
then Pr(Ai 6= Bi) ≤ δ/n. By a union bound,

Pr(ÊA 6= ÊB) ≤ δ. (35)

Now we fix L = C ′ log1/α(n/(δ ∨ ε)) and we consider ‖E(A − B)‖. By the triangle
inequality,

‖E(A−B)‖ = ‖EA1{‖A‖≥L}‖ ≤ E‖A‖1{‖A‖≥L}.
On the other hand, we can bound

E‖A‖1{‖A‖≥L} =

∫ ∞
L

Pr(‖A‖ ≥ t) dt ≤ C
∫ ∞
L

e−ct
α
dt.

With the change of variables t = u1/α, we have

E‖A‖1{‖A‖≥L} ≤
1

α

∫ ∞
Lα

u1/αe−cu du.

Now, if u ≥ C ′′ 1α log 1
α for large enough C ′′ then u1/αe−cu ≤ e−cu/2. Hence, if Lα ≥

C ′′ 1α log 1
α then

E‖A‖1{‖A‖≥L} ≤
1

α

∫ ∞
Lα

e−cu/2 du ≤ C(α)e−cL
α/2 ≤ C(α)ε

where the last inequality holds if the constant C ′ in the definition of L is large enough
compared to c. On the other hand, if Lα < C ′′ 1α log 1

α then we must have ε > c(α) for some
c(α) > 0. In this case, E‖A‖1{‖A‖≥L} ≤ C ≤ C(α)ε trivially. To summarize, in every case
we have

‖E(A−B)‖ ≤ C(α)ε.

Putting this together with (35), we have that if n ≥ Ω(L2ε−2 log(d/δ)) then with probability
at least 1− 2δ,

‖ÊA− EA‖ ≤ ‖ÊB − EB‖+ ‖ÊA− ÊB‖+ ‖EA− EB‖
≤ (1 + C(α))ε.

Finally, recalling that L = polylog(n, 1/ε, 1/δ) (with the polynomial depending on α), we
see that n = Ω̃α(ε−2 log(d/δ)) suffices. Finally, we can absorb the constant C(α) into ε.

We will now show how Theorem 33 bounds the error in estimating the various matrices
that we had to estimate for the various different models we considered. Essentially, we will
repeatedly use the observation that if z is a standard Gaussian variable then z2/α has a
tail that decays like e−ct

α
. In other words, moments of Gaussians will naturally lead to a

condition that the one assumed in Theorem 33.
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G.2 Gaussian Mixture Model

For the following theorem, we revert to the notation of the Gaussian mixture model.

Theorem 34 Fix ε, δ > 0. Let Â = Ê[xxT ] and B̂ = Ê[〈x, v〉xxT ], where Ê is taken with n
i.i.d. samples. If n ≥ Ω̃(dε−2 log(d/δ)) then with probability at least 1− δ, ‖ÊA− EA‖ ≤ ε
and ‖ÊB − EB‖ ≤ ε.

Proof To estimate A, first note that ‖xxT ‖ = ‖x‖2. Now, E‖x‖2 ≤ R2 + dσ2, where R =
maxi ‖µi‖, and also Pr(‖x‖2 ≥ E‖x‖2 + t

√
d) ≤ Ce−ct. Hence, we may apply Theorem 33

with Ai = xix
T
i /
√
d and α = 1; this yields the claimed bound on ‖ÊA− EA‖.

To estimate B, note that ‖〈x, v〉2xxT ‖ = 〈x, v〉2‖x‖2. Now, the triangle inequailty
implies that 〈x, v〉2‖x‖2 is stochastically dominated by

4R4 + 4E[〈z, v〉2‖z‖2] = 4R4 + 4E[z21‖z‖2],

where z is a standard (i.e., centered) Gaussian vector. Then E[z21‖z‖2] = 2 + d, and

z21‖z‖2 has tails of order e−ct
1/2

; that is it satisfies the assumptions of Theorem 33 with
α = 1/2. Applying Theorem 33 with Ai = 〈xi, v〉2xixTi /

√
d then yields the claimed bound

on ‖ÊB − EB‖.

G.3 LDA Topic Model

For the following theorem, we revert to the notation of the LDA topic model, where d is
the size of the dictionary.

Theorem 35 Fix ε, δ > 0. Let Â = Ê[x1x
T
2 ] and B̂ = Ê[〈x3, v〉x1xT2 ], where Ê is taken with

n i.i.d. samples. If n ≥ Ω(ε−2 log(d/δ)) then with probability at least 1− δ, ‖Â− EA‖ ≤ ε
and ‖B̂ − EB‖ ≤ ε.

Proof We can apply Theorem 32 directly, since ‖x1xT2 ‖ ≤ 1 and 〈x3, v〉x1xT2 ≤ 1.

G.4 Mixed Regression

For the following theorem, we revert to the notation of the mixed regression model.

Theorem 36 Fix ε, δ > 0. Let Â = Ê[y2xxT ] and B̂ = Ê[y3〈x, v〉xxT ], where Ê is taken
with n i.i.d. samples. Let R = maxi ‖µi‖. If n ≥ Ω̃((R2 + σ2)ε−2d log(d/δ)) then with
probability at least 1− δ, ‖Â− EA‖ ≤ ε and ‖B̂ − EB‖ ≤ ε.

Proof Recalling that in cluster i we have y = 〈x, µi〉+ ξ, we have

‖y2xxT ‖ ≤ 2〈x, µi〉2‖x‖2 + 2ξ2‖x‖2.

Hence, E‖y2xxT ‖ ≤ 2R2(2 + d) + σ2d, with tails that decay at the rate e−ct
1/2

. Applying
Theorem 33 implies the claimed bounds for A. The case of B is analogous, except that
since it involves sixth moments the tails will decay at the rate e−ct

1/3
; this only effects the

poly-logarithmic terms hidden in the Ω̃ notation.
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G.5 Subspace Clustering

For the following theorem, we revert to the notation of the subspace clustering model. We
assume for simplicity that σ is known, since if it isn’t then it can be easily and accurately
learnt.

Theorem 37 Fix ε, δ > 0. Let Â = Ê[xxT ]− σ2Id and

B̂ = Ê[〈x, v〉2xxT ]− σ2(vT Âv)Id − σ2‖v‖2Â− σ4(‖v‖2Id + vvT )− 2σ2(ÂvvT + vvT Â)

where Ê is taken with respect to n i.i.d. samples. If n ≥ Ω̃(ε−2(1 +σ2)‖v‖2m log(d/δ)) then
with probability at least 1− δ, ‖Â−A‖ ≤ ε and ‖B̂ −B‖ ≤ ε.

Proof Since x/σ is an m-dimensional Gaussian vector, ‖x‖2/(σ2m) is concentrated around
its mean (1) with tails of order e−ct. In other words, Theorem 33 (with α = 1) implies our
claim for A. The claim for B is analogous, except that since it involves fourth moments,
the tails will decay at the rate e−ct

1/2
.
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