
Journal of Machine Learning Research 18 (2018) 1-30 Submitted 9/16; Revised 4/17; Published 4/18

Quantized Neural Networks: Training Neural Networks with
Low Precision Weights and Activations

Itay Hubara* itayhubara@gmail.com
Department of Electrical Engineering
Technion - Israel Institute of Technology
Haifa, Israel

Matthieu Courbariaux* matthieu.courbariaux@gmail.com
Department of Computer Science and Department of Statistics
Université de Montréal
Montréal, Canada

Daniel Soudry daniel.soudry@gmail.com
Department of Statistics
Columbia University
New York, USA

Ran El-Yaniv rani@cs.technion.ac.il
Department of Computer Science
Technion - Israel Institute of Technology
Haifa, Israel

Yoshua Bengio yoshua.umontreal@gmail.com

Department of Computer Science and Department of Statistics

Université de Montréal

Montréal, Canada

*Indicates first authors.

Editor: Nando de Freitas

Abstract

We introduce a method to train Quantized Neural Networks (QNNs) — neural networks
with extremely low precision (e.g., 1-bit) weights and activations, at run-time. At train-
time the quantized weights and activations are used for computing the parameter gradients.
During the forward pass, QNNs drastically reduce memory size and accesses, and replace
most arithmetic operations with bit-wise operations. As a result, power consumption is
expected to be drastically reduced. We trained QNNs over the MNIST, CIFAR-10, SVHN
and ImageNet datasets. The resulting QNNs achieve prediction accuracy comparable to
their 32-bit counterparts. For example, our quantized version of AlexNet with 1-bit weights
and 2-bit activations achieves 51% top-1 accuracy. Moreover, we quantize the parameter
gradients to 6-bits as well which enables gradients computation using only bit-wise opera-
tion. Quantized recurrent neural networks were tested over the Penn Treebank dataset, and
achieved comparable accuracy as their 32-bit counterparts using only 4-bits. Last but not
least, we programmed a binary matrix multiplication GPU kernel with which it is possible
to run our MNIST QNN 7 times faster than with an unoptimized GPU kernel, without
suffering any loss in classification accuracy. The QNN code is available online.

c©2018 Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, Yoshua Bengio.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v18/16-456.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v18/16-456.html

Hubara, Courbariaux, Soudry, El-Yaniv and Bengio

Keywords: deep learning, neural networks compression, energy efficient neural networks,
computer vision, language models

1. Introduction

Deep Neural Networks (DNNs) have substantially pushed Artificial Intelligence (AI) lim-
its in a wide range of tasks, including but not limited to object recognition from im-
ages (Krizhevsky et al., 2012; Szegedy et al., 2015), speech recognition (Hinton et al., 2012;
Sainath et al., 2013), statistical machine translation (Devlin et al., 2014; Sutskever et al.,
2014; Bahdanau et al., 2015), Atari and Go games (Mnih et al., 2015; Silver et al., 2016),
and even computer generation of abstract art (Mordvintsev et al., 2015).

Training or even just using neural network (NN) algorithms on conventional general-
purpose digital hardware (Von Neumann architecture) has been found highly inefficient
due to the massive amount of multiply-accumulate operations (MACs) required to compute
the weighted sums of the neurons’ inputs. Today, DNNs are almost exclusively trained on
one or many very fast and power-hungry Graphic Processing Units (GPUs) (Coates et al.,
2013). As a result, it is often a challenge to run DNNs on target low-power devices, and
substantial research efforts are invested in speeding up DNNs at run-time on both general-
purpose (Vanhoucke et al., 2011; Gong et al., 2014; Romero et al., 2014; Han et al., 2015)
and specialized computer hardware (Farabet et al., 2011a,b; Pham et al., 2012; Chen et al.,
2014a,b; Esser et al., 2015).

The most common approach is to compress a trained (full precision) network. Hashed-
Nets (Chen et al., 2015) reduce model sizes by using a hash function to randomly group
connection weights and force them to share a single parameter value. Gong et al. (2014)
compressed deep convnets using vector quantization, which resulteds in only a 1% accuracy
loss. However, both methods focused only on the fully connected layers. A recent work
by Han et al. (2016) successfully pruned several state-of-the-art large scale networks and
showed that the number of parameters could be reduced by an order of magnitude.

Recent works have shown that more computationally efficient DNNs can be constructed
by quantizing some of the parameters during the training phase. In most cases, DNNs are
trained by minimizing some error function using Back-Propagation (BP) or related gradient
descent methods. However, such an approach cannot be directly applied if the weights are
restricted to binary values. Soudry et al. (2014) used a variational Bayesian approach
with Mean-Field and Central Limit approximation to calculate the posterior distribution
of the weights (the probability of each weight to be +1 or -1). During the inference stage
(test phase), their method samples from this distribution one binary network and used it
to predict the targets of the test set (More than one binary network can also be used).
Courbariaux et al. (2015) similarly used two sets of weights, real-valued and binary. They,
however, updated the real valued version of the weights by using gradients computed by
applying forward and backward propagation with the set of binary weights (which was
obtained by quantizing the real-value weights to +1 and -1).

This study proposes a more advanced technique, referred to as Quantized Neural Net-
work (QNN), for quantizing the neurons and weights during inference and training. In such
networks, all MAC operations can be replaced with XNOR and population count (i.e.,
counting the number of ones in the binary number) operations. This is especially useful in

2

Quantized Neural Networks

QNNs with the extremely low precision — for example, when only 1-bit is used per weight
and activation, leading to a Binarized Neural Network (BNN). The proposed method is par-
ticularly beneficial for implementing large convolutional networks whose neuron-to-weight
ratio is very large.

This paper makes the following contributions:

• We introduce a method to train Quantized-Neural-Networks (QNNs), neural networks
with low precision weights and activations, at run-time, and when computing the
parameter gradients at train-time. In the extreme case QNNs use only 1-bit per
weight and activation (i.e., Binarized NN; see Section 2).

• We conduct two sets of experiments, each implemented on a different framework,
namely Torch7 and Theano, which show that it is possible to train BNNs on MNIST,
CIFAR-10 and SVHN and achieve near state-of-the-art results (see Section 4). More-
over, we report results on the challenging ImageNet dataset using binary weights/activations
as well as quantized version of it (more than 1-bit).

• We present preliminary results on quantized gradients and show that it is possible to
use only 6-bits with only small accuracy degradation.

• We present results for the Penn Treebank dataset using language models (vanilla
RNNs and LSTMs) and show that with 4-bit weights and activations Recurrent QNNs
achieve similar accuracies as their 32-bit floating point counterparts.

• We show that during the forward pass (both at run-time and train-time), QNNs
drastically reduce memory consumption (size and number of accesses), and replace
most arithmetic operations with bit-wise operations. A substantial increase in power
efficiency is expected as a result (see Section 5). Moreover, a binarized CNN can
lead to binary convolution kernel repetitions; we argue that dedicated hardware could
reduce the time complexity by 60% .

• Last but not least, we programmed a binary matrix multiplication GPU kernel with
which it is possible to run our MNIST BNN 7 times faster than with an unoptimized
GPU kernel, without suffering any loss in classification accuracy (see Section 6).

• The code for training and applying our BNNs is available on-line (both the Theano 1

and the Torch framework 2).

2. Binarized Neural Networks

In this section, we detail our binarization function, show how we use it to compute the
parameter gradients, and how we backpropagate through it.

1https://github.com/MatthieuCourbariaux/BinaryNet
2https://github.com/itayhubara/BinaryNet

3

https://github.com/MatthieuCourbariaux/BinaryNet
https://github.com/itayhubara/BinaryNet

Hubara, Courbariaux, Soudry, El-Yaniv and Bengio

2.1 Deterministic vs Stochastic Binarization

When training a BNN, we constrain both the weights and the activations to either +1 or
−1. Those two values are very advantageous from a hardware perspective, as we explain
in Section 6. In order to transform the real-valued variables into those two values, we use
two different binarization functions, as proposed by Courbariaux et al. (2015). The first
binarization function is deterministic:

xb = sign(x) =

{
+1 if x ≥ 0,
f − 1 otherwise,

(1)

where xb is the binarized variable (weight or activation) and x the real-valued variable. It is
very straightforward to implement and works quite well in practice. The second binarization
function is stochastic:

xb = sign(x− z) =

{
+1 with probability p = σ(x),
−1 with probability 1− p, (2)

where z ∼ U [−1, 1], a uniform random variable, and σ is the “hard sigmoid” function:

σ(x) = clip(
x+ 1

2
, 0, 1) = max(0,min(1,

x+ 1

2
)). (3)

This stochastic binarization is more appealing theoretically (see Section 4) than the sign
function, but somewhat harder to implement as it requires the hardware to generate random
bits when quantizing (Torii et al., 2016). As a result, we mostly use the deterministic
binarization function (i.e., the sign function), with the exception of activations at train-
time in some of our experiments.

2.2 Gradient Computation and Accumulation

Although our BNN training method utilizes binary weights and activations to compute
the parameter gradients, the real-valued gradients of the weights are accumulated in real-
valued variables, as per Algorithm 1. Real-valued weights are likely required for Stochasic
Gradient Descent (SGD) to work at all. SGD explores the space of parameters in small
and noisy steps, and that noise is averaged out by the stochastic gradient contributions
accumulated in each weight. Therefore, it is important to maintain sufficient resolution for
these accumulators, which at first glance suggests that high precision is absolutely required.

Moreover, adding noise to weights and activations when computing the parameter gra-
dients provide a form of regularization that can help to generalize better, as previously
shown with variational weight noise (Graves, 2011), Dropout (Srivastava et al., 2014) and
DropConnect (Wan et al., 2013). Our method of training BNNs can be seen as a vari-
ant of Dropout, in which instead of randomly setting half of the activations to zero when
computing the parameter gradients, we binarize both the activations and the weights.

2.3 Propagating Gradients Through Discretization

The derivative of the sign function is zero almost everywhere, making it apparently in-
compatible with back-propagation, since the exact gradients of the cost with respect to the

4

Quantized Neural Networks

quantities before the discretization (pre-activations or weights) are zero. Note that this lim-
itation remains even if stochastic quantization is used. Bengio (2013) studied the question
of estimating or propagating gradients through stochastic discrete neurons. He found that
the fastest training was obtained when using the “straight-through estimator,” previously
introduced in Hinton’s lectures (Hinton, 2012). We follow a similar approach but use the
version of the straight-through estimator that takes into account the saturation effect, and
does use deterministic rather than stochastic sampling of the bit. Consider the sign function
quantization over the activations values from a previous layer, r,

q = sign(r),

and assume that an estimator gq of the gradient ∂C
∂q has been obtained (with the straight-

through estimator when needed, where C is the cost function). Then, our straight-through
estimator of ∂C

∂r is simply
gr = gq1|r|≤1. (4)

Note that this preserves the gradient information and cancels the gradient when r is too
large. Not cancelling the gradient when r is too large significantly worsens performance.

To better understand why the straight-through estimator works well, we consider the
stochastic binarization scheme similar to that in Eq. (2),

q = sign (r − z) ,

where we recall that z ∼ U [−1, 1]. During training, we update each weight Wij,l (connecting
neuron j in layer l − 1 to neuron i in layer l), using the gradient from the previous layer
(here ∂C

∂ri,l
) and the layer input:

∂

∂Wij,l
E [C] = E

[
∂C

∂ri,l
qj,l−1

]
= E/zi,l

[
Ezi,l

[
∂C

∂ri,l

]
qj,l−1

]
,

where E, Ezi,l , and E/zi,l are, respectively, expectations over everything (all the noise sources,
(z), and data samples); only zi,l (the noise in neuron i at layer l); or everything except zi,l.

Next, we calculate the expectation over zi,l (dropping all indices, for brevity):

Ez
[
∂

∂r
C

]
=

∂

∂r
Ez [C]

=
∂

∂r
[C (q = 1) p (r > z|r) + C (q = −1) (1− p (r > z|r))]

=
∂p (r > z|r)

∂r
[C (q = 1)− C (q = −1)]

= 2
∂C

∂q

∣∣∣∣
q=0

1|r|≤1 +O

(
∂3C

∂q3

∣∣∣∣
q=0

)
,

where in the last line we used a Taylor expansion. The O(·) contribution to the last equation
is usually negligible, since the output of a single neuron (q = ±1) typically has only a small
effect on the cost, and therefore

∂C

∂q

∣∣∣∣
q=0

� ∂2C

∂q2

∣∣∣∣
q=0

� ∂3C

∂q3

∣∣∣∣
q=0

.

5

Hubara, Courbariaux, Soudry, El-Yaniv and Bengio

Thus, using a Taylor expansion we can approximate

∂C

∂q

∣∣∣∣
q=±1

=
∂C

∂q

∣∣∣∣
q=0

+O

(
∂2C

∂q2

∣∣∣∣
q=0

)

Therefore, since gr = ∂C/∂r and gq = ∂C/∂q, we obtain the straight-through estimator
defined in Eq. (4), up to a scale constant 2. The use of this straight-through estimator is
illustrated in Algorithm 1.

A similar binarization process was applied for weights in which we combine two ingre-
dients:

• Project each real-valued weight to [-1,1], i.e., clip the weights during training, as per
Algorithm 1. The real-valued weights would otherwise grow very large without any
impact on the binary weights.

• When using a real-valued weight wr, quantize it using wb = Sign(wr).

Projecting the weights to [-1,1] is consistent with the gradient cancelling when |wr| > 1,
according to Eq. (4).

2.4 Shift-based Batch Normalization

Batch Normalization (BN) (Ioffe and Szegedy, 2015) accelerates the training and reduces
the overall impact of the weight scale (Courbariaux et al., 2015). The normalization pro-
cedure may also help to regularize the model. However, at train-time, BN requires many
multiplications (calculating the standard deviation and dividing by it, namely, dividing by
the running variance, which is the weighted mean of the training set activation variance).
Although the number of scaling calculations is the same as the number of neurons, in the
case of ConvNets this number is quite large. For example, in the CIFAR-10 dataset (us-
ing our architecture), the first convolution layer, consisting of only 128 × 3 × 3 × 3 filter
masks, converts an image of size 3 × 32 × 32 to size 128 × 28 × 28, which is more than
an order of magnitude larger than the number of weights (29 to be exact). To achieve the
results that BN would obtain, we use a shift-based batch normalization (SBN) technique,
presented in Algorithm 2. SBN approximates BN almost without multiplications. Define
AP2(z) as the approximate power-of-2 of z, LogAP2(z) as log(AP2(z)) (i.e., the index of
the most significant bit), and �� as both left and right binary shift. SBN replaces almost
all multiplication with power-of-2-approximation and shift operations:

x× y → x�� LogAP2(y). (5)

The only operation which is not a binary shift or an add is the inverse square root (see
normalization operation Algorithm 2). From the early work of Lomont (2003) we know
that the inverse-square operation could be applied with approximately the same complexity
as multiplication. There are also faster methods, which involve lookup table tricks that
typically obtain lower accuracy (this may not be an issue, since our procedure already adds
a lot of noise). In our experiments we did not use those methods since it requires a dedicated
hardware. However, the number of values on which we apply the inverse-square operation

6

Quantized Neural Networks

Algorithm 1: Training a BNN. C is the cost function for minibatch, λ, the
learning rate decay factor, and L, the number of layers. (◦) stands for element-
wise multiplication. The function Binarize(·) specifies how to (stochastically or
deterministically) binarize the activations and weights, and Clip(), how to clip
the weights. BatchNorm() specifies how to batch-normalize the activations, using
either batch normalization (Ioffe and Szegedy, 2015) or its shift-based variant we
describe in Algorithm 2. BackBatchNorm() specifies how to backpropagate through
the normalization. Update() specifies how to update the parameters when their
gradients are known, using either ADAM (Kingma and Ba, 2015) or the shift-based
AdaMax we describe in Algorithm 3.

Require: a minibatch of inputs and targets (a0, a
∗), previous weights W , previous

BatchNorm parameters θ, weight initialization coefficients from (Glorot and Bengio,
2010) γ, and previous learning rate η.

Ensure: updated weights W next, updated BatchNorm parameters θnext and updated
learning rate ηnext.
{1. Computing the parameter gradients:}
{1.1. Forward propagation:}
for k = 1 to L do
W b
k ← Binarize(Wk)

sk ← abk−1W
b
k {ab0 = a0, i.e., the input is not quantize, see Section 2.6}

ak ← BatchNorm(sk, θk)
if k < L then
abk ← Binarize(ak)

end if
end for
{1.2. Backward propagation:}
{Note that the gradients are not binary.}
Compute gaL = ∂C

∂aL
knowing aL and a∗

for k = L to 1 do
if k < L then
gak ← gabk

◦ 1|ak|≤1
end if
(gsk , gθk)← BackBatchNorm(gak , sk, θk)
gabk−1

← gskW
b
k

gW b
k
← g>ska

b
k−1

end for
{2. Accumulating the parameter gradients:}
for k = 1 to L do
θnextk ← Update(θk, η, gθk)
W next
k ← Clip(Update(Wk, γkη, gW b

k
),−1, 1)

ηnext ← λη
end for

7

Hubara, Courbariaux, Soudry, El-Yaniv and Bengio

Algorithm 2: Shift-based Batch Normalizing Transform, applied to activation x over a
mini-batch. LogAP2(x) = sign(x) × 2round(log2|x|) is the approximate power-of-2(a), and
�� stands for left or right shifting of x according to the index of the MSB of y.

Require: Values of x over a mini-batch: B = {x1...m}; Parameters to be learned: γ, β
Ensure: {yi = BN(xi,γ, β)}
µB ← 1

m

∑m
i=1 xi {mini-batch mean}

C(xi)← (xi − µB) {centered input}
σ2B←

1
m

∑m
i=1(C(xi)��LogAP2(C(xi))) {approximate variance}

x̂i ← C(xi)�� LogAP2((
√
σ2B + ε)−1) {normalize}

yi ← LogAP2(γ)�� x̂i {scale and shift}

(a) Hardware implementation of LogAP2 is as simple as extracting the index of the most
significant bit from the number’s binary representation

Algorithm 3: Shift-based AdaMax learning rule (Kingma and Ba, 2015). g2t
indicates the element-wise square gt ◦ gt. Good default settings are α = 2−10,
1− β1 = 2−3, 1− β2 = 2−10. All operations on vectors are element-wise. With βt1
and βt2 we denote β1 and β2 to the power t.

Require: Previous parameters θt−1, their gradient gt, and learning rate α.
Ensure: Updated parameters θt
{Biased 1st and 2nd raw moment estimates:}
mt ← β1 ·mt−1 + (1− β1) · gt
vt ← max(β2 · vt−1, |gt|)
{Updated parameters:}
θt ← θt−1 − (α�� (1− β1)) · m̂�� LogAP2(v−1t))

is rather small, since it is done after calculating the variance, i.e., after averaging (for a
more precise calculation, see the BN analysis in Lin et al. (2015)). Furthermore, the size of
the standard deviation vectors is relatively small. For example, these values make up only
0.3% of the network size (i.e., the number of learnable parameters) in the Cifar-10 network
we used in our experiments.

In our experiment we observed no loss in accuracy when using the shift-based BN algo-
rithm instead of the vanilla BN algorithm.

2.5 Shift-Based AdaMax

The ADAM learning method (Kingma and Ba, 2015) also reduces the impact of the weight
scale. Since ADAM requires many multiplications, we suggest using instead the shift-based
AdaMax we outlined in Algorithm 3. In the experiment we conducted we observed no loss
in accuracy when using the shift-based AdaMax algorithm instead of the vanilla ADAM
algorithm.

8

Quantized Neural Networks

Algorithm 4: Running a BNN with L layers using only the XnorDotProduct
kernel (see Section 5).

Require: 8-bit input vector a0, binary weights W b, and BatchNorm parameters θ.
Ensure: the MLP output aL.
{1. First layer:}
a1 ← 0
for n = 1 to 8 do
a1 ← a1 + 2n−1 ×XnorDotProduct(an0 ,W

b
1)

end for
ab1 ← Sign(BatchNorm(a1, θ1))
{2. Remaining hidden layers:}
for k = 2 to L− 1 do
ak ← XnorDotProduct(abk−1,W

b
k)

abk ← Sign(BatchNorm(ak, θk))
end for
{3. Output layer:}
aL ← XnorDotProduct(abL−1,W

b
L)

aL ← BatchNorm(aL, θL)

2.6 First Layer

In a BNN, only the binarized values of the weights and activations are used in all calcula-
tions. As the output of one layer is the input of the next, the inputs of all the layers are
binary, with the exception of the first layer. However, we do not believe this to be a major
issue. First, in computer vision, the input representation typically has far fewer channels
(e.g, red, green and blue) than internal representations (e.g., 512). Consequently, the first
layer of a ConvNet is often the smallest convolution layer, both in terms of parameters
and computations (Szegedy et al., 2015). Second, it is relatively easy to handle continuous-
valued inputs as fixed point numbers, with m bits of precision. For example, in the common
case of 8-bit fixed point inputs:

s = x · wb, s =

8∑
n=1

2n−1(xn · wb), (6)

where x is a vector of 8-bit inputs, x81 is the most significant bit of the first input, wb is
a vector of 1-bit weights, and s is the resulting weighted sum. This method is used in
Algorithm 4.

3. Quantized Neural network - More Than 1-bit

Observing Eq. (6), we can see that using 2-bit activations simply doubles the number
of times we need to run our XnorDotProduct Kernel (i.e., directly proportional to the
activation bitwidth). This idea was recently proposed by Zhou et al. (2016) (DoReFa net)
and Miyashita et al. (2016) (published on arXive shortly after our preliminary technical

9

Hubara, Courbariaux, Soudry, El-Yaniv and Bengio

report was published there). However, in contrast to to Zhou et al., we did not find it
useful to initialize the network with weights obtained by training the network with full
precision weights. Moreover, the Zhou et al. network did not quantize the weights of
the first convolutional layer and the last fully-connected layer, whereas we binarized both.
We followed the quantization schemes suggested by Miyashita et al. (2016), namely, linear
quantization:

LinearQuant(x, bitwidth) = Clip

(
round

(
x

2bitwidth − 1

)
× 2bitwidth−1,minV,maxV

)
(7)

and logarithmic quantization:

LogQuant(x, bitwidth) (x) = Clip
(

LogAP2(x),−(2bitwidth−1 − 1), 2bitwidth−1
)
, (8)

where minV and maxV are the minimum and maximum scale range respectively and
LogAP2(x) is the log of the approximate-power-of-2 of x as described in Section 2.4. In
our experiments (detailed in Section 4) we applied the above quantization schemes on
the weights, activations and gradients and tested them on the more challenging ImageNet
dataset.

4. Benchmark Results

We performed two sets of experiments, each based on a different framework, namely Torch7
and Theano. Other than the framework, the two sets of experiments are very similar:

• In both sets of experiments, we obtain near state-of-the-art results with BNNs on
MNIST, CIFAR-10 and the SVHN benchmark datasets.

• In our Torch7 experiments, the activations are stochastically binarized at train-time,
whereas in our Theano experiments they are deterministically binarized.

• In our Torch7 experiments, we use the shift-based BN and AdaMax variants, which are
detailed in Algorithms 2 and 3, whereas in our Theano experiments, we use vanilla
BN and ADAM.

Results are reported in Table 4.1. Implementation details are reported in Appendix A.

4.1 Results on MNIST,SVHN, and CIFAR-10

In this subsection we will detail the setting used in our MNIST,SVHN and Cifar-10 exper-
iments.

4.1.1 MNIST

MNIST is an image classification benchmark dataset (LeCun et al., 1998). It consists of
a training set of 60K and a test set of 10K 28 × 28 gray-scale images representing digits
ranging from 0 to 9. The Multi-Layer-Perceptron (MLP) we train on MNIST consists of 3
hidden layers. In our Theano implementation we used hidden layers of size 4096 whereas

10

Quantized Neural Networks

Data set MNIST SVHN CIFAR-10

Binarized activations+weights, during training and test

BNN (Torch7) 1.40% 2.53% 10.15%
BNN (Theano) 0.96% 2.80% 11.40%
Committee Machines’ Array Baldassi et al. (2015) 1.35% - -

Binarized weights, during training and test

BinaryConnect Courbariaux et al. (2015) 1.29± 0.08% 2.30% 9.90%

Binarized activations+weights, during test

EBP Cheng et al. (2015) 2.2± 0.1% - -
Bitwise DNNs Kim and Smaragdis (2016) 1.33% - -

Ternary weights, binary activations, during test

Hwang and Sung (2014) 1.45% - -

No binarization (standard results)

No reg 1.3± 0.2% 2.44% 10.94%
Maxout Networks Goodfellow et al. (2013b) 0.94% 2.47% 11.68%
Gated pooling Lee et al. (2016) - 1.69% 7.62%

Table 1: Classification test error rates of DNNs trained on MNIST (fully connected archi-
tecture), CIFAR-10 and SVHN (convnet). No unsupervised pre-training or data
augmentation was used.

in our Torch implementation we used much smaller size 2048. This difference explains the
accuracy gap between the two implementations. Both Implementations use the squared

hinge loss. In our theano implementation we tried to understand how low can the valida-
tion error decrease if we simply inflate the network. As can be seen from the results adding
more units improves accuracy. The use of dropout in this case appears to be important.

4.1.2 CIFAR-10

CIFAR-10 is an image classification benchmark dataset. It consists of a training set of
size 50K and a test set of size 10K, where instances are 32 × 32 color images represent-
ing airplanes, automobiles, birds, cats, deer, dogs, frogs, horses, ships and trucks. Both
implementations share the same structure as reported in Appendix A. Since the Torch im-
plementation uses stochastic binarization, it achieved slightly better results. As expected
the Torch version has better validation performance than the Theano implementation but
worse training performance. We believe this is due to the shift-based batch normalization
(SBN) and the stochastic units. Both are additional ”noise” sources, which make the model
harder to train, but can improve generalization.

4.1.3 SVHN

Street View House Numbers (SVHN) is also an image classification benchmark dataset. It
consists of a training set of size 604K examples and a test set of size 26K, where instances

11

Hubara, Courbariaux, Soudry, El-Yaniv and Bengio

Figure 1: Training curves for different methods on the CIFAR-10 dataset. The dotted lines
represent the training costs (square hinge losses) and the continuous lines the
corresponding validation error rates. Although BNNs are slower to train, they
are nearly as accurate as 32-bit float DNNs.

are 32 × 32 color images representing digits ranging from 0 to 9. Here again we obtained
a small improvement in the performance by using stochastic binarization scheme.

In all our experiments with shift-base AdaMax and BN we did not observe any perfor-
mance hit. The results tend to stay very close with and without the Shift-base approxima-
tion.

4.2 Results on ImageNet

To test the strength of our method, we applied it to the challenging ImageNet classification
task, which is probably the most important classification benchmark dataset. It consists of
a training set of size 1.2M samples and test set of size 50K. Each instance is labeled with
one of 1000 categories including objects, animals, scenes, and even some abstract shapes.
On ImageNet, it is customary to report two error rates: top-1 and top-5, where the top-x
error rate is the fraction of test images for which the correct label is not among the x labels
considered most probable by the model. Considerable research has been concerned with
compressing ImageNet architectures while preserving high accuracy. Previous approaches
include pruning near zero weights (Gong et al., 2014; Han et al., 2016) using matrix factor-
ization techniques (Zhang et al., 2015), quantizing the weights (Gupta et al., 2015), using
shared weights (Chen et al., 2015) and applying Huffman codes (Han et al., 2016) among
others.

To the best of our knowledge, before the first revision of this paper was published on
arXive, no one had reported on successfully quantizing the network’s activations. On the
contrary, a recent work (Han et al., 2016) showed that accuracy significantly deteriorates
when trying to quantize convolutional layers’ weights below 4-bit (FC layers are more ro-

12

Quantized Neural Networks

bust to quantization and can operate quite well with only 2 bits). In the present work we
attempted to tackle the difficult task of binarizing both weights and activations. Employ-
ing the well-known AlexNet and GoogleNet architectures, we applied our techniques and
achieved 41.8% top-1 and 67.1% top-5 accuracy using AlexNet and 47.1% top-1 and 69.1%
top-5 accuracy using GoogleNet. While these performance results leave room for improve-
ment (relative to full precision nets), they are by far better than all previous attempts to
compress ImageNet architectures using less than 4-bit precision for the weights. Moreover,
this advantage is achieved while also binarizing neuron activations.

4.3 Relaxing “Hard-Tanh” Boundaries

We discovered that after training the network it is useful to widen the “hard tanh” bound-
aries and retrain the network. As explained in Section 2.3, the straight-through estimator
(which can be written as “hard tanh”) cancels gradients coming from neurons with absolute
values higher than 1. Hence, towards the last training iterations most of the gradient values
are zero and the weight values cease to update. Similarly we can decrease the standard de-
viation of the output of the batch-normalization layer (i.e., dividing the input by scale×σB
where scale > 1). By relaxing the “hard tanh” boundaries we allow more gradients to flow
in the back-propagation phase and improve top-1 accuracies by 1.5% on AlexNet topology
using vanilla BNN.

4.4 2-bit Activations

While training BNNs on the ImageNet dataset we noticed that we could not force the
training set error rate to converge to zero. In fact the training error rate stayed fairly
close to the validation error rate. This observation led us to investigate a more relaxed
activation quantization (more than 1-bit). As can be seen in Table 4.4, the results are quite
impressive and illustrate an approximate 5.6% drop in performance (top-1 accuracy) relative
to floating point representation, using only 1-bit weights and 2-bit activation. Following
Miyashita et al. (2016), we also tried quantizing the gradients and discovered that only
logarithmic quantization works. With 6-bit gradients we achieved 5.2% degradation. Those
results are presently state-of-the-art, surpassing those obtained by the DoReFa net (Zhou
et al., 2016). As opposed to DoReFa, we utilized a deterministic quantization process rather
than a stochastic one. We did so because stochastic binarization is harder to optimize as
it requires additional memory and computational resources. Moreover, it is important to
note that while quantizing the gradients, DoReFa assigns for each instance in a mini-batch
its own scaling factor, which increases the number of MAC operations.

While AlexNet can be compressed rather easily, compressing GoogleNet is much harder
due to its small number of parameters. When using vanilla BNNs, we observed a large degra-
dation in the top-1 results. However, by using QNNs with 4-bit weights and activation, we
were able to achieve 66.5% top-1 accuracy (only a 5.1% drop in performance compared
to the 32-bit floating point architecture), which is the current state-of-the-art-compression
result over GoogleNet. Moreover, by using QNNs with 6-bit weights, activations and gradi-
ents we achieved 66.4% top-1 accuracy. Full implementation details of our experiments are
reported in Appendix A.6.

13

Hubara, Courbariaux, Soudry, El-Yaniv and Bengio

Model Top-1 Top-5

Binarized activations+weights, during training and test

BNN 41.8% 67.1%
Xnor-Nets3 (Rastegari et al., 2016) 44.2% 69.2%

Binary weights and Quantize activations during training and test
QNN 2-bit activation 51.03% 73.67%
DoReFaNet 2-bit activation3 (Zhou et al., 2016) 50.7% 72.57%

Quantize weights, during test

Deep Compression 4/2-bit (conv/FC layer) (Han et al., 2016) 55.34% 77.67%
(Gysel et al., 2016) - 2-bit 0.01% -%

No Quantization (standard results)

AlexNet - our implementation 56.6% 80.2%

Table 2: Classification test error rates of the AlexNet model trained on the ImageNet 1000
classification task. No unsupervised pre-training or data augmentation was used.

Model Top-1 Top-5

Binarized activations+weights, during training and test

BNN 47.1% 69.1%

Quantize weights and activations during training and test

QNN 4-bit 66.5% 83.4%

Quantize activation,weights and gradients during training and test

QNN 6-bit 66.4% 83.1%

No Quantization (standard results)

GoogleNet - our implementation 71.6% 91.2%

Table 3: Classification test error rates of the GoogleNet model trained on the ImageNet
1000 classification task. No unsupervised pre-training or data augmentation was
used.

4.5 Language Models

Recurrent neural networks (RNNs) are very demanding in memory and computational power
in comparison to feed forward networks. There are a large variety of recurrent models with
the Long Short Term Memory networks (LSTMs) introduced by Hochreiter and Schmidhu-
ber (1997) are being the most popular model. LSTMs are a special kind of RNN, capable
of learning long-term dependencies using unique gating mechanisms. Recently, Ott et al.
(2016) tried to quantize the RNNs weight matrices using similar techniques as described in
Section 2. They observed that the weight binarization methods do not work with RNNs.
However, by using 2-bits (i.e., −1, 0, 1), they have been able to achieve similar and even
higher accuracy on several datasets. Here we report on the first attempt to quantize both
weights and activations by trying to evaluate the accuracy of quantized recurrent models

14

Quantized Neural Networks

trained on the Penn Treebank dataset. The Penn Treebank Corpus (Marcus et al., 1993)
contains 10K unique words. We followed the same setting as in (Mikolov and Zweig, 2012)
which resulted in 18.55K words for training set, 14.5K and 16K words in the validation
and test sets respectively. We experimented with both vanilla RNNs and LSTMs. For
our vanilla RNN model we used one hidden layers of size 2048 and ReLU as the activation
function. For our LSTM model we use 1 hidden layer of size 300. Our RNN implementation
was constructed to predict the next character hence performance was measured using the
bits-per-character (BPC) metric. In the LSTM model we tried to predict the next word so
performance was measured using the perplexity per word (PPW) metric. Similar to (Ott
et al., 2016), our preliminary results indicate that binarization of weight matrices lead to
large accuracy degradation. However, as can be seen in Table 4.5, with 4-bits activations
and weights we can achieve similar accuracies as their 32-bit floating point counterparts.

Model Layers Hidden Units bits(weights) bits(activation) Accuracy

RNN 1 2048 3 3 1.81 BPC
RNN 1 2048 2 4 1.67 BPC
RNN 1 2048 3 4 1.11 BPC
RNN 1 2048 3 4 1.05 BPC
RNN 1 2048 FP FP 1.05 BPC

LSTM 1 300 2 3 220 PPW
LSTM 1 300 3 4 110 PPW
LSTM 1 300 4 4 100 PPW
LSTM 1 900 4 4 97 PPW
LSTM 1 300 FP FP 97 PPW

Table 4: Language Models results on Penn Treebank dataset. FP stands for 32-bit floating
point

5. High Power Efficiency During The Forward Pass

Computer hardware, be it general-purpose or specialized, is composed of memories, arith-
metic operators and control logic. During the forward pass (both at run-time and train-
time), BNNs drastically reduce memory size and accesses, and replace most arithmetic
operations with bit-wise operations, which might lead to vastly improved power-efficiency.
Moreover, a binarized CNN can lead to binary convolution kernel repetitions, and we argue
that dedicated hardware could reduce the time complexity by 60% .

5.0.1 Memory Size and Accesses

Improving computing performance has always been and remains a challenge. Over the
last decade, power has been the main constraint on performance (Horowitz, 2014). This is
why considerable research efforts have been devoted to reducing the energy consumption of

3 First and last layers were not binarized (i.e., using 32-bit precision weights and activation.)

15

Hubara, Courbariaux, Soudry, El-Yaniv and Bengio

Operation MUL ADD

8-bit Integer 0.2pJ 0.03pJ
32-bit Integer 3.1pJ 0.1pJ
16-bit Floating Point 1.1pJ 0.4pJ
32-bit Floating Point 3.7pJ 0.9pJ

Table 5: Energy consumption of multiply- accumulations; see Horowitz (2014)

Memory size 64-bit Cache

8K 10pJ
32K 20pJ
1M 100pJ
DRAM 1.3-2.6nJ

Table 6: Energy consumption of memory accesses; see Horowitz (2014)

Figure 2: Binary weight filters, sampled from of the first convolution layer. Since we have
only 2k

2
unique 2D filters (where k is the filter size), filter replication is very

common. For instance, on our CIFAR-10 ConvNet, only 42% of the filters are
unique.

neural networks. Horowitz (2014) provides rough numbers for the energy consumed by the
computation

(the given numbers are for 45nm technology), as summarized in Tables 5 and 6. Im-
portantly, we can see that memory accesses typically consume more energy than arithmetic
operations, and memory access cost increases with memory size. In comparison with 32-bit
DNNs, BNNs require 32 times smaller memory size and 32 times fewer memory accesses.
This is expected to reduce energy consumption drastically (i.e., by a factor larger than 32).

16

Quantized Neural Networks

5.0.2 XNOR-Count

Applying a DNN mainly involves convolutions and matrix multiplications. The key arith-
metic operation of deep learning is thus the multiply-accumulate operation. Artificial
neurons are basically multiply-accumulators computing weighted sums of their inputs. In
BNNs, both the activations and the weights are constrained to either −1 or +1. As a result,
most of the 32-bit floating point multiply-accumulations are replaced by 1-bit XNOR-count
operations. We named this operation the XnorDotProduct kernel. This could have a big
impact on dedicated deep learning hardware. For instance, a 32-bit floating point multiplier
costs about 200 Xilinx FPGA slices (Govindu et al., 2004; Beauchamp et al., 2006), whereas
a 1-bit XNOR gate only costs a single slice.

When using a ConvNet architecture with binary weights, the number of unique filters
is bounded by the filter size. For example, in our implementation we use filters of size
3 × 3, so the maximum number of unique 2D filters is 29 = 512. However, this should
not prevent expanding the number of feature maps beyond this number, since the actual
filter is a 3D matrix. Assuming we have M` filters in the ` convolutional layer, we have
to store a 4D weight matrix of size M` × M`−1 × k × k. Consequently, the number of
unique filters is 2k

2M`−1 . When necessary, we apply each filter on the map and perform the
required multiply-accumulate (MAC) operations (in our case, using XNOR and popcount
operations). Since we now have binary filters, many 2D filters of size k×k repeat themselves.
By using dedicated hardware/software, we can apply only the unique 2D filters on each
feature map and sum the results to receive each 3D filter’s convolutional result. Note that
an inverse filter (i.e., [-1,1,-1] is the inverse of [1,-1,1]) can also be treated as a repetition; it is
merely a multiplication of the original filter by -1. For example, in our ConvNet architecture
trained on the CIFAR-10 benchmark, there are only 42% unique filters per layer on average.
Hence we can reduce the number of the XNOR-popcount operations by 3.

QNNs complexity scale up linearly with the number of bits per weight/activation, since it
requires the application of the XNOR kernel several times (see Section 3). As of now, QNNs
still supply the best compression to accuracy ratio. Moreover, quantizing the gradients
allows us to use the XNOR kernel for the backward pass, leading to fully fixed point layers
with low bitwidth. By accelerating the training phase, QNNs can play an important role
in future power demanding tasks.

6. Seven Times Faster on GPU at Run-Time

It is possible to speed up GPU implementations of QNNs, by using a method sometimes
called SIMD (single instruction, multiple data) within a register (SWAR). The basic idea of
SWAR is to concatenate groups of 32 binary variables into 32-bit registers, and thus obtain
a 32-times speed-up on bitwise operations (e.g., XNOR). Using SWAR, it is possible to
evaluate 32 connections with only 3 instructions:

a1+ = popcount(xnor(a32b0 , w32b
1)), (9)

where a1 is the resulting weighted sum, and a32b0 and w32b
1 are the concatenated inputs and

weights. Those 3 instructions (accumulation, popcount, xnor) take 1+4+1 = 6 clock cycles
on recent Nvidia GPUs (and if they were to become a fused instruction, it would only take

17

Hubara, Courbariaux, Soudry, El-Yaniv and Bengio

a single clock cycle). Consequently, we obtain a theoretical Nvidia GPU speed-up of factor
of 32/6 ≈ 5.3 (a GPU core can preform 32 fused multiply and add (FMA) operations in
32 cycles). In practice, this speed-up is quite easy to obtain as the memory bandwidth to
computation ratio is also increased 6 times.

In order to validate those theoretical results, we programmed two GPU kernels 4:

• An unoptimized matrix multiplication kernel that serves as our baseline.

• The XNOR kernel, which is nearly identical to the baseline, except that it uses the
SWAR method, as in Equation (9).

The two GPU kernels return identical outputs when their inputs are constrained to −1 or
+1 (but not otherwise). The XNOR kernel is about 23 times faster than the baseline kernel
and 3.4 times faster than cuBLAS, as shown in Figure 3. Our rather unoptimized binary
matrix multiplication kernel can benefit from using better optimization techniques such as
blocking, hence the XNOR kernel can be even faster. Last but not least, the MLP from
Section 4 runs 7 times faster with the XNOR kernel than with the baseline kernel, without
suffering any loss in classification accuracy (see Figure 3). As MNIST’s images are not
binary, the first layer’s computations are always performed by the baseline kernel. The last
three columns show that the MLP accuracy does not depend on which kernel is used.

Figure 3: The first 3 columns show the time it takes to perform a 8192 × 8192 × 8192
(binary) matrix multiplication on a GTX750 Nvidia GPU, depending on which
kernel is used. The next three columns show the time it takes to run the MLP
from Section 3 on the full MNIST test set. The last three columns show that the
MLP accuracy does not depend on the kernel

4Both kernels are block matrix multiplication based on the CUDA C programming guide: http://docs.
nvidia.com/cuda/cuda-c-programming-guide/index.html#shared-memory

18

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#shared-memory
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#shared-memory

Quantized Neural Networks

7. Discussion and Related Work

Until recently, the use of extremely low-precision networks (binary in the extreme case)
was believed to substantially degrade the network performance (Courbariaux et al., 2014).
Soudry et al. (2014) and Cheng et al. (2015) proved the contrary by showing that good
performance could be achieved even if all neurons and weights are binarized to ±1 . This was
done using Expectation BackPropagation (EBP), a variational Bayesian approach, which
infers networks with binary weights and neurons by updating the posterior distributions
over the weights. These distributions are updated by differentiating their parameters (e.g.,
mean values) via the back propagation (BP) algorithm. Esser et al. (2015) implemented a
fully binary network at run time using a very similar approach to EBP, showing significant
improvement in energy efficiency. The drawback of EBP is that the binarized parameters
are only used during inference.

The probabilistic idea behind EBP was extended in the BinaryConnect algorithm of
Courbariaux et al. (2015). In BinaryConnect, the real-valued version of the weights is
saved and used as a key reference for the binarization process. The binarization noise is
independent between different weights, either by construction (by using stochastic quanti-
zation) or by assumption (a common simplification; see Spang and Schultheiss, 1962). The
noise would have little effect on the next neuron’s input because the input is a summation
over many weighted neurons. Thus, the real-valued version could be updated using the
back propagated error by simply ignoring the binarization noise in the update. With this
method, Courbariaux et al. (2015) were the first to binarize weights in CNNs and achieved
near state-of-the-art performance on several datasets. They also argued that noisy weights
provide a form of regularization, which could help to improve generalization, as previously
shown by Wan et al. (2013). This method binarized weights while still maintaining full
precision neurons.

Lin et al. (2015) carried over the work of Courbariaux et al. (2015) to the back-
propagation process by quantizing the representations at each layer of the network, to
convert some of the remaining multiplications into binary shifts by restricting the neurons’
values to be power-of-two integers. Lin et al. (2015)’s work and ours seem to share simi-
lar characteristics .However, their approach continues to use full precision weights during
the test phase. Moreover, Lin et al. (2015) quantize the neurons only during the back
propagation process, and not during forward propagation.

Other research (Baldassi et al., 2015) showed that full binary training and testing is
possible in an array of committee machines with randomized input, where only one weight
layer is being adjusted. Gong et al. (2014) aimed to compress a fully trained high precision
network by using quantization or matrix factorization methods. These methods required
training the network with full precision weights and neurons, thus requiring numerous MAC
operations (which the proposed QNN algorithm avoids). Hwang and Sung (2014) focused
on a fixed-point neural network design and achieved performance almost identical to that of
the floating-point architecture. Kim and Smaragdis (2016) retrained neural networks with
binary weights and activations.

As far as we know, before the first revision of this paper was published on arXive, no
work succeeded in binarizing weights and neurons, at the inference phase and the entire
training phase of a deep network. This was achieved in the present work. We relied on the

19

Hubara, Courbariaux, Soudry, El-Yaniv and Bengio

idea that binarization can be done stochastically, or be approximated as random noise. This
was previously done for the weights by Courbariaux et al. (2015), but our BNNs extend this
to the activations. Note that the binary activations are especially important for ConvNets,
where there are typically many more neurons than free weights. This allows highly efficient
operation of the binarized DNN at run time, and at the forward-propagation phase during
training. Moreover, our training method has almost no multiplications, and therefore might
be implemented efficiently in dedicated hardware. However, we have to save the value of
the full precision weights. This is a remaining computational bottleneck during training,
since it is an energy-consuming operation.

Shortly after the first version of this paper was posted on arXiv, several papers tried
to improve and extend it. Rastegari et al. (2016) made a small modification to our algo-
rithm (namely multiplying the binary weights and input by their L1 norm) and published
promising results on the ImageNet dataset. Note that their method, named Xnor-Net, re-
quires additional multiplication by a different scaling factor for each patch in each sample
(Rastegari et al., 2016) Section 3.2 Eq. 10 and figure 2). This in itself, requires many mul-
tiplications and prevents efficient implementation of XnorNet on known hardware designs.
Moreover, (Rastegari et al., 2016) didn’t quantize first and last layers, therefore XNOR-Net
are only partially binarized NNs. Miyashita et al. (2016) suggested a more relaxed quan-
tization (more than 1-bit) for both the weights and activation. Their idea was to quantize
both and use shift operations as in our Eq. (4). They proposed to quantize the param-
eters in their non-uniform, base-2 logarithmic representation. This idea was inspired by
the fact that the weights and activations in a trained network naturally have non-uniform
distributions. They moreover showed that they can quantize the gradients as well to 6-bit
without significant losses in performance (on the Cifar-10 dataset). Zhou et al. (2016) ap-
plied similar ideas to the ImageNet dataset and showed that by using 1-bit weights, 2-bit
activations and 6-bit gradients they can achieve 46.1% top-1 accuracies using the AlexNet
architecture. They named this method DoReFa net. Here we outperform DoReFa net and
achieve 46.8% using a 1-2-6 bit quantization scheme (weight-activation-gradients) and 51%
using a 1-2-32 quantization scheme. These results confirm that we can achieve comparable
results even on a large dataset by applying the Xnor kernel several times. Merolla et al.
(2016) showed that DNN can be robust to more than just weight binarization. They applied
several different distortions to the weights, including additive and multiplicative noise, and
a class of non-linear projections.This was shown to improve robustness to other distortions
and even boost results. Zheng and Tang (2016) tried to apply our binarization scheme to
recurrent neural network for language modeling and achieved comparable results as well.
Andri et al. (2016) even created a hardware implementation to speed up BNNs.

8. Conclusion

We have introduced BNNs, which binarize deep neural networks and can lead to dramatic
improvements in both power consumption and computation speed. During the forward pass
(both at run-time and train-time), BNNs drastically reduce memory size and accesses, and
replace most arithmetic operations with bit-wise operations. Our estimates indicate that
power efficiency can be improved by more than one order of magnitude (see Section 5). In
terms of speed, we programmed a binary matrix multiplication GPU kernel that enabled

20

Quantized Neural Networks

running MLP over the MNIST datset 7 times faster (than with an unoptimized GPU kernel)
without any loss of accuracy (see Section 6).

We have shown that BNNs can handle MNIST, CIFAR-10 and SVHN while achiev-
ing nearly state-of-the-art accuracy. While our results for the challenging ImageNet are
not on par with the best results achievable with full precision networks, they significantly
improve all previous attempts to compress ImageNet-capable architectures. Moreover, by
quantizing the weights and activations to more than 1-bit (i.e., QNNs), we have been able
to achieve comparable results to the 32-bit floating point architectures (see Section 4.4 and
supplementary material - Appendix B). A major open research avenue would be to further
improve our results on ImageNet. Substantial progress in this direction might go a long
way towards facilitating DNN usability in low power instruments such as mobile phones.

Acknowledgments

We would like to express our appreciation to Elad Hoffer, for his technical assistance and
constructive comments. We thank our fellow MILA lab members who took the time to read
the article and give us some feedback. We thank the developers of Torch, (Collobert et al.,
2011) a Lua based environment, and Theano (Bergstra et al., 2010; Bastien et al., 2012),
a Python library that allowed us to easily develop fast and optimized code for GPU. We
also thank the developers of Pylearn2 (Goodfellow et al., 2013a) and Lasagne (Dieleman
et al., 2015), two deep learning libraries built on the top of Theano. We thank Yuxin Wu
for helping us compare our GPU kernels with cuBLAS. We are also grateful for funding
from NSERC, the Canada Research Chairs, Compute Canada, and CIFAR. We are also
grateful for funding from CIFAR, NSERC, IBM, Samsung. This research was supported by
The Israel Science Foundation (grant No. 1890/14)

21

Hubara, Courbariaux, Soudry, El-Yaniv and Bengio

Appendix A. Implementation Details

In this section we give full implementation details over our MNIST,SVHN, CIFAR-10 and
ImageNet datasets.

A.1 MLP on MNIST (Theano)

MNIST is an image classification benchmark dataset (LeCun et al., 1998). It consists of
a training set of 60K and a test set of 10K 28 × 28 gray-scale images representing digits
ranging from 0 to 9. In order for this benchmark to remain a challenge, we did not use any
convolution, data-augmentation, preprocessing or unsupervised learning. The Multi-Layer-
Perceptron (MLP) we train on MNIST consists of 3 hidden layers of 4096 binary units
and a L2-SVM output layer; L2-SVM has been shown to perform better than Softmax on
several classification benchmarks (Tang, 2013; Lee et al., 2015). We regularize the model
with Dropout (Srivastava et al., 2014). The square hinge loss is minimized with the ADAM
adaptive learning rate method (Kingma and Ba, 2015). We use an exponentially decaying
global learning rate, as per Algorithm 1, and also scale the learning rates of the weights with
their initialization coefficients from (Glorot and Bengio, 2010), as suggested by Courbariaux
et al. (2015). We use Batch Normalization with a minibatch of size 100 to speed up the
training. As is typical, we use the last 10K samples of the training set as a validation set
for early stopping and model selection. We report the test error rate associated with the
best validation error rate after 1000 epochs (we do not retrain on the validation set).

A.2 MLP on MNIST (Torch7)

We use a similar architecture as in our Theano experiments, without dropout, and with
2048 binary units per layer instead of 4096. Additionally, we use the shift-base AdaMax
and BN (with a minibatch of size 100) instead of the vanilla implementations, to reduce the
number of multiplications. Likewise, we decay the learning rate by using a 1-bit right shift
every 10 epochs.

A.3 ConvNet on CIFAR-10 (Theano)

CIFAR-10 is an image classification benchmark dataset. It consists of a training set of
size 50K and a test set of size 10K, where instances are 32 × 32 color images representing
airplanes, automobiles, birds, cats, deer, dogs, frogs, horses, ships and trucks. We do not
use data-augmentation (which can really be a game changer for this dataset; see Graham
2014). The architecture of our ConvNet is identical to that used by Courbariaux et al. (2015)
except for the binarization of the activations. The Courbariaux et al. (2015) architecture
is itself mainly inspired by VGG (Simonyan and Zisserman, 2015). The square hinge loss
is minimized with ADAM. We use an exponentially decaying learning rate, as we did for
MNIST. We scale the learning rates of the weights with their initialization coefficients from
(Glorot and Bengio, 2010). We use Batch Normalization with a minibatch of size 50 to
speed up the training. We use the last 5000 samples of the training set as a validation
set. We report the test error rate associated with the best validation error rate after 500
training epochs (we do not retrain on the validation set).

22

Quantized Neural Networks

Table 7: Architecture of our CIFAR-10 ConvNet. We only use ”same” convolutions as in
VGG (Simonyan and Zisserman, 2015).

CIFAR-10 ConvNet architecture

Input: 32× 32 - RGB image
3× 3 - 128 convolution layer
BatchNorm and Binarization layers
3× 3 - 128 convolution and 2× 2 max-pooling layers
BatchNorm and Binarization layers

3× 3 - 256 convolution layer
BatchNorm and Binarization layers
3× 3 - 256 convolution and 2× 2 max-pooling layers
BatchNorm and Binarization layers

3× 3 - 512 convolution layer
BatchNorm and Binarization layers
3× 3 - 512 convolution and 2× 2 max-pooling layers
BatchNorm and Binarization layers

1024 fully connected layer
BatchNorm and Binarization layers
1024 fully connected layer
BatchNorm and Binarization layers

10 fully connected layer
BatchNorm layer (no binarization)
Cost: Mean square hinge loss

A.4 ConvNet on CIFAR-10 (Torch7)

We use the same architecture as in our Theano experiments. We apply shift-based AdaMax
and BN (with a minibatch of size 200) instead of the vanilla implementations to reduce the
number of multiplications. Likewise, we decay the learning rate by using a 1-bit right shift
every 50 epochs.

A.5 ConvNet on SVHN

SVHN is also an image classification benchmark dataset. It consists of a training set of
size 604K examples and a test set of size 26K, where instances are 32 × 32 color images
representing digits ranging from 0 to 9. In both sets of experiments, we follow the same
procedure used for the CIFAR-10 experiments, with a few notable exceptions: we use half
the number of units in the convolution layers, and we train for 200 epochs instead of 500
(because SVHN is a much larger dataset than CIFAR-10).

A.6 ConvNet on ImageNet

ImageNet classification task consists of a training set of size 1.2M samples and test set of
size 50K. Each instance is labeled with one of 1000 categories including objects, animals,
scenes, and even some abstract shapes.

23

Hubara, Courbariaux, Soudry, El-Yaniv and Bengio

A.6.1 AlexNet

Our AlexNet implementation (”One weird trick” - Krizhevsky, 2014) consists of 5 convolu-
tion layers followed by 3 fully connected layers (see Section 8). Additionally, we use Adam
as our optimization method and batch-normalization layers (with a minibatch of size 512).
Learning rate was set to 0.01 and decrease to 10−7 by dividing by 2 every 20 epochs. We
did not use Glorot et al. (2011) weight initialization coefficients.

A.6.2 GoogleNet

Our GoogleNet implementation consist of 2 convolution layers followed by 10 inception
layers, spatial-average-pooling and a fully connected classifier. We also used the 2 auxilary
classifiers. Additionally, we use Adam (Kingma and Ba, 2015) as our optimization method
and batch-normalization layers (with a minibatch of size 64). Learning rate was set to 0.1
and decrease to 10−7 by dividing by 2 every 10 epochs.

Table 8: Our AlexNet Architecture.
AlexNet ConvNet architecture

Input: 224× 224 - RGB image
11× 11 - 64 convolution layer and 3× 3 max-pooling layers
BatchNorm and Binarization layers
5× 5 - 192 convolution layer and 3× 3 max-pooling layers
BatchNorm and Binarization layers
3× 3 - 384 convolution layer
BatchNorm and Binarization layers
3× 3 - 384 convolution layer
BatchNorm and Binarization layers
3× 3 - 256 convolution layer
BatchNorm and Binarization layers
4096 fully connected layer
BatchNorm and Binarization layers
4096 fully connected layer
BatchNorm and Binarization layers

1000 fully connected layer
BatchNorm layer (no binarization)
SoftMax layer (no binarization)
Cost: Negative log likelihood

References

Renzo Andri, Lukas Cavigelli, Davide Rossi, and Luca Benini. Yodann: An ultra-low power
convolutional neural network accelerator based on binary weights. In VLSI (ISVLSI),
2016 IEEE Computer Society Annual Symposium on, pages 236–241. IEEE, 2016.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by
jointly learning to align and translate. In Proceedings of the International Conference on
Learning Representations (ICLR), 2015.

24

Quantized Neural Networks

Carlo Baldassi, Alessandro Ingrosso, Carlo Lucibello, Luca Saglietti, and Riccardo Zecchina.
Subdominant Dense Clusters Allow for Simple Learning and High Computational Per-
formance in Neural Networks with Discrete Synapses. Physical Review Letters, 115(12):
1–5, 2015.

Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, James Bergstra, Ian J. Goodfellow,
Arnaud Bergeron, Nicolas Bouchard, and Yoshua Bengio. Theano: new features and
speed improvements. Workshop on Deep Learning and Unsupervised Feature Learning,
Advances in Neural Information Processing Systems (NIPS), 2012.

Michael J Beauchamp, Scott Hauck, Keith D Underwood, and K Scott Hemmert. Em-
bedded floating-point units in FPGAs. In Proceedings of the 2006 ACM/SIGDA 14th
international symposium on Field programmable gate arrays, pages 12–20. ACM, 2006.

Yoshua Bengio. Estimating or propagating gradients through stochastic neurons. Technical
Report arXiv:1305.2982, Universite de Montreal, 2013.

James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, Guil-
laume Desjardins, Joseph Turian, David Warde-Farley, and Yoshua Bengio. Theano: a
CPU and GPU math expression compiler. In Proceedings of the Python for Scientific
Computing Conference (SciPy), 2010.

Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen, and Olivier
Temam. Diannao: A small-footprint high-throughput accelerator for ubiquitous machine-
learning. In Proceedings of the 19th international conference on Architectural support for
programming languages and operating systems, pages 269–284. ACM, 2014a.

Wenlin Chen, James Wilson, Stephen Tyree, Kilian Weinberger, and Yixin Chen. Com-
pressing neural networks with the hashing trick. In International Conference on Machine
Learning (ICML), pages 2285–2294, 2015.

Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia Wang, Ling Li, Tianshi
Chen, Zhiwei Xu, Ninghui Sun, et al. Dadiannao: A machine-learning supercomputer.
In Microarchitecture (MICRO), 2014 47th Annual IEEE/ACM International Symposium
on, pages 609–622. IEEE, 2014b.

Zhiyong Cheng, Daniel Soudry, Zexi Mao, and Zhenzhong Lan. Training binary multilayer
neural networks for image classification using expectation backpropgation. arXiv preprint
arXiv:1503.03562, 2015.

Adam Coates, Brody Huval, Tao Wang, David Wu, Bryan Catanzaro, and Ng Andrew.
Deep learning with COTS HPC systems. In International conference on machine learning
(ICML), pages 1337–1345, 2013.

Ronan Collobert, Koray Kavukcuoglu, and Clément Farabet. Torch7: A matlab-like envi-
ronment for machine learning. In Workshop on BigLearn, Advances in Neural Information
Processing Systems (NIPS), 2011.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Training deep neural net-
works with low precision multiplications. ArXiv e-prints, abs/1412.7024, December 2014.

25

Hubara, Courbariaux, Soudry, El-Yaniv and Bengio

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training
deep neural networks with binary weights during propagations. In Advances in Neural
Information Processing Systems (NIPS), pages 3123–3131, 2015.

Jacob Devlin, Rabih Zbib, Zhongqiang Huang, Thomas Lamar, Richard Schwartz, and John
Makhoul. Fast and robust neural network joint models for statistical machine transla-
tion. In Proceedings of the 52nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), volume 1, pages 1370–1380, 2014.

Sander Dieleman, Jan Schlüter, Colin Raffel, Eben Olson, Søren Kaae Sønderby, Daniel
Nouri, Daniel Maturana, Martin Thoma, Eric Battenberg, Jack Kelly, et al. Lasagne:
first release. Zenodo: Geneva, Switzerland, 3, 2015.

Steve K Esser, Rathinakumar Appuswamy, Paul Merolla, John V Arthur, and Dharmen-
dra S Modha. Backpropagation for energy-efficient neuromorphic computing. In Advances
in Neural Information Processing Systems (NIPS), pages 1117–1125, 2015.

Clément Farabet, Yann LeCun, Koray Kavukcuoglu, Eugenio Culurciello, Berin Martini,
Polina Akselrod, and Selcuk Talay. Large-scale fpga-based convolutional networks. Scaling
up Machine Learning: Parallel and Distributed Approaches, pages 399–419, 2011a.

Clément Farabet, Berin Martini, Benoit Corda, Polina Akselrod, Eugenio Culurciello, and
Yann LeCun. Neuflow: A runtime reconfigurable dataflow processor for vision. In Com-
puter Vision and Pattern Recognition Workshops (CVPRW), 2011 IEEE Computer So-
ciety Conference on, pages 109–116. IEEE, 2011b.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward
neural networks. In JMLR W&CP: Proceedings of the Thirteenth International Confer-
ence on Artificial Intelligence and Statistics (AISTATS 2010), volume 9, pages 249–256,
May 2010.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Domain adaptation for large-scale sen-
timent classification: A deep learning approach. In International conference on machine
learning (ICML), pages 513–520, 2011.

Yunchao Gong, Liu Liu, Ming Yang, and Lubomir Bourdev. Compressing deep convolutional
networks using vector quantization. arXiv preprint arXiv:1412.6115, 2014.

Ian J. Goodfellow, David Warde-Farley, Pascal Lamblin, Vincent Dumoulin, Mehdi Mirza,
Razvan Pascanu, James Bergstra, Frédéric Bastien, and Yoshua Bengio. Pylearn2: a
machine learning research library. arXiv preprint arXiv:1308.4214, 2013a.

Ian J. Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron Courville, and Yoshua Bengio.
Maxout networks. In International Conference on Machine Learning (ICML), pages
1319–1327, 2013b.

Gokul Govindu, Ling Zhuo, Seonil Choi, and Viktor Prasanna. Analysis of high-performance
floating-point arithmetic on FPGAs. In Parallel and Distributed Processing Symposium,
2004. Proceedings. 18th International, page 149. IEEE, 2004.

26

Quantized Neural Networks

Benjamin Graham. Spatially-sparse convolutional neural networks. arXiv preprint
arXiv:1409.6070, 2014.

Alex Graves. Practical variational inference for neural networks. In Advances in Neural
Information Processing Systems (NIPS), pages 2348–2356, 2011.

Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. Deep learn-
ing with limited numerical precision. In International Conference on Machine Learning
(ICML), pages 1737–1746, 2015.

Philipp Gysel, Mohammad Motamedi, and Soheil Ghiasi. Hardware-oriented approximation
of convolutional neural networks. arXiv preprint arXiv:1604.03168, 2016.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connec-
tions for efficient neural network. In Advances in Neural Information Processing Systems
(NIPS), pages 1135–1143, 2015.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neu-
ral networks with pruning, trained quantization and huffman coding. In International
Conference on Learning Representations (ICLR), 2016.

Geoffrey Hinton. Neural networks for machine learning. Coursera, video lectures, 2012.

Geoffrey Hinton, Li Deng, George E. Dahl, Abdel-rahman Mohamed, Navdeep Jaitly, An-
drew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara Sainath, and Brian Kingsbury.
Deep neural networks for acoustic modeling in speech recognition. IEEE Signal Processing
Magazine, 29(6):82–97, 2012.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

Mark Horowitz. Computing’s Energy Problem (and what we can do about it). IEEE
Interational Solid State Circuits Conference, pages 10–14, 2014.

Kyuyeon Hwang and Wonyong Sung. Fixed-point feedforward deep neural network design
using weights+ 1, 0, and- 1. In Signal Processing Systems (SiPS), 2014 IEEE Workshop,
pages 1–6. IEEE, 2014.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift. In International Conference on Machine Learning
(ICML), pages 448–456, 2015.

Minje Kim and Paris Smaragdis. Bitwise neural networks. arXiv preprint arXiv:1601.06071,
2016.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Inter-
national Conference on Learning Representations (ICLR), 2015.

Alex Krizhevsky. One weird trick for parallelizing convolutional neural networks. arXiv
preprint arXiv:1404.5997, 2014.

27

Hubara, Courbariaux, Soudry, El-Yaniv and Bengio

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems
(NIPS), pages 1097–1105, 2012.

Yann LeCun, Leon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, November
1998.

Chen-Yu Lee, Saining Xie, Patrick Gallagher, Zhengyou Zhang, and Zhuowen Tu. Deeply-
supervised nets. In Artificial Intelligence and Statistics, pages 562–570, 2015.

Chen-Yu Lee, Patrick W Gallagher, and Zhuowen Tu. Generalizing pooling functions in
convolutional neural networks: Mixed, gated, and tree. In Artificial Intelligence and
Statistics, pages 464–472, 2016.

Zhouhan Lin, Matthieu Courbariaux, Roland Memisevic, and Yoshua Bengio. Neural net-
works with few multiplications. ArXiv e-prints, abs/1510.03009, October 2015.

Chris Lomont. Fast inverse square root. Technical report, Indiana: Purdue University,
2003.

Mitchell P Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Building a large
annotated corpus of english: The penn treebank. Computational linguistics, 19(2):313–
330, 1993.

Paul Merolla, Rathinakumar Appuswamy, John Arthur, Steve K Esser, and Dharmendra
Modha. Deep neural networks are robust to weight binarization and other non-linear
distortions. arXiv preprint arXiv:1606.01981, 2016.

Tomas Mikolov and Geoffrey Zweig. Context dependent recurrent neural network language
model. In SLT, pages 234–239, 2012.

Daisuke Miyashita, Edward H Lee, and Boris Murmann. Convolutional neural networks
using logarithmic data representation. arXiv preprint arXiv:1603.01025, 2016.

Volodymyr Mnih, Koray Kavukcuoglo, David Silver, Andrei A. Rusu, Joel Veness, Marc G.
Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidgeland, Georg Ostrovski,
Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharsan
Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control through
deep reinforcement learning. Nature, 518:529–533, 2015.

Alexander Mordvintsev, Christopher Olah, and Mike Tyka. Inceptionism: Going deeper
into neural networks. Google Research Blog. Retrieved June, 20:14, 2015.

Joachim Ott, Zhouhan Lin, Ying Zhang, Shih-Chii Liu, and Yoshua Bengio. Recurrent
neural networks with limited numerical precision. arXiv preprint arXiv:1608.06902, 2016.

Phi-Hung Pham, Darko Jelaca, Clement Farabet, Berin Martini, Yann LeCun, and Eu-
genio Culurciello. Neuflow: dataflow vision processing system-on-a-chip. In Circuits
and Systems (MWSCAS), 2012 IEEE 55th International Midwest Symposium on, pages
1044–1047. IEEE, 2012.

28

Quantized Neural Networks

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Ima-
genet classification using binary convolutional neural networks. In European Conference
on Computer Vision, pages 525–542. Springer, 2016.

Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta,
and Yoshua Bengio. Fitnets: Hints for thin deep nets. arXiv preprint arXiv:1412.6550,
2014.

Tara Sainath, Abdel rahman Mohamed, Brian Kingsbury, and Bhuvana Ramabhadran.
Deep convolutional neural networks for LVCSR. In ICASSP 2013, 2013.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc
Lanctot, et al. Mastering the game of go with deep neural networks and tree search.
Nature, 529(7587):484–489, 2016.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. In International Conference on Learning Representations (ICLR),
2015.

Daniel Soudry, Itay Hubara, and Ron Meir. Expectation backpropagation: Parameter-free
training of multilayer neural networks with continuous or discrete weights. In Advances
in Neural Information Processing Systems (NIPS), pages 963–971, 2014.

H Spang and P Schultheiss. Reduction of quantizing noise by use of feedback. IRE Trans-
actions on Communications Systems, 10(4):373–380, 1962.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. Dropout: A simple way to prevent neural networks from overfitting. The Journal
of Machine Learning Research, 15(1):1929–1958, 2014.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural
networks. In Advances in Neural Information Processing Systems (NIPS), pages 3104–
3112, 2014.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper
with convolutions. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 1–9, 2015.

Yichuan Tang. Deep learning using linear support vector machines. 2013.

Naoya Torii, Hirotaka Kokubo, Dai Yamamoto, Kouichi Itoh, Masahiko Takenaka, and
Tsutomu Matsumoto. Asic implementation of random number generators using sr latches
and its evaluation. EURASIP Journal on Information Security, 2016(1):1–12, 2016.

Vincent Vanhoucke, Andrew Senior, and Mark Z Mao. Improving the speed of neural
networks on CPUs. In Workshop on Deep Learning and Unsupervised Feature Learning,
Neural Information Processing Systems (NIPS), 2011.

29

Hubara, Courbariaux, Soudry, El-Yaniv and Bengio

Li Wan, Matthew Zeiler, Sixin Zhang, Yann Le Cun, and Rob Fergus. Regularization of
neural networks using dropconnect. In International Conference on Machine Learning
(ICML), pages 1058–1066, 2013.

Xiangyu Zhang, Jianhua Zou, Xiang Ming, Kaiming He, and Jian Sun. Efficient and ac-
curate approximations of nonlinear convolutional networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 1984–1992, 2015.

Weiyi Zheng and Yina Tang. Binarized neural networks for language modeling. Technical
Report cs224d, Stanford University, 2016.

Shuchang Zhou, Zekun Ni, Xinyu Zhou, He Wen, Yuxin Wu, and Yuheng Zou. Dorefa-net:
Training low bitwidth convolutional neural networks with low bitwidth gradients. arXiv
preprint arXiv:1606.06160, 2016.

30

	Introduction
	Binarized Neural Networks
	Deterministic vs Stochastic Binarization
	Gradient Computation and Accumulation
	Propagating Gradients Through Discretization
	Shift-based Batch Normalization
	Shift-Based AdaMax
	First Layer

	Quantized Neural network - More Than 1-bit
	Benchmark Results
	Results on MNIST,SVHN, and CIFAR-10
	MNIST
	CIFAR-10
	SVHN

	Results on ImageNet
	Relaxing “Hard-Tanh” Boundaries
	2-bit Activations
	Language Models

	High Power Efficiency During The Forward Pass
	Memory Size and Accesses
	XNOR-Count

	Seven Times Faster on GPU at Run-Time
	Discussion and Related Work

	Conclusion
	Implementation Details
	MLP on MNIST (Theano)
	MLP on MNIST (Torch7)
	ConvNet on CIFAR-10 (Theano)
	ConvNet on CIFAR-10 (Torch7)
	ConvNet on SVHN
	ConvNet on ImageNet
	AlexNet
	GoogleNet

