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Abstract

Clustering high-dimensional data often requires some form of dimensionality reduction,
where clustered variables are separated from “noise-looking” variables. We cast this prob-
lem as finding a low-dimensional projection of the data which is well-clustered. This yields
a one-dimensional projection in the simplest situation with two clusters, and extends nat-
urally to a multi-label scenario for more than two clusters. In this paper, (a) we first
show that this joint clustering and dimension reduction formulation is equivalent to pre-
viously proposed discriminative clustering frameworks, thus leading to convex relaxations
of the problem; (b) we propose a novel sparse extension, which is still cast as a convex
relaxation and allows estimation in higher dimensions; (c) we propose a natural extension
for the multi-label scenario; (d) we provide a new theoretical analysis of the performance
of these formulations with a simple probabilistic model, leading to scalings over the form
d = O(

√
n) for the affine invariant case and d = O(n) for the sparse case, where n is the

number of examples and d the ambient dimension; and finally, (e) we propose an efficient
iterative algorithm with running-time complexity proportional to O(nd2), improving on
earlier algorithms for discriminative clustering with the square loss, which had quadratic
complexity in the number of examples.

1. Introduction

Clustering is an important and commonly used pre-processing tool in many machine learn-
ing applications, with classical algorithms such as K-means (MacQueen, 1967), linkage
algorithms (Gower and Ross, 1969) or spectral clustering (Ng et al., 2002). In high di-
mensions, these unsupervised learning algorithms typically have problems identifying the
underlying optimal discrete nature of the data; for example, they are quickly perturbed by
adding a few noisy dimensions. Clustering high-dimensional data thus requires some form
of dimensionality reduction, where clustered variables are separated from non-informative
“noise-looking” (e.g., Gaussian) variables.

Several frameworks aim at linearly separating noise from signal, that is finding projec-
tions of the data that extracts the signal and removes the noise. They differ in the ways
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signals and noise are defined. A line of work that dates back to projection pursuit (Friedman
and Stuetzle, 1981) and independent component analysis (Hyvärinen et al., 2004) defines
the noise as Gaussian while the signal is non-Gaussian (Blanchard et al., 2006; Le Roux
and Bach, 2013; Diederichs et al., 2013). In this work, we follow De la Torre and Kanade
(2006); Ding and Li (2007), along the alternative route where one defines the signal as being
clustered while the noise is any non-clustered variable. In the simplest situation with two
clusters, we may project the data into a one-dimensional subspace. Given a data matrix
X ∈ Rn×d composed of n d-dimensional points, the goal is to find a direction w ∈ Rd such
that Xw ∈ Rn is well-clustered, e.g., by K-means. This is equivalent to identifying both a
direction to project, represented as w ∈ Rd and the labeling y ∈ {−1, 1}n that represents
the partition into two clusters.

Most existing formulations are non-convex and typically perform a form of alternating
optimization (De la Torre and Kanade, 2006; Ding and Li, 2007), where given y ∈ {−1, 1}n,
the projection w is found by linear discriminant analysis (or any binary classification
method), and given the projection w, the clustering is obtained by thresholding Xw or
running K-means on Xw. As shown in Section 2, this alternating minimization procedure
happens to be equivalent to maximizing the (centered) correlation between y ∈ {−1, 1}n
and the projection Xw ∈ Rd, that is

max
w∈Rd,y∈{−1,1}n

(y>ΠnXw)2

‖Πny‖22 ‖ΠnXw‖22
,

where Πn = In − 1
n1n1>n is the usual centering projection matrix (with 1n ∈ Rn being the

vector of all ones, and In the n× n identity matrix). This correlation is equal to one when
the projection is perfectly clustered (independently of the number of elements per cluster).
Existing methods are alternating minimization algorithms with no theoretical guarantees.

In this paper, we relate this formulation to discriminative clustering formulations (Xu
et al., 2004; Bach and Harchaoui, 2007), which consider the problem

min
v∈Rd, b∈R, y∈{−1,1}n

1

n
‖y −Xv − b1n‖22, (1)

with the intuition of finding labels y which are easy to predict by an affine function of the
data. In particular, we show that given the relationship between the number of positive
labels and negative labels (i.e., the squared difference between the respective number of
elements), these two problems are equivalent, and hence discriminative clustering explicitly
performs joint dimension reduction and clustering.

While the discriminative framework is based on convex relaxations and has led to in-
teresting developments and applications (Zhang et al., 2009; Li et al., 2009; Joulin et al.,
2010a,b; Wang et al., 2010; Niu et al., 2013; Huang et al., 2015), it has several shortcom-
ings when used with the square loss: (a) the running-time complexity of the semi-definite
formulations is at least quadratic in n, and typically much more, (b) no theoretical analy-
sis has ever been performed, (c) no convex sparse extension has been proposed to handle
data with many irrelevant dimensions, (d) balancing of the clusters remains an issue, as it
typically adds an extra hyperparameter which may be hard to set. In this paper, we focus
on addressing these concerns.

2



Robust Discriminative Clustering with Sparse Regularizers

When there are more than two clusters, one considers either the multi-label or the multi-
class settings. The multi-class problem assumes that the data are clustered into distinct
classes, i.e., a single class per observation, whereas the multi-label problem assumes the
data share different labels, i.e., multiple labels per observation. We show in this work that
discriminative clustering framework extends more naturally to multi-label scenarios and
that this extension has the same convex relaxation.

A summary of the contributions of this paper follows:

− In Section 2, we relate discriminative clustering with the square loss to a joint clus-
tering and dimension reduction formulation. The proposed formulation takes care of
the balancing hyperparameter implicitly.

− We propose in Section 3, a novel sparse extension to discriminative clustering and
show that it can still be cast through a convex relaxation.

− When there are more than two clusters, we extend naturally the sparse formulation
to a multi-label scenario in Section 4.

− We then proceed to provide a theoretical analysis of the proposed formulations with
a simple probabilistic model in Section 5, which effectively leads to scalings over the
form d = O(

√
n) for the affine invariant case and d = O(n) for the 1-sparse case.

− Finally, we propose in Section 6 efficient iterative algorithms with running-time com-
plexity for each step equal to O(nd2), the first to be linear in the number of observa-
tions n for discriminative clustering with the square loss.

Throughout this paper we assume that X ∈ Rn×d is centered, a common pre-processing
step in unsupervised (and supervised) learning. This implies that X>1n = 0 and ΠnX = X.

2. Joint Dimension Reduction and Clustering

In this section, we focus on the single binary label case, where we first study the usual non-
convex formulation, before deriving convex relaxations based on semi-definite programming.
Some of the following results are already known in the literature; however, we state them
here for completeness.

2.1 Non-convex formulation

Following De la Torre and Kanade (2006); Ding and Li (2007); Ye et al. (2008), we consider
a cost function which depends on y ∈ {−1, 1}n and w ∈ Rd, which is such that alternating
optimization is exactly (a) running K-means with two clusters on Xw to obtain y given w
(when we say “running K-means”, we mean solving the vector quantization problem ex-
actly), and (b) performing linear discriminant analysis to obtain w given y.

Proposition 1 (Joint clustering and dimension reduction for two clusters) Given
X ∈ Rn×d such that X>1n = 0 and X has rank d, consider the optimization problem

max
w∈Rd,y∈{−1,1}n

(y>Xw)2

‖Πny‖22 ‖Xw‖22
. (2)
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Given y, the optimal w is obtained as w = (X>X)−1X>y, while given w, the optimal y is
obtained by running K-means on Xw.

This equivalence might be straightforward, however it has not been precisely stated in the
literature to the best of our knowledge.

Proof Given y, we need to optimize the Rayleigh quotient w>X>yy>Xw
w>X>Xw

with a rank-one

matrix in the numerator, which leads to w = (X>X)−1X>y. Given w, we show in Ap-
pendix A, that the averaged distortion measure of K-means once the means have been
optimized is exactly equal to (y>Xw)2/‖Πny‖22.

Algorithm. The proposition above leads to an alternating optimization algorithm. Note
that K-means in one dimension may be run exactly in O(n log n) (Bellman, 1973). After
having optimized with respect to w in Eq. (2), we then need to maximize with respect to

y the function y>X(X>X)−1X>y
‖Πny‖22

, which happens to be exactly performing K-means on the

whitened data (which is now in high dimension and not in 1 dimension). At first, it seems
that dimension reduction is simply equivalent to whitening the data and performing K-
means; while this is a formally correct statement, the resulting K-means problem is not easy
to solve as the clustered dimension is hidden in noise; for example, algorithms such as K-
means++ (Arthur and Vassilvitskii, 2007), which have a multiplicative theoretical guarantee
on the final distortion measure, are not provably effective here because the minimal final
distortion is not small (since the clusters are corrupted by some noisy dimensions), and the
multiplicative guarantee is then meaningless.

2.2 Convex relaxation and discriminative clustering

The discriminative clustering formulation in Eq. (1) may be optimized for any y ∈ {−1, 1}n

in closed form with respect to b as b = 1>n (y−Xv)
n = 1>n y

n since X is centered. Substituting b
in Eq. (1) leads us to

min
v∈Rd

1

n
‖Πny −Xv‖22 =

1

n
‖Πny‖22 − max

w∈Rd
(y>Xw)2

‖Xw‖22
, (3)

where v is obtained from any solution w as v = w y>Xw
‖Xw‖22

. Thus, given

(y>1n)2

n2
=

1

n2

(
#{i, yi = 1} −#{i, yi = −1}

)2
= α ∈ [0, 1], (4)

which characterizes the asymmetry between clusters and with ‖Πny‖2 = n(1−α), we obtain
from Eq. (3), an equivalent formulation to Eq. (2) (with the added constraint) as

min
y∈{−1,1}n, v∈Rd

1

n
‖Πny −Xv‖22 such that

(y>1n)2

n2
= α. (5)

This is exactly equivalent to a discriminative clustering formulation with the square loss
(Bach and Harchaoui, 2007) with an explicit cluster balance constraint. Consequently we
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have formally established that the discriminative clustering formulation in Eq. (5) is related
to the joint clustering and dimension reduction formulation in Eq. (2). Following Bach
and Harchaoui (2007), we may optimize Eq. (5) in closed form with respect to v as v =
(X>X)−1X>y. Substituting v in Eq. (5) leads us to

min
y∈{−1,1}n

1

n
y>
(
Πn −X(X>X)−1X>

)
y such that

(y>1n)2

n2
= α. (6)

This combinatorial optimization problem is NP-hard in general (Karp, 1972; Garey et al.,
1976). Hence in practice, it is classical to consider the following convex relaxation of Eq. (6)
(Luo et al., 2010). For any admissible y ∈ {−1,+1}n, the matrix Y = yy> ∈ Rn×n is a
rank-one symmetric positive semi-definite matrix with unit diagonal entries and conversely
any such Y may be written in the form Y = yy> such that y is admissible for Eq. (6).
Moreover by rewriting Eq. (6) as

min
y∈{−1,1}n

1

n
tr yy>

(
Πn −X(X>X)−1X>

)
such that

1>n (yy>)1n
n2

= α,

we see that the objective and constraints are linear in the matrix Y = yy> and Eq. (6) is
equivalent to

min
Y <0, rank(Y )=1, diag(Y )=1

1

n
trY

(
Πn −X(X>X)−1X>

)
such that

1>n Y 1n
n2

= α.

Then dropping the non-convex rank constraint leads us to the following classical convex
relaxation:

min
Y <0, diag(Y )=1

1

n
trY

(
Πn −X(X>X)−1X>

)
such that

1>n Y 1n
n2

= α. (7)

This is the standard (unregularized) formulation, which is cast as a semi-definite program.
The complexity of interior-point methods is O(n7), but efficient algorithms in O(n2) for such
problems have been developed due to the relationship with the max-cut problem (Journée
et al., 2010; Wen et al., 2012). We note that convex relaxation techniques are also used for
semi-supervised methods (De Bie and Cristianini, 2003).

Given the solution Y , one may traditionally obtain a candidate y ∈ {−1, 1}n by running
K-means on the largest eigenvector of Y or by sampling (Goemans and Williamson, 1995).
In this paper, we show in Section 5 that it may be advantageous to consider the first two
eigenvectors.

2.3 Unsuccessful full convex relaxation

The formulation in Eq. (7) imposes an extra parameter α that characterises the cluster
imbalance. It is tempting to find a direct relaxation of Eq. (2). It turns out to lead to a
trivial relaxation, which we outline below.

When optimizing Eq. (2) with respect to w, we obtain the following optimization prob-
lem

max
y∈{−1,1}n

y>X(X>X)−1X>y

y>Πny
,

5



Flammarion, Palaniappan and Bach

leading to a quasi-convex relaxation as

max
Y <0, diag(Y )=1

trY X(X>X)−1X>

tr ΠnY
,

whose solution is found by solving a sequence of convex problems (Boyd and Vandenberghe,
2004, Section 4.2.5). As shown in Appendix B, this may be exactly reformulated as a single
convex problem:

max
M<0, diag(M)=1+ 1>M1

n2

trMX(X>X)−1X>.

Unfortunately, this relaxation always leads to trivial solutions, and we thus need to consider
the relaxation in Eq. (7) for several values of α = 1>n Y 1n/n

2 (and then the non-convex
algorithm can be run from the rounded solution of the convex problem, using Eq. (2) as
a final objective). Alternatively, we may solve the following penalized problem for several
values of ν > 0:

min
Y <0, diag(Y )=1

1

n
trY

(
Πn −X(X>X)−1X>

)
+

ν

n2
1>n Y 1n. (8)

For ν = 0, Y = 1n1>n is always a trivial solution. As outlined in our theoretical section and
as observed in our experiments, it is sufficient to consider ν ∈ [0, 1].

By convex duality (Borwein and Lewis, 2000, Sec. 4.3), both constrained relaxation in
Eq. (7) and penalized relaxation in Eq. (8) are formally equivalent for specific choices of
constraint parameter α and penalization parameter ν. We will see in Section 6 that the
formulation in Eq. (8) is more suitable for algorithmic design (Bach et al., 2012).

2.4 Equivalent relaxations

Optimizing Eq. (5) with respect to v in closed form as in Section 2.2 is feasible with no
regularizer or with a quadratic regularizer. However, if one needs to add more complex
regularizers, we need a different relaxation. Therefore, we now propose a new formulation
of the discriminative clustering framework. We start from the penalized version of Eq. (5),

min
y∈{−1,1}n, v∈Rd

1

n
‖Πny −Xv‖22 + ν

(y>1n)2

n2
, (9)

which we expand as:

min
y∈{−1,1}n, v∈Rd

1

n
tr Πnyy

> − 2

n
trXvy> +

1

n
trX>Xvv> + ν

(y>1n)2

n2
, (10)

and relax as, using Y = yy>, P = yv> and V = vv>,

min
V,P,Y

1

n
tr ΠnY −

2

n
trP>X+

1

n
trX>XV +ν

1>n Y 1n
n2

s.t.

(
Y P
P> V

)
< 0, diag(Y ) = 1. (11)

When optimizing Eq. (11) with respect to V and P , we get exactly Eq. (8). Indeed, the
optimum is attained for V = (X>X)−1X>Y X(X>X)−1 and P = Y X(X>X)−1 as shown
in Appendix C.1. Therefore, the convex relaxation in Eq. (11) is equivalent to Eq. (8).
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However, we get an interesting behavior when optimizing Eq. (11) with respect to P
and Y also in closed form. For ν = 1, we obtain, as shown in Appendix C.2, the following
closed form expressions:

Y = Diag(diag(XVX>))−1/2XVX>Diag(diag(XVX>))−1/2

P = Diag(diag(XVX>))−1/2XV,

leading to the problem:

min
V <0

1− 2

n

n∑
i=1

√
(XVX>)ii +

1

n
tr(V X>X). (12)

The formulation above in Eq. (12) is interesting for several reasons: (a) it is formulated as
an optimization problem in V ∈ Rd×d, which will lead to algorithms whose running time
will depend on n linearly (see Section 6), (b) it allows for easy adding of regularizers (see
Section 3), which may be formulated as convex functions of V = vv>. At first sight this
seems to be valid only for ν = 1. However we now propose a reformulation which can handle
all possible ν ∈ [0, 1) through a simple data augmentation.

Reformulation for any ν When ν ∈ [0, 1), we may reformulate the objective function
in Eq. (9) as follows:

1

n
‖Πny −Xv‖22 + ν

(y>1n)2

n2
=

1

n
‖Πny −Xv + ν

y>1n
n

1n‖22 −
(
ν
y>1n
n

)2
+ ν
(y>1n

n

)2
=

1

n
‖y −Xv − (1− ν)

y>1n
n

1n‖22 +
ν

1− ν
(
(1− ν)

y>1n
n

)2
= min

b∈R

1

n
‖y −Xv − b1n‖22 +

ν

1− ν
b2, (13)

since 1
n‖y − Xv − b1n‖22 + ν

1−ν b
2 can be optimized in closed form with respect to b as

b = (1 − ν)y
>1n
n . Note that the weighted imbalance ratio (1 − ν)y

>1n
n is made as an

optimization variable in Eq. (13). Thus we have the following reformulation

min
v∈Rd, y∈{−1,1}n

1

n
‖Πny −Xv‖22 + ν

(y>1n)2

n2

= min
v∈Rd, b∈R, y∈{−1,1}n

1

n
‖y −Xv − b1n‖22 +

ν

1− ν
b2, (14)

which is a non-centered penalized formulation on a higher-dimensional problem in the vari-
able

(
v
b

)
∈ Rd+1. In the rest of the paper, we will focus on the case ν = 1 for ease of

exposition. This enables the use of the formulation in Eq. (12), which is easier to opti-
mize. It is worth noting that this is not an algorithmic restriction. Of course any problem
with ν ∈ [0, 1) can be treated with equal ease by adding a constant term and a quadratic
regularizer.

7



Flammarion, Palaniappan and Bach

3. Regularization

There are several natural possibilities. We consider norms Ω such that Ω(w)2 = Γ(ww>)
for a certain convex function Γ; all norms have that form (Bach et al., 2012, Proposition
5.1). When ν = 1, Eq. (12) then becomes

max
V <0

2

n

n∑
i=1

√
(XVX>)ii −

1

n
tr(V X>X)− Γ(V ). (15)

The quadratic regularizers Γ(V ) = tr ΛV have already been tackled by Bach and Harchaoui
(2007). They consider the regularized version of problem in Eq. (3)

min
v∈Rd

1

n
‖Πny −Xv‖22 + v>Λv, (16)

optimize in closed form with respect to v as v = (X>X + nΛ)−1X>y. Substituting v in
Eq. (16) leads them to

min
Y <0, diag(Y )=1

1

n
trY

(
Πn −X(X>X + nΛ)−1X

)
.

In this paper, we propose a novel sparse extension to discriminative clustering framework
with the square loss. Specifically we formulate a non-trivial sparse regularizer which is a
combination of weighted squared `1-norm and `2-norm. It leads to

Γ(V ) = tr[Diag(a)V Diag(a)] + ‖Diag(c)V Diag(c)‖1, (17)

such that Γ(vv>) =
∑d

i=1 a
2
i v

2
i +

(∑d
i=1 ci|vi|

)2
. This allows to treat all situations simulta-

neously, with ν = 1 or with ν ∈ [0, 1). To be more precise, when ν ∈ [0, 1), we can consider
in Eq. (14), a problem of size d + 1 with a design matrix [X, 1n] ∈ Rn×(d+1), a direction
of projection

(
v
b

)
∈ Rd+1 and different weights for the last variable with ad+1 = ν

1−ν and
cd+1 = 0.

Note that the sparse regularizers on V introduced in this paper are significantly different
when compared to the sparse regularizers on variable v in Eq. (3), for example, considered
by Wang et al. (2013). A straightforward sparse regularizer on v in Eq. (3), despite leading
to a sparse projection, does not yield natural generalizations of the discriminative clustering
framework in terms of theory or algorithms.

In our analysis and experiments for the balanced clusters (when ν = 1), the sparse
regularization Γ(·) = λ‖ ·‖1, for λ ∈ R will often be considered. This is equivalent to setting
a = 0d and c =

√
λ1d in Eq. (17). The problem in Eq. (15) then becomes

max
V <0

2

n

n∑
i=1

√
(XVX>)ii −

1

n
tr(V X>X)− λ‖V ‖1. (18)

The sparse regularizers considered in this paper have a significant algorithmic appeal for
certain applications in computer vision (Bojanowski et al., 2013; Alayrac et al., 2016), audio
processing (Lajugie et al., 2016) and natural language processing (Grave, 2014). They also
lead to robust cluster recovery under minor assumptions as will be illustrated on a simple
example in Section 5. The practical benefits of the sparse regularizers will be further
demonstrated using empirical evaluation on synthetic and real data sets in Section 7.
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4. Extension to Multiple Labels

The discussion so far has focussed on two clusters. Yet it is key in practice to tackle more
clusters. It is worth noting that the discrete formulations in Eq. (2) and Eq. (5) extend
directly to more than two clusters. However two different extensions of the initial problems
Eq. (2) or Eq. (5) are conceivable. They lead to problems with different constraints on
different optimization domains and, consequently, to different relaxations. We discuss these
possibilities next.

One extension is the multi-class case. The multi-class problem which is dealt with by
Bach and Harchaoui (2007) assumes that the data are clustered into K classes and the
various partitions of the data points into clusters are represented by the K-class indicator
matrices y ∈ {0, 1}n×K such that y1K = 1n. The constraint y1K = 1n ensures that one data
point belongs to only one cluster. However as discussed by Bach and Harchaoui (2007), by
letting Y = yy>, it is possible to lift these K-class indicator matrices into the outer convex
approximations CK = {Y ∈ Rn×n : Y = Y >, diag(Y ) = 1n, Y < 0, Y 4 1

K 1n1>n } (Frieze and
Jerrum, 1995), which is different for all values of K. Note that letting K = 2 corresponds
to the previous sections.

In this paper, we consider a different novel extension for discriminative clustering to
the multi-label case. The multi-label problem assumes that the data share k labels and
the data-label membership is represented by matrices y ∈ {−1,+1}n×k. In other words,
the multi-class problem embeds the data in the extreme points of a simplex, while the
multi-label problem does so in the extreme points of the hypercube.

The discriminative clustering formulation of the multi-label problem is

min
v∈Rd×k, y∈{−1,1}n×k

1

n
‖Πny −Xv‖2F , (19)

where the Frobenius norm is defined for any vector or rectangular matrix as ‖A‖2F =
trAA> = trA>A. Letting k = 1 here corresponds to the previous sections. The dis-
crete ensemble of matrices y ∈ {−1,+1}n×k can be naturally lifted into Dk = {Y ∈ Rn×n :
Y = Y >,diag(Y ) = k1n, Y < 0}, since diag(Y ) = diag(yy>) =

∑k
i=1 y

2
i,i = k. As the

optimization problems in Eq. (7) and Eq. (8) have linear objective functions, we can change
the variable from Y to Ỹ = Y/k to change the constraint diag(Y ) = k1n to diag(Ỹ ) = 1n
without changing the optimizer of the problem. Thus the problems can be solved over the
relaxed domain D = {Y ∈ Rn×n : Y = Y >,diag(Y ) = 1n, Y < 0} which is independent
of k.

Note that the domain D is similar to that considered in the problems in Eq. (8) and
Eq. (11) and these convex relaxations are the same regardless of the value of k. Hence
the multi-label problem is a more natural extension of the discriminative framework, with
a slight change in how the labels y are recovered from the solution Y (we discuss this in
Section 5.3).

5. Theoretical Analysis

In this section, we provide the first theoretical analysis for the discriminative clustering
framework with the square loss. We start with the 2-clusters situation: the non-sparse case
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is considered first and analysis is provided for both balanced and imbalanced clusters. Our
study for the sparse case currently only provides results for the simple 1-sparse solution.
However, the analysis also yields valuable insights on the scaling between n and d. We then
derive results for multi-label situation.

For ease of analysis, we consider the constrained problem in Eq. (7), the penalized prob-
lem in Eq. (8) or their equivalent relaxations in Eq. (12) or Eq. (18) under various scenarios,
for which we use the same proof technique. We first try to characterize the low-rank solu-
tions of these relaxations and then show in certain simple situations the uniqueness of such
solutions, which are then non-ambiguously found by convex optimization. Perturbation
arguments could extend these results by weakening our assumptions but are not within the
scope of this paper, and hence we do not investigate them further in this section.

5.1 Analysis for two clusters: non-sparse problems

In this section, we consider several noise models for the problem, either adding irrelevant
dimensions or perturbing the label vector with noise. We consider these separately for
simplicity, but they could also be combined (with little extra insight).

5.1.1 Irrelevant dimensions

We consider an “ideal” design matrix X ∈ Rn×d such that there exists a direction v along
which the projection Xv is perfectly clustered into two distinct real values c1 and c2. Since
Eq. (2) is invariant by affine transformation, we can rotate the design matrix X to have
X = [y, Z] with y ∈ {−1, 1}n, which is clustered into +1 or −1 along the direction v =(

1
0d−1

)
. Then after being centered, the design matrix is written as X = [Πny, Z] with

Z = [z1, . . . , zd−1] ∈ Rn×(d−1). The columns of Z represent the noisy irrelevant dimensions
added on top of the signal y.

5.1.2 Balanced problem

When the problem is well balanced (y>1n = 0), y is already centered and Πny = y. Thus
the design matrix is represented as X = [y, Z]. We consider here the penalized formulation
in Eq. (8) with ν = 1 which is the only scenario where we are able to provide a theoretical
analysis.

Let us assume that the columns (zi)i=1,...,d−1 of Z are i.i.d. with symmetric distribution z,
with Ez = Ez3 = 0 and such that ‖z‖∞ is almost surely bounded by R ≥ 0. We denote by
Ez2 = m its second moment and by Ez4/(Ez2)2 = β its (unnormalized) kurtosis.

Surprisingly the clustered vector y happens to generate a solution yy> of the relaxation
Eq. (8) for all possible values of Z (see Lemma 11 in Appendix D.2 ). However the problem
in Eq. (8) should have a unique solution in order to always recover the correct assignment
y. Unfortunately the semidefinite constraint Y < 0 of the relaxation makes the second-
order information arduous to study. Due to this reason, we consider the other equivalent
relaxation in Eq. (12) for which V∗ = vv> is also solution with v ∝ (X>X)−1X>y (see
Lemma 12 in Appendix D.3). Fortunately the semidefinite constraint V < 0 of the problem
in Eq. (12) may be ignored since the second-order information in V of the objective function

10
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already provides unicity for the unconstrained problem. Hence we are able to ensure the
uniqueness of the solution with high probability.

Proposition 2 Let us assume d ≥ 3, β > 1 and m2 ≥ β−3
2(d+β−4) :

(a) If n ≥ d2R4 1+(d+β)m2

m2(β−1)
, V∗ is the unique solution of the problem in Eq. (12) with high

probability.
(b) If n ≥ d2R4

min{m2(β−1),2m2,2m} , v is the principal eigenvector of any solution of the problem

in Eq. (12) with high probability.

Let us make the following observations:

− Proof technique: The proof relies on a computation of the Hessian of f(V ) =
2
n

∑n
i=1

√
(XVX>)ii − 1

n trX>XV which is the objective function in Eq. (12). We
first derive the expectation of ∇2f(V ) with respect to the distribution of X. By
the law of large numbers, it amounts to have n going to infinity in ∇2f(V ). Then we
expand the spectrum of this operator E∇2f(V ) to lower-bound its smallest eigenvalue.
Finally we use concentration theory on matrices, following Tropp (2012), to bound
the Hessian ∇2f(V ) for finite n.

− Effect of kurtosis: We remind that β > 1, with equality if and only if z follows a
Rademacher law (P(z = +1) = P(z = −1) = 1/2). Thus, if the noisy dimensions are
clustered, then unsurprisingly, our guarantee is meaningless. Note that the constant β
behaves like a distance of the distribution z to the Rademacher distribution. Moreover,
β = 3 if z follows a standard normal distribution.

− Scaling between d and n: If the noisy variables are not evenly clustered between the
same clusters {±1} (i.e., β > 1), we recover a rank-one solution as long as n = O(d3);
while, as long as n = O(d2), the solution is not unique but its principal eigenvector
recovers the correct clustering. Moreover, as explained in the proof, its spectrum
would be very spiky.

− The assumption m2 ≥ β−3
2(d+β−4) is generally satisfied for large dimensions. Note that

m2d is the total variance of the irrelevant dimensions, and when it is small, i.e., when
m2 ≤ β−3

2(d+β−4) , the problem is particularly simple, and we can also show that V∗ is

the unique solution of the problem in Eq. (12) with high probability if n ≥ d2R4

m2 .
Finally, note that for sub-Gaussian distributions (where β ≤ 3), the extra constraint
is vacuous, while for super-Gaussian distributions (where β ≥ 3), this extra constraint
only appears for small m.

− This result provides the first guarantee for discriminative clustering. However similar
theoretical results have been derived for K-means by Ostrovsky et al. (2006) and
Gaussian mixtures by Kalai et al. (2010); Moitra and Valiant (2010), where separation
conditions between the two clusters are derived, under which the clustering problem
is efficiently solved. It would be of great interest to relate these separation conditions
to our condition on n and d but this is outside the scope of this work.

11
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5.1.3 Noise robustness for the one dimensional balanced problem

We assume now that the data are one-dimensional and are perturbed by some noise ε ∈ Rn
such that X = y + ε with y ∈ {−1, 1}n. The solution of the relaxation in Eq. (8) recovers
the correct y in this setting only when each component of y and y + ε have the same sign
(this is shown in Appendix D.5). This result comes out naturally from the information on
whether the signs of y and y + ε are the same or not. Further if we assume that y and ε
are independent, this condition is equivalent to ‖ε‖∞ < 1 almost surely.

5.1.4 Unbalanced problem

When the clusters are imbalanced (y>1n 6= 0), the natural rank-one candidates Y∗ = yy>

and V∗ = vv> are no longer solutions of the relaxations in Eq. (8) (for ν = 1) and Eq. (12),
as proved in Appendix D.6. Nevertheless we are able to characterize some solutions of the
penalized relaxation in Eq. (8) for ν = 0.

Lemma 3 For ν = 0 and for any non-negative a, b ∈ R such that a+ b = 1,

Y = ayy> + b1n1>n

is solution of the penalized relaxation in Eq. (8).

Hence any eigenvector of this solution Y would be supported by the directions y and 1n.

Moreover when the value α∗ = (1>n y
n )2 is known, it turns out that we can characterize some

solutions of the constrained relaxation in Eq. (7), as stated in the following lemma.

Lemma 4 For α ≥ α∗,

Y =
1− α
1− α∗

yy> +
(

1− 1− α
1− α∗

)
1n1>n

is a rank-2 solution of the constrained relaxation in Eq. (7) with constraint parameter α.

The eigenvectors of Y enable to recover y for α∗ ≤ α < 1. We conjecture (and checked
empirically) that this rank-2 solution is unique under similar regimes to those considered for
the balanced case. The proof would be more involved since, when ν 6= 1, we are not able to
derive an equivalent problem in V for the penalized relaxation in Eq. (8) similar to Eq. (12)
for the balanced case. We also note that Lemmas 3 and 4 will be direct consequences of
Lemma 8 in Section 5.3.

Thus Y being rank-2, one should really be careful and consider the first two eigenvectors
when recovering y from a solution Y . This can be done by rounding the principal eigenvector
of ΠnYΠn = 1−α

1−α∗Πny(Πny)> as discussed in the following lemma.

Lemma 5 Let yev be the principal eigenvector of ΠnYΠn where Y is defined in Lemma 4,
then

sign(yev) = y.

Proof By definition of Y , yev =
√

1−α
1−α∗Πny thus sign(yev) = sign(Πny) and since α ≤ 1

then sign(Πny) = sign(y −
√
α1n) = y.

12
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In practice, contrary to the standard procedure, we should, for any ν, solve the penalized
relaxation in Eq. (8) and then do K-means on the principal eigenvector of the centered
solution ΠnYΠn instead of the solution Y to recover the correct y. This procedure is
followed in our experiments on real-world data in Section 7.2.

5.2 Analysis for two clusters: one-sparse problems

We assume here that the direction of projection v (such that Xv = y) is l-sparse (by l-sparse
we mean ‖v‖0 = l). The `1-norm regularized problem in Eq. (18) is no longer invariant
by affine transformation and we cannot consider that X = [y, Z] without loss of generality.
Yet the relaxation Eq. (18) seems experimentally to only have rank-one solutions for the
simple l = 1 situation. Hence we are able to derive some theoretical analysis only for this
case. It is worth noting the l = 1 case is simple since it can be solved in O(d) by using
K-means separately on all dimensions and ranking them. Nonetheless the proposed scaling
also holds in practice for l > 1 (see Figure 1b).

Thereby we consider data X = [y, Z] with y ∈ {−1, 1}n and Z ∈ Rn×(d−1) which are
clustered in the direction v = [1, 0, . . . , 0]> ∈ Rd. When adding a `1-penalty, the initial
problem in Eq. (5) for α = 0 is

min
y∈{−1,1}n, v∈Rd

1

n
‖y −Xv‖22 + λ‖v‖21. (20)

When optimizing in v this problem is close to the Lasso (Tibshirani, 1996) and a solution
is known to be v∗i = (y>y + nλ)−1y>y = 1

1+λ , ∀i ∈ J and v∗i = 0, ∀i ∈ {1, 2, . . . , d} \ J,
where J is the support of v∗. The candidate V∗ = v∗v∗> is still a solution of the relaxation
in Eq. (18) (see Lemma 15 in Appendix E.1) and we will investigate under which conditions
on X this solution is unique. Let us assume as before (zi)i=1,...,d are i.i.d. with distribution
z symmetric with Ez = Ez3 = 0, and denote by Ez2 = m and Ez4/(Ez2)2 = β. We also
assume that ‖z‖∞ is almost surely bounded by 0 ≤ R ≤ 1. We are able to ensure the
uniqueness of the solution with high-probability.

Proposition 6 Let us assume d ≥ 3.

(a) If n ≥ dR2 1+(d+β)m2

m2(β−1)
, V∗ is the unique solution of the problem Eq. (12) with high

probability.
(b) If n ≥ dR2

m2(β−1)
, v∗ is the principal eigenvector of any solution of the problem Eq. (12)

with high probability.

The proof technique is very similar to the one of Proposition 2. With the function
g(V ) = 2

n

∑n
i=1

√
(XVX>)ii − λ‖V ‖1 − 1

n trX>XV , we can certify that g will decrease
around the solution V∗ by analyzing the eigenvalues of its Hessian.

The rank-one solution V∗ is recovered by the principal eigenvector of the solution of
the relaxation Eq. (18) as long as n = O(d). Thus we have a much better scaling when
compared to the non-sparse setting where n = O(d2). We also conjecture a scaling of order
n = O(ld) for a projection in a l-sparse direction (see Figure 1b for empirical results).

The proposition does not state any particular value for the regularizer parameter λ.
This makes sense since the proposition only holds for the simple situation when l = 1. We
propose to use λ = 1/

√
n by analogy with the Lasso.

13
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5.3 Analysis for the multi-label extension

In this section, the signals share k labels which are corrupted by some extra noisy dimen-
sions. We assume the centered design matrix to be X = [Πny, Z] where y ∈ {−1,+1}n×k
and Z ∈ Rn×(d−k). We also assume that y is full-rank1. We denote by y = [y1, . . . , yk] and

αi =
(
y>i 1n
n

)2
for i = 1, · · · , k. We consider the discrete constrained problem

min
v∈Rd×k, y∈{−1,1}n×k

1

n
‖Πny −Xv‖2F such that

1>n yy
>1n

n2
= α2, (21)

and the discrete penalized problem for ν = 0

min
v∈Rd×k, y∈{−1,1}n×k

1

n
‖Πny −Xv‖2F . (22)

As explained in Section 4, these two discrete problems admit the same relaxations in
Eq. (7) and Eq. (8) we have studied for one label. We now investigate when the solution
of the problems in Eq. (21) and in Eq. (22) generate solutions of the relaxations in Eq. (7)
and Eq. (8).

By analogy with Lemma 3, we want to characterize the solutions of these relaxations
which are supported by the constant vector 1n and the labels (y1, . . . , yk). Their general
form is Y = ỹAỹ> where A ∈ Rk×k is symmetric semi-definite positive and ỹ = [1n, y].
However the initial y is easily recovered from the solution Y only when A is diagonal. To
that end the following lemma derives some condition under which the only matrix A such
that the corresponding Y satisfies the constraint of the relaxations in Eq. (7) and Eq. (8)
is diagonal.

Lemma 7 The solutions of the matrix equation diag(ỹAỹ>) = 1n with unknown variable A
are diagonal if and only if the family {1n, (yi)1≤i≤k, (yi�yj)1≤i<j≤k} is linearly independent
where we denoted by � the Hadamard (i.e., pointwise) product between matrices.

In this way we are able to characterize the solution of relaxations in Eq. (7) and Eq. (8)
with the following result:

Lemma 8 Let us assume that the family {1n, (yi)1≤i≤k, (yi � yj)1≤i<j≤k} is linearly inde-
pendent. If α ≥ αmin = min

1≤i≤k
{αi} with (αi)1≤i≤k defined above Eq. (21), the solutions of the

constrained relaxation in Eq. (7) supported by the vectors (1n, y1, · · · , yk) are of the form:

Y = a2
01n1>n +

k∑
i=1

a2
i yiy

>
i ,

where (ai)0≤i≤k satisfies
∑k

i=0 a
2
i = 1 and a2

0 +
∑k

i=1 a
2
iαi = α.

1. This assumption is fairly reasonable since the probability of a matrix whose entries are i.i.d. Rademacher
random variables to be singular is conjectured to be 1/2 + o(1) (Bourgain et al., 2010).
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Moreover the solutions of the penalized relaxation in Eq. (8) for ν = 0 which are sup-
ported by the vectors (1n, y1, · · · , yk) are of the form:

Y = a2
01n1>n +

k∑
i=1

a2
i yiy

>
i ,

where (ai)0≤i≤k satisfies
∑k

i=0 a
2
i = 1.

In the multi-label case, some combinations of the constant matrix 1n1>n and the rank-
one matrices yiy

>
i are solutions of constrained or penalized relaxations. Furthermore, under

some assumptions on the labels (yi)1≤i≤k, these combinations are the only solutions which
are supported by the vectors (1n, y1, · · · , yk). And we conjecture (and checked empirically)
that under assumptions similar to those made for the balanced one-label case, all the solu-
tions of the relaxation are supported by the family (1n, y1, · · · , yk) and consequently share
the same form as in Lemma 8. Thus the eigenvector of the solution Y would be in the span
of the directions (1n, y1, · · · , yk).

Let us consider an eigenvalue decomposition of Y = FF> =
∑k

i=0 λieie
>
i and denote by

M = [a01n, a1y1, · · · , akyk] where (ai)0≤i≤k are defined in Lemma 8. Since MM> = FF>,
there is an orthogonal transformation R such that FR = M . We also denote the product
FR by FR = [ξ0, · · · , ξK ]. We propose now an alternating minimization procedure to
recover the labels (y1, · · · , yk) from M .

Lemma 9 Consider the optimization problem

min
M∈M, R∈Rk×k: R>R=Ik

‖FR−M‖2F ,

where M = {[a01n, a1y1, · · · , akyk], a ∈ Rk+1 : ‖a‖2 = 1, yi ∈ {±1}n}.
Given M , the problem is equivalent to the orthogonal Procrustes problem (Schönemann,

1966). Denote by U∆V > a singular value decomposition of F>M . The optimal R is
obtained as R = UV >. While given R, the optimal M is obtained as

M =
1√

‖ξ1‖21 + ‖ξ2‖21 + . . .+ ‖ξk‖21
[‖ξ0‖1 sign(ξ0), · · · , ‖ξk‖1 sign(ξk)].

Proof We give only the argument for the optimization problem with respect to M . Given
R, the optimization problem in M is equivalent to max

a∈Rk+1:‖a‖2=1, y∈{−1,1}n×k
tr(FR)>M and

tr(FR)>M = a0ξ
>
0 1n +

∑k
i=1 aiξ

>
i yi . Thus by property of the dual norms the solution is

given by yi = sign(ξi) and ai = ‖ξi‖1√
‖ξ1‖21+‖ξ2‖21+...+‖ξk‖21

.

The minimization problem in Lemma 9 is non-convex; however we observe that performing
few alternating optimizations is sufficient to recover the correct (y1, . . . , yk) from M .

5.4 Discussion

In this section we studied the tightness of convex relaxations under simple scenarios where
the relaxed problem admits low-rank solutions generated by the solution of the original
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non-convex problem. Unfortunately the solutions lose the characterized rank when the
initial problem is slightly perturbed since the rank of a matrix is not a continuous function.
Nevertheless, the spectrum of the new solution is really spiked, and thus these results are
quite conservative. We empirically observe that the principal eigenvectors keep recovering
the correct information outside these scenarios. However this simple proof mechanism is not
easily adaptable to handle perturbed problems in a straightforward way since it is difficult
to characterize the properties of eigenvectors of the solution of a semi-definite program.
Hence we are able to derive a proper theoretical study only for these simple models.

6. Algorithms

In this section, we present an optimization algorithm which is adapted to large n settings,
and avoids the n-dimensional semidefinite constraint.

6.1 Reformulation

We aim to solve the general regularized problem which corresponds to Eq. (15)

max
V <0

2

n

n∑
i=1

√
(XVX>)ii −

1

n
trV (X>X + nDiag(a)2)− ‖Diag(c)V Diag(c)‖1. (23)

We consider a slightly different optimization problem:

max
V <0

1

n

n∑
i=1

√
(XVX>)ii − ‖Diag(c)V Diag(c)‖1 s.t. trV (

1

n
X>X + Diag(a)2) = 1. (24)

When c is equal to zero, then Eq. (24) is exactly equivalent to Eq. (23); when c is small
(as will typically be the case in our experiments), the solutions are very similar—in fact,
one can show by Lagrangian duality that by a sequence of problems in Eq. (24), one may
obtain the solution to Eq. (23).

6.2 Smoothing

By letting A= X>X
n +Diag(a)2, we consider a strongly-convex approximation of Eq. (24) as:

max
V <0

1

n

n∑
i=1

√
(XVX>)ii − ‖Diag(c)V Diag(c)‖1 − ε tr[(A

1
2V A

1
2 ) log(A

1
2V A

1
2 )]

s.t. tr(A
1
2V A

1
2 ) = 1, (25)

where − trM log(M) is a spectral convex function called the von-Neumann entropy (von
Neumann, 1927). The difference in the two problems is known to be ε log(d) (Nesterov,
2007). As shown in Appendix G.1, the dual problem is

min
u∈Rn+,C∈Rd×d:|Cij |6cicj

1

2n

n∑
i=1

1

ui
+ φε

(
A−

1
2
( 1

2n
X>Diag(u)X − C

)
A−

1
2
)
, (26)

where φε(M) is an ε-smooth approximation to the maximal eigenvalue of the matrix M .
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6.3 Optimization algorithm

In order to solve Eq. (26), we split the objective function into a smooth part F (u,C) =

φε
(
A−

1
2

(
1

2nX
>Diag(u)X−C

)
A−

1
2

)
and a non-smooth partH(u,C) = I|Cij |6cicj+

1
2n

∑n
i=1

1
ui

.
We may then apply FISTA (Beck and Teboulle, 2009) updates to the smooth function

φε(A−
1
2 ( 1

2nX
>Diag(u)X − C)A−

1
2 ), along with a proximal operator for the non-smooth

terms I|Cij |6cicj and 1
2n

∑n
i=1

1
ui

, which may be computed efficiently. See details in Ap-
pendix G.2.

Running-time complexity. Since we need to project on the SDP cone of size d at
each iteration, the running-time complexity per iteration is O(d3 + d2n); given that often
n > d, the dominating term is O(d2n). It is still an open problem to make this linear
in d. Our function being O(1/ε)-smooth, the convergence rate is of the form O(1/(εt2)).
Since we stop when the duality gap is ε log(d) (as we use smoothing, it is not useful to go
lower), the number of iterations is of order 1/(ε

√
log(d)). The proposed algorithm is a clear

improvement over the existing approach by Bach and Harchaoui (2007) which is quadratic
in n.

7. Experiments

We implemented the proposed algorithm in Matlab. The code has been made available in
https://drive.google.com/uc?export=download&id=0B5Bx9jrp7celMk5pOFI4UGt0ZEk.
Two sets of experiments were performed: one on synthetically generated data sets and the
other on real-world data sets. The details about experiments follow.

7.1 Experiments on synthetic data

In this section, we illustrate our theoretical results and algorithms on synthetic examples.
The synthetic data were generated by assuming a fixed clustering with α∗ ∈ [0, 1], along a
single direction and the remaining variables were whitened. We consider clustering error
defined for a predictor ȳ as 1− (ȳ>y/n)2, with values in [0, 1] and equal to zero if and only
if y = ȳ.

Phase transition. We first illustrate our theoretical results for the balanced case in
Figure 1. We solve the relaxation in Eq. (12) and Eq. (18) for a large range of d and n
using the cvx solver (Grant and Boyd, 2008, 2014). We show the results averaged over
4 replications and take λ = 1/

√
n for the sparse problems. In Figure 1a, we investigate

whether cvx finds a rank-one solution for a problem of size (n, d) (the value is 1 if the
solution is rank-one and 0 otherwise). We compare the performance of the algorithms
without `1-regularization in the affine invariant case and with `1-regularization in the 1-
sparse case. We observe a phase transition with a scaling over the form n = O(d2) for the
affine invariant case and n = O(d) for the 1-sparse case. This is better than what is expected
by the theory and corresponds rather to the performance of the principal eigenvector of the
solution. It is worth noting that it may be uncertain to really distinguish between a rank-one
solution and a spiked solution.

We also solve the relaxation for 4-sparse problems of different sizes d and n and plot the
clustering error. We compare, in Figure 1b, the performance of the formulation in Eq. (12)

17

https://drive.google.com/uc?export=download&id=0B5Bx9jrp7celMk5pOFI4UGt0ZEk


Flammarion, Palaniappan and Bach

(without `1-regularization) which corresponds to the affine invariant case, against the `1-
regularized formulation in Eq. (18). We notice a phase transition of the clustering error with
a scaling over the form n = O(d2) for the affine invariant case and n = O(d) for the 4-sparse
case. It supports our conjecture on the scaling of order n = O(ld) for l-sparse problems.
Comparing left plots of Figure 1a and Figure 1b, we observe that the two phase-transitions
occur at the same scaling between n and d. Thus there are few values of (n, d) for which
the cvx solver finds a solution whose rank is strictly larger than one and whose principal
eigenvector has a low clustering error. This illustrates, in practice, this solver aims to find
a rank-one solution under the improved scaling n = O(d2).
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(a) Phase transition for rank-one solution. Left: affine invariant case. Right: 1-sparse case.
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Figure 1: Phase transition plots.

Unbalanced case. We generate an unbalanced problem for d = 10, n = 80 and α∗ = 0.25
and we average the results over 10 replications. We compare the clustering error for the
constrained and the penalized relaxations in Eq. (7) and Eq. (8) when we consider the
sign of the first or second eigenvector and when we use projection technique defined as
(ΠnY(2)Πn)(1) where Y(k) is the best rank-k approximation of Y , to extract the information
of y. We see in Figure 2 that (a) for the constrained case, the range of α such that the sign
of y is recovered is cut in two parts where one eigenvector is correct, whereas the projection
method performs well on the whole set. (b) For the penalized case, the correct sign is
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Figure 2: Unbalanced problem for n = 80, d = 10 and α∗ = 0.25. Left: Clustering error
for the constrained relaxation. Middle: Rank of the solution for different level of noise σ.
Right: Clustering error for the penalized relaxation.

recovered for ν close to 0 by the first eigenvector and the projection method whereas the
second one performs always badly. (c) When there is zero noise the rank of the solution is
one for α ∈ {α∗, 1}, two for α ∈ (α∗, 1) and greater otherwise. These findings confirm our
analysis. However, when y is corrupted by some noise this result is no longer true.

Runtime experiments. We generated data with a k-sparse direction of projection v by
adding d − k noise variables to a randomly generated and rotated k-dimension data. The
scalability of the FISTA based optimization algorithm illustrated in Section 6.3 to solve
Eq. (24) (with c =

√
λ1d, a = 0d) was compared against a benchmark cvx solver (which

solves Eq. (18)). Experiments were performed for λ = 0 and λ = 0.001, the coefficient
associated with the sparse ‖V ‖1 term. For a fixed d, cvx breaks down for large n values
(typically n > 1000). Similarly, the runtime required by cvx is generally high for λ = 0 and
is comparable to our method for λ = 0.001. This behavior is illustrated in Figure 3.

When λ = 0, the problem reduces exactly to the original Diffrac problem (Bach and
Harchaoui, 2007). In the plots in Figure 3a our implementation using FISTA is compared to
the baseline Diffrac which is solved with max-cut SDP (Boumal et al., 2014). We observed
that our method is comparable in terms of runtime and clustering performance of low-rank
methods for max-cut. However, for λ > 0, the equivalence with max-cut disappears.

The plots in these figures show the behavior of FISTA for two different stopping criteria:
ε = 10−2/ log(d) and ε = 10−3/ log(d). It is observed that the choice 10−3/ log(d) gives a
better accurate solution at the cost of more number of iterations (and hence higher runtime).
For sparse problems in Figure 3b, we see that cvx gets a better clustering performance (while
crashing for large n); the difference would be reduced with a smaller duality gap for FISTA.

Clustering performance. Experiments comparing the proposed method (Eq. (24) with
c =

√
λ1d and a = 0d solved using FISTA based optimization algorithm, and Eq. (18)

solved using benchmark cvx solver) with K-means and alternating optimization are given
in Figure 4. K-means is run on the whitened variables in Rd. Alternating optimization
is another popular method proposed by Ye et al. (2008) for dimensionality reduction with
clustering (where alternating optimization of w and y is performed to solve the non-convex
formulation (2)). The plots show that both K-means and alternating optimization fail
when only a few dimensions of noise variables are present. The plots also show that with
the introduction of a sparse regularizer (corresponding to the non-zero λ) the proposed
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(a) cvx, max-cut comparison with λ = 0. Top: n varied with d = 50, k = 6. cvx crashed for
n ≈ 1000. Bottom: d varied with n = 100, k = 2.
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Figure 3: Scalability experiments.
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method becomes more robust to noisy dimensions. As observed earlier, the performance of
FISTA is also sensitive to the choice of ε.

Finally we give a comparison of sparse discriminative clustering (cvx and FISTA) with
max-margin clustering (Li et al., 2009) in Figure 5. We note that square loss is used in our
framework whereas hinge loss is used in max-margin clustering. We have also included the
behavior of K-means and alternating optimization methods in Figure 5 for completeness.
From this plot, it is clear that the max-margin clustering is sensitive to noisy dimensions
present in the data. Sparse discriminative clustering with square loss is able to maintain
zero cluster error for a large number of noisy dimensions, while the performance of max-
margin clustering starts deteriorating after adding a few noisy dimensions. However, we
note from Figure 5 that for large dimensions, the hinge loss used in max-margin clustering
is observed to provide a better solution than the square loss used in our framework.
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Figure 4: Comparison with k-means and alternating optimization, n = 100.

7.2 Experiments on real-world data

Experiments on two-class data. Experiments were conducted on real two-class clas-
sification datasets2 to compare the performance of sparse discriminative clustering against
non-sparse discriminative clustering, alternating optimization, K-means and max-margin

2. The data sets were obtained from https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Figure 5: Comparison with k-means, alternating optimization and max-margin clustering
(mmc), n = 100. The plots for FISTA, cvx and mmc correspond to the best choice of
regularization parameters.

clustering algorithms. For sparse and non-sparse discriminative clustering, we consider the
problem in Eq. (24) and the algorithm detailed in Section 6.3 (with the regularization c = 0
for the non-sparse case). The alternating optimization method is described in Proposition 1.
For the two-class datasets, the clustering performance for a cluster ȳ ∈ {+1,−1}n obtained
from an algorithm under comparison, was computed as 1−(ȳ>y/n)2, where y is the original
labeling. Here we explicitly compare the output of clustering with the original labels of the
data points.

The dataset details and clustering performance results are summarized in Table 1.
The experiments for discriminative clustering were conducted for different values of a, c ∈
{10−3, 10−2, 10−1}1d associated with the `2-regularizer and `1-regularizer respectively. The
range of cluster imbalance parameter was chosen to be ν ∈ {0.01, 0.25, 0.5, 0.75, 1}. Note
that for ν 6= 1, the reformulation given in Eq. (14) was used, as explained after Eq. (17)
in Section 3. The results given in Table 1 pertain to the best choices of these parame-
ters. Similarly, the values of regularization parameter for max-margin clustering (Li et al.,
2009) were chosen from the set {10−5, 10−4, 10−3, 10−2, 0.1, 1, 10} and the cluster balance
parameter was chosen from {0.1, 0.2, . . . , 0.9}. The results for alternating optimization and
K-means show the average cluster error (and standard deviation) over 10 different runs.
These results show that the cluster error is quite high for many datasets. This is primarily
due to the absence of an ambient low-dimensional clustering of the two-class data, which
can be identified by the simple linear model presented in this paper. Since K-means does
not provide explicit dimensionality reduction, it might not be able to take advantage of the
existence of an ambient low-dimensional clustering of the two-class data and its performance
is poor. The results show that max-margin clustering achieves best clustering performance
on most datasets. This improved performance of max-margin clustering may be due to the
use of hinge loss, as opposed to square loss used in discriminative clustering in this paper.
However for the heart dataset, we note that the sparse version with the square loss performs
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significantly better than the non-sparse version with the hinge loss (see additional experi-
ments in Figure 5). The results also show that adding sparse regularizers to discriminative
clustering helps in a better cluster identification when compared to the non-sparse case.

Table 1: Experiments on two-class datasets

Dataset n d Cluster Error
Sparse Non-sparse Alternating K-means Max-margin

Discriminative Discriminative Optimization Clustering
Clustering Clustering

Heart 270 3 0.52 0.61 0.97 ± 0.03 0.91 ± 0.09 0.93
Diabetes 768 8 0.88 0.88 0.91 ± 0.05 0.93 ± 0.06 0.88
Breast-cancer 683 10 0.15 0.15 0.48 ± 0.17 0.68 ± 0.24 0.15
Australian 690 14 0.5 0.5 0.88 ± 0.17 0.87 ± 0.21 0.5
Liver-disorder 345 6 0.97 0.97 0.99 ± 0.01 0.99 ± 0.01 0.73
Sonar 208 60 0.92 0.95 0.98 ± 0.02 0.99 ± 0.01 0.92
DNA(1 vs 2,3) 1400 180 0.75 0.83 0.99 ± 0.01 0.98 ± 0.02 0.71
a1a 1605 113 0.74 0.75 0.98 ± 0.02 0.8 ± 0.08 0.69
w1a 2270 290 0.11 0.11 0.92 ± 0.08 0.16 ± 0.06 0.11

Experiments on real multi-label data. Experiments were also conducted on the Mi-
crosoft COCO dataset3 to demonstrate the effectiveness of the proposed method in discov-
ering multiple labels. We considered n = 2000 images from the dataset, each of which was
labeled with a subset of K = 80 labels. The labels identified the objects in the images like
person, car, chair, table, etc. and the corresponding features for each image were extracted
from the last layer of a conventional convolutional neural network (CNN). The CNN was
originally trained over the imagenet data (Krizhevsky et al., 2012).

For each image in the dataset, we obtained d = 1000 features. We then performed
discriminative clustering on the 2000 × 1000 data matrix X and obtained the label matrix
Y which was then subjected to the alternating optimization procedure (see Section 5.3).

It is clearly unlikely to recover perfect labels; therefore we now describe a way of mea-
suring the amount of information which is recovered. In order to extract meaningful cluster
information from the result so-obtained, we computed the correlation matrix Y >k ΠnYtrue
where Ytrue is the n×K label matrix containing actual labels and Πn is the n×n centering
matrix In− 1

n1n1>n . The k predicted labels for the examples are present in the Yk matrix of
size n×k. In order to choose an appropriate value of k, we plotted Tr(ΦYtrueΦYk) (shown in
Figure 6 along with a K-means baseline), where ΦYk = Yk(Yk

>Yk)
−1Y >k . From these plots,

we chose k = 30 to be a suitable value for our interpretation purposes.

After choosing an arbitrary value of k = 30, we plotted the correlations between the
actual and predicted labels. The heat map of the normalized absolute correlations is given in
Figure 7, where the columns and rows corresponding to the 80 true labels and 30 predicted
labels respectively, are ordered according to the sum of squared correlations (the top-scoring
labels appear to the left-bottom). From this plot, we extract following highly correlated

3. Dataset obtained from http://mscoco.org/dataset
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Figure 7: Heat map of correlations, Y >k ΠnYtrue with k = 30, with columns and rows ordered
according to the sum of squared correlations.

labels: person, dining table, car, chair, cup, tennis racket, bowl, truck, fork, pizza, showing
that these labels were partially recovered by our unsupervised technique (note that the
CNN features are learned with supervision on the different dataset Imagenet, hence there
is still some partial supervision).

8. Conclusion

In this paper, we provided a sparse extension of the discriminative clustering framework,
and gave a first analysis of its theoretical performance in the totally unsupervised situation,
highlighting provable scalings between ambient dimension d, number of observations and
“clusterability” of irrelevant variables. We also proposed an efficient algorithm which is the
first of its kind to be linear in the number of observations for discriminative clustering with
the square loss. Our work could be extended in a number of ways, e.g., extending the sparse
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analysis to l-sparse case with higher l, extending the framework to nonlinear clustering
using kernels, considering related weakly supervised learning extensions (Joulin and Bach,
2012), going beyond uniqueness of rank-one solutions, and improving the complexity of our
algorithm to O(nd), for example using stochastic gradient techniques.

Acknowledgments

The authors would like to thank Nicolas Boumal for interesting discussions and for his
advice on max-cut implementation, Piotr Bojanowski for his help with multi-label datasets
and the reviewers for their constructive and helpful comments which helped to significantly
improve the paper.

25



Flammarion, Palaniappan and Bach

References

Jean-Baptiste Alayrac, Piotr Bojanowski, Nishant Agrawal, Ivan Laptev, Josef Sivic, and
Simon Lacoste-Julien. Unsupervised learning from narrated instruction videos. In Com-
puter Vision and Pattern Recognition (CVPR), 2016.

D. Arthur and S. Vassilvitskii. k-means++: The advantages of careful seeding. In Proceed-
ings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, 2007.

F. Bach and Z. Harchaoui. DIFFRAC : a discriminative and flexible framework for cluster-
ing. In Advances in Advances in Neural Information Processing Systems (NIPS), 2007.

F. Bach, R. Jenatton, J. Mairal, and G. Obozinski. Optimization with sparsity-inducing
penalties. Foundations and Trends R© in Machine Learning, 4(1):1–106, 2012.

A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. SIAM J. Imaging Sci., 2(1):183–202, 2009.

R. Bellman. A note on cluster analysis and dynamic programming. Mathematical Bio-
sciences, 1973.

G. Blanchard, M. Kawanabe, M. Sugiyama, V. Spokoiny, and K.-R. Müller. In search of
non-Gaussian components of a high-dimensional distribution. The Journal of Machine
Learning Research, 7:247–282, 2006.

Piotr Bojanowski, Francis Bach, Ivan Laptev, Jean Ponce, Cordelia Schmid, and Josef
Sivic. Finding actors and actions in movies. In Proc. IEEE International Conference on
Computer Vision, 2013.

J. M. Borwein and A. S. Lewis. Convex Analysis and Nonlinear Optimization, volume 3
of CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer-Verlag,
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Appendix A. Joint clustering and dimension reduction

Given y, we need to optimize the Rayleigh quotient w>X>yy>Xw
w>X>Xw

with a rank-one matrix

in the numerator, which leads to w = (X>X)−1X>y. Given w, we will show that the
averaged distortion measure of K-means once the means have been optimized is exactly
equal to (y>ΠnXw)2/‖Πny‖22. Given the data matrix X ∈ Rn×d, K-means to cluster the
data into two components will tend to approximate the data points in X by the centroids
c+ ∈ Rd and c− ∈ Rd such that

X ≈ (y + 1n)

2
c>+ −

(y − 1n)

2
c>− (since y ∈ {−1, 1}n)

=
y

2
(c>+ − c>−) +

1

2
1n(c>+ + c>−).

The objective of K-means can now be written as problem KM:

min
y,c+,c−

∥∥∥∥X − y

2
(c>+ − c>−)− 1

2
1n(c>+ + c>−)

∥∥∥∥2

F

= min
y,c+,c−

∥∥∥∥X − (y + 1n)

2
c>+ −

(1n − y)

2
c>−

∥∥∥∥2

F

= min
y,c+,c−

‖X‖2F + ‖c>+‖2F
∥∥∥∥(y + 1n)

2

∥∥∥∥2

+ ‖c>−‖2F
∥∥∥∥(1− yn)

2

∥∥∥∥2

+ 2c>−c+
(y + 1n)

2

> (1n − y)

2

−2 trX>
(

(y + 1n)

2
c>+ +

(1n − y)

2
c>−

)
= min

y,c+,c−
‖X‖2F + ‖c>+‖2F

1

2
(n+ 1>n y) + ‖c>−‖2F

1

2
(n− 1>n y)− 2c>+X

>
(
y + 1n

2

)
−2c>−X

>
(

1n − y
2

)
.

Fixing y and minimizing with respect to c+ and c−, we get closed-form expressions for c+

and c− as

c+ =
X>(y + 1n)

(n+ 1>n y)
and c− =

X>(1n − y)

(n− 1>n y)
.
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Substituting these expressions in KM, we have the following optimization problem in y:

min
y
‖X‖2F −

1

2

‖X>(y + 1n)‖2F
(n+ 1>n y)

− 1

2

‖X>(1n − y)‖2F
(n− 1>n y)

= min
y
‖X‖2F −

1

2

trXX>(y + 1n)(y + 1n)>

(n+ 1>n y)
− 1

2

trXX>(1n − y)(1n − y)>

(n− 1>n y)

= min
y
‖X‖2F −

2

(n+ 1>n y)
trXX>

(
y + 1n

2

)(
y + 1n

2

)>
− 2

(n− 1>n y)
trXX>

(
1n − y

2

)(
1n − y

2

)>
= min

y
trXX> − 2

(n+ 1>n y)
trXX>

(
y + 1n

2

)(
y + 1n

2

)>
− 2

(n− 1>n y)
trXX>

(
1n − y

2

)(
1n − y

2

)>
= min

y
trXX>

(
I − 1

2(n+ 1>n y)
(yy> + 1n1>n + y1>n + 1ny

>)

− 1

2(n− 1>n y)
(1n1>n + yy> − 1ny

> − y1>n )

)
.

By the centering of X, we have 1>nX = 0 and hence trXX>1n1>n = trXX>1ny
> =

trXX>y1>n = 0. Therefore, we obtain

min
y

trXX>
(
I − 1

2(n+ 1>n y)
(yy>)− 1

2(n− 1>n y)
(yy>)

)
= min

y
trXX>

(
I − (yy>)

(
1

2(n+ 1>n y)
+

1

2(n− 1>n y)

))
= min

y
trXX>

(
I − (yy>)

(
n

n2 − (1>n y)2)

))
= min

y
trXX>

(
I − nyy>

n2 − (1>n y)2

)
.

Thus we have the equivalent K-means problem as

min
y∈{−1,1}n

1

n
trXww>X>

(
I − n

n2 − (y>1)2
yy>

)
= 1− max

y∈{−1,1}n
(w>X>y)2

n2 − (y>1)2
.

Thus the averaged distortion measure of K-means with the optimized means is (y>ΠnXw)2

‖Πny‖22
.

Appendix B. Full (unsuccessful) relaxation

It is tempting to find a direct relaxation of Eq. (2). It turns out to lead to a trivial relaxation,
which we outline in this section. When optimizing Eq. (2) with respect to w, we obtain

max
y∈{−1,1}n

y>X(X>X)−1X>y
y>Πny

, leading to a quasi-convex relaxation as max
Y <0,

diag(Y )=1

trY X(X>X)−1X>

tr ΠnY
.

Unfortunately, this relaxation always leads to trivial solutions as described below.
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Consider the quasi-convex relaxation

max
Y <0,diag(Y )=1

trY X(X>X)−1X>

tr ΠnY
. (27)

By definition of Πn this relaxation is equal to:

max
Y <0,diag(Y )=1

1

n

trY X(X>X)−1X>

1− 1>n Y 1n
n2

.

Let A = {Y < 0, diag(Y ) = 1} the feasible set of this problem and define B = {M <

0, diag(M) = 1+ 1>nM1n
n2 }. Let Y ∈ A, then M defined by M = Y

1− 1>n Y 1n
n2

belongs to B since

1 + 1>nM1n
n2 = 1 + 1>n Y 1n

n2−1>n Y 1n
= 1

1− 1>n Y 1n
n2

= diag(M). Reciprocally for M ∈ B, we can define

Y = M

1+
1>nM1n
n2

, such that diag(Y ) = 1 and Y ∈ A and then verify that M = Y

1− 1>n Y 1n
n2

. Thus

the problem Eq. (27) is equivalent to the relaxation

max
M<0,diag(M)=1+

1>nM1n
n2

1

n
trMX(X>X)−1X>. (28)

The Lagrangian function of this problem can be written as:

L(µ) = trMX(X>X)−1X> − µ

n

>
[diag(M)− 1n −

1>nM1n
n2

1n]

= trM [X(X>X)−1X> −Diag(µ) +
1>nµ

n2
1n1>n ] +

1

n
µ>1n.

Using L(µ) and the PSD constraint M < 0, the dual problem is given by

min
µ

µ>1n
n

s.t. Diag(µ)− 1>nµ

n2
1n1>n < X(X>X)−1X>.

Since X(X>X)−1X> < 0, this implies for the dual variable µ:

Diag(µ)− 1>nµ

n2
1n1>n < 0 ⇔ 1>n Diag(µ)−11n ≤

n2

µ>1n

⇔
n∑
i=1

1

µi
≤ n2∑n

i=1 µi

⇔ 1

n

n∑
i=1

1

µi
≤ 1

1
n

∑n
i=1 µi

.

However for ν ∈ Rn , the harmonic mean
[

1
n

∑n
i=1

1
νi

]−1
is always smaller than the arithmetic

mean 1
n

∑n
i=1 νi with equality if and only if ν = c1n for c ∈ R.

Thus the dual variable µ is constant and the diagonal constraint in problem Eq. (28)
simplifies itself as a trace constraint. Therefore the problem is equivalent to the trivial
relaxation below for which each eigenvector of X(X>X)−1X> is a solution:

max
M<0, tr(M)=n+

1>nM1n
n

trMX(X>X)−1X>.
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Appendix C. Equivalent relaxations

In this section, we give details about two equivalent relaxations.

C.1 First equivalent relaxation

We start from the penalized version of Eq. (5),

min
y∈{−1,1}n, v∈Rd

1

n
‖Πny −Xv‖22 + ν

(y>1n)2

n2
, (29)

which we expand as:

min
y∈{−1,1}n, v∈Rd

1

n
tr Πnyy

> − 2

n
trXvy> +

1

n
trX>Xvv> + ν

(y>1n)2

n2
, (30)

and relax as, using Y = yy>, P = yv> and V = vv>,

min
V,P,Y

1

n
tr ΠnY −

2

n
trP>X+

1

n
trX>XV +ν

1>n Y 1n
n2

s.t.

(
Y P
P> V

)
< 0, diag(Y ) = 1. (31)

When optimizing Eq. (31) with respect to V and P , we get exactly Eq. (8). Indeed we
solve this problem by fixing the matrix Y such that Y = Y0 and diag(Y0) = 1n. Then the
Lagrangian function of the problem in Eq. (31) can be written as

L(A) =
1

n
tr ΠnY −

2

n
trP>X +

1

n
trX>XV + ν

1>n Y 1n
n2

+ trA(Y − Y0)

=

(
Y P
P> V

)(
1
nΠn + ν

n2 1n1>n +A −1
n X

−1
n X

> 1
nX
>X

)
− trAY0.

Using L(A) and the psd constraint

(
Y P
P> V

)
< 0, we write the dual problem as

min
A

trAY0 s.t.

(
1
nΠn + ν

n2 1n1>n +A −1
n X

−1
n X

> 1
nX
>X

)
< 0.

From the Schur’s complement condition of

(
1
nΠn + ν

n2 1n1>n +A −1
n X

−1
n X

> 1
nX
>X

)
< 0, we obtain

1
nΠn + ν

n2 1n1>n + A < 1
nX(X>X)−1X>. Substituting the bound for A we get the optimal

objective function value

D∗ =
1

n
trX(X>X)−1X>Y0 −

1

n
tr ΠnY0 −

ν

n2
1>n Y01n.

Note that the optimal dual objective value D∗ corresponds to a fixed Y0. Hence by max-
imizing with respect to Y we obtain exactly Eq. (8) and therefore, the convex relaxation
in Eq. (11) is equivalent to Eq. (8). Moreover the Karush-Kuhn-Tucker (KKT) conditions
gives

P> −X + V X>X = 0 and − Y X + PX>X = 0

Thus the optimum is attained for P = Y X(X>X)−1 and V = (X>X)−1X>Y X(X>X)−1.
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C.2 Second equivalent relaxation

For ν = 1, we solve the problem in Eq. (31) by fixing the matrix V = V0. Then the
Lagrangian function of this problem can be written as

L̂(µ,B) =
1

n
tr ΠnY −

2

n
trP>X +

1

n
trX>XV + ν

1>n Y 1n
n2

+ µ>(diag(Y )− 1n) + trB(V − V0)

=

(
Y P
P> V

)(
1
nIn + diag(µ) −1

n X
−1
n X

> 1
nX
>X +B

)
− µ>1n − trBV0.

Using L̂(µ,B) and the psd constraint

(
Y P
P> V

)
< 0, the dual problem is given by

min
µ,B

µ>1n + trBV0 s.t.

(
1
nIn + diag(µ) −1

n X
−1
n X

> 1
nX
>X +B

)
< 0.

From the Schur’s complement condition of

(
1
nIn + diag(µ) −1

n X
−1
n X

> 1
nX
>X +B

)
< 0, we obtain

B < 1
n2X

> diag(µ + 1n/n)−1X − 1
nX
>X. Substituting the bound for B we get the dual

problem as

min
µ
µ>1n +

1

n2
trV0X

> diag(µ+ 1n/n)−1X − 1

n
trV0X

>X

=⇒ min
µ

n∑
i=1

(
µi +

1

n2µi + n
x>i V0xi

)
− 1

n
trV0X

>X.

Solving for µi, we get

µ∗i =
1

n

√
x>i V0xi −

1

n
.

Substituting µ∗i into the dual objective function, we get the optimal objective function value

D̂ =
2

n

n∑
i=1

√
(XVX>)ii − 1− 1

n
trV0X

>X.

Furthermore the KKT conditions give

Y diag(ν + 1n/n)− 1

n
PX> = 0 and P> diag(ν + 1n/n)− 1

n
V X> = 0.

Thus we obtain the following closed form expressions:

P = Diag(diag(XVX>))−1/2XV

Y = Diag(diag(XVX>))−1/2XVX>Diag(diag(XVX>))−1/2.

The optimal dual objective value D̂ corresponds to a fixed V0. Therefore, maximizing with
respect to V leads to the problem:

min
V <0

1− 2

n

n∑
i=1

√
(XVX>)ii +

1

n
tr(V X>X). (32)
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Appendix D. Auxiliary results for Section 5.1

Here we provide auxiliary results for Section 5.1.

D.1 Auxiliary lemma

The matrix X(X>X)−1X> has the following properties (see e.g., (Freedman, 2009)).

Lemma 10 The matrix H = X(X>X)−1X> is the orthogonal projection onto the column
space of the design matrix X since:

− H is symmetric.

− H is idempotent (H2) = H.

− X is invariant under H, that is HX = X.

D.2 Rank-one solution of the relaxation Eq. (8)

We denote by (xi)i=1...n the lines (or rows) of X.

Lemma 11 The rank-one solution Y∗ = yy> is always a solution of the relaxation Eq. (8).

Proof We give an elementary proof of this result without using convex optimization tools.
Using Proposition 1 and Lemma 10 we have Hy = y, thus

trHY∗ = trHyy> = tr yy> = n.

Moreover all M < 0 can always be decomposed as
∑n

i=1 λiuiu
>
i with λi ≥ 0 and (ui)i=1,...,n

an orthonormal family. Since H is an orthogonal projection (ui)
>Hui = (Hui)

>Hui =
‖Hui‖2 ≤ ‖ui‖2 ≤ 1. Thus trHM =

∑n
i=1 λi trHui(ui)

> =
∑n

i=1 λi(ui)
>Hui ≤

∑n
i=1 λi =

trM .
Then for all matrix M feasible we have trHM ≤ n since diag(M) = 1n and trHY∗ = n

which conclude the lemma.

D.3 Rank-one solution of the relaxation Eq. (12)

Lemma 12 The rank-one solution V∗ = vv> is always a solution of the relaxation Eq. (12).

Proof The Karush-Kuhn-Tucker (KKT) optimality conditions for the problem are for the
dual variable A 4 0:

1

n

n∑
i=1

xix
>
i√

x>i V xi

− 1

n
XX> = A and AV = 0 (Complementary Slackness).

Since x>i w = yi,
√
x>i V∗xi = |yi| = 1, V∗ and the dual variable A = 0 satisfy the KKT

conditions and then V∗ is solution of this problem.
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D.4 Proof of Proposition 2

In the following lemma, we use a Taylor expansion to lower-bound f around its minimum.

Lemma 13 For d ≥ 3 and δ ∈ [0, 1).

If β ≥ 3 and m2 ≤ β−3
2(d+β−4) , then with probability at least 1− d exp

(
− δ2nm2

2R4d2

)
, for any

symmetric matrix ∆:

f(V∗)− f(V∗ + ∆) > 2(1− δ)m2‖∆‖2F + o(‖∆‖2) ≥ 0.

Otherwise with probability at least 1− d exp
(
− δ2nµ1

4R4d2

)
, for any symmetric matrix ∆:

f(V∗)− f(V∗ + ∆) > (1− δ)µ1‖∆‖2F + o(‖∆‖2) ≥ 0,

with µ1 ≥ m2(β−1)
1+(d+β−2)m2 . Moreover we also have with probability at least 1−d exp

(
− δ2nµ2

4R4d2

)
,

for any symmetric matrix ∆ ∈ ∆⊥min:

f(V∗)− f(V∗ + ∆) > (1− δ)µ2‖∆‖2F + o(‖∆‖2) ≥ 0,

where µ2 = min{2m2,m2(β − 1), 2m} and ∆min =

(
1 0
0 cminId−1

)
is defined in the proof

and satisfies

|cmin| ≤
m

|(d+ β − 2)m2 − 1|
.

This lemma directly implies Proposition 2.
Proof

For ∆ ∈ S(d) and δ ∈ R we compute for f(V ) = 1
n

∑n
i=1

√
x>i V xi,

d2

dδ2
f(V + δ∆) = − 1

4n

n∑
i=1

(x>i ∆xi)
2√

x>i (V + δ∆)xi
3 .

Thus the second directional derivative in V = V∗ along ∆ is

∇2
∆f(V∗) = lim

δ→0

d2

dδ2
f(V + δ∆) = − 1

4n

n∑
i=1

(x>i ∆xi)
2.

Let Tx be the semidefinite positive quadratic form of S(d) defined for ∆ ∈ S(d), by

Tx : ∆ 7→ (x>∆x)2. (33)

Then there exists a positive linear operator Tx from S(d) to S(d) such that Tx(∆) =
〈∆, Tx∆〉.

Therefore the function f will be strictly concave if for all directions ∆ ∈ S(d)

1

n

n∑
i=1

Txi(∆) > 0. (34)
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We will bound the empirical expectation in Eq. (34) by first showing that its expectation
remains away from 0. Then we will use a concentration inequality for matrices to control
the distance between the sum in Eq. (34) and its expectation.

We first derive conditions so that the result is true in expectation, i.e., for the operator
T defined by T = ETx for x following the same law as (y, z>)>. We denote by m = Ez2

and by β = Ez4/m2 its kurtosis.

We let ∆ =

(
a b>

b C

)
and then have x>∆x = a+ 2yb>z + z>Cz. Thus

Tx(∆) = a2 + 4ayb>z + 2az>Cz + 4b>(zz>)b+ (z>Cz)2 + 4yb>z(z>Cz).

Therefore we can express the value of the operator T only in function of the elements of ∆:

T (∆) = (a+m trC)2 + 4m‖b‖22 + 2m2‖C −Diag(diag(C))‖2F +m2(β − 1)‖ diag(C)‖2,

where we have used

E(z>Cz)2 = E
∑
i,j,k,l

zizjzkzlci,jck,l

= E
∑
i

(zi)
4c2
i,i + E

∑
i,k 6=i

z2
i z

2
kci,ick,k + 2E

∑
i,j 6=i

z2
i z

2
j c

2
i,j

= βm2
∑
i

c2
i,i +m2

∑
i,k 6=i

ci,ick,k + 2m2
∑
i,j 6=i

c2
i,j

= m2(β − 3)
∑
i

c2
i,i +m2

∑
i,k

ci,ick,k + 2m2
∑
i,j

c2
i,j

= m2(β − 3)‖diag(C)‖2 +m2
(
2‖C‖2F + tr(C)2

)
= m2(β − 3)‖diag(C)‖2 +m2

(
2‖C −Diag(diag(C))‖2F + tr(C)2

)
.

Since β ≥ 1, we get

T (∆) ≥ (a+m trC)2 + 4m‖b‖22 + 2m2(‖C‖2F − ‖ diag(C)‖2).

Thus T (∆) = 0 if and only if β = 1 with b = 0d−1 and C = diag(c) with c>1d = − a
m2

. With

the condition β = 1 meaning that var(z2) = 0 and thus z2 is constant a.s., i.e., z follows a
Rademacher law.

However we would like to bound T (∆) away from zero by some constant and for that
we are looking for the smallest eigenvalue of the operator ETx. Unfortunately we are not
able to solve the optimization problem

min
∆∈S(d),‖∆‖2F=1

T (∆),

and we have to compute all the spectrum of this operator to be able to find the smallest
using ETx∆ = 1/2∇T (∆) .

We have

1/2∇T (∆) =

a+m tr(C) 2mb>

2mb (a+m tr(C))m2Id−1 + 2m2C
+m2(β − 3) Diag(diag(C))

 .

37



Flammarion, Palaniappan and Bach

− For all b ∈ Rd−1 we have for ∆ =

(
0 b>

b 0

)
, 1/2∇T (∆) = 2m∆. Thus 2m is an

eigenvalue of multiplicity d− 1.

− For all C ∈ R(d−1)×(d−1) with diag(C) = 0d−1 we have for ∆ =

(
0 0
0 C

)
, 1/2∇T (∆) =

2m2∆. Thus 2m2 is an eigenvalue of multiplicity (d−1)(d−2)
2 .

− For all c ∈ Rd−1 with c>1d−1 = 0 we have for ∆ =

(
0 0
0 diag(C)

)
, 1/2∇T (∆) =

m2(β − 1)∆. Thus m2(β − 1) is an eigenvalue of multiplicity d− 2.

− For all a, c ∈ R2 we have for ∆ =

(
a 0
0 cId−1

)
,

1/2∇T (∆) =

(
a+m(d− 1)c 0

0 [ma+m2(d+ β − 2)c]Id−1

)
= Diag

[( 1 m1>d−1

m1d−1 (d+ β − 2)m2Id−1

)(
a

c1d−1

)]
.

Thus an eigenvalue of

(
1 (d− 1)m
m (d+ β − 2)m2

)
with an eigenvector [a, c]> would be an

eigenvalue of the operator ETx with a corresponding eigenvector

(
a 0
0 cId−1

)
. This

matrix has two simple eigenvalues

µ± =
1 + (d+ β − 2)m2 ±

√
(1 + (d+ β − 2)m2)2 − 4m2(β − 1)

2
. (35)

Moreover when we add all the multiplicity of the found eigenvalues we get d−1+ (d−1)(d−2)
2 +

d−2+2 = d(d+1)
2 which is the dimension of S(d), therefore we have found all the eigenvalues

of the linear operator ETx.
We will prove now than the smallest eigenvalue is µ− when the dimension d is large

enough with regards to m2 and 2m2 otherwise.

Lemma 14 Let µ1 and µ2 be the two smallest eigenvalues of the operator ETx. Let us
assume that d ≥ 3 (the case d = 2 will also be done in the proof).

If β ≥ 3 and m2 ≤ β−3
2(d+β−4) then

µ1 = 2m2.

Otherwise

µ1 = µ− ≥
m2(β − 1)

1 + (d+ β − 2)m2
and µ2 = min{2m2,m2(β − 1), 2m}.

Moreover we denote by ∆min =

(
1 0
0 cminId−1

)
the eigenvector associated to µ− for

which we have set without loss of generality the first component a = 1. Then

|cmin| ≤
m

|(d+ β − 2)m2 − 1|
.
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Unfortunately µ− can become small when the dimension increases as explained by the

tight bound µ− ≥ m2(β−1)
1+(d+β−2)m2 . However the corresponding eigenvector has a particular

structure we will be able to exploit.

Proof First we note that µ− ≤ m2(β − 1) and compute

µ− ≥ 2m2 ⇔ 1 + (d+ β − 2)m2 −
√

(1 + (d+ β − 2)m2)2 − 4m2(β − 1)− 4m2 ≥ 0

⇔ 1 + (d+ β − 2)m2 − 4m2 ≥
√

(1 + (d+ β − 2)m2)2 − 4m2(β − 1)

⇔ (1 + (d+ β − 2)m2 − 4m2)2 ≥ (1 + (d+ β − 2)m2)2 − 4m2(β − 1)

and 1 + (d+ β − 6)m2 ≥ 0

⇔ 16m4 − 8m2(1 + (d+ β − 2)m2) ≥ −4m2(β − 1)

and 1 + (d+ β − 6)m2 ≥ 0

⇔ 2(d+ β − 4)m2 ≤ β − 3︸ ︷︷ ︸
R1

and 1 + (d+ β − 6)m2 ≥ 0︸ ︷︷ ︸
R2

.

− If d = 2,

– If β ≤ 3 we have necessary that β ≤ 2 and the first term R1 implies m2 ≥
3−β

2(2−β) and the second term R2 implies m2 ≤ 1/(4 − β). Thus we should have

(4−β)(3−β) ≤ 2(2−β) which is not possible since the polynomial β2−5β+8 ≥ 0.

– If β ≥ 3, the first term R1 implies m2 ≤ β−3
2(β−2) ≤ 1 and the second term R2

implies m2 ≤ 1/(4− β) ≤ β−3
2(β−2) ≤ 1 for β ≤ 4 and is always satisfied otherwise.

− If d ≥ 3, the first term R1 implies that β ≥ 3 for which the second term R2 is always
satisfied. It also implies that m2 ≤ β−3

2(d+β−4) ≤ 1.

We denote by ∆min =

(
1 0
0 cminId−1

)
the eigenvector for which we have set without loss

of generality a = 1 and

cmin =
−1

2(d− 1)m

[√
((d+ β − 2)m2 − 1)2 + 4(d− 1)m2 − (d+ β − 2)m2 + 1

]
.

Consequently cmin ≤ 0 and by convexity of the square root we have

√
((d+ β − 2)m2 − 1)2 + 4(d− 1)m2 ≤ ((d+ β − 2)m2 − 1) +

2(d− 1)m2

|(d+ β − 2)m2 − 1|
.

Therefore

|cmin| ≤
m

|(d+ β − 2)m2 − 1|
.

We will control now the behavior of the empirical expectation by its expectation thanks
to concentration theory. By definition Tx is a symmetric positive linear operator as its
projection T⊥x onto the orthogonal space of ∆min. We can thus apply the Matrix Cher-
noff inequality from Tropp (2012, Theorem 5.1.1) to these two operators using ‖Tx‖op ≤
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‖xx>‖2 ≤ tr(xx>)2 ≤ ‖x‖42 ≤ R4d2. Then:

P

(
λmin

(∑
k=1

Txk

)
≤ nδµ1

)
≤ d
[e−(1−δ)

δδ

]nµ1/(2R4d2)
≤ de−(1−δ)2nµ1/(4R4d2),

P

(
λmin

(∑
k=1

T⊥xk

)
≤ nδµ2

)
≤ d
[e−(1−δ)

δδ

]nµ2/(2R4d2)
≤ de−(1−δ)2nµ2/(4R4d2),

For m = 1 and d ≥ 3 we have µ1 = µ− ≥ β−1
β+d ≥ min{β−1

2β ,
β−1
2d } ≥ min{1/3, β−1

2d }.

D.5 Noise robustness for the one dimensional balanced problem

We want a condition on ε such that the solution of the relaxation Eq. (8) recovers the right
y. We recall the dual problem of the relaxation Eq. (8)

minµ>1n s.t. Diag(µ) < X(X>X)−1X>.

The KKT conditions are:

− Dual feasibility: Diag(µ) < X(X>X)−1X>.

− Primal feasibility: Diag(Y ) = 1n and Y < 0.

− Complimentary slackness : Y [Diag(µ)−X(X>X)−1X>] = 0

For Y = yy> a rank one matrix, the last condition implies Diag(µ)y = Hy and

µi =
(X(X>X)−1X>y)i

yi
.

For X = y+ε, we denote by ỹ = y+ε, then X(X>X)−1X> = ỹỹ>

‖ỹ‖2 and X(X>X)−1X>y =

ỹ>y
‖ỹ‖2 ỹ. Thus

µi =
ỹ>y

‖ỹ‖2
ỹi
yi
.

Assume that all ỹiyi have the same sign, without loss of generality we assume ỹiyi > 0. By
definition of µ, µ ≥ 0. To show the dual feasibility we have to show that Diag(µ) < H which

is equivalent to Diag( ỹiyi ) <
ỹỹ>

ỹ>y
, to In−Diag(

√
yi
ỹi

) ỹỹ
>

ỹ>y
Diag(

√
yi
ỹi

) < 0 and to
∑
yiỹi ≤ ỹ>y

which is obviously true. Reciprocally if µ is dual feasible then Diag(µ) < 0 and all the ỹiyi
have the same sign.

Therefore we have shown that y is solution of the relaxation Eq. (8) if and only if all
the ỹiyi have the same sign. If ε and y are independent this is equivalent to ‖ε‖∞ ≤ 1 a.s.
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D.6 The rank-one candidates are not solutions of the relaxation Eq. (12)

We assume now that 1>n y 6= 0 thus y 6= Πny, which means we do not have the same
proportion in the two clusters. Let us assume that Πny takes two values {πy−, πy+} that

is by definition of Πn: πy+ = 1 − 1>n y
n and πy− = −1 − 1>n y

n . For V∗ defined as before, we
get x>i V∗xi = (πyi)

2 and with I± the set of indices such that Πnyi = πy± respectively, the
KKT conditions for V = V∗ can be written as

1

n

[∑
i∈I+

( 1

πy+
− 1
)
xix
>
i +

∑
i∈I−

( 1

−πy−
− 1
)
xix
>
i

]
= An 4 0 and AnV∗ = 0.

We check that with n± = #{I±}:

w>Anw = 0 =
∑
i∈I+

( 1

πy+
− 1
)

(πy+)2 +
∑
i∈I−

( 1

−πy−
− 1
)

(πy−)2

= n+

( 1

πy+
− 1
)

(πy+)2 + n−

( 1

−πy−
− 1
)

(πy−)2

= n+πy+ − n−πy− −
(
n+(πy+)2 + n−(πy−)2

)
= y>Πny − (Πny)>Πny = y>Πny − y>Πny = 0.

And An = 1
2n

[∑
i∈I+ α+xix

>
i +

∑
i∈I− α−xix

>
i

]
with α+ =

(
1

πy+
−1
)

and α− =
(

1
−πy− −1

)
.

Unfortunately α+α− ≤ 0, and An is not necessary negative. Even worse we will show that
EA is not semi-definite negative which will conclude the proof since by the law of large
number lim

n→∞
1
nAn = EA. Assume that the proportions of the two clusters stay constant

with n± = ρ±n, then

EA = ρ+α+

(
(πy+)2 0

0 I

)
+ ρ−α−

(
(πy−)2 0

0 I

)
.

And ρ+α+(πy+)2 + ρ−α−(πy−)2 = 0 since w>Anw = 0. Then

ρ+α+ + ρ−α− =
ρ+πy− − ρ−πy+ − πy+πy−

πy+πy−

=
−(ρ+ + ρ−)− 1>n y

n (ρ+ − ρ−) + (1− (1>n y)2)

−(1− (1>n y
n )2)

=
1>n y
n (ρ+ − ρ−) + (1>n y

n )2)

(1− (1>n y
n )2)

=
2(1>n y

n )2

(1− (1>n y
n )2)

≥ 0.

Thus A = 2(1>n y)2

(n2−(1>n y)2)

(
0 0
0 I

)
is not semi-definite negative and V∗ is not solution of the

relaxation Eq. (12).

Appendix E. Auxiliary results for sparse extension

In this section, we provide some results for sparse extension.
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E.1 There is a rank-one solution of the relaxation Eq. (18)

Lemma 15 The rank-one solution V∗ = v∗v∗> is solution of the relaxation Eq. (18) if the
design matrix X is such that 1

nX
>X has all its diagonal entries less than one.

Proof The KKT conditions for problem Eq. (18) are

1

n

n∑
i=1

xix
>
i√

x>i V xi

− λU − 1

n
X>X = A 4 0 and AV = 0,

with U such that Uij = sign(Vij) if Vij 6= 0 and Uij ∈ [−1, 1] otherwise. For V∗ = v∗v∗> this
gives

A =
(1 + λ)

n
X>X−λU− 1

n
X>X = λ

[X>X
n
−U
]

with U1,1 = 1 and Ui,j ∈ [−1, 1] otherwise.

We check that AV∗ = 0. If the design matrix X is such that 1
nX
>X has all its diagonal

entries less than one, we can choose a sub-gradient U such that the dual variable A = 0
and thus V∗ is solution. Otherwise by property of semi-definite matrices, there is a diagonal
entry of 1

nX
>X which is bigger than 1 which prevents A to be semi-definite negative since

the corresponding diagonal entry of X>X
n −U will be positive. This shows that V∗ does not

solve the problem.

E.2 Proof of proposition 6

Lemma 16 For δ ∈ [0, 1), with probability 1−5d2 exp
(
− δ2n(β−1)

2dR4(1/m2+β+d)

)
, for any direction

∆ such that V∗ + ∆ < 0, we have:

g(V∗)−g(V∗+∆) > (1−δ)
[
λ‖∆−Diag(∆)‖1+

β − 1

β + d+ 1/m2

(1 + λ)3

4
‖Diag(∆)‖22

]
+o(‖∆‖2) ≥ 0.

Moreover we also have with probability at least 1−5d2 exp
(
− δ2nm2(β−1)

2dR4

)
, for any symmetric

matrix ∆ such that V∗ + ∆ < 0 and Diag(∆) ∈ (emin)⊥:

g(V∗)−g(V∗+∆) > (1−δ)
[
λ‖∆−Diag(∆)‖1+m2(β−1)

(1 + λ)3

4
‖Diag(∆)‖22

]
+o(‖∆‖2) ≥ 0,

where emin = [1, cmin1d−1] is defined in the proof and cmin satisfies

|cmin| ≤
m

|(d+ β − 2)m2 − 1|
.

E.2.1 Proof outline

We will investigate under which conditions on X the solution is unique, first for a deter-
ministic design matrix. We make the following deterministic assumptions on X for δ, ζ ≥ 0
and S ⊂ Rd:
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(A1) ‖X>Xn ‖∞ ≤ 1 (A3) ‖Z>Zn −Diag(diag( 1
nZ
>Z))‖∞ ≤ δ

(A2) ‖Z
>y
n ‖∞ ≤ δ (A4) λSmin

(X�2(X�2)>

n

)
≥ ζ > 0,

where we denoted by � the Hadamard (i.e., pointwise) product between matrices and
λSmin the minimum eigenvalue of a linear operator restricted to a subspace S. Then with

g(V ) = 2
n

∑n
i=1

√
x>i V xi−λ‖V ‖1−

1
n trX>XV , we can certify that g will decrease around

the solution V∗.

Lemma 17 Let us assume that the noise matrix verifies assumptions (A1,A2,A3,A4), then
for any direction ∆ such that V∗ + ∆ < 0 and diag(∆) ∈ S we have:

g(V∗)− g(V∗+ ∆) ≥ λ(1− δ)‖∆−Diag(diag(∆))‖1 + ζ
(1 + λ)3

4
‖Diag(∆)‖22 + o(‖∆‖2) > 0.

Let us assume now that (zi)i=1,.,d are i.i.d of law z symmetric with Ez = Ez3 = 0,
Ez2 = m = 1, Ez4/(Ez2)2 = β and such that ‖z‖∞ is a.s. bounded by 0 ≤ R ≤ 1. Then
the matrix X satisfies a.s. assumption (A1). Using multiple Hoeffding’s inequalities we will
prove lemma 17.

Lemma 18 If z does not follow a Rademacher law, the design matrix X satisfies assump-

tions (A1,A2,A3,A4) with probability greater than 1 − 8d2 exp
(
− δ2n(β−1)

2d(β+d)R4

)
for S = Rd,

and with probability greater than 1− 8d2 exp
(
− δ2nmin{β−1,2}

2dR4

)
for S = [1, cmin1d−1]⊥ where

cmin is defined in the proof and satisfies

|emin| ≤
1

d+ β − 3
.

This lemma concludes the proof of proposition 6. We will now prove these two lemmas.

E.2.2 Proof of lemma 17

Proof Since the dual variable A for the PSD constraint is 0 (see the proof of lemma 15),
this constraint V < 0 is not active and we will show that the function decreases in a set of
directions ∆ which include the one for which V∗ + ∆ < 0.

Therefore we consider a direction ∆ =

(
a b>

b C

)
, with C < 0, which is slightly more

general than V∗ + ∆ < 0. We denote by f(W ) = 2
n

∑n
i=1

√
x>i Wxi − 1

n trX>XW the

smooth part of g. By Taylor-Young, we have for all W :

f(W )− f(W + ∆) = −〈f ′(W ),∆〉 − 1

2
〈∆, f ′′(W )∆〉+ o(‖∆‖2).

Thus:

g(W )− g(W + ∆) = −〈f ′(W ),∆〉 − 1

2
〈∆, f ′′(W )∆〉+ λ(‖W + ∆‖1 − ‖W‖1) + o(‖∆‖2).
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Letting W = V∗ this gives with X>X =

(
n y>Z

Z>y Z>Z

)
,

g(W )− g(W + ∆) = −λ〈X
>X

n
,∆〉 − 1

2
〈∆, f ′′(V∗)∆〉+ λ(a+ 2‖b‖1 + ‖C‖1) + o(‖∆‖2)

= λ
[
2(‖b‖1 −

1

n
b>Z>y) + ‖C‖1 −

1

n
tr(Z>ZC)

]
− 1

2
〈∆, f ′′(V∗)∆〉+ o(‖∆‖2).

And with Hölder’s inequality and assumption (A2)

‖b‖1 −
1

n
b>Z>y ≥ ‖b‖1(1− ‖ 1

n
Z>y‖∞) ≥ (1− δ)‖b‖1.

Nevertheless we will show in lemma 19 that ‖C‖1 − 1
n tr(Z>ZC) ≥ (1− δ)‖C − diag(C)‖1,

thus

g(W )− g(W + ∆) ≥ λ(1− δ)(2‖b‖1 + ‖C − diag(C)‖1) + o(‖∆‖2). (36)

However in Eq. (36), g(W ) − g(W + ∆) = 0 for b = 0 and C diagonal, therefore we have
to investigate second order conditions, i.e., to show for ∆ = diag(e) with e ∈ Rd that
−〈∆, f ′′(V∗)∆〉 > 0.

And with assumption (A4)

− 4

(1 + λ)3
〈diag(e), f ′′(V∗) diag(e)〉 =

1

n

n∑
i=1

(x>i diag(e)xi)
2

=
1

n

n∑
i=1

(

d∑
j=1

ej(x
j
i )

2)2

=
1

n

n∑
i=1

e>[x�2
i (x�2

i )>]e

≥ λmin

(X�2(X�2)>

n

)
‖e‖2 ≥ ζ‖e‖22.

Thus we can conclude:

g(W )− g(W + ∆) ≥ λ(1− δ)(2‖b‖1 + ‖C − diag(C)‖1) + ζ
(1 + λ)3

4
‖e‖22 + o(‖∆‖2).

E.2.3 Auxiliary lemma

Lemma 19 For all matrix C symmetric semi-definite positive we have under assumptions
(A1) and (A3):

tr
(
S − Z>Z

n

)
C ≥ (1− δ)‖C − diag(C)‖1 > 0.
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Proof We denote by Σn = Z>Z
n . We always have ‖C‖1 − tr(ΣnC) = tr(S − Σn)C where

Si,j = sign(Ci,j), thus if diag(C) > 0 then diag(S) = 1 and diag(S − Σn) ≥ 0 from
assumption (A1). Moreover since Σn

i,j ∈ [−1, 1] then sign(S − Σn) = sign(S).
Thus tr(S−Σn)C =

∑
iCi,i(S−Σn)i,i+

∑
i 6=j Ci,j(S−Σn)i,j ≥

∑
i 6=j Ci,j(S−Σn)i,j ≥ 0.

Furthermore from assumption (A3), |(Σn)i,j | ≤ δ for i 6= j. Therefore

tr(S − Σn)C ≥
∑
i 6=j

Ci,j(S − Σn)i,j ≥
∑
i 6=j
|Ci,j |(1− δ) ≥ (1− δ)‖C − diag(C)‖1 > 0.

If there is a diagonal element of C which is 0, then the corresponding row and column in C
will also be 0 and we can look at the same problem as before by erasing off from C and Σn

the corresponding column and row.

E.2.4 Proof of lemma 18

Proof We will first show that the noise matrix Z satisfies assumptions (A2,A3). By
Hoeffding’s inequality we have with probability 1− 2 exp(−δ2n/(2R2))

1

n
|
n∑
i=1

zji | ≤ δ.

Then, since the law of z is symmetric yizi will have the same law as zi and with probability
1− 2 exp(−δ2n/(2R2)), the design matrix Z satisfies assumption (A2):

‖Z
>y

n
‖∞ ≤ δ.

Likewise we have with probability 1− 2 exp(−δ2n/(2R4)) that for j 6= j′

| 1
n

n∑
i=1

zji z
j′

i | ≤ δ.

Thus we also have with probability 1 − 2d2 exp(−δ2n/(2R4)) that Z satisfies assumption
(A3):

‖ 1

n
Z>Z − diag(

1

n
Z>Z)‖∞ ≤ δ.

Thus with probability 1 − 4d2 exp(−δ2n/(2R4)), the noise matrix Z satisfies assumptions
(A1, A2, A3).

We proceed as in the proof of proposition 2 to show that X satisfies assumption (A4).
We first derive a condition to have the result in expectation, then we use an inequality
concentration on matrix to bound the empirical expectation. This will be very similar, but
we will get a better scaling since ∆ is diagonal.

Using the same arguments as in the proof of proposition 2 we have for the diagonal
matrix ∆ = diag(e) with e = (a, c) ∈ Rd:

e>E(x�2(x�2)>)e = E(x>∆x)2 = (a+mc>1n−1)2 +m2(β − 1)‖c‖22 > 0 if β > 1.
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We can show that m2(β − 1) is an eigenvalue of multiplicity d − 2 and µ± are eigenvalues
of multiplicity one of the operator ∆ 7→ E(x>∆x)2 with eigenvectors e± . Thus we have

λmin(Ex�2(x�2)>) =
1 + (d+ β − 2)m2 −

√
(1 + (d+ β − 2)m2)2 − 4m2(β − 1)

2
(37)

≥ m2(β − 1)

1 + (d+ β − 2)m2
,

and

λ
e⊥−
min(Ex�2(x�2)>) = m2(β − 2).

Moreover

λmax

(
x�2(x�2)>

)
= (x�2)>x�2 =

d∑
j=1

(xi)
4 ≤ dR4.

Thus we can apply the Matrix Chernoff inequality from (Tropp, 2012) for µS = λSmin(Ex�2(x�2)>):

P

(
λSmin

(X�2(X�2)>

n

)
≤ (1− δ)µS

)
≤ de−δ2nµS/(2dR4).

Thus with probability 1 − 5d2 exp(−δ2nµ−/(2dR
4)) the design matrix X satisfies as-

sumptions (A1,A2,A3,A4) with ζ = (1 − δ)µ− and S = Rd. And with probability 1 −
5d2 exp(−δ2nmin{β−1, 2}/(2dR4)) the design matrixX satisfies assumptions (A1,A2,A3,A4)
with ζ = (1− δ) min{β − 1, 2} and S = e⊥−.

Appendix F. Proof of multi-label results

We first prove lemma 7:

Proof Let A ∈ Rk×k symmetric semi-definite positive such that diag(ỹAỹ>) = 1n, then

diag(ỹAỹ>) =
k∑
i=0

ai,i1n + 2
k∑
i=1

a0,iyi + 2
∑

1≤i<j≤k
ai,jyi � yj

thus

2

k∑
i=1

a0,iyi + 2
∑

1≤i<j≤k
ai,jyi � yj = (1−

k∑
i=0

ai,i)1n

And this system admits as unique solution 0n if and only if the family {1n, (yi)1≤i≤k, (yiyj)1≤i<j≤k}
is linearly independent.

Then we prove the lemma 8:

Proof Since a0 +
∑k

i=1 a
2
iαi ≥ αmin

∑k
i=0 a

2
i = αmin we should have α ≥ αmin. We

have already seen that such Y satisfies the constraint. The KKT conditions are: B =
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diag(µ)−H − ν11> < 0 and BY = 0. Since yi = Πnyi +
(y>i 1n)
n 1n.

Hyi = HΠnyi + (y>i 1n)H1n

= Πny

= (yi −
1>n yi
n

1n).

Thus

HY =
k∑
i=1

a2
iHyiy

>
i

=

k∑
i=1

a2
i (yi −

1>n yi
n

1n)y>i

=

k∑
i=1

a2
i (yiy

>
i −

1>n yi
n

1ny
>
i )

and tr(HY ) =
∑k

i=1 a
2
i (n− nαi) = n(1− a2

0 + a2
0 − α) = n(1− α).

Furthermore since 1>n diag(Y ) = n and 1>nM1n = n2α, for µ = 1n and ν = 1/n,
B.Y = n− n(1−α)− nα = 0. And since B = In− 1

n1n1>n −H, B2 = B and B> = B, thus
B is a symmetric projection and consequently symmetric semi-definite positive.

Hence the primal variable Y and the dual variables µ = 1n and ν = 1/n satisfy the
KKT conditions, thus Y is solution of this problem.

Appendix G. Efficient optimization problem

We now give the details of an efficient optimization algorithm.

G.1 Dual computation

We consider the following strongly-convex approximation of Eq. (24), augmented with the
von-Neumann entropy:

max
V <0

1

n

n∑
i=1

√
(XVX>)ii − ‖Diag(c)V Diag(c)‖1 − ε tr[(A

1
2V A

1
2 ) log(A

1
2V A

1
2 )] s.t. tr(A

1
2V A

1
2 ) = 1.

Introducing dual variables, we have

min
u∈Rn+,C:|Cij |6cicj

max
V <0

1

2n

n∑
i=1

(
ui((XVX

>)ii) +
1

ui

)
− trCV − ε tr[(A

1
2V A

1
2 ) log(A

1
2V A

1
2 )]

s.t. tr(A
1
2V A

1
2 ) = 1.

By fixing u and C, and letting Q = A
1
2V A

1
2 , we can write the max problem as

max
Q<0

trA−
1
2 (

1

2n
X>Diag(u)X − C)A−

1
2Q− ε tr[Q log(Q)]

s.t. trQ = 1.
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This problem is of the form

max
Q<0

trDQ− ε
n∑
i=1

σi(Q) log σi(Q)

s.t. trQ = 1

where D = A−
1
2 ( 1

2nX
>Diag(u)X − C)A−

1
2 and σi(Q) denotes the i-th largest eigen value

of the matrix Q. If we consider the matrix D to be of the form D = U Diag(θ)U> with θ
denoting the vector of ordered eigen values of D, then it turns out that at optimality Q has
the form Q = U Diag(σ)U>, with σ denoting the ordered vector of eigen values of Q.

Therefore the above optimization problem can be cast in terms of σ as:

max
σ∈Rn

θ>σ − ε
n∑
i=1

σi log σi

s.t.
n∑
i=1

σi = 1.

The solution of this problem is σi = eθi/ε∑n
j=1 e

θj/ε
, which leads to

min
θ∈Rn

φε(θ) = ε log
n∑
i=1

(
e
θi
ε

)
.

In terms of the original matrix variables, we have

minφε(D) = ε log tr e
D
ε .

Using the appropriate expansion of D, we have the overall optimization problem as

min
u∈Rn+,C:|Cij |6cicj

1

2n

n∑
i=1

1

ui
+ φε(A−

1
2 (

1

2n
X>Diag(u)X − C)A−

1
2 ). (38)

At optimality, we have

A
1
2V A

1
2 =

(
e

(A
− 1

2 ( 1
2nX

> Diag(u)X−C)A
− 1

2 )

ε

)
/ tr

(
e

(A
− 1

2 ( 1
2nX

> Diag(u)X−C)A
− 1

2 )

ε

)
.

The error of approximation is at most ε log d and the Lipschitz constant associated with
the function φε(·) is 1

ε .

G.2 Algorithm details

We write the optimization problem Eq. (38) as:

min
u∈Rn+

F (u,C) +H(u,C)
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where

H(u,C) = φε(A−
1
2 (

1

2n
X>Diag(u)X − C)A−

1
2 )

is the smooth part and

F (u,C) = IC:|Cij |6cicj +
1

2n

n∑
i=1

1

ui

is the non-smooth part.
The gradient ∇u of H(u,C) with respect to u is

∇u = diag(B>U Diag(σ)U>B).

where B = 1√
2n
A−

1
2X> and the gradient of H(u,C) with respect to C is

∇C = (A−
1
2U Diag(σ)U>A−

1
2 ).

The Lipschitz constant L associated with the gradient ∇H(u,C) is

L =
2

ε
max

(
λmax(B>B �B>B), λ2

max(A−1)
)
, (39)

where λmax(M) denotes the maximum eigen value of matrix M . Computing L takes
O(max(n, d)3) time and L needs to be computed once at the beginning of the algorithm.

The resultant FISTA procedure is described in Algorithm 1. Note that the FISTA
procedure first computes intermediate iterates (ūk−

1
2 , C̄k−

1
2 ) (Step 7, Algorithm 1) by taking

descent steps along the respective gradient directions. Then two distinct problems in u and
C (respectively Steps 8 and 9 in Algorithm 1) are solved. The sub-problem in u (Step
8) can be efficiently solved using a Newton procedure followed by a thresholding step, as
illustrated in Algorithm 2. The sub-problem in C (Step 9) can also be solved using a simple
thresholding step.
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Algorithm 1 FISTA Algorithm to solve Eq. (38)

1: Input X.
2: Compute Lipschitz constant L.
3: Let (u0, C0) be an arbitrary starting point.
4: Let (ū0, C̄0) = (u0, C0), t0 = 1.
5: Set the maximum iterations to be K.
6: for k = 1, 2, . . . ,K do . The loop can also be terminated based on duality gap.

7: (ūk−
1
2 , C̄k−

1
2 ) =

(
ūk − 1

L∇ūk , C̄
k − 1

L∇C̄k
)
.

8: Obtain uk = argminu∈Rn+

{
L
2 ‖u− ū

k− 1
2 ‖2 + 1

2n

∑n
i=1

1
ui
} by Algorithm 2.

9: Obtain Ck = argminC

{
IC:|Cij |6cicj + L

2 ‖C − C̄
k− 1

2 ‖2F
}

by thresholding.

10: tk =
1+

√
1+4t2k−1

2 .

11: (ūk, C̄k) = (uk, Ck) +
(tk−1−1)

tk

(
(uk, Ck)− (uk−1, Ck−1)

)
.

12: end for
13: Output (uK , CK).

Algorithm 2 Newton method to solve u sub-problem

1: Input uk−
1
2 , n, L.

2: u0
i = max(u

k− 1
2

i , 1

(2nL)
1
3

), i = 1, 2, . . . , n.

3: Set M to be the max number of Newton steps.
4: for t = 1, 2, . . . ,M do
5: for i = 1, 2, . . . , n do

6: uti =
2nL(ut−1

i )3u
k− 1

2
i +3uti

2(nL(ut−1
i )3+1)

.

7: end for
8: end for
9: Output max(uM, 0).
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