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Abstract

In a recent paper, Caron and Fox suggest a probabilistic model for sparse graphs which are
exchangeable when associating each vertex with a time parameter in R+. Here we show
that by generalizing the classical definition of graphons as functions over probability spaces
to functions over σ-finite measure spaces, we can model a large family of exchangeable
graphs, including the Caron-Fox graphs and the traditional exchangeable dense graphs as
special cases. Explicitly, modelling the underlying space of features by a σ-finite measure
space (S,S, µ) and the connection probabilities by an integrable function W : S×S → [0, 1],
we construct a random family (Gt)t≥0 of growing graphs such that the vertices of Gt are
given by a Poisson point process on S with intensity tµ, with two points x, y of the point
process connected with probability W (x, y). We call such a random family a graphon
process. We prove that a graphon process has convergent subgraph frequencies (with
possibly infinite limits) and that, in the natural extension of the cut metric to our setting,
the sequence converges to the generating graphon. We also show that the underlying graphon
is identifiable only as an equivalence class over graphons with cut distance zero. More
generally, we study metric convergence for arbitrary (not necessarily random) sequences of
graphs, and show that a sequence of graphs has a convergent subsequence if and only if it
has a subsequence satisfying a property we call uniform regularity of tails. Finally, we prove
that every graphon is equivalent to a graphon on R+ equipped with Lebesgue measure.
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1. Introduction

The theory of graphons has provided a powerful tool for sampling and studying convergence
properties of sequences of dense graphs. Graphons characterize limiting properties of dense
graph sequences, such as properties arising in combinatorial optimization and statistical
physics. Furthermore, sequences of dense graphs sampled from a (possibly random) graphon
are characterized by a natural notion of exchangeability via the Aldous-Hoover theorem.
This paper presents an analogous theory for sparse graphs.

In the past few years, graphons have been used as non-parametric extensions of stochastic
block models, to model and learn large networks. There have been several rigorous papers on
the subject of consistent estimation using graphons (see, for example, papers by Bickel and
Chen, 2009, Bickel, Chen, and Levina, 2011, Rohe, Chatterjee, and Yu, 2011, Choi, Wolfe,
and Airoldi, 2012, Wolfe and Olhede, 2013, Gao, Lu, and Zhou, 2015, Chatterjee, 2015,
Klopp, Tsybakov, and Verzelen, 2017, and Borgs, Chayes, Cohn, and Ganguly, 2015, as well
as references therein), and graphons have also been used to estimate real-world networks,
such as Facebook and LinkedIn (E. M. Airoldi, private communication, 2015). This makes
it especially useful to have graphon models for sparse networks with unbounded degrees,
which are the appropriate description of many large real-world networks.

In the classical theory of graphons as studied by, for example, Borgs, Chayes, Lovász,
Sós, and Vesztergombi (2006), Lovász and Szegedy (2006), Borgs, Chayes, Lovász, Sós,
and Vesztergombi (2008), Bollobás and Riordan (2009), Borgs, Chayes, and Lovász (2010),
and Janson (2013), a graphon is a symmetric [0, 1]-valued function defined on a probability
space. In our generalized theory we let the underlying measure space of the graphon be a
σ-finite measure space; i.e., we allow the space to have infinite total measure. More precisely,
given a σ-finite measure space S = (S,S, µ) we define a graphon to be a pair W = (W,S ),
where W : S × S → R is a symmetric integrable function, with the special case when W
is [0, 1]-valued being most relevant for the random graphs studied in the current paper.
We present a random graph model associated with these generalized graphons which has a
number of properties making it appropriate for modelling sparse networks, and we present a
new theory for convergence of graphs in which our generalized graphons arise naturally as
limits of sparse graphs.

Given a [0, 1]-valued graphon W = (W,S ) with S = (S,S, µ) a σ-finite measure space,
we will now define a random process which generalizes the classical notion of W-random
graphs, introduced in the statistics literature (Hoff, Raftery, and Handcock, 2002) under the
name latent position graphs, in the context of graph limits (Lovász and Szegedy, 2006) as
W-random graphs, and in the context of extensions of the classical random graph theory
(Bollobás, Janson, and Riordan, 2007) as inhomogeneous random graphs. Recall that in the
classical setting where W is defined on a probability space, W-random graphs are generated
by first choosing n points x1, . . . , xn i.i.d. from the probability distribution µ over the feature
space S, and then connecting the vertices i and j with probability W (xi, xj). Here, inspired
by Caron and Fox (2014), we generalize this to arbitrary σ-finite measure spaces by first
considering a Poisson point process1 Γt with intensity tµ on S for any fixed t > 0, and

1. We will make this construction more precise in Section 2.4; in particular, we will explain that we may
associate Γt with a collection of random variables xi ∈ S. The same result holds for the Poisson point
process Γ considered in the next paragraph.
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Figure 1: This figure illustrates how we can generate a graphon process (Gt)t≥0 from a
graphon W = (W,S ), where S = (S,S, µ) is a σ-finite measure space. The two
coordinate axes on the middle figure represent our feature space S, where the red
(resp. blue) dots on the axes represent vertices born during [0, s1] (resp. (s1, s2])
for 0 < s1 < s2, and the red (resp. blue) dots in the interior of the first quadrant
represent edges in Gt for t ≥ s1 (resp. t ≥ s2). The graph Gt is an induced
subgraph of a graph G̃t with infinitely many vertices in the case µ(S) =∞, such
that Gt is obtained from G̃t by removing isolated vertices. At time t ≥ 0 the
marginal law of the features of V (G̃t) is a Poisson point process on S with intensity
tµ. Two distinct vertices with features x and x′, respectively, are connected to
each other by an undirected edge with probability W (x, x′). The coordinate axes
on the right figure represent time R+. We get the graph Gt by considering the
edges restricted to [0, t]2. Note that the coordinate axes in the right figure and
the graphs G̃t in the left figure are slightly inaccurate if we assume µ(S) = ∞,
since in this case there are infinitely many isolated vertices in G̃t for each t > 0.
We have chosen to label the vertices by the order in which they appear in Gt,
where ties are resolved by considering the time the vertices were born, i.e., by
considering the time they appeared in G̃t.

then connecting two points xi, xj in Γt with probability W (xi, xj). As explained in the next

paragraph, this leads to a family of graphs (G̃t)t≥0 such that the graphs G̃t have almost
surely at most countably infinitely many vertices and (assuming appropriate integrability
conditions on W , e.g., W ∈ L1) a finite number of edges. Removing all isolated vertices
from G̃t, we obtain a family of graphs (Gt)t≥0 that are almost surely finite. We refer to the

families (G̃t)t≥0 and (Gt)t≥0 as graphon processes; when it is necessary to distinguish the
two, we call them graphon processes with or without isolated vertices, respectively.

To interpret the graphon process (Gt)t≥0 as a family of growing graphs we will need to
couple the graphs Gt for different times t ≥ 0. To this end, we consider a Poisson point
process Γ on R+ × S (with R+ := [0,∞) being equipped with the Borel σ-algebra and
Lebesgue measure). Each point v = (t, x) of Γ corresponds to a vertex of an infinite graph
G̃, where the coordinate t is interpreted as the time the vertex is born and the coordinate
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x describes a feature of the vertex. Two distinct vertices v = (t, x) and v′ = (t′, x′) are
connected by an undirected edge with probability W (x, x′), independently for each possible
pair of distinct vertices. For each fixed time t ≥ 0 define a graph Gt by considering the
induced subgraph of G̃ corresponding to vertices which are born at time t or earlier, where
we do not include vertices which would be isolated in Gt. See Figure 1 for an illustration.
The family of growing graphs (Gt)t≥0 just described includes classical dense W-random
graphs (up to isolated vertices) and the sparse graphs studied by Caron and Fox (2014)
and Herlau, Schmidt, and Mørup (2016) as special cases, and is (except for minor technical
differences) identical to the family of random graphs studied by Veitch and Roy (2015),
a paper which was written in parallel with our paper; see our remark at the end of this
introduction.

The graphon process (G̃t)t≥0 satisfies a natural notion of exchangeability. Roughly
speaking, in our setting this means that the features of newly born vertices are homogeneous
in time. More precisely, it can be defined as joint exchangeability of a random measure in R2

+,
where the two coordinates correspond to time, and each edge of the graph corresponds to a
point mass. We will prove that graphon processes as defined above, with W integrable and
possibly random, are characterized by exchangeability of the random measure in R2

+ along
with a certain regularity condition we call uniform regularity of tails. See Proposition 26 in
Section 2.4. This result is an analogue in the setting of possibly sparse graphs satisfying the
aforementioned regularity condition of the Aldous-Hoover theorem (Aldous, 1981; Hoover,
1979), which characterizes W-random graphs over probability spaces as graphs that are
invariant in law under permutation of their vertices.

The graphon processes defined above also have a number of other properties making them
particularly natural to model sparse graphs or networks. They are suitable for modelling
networks which grow over time since no additional rescaling parameters (like the explicitly
given density dependence on the number of vertices specified by Bollobás and Riordan, 2009,
and Borgs, Chayes, Cohn, and Zhao, 2014a) are necessary; all information about the random
graph model is encoded by the graphon alone. The graphs are projective in the sense that if
s < t the graph Gs is an induced subgraph of Gt. Finally, a closely related family of weighted
graphs is proven by Caron and Fox (2014) to have power law degree distribution for certain
W, and our graphon processes are expected to behave similarly. The graphon processes
studied in this paper have a different qualitative behavior than the sparse W-random graphs
studied by Bollobás and Riordan (2009) and Borgs, Chayes, Cohn, and Zhao (2014a,b) (see
Figure 2), with the only overlap of the two theories occurring when the graphs are dense.
If the sparsity of the graphs is caused by the degrees of the vertices being scaled down
approximately uniformly over time, then the model studied by Bollobás and Riordan (2009)
and Borgs, Chayes, Cohn, and Zhao (2014a,b) is most natural. If the sparsity is caused by
later vertices typically having lower connectivity probabilities than earlier vertices, then
the model presented in this paper is most natural. The sampling method we will use in
our forthcoming paper (Borgs, Chayes, Cohn, and Holden, 2017) generalizes both of these
methods.

To compare different models, and to discuss notions of convergence, we introduce the
following natural generalization of the cut metric for graphons on probability spaces to our
setting. For two graphons W1 = (W1,S1) and W2 = (W2,S2), this metric is easiest to
define when the two graphons are defined over the same space. However, for applications we
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rescaled graphon on probability space graphon with non-compact support

Figure 2: The adjacency matrices of graphs sampled as described by Borgs, Chayes, Cohn,
and Zhao (2014a) (left) and in this paper (right), where we used the graphon
W1 = (W1, [0, 1]) (left) and the graphonW2 = (W2,R+) (right), with W1(x1, x2) =

x
−1/2
1 x

−1/2
2 for x1, x2 ∈ [0, 1] and W2(x1, x2) = min(0.8, 7 min(1, x−2

1 ) min(1, x−2
2 ))

for x1, x2 ∈ R+. Black (resp. white) indicates that there is (resp. is not) an edge.
We rescaled the height of the graphon by ρ := 1/40 on the left figure. As described
by Borgs, Chayes, Cohn, and Zhao (2014a,b) the type of each vertex is sampled
independently and uniformly from [0, 1], and each pair of vertices is connected
with probability min(ρW1, 1). In the right figure the vertices were sampled by a
Poisson point process on R+ of intensity t = 4, and two vertices were connected
independently with a probability given by W2; see Section 2.4 and the main text
of this introduction. The two graphs have very different qualitative properties. In
the left graph most vertices have a degree close to the average degree, where the
average degree depends on our scaling factor ρ. In the right graph the edges are
distributed more inhomogeneously: most of the edges are contained in induced
subgraphs of constant density, and the sparsity is caused by a large number of
vertices with very low degree.
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want to compare graphons over different spaces, say two Borel spaces S1 and S2. Assuming
that both Borel spaces have infinite total measure, the cut distance between W1 and W2

can then be defined as

δ�(W1,W2) = inf
ψ1,ψ2

sup
U,V⊆R2

+

∣∣∣∣
∫

U×V

(
Wψ1

1 −W
ψ2
2

)
dµ dµ

∣∣∣∣ , (1)

where we take the infimum over measure-preserving maps ψj : R+ → Sj for j = 1, 2,

W
ψj

j (x, y) := Wj(ψj(x), ψj(y)) for x, y ∈ R+, and the supremum is over measurable sets

U, V ⊆ R2
+. (See Definition 5 below for the definition of the cut distance for graphons over

general spaces, including the case where one or both spaces have finite total mass.) We call
two graphons equivalent if they have cut distance zero. As we will see, two graphons are
equivalent if and only if the random families (Gt)t≥0 generated from these graphons have
the same distribution; see Theorem 27 below.

To compare graphs and graphons, we embed a graph on n vertices into the set of step
functions over [0, 1]2 in the usual way by decomposing [0, 1] into adjacent intervals I1, . . . , In
of lengths 1/n, and define a step function WG as the function which is equal to 1 on Ii × Ij
if i and j are connected in G, and equal to 0 otherwise. Extending WG to a function on R2

+

by setting it to zero outside of [0, 1]2, we can then compare graphs to graphons on measure
spaces of infinite mass, and in particular we get a notion of convergence in metric of a
sequence of graphs (Gn)n∈N to a graphon W.

In the classical theory of graph convergence, such a sequence will converge to the zero
graphon whenever the sequence is sparse.2 We resolve this difficulty by rescaling the input
arguments of the step function WG so as to get a “stretched graphon” WG,s = (WG,s,R+)
satisfying ‖WG,s‖1 = 1. Equivalently, we may interpret WG,s as a graphon where the
measure of the underlying measure space is rescaled. See Figure 3 for an illustration, which
also compares the rescaling in the current paper with the rescaling considered by Borgs,
Chayes, Cohn, and Zhao (2014a). We say that (Gn)n∈N converges to a graphon W (with L1

norm equal to 1) for the stretched cut metric if limn→∞ δ�(WGn,s,W) = 0. Graphons on σ-
finite measure spaces of infinite total measure may therefore be considered as limiting objects
for sequences of sparse graphs, similarly as graphons on probability spaces are considered
limits of dense graphs. We prove that graphon processes converge to the generating graphon
in the stretched cut metric; see Proposition 28 in Section 2.4. We will also consider another
family of random sparse graphs associated with a graphon W over a σ-finite measure space,
and prove that these graphs are also converging for the stretched cut metric.

Particular random graph models of special interest arise by considering certain classes
of graphons W. Caron and Fox (2014) consider graphons on the form W (x1, x2) = 1 −
exp(−f(x1)f(x2)) (with a slightly different definition on the diagonal, since they also allow
for self-edges) for certain decreasing functions f : R+ → R+. In this model x represents
a sociability parameter of each vertex. A multi-edge version of this model allows for an
alternative sampling procedure to the one we present above (Caron and Fox, 2014, Section
3). Herlau, Schmidt, and Mørup (2016) introduced a generalization of the model of Caron
and Fox (2014) to graphs with block structure. In this model each node is associated to a

2. Here, as usual, a sequence of simple graphs is considered sparse if the number of edges divided by the
square of the number of vertices goes to zero.
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Figure 3: The figure shows three graphons associated with the same simple graph G on five
vertices. In the classical theory of graphons all simple sparse graphs converge to
the zero graphon. We may prevent this by renormalizing the graphons, either
by rescaling the height of the graphon (middle) or by stretching the domain on
which it is defined (right). The first approach was chosen by Bollobás and Riordan
(2009) and Borgs, Chayes, Cohn, and Zhao (2014a,b), and the second approach is
chosen in this paper. In our forthcoming paper (Borgs, Chayes, Cohn, and Holden,
2017) we choose a combined approach, where the renormalization depends on the
observed graph.

type from a finite index set [K] := {1, . . . ,K} for some K ∈ N, in addition to its sociability
parameter, such that the probability of two nodes connecting depends both on their type
and their sociability. More generally we can obtain sparse graphs with block structure by
considering integrable functions Wk1,k2 : R2

+ → [0, 1] for k1, k2 ∈ {1, . . . ,K}, and defining
S := [K]× R+ and W ((k1, x1), (k2, x2)) := Wk1,k2(x1, x2). As compared to the block model
of Herlau, Schmidt, and Mørup (2016), this allows for a more complex interaction within
and between the blocks. An alternative generalization of the stochastic block model to
our setting is to consider infinitely many disjoint intervals Ik ⊂ R+ for k ∈ N, and define
W :=

∑
k1,k2∈N pk1,k21Ik1×Ik2 for constants pk1,k2 ∈ [0, 1]. For the block model of Herlau,

Schmidt, and Mørup (2016) and our first generalization above (with S := [K]× R+), the
degree distribution of the vertices within each block will typically be strongly inhomogeneous;
by contrast, in our second generalization above (with infinitely many blocks), all vertices
within the same block have the same connectivity probabilities, and hence the degree
distribution will be more homogeneous.

We can also model sparse graphs with mixed membership structure within our framework.
In this case we let S̃ ⊂ [0, 1]K be the standard (K− 1)-simplex, and define S := S̃×R+. For
a vertex with feature (x̃, x) ∈ S̃ × R+ the first coordinate x̃ = (x̃1, . . . , x̃K) is a vector such
that x̃j for j ∈ [K] describes the proportion of time the vertex is part of community j ∈ [K],
and the second coordinate x describes the role of the vertex within the community; for
example, x could be a sociability parameter. For each k1, k2 ∈ [K] let Wk1,k2 = (Wk1,k2 ,R+)
be a graphon describing the interactions between the communities k1 and k2. We define our
mixed membership graphon W = (W,S ) by

W
(
(x̃1, x1), (x̃2, x2)

)
:=

∑

k1,k2∈[K]

x̃1
k1 x̃

2
k2Wk1,k2(x1, x2).
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Alternatively, we could define S := S̃×RK+ , which would provide a model where, for example,
the sociability of a node varies depending on which community it is part of.

In the classical setting of dense graphs, many papers only consider graphons defined on
the unit square, instead of graphons on more general probability spaces. This is justified by
the fact that every graphon with a probability space as base space is equivalent to a graphon
with base space [0, 1]. The analogue in our setting would be graphons over R+ equipped
with the Lebesgue measure. As the examples in the preceding paragraphs illustrate, for
certain random graph models it is more natural to consider another underlying measure
space. For example, each coordinate in some higher-dimensional space may correspond to a
particular feature of the vertices, and changing the base space can disrupt certain properties
of the graphon, such as smoothness conditions. For this reason we consider graphons defined
on general σ-finite measure spaces in this paper. However, we will prove that every graphon
is equivalent to a graphon on R+ equipped with the Borel σ-algebra and Lebesgue measure,
in the sense that their cut distance is zero; see Proposition 10 in Section 2.2. As stated
before, our results then imply that they correspond to the same random graph model.

The set of [0, 1]-valued graphons on probability spaces is compact for the cut metric. For
the possibly unbounded graphons studied by Borgs, Chayes, Cohn, and Zhao (2014a), which
are real-valued and defined on probability spaces, compactness holds if we consider closed
subsets of the space of graphons which are uniformly upper regular (see Section 2.3 for the
definition). In our setting, where we look at graphons over spaces of possibly infinite measure,
the analogous regularity condition is uniform regularity of tails if we restrict ourselves to, say,
[0, 1]-valued graphons. In particular our results imply that a sequence of simple graphs with
uniformly regular tails is subsequentially convergent, and conversely, that every convergent
sequence of simple graphs has uniformly regular tails. See Theorem 15 in Section 2.3 and
the two corollaries following this theorem.

In the setting of dense graphs, convergence for the cut metric is equivalent to left
convergence, meaning that subgraph densities converge. This equivalence does not hold
in our setting, or for the unbounded graphons studied by Borgs, Chayes, Cohn, and Zhao
(2014a,b); its failure is characteristic of sparse graphs, because deleting even a tiny fraction
of the edges in a sparse graph can radically change the densities of larger subgraphs (see
the discussion by Borgs, Chayes, Cohn, and Zhao, 2014a, Section 2.9). However, randomly
sampled graphs do satisfy a notion of left convergence; see Proposition 30 in Section 2.5.

As previously mentioned, in our forthcoming paper (Borgs, Chayes, Cohn, and Holden,
2017) we will generalize and unify the theories and models presented by Bollobás and
Riordan (2009), Borgs, Chayes, Cohn, and Zhao (2014a,b), Caron and Fox (2014), Herlau,
Schmidt, and Mørup (2016), and Veitch and Roy (2015). Along with the introduction of
a generalized model for sampling graphs and an alternative (and weaker) cut metric, we
will prove a number of convergence properties of these graphs. Since the graphs in this
paper are obtained as a special case of the graphs in our forthcoming paper, the mentioned
convergence results also hold in our setting.

In Section 2 we will state the main results of this paper, which will be proved in the
subsequent appendices. In Appendix A we prove that the cut metric δ� is well defined. In
Appendix B we prove that any graphon is equivalent to a graphon with underlying measure
space R+. We also prove that under certain conditions on the underlying measure space we
may define the cut metric δ� in a number of equivalent ways. In Appendix C, we deal with
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some technicalities regarding graph-valued processes. In Appendix D we prove that certain
random graph models derived from a graphon W, including the graphon processes defined
above, give graphs converging to W for the cut metric. We also prove that two graphons
are equivalent (i.e., they have cut distance zero) iff the corresponding graphon processes
are equal in law. In Appendix E we prove that uniform regularity of tails is sufficient to
guarantee subsequential metric convergence for a sequence of graphs; conversely, we prove
that every convergent sequence of graphs with non-negative edge weights has uniformly
regular tails. In Appendix F we prove some basic properties of sequences of graphs which are
metric convergent, for example that metric convergence implies unbounded average degree if
the number of edges diverge and the graph does not have too many isolated vertices; see
Proposition 22 below. We also compare the notion of metric graph convergence in this paper
to the one studied by Borgs, Chayes, Cohn, and Zhao (2014a). In Appendix G we prove
with reference to the Kallenberg theorem for jointly exchangeable measures that graphon
processes for integrable W are uniquely characterized as exchangeable graph processes
satisfying uniform tail regularity. We also describe more general families of graphs that
may be obtained from the Kallenberg representation theorem if this regularity condition is
not imposed. Finally, in Appendix H we prove our results on left convergence of graphon
processes.

Remark 1 After writing a first draft of this work, but a little over a month before completing
the paper, we became aware of parallel, independent work by Veitch and Roy (2015), who
introduce a closely related model for exchangeable sparse graphs and interpret it with reference
to the Kallenberg theorem for exchangeable measures. The random graph model studied
by Veitch and Roy (2015) is (up to minor differences) the same as the graphon processes
introduced in the current paper. Aside from both introducing this model, the results of the two
papers are essentially disjoint. While Veitch and Roy (2015) focus on particular properties
of the graphs in a graphon process (in particular, the expected number of edges and vertices,
the degree distribution, and the existence of a giant component under certain assumptions on
W), our focus is graph convergence, the cut metric, and the question of when two different
graphons lead to the same graphon process.

See also the subsequent paper by Janson (2016) expanding on the results of our pa-
per, characterizing in particular when two graphons are equivalent, and proving additional
compactness results for graphons over σ-finite spaces.

2. Definitions and Main Results

We will work mainly with simple graphs, but we will allow the graphs to have weighted
vertices and edges for some of our definitions and results. We denote the vertex set of a
graph G by V (G) and the edge set of G by E(G). The sets V (G) and E(G) may be infinite,
but we require them to be countable. If G is weighted, with edge weights βij(G) and vertex
weights αi(G), we require the vertex weights to be non-negative, and we often (but not
always) require that ‖β(G)‖1 :=

∑
i,j∈V (G) αi(G)αj(G)|βij(G)| <∞ (note that ‖β(G)‖1 is

defined in such a way that for an unweighted graph, it is equal to 2|E(G)|, as opposed to
the density, which is ill-defined if |V (G)| =∞). We define the edge density of a finite simple
graph G to be ρ(G) := 2|E(G)|/|V (G)|2. Letting N = {1, 2, . . . } denote the positive integers,
a sequence (Gn)n∈N of simple, finite graphs will be called sparse if ρ(Gn) → 0 as n → ∞,
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and dense if lim infn→∞ ρ(Gn) > 0. When we consider graph-valued stochastic processes
(Gn)n∈N or (Gt)t≥0 of simple graphs, we will assume each vertex is labeled by a distinct
number in N, so we can view V (G) as a subset of N and E(G) as a subset of N× N. The
labels allow us to keep track of individual vertices in the graph over time. In Section 2.4 we
define a topology and σ-algebra on the set of such graphs.

2.1 Measure-theoretic Preliminaries

We start by recalling several notions from measure theory.

For two measure spaces S = (S,S, µ) and S ′ = (S′,S ′, µ′), a measurable map φ : S → S′

is called measure-preserving if for every A ∈ S ′ we have µ(φ−1(A)) = µ′(A). Two measure
spaces (S,S, µ) and (S′,S ′, µ′) are called isomorphic if there exists a bimeasurable, bijective,
and measure-preserving map φ : S → S′. A Borel measure space is defined as a measure
space that is isomorphic to a Borel subset of a complete separable metric space equipped
with a Borel measure.

Throughout most of this paper, we consider σ-finite measure spaces, i.e., spaces S =
(S,S, µ) such that S can be written as a countable union of sets Ai ∈ S with µ(Ai) < ∞.
Recall that a set A ∈ S is an atom if µ(A) > 0 and if every measurable B ⊆ A satisfies
either µ(B) = 0 or µ(B) = µ(A). The measure space S is atomless if it has no atoms.
Every atomless σ-finite Borel space of infinite measure is isomorphic to (R+,B, λ), where
B is the Borel σ-algebra and λ is Lebesgue measure; for the convenience of the reader, we
prove this as Lemma 33 below.

We also need the notion of a coupling, a concept well known for probability spaces: if
(Si,Si, µi) is a measure space for i = 1, 2 and µ1(S1) = µ2(S2) ∈ (0,∞], we say that µ is a
coupling of µ1 and µ2 if µ is a measure on (S1 × S2,S1 × S2) with marginals µ1 and µ2, i.e.,
if µ(U × S2) = µ1(U) for all U ∈ S1 and µ(S1 × U) = µ2(U) for all U ∈ S2. Note that this
definition of coupling is closely related to the definition of coupling of probability measures,
which applies when µ1(S1) = µ2(S2) = 1. For probability spaces, it is easy to see that every
pair of measures has a coupling (for example, the product space of the two probability
spaces). We prove the existence of a coupling for σ-finite measure spaces in Appendix A,
where this fact is stated as part of a more general lemma, Lemma 34.

Finally, we say that a measure space S̃ = (S̃, S̃, µ̃) extends a measure space S = (S,S, µ)
if S ∈ S̃, S = {A ∩ S : A ∈ S̃}, and µ(A) = µ̃(A) for all A ∈ S. We say that S is a

restriction of S̃ , or, if S is specified, the restriction of S̃ to S.

2.2 Graphons and Cut Metric

We will work with the following definition of a graphon.

Definition 2 A graphon is a pair W = (W,S ), where S = (S,S, µ) is a σ-finite measure
space satisfying µ(S) > 0 and W is a symmetric real-valued function W ∈ L1(S × S) that is
measurable with respect to the product σ-algebra S × S and integrable with respect to µ× µ.
We say that W is a graphon over S .

Remark 3 Most literature on graphons defines a graphon to be the function W instead of
the pair (W,S ). We have chosen the above definition since the underlying measure space
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will play an important role. Much literature on graphons requires W to take values in [0, 1],
and some of our results will also be restricted to this case. The major difference between the
above definition and the definition of a graphon in the existing literature, however, is that we
allow the graphon to be defined on a measure space of possibly infinite measure, instead of a
probability space.3

Remark 4 One may relax the integrability condition for W in the above definition such that
the corresponding random graph model (as defined in Definition 25 below) still gives graphs
with finitely many vertices and edges for each bounded time. This more general definition is
used by Veitch and Roy (2015). We work with the above definition since the majority of the
analysis in this paper is related to convergence properties and graph limits, and our definition
of the cut metric is most natural for integrable graphons. An exception is the notion of
subgraph density convergence in the corresponding random graph model, which we discuss in
the more general setting of not necessarily integrable graphons; see Remark 31 below.

We will mainly study simple graphs in the current paper, in particular, graphs which
do not have self-edges. However, the theory can be generalized in a straightforward way to
graphs with self-edges, in which case we would also impose an integrability condition for W
along its diagonal.

If W = (W, (S,B, λ)), where S is a Borel subset of R, B is the Borel σ-algebra, and λ
is Lebesgue measure, we write W = (W,S) to simplify notation. For example, we write
W = (W,R+) instead of W = (W, (R+,B, λ)).

For any measure space S = (S,S, µ) and integrable function W : S × S → R, define the
cut norm of W over S by

‖W‖�,S,µ := sup
U,V ∈S

∣∣∣∣
∫

U×V
W (x, y) dµ(x) dµ(y)

∣∣∣∣ .

If S and/or µ is clear from the context we may write ‖ · ‖� or ‖ · ‖�,µ to simplify notation.

Given a graphon W̃ = (W̃ , S̃ ) with S̃ = (S̃, S̃, µ̃) and a set S ∈ S̃, we say that

W = (W,S ) is the restriction of W̃ to S if S is the restriction of S̃ to S and W̃ |S×S = W .

We say that W̃ = (W̃ , S̃ ) is the trivial extension of W to S̃ if W = (W,S ) is the

restriction of W̃ to S and supp(W̃ ) ⊆ S × S. For measure spaces S = (S,S, µ) and
S ′ = (S′,S ′, µ′), a graphon W = (W,S ), and a measurable map φ : S′ → S, we define the
graphon Wφ = (W φ,S ′) by W φ(x1, x2) := W (φ(x1), φ(x2)) for x1, x2 ∈ S′. We say that
Wφ (resp. W φ) is a pullback of W (resp. W ) onto S ′. Finally, let ‖ · ‖1 denote the L1 norm.

Definition 5 For i = 1, 2, let Wi = (Wi,Si) with Si = (Si,Si, µi) be a graphon.

3. The term “graphon” was coined by Borgs, Chayes, Lovász, Sós, and Vesztergombi (2008), but the use of
this concept in combinatorics goes back to at least Frieze and Kannan (1999), who considered a version
of the regularity lemma for functions over [0, 1]2. As a limit object for convergent graph sequences it was
introduced by Lovász and Szegedy (2006), where it was called a W -function, and graphons over general
probability spaces were first studied by Borgs, Chayes, and Lovász (2010) and Janson (2013).

11
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(i) If µ1(S1) = µ2(S2) ∈ (0,∞], the cut metric δ� and invariant L1 metric δ1 are defined
by

δ�(W1,W2) := inf
µ
‖W π1

1 −W
π2
2 ‖�,S1×S2,µ and

δ1(W1,W2) := inf
µ
‖W π1

1 −W
π2
2 ‖1,S1×S2,µ,

(2)

where πi : S1 × S2 → Si denotes projection for i = 1, 2, and we take the infimum over
all couplings µ of µ1 and µ2.

(ii) If µ1(S1) 6= µ2(S2), let S̃i = (S̃i, S̃i, µ̃i) be a σ-finite measure space extending Si for

i = 1, 2 such that µ̃1(S̃1) = µ̃2(S̃2) ∈ (0,∞]. Let W̃i = (W̃i, S̃i) be the trivial extension

of Wi to S̃i, and define

δ�(W1,W2) := δ�(W̃1, W̃2) and δ1(W1,W2) := δ1(W̃1, W̃2).

(iii) We call two graphons W1 and W2 equivalent if δ�(W1,W2) = 0.

The following proposition will be proved in Appendix A. Recall that a pseudometric
on a set S is a function from S × S to R+ which satisfies all the requirements of a metric,
except that the distance between two different points might be zero.

Proposition 6 The metrics δ� and δ1 given in Definition 5 are well defined; in other
words, under the assumptions of (i) there exists at least one coupling µ, and under the
assumptions of (ii) the definitions of δ�(W1,W2) and δ1(W1,W2) do not depend on the

choice of extensions S̃1, S̃2. Furthermore, δ� and δ1 are pseudometrics on the space of
graphons.

An important input to the proof of the proposition (Lemma 42 in Appendix A) is that
the δ� (resp. δ1) distance between two graphons over spaces of equal measure, as defined in
Definition 5(i), is invariant under trivial extensions. The lemma is proved by first showing
that it holds for step functions (where the proof more or less boils down to an explicit
calculation) and then using the fact that every graphon can be approximated by a step
function.

We will see in Proposition 48 in Appendix B that under additional assumptions on
the underlying measure spaces S1 and S2 the cut metric can be defined equivalently in a
number of other ways, giving, in particular, the equivalence of the definitions (1) and (2)
in the case of two Borel spaces of infinite mass. Similar results hold for the metric δ1; see
Remark 49.

While the two metrics δ� and δ1 are not equivalent, a fact which is already well known
from the theory of graph convergence for dense graphs, it turns out that the statement that
two graphons have distance zero in the cut metric is equivalent to the same statement in
the invariant L1 metric. This is the content of our next proposition.

Proposition 7 Let W1 and W2 be graphons. Then δ�(W1,W2) = 0 if and only if
δ1(W1,W2) = 0.

12
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The proposition will be proved in Appendix B. (We will actually prove a generalization
of this proposition involving an invariant version of the Lp metric; see Proposition 50.)
The proof proceeds by first showing (Proposition 51) that if δ�(W1,W2) = 0 for graphons
Wi = (Wi,Si) with Si = (Si,Si, µi) for i = 1, 2, then there exists a particular measure µ
on S1 × S2 such that ‖W π1

1 −W
π2
2 ‖�,µ = 0. Under certain conditions we may assume that

µ is a coupling measure, in which case it follows that the infimum in the definition of δ� is a
minimum; see Proposition 8 below.

To state our next proposition we define a coupling between two graphons Wi = (Wi,Si)

with Si = (Si,Si, µi) for i = 1, 2 as a pair of graphons W̃i over a space of the form

S = (S1 × S2,S1 ×S2, µ), where µ is a coupling of µ1 and µ2 and W̃i = W πi
i , and where as

before, πi denotes the projection from S1 × S2 onto Si for i = 1, 2.

Proposition 8 Let Wi be graphons over σ-finite Borel spaces Si = (Si,Si, µi), and let
S̃i = {x ∈ Si :

∫
|Wi(x, y)|dµi(y) > 0}, for i = 1, 2. If δ�(W1,W2) = 0, then the restrictions

of W1 and W2 to S̃1 and S̃2 can be coupled in such a way that they are equal a.e.

The proposition will be proved in Appendix B. Note that Janson (2016, Theorem 5.3)
independently proved a similar result, building on a previous version of the present paper
which did not yet contain Proposition 8. His result states that if the cut distance between
two graphons over σ-finite Borel spaces is zero, then there are trivial extensions of these
graphons such that the extensions can be coupled so as to be equal almost everywhere. It is
easy to see that our result implies his, but we believe that with a little more work, it should
be possible to deduce ours from his as well.

Remark 9 Note that the classical theory of graphons on probability spaces appears as a
special case of the above definitions by taking S to be a probability space. Our definition of
the cut metric δ� is equivalent to the standard definition for graphons on probability spaces;
see, for example, papers by Borgs, Chayes, Lovász, Sós, and Vesztergombi (2008) and Janson
(2013). Note that δ� is not a true metric, only a pseudometric, but we call it a metric to
be consistent with existing literature on graphons. However, it is a metric on the set of
equivalence classes as derived from the equivalence relation in Definition 5 (iii).

We work with graphons defined on general σ-finite measure spaces, rather than graphons
on R+, since particular underlying spaces are more natural to consider for certain random
graphs or networks. However, the following proposition shows that every graphon is equivalent
to a graphon over R+.

Proposition 10 For each graphon W = (W,S ) there exists a graphon W ′ = (W ′,R+)
such that δ�(W,W ′) = 0.

The proof of the proposition follows a similar strategy as the proof of the analogous
result for probability spaces by Borgs, Chayes, and Lovász (2010, Theorem 3.2) and Janson
(2013, Theorem 7.1), and will be given in Appendix B. The proof uses in particular the result
that an atomless σ-finite Borel space is isomorphic to an interval equipped with Lebesgue
measure (Lemma 33).
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2.3 Graph Convergence

To define graph convergence in the cut metric, one traditionally (Borgs, Chayes, Lovász,
Sós, and Vesztergombi, 2006; Lovász and Szegedy, 2006; Borgs, Chayes, Lovász, Sós, and
Vesztergombi, 2008) embeds the set of graphs into the set of graphons via the following map.
Given any finite weighted graph G we define the canonical graphon WG = (WG, [0, 1]) as
follows. Let v1, . . . , vn be an ordering of the vertices of G. For any vi ∈ V (G) let αi > 0
denote the weight of vi, for any (vi, vj) ∈ E(G) let βij ∈ R denote the weight of the edge
(vi, vj), and for (vi, vj) 6∈ V (G) define βij = 0. By rescaling the vertex weights if necessary

we assume without loss of generality that
∑|V (G)|

i=1 αi = 1. If G is simple all vertices have
weight |V (G)|−1, and we define βij := 1(vi,vj)∈E(G). Let I1, . . . , In be a partition of [0, 1] into
adjacent intervals of lengths α1, . . . , αn (say the first one closed, and all others half open),
and finally define WG by

WG(x1, x2) = βij if x1 ∈ Ii and x2 ∈ Ij .

Note that WG depends on the ordering of the vertices, but that different orderings give
graphons with cut distance zero. We define a sequence of weighted, finite graphs Gn to be
sparse4 if ‖WGn‖1 → 0 as n→∞. Note that this generalizes the definition we gave in the
very beginning of Section 2 for simple graphs.

A sequence (Gn)n∈N of graphs is then defined to be convergent in metric if WGn is
a Cauchy sequence in the metric δ�, and it is said to be convergent to a graphon W if
δ�(WGn ,W) → 0. Equivalently, one can define convergence of (Gn)n∈N by identifying a
weighted graph G with the graphon (β(G),SG), where SG consists of the vertex set V (G)
equipped with the probability measure given by the weights αi (or the uniform measure if G
has no vertex weights), and β(G) is the function that maps (i, j) ∈ V (G)× V (G) to βij(G).

In the classical theory of graph convergence a sequence of sparse graphs converges to
the trivial graphon with W ≡ 0. This follows immediately from the fact that δ�(WGn , 0) ≤
‖WGn‖1 → 0 for sparse graphs. To address this problem, Bollobás and Riordan (2009) and
Borgs, Chayes, Cohn, and Zhao (2014a) considered the sequence of reweighted graphons
(WGn,r)n∈N, where WG,r := (WG,r, [0, 1]) with WG,r := 1

‖WG‖1W
G for any graph G, and

defined (Gn)n∈N to be convergent iff (WGn,r)n∈N is convergent. The theory developed in
the current paper considers a different rescaling, namely a rescaling of the arguments of the
function WG, which, as explained after Definition 11 below, is equivalent to rescaling the
measure of the underlying measurable space.

We define the stretched canonical graphon WG,s to be identical to WG except that
we “stretch” the function WG to a function WG,s such that ‖WG,s‖1 = 1. More precisely,
WG,s := (WG,s,R+), where

WG,s(x1, x2) :=

{
WG

(
‖WG‖1/21 x1, ‖WG‖1/21 x2

)
if 0 ≤ x1, x2 ≤ ‖WG‖−1/2

1 , and

0 otherwise.

4. Note that in the case of weighted graphs there are multiple natural definitions of what it means for a
sequence of graphs to be sparse or dense. Instead of considering the L1 norm as in our definition, one may
for example consider the fraction of edges with non-zero weight, either weighted by the vertex weights or
not. In the current paper we do not define what it means for a sequence of weighted graphs to be dense,
since it is not immediate which definition is most natural, and since the focus of this paper is sparse
graphs.
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Note that in the case of a simple graph G, each node in V (G) corresponds to an interval of
length 1/|V (G)| in the canonical graphon WG, while it corresponds to an interval of length
1/
√

2|E(G)| in the stretched canonical graphon.

It will sometimes be convenient to define stretched canonical graphons for graphs with
infinitely many vertices (but finitely5 many edges). Our definition of WG makes no sense
for simple graphs with infinitely many vertices, because they cannot all be crammed into
the unit interval. Instead, given a finite or countably infinite graph G with vertex weights
(αi)i∈V (G) which do not necessarily sum to 1 (and may even sum to ∞), we define a graphon

W̃G = (W̃G,R+) by setting W̃G(x, y) = βij(G) if (x, y) ∈ Ii × Ij , and W̃G(x, y) = 0 if
there exist no such pair (i, j) ∈ V (G)× V (G), with Ii being the interval [ai−1, ai) where we
assume the vertices of G have been labeled 1, 2, . . . , and ai =

∑
1≤k≤i αk for i = 0, 1, . . . .

The stretched canonical graphon will then be defined as the graphon WG,s := (WG,s,R+)
with

WG,s(x1, x2) := W̃G
(
‖W̃G‖1/21 x1, ‖W̃G‖1/21 x2

)
,

a definition which can easily be seen to be equivalent to the previous one if G is a finite
graph.

Alternatively, one can define a stretched graphon Gs as a graphon over V (G) equipped
with the measure µ̂G, where

µ̂G(A) =
1√

‖β(G)‖1

∑

i∈A
αi

for any A ⊆ V (G). In the case where
∑

i αi <∞, this graphon is obtained from the graphon
representing G by rescaling the probability measure

µG(A) =
1∑

i∈V (G) αi

∑

i∈A
αi

to the measure µ̂G, while the function β(G) : V (G)× V (G)→ R with (i, j) 7→ βij(G) is left
untouched.

Note that any graphon with underlying measure space R+ can be “stretched” in the
same way as WG; in other words, given any graphon W = (W,R+) we may define a graphon
(W φ,R+), where φ : R+ → R+ is defined to be the linear map such that ‖W φ‖1 = 1, except
when ‖W‖1 = 0, in which case we define the stretched graphon to be 0. But for graphons
over general measure spaces, this rescaling is ill-defined. Instead, we consider a different,
but related, notion of rescaling, by rescaling the measure of the underlying space, a notion
which is the direct generalization of our definition of the stretched graphon Gs.

Definition 11 (i) For two graphons Wi = (Wi,Si) with Si = (Si,Si, µi) for i = 1, 2,
define the stretched cut metric δs� by

δs�(W1,W2) := δ�(Ŵ1, Ŵ2),

5. More generally, in the setting of weighted graphs, we can allow for infinitely many edges as long as
‖β(G)‖1 <∞.
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where Ŵi := (Wi, Ŝi) with Ŝi := (Si,Si, µ̂i) and µ̂i := ‖Wi‖−1/2
1 µi. (In the particular

case where ‖Wi‖1 = 0, we define Ŵi := (0,Si).) Identifying G with the graphon W̃G

introduced above, this also defines the stretched distance between two graphs, or a graph
and a graphon.

(ii) A sequence of graphs (Gn)n∈N or graphons (Wn)n∈N is called convergent in the stretched
cut metric if they form a Cauchy sequence for this metric; they are called convergent
to a graphon W for the stretched cut metric if δs�(Gn,W) → 0 or δs�(Wn,W) → 0,
respectively.

Note that for the case of graphons over R+, the above notion of convergence is equivalent
to the one involving the stretched graphons Ws

i = (W s
i ,R+) of Wi defined by

W s
i (x1, x2) := Wi

(
‖Wi‖1/21 x1, ‖Wi‖1/21 x2

)
.

To see this, just note that by the obvious coupling between λ and µ̂i, where in this
case µ̂i is a constant multiple of Lebesgue measure, we have δ�(Ws

i , Ŵi) = 0, and hence
δs�(W1,W2) = δ�(Ws

1 ,Ws
2). As a consequence, we have in particular that δs�(G,G′) =

δ�(Gs, (G′)s) = δ�(WG,s,WG′,s) for any two graphs G and G′. Note also that the stretched
cut metric does not distinguish two graphs obtained from each other by deleting isolated
vertices, in the sense that

δs�(G,G′) = 0 (3)

whenever G is obtained from G′ by removing a set of vertices that have degree 0 in G′.
The following basic example illustrates the difference between the notions of convergence

in the classical theory of graphons, the approach for sparse graphs taken by Bollobás and
Riordan (2009) and Borgs, Chayes, Cohn, and Zhao (2014a), and the approach of the current
paper. Proposition 20 below makes this comparison more general.

Example 12 Let α ∈ (0, 1). For any n ∈ N let Gn be an Erdős-Rényi graph on n vertices
with parameter nα−1; i.e., each two vertices of the graph are connected independently with
probability nα−1. Let G̃n be a simple graph on n vertices, such that bn(1+α)/2c vertices form
a complete subgraph, and n − bn(1+α)/2c vertices are isolated. Both graph sequences are
sparse, and hence their canonical graphons converge to the trivial graphon for which W ≡ 0,

i.e., δ�(WGn , 0), δ�(WG̃n , 0)→ 0, where we let 0 denote the mentioned trivial graphon. The
sequence (Gn)n∈N converges to W1 := (1[0,1]2 , [0, 1]) with the notion of convergence introduced
by Bollobás and Riordan (2009) and Borgs, Chayes, Cohn, and Zhao (2014a), but does not
converge for δs�. The sequence (G̃n)n∈N converges to W1 for the stretched cut metric, i.e.,

δs�(G̃n,W1) = δ�(WG̃n,s,W1)→ 0, but it does not converge with the notion of convergence
studied by Bollobás and Riordan (2009) and Borgs, Chayes, Cohn, and Zhao (2014a).

The sequence (G̃n)n∈N defined above illustrates one of our motivations to introduce the
stretched cut metric. One might argue that this sequence of graphs should converge to the
same limit as a sequence of complete graphs; however, earlier theories for graph convergence
are too sensitive to isolated vertices or vertices with very low degree to accommodate this.

The space of all [0, 1]-valued graphons over [0, 1] is compact under the cut metric (Lovász
and Szegedy, 2007). This implies that every sequence of simple graphs is subsequentially
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convergent to some graphon under δ�, when we identify a graph G with its canonical graphon
WG. Our generalized definition of a graphon, along with the introduction of the stretched
canonical graphon WG,s and the stretched cut metric δs�, raises the question of whether a
similar result holds in this setting. We will see in Theorem 15 and Corollary 17 below that
the answer is yes, provided we restrict ourselves to uniformly bounded graphons and impose
a suitable regularity condition; see Definition 13. The sequence (Gn)n∈N in Example 12
illustrates that we may not have subsequential convergence when this regularity condition is
not satisfied.

Definition 13 Let W̃ be a set of uniformly bounded graphons. We say that W̃ has uniformly
regular tails if for every ε > 0 we can find an M > 0 such that for every W = (W,S ) ∈ W̃
with S = (S,S, µ), there exists U ∈ S such that ‖W −W1U×U‖1 < ε and µ(U) ≤M . A set
G of graphs has uniformly regular tails if ‖β(G)‖1 <∞ for all G ∈ G and the corresponding
set of stretched canonical graphons {WG,s : G ∈ G} has uniformly regular tails.

Remark 14 It is immediate from the definition that a set of simple graphs G has uniformly
regular tails if and only if for each ε > 0 we can find M > 0 such that the following holds.
For all G ∈ G, assuming the vertices of G are labeled by degree (from largest to smallest)
with ties resolved in an arbitrary way,

∑

i≤dM
√
|E(G)|e

deg(i;G) ≤ ε|E(G)|.

In Lemma 59 in Appendix F we will prove that for a set of graphs with uniformly
regular tails we may assume the sets U in the above definition correspond to sets of vertices.
Note that if a collection W̃ of graphons has uniformly regular tails, then every collection of
graphons which can be derived from W̃ by adding a finite number of the graphons to W̃ will
still have uniformly regular tails. In other words, if W̃ ,M, ε are such that the conditions of
Definition 13 are satisfied for all but finitely many graphons in W̃ , then the collection W̃
has uniformly regular tails.

The following theorem shows that a necessary and sufficient condition for subsequential
convergence is the existence of a subsequence with uniformly regular tails.

Theorem 15 Every sequence (Wn)n∈N of uniformly bounded graphons with uniformly reg-
ular tails converges subsequentially to some graphon W for the cut metric δ�. Moreover,
if Wn is non-negative then every δ�-Cauchy sequence of uniformly bounded, non-negative
graphons has uniformly regular tails.

The proof of the theorem will be given in Appendix E. The most challenging part of
the proof is to show that uniform regularity of tails implies subsequential convergence. We
prove in Lemma 58 that the property of having uniformly regular tails is invariant under
certain operations, which allows us to prove subsequential convergence similarly as in the
setting of dense graphs, i.e., by approximating the graphons by step functions and using a
martingale convergence theorem.

Two immediate corollaries of Theorem 15 are the following results.
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Corollary 16 The set of all [0, 1]-valued graphons is complete for the cut metric δ�, and
hence also for δs�.

Corollary 17 Let (Gn)n∈N be a sequence of finite graphs with non-negative, uniformly
bounded edge weights such that |E(Gn)| <∞ for each n ∈ N. Then the following hold:

(i) If (Gn)n∈N has uniformly regular tails, then (Gn)n∈N has a subsequence that converges
to some graphon W in the stretched cut metric.

(ii) If (Gn)n∈N is a δs�-Cauchy sequence, then it has uniformly regular tails.

(iii) If (Gn)n∈N is a δs�-Cauchy sequence, then it converges to some graphon W in the
stretched cut metric.

The former of the above corollaries makes two assumptions: (i) the graphons are uniformly
bounded, and (ii) the graphons are non-negative. We remark that both of these conditions
are necessary.

Remark 18 The set of all R+-valued graphons is not complete for the cut metric δ�; see for
example the argument of Borgs, Chayes, Cohn, and Zhao (2014a, Proposition 2.12(b)) for a
counterexample. The set of all [−1, 1]-valued graphons is also not complete, as the following
example suggested to us by Svante Janson illustrates. For each n ∈ N let Vn = (Vn,R+) be
a {−1, 1}-valued graphon supported in [n − 1, n]2 satisfying ‖Vn‖� < 2−n and ‖Vn‖1 = 1,
by defining Vn to be an appropriately rescaled version of a graphon for a sufficiently large
Erdős-Rényi random graph with edge density 1/2. DefineWn = (Wn,R+) by Wn :=

∑n
k=1 Vk,

and assume there is a graphon W = (W,R+) such that limn→∞ δ�(W,Wn) = 0. Then we
can find a sequence of measure-preserving transformations (φn)n∈N with φn : R+ → R+,
such that limn→∞ ‖W φn −Wn‖� = 0. This implies that limn→∞ ‖W φn1[k−1,k]2 − Vk‖� = 0
for each k ∈ N. Since Vk is a graphon associated with an Erdős-Rényi random graph it
is a step graphon. For any intervals I, J ⊆ R+ such that Vk|I×J = 1 or Vk|I×J = −1
we have limn→∞ ‖(W φn1[k−1,k]2 − Vk)1I×J‖� = 0, so since W takes values in [−1, 1] we

have limn→∞ ‖W φn‖L1(I×J) = ‖Vk‖L1(I×J). Since ‖Vk‖L1([k−1,k]2) = 1 this implies that

limn→∞ ‖W φn‖L1([k−1,k]2) = 1. We have obtained a contradiction to the assumption that W
is a graphon, since for each n ∈ N we have ‖W‖1 ≥

∑∞
k=1 ‖W φn‖L1([k−1,k]2).

Remark 19 For comparison, Lovász and Szegedy (2007, Theorem 5.1) proved that [0, 1]-
valued graphons on the probability space [0, 1] (and hence any probability space) form a
compact metric space under δ�. Compactness fails in our setting, because convergence
requires uniformly regular tails, but completeness still holds.

Our next result compares the theory of graph convergence developed by Borgs, Chayes,
Cohn, and Zhao (2014a,b) with the theory developed in this paper. First we will define
the rescaled cut metric δr�. A sequence of graphs is convergent in the sense considered by
Borgs, Chayes, Cohn, and Zhao (2014a,b) iff it converges for this metric. For two graphons
W1 = (W1,S1) and W2 = (W2,S2), where S1 and S2 are measure spaces of the same total

measure, define W̃1 := ‖W1‖−1
1 W1, W̃2 := ‖W2‖−1

1 W2, and

δr�(W1,W2) := inf
µ
‖W̃ π1

1 − W̃
π2
2 ‖�,S1×S2,µ,
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where we take the infimum over all measures µ on S1 × S2 with marginals µ1 and µ2,
respectively. For any graphs G and G′ we let WG and WG′ , respectively, denote the
canonical graphons associated with G and G′, and for any graphon W we define

δr�(G,W) := δr�(WG,W), δr�(G,G′) := δr�(WG,WG′).

For the notion of convergence studied by Borgs, Chayes, Cohn, and Zhao (2014a), uniform
upper regularity plays a similar role to that of regularity of tails in the current paper. More
precisely, subsequential uniform upper regularity for a sequence of graphs or graphons defined
over a probability space is equivalent to subsequential convergence to a graphon for the
metric δr� (Borgs, Chayes, Cohn, and Zhao, 2014a, Appendix C). The primary conceptual
difference is that the analogue of Corollary 16 does not hold in the theory studied by Borgs,
Chayes, Cohn, and Zhao (2014a).

We will now define what it means for a sequence of graphs or graphons to be uniformly
upper regular. A partition of a measurable space (S,S) is a finite collection P of disjoint
elements of S with union S. For any graphonW = (W,S ) with S = (S,S, µ) and a partition
P of (S,S) into parts of nonzero measure, define WP by averaging W over the partitions.
More precisely, if P = {Ii : i = 1, . . . ,m} for some m ∈ N, define WP := ((W )P ,S ), where

(WP)(x1, x2) :=
1

µ(Ii)µ(Ij)

∫

Ii×Ij
W (x′1, x

′
2) dx′1 dx

′
2 if (x1, x2) ∈ Ii × Ij .

A sequence (Wn)n∈N of graphons Wn = (Wn,Sn) over probability spaces Sn = (Sn,Sn, µn)
is uniformly upper regular if there exists a function K : (0,∞) → (0,∞) and a sequence
{ηn}n∈N of positive real numbers converging to zero, such that for every ε > 0, n ∈ N, and
partition P of Sn such that the µn-measure of each part is at least ηn, we have

‖(Wn)P1|(Wn)P |≥K(ε)‖1 ≤ ε.

For any graph G define the rescaled canonical graphon WG,r = (WG,r, [0, 1]) of G to be
equal to the canonical graphon WG of G, except that we rescale the graphon such that
‖WG,r‖1 = 1. More precisely, we define WG,r := (WG,r, [0, 1]) with WG,r := ‖WG‖−1

1 WG.
We say that a sequence of graphs (Gn)n∈N is uniformly upper regular if (WGn,r)n∈N is
uniformly upper regular, where we only consider partitions P corresponding to partitions of
V (Gn), and we require every vertex of Gn to have weight less than a fraction ηn of the total
weight of V (Gn).

The following proposition, which will be proved in Appendix F, illustrates the very
different nature of the sparse graphs studied by Borgs, Chayes, Cohn, and Zhao (2014a,b)
and the graphs studied in this paper.

Proposition 20 Let (Gn)n∈N be a sequence of simple graphs satisfying |V (Gn)| < ∞ for
each n ∈ N.

(i) If (Gn)n∈N is sparse it cannot both be uniformly upper regular and have uniformly
regular tails; hence it cannot converge for both metrics δs� and δr� if it is sparse.

(ii) Assume (Gn)n∈N is dense and has convergent edge density. Then (Gn)n∈N is a Cauchy
sequence for δs� iff it is a Cauchy sequence for δr�. If we do not assume convergence
of the edge density, being a Cauchy sequence for δr� (resp. δs�) does not imply being a
Cauchy sequence for δs� (resp. δr�).
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Many natural properties of graphons are continuous under the cut metric, for example
certain properties related to the degrees of the vertices. For graphons defined on probability
spaces it was shown by Borgs, Chayes, Cohn, and Ganguly (2015, Section 2.6) that the
appropriately normalized degree distribution is continuous under the cut metric. A similar
result holds in our setting, but the normalization is slightly different: instead of the
proportion of vertices whose degrees are at least λ times the average degree, we will consider
a normalization in terms of the square root of the number of edges. Given a graph G and
vertex v ∈ V (G), let dG(v) denote the degree of v, and given a graphon W = (W, (S,S, µ)),
define the analogous function DW : S → R by

DW (x) =

∫

S
W (x, y) dµ(y).

The following proposition is an immediate consequence of Lemma 45 in Appendix A, which
compares the functions DW1 and DW2 for graphons that are close in the cut metric.

Proposition 21 Let Wn = (Wn, (Sn,Sn, µn)) be a sequence of graphons that converge to a
graphon W = (W, (S,S, µ)) in the cut metric δ�, and let λ > 0 be a point where the function
λ 7→ µ({DW > λ}) is continuous. Then µn({DWn > λ})→ µ({DW > λ}). In particular,

1√
2|E(Gn)|

∣∣∣
{
v ∈ V (Gn) : dGn(v) > λ

√
2|E(Gn)|

}∣∣∣→ µ({DW s > λ})

whenever Gn is a sequence of finite simple graphs that converge to a graphon Ws in the
stretched cut metric and µ({DW s > λ}) is continuous at λ.

Our final result in this section, which will be proved in Appendix F, is that graphs
which converge for the stretched cut metric have unbounded average degree under certain
assumptions, a result which also holds for graphs that converge under the rescaled cut metric
(Borgs, Chayes, Cohn, and Zhao, 2014a, Proposition C.15).

Proposition 22 Let (Gn)n∈N be a sequence of finite simple graphs such that the number
of isolated vertices in Gn is o(|E(Gn)|) and such that limn→∞ |E(Gn)| = ∞. If there is a
graphon W such that limn→∞ δ

s
�(Gn,W) = 0, then (Gn)n∈N has unbounded average degree.

The proof of the proposition proceeds by showing that graphs with bounded average
degree and a divergent number of edges cannot have uniformly regular tails.

2.4 Random Graph Models

In this section we will present two random graph models associated with a given [0, 1]-valued
graphon W = (W,S ) with S = (S,S, µ).

Before defining these models, we introduce some notation. In particular, we will introduce
the notion of a graph process, defined as a stochastic process taking values in the set of
labeled graphs with finitely many edges and countably many vertices, equipped with a
suitable σ-algebra. Explicitly, consider a family of graphs G = (Gt)t≥0, where the vertices
have labels in N. Let G denote the set of simple graphs with finitely many edges and
countably many vertices, such that the vertices have distinct labels in N. Observe that a
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graph in this space can be identified with an element of {0, 1}N∪(
N
2). We equip {0, 1}N∪(

N
2)

with the product topology and G with the subspace topology T. Recall that a stochastic
process is càdlàg if it is right-continuous with a left limit at every point. Observe that the
topological space (G,T) is Hausdorff, which implies that a convergent sequence of graphs
has a unique limit. The σ-algebra on G is the Borel σ-algebra induced by T.

Definition 23 A graph process is a càdlàg stochastic process G = (Gt)t≥0 taking values
in the space of graphs G equipped with the topology T defined above. The process is called
projective if for all s < t, Gs is an induced subgraph of Gt.

We now define the graphon process already described informally in the introduction.
Sample a Poisson random measure V on R+ × S with intensity given by λ× µ (see the book
of Çınlar, 2011, Chapter VI, Theorem 2.15), and identify V with the collection of points
(t, x) at which V has a point mass.6 Let G̃ be a graph with vertex set V, such that for each
pair of vertices v1 = (t1, x1) and v2 = (t2, x2) with v1 6= v2, there is an edge between v1 and
v2 with probability W (x1, x2), independently for any two v1, v2. Note that G̃ is a graph with
countably infinitely many vertices, and that the set of edges is also countably infinite except
if W is equal to 0 almost everywhere. For each t ≥ 0 let G̃t be the induced subgraph of G̃
consisting only of the vertices (t′, x) for which t′ ≤ t. Finally define Gt to be the induced
subgraph of G̃t consisting only of the vertices having degree at least one. While G̃t is a
graph on infinitely many vertices if µ(S) =∞, it has finitely many edges almost surely, and
thus Gt is a graph with finitely many vertices. We view the graphs Gt and G̃t as elements
of G by enumerating the points of V in an arbitrary but fixed way.

When µ(S) < ∞ the set of graphs {G̃t : t ≥ 0} considered above is identical in law
to a sequence of W-random graphs as defined by Lovász and Szegedy (2006) for graphons
over [0, 1] and, for example, by Bollobás, Janson, and Riordan (2007) for graphons over
general probability spaces. More precisely, defining a stopping time tn as the first time when
|V (G̃t)| = n and relabeling the vertices in V (G̃tn) by labels in [n], we have that the sequence
{G̃tn : n ∈ N} has the same distribution as the sequence of random graphs generated from
W, except for the fact that µ should be replaced by the probability measure µ̃ = 1

µ(S)µ, a
fact which follows immediately from the observation that a Poisson process with intensity
tµ conditioned on having n points is just a distribution of n points chosen i.i.d. from the
distribution µ̃. In the case when µ(S) =∞ it is primarily the graphs Gt (rather than G̃t)
which are of interest for applications, since the graphs G̃t have infinitely many (isolated)
vertices. But from a mathematical point of view, both turn out to be useful.

Definition 24 Two graph processes (G1
t )t≥0 and (G2

t )t≥0 are said to be equal up to relabeling
of the vertices if there is a bijection φ :

⋃
t≥0 V (G1

t )→
⋃
t≥0 V (G2

t ) such that φ(G1
t ) = G2

t

for all t ≥ 0, where φ(G1
t ) is the graph whose vertex and edge sets are {φ(i)}i∈V (Gt) and

6. We see that this collection of points exists by observing that for any measurable set A ⊂ R+ × S of finite
measure, we may sample {(t, x) ∈ V ∩ A} by first sampling the total number of points NA ∈ N ∪ {0}
in the set (which is a Poisson random variable with parameter µ(A)), and then sampling NA points
independently at random from A using the measure µ|A renormalized to be a probability measure. Note
that our Poisson random measure is not necessarily a random counting measure as defined for example
by Çınlar (2011), since in general, not all singletons (t, x) are measurable, unless we assume that the
singletons {x} in S are measurable.
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{φ(i)φ(j)}ij∈E(Gt), respectively. Two graph processes (G1
t )t≥0 and (G2

t )t≥0 are said to be
equal in law up to relabeling of the vertices if they can be coupled in such a way that a.s.,
the two families are equal up to relabeling of the vertices.

Note that in order for the notion of “equal in law up to relabeling of the vertices” to be
well defined, one needs to show that the event that two graph processes (Gt)t≥0 and (G̃t)t≥0

are equal up to relabeling is measurable. The proof of this fact is somewhat technical and
will be given in Appendix C.

Definition 25 Let W = (W,S ) be a [0, 1]-valued graphon. Define G̃(W) = (G̃t(W))t≥0

(resp. G(W) = (Gt(W))t≥0) to be a random family of graphs with the same law as the graphs

(G̃t)t≥0 (resp. (Gt)t≥0) defined above.

(i) A random family of simple graphs is called a graphon process without isolated vertices
generated by W if it has the same law as G(W) up to relabeling of the vertices, and it
is called a graphon process with isolated vertices generated by W if it has the same
law as G̃(W) up to relabeling of the vertices.

(ii) A random family G̃ = (G̃t)t≥0 of simple graphs is called a graphon process if there

exists a graphon W such that after removal of all isolated vertices, G̃ has the same law
as G(W) up to relabeling of the vertices.

If G = (Gt)t≥0 is a graphon process, then we refer to Gt as the graphon process at time t.

Given a graphon W = (W,S ) one can define multiple other natural random graph
models; see below. However, the graph models of Definition 25 have one property which
sets them apart from these models: exchangeability. To formulate this, we first recall that
a random measure ξ in the first quadrant R2

+ is jointly exchangeable iff for every h > 0,
permutation σ of N, and i, j ∈ N,

ξ(Ii × Ij)
d
= ξ(Iσ(i) × Iσ(j)), where Ik := [h(k − 1), hk].

Here
d
= means equality in distribution, and, as usual, a random measure on R2

+ is a measure
drawn from some probability distribution over the set of all Borel measures on R2

+, equipped
with the minimal σ-algebra for which the functions µ 7→ µ(B) are measurable for all Borel
sets B.

To relate this notion of exchangeability to a property of a graphon process, we will assign
a random measure ξ(G) to an arbitrary projective graph process G = (Gt)t≥0. Defining the
birth time tv of a vertex v ∈ V (G) as the infimum over all times t such that v ∈ V (Gt), we
define a random measure ξ = ξ(G) on R2

+ by

ξ(G) :=
∑

(u,v)∈E(G)

δ(tu,tv), (4)

where each edge (u, v) = (v, u) is counted twice so that the measure is symmetric. If G is a
graphon process with isolated vertices, i.e., G = G̃(W) for some graphon W , it is easy to see
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that at any given time, at most one vertex is born, and that at time t = 0, Gt is empty. In
other words,

V (G0) = ∅ and |V (Gt)\V (Gt−)| ≤ 1 for all t > 0. (5)

It is not that hard to check that the measure ξ is jointly exchangeable if G is a graphon
process with isolated vertices7 generated from some graphon W. But it turns out that the
converse is true as well, provided the sequence has uniformly regular tails. The following
theorem will be proved in Appendix G, and as with Caron and Fox (2014) we will rely on
the Kallenberg theorem for jointly exchangeable measures (Kallenberg, 2005, Theorem 9.24)
for this description. Veitch and Roy (2015) have independently formulated and proved a
similar theorem, except that their version does not include integrability of the graphon or
uniform tail regularity of the sequence of random graphs.

Before stating our theorem, we note that given a locally finite symmetric measure ξ
that is a countable sum of off-diagonal, distinct atoms of weight one in the interior of R2

+,
we can always find a projective family of simple graphs Gt obeying the condition (5) and
the other assumptions we make above, and that up to vertices which stay isolated for all
times, this family of graphs is uniquely determined by ξ up to relabeling of the vertices. Any
projective family of countable simple graphs G with finitely many edges at any given time
can be transformed into one obeying the condition (5) (by letting the vertices appear in the
graph Gt exactly at the time they were born and merging vertices born at the same time,
and then labeling vertices by their birth time), provided the measure ξ(G) has only point
masses of weight one, and has no points on the diagonal and the coordinate axes.

Theorem 26 Let G̃ = (G̃t)t≥0 be a projective family of random simple graphs which satisfy

(5), and define ξ = ξ(G̃) by (4). Then the following two conditions are equivalent:

(i) The measure ξ is a jointly exchangeable random measure and (G̃t)t≥0 has uniformly
regular tails.

(ii) There is a R+-valued random variable α such that Wα = (Wα,R+) is a [0, 1]-valued
graphon almost surely, and such that conditioned on α, (G̃t)t≥0 (modulo vertices that

are isolated for all t ≥ 0) has the law of G̃(Wα) up to relabeling of the vertices.

Recall that we called two graphons equivalent if their distance in the cut metric δ� is
zero. The following theorem shows that this notion of equivalence is the same as equivalence
of the graphon process generated from two graphons, in the sense that the resulting random
graphs have the same distribution. Note that in (ii) we only identify the law of G̃t up to
vertices that are isolated for all times; it is clear that if we extend the underlying measure
space S and extend W trivially to this measure space, the resulting graphon is equivalent
to W and the law of the graphs Gt remains unchanged, while the law of G̃t might change
due to additional isolated vertices.

7. This is one of the instances in which the family G̃(W) is more useful that the family G(W): the latter

only contains information about when a vertex first appeared in an edge in G̃(W), and not information
about when it was born.
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Theorem 27 For i = 1, 2 let Wi = (Wi,Si) be [0, 1]-valued graphons, and let (G̃it)t≥0 and
(Git)t≥0 be the graphon processes generated from Wi with and without, respectively, isolated
vertices. Then the following statements are equivalent:

(i) δ�(W1,W2) = 0.

(ii) After removing all vertices which are isolated for all times, (G̃1
t )t≥0 and (G̃2

t )t≥0 are
equal in law up to relabeling of the vertices.

(iii) (G1
t )t≥0 and (G2

t )t≥0 are equal in law up to relabeling of the vertices.

The theorem will be proved in Appendix D. We show that (i) implies (ii) and (iii) by
using Proposition 51, which says that the infimum in the definition of δ� is attained under
certain assumptions on the underlying graphons. We show that (ii) or (iii) imply (i) by
using Theorem 28(i).

As indicated before, in addition to the graphon processes defined above, there are several
other natural random graph models generated from a graphon W. Consider a sequence of
probability measures (µn)n∈N on (S,S), and construct a sequence of random graphs Gn as
follows. Start with a single vertex (1, x1) with x1 sampled from µ1. In step n, sample xn from
µn, independently from all vertices and edges sampled so far, and for each i = 1, . . . k, add an
edge between (i, xi) and (n, xn) with probability W (xi, xn), again independently for each i
(and independently of all vertices and edges chosen before). Alternatively, sample an infinite
sequence of independent features x1, x2, . . . distributed according to µ1, µ2, . . . , and let G be
the graph on infinitely many vertices with vertex set identified with {(n, xn) : n ∈ N}, such
that for any two n1, n2 ∈ N there is an edge between (n1, xn1) and (n2, xn2) independently
with probability W (xn1 , xn2). For each n ∈ N let Gn be the induced subgraph of G consisting
only of the vertices (k, xk) for which k ≤ n.

It was proven by Borgs, Chayes, Lovász, Sós, and Vesztergombi (2008) that dense
W-random graphs generated from graphons on probability spaces converge to W. The
following theorem generalizes this to graphon processes, as well as for the alternative model
defined in terms of a suitable sequence of measures µn.

Theorem 28 Let W = (W,S ) with S = (S,S, µ) be a [0, 1]-valued graphon. Then the
following hold:

(i) Almost surely limt→∞ δ
s
�(W, G̃t(W)) = 0 and limt→∞ δ

s
�(W, Gt(W)) = 0.

(ii) Let (Gn)n∈N be the sequence of simple graphs generated from W with arrival probabili-
ties µn := µ(Sn)−1µ|Sn as described above, where we assume

⋃
n∈N Sn = S, Sn ⊆ Sn+1,

and 0 < µ(Sn) <∞ for all n ∈ N, and W is not equal to 0 almost everywhere. Then
a.s.-limn→∞ δ

s
�(W, Gn) = 0 if and only if

∑∞
n=1 µ(Sn)−1 =∞.

We will prove the theorem in Appendix D. Part (i) of the theorem is proved by observing
that for any set A ⊆ S of finite measure, the induced subgraph of G̃t consisting of the vertices
with feature in A has the law of a graph generated from a graphon over a probability space.
This implies that we can use convergence results for dense graphs to conclude the proof. In
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our proof of part (ii) we first show that the condition on Sn is necessary for convergence, by
showing that otherwise E(Gn) is empty for all n ∈ N with positive probability. We show
that the condition on Sn is sufficient by constructing a coupling of (Gn)n∈N and a graphon
process (G̃t)t≥0.

2.5 Left Convergence

Left convergence is a notion of convergence where we consider subgraph counts of small
test graphs. Existing literature defines left convergence both for dense graphs (Lovász and
Szegedy, 2006) and for bounded degree graphs (Borgs, Chayes, Kahn, and Lovász, 2013),
with a different renormalization factor to adjust for the difference in edge density. We will
operate with a definition of subgraph density with an intermediary renormalization factor,
to take into account that our graphon process satisfies ω(|V (Gt)|) = |E(Gt)| = O(|V (Gt)|2).
For dense graphs our definition of left convergence coincides with the standard definition in
the theory of dense graphs.

For a simple graph F and a simple graph G define hom(F,G) to be the number of
adjacency preserving maps φ : V (F )→ V (G), i.e., maps φ such that if (v1, v2) ∈ E(F ), then
(φ(v1), φ(v2)) ∈ E(G), and define inj(F,G) be the number of such maps that are injective.

Define the rescaled homomorphism density h(F,G) and the rescaled injective homomor-
phism density hinj(F,G) of F in G by

h(F,G) :=
hom(F,G)

(2|E(G)|)|V (F )|/2 and hinj(F,G) :=
inj(F,G)

(2|E(G)|)|V (F )|/2 .

For any [0, 1]-valued graphon W = (W,S ) we define the rescaled homomorphism density of
F in W by

h(F,W) := ‖W‖−|V (F )|/2
1

∫

S|V (F )|

∏

(i,j)∈E(F )

W (xi, xj) dx1 . . . dx|V (F )|.

Note that in general, h(F,W) need not be finite. Take, for example, W = (W,R+) to be a
graphon of the form

W (x, y) =

{
1 if y ≤ f(x), and

0 otherwise,

where

f(x) =

{
x−1/2 if 0 ≤ x ≤ 1, and

x−2 if x ≥ 1.

Let DW (x) =
∫
R+
W (x, y) dy. Then DW is in L1(R+), but not in Lk(R+) for any k ≥ 2.

Thus if F is a star with k ≥ 2 leaves, then h(F,W) := ‖W‖−(k+1)/2
1

∫
R+
Dk
W (x)dx = ∞.

Proposition 30(ii) below, whose proof is based on Lemma 62 in Appendix H, gives one
criterion which guarantees that h(F,W) <∞ for all simple connected graphs F .

Definition 29 A sequence (Gn)n∈N is left convergent if its edge density is converging, and
if for every simple connected graph F with at least two vertices, the limit limn→∞ h(F,Gn)
exists and is finite. Left convergence is defined similarly for a continuous-time family of
graphs (Gt)t≥0.
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For dense graphs left convergence is equivalent to metric convergence (Borgs, Chayes,
Lovász, Sós, and Vesztergombi, 2008). This equivalence does not hold for our graphs, but
convergence of subgraph densities (possibly with an infinite limit) does hold for graphon
processes.

Proposition 30 (i) If W = (W,S ) is a [0, 1]-valued graphon and (Gt)t>0 is a graphon
process, then for every simple connected graph F with at least two vertices,

lim
t→∞

hinj(F,Gt) = h(F,W) ∈ [0,∞]

almost surely.

(ii) In the setting of (i), if DW (x) :=
∫
SW (x, x′) dµ(x′) is in Lp for all p ∈ [1,∞), then

h(F,W) <∞ for every simple connected graph F with at least two vertices and

lim
t→∞

h(F,Gt) = lim
t→∞

hinj(F,Gt) = h(F,W)

almost surely, so in particular (Gt)t>0 is left convergent.

(iii) Assume (Gn)n∈N is a sequence of simple graphs with bounded degree such that

lim
n→∞

|V (Gn)| =∞

and E(Gn) 6= ∅ for all sufficiently large n. Then (Gn)n∈N is trivially left convergent,
and limn→∞ h(F,Gn) = 0 for every connected F for which |V (F )| ≥ 3.

(iv) Left convergence does not imply convergence for δs�, and convergence for δs� does not
imply left convergence.

The proposition will be proved in Appendix H. Part (i) is immediate from Proposition 56,
which is proved using martingale convergence and that inj(F,G−t) appropriately normalized
evolves as a backwards martingale. Part (ii) is proved by using that h(F,Gt) and hinj(F,Gt)
are not too different under certain assumptions on the underlying graphon. Part (iii) is
proved by bounding hom(F,Gn) from above, and part (iv) is proved by constructing explicit
counterexamples.

Remark 31 While we stated the above proposition for graphons, i.e., for the case when
W ∈ L1, the main input used in the proof, Proposition 56 below, does not require an integrable
W , but just the measurability of the function W : S × S → [0, 1].
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Appendix A. Cut Metric and Invariant Lp Metric

The main goal of this appendix is to prove Proposition 6, which says that δ� and δ1 are
well defined and pseudometrics. In the course of our proof, we will actually generalize this
proposition, and show that it can be extended to the invariant Lp metric δp, provided the
two graphons are non-negative and in Lp.

We start by defining the distance δp(W1,W2) for two such graphons W1 = (W1,S1)
and W2 = (W1,S2) over two spaces S1 = (S1,S1, µi) and S2 = (S2,S2, µ2) of equal total
measure, in which case we set

δp(W1,W2) := inf
µ
‖W π1

1 −W
π2
2 ‖p,S1×S2,µ,

where, as before, π1 and π2 are the projections from S1 × S2 to S1 and S2, respectively, and
the infimum is over all couplings µ of µ1 and µ2. If µ1(S1) 6= µ2(S2) we define δp(W1,W2)

by trivially extending W1 and W2 to two graphons W̃1 and W̃2, respectively, over measure
spaces of equal measure, and defining δp(W1,W2) := δp(W̃1, W̃2), just as in Definition 5 (ii).

Proposition 32 For i = 1, 2, let Wi = (Wi,Si) be non-negative graphons over Si =
(Si,Si, µi) with Wi ∈ Lp(Si × Si) for some p ∈ (1,∞). Then δp(W1,W2) is well defined. In

particular, δp(W1,W2) does not depend on the choice of extensions W̃1 and W̃2. Furthermore,
δp is a pseudometric on the space of non-negative graphons in Lp.

We will prove Proposition 32 at the same time as Proposition 6. We will also establish an
estimate (Lemma 44) saying that two graphons are close in the cut metric if we obtain one
from the other by slightly modifying the measure of the underlying measure space. Finally
we state and prove a lemma, Lemma 45, that immediately implies Proposition 21.

The following lemma will be used in the proof of Propositions 10 and 48. The analogous
result for probability spaces can for example be found in a paper by Janson (2013, Theorem
A.7), and the extension to σ-finite measure spaces is straightforward.

Lemma 33 Let S = (S,S, µ) be an atomless σ-finite Borel space. Then S is isomorphic
to ([0, µ(S)),B, λ), where B is the Borel σ-algebra and λ is Lebesgue measure.

Proof For µ(S) < ∞, this holds because every atomless Borel probability space is iso-
morphic to [0, 1] equipped with the Borel σ-algebra and Lebesgue measure (Janson, 2013,
Theorem A.7). For µ(S) = ∞ we use that by the hypotheses of σ-finiteness there exist
disjoint sets Sk ∈ S for k ∈ N such that S =

⋃∞
k=1 Sk and µ(Sk) < ∞ for all k ∈ N. For

each k ∈ N we can find isomorphisms φ : [0, µ(Sk)]→ [0, µ(Sk)) and φ̃ : Sk → [0, µ(Sk)]. It
follows by considering the composed map φ ◦ φ̃ that Sk is isomorphic to [0, µ(Sk)). The
lemma follows by constructing an isomorphism from S to R+ where each set Sk is mapped
onto an half-open interval of length µ(Sk).

The first statement of Proposition 6, i.e., the existence of a coupling, follows directly
from the following more general result.
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Lemma 34 For k = 1, 2 let Sk = (Sk,Sk, µk) be a σ-finite measure space such that
µ1(S1) = µ2(S2) ∈ (0,∞]. Let Dk ∈ Sk, and let µ̃ be a measure on the product space
D1×D2, where Dk is equipped with the induced σ-algebra from Sk. Assume the marginals µ̃1

and µ̃2 of µ̃ are bounded above by µ1|D1 and µ2|D2 , respectively, and that either D1 = D2 = ∅
or µk(Sk \Dk) =∞ for k = 1, 2. Then there exists a coupling µ of S1 and S2, such that
µ|D1×D2 = µ̃.

Proof First we consider the case when D1 = D2 = ∅. If µ1(S1) = µ2(S2) < ∞ we define
µ to be proportional to the product measure of µ1 and µ2. Explicitly, for A ∈ S1 and
B ∈ S2, we set µ(A×B) = µ1(A)µ2(B)/µ1(S1). This clearly gives µ(S1 ×B) = µ2(B) and
µ(A× S2) = µ1(A), as required.

If µ1(S1) = µ2(S2) =∞, we consider partitions of S1 and S2 into disjoint sets of finite
measure, with Sk =

⋃
i≥1A

k
i for k = 1, 2. Let I1, I2, . . . and J1, J2, . . . be decomposi-

tions of [0,∞) into adjacent intervals of lengths µ1(A1
1), µ1(A1

2), . . . and µ2(A2
1), µ2(A2

2), . . . ,
respectively. We then define a measure µ on (S1 × S2,S1 × S2) by

µ(A×B) =
∑

i,j≥1

λ(Ii ∩ Ij)
λ(Ii)λ(Jj)

µ1(A ∩A1
i )µ2(B ∩A2

j ), for A ∈ S1, B ∈ S2.

As a weighted sum of product measures, µ is a measure, and inserting A = S1 or B = S2,
one easily verifies that µ has marginals µ1 and µ2. This completes the proof of the lemma
in the case that D1 = D2 = ∅.

Now we consider the general case. Decomposing D1 and D2 into disjoint sets of finite

mass with respect to µ1 and µ2, Dk =
⋃
i≥1D

k
i with µk(D

k
i ) <∞, we define measures µ̂

(`)
k

on Sk for k, ` = 1, 2 by

µ̂
(1)
1 (A) =

1

2
µ1(A ∩ (S1\D1)) for all A ∈ S1,

µ̂
(1)
2 (B) =

1

2
µ2(B ∩ (S2\D2)) +

∑

i≥1

[
µ2(B ∩D2

i )− µ̃2(B ∩D2
i )
]

for all B ∈ S2,

µ̂
(2)
1 (A) =

1

2
µ1(A ∩ (S1\D1)) +

∑

i≥1

[
µ1(A ∩D1

i )− µ̃1(A ∩D1
i )
]

for all A ∈ S1, and

µ̂
(2)
2 (S1) =

1

2
µ2(B ∩ (S2\D2)) for all B ∈ S2.

Note that µ̂
(`)
1 (S1) = µ̂

(`)
2 (S2) = ∞ for ` = 1, 2 by our assumption µk(Sk\Dk) = ∞ for

k = 1, 2. By the result for the case D1 = D2 = ∅, for ` = 1, 2, we can find couplings

µ̂(`) of µ̂
(`)
1 and µ̂

(`)
2 on S1 × S2. Extending the measure µ̃ to a measure on S1 × S2 by

assigning measure 0 to all sets which have an empty intersection with D1 ×D2, the measure
µ := µ̂(1) + µ̂(2) + µ̃ has the appropriate marginals. To see that µ|D1×D2 = µ̃, we note that

µ̂(1)(D1 × S2) = µ̂
(1)
1 (D1) = 0 and µ̂(2)(S1 ×D2) = µ̂

(2)
2 (D2) = 0, implying in particular that

µ̂(1)(D1 ×D2) = µ̂(2)(D1 ×D2) = 0.
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Corollary 35 For k = 1, 2 let Sk = (Sk,Sk, µk) be a σ-finite measure space such that
µ1(S1) = µ2(S2) ∈ (0,∞], and let µ be a coupling of µ1 and µ2. Let Dk ∈ Sk be such
that µ(D1 × (S2 \ D2)) = µ((S1 \ D1) × D2) ∈ (0,∞]. Then there exists a coupling µ̃ of
µ1 and µ2 such that µ̃ is supported on (D1 ×D2) ∪ ((S1 \D1)× (S2 \D2)) and µ̃ ≥ µ on
(D1 ×D2) ∪ ((S1 \D1)× (S2 \D2)).

Proof Let µ′ be the restriction of µ to (D1 × D2) ∪ ((S1 \ D1) × (S2 \ D2)), let µ′1
and µ′2 be its marginals, and let δi = µi − µ′i. Then δ1(D1) = µ(D1 × (S2 \ D2)) and
δ2(D2) = µ((S1 \D1)×D2) = δ1(D1) by the hypotheses of the corollary. In a similar way,
δ1(S1 \D1) = µ((S1 \D1)×D2) = δ2(S2 \D2). With the help of the previous lemma, and
considering the domains D1 ×D2 and (S1 \D1)× (S2 \D2) separately, we then construct a
coupling δ of δ1 and δ2 that has support on (D1 ×D2) ∪ ((S1 \D1)× (S2 \D2)). Setting
µ̃ = µ′ + δ we obtain the statement of the corollary.

The following basic lemma will be used multiple times throughout this appendix. The
analogous result for probability spaces can be found for example in a paper by Janson (2013,
Lemma 6.4).

Lemma 36 Let p ≥ 1, let Si = (Si,Si, µi) for i = 1, 2 be such that µ1(S1) = µ2(S2), and
let W1 = (W1,S1), W ′1 = (W ′1,S1), and W2 = (W2,S2) be graphons in Lp. Defining δ�
and δp as in Definition 5(i), we have

δ�(W1,W2) ≤ δ�(W ′1,W2) + ‖W1 −W ′1‖� ≤ δ�(W ′1,W2) + ‖W1 −W ′1‖1

and
δp(W1,W2) ≤ δp(W ′1,W2) + ‖W1 −W ′1‖p.

Proof The second bound on δ�(W1,W2) is immediate, so the rest of the proof will consist
of proving the first bound on δ�(W1,W2) as well as the bound on δp(W1,W2). Let µ be a
measure on (S1×S2,S1×S2) with marginals µ1 and µ2, respectively, and let πi : S1×S2 → Si
denote projections for i = 1, 2. Since ‖ · ‖� clearly satisfies the triangle inequality,

δ�(W1,W2) ≤ ‖W π1
1 −W

π2
2 ‖�,S1×S2,µ

≤ ‖(W ′1)π1 −W π2
2 ‖�,S1×S2,µ + ‖(W ′1)π1 −W π1

1 ‖�,S1×S2,µ

= ‖(W ′1)π1 −W π2
2 ‖�,S1×S2,µ + ‖W ′1 −W1‖�,S1,µ1 .

The desired result follows by taking an infimum over all couplings. The bound on δp(W1,W2)
follows in the same way from the triangle inequality for ‖ · ‖p.

Remark 37 We state the above lemma only for the case when µ1(S1) = µ2(S2), since we
have not yet proved that δ� and δp are well defined otherwise. However, once we have proved
this, it is a direct consequence of Definition 5(ii) that the above lemma also holds when
µ1(S1) 6= µ2(S2).
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Definition 38 Let (S,S) be a measurable space, and consider a function W : S × S → R.
Then W is a step function if there are some n ∈ N, disjoint sets Ai ∈ S satisfying µ(Ai) <∞
for i ∈ {1, . . . , n}, and constants ai,j ∈ R for i, j ∈ {1, . . . , n} such that

W =
∑

i,j∈{1,...,n}

ai,j1Ai×Aj .

Note that in order for W to be a step function it is not sufficient that it is simple, i.e.,
that it attains a finite number of values; the sets on which the function is constant are
required to be product sets. The set of step functions is dense in L1; hence Lemma 36
implies that every graphon can be approximated arbitrarily closely by a step function for
the δ� metric.

Lemma 39 Let p ≥ 1, let W1 = (W1,S1) and W2 = (W2,S2) be graphons, and let
S1 =

⋃
i∈I Ai and S2 =

⋃
k∈J Bk for finite index sets I and J such that Ai ∩ Ai′ = ∅ for

i 6= i′ and Bj ∩Bj′ = ∅ for j 6= j′. Suppose W1 and W2 are step functions of the form

W1 =
∑

i,i′∈I
ai,i′1Ai×Ai′ and W2 =

∑

j,j′∈J
bj,j′1Bj×Bj′ ,

where ai,i′ and bj,j′ are constants in R. Let µ and µ′ be two coupling measures on S1×S2, such
that µ(Ai×Bk) = µ′(Ai×Bk) for all (i, k) ∈ I×J . Then ‖W π1

1 −W
π2
2 ‖�,µ = ‖W π1

1 −W
π2
2 ‖�,µ′

and ‖W π1
1 −W

π2
2 ‖p,µ = ‖W π1

1 −W
π2
2 ‖p,µ′.

Proof For all U, V ⊆ S1 × S2,
∫

U×V

(
W π1

1 −W
π2
2

)
dµ dµ =

∑

i,i′,j,j′

µ(U ∩ (Ai ×Bj))µ(V ∩ (Ai′ ×Bj′))(ai,i′ − bj,j′). (6)

From the form of this expression and the definition of ‖ · ‖� it is clear that we may assume
there are sets U ′, V ′ ⊆ S1 × S2 such that for all i, j,

Ai ×Bj ⊆ U ′ or (Ai ×Bj) ∩ U ′ = ∅

and
Ai ×Bj ⊆ V ′ or (Ai ×Bj) ∩ V ′ = ∅,

and such that

‖W π1
1 −W

π2
2 ‖�,µ =

∫

U ′×V ′

(
W π1

1 −W
π2
2

)
dµ dµ.

Hence it follows from (6) that ‖W π1
1 −W

π2
2 ‖�,µ = ‖W π1

1 −W
π2
2 ‖�,µ′ if µ(Ai×Bj) = µ′(Ai×Bj)

for all i, j. The proof for the Lp metric follows from the fact that

‖W π1
1 −W

π2
2 ‖

p
p,µ =

∑

i,i′,j,j′

|ai,i′ − bj,j′ |pµ(Ai ×Bj)µ(Ai′ ×Bj′).
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Corollary 40 Let p ≥ 1 and for k = 1, 2, let Wk = (Wk,Sk) with Sk = (Sk,Sk, µk) be

graphons in Lp. For k = 1, 2, let S̃k = (S̃k, S̃k, µ̃k) and Ŝk = (Ŝk, Ŝk, µ̂k) be extensions of

Sk with µ̃1(S̃1) = µ̃2(S̃2) ∈ (0,∞] and µ̂1(Ŝ1) = µ̂2(Ŝ2) ∈ (0,∞], and let W̃k and Ŵk be the

trivial extensions of Wk to S̃k and Ŝk. Let µ̃ and µ̂ be couplings of µ̃1 and µ̃2, and µ̂1 and
µ̂2, respectively. If µ̃ and µ̂ agree on S1 × S2, then ‖W̃ π1

1 − W̃
π2
2 ‖�,µ̃ = ‖Ŵ π1

1 − Ŵ
π2
2 ‖�,µ̂

and ‖W̃ π1
1 − W̃

π2
2 ‖p,µ̃ = ‖Ŵ π1

1 − Ŵ
π2
2 ‖p,µ̂.

Proof By Lemma 36 and the fact that step functions are dense in L1 and in Lp, it is
sufficient to prove the corollary for step functions. The corollary then follows from Lemma 39
by observing that for two sets A ∈ S1 and B ∈ S2 with finite measure µ1(A) and µ2(B),
the µ̃ measure of sets of the form A × (S̃2 \ S2) and (S̃1 \ S1) × B can be expressed as

µ1(A) − µ̃(A × S2) and µ2(B) − µ̃(S1 × B), respectively, implying that ‖W̃ π1
1 − W̃

π2
2 ‖�,µ̃

and ‖W̃ π1
1 − W̃ π2

2 ‖p,µ̃ depend only on the restriction of µ̃ to S1 × S2, and similarly for

‖Ŵ π1
1 − Ŵ

π2
2 ‖�,µ̂ and ‖Ŵ π1

1 − Ŵ
π2
2 ‖p,µ̂.

Lemma 39 is also used in the proof of the triangle inequality in the following lemma.
The proof follows the same strategy as the proof by Janson (2013, Lemma 6.5) for the case
of probability spaces.

Lemma 41 Let p ≥ 1. For i = 1, 2, 3 let Wi = (Wi,Si) with Si = (Si,Si, µi) be a graphon
in Lp, such that µ1(S1) = µ2(S2) = µ3(S3) ∈ (0,∞]. Defining δ� and δp as in Definition 5(i),
we have

δ�(W1,W3) ≤ δ�(W1,W2) + δ�(W2,W3) and δp(W1,W3) ≤ δp(W1,W2) + δp(W2,W3).

Proof By Lemma 36 and since step functions are dense in L1, we may assume that Wi is
a step function for i = 1, 2, 3. Let S1 =

⋃∞
j=1Aj (resp. S2 =

⋃∞
j=1Bj , S3 =

⋃∞
j=1Cj) be

such that W1|Aj×Ak
(resp. W2|Bj×Bk

, W3|Cj×Ck
) is constant for all j, k ∈ N, and assume

without loss of generality that µ1(Aj), µ2(Bj), µ3(Cj) ∈ (0,∞) for all j ∈ N. Throughout
the proof we abuse notation slightly and let πi denote projection onto Si from any space
which is a product of Si and another space; for example, π1 denotes projection onto S1 from
S1 × S2 × S3, S1 × S2, and S1 × S3.

Let ε > 0, and let µ′ (resp. µ′′) be a coupling measure on S1 × S2 (resp. S2 × S3) such
that

‖W π1
1 −W

π2
2 ‖�,µ′ < δ�(W1,W2) + ε and ‖W π2

2 −W
π3
3 ‖�,µ′′ < δ�(W2,W3) + ε.

We define a measure µ on S1 × S2 × S3 for any E ⊆ S1 × S2 × S3 which is measurable for
the product σ-algebra by

µ(E) =
∑

i,j,k

µ′(Ai ×Bj)µ′′(Bj × Ck)
µ2(Bj)

µ1 × µ2 × µ3(E ∩ (Ai ×Bj × Ck))
µ1(Ai)µ2(Bj)µ3(Ck)

.

By a straightforward calculation (see, for example, the paper by Janson, 2013, Lemma 6.5)
the three mappings πl : (S1 × S2 × S3, µ) → (Sl, µl) for l = 1, 2, 3 are measure-preserving.
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Furthermore, if µ̃′ is the pushforward measure of µ for the projection π12 : S1 × S2 × S3 →
S1 × S2, then

µ̃′(Ai ×Bj) = µ′(Ai ×Bj) for all i, j.

By Lemma 39 and since π12 : (S1 × S2 × S3, µ)→ (S1 × S2, µ̃
′) is measure-preserving,

‖W π1
1 −W

π2
2 ‖�,S1×S2,µ′ = ‖W π1

1 −W
π2
2 ‖�,S1×S2,µ̃′ = ‖W π1

1 −W
π2
2 ‖�,S1×S2×S3,µ.

Hence,
‖W π1

1 −W
π2
2 ‖�,S1×S2×S3,µ < δ�(W1,W2) + ε.

Similarly,
‖W π2

2 −W
π3
3 ‖�,S1×S2×S3,µ < δ�(W2,W3) + ε.

Letting µ̂ be the pushforward measure on S1×S3 of µ for the projection π13 : S1×S2×S3 →
S1 × S3, we have

‖W π1
1 −W

π3
3 ‖�,S1×S3,µ̂ = ‖W π1

1 −W
π3
3 ‖�,S1×S2×S3,µ.

Since the cut norm ‖ · ‖� clearly satisfies the triangle inequality,

δ�(W1,W3) ≤ ‖W π1
1 −W

π3
3 ‖�,S1×S3,µ̂ = ‖W π1

1 −W
π3
3 ‖�,S1×S2×S3,µ

≤ ‖W π1
1 −W

π2
2 ‖�,S1×S2×S3,µ + ‖W π2

2 −W
π3
3 ‖�,S1×S2×S3,µ

< δ�(W1,W2) + δ�(W2,W3) + 2ε.

Since ε was arbitrary this completes our proof for δ�. The proof for δp is identical.

Lemma 42 Let Wi = (Wi,Si) with Si = (Si,Si, µi) be a graphon for i = 1, 2, such that

µ1(S1) = µ2(S2) ∈ (0,∞]. For i = 1, 2 let S̃i = (S̃i, S̃i, µ̃i) be an extension of Si, such

that µ̃1(S̃1) = µ̃2(S̃2) ∈ (0,∞], and let W̃i be the trivial extension of Wi to S̃i. Then

δ�(W1,W2) = δ�(W̃1, W̃2) and δ1(W1,W2) = δ1(W̃1, W̃2), where δ� and δ1 are as in
Definition 5(i). If p > 1 and W1 and W2 are non-negative graphons in Lp, then the result
holds for δp as well.

Remark 43 We remark that the assumption of non-negativity is necessary for the lemma
to hold when p > 1. If for example W1 = (1, [0, 1]) and W2 = (−1, [0, 1]) are graphons

over [0, 1], and if W̃1 and W̃2 are the trivial extensions to [0, 2], then δp(W1,W2) = 2 and

δp(W̃1, W̃2) = 21/p.

Proof We start with the proof for the cut metric. We will first prove the result for the
case when S̃i = N and Si = S := {1, . . . , n} for i = 1, 2 and some n ∈ N, Si and S̃i are the
associated discrete σ-algebras, and µ̃i(x) = c for all x ∈ S̃i and some c ∈ (0, 1).

First we will argue that

δ�(W1,W2) ≥ δ�(W̃1, W̃2).

By Definition 5(i) it is sufficient to prove that for each coupling measure µ on S × S we can

define a coupling measure µ̃ on N× N such that ‖W π1
1 −W

π2
2 ‖�,µ = ‖W̃ π̃1

1 − W̃
π̃2
2 ‖�,µ̃. But
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this is immediate, since we can define µ̃ such that µ̃|S×S = µ, and µ̃(A1 ×A2) = c|A1 ∩A2|
for Ai ⊆ N\S.

Next we will prove that

δ�(W1,W2) ≤ δ�(W̃1, W̃2). (7)

Again by Definition 5(i), it will be sufficient to prove that given any coupling measure
µ̃ on N × N we can find a coupling measure µ on S × S such that ‖W π1

1 −W
π2
2 ‖�,µ ≤

‖W̃ π1
1 − W̃

π2
2 ‖�,µ̃.

By the following argument we may approximate ‖W̃ π1
1 − W̃

π2
2 ‖�,µ̃ arbitrarily well by

replacing µ̃ with a coupling measure which is supported on (Ŝ × Ŝ) ∪ ((N\Ŝ) × (N\Ŝ)),
where Ŝ := {1, . . . ,K} for some sufficiently large K ∈ N. Indeed, by Corollary 35, given
a coupling measure µ̃ on N × N and K ∈ N, we can define a measure µ̂ supported on
(Ŝ × Ŝ) ∪ ((N\Ŝ)× (N\Ŝ)) such that µ̂ ≥ µ̃ on (Ŝ × Ŝ) ∪ ((N\Ŝ)× (N\Ŝ)). It is easy to see
from the construction of this measure in the proof of Corollary 35 that when K converges
to infinity, the measure µ̂ converges to µ̃ when restricted to (S × N) ∪ (N× S) (for example
for the topology where we look at the maximum difference of the measure assigned to any
set in (S ×N)∪ (N× S)). Therefore the corresponding cut norms also converge. This shows
that we may assume that µ̃ is supported on (Ŝ × Ŝ) ∪ ((N\Ŝ) × (N\Ŝ)) for some K ∈ N
when proving (7).

Let µ̃′ be the restriction of µ̃ to Ŝ×Ŝ. Then ‖W̃1−W̃2‖�,N×N,µ̃ = ‖Ŵ1−Ŵ2‖�,Ŝ×Ŝ,µ̃′ where

Ŵi = (Ŵi, Ŝi) is the trivial extensions ofWi to the measure space Ŝi associated with Ŝi. We
will prove that we may assume without loss of generality that µ̃′ corresponds to a permutation
of Ŝ. By choosing M ∈ N sufficiently large we can approximate ‖Ŵ1 − Ŵ2‖�,µ̃′ arbitrarily

well by replacing µ̃′ with a measure such that each element (i, j) ∈ Ŝ× Ŝ has a measure which
is an integer multiple of c/M ; hence we may assume µ̃′ is on this form. Each such µ̃′ can be
described in terms of a permutation σ′ of [KM ] via µ̃′((i, j)) =

∑KM
`=1 c/Mδi,d`/Meδj,dσ′(`)/Me.

Let Ŵ ′i = (Ŵ ′i , [KM ]) be the graphon such that each j ∈ [KM ] has measure c/M , and such

that Ŵ ′i = (Ŵi)
φ for the measure-preserving map φ : [KM ]→ [K] defined by φ(j) := dj/Me.

Using Proposition 39 and the above observation on describing µ̃′((i, j)) in terms of a

permutation σ′ of [KM ] we see that ‖Ŵ1 − Ŵ2‖�,µ̃′ = ‖Ŵ ′1 − (Ŵ ′2)σ
′‖�. Upon replacing Ŵi

by Ŵ ′i throughout the proof, we may assume that the measure µ̃′ is a permutation.

To complete the proof it is therefore sufficient to consider some permutation σ̂ of Ŝ and
prove that we can find a permutation σ of Ŝ mapping S to S such that

‖Ŵ1 − Ŵ σ̂
2 ‖� ≥ ‖Ŵ1 − Ŵ σ

2 ‖�. (8)

We modify the permutation σ̂ step by step to obtain a permutation mapping S to S. Abusing
notation slightly we let σ̂ and σ denote the old and new, respectively, permutations in a single
step. In each step choose i1, i2 ≤ n and j1, j2 > n such that σ̂(i1) = j1 and σ̂(j2) = i2; if such
i1, i2, j1, j2 do not exist we know that σ̂ maps S to S. Then define σ(i1) := i2 and σ(j2) := j1,

and for k 6∈ {i1, j2} define σ(k) := σ̂(k). We have ‖Ŵ1 − Ŵ σ
2 ‖� ≤ ‖Ŵ1 − Ŵ σ̂

2 ‖� by the

following argument. Let U, V ⊆ N be such that ‖Ŵ1 − Ŵ σ
2 ‖� = |

∫
U×V

(
Ŵ1 − Ŵ σ

2

)
dx dy|.

Since σ(j2) > n (implying that both Ŵ1 and Ŵ σ
2 are trivial on (j2 × N) and (N × j2))
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the following identity holds if we define U ′ := U\{j2} or U ′ := U ∪ {j2}, and if we define
V ′ := V \{j2} or V ′ := V ∪ {j2}:

∫

U×V

(
Ŵ1 − Ŵ σ

2

)
dx dy =

∫

U ′×V ′

(
Ŵ1 − Ŵ σ

2

)
dx dy.

In other words,
∫
U×V (Ŵ1 − Ŵ σ

2 ) dx dy is invariant under adding or removing j2 from U
and/or V . Therefore we may assume without loss of generality that

j2 ∈ U iff i1 ∈ U, j2 ∈ V iff i1 ∈ V, (9)

since if (9) is not satisfied we may redefine U and V such that (9) holds, and we still have

‖Ŵ1 − Ŵ σ
2 ‖� = |

∫
U×V (Ŵ1 − Ŵ σ

2 ) dx dy|. The assumption (9) implies that
∫
U×V (Ŵ1 −

Ŵ σ
2 ) dx dy =

∫
U×V (Ŵ1 − Ŵ σ̂

2 ) dx dy, which implies (8) since we can obtain a permutation σ
mapping S to S in finitely many steps as described above.

Now we will prove the lemma for general graphons. We will reduce the problem step by
step to a problem with additional conditions on the measure spaces involved, until we have
reduced the problem to the special case considered above.

First we show that we may assume Si and S̃i are non-atomic. Define S′i := Si× [0, 1] and

S̃′i := S̃i× [0, 1], let S ′
i and S̃ ′

i be the corresponding atomless product measure spaces when

[0, 1] is equipped with Lebesgue measure, and let W ′i = (W ′i ,S
′
i ) and W̃ ′i = (W̃ ′i , S̃

′
i ) be

graphons such that W ′i = (Wi)
π1
i and W̃ ′i = (W̃i)

π̃1
i , where π1

i : S ′
i → Si and π̃1

i : S̃ ′
i → S̃i

are the projection maps on the first coordinates. By considering the natural coupling of S̃′i
and S̃i it is clear that δ�(W̃ ′i , W̃i) = 0. It therefore follows from the triangle inequality that

δ�(W̃1, W̃2) = δ�(W̃ ′1, W̃
′
2). Similarly, δ�(W1,W2) = δ�(W ′1,W

′
2). In order to prove that

δ�(W̃1, W̃2) = δ�(W1,W2) it is therefore sufficient to prove that δ�(W̃ ′1, W̃
′
2) = δ�(W ′1,W

′
2).

Since S ′
i and S̃ ′

i are atomless and W̃ ′i is a trivial extension of W ′i it is therefore sufficient
to prove the lemma for atomless measure spaces.

Next we will reduce the general case to the case when µ̃i(S̃i) = ∞. If µ̃i(S̃i) < ∞ we

extend S̃i to a space Ŝi of infinite measure, and let Ŵi be the trivial extension of W̃i to Ŝi.
Assuming we have proved the lemma for the case when the extended measure spaces have
infinite measure, it follows that

δ�(W1,W2) = δ�(Ŵ1, Ŵ2) = δ�(W̃1, W̃2);

hence the lemma also holds for the case when µ̃i(S̃i) <∞.
Next we prove that we may assume µi(Si) < ∞. We proceed similarly as in the

previous paragraph, and assume µi(Si) = ∞. By Lemma 36 we may assume Wi are

supported on sets of finite measure, and we let Ŝi = (Ŝi, Ŝi, µ̂i) be a restriction of Si

such that supp(Wi) ⊆ Ŝi × Ŝi and µ̂i(Ŝi) < ∞. Since Si is non-atomic we may assume

µ̂1(Ŝ1) = µ̂2(Ŝ2). Define the graphon Ŵi = (Ŵi, Ŝi) to be such that Wi is the trivial

extension of Ŵi to Si. Assuming we have proved the lemma for the case when µi(Si) <∞,
it follows that

δ�(W1,W2) = δ�(Ŵ1, Ŵ2) = δ�(W̃1, W̃2);

hence the lemma also holds for the case when µi(Si) <∞.
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Next we will prove that we may assume Wi is a step function for i = 1, 2, such that
each step has the same measure c > 0. Step functions are dense in L1, and hence it is
immediate from Lemma 36 that we may assume Wi is a step function. We may assume
that the measure of each step is a rational multiple of µi(Si); if this is not the case we may
adjust the steps slightly (because Si is non-atomic, we can choose subsets of the steps of
any desired measures, by Exercise 2 from §41 in the book of Halmos, 1974) to obtain this.
Assuming each step has a measure which is a rational multiple of µi(Si) we may subdivide
each step such that each step obtains the same measure c > 0, again using the exercise in
the book by Halmos (1974).

Assume Wi are step functions consisting of k ∈ N steps each having measure c > 0,
and that µi(Si) < ∞ and µ̃i(S̃i) = ∞. Let W ′i = (W ′i , [n]) (resp. W̃ ′i = (W̃ ′i ,N)) be a
graphon over [n] := {1, . . . , n} (resp. N) equipped with the discrete σ-algebra, such that

each j ∈ [n] (resp. j ∈ N) has measure c, and such that Wi = (W ′i )
φi (resp. W̃i = (W̃ ′i )

φ̃i) for

a measure-preserving map φi : Si → [k] (resp. φ̃i : S̃i → N). Then δ�(W1,W2) = δ�(W ′1,W ′2)

and δ�(W̃1, W̃2) = δ�(W̃ ′1, W̃ ′2). By the special case we considered in the first paragraphs of

the proof, δ�(W ′1,W ′2) = δ�(W̃ ′1, W̃ ′2). Combining the above identities, our desired result

δ�(W1,W2) = δ�(W̃1, W̃2) follows.
To prove the result for the metric δp, we follow the steps above. The only place where

the proof differs is in the proof of (8). Let σ, σ̂, and i1, i2, j1, j2 be as in the proof of (8).
We would like to show that

‖Ŵ1 − Ŵ σ
2 ‖pp ≤ ‖Ŵ1 − Ŵ σ̂

2 ‖pp.

Writing both sides as a sum over (i, j) ∈ Ŝ2 we consider the following three cases separately:
(i) (i, j) ∈ (Ŝ \ {i1, j2})2, (ii) (i, j) ∈ {i1, j2}× (Ŝ \ {i1, j2}) or (i, j) ∈ (Ŝ \ {i1, j2})×{i1, j2},
and (iii) (i, j) ∈ {i1, j2} × {i1, j2}. In case (i) the terms are identical on the left side and
on the right side. For dealing with case (ii) it is sufficient to prove that for an arbitrary
i ∈ (Ŝ \ {i1, j2}),

|Ŵ1(i1, i)− Ŵ σ
2 (i1, i)|p + |Ŵ1(j2, i)− Ŵ σ

2 (j2, i)|p

≤ |Ŵ1(i1, i)− Ŵ σ̂
2 (i1, i)|p + |Ŵ1(j2, i)− Ŵ σ̂

2 (j2, i)|p.

This is equivalent to

|Ŵ1(i1, i)− Ŵ2(i2, σ̂(i))|p ≤ |Ŵ1(i1, i)|p + |Ŵ2(i2, σ̂(i))|p.

This inequality is obviously true if either p = 1 or both Ŵ1 and Ŵ2 are non-negative. For
case (iii) we need to show that

∑

i,j∈{i1,j2}

|Ŵ1(i, j)− Ŵ σ
2 (i, j)|p ≤

∑

i,j∈{i1,j2}

|Ŵ1(i, j)− Ŵ σ̂
2 (i, j)|p.

Writing out both sides we see that this is equivalent to

|Ŵ1(i1, i1)− Ŵ2(i2, i2)|p ≤ |Ŵ1(i1, i1)|p + |Ŵ2(i2, i2)|p,

which is again true if either p = 1 or both Ŵ1 and Ŵ2 are non-negative.
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Proof of Proposition 6 and Proposition 32 The existence of a coupling follows from
Lemma 34 with D1 = D2 = ∅.

To prove the next statement of the proposition, i.e., that the value of δ�(W1,W2) is

independent of the extensions S̃i, we consider alternative extensions Ŝi = (Ŝi, Ŝi, µ̂i) of

Si for i = 1, 2, and let Ŵi denote the trivial extension of Wi to Ŝi. By Lemma 42 it is
sufficient to consider the case when µ̃i(S̃i\Si) = µ̂i(Ŝi\Si) =∞, since if the extensions do
not satisfy this property we can extend them to a space of infinite measure, and Lemma 42
shows that the cut norm is unchanged. It is sufficient to prove that, given any coupling
measure µ̃ on S̃1 × S̃2, we can find a coupling measure µ̂ on Ŝ1 × Ŝ2, such that

‖W̃ π1
1 − W̃

π2
2 ‖�,S̃1×S̃2,µ̃

= ‖Ŵ π1
1 − Ŵ

π2
2 ‖�,Ŝ1×Ŝ2,µ̂

. (10)

By Corollary 40, the left side of (10) only depends on µ̃ restricted to S1 × S2; in a similar
way, the right side only depends on µ̂ restricted to S1 × S2. We therefore can define an
appropriate measure µ̂ on Ŝ1 × Ŝ2 by defining µ̂|S1×S2 = µ̃|S1×S2 , and extending it to a
coupling measure on Ŝ1 × Ŝ2 by Lemma 34; this yields (10).

The function δ� is clearly symmetric and non-negative. To prove that it is a pseudometric
it is therefore sufficient to prove that it satisfies the triangle inequality. This is immediate
by Lemma 41 and the definition of δ� as given in Definition 5(ii).

The proof for the metric δ1 follows exactly the same steps.
Using the statements of Lemma 42, Corollary 40, and Lemma 41 for p > 1, the above

proof of Proposition 6 immediately generalizes to the invariant Lp metric δp as long as the
graphons in question are non-negative graphons in Lp (in addition to being in L1, as required
by the definition of a graphon). This proves Proposition 32.

For two graphons W = (W,S ) and W̃ = (W̃ , S̃ ) for which S = S̃ , it is immediate

that δ�(W, W̃) ≤ ‖W − W̃‖1. The following lemma gives an analogous bound when W

and W̃ are defined on the same measurable space and W = W̃ , but the measures are not
identical. If µ and µ̃ are two measures on the same measurable space (S,S) and a ≥ 0 we
write µ ≤ aµ̃ to mean that µ(A) ≤ aµ̃(A) for every A ∈ S.

Lemma 44 Let W = (W,S ) with S = (S,S, µ) and W̃ = (W, S̃ ) with S̃ = (S,S, µ̃) be

graphons, and assume there is an ε ∈ (0, 1) such that µ ≤ µ̃ ≤ (1 + ε)µ. Then δ�(W, W̃) ≤
3ε‖W‖1,µ.

Proof To distinguish between the graphons W and W̃ we will write W̃ = (W̃ , S̃ ) and

S̃ = (S̃, S̃, µ̃), but recall throughout the proof that W̃ = W and (S̃, S̃) = (S,S). Define
(S′,S ′) := (S,S), µ′ := µ̃− µ, and S ′ := (S′,S ′, µ′), and let S ′′ be the disjoint union of S
and S ′. Let W ′′ = (W ′′,S ′′) be the trivial extension of W to S ′′, and note that W ′′ and

W̃ are graphons over spaces of equal total measure. Since δ�(W ′′,W) = 0 it is sufficient to

prove that δ�(W̃,W ′′) ≤ 3ε‖W‖1,µ. Let µ̂ be the coupling measure on S̃ × S′′ such that if

Ã ∈ S̃, A ∈ S, and A′ ∈ S ′, then

µ̂(Ã× (A ∪A′)) = µ(Ã ∩A) + µ′(Ã ∩A′). (11)
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To complete the proof of the lemma it is sufficient to show that for all measurable sets
U ′′, V ′′ ⊆ S̃ × S′′, ∣∣∣∣

∫

U ′′×V ′′
(W̃ π1 − (W ′′)π2) dµ̂ dµ̂

∣∣∣∣ ≤ 3ε‖W‖1,µ, (12)

where π1 : S̃×S′′ → S̃ (resp. π2 : S̃×S′′ → S′′) is the projection onto the first (resp. second)
coordinate of S̃ × S′′. Let U, V ⊆ S̃ × S and U ′, V ′ ⊆ S̃ × S′ be such that U ′′ = U ∪ U ′
and V ′′ = V ∪ V ′. Recall that since S′ = S we may also view U ′, V ′ as sets in S̃ × S, and
we denote these sets by U ′S , V

′
S , respectively. By first using W ′′|(S′′×S′′)\(S×S) = 0 while

µ̂-almost surely W̃ π1 = (W ′′)π2 on (S̃ × S)2, then using µ′ ≤ εµ, and then using W̃ = W
and (11), we obtain the estimate (12):

∣∣∣∣
∫

U ′′×V ′′

(
W̃ π1 − (W ′′)π2

)
dµ̂ dµ̂

∣∣∣∣

=

∣∣∣∣
∫

U×V ′
W̃ π1 dµ̂ dµ̂+

∫

U ′×V
W̃ π1 dµ̂ dµ̂+

∫

U ′×V ′
W̃ π1 dµ̂ dµ̂

∣∣∣∣

≤ ε
∫

U×V ′S
|W̃ |π1 dµ̂ dµ̂+ ε

∫

U ′S×V
|W̃ |π1 dµ̂ dµ̂+ ε2

∫

U ′S×V
′
S

|W̃ |π1 dµ̂ dµ̂

≤ 3ε‖W‖1.

We close this appendix with a lemma that immediately implies Proposition 21.

Lemma 45 Let ε ≥ 0 and letW = (W, (S,S, µ)) andW ′ = (W ′, (S′,S ′, µ′)) be two graphons
with δ�(W,W ′) ≤ ε2/2. Then

µ({DW > λ+ 2ε})− ε ≤ µ′({DW ′ > λ+ ε}) ≤ µ({DW > λ}) + ε

for all λ ≥ 0.

Proof Since the trivial extension of a graphon W only changes the measure of the set
{DW = 0}, we may assume without loss of generality that µ(S) = µ′(S′). Let π1 and π2 be
the projections from S × S′ onto the two coordinates, let ε′ > ε, and let µ̂ be a coupling of
µ and µ′ such that

‖W π1 − (W ′)
π2‖�,µ̂ ≤

(ε′)2

2
.

By definition of the cut metric, this implies that

∣∣∣∣
∫

U
(DW (x)−DW ′(x

′)) dµ̂(x, x′)

∣∣∣∣ ≤
(ε′)2

2

for all U ⊆ S × S′. Applying this bound for U = {(x, x′) ∈ S × S′ : DW (x)−DW ′(x
′) ≥ 0}

and U = {(x, x′) ∈ S × S′ : DW (x)−DW ′(x
′) ≤ 0}, this implies that

∫

S×S′

∣∣DW (x)−DW ′(x
′)
∣∣ dµ̂(x, x′) ≤ (ε′)2,
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which in turn implies that

µ̂
(
{(x, x′) ∈ S × S′ :

∣∣DW (x)−DW ′(x
′)
∣∣ ≥ ε′}

)
≤ ε′.

As a consequence

µ({DW > λ+ 2ε′})− ε′ ≤ µ̂({(x, x′) : DW (x) > λ+ 2ε′ and
∣∣DW (x)−DW ′(x

′)
∣∣ < ε′})

≤ µ̂({(x, x′) : DW ′(x
′) > λ+ ε′ and

∣∣DW (x)−DW ′(x
′)
∣∣ < ε′})

≤ µ′({DW ′ > λ+ ε′}).

Taking ε′ ↓ ε and using monotone convergence we obtain the first inequality in the statement
of the lemma. The second is proved in the same way.

Proof of Proposition 21 Let εn = δ�(Wn,W), and choose n large enough so that εn < λ.
By Lemma 45,

µn({DWn > λ}) ≤ µ({DW > λ− εn}) + εn.

Since µ({DW > λ}) is assumed to be continuous at λ, this gives

lim sup
n→∞

µn({DWn > λ}) ≤ µ({DW > λ}).

The matching lower bound on the lim inf is proved in the same way.

Appendix B. Representation of Graphons Over R+

In this appendix we will prove that every graphon is equivalent to a graphon over R+

(Proposition 10), and prove that under certain assumptions on the underlying measure space
of a graphon the cut metric can be defined in a number of equivalent ways (Proposition 48).

The first statement of the following lemma is a generalization of the analogous result for
probability spaces, which was considered by Borgs, Chayes, and Lovász (2010, Corollary 3.3)
and Janson (2013, Lemma 7.3). It will be used to prove Theorem 15 and Proposition 10.
We proceed similarly to the proof by Janson (2013, Lemma 7.3), but in this case we also
need to argue that underlying measure space of the constructed graphon is σ-finite, and we
include an additional result on atomless measure spaces.

Lemma 46 Every graphon W = (W,S ) with S = (S,S, µ) is a pullback by a measure-
preserving map of a graphon on some σ-finite Borel measure space. If S is atomless, the
σ-finite Borel space can be taken to be atomless as well.

Proof Let S0 := ∅, and let (Sk)k∈N be such that for each k ∈ N, we have Sk ∈ S, Sk ⊆ Sk+1,
µ(Sk) < ∞, and

⋃
k∈N Sk = S. We claim that we can find a sequence of sets (Ai)i∈N

satisfying the following properties: (i) if A := {Ai : i ∈ N} and S0 := σ(A), then W is
S0×S0-measurable, (ii) for all k ∈ N there exists i ∈ N such that Ai = Sk \Sk−1, (iii) for each
i ∈ N there exists a k ∈ N such that Ai ⊆ Sk\Sk−1, and (iv)

⋃
i∈NAi = S. A set A satisfying

(i) can be constructed by noting that each level set {(x1, x2) ∈ S × S : W (x1, x2) < q}
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for q ∈ Q is measurable with respect to σ(σ(Aq)× σ(Aq)) for some countable set Aq (this
follows, for example, by Lemma 3.4 in the paper of Borgs, Chayes, and Lovász, 2010). By
adding the sets Sk \ Sk−1 to A we obtain a collection of sets satisfying (i) and (ii). Given a
set Ã satisfying (i) and (ii), we can easily obtain an A satisfying (i)–(iii) by replacing each
A ∈ Ã with the countable collection of sets {A ∩ (Sk\Sk−1) : k ∈ N}. Finally, (ii) implies
(iv).

Let C = {0, 1}∞ be the Cantor cube equipped with the product topology, and define
φ : S → C by φ(x) := (1x∈Ai)i∈N. Let ν be the pushforward measure of µ onto C equipped
with the Borel σ-algebra. We claim that ν is a σ-finite measure on C. For each k ∈ N
define Ĉk := {(ai)i∈N ∈ C : ai = 0 if Ai 6⊆ Sk\Sk−1} and C̃k := (

⋃
i≤k Ĉi) ∪ Ĉ0, where

Ĉ0 := C\(
⋃
i∈N Ĉi) ⊆ C\φ(S), and observe that all the subsets of C just defined are measurable.

The claim will follow if we can prove that (a) ν(C̃k) <∞ for each k ∈ N, and (b)
⋃
k∈N C̃k = C.

Property (a) is immediate since from the definition of ν, the fact ν(Ĉ0) = 0, and the properties
(ii) and (iii) of A, which imply that ν(Ĉk) = µ(φ−1(Ĉk)) = µ(Sk\Sk−1) < ∞. To prove
(b) let (ai)i∈N ∈ C. We want to prove that (ai)i∈N ∈ C̃k for some k ∈ N. If (ai)i∈N 6∈ φ(S)
we have x ∈ Ĉ0, so (ai)i∈N ∈ C̃k for all k ∈ N. If (ai)i∈N = φ(x) for some x ∈ S, then
x ∈ Sk\Sk−1 for exactly one k ∈ N, so (ai)i∈N = φ(x) ∈ Ĉk ⊆ C̃k.

The argument in the following paragraph is similar to the proof by Janson (2013,
Lemma 7.3), but we repeat it for completeness. Since the σ-field on S generated by φ
equals S0, the σ-field on S × S generated by (φ, φ) : S2 → C2 equals S0 × S0. Since W is
measurable with respect to S0 × S0 we may use the Doob-Dynkin Lemma (see, for example,
the book of Kallenberg, 2002, Lemma 1.13) to conclude that there exists a measurable
function V : C2 → [0, 1] such that W = V φ. We may assume V is symmetric upon replacing
it by 1

2(V (x, x′) + V (x′, x)). This completes the proof of the main assertion, since V is a
graphon on a σ-finite Borel measure space.

Finally we will prove the last claim of the lemma, i.e., that if S is atomless we may
take ν to be atomless as well. To prove this claim it is sufficient to establish that the set
A in the above argument can be modified in such a way that ν(x) = 0 for each x ∈ C.
Given a collection of sets A satisfying (i)–(iv) above we define a new collection of sets
Ã as follows. First define A1 := A, and then define Ak for k > 1 inductively as follows.
For any k > 1 and A ∈ Ak−1, let A1 ∈ S and A2 ∈ S be disjoint sets with union A
such that µ(A1) = µ(A2) = 1

2µ(A); note that such sets A1 and A2 can be found since
S is atomless. Then define Ak := {A1 : A ∈ Ak−1} ∪ {A2 : A ∈ Ak−1}, and finally
define Ã =

⋃
k∈NAk. Then Ã is countable, satisfies (i)–(iv), and by defining the mea-

sure ν using Ã instead of A we have ν(x) = 0 for every x ∈ C. Proceeding as above with
Ã instead of A we get W = V φ, where V is a graphon over an atomless σ-finite Borel space.

Proposition 10 follows immediately from the following lemma, whose proof in turn follows
a similar strategy as a proof by Janson (2013, Theorem 7.1).

Lemma 47 Let W = (W,S ) be a graphon over an arbitrary σ-finite space S .

(i) There are two graphons W ′ = (W ′,R+) and W ′′ = (W ′′,S ′′) and measure-preserving
maps φ : S → S′′ and φ′ : [0, µ(S))→ S′′ such that W = (W ′′)φ and W ′ is the trivial
extension of (W ′′)φ

′
from [0, µ(S)) to R+.
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(ii) If S is a Borel measure space, then we can find a measure-preserving map

φ′ : [0, µ(S))→ S

such thatWφ′ is a graphon over [0, µ(S)) equipped with the Borel σ-algebra and Lebesgue
measure.

(iii) If S is an atomless Borel measure space, we may take φ′ in (ii) to be an isomorphism
between S and [0, µ(S)).

Proof We start with the proof of (ii) and (iii). If S is an atomless Borel space the statement

is immediate from Lemma 33. If S has atoms, we define a graphon W̃ = (W̃ , S̃ ) where

S̃ = (S̃, S̃, µ̃) = (S × [0, 1],S × B, µ × λ)) is the product measure space and W̃ := (W )π,

with π : S × [0, 1] → S being the projection. Since S̃ is an atomless Borel space we may

again use Lemma 33, giving the existence of an isomorphism ψ : [0, µ̃(S̃))→ S̃ such that W̃ψ

is a graphon over [0, µ̃(S̃)) equipped with Lebesgue measure. Observing that µ̃(S̃) = µ(S),
we obtain statement (ii) with φ′ = π ◦ ψ.

To prove (i) we use that by Lemma 46, W can be expressed as (W ′′)φ for a graphon
W ′′ on some Borel space S ′′ = (S′′,S ′′, µ′′) and some measure-preserving map φ : S → S′′.
We then apply the just proven statement (ii) to the graphon W ′′, and define W ′ to be the
trivial extension of (W ′′)φ′ from [0, µ(S)) to R+.

Proof of Proposition 10 The statement of the proposition follows from Lemma 47 by ob-
serving that δ�(W,W ′) ≤ δ�(W,W ′′)+δ�(W ′′,W ′) = δ�((W ′′)φ,W ′′)+δ�(W ′′, (W ′′)φ′) = 0.

The following proposition provides equivalent definitions of the cut metric δ� under
certain assumption on the underlying measure spaces. See papers by Borgs, Chayes, Lovász,
Sós, and Vesztergombi (2008, Lemma 3.5) and Janson (2013, Theorem 6.9) for analogous
results for probability spaces.

Proposition 48 For j = 1, 2 let Wj = (Wj ,Sj) with Sj = (Sj ,Sj , µj) be a graphon
satisfying µj(Sj) =∞. Then the following identities hold, and thus (a)–(e) provide alternative
definitions of δ� under certain assumptions on the underlying measure spaces:

(a) If Sj are Borel spaces, then δ�(W1,W2) = infψ1,ψ2 ‖W
ψ1
1 −W

ψ2
2 ‖�, where we take the

infimum over measure-preserving ψj : R+ → Sj for j = 1, 2, where R+ is equipped with
the Borel σ-algebra and Lebesgue measure.

(b) If Sj are atomless Borel spaces, then δ�(W1,W2) = infψ ‖W1 −Wψ
2 ‖�, where we take

the infimum over measure-preserving ψ : S1 → S2.

(c) If Sj are atomless Borel spaces, then δ�(W1,W2) = infψ ‖W1 −Wψ
2 ‖�, where we take

the infimum over isomorphisms ψ : S1 → S2.

(d) If Sj = R+, then δ�(W1,W2) = inf σ̃ ‖W1 −W σ̃
2 ‖�, where we take the infimum over

all interval permutations σ̃ (i.e., σ̃ maps Ii to Iσ(i) for some permutation σ of the
non-negative integers, and Ii := [ih, (i+ 1)h] for some h > 0).
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(e) For j = 1, 2 let (Skj )k∈N be increasing sets satisfying µj(S
k
j ) <∞ and

⋃
k∈N S

k
j = Sj.

Then δ�(W1,W2) = limk→∞ δ�(W1|Sk
1
,W2|Sk

2
), where Wj |Sk

j
:= (Wj1Sk

j×Sk
j
,S k

j ) and

S k
j is the restriction of S k to Skj .

Proof of Proposition 48 Let δ
(a)
� , δ

(b)
� , δ

(c)
� , and δ

(d)
� denote the right sides of the equalities

in (a), (b), (c), and (d), respectively. For j = 1, 2 fix some arbitrary sequence (Skj )k∈N

satisfying µj(S
k
j ) <∞ for all k ∈ N, Skj ⊆ S

k+1
j , and

⋃
k∈N S

k
j = Sj . Define δ

(e)
� and δ

(e′)
� by

δ
(e)
� (W1,W2) := lim sup

k→∞
δ�(Wk

1 ,Wk
2 ) and δ

(e′)
� (W1,W2) := lim inf

k→∞
δ�(Wk

1 ,Wk
2 ),

where Wj
k =Wj |Sk

j
. By Lemma 33 it is sufficient to consider the case S = (R+,B, λ) in (b)

and (c), since we can consider graphons (W
φj
j ,R+) on R+, which satisfy δ�((W

φj
j ,R+),Wj) =

0, by using measure-preserving transformations φj : R+ → Sj . Under this assumption we

have δ� ≤ δ(b)
� ≤ δ

(c)
� ≤ δ

(d)
� , since we take the infimum over smaller and smaller sets of maps.

By definition, δ
(e′)
� ≤ δ(e)

� . To complete the proof of the proposition it is therefore sufficient

to prove the following results: (i) δ
(e)
� ≤ δ� ≤ δ

(e′)
� for general σ-finite measure spaces S1,S2

of infinite measure, (ii) δ
(d)
� ≤ δ� for S1 = S2 = (R+,B, λ), and (iii) δ

(a)
� = δ

(c)
� .

We will start by proving (i). Since limk→∞ ‖Wj −Wj1Sk
j×Sk

j
‖1 = 0, Lemma 36 implies

that it is sufficient to prove δ
(e)
� ≤ δ� ≤ δ

(e′)
� for the case when supp(Wj) ⊆ Skj × Skj for

some k ∈ N. Under this assumption δ�(W1,W2) = δ�(W1|Sk′
1
,W2|Sk′

2
) for all k′ ≥ k, and (i)

follows.
Now we will prove (ii). Since limM→∞ ‖Wj −Wj1|Wj |≤M1[0,M ]2‖1 = 0 by the dominated

convergence theorem, as above we may assume by Lemma 36 that there is an M > 0 such that
W is bounded and supp(Wj) ⊆ [0,M ]2 for j = 1, 2. For j = 1, 2 define Ŵj = (Ŵj , [0,M ]),

where Ŵj := Wj |[0,M ]2 is a bounded graphon on [0,M ]2. By Lemma 42 in the current paper
and Lemma 3.5 of Borgs, Chayes, Lovász, Sós, and Vesztergombi (2008) (or, equivalently,
Theorem 6.9 of Janson, 2013),

δ�(W1,W2) = δ�(Ŵ1, Ŵ2) = inf
σ̂
‖Ŵ1 − Ŵ σ̂

2 ‖� ≥ inf
σ̃
‖W1 −W σ̃

2 ‖�,

where σ̂ is an interval permutation of [0,M ] and σ̃ is an interval permutation of R+.
Finally we will prove (iii). By Lemma 47 there are measure-preserving maps φj : R+ → Sj

such that δ�(Wj , (Wj)
φj ) = 0. The triangle inequality then implies that δ�(W1,W2) =

δ�((W1)φ1 , (W2)φ2). Since (W1)φ1 and (W2)φ2 are graphons over atomless Borel spaces, it

follows that δ
(a)
� = δ

(c)
� .

Remark 49 The proof of the above proposition clearly generalizes to the metric δ1, the only
additional ingredient being the analogue of a result by Janson (2013, Theorem 6.9) for the
metric δ1 (Janson, 2013, Remark 6.13). Using the results and proof techniques of Borgs,
Chayes, Cohn, and Ganguly (2015, Appendix A) instead of Janson (2013, Theorem 6.9),
it can also be generalized to the metric δp for p > 1, again provided both graphons are
non-negative and in Lp.
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We close this appendix by proving Proposition 7. In fact, we will prove a generalization
of this proposition for the invariant Lp metric δp. The second statement of this proposition
involves the distance δp(W1,W2) of graphons W1 = (W1,R+) and W2 = (W2,R+) that are
not necessarily non-negative, which means we do not have Proposition 32 at our disposal to
guarantee that δp is well defined. We avoid this problem by defining δp as in Proposition 48,
i.e., by setting

δp(W1,W2) := inf
φ : R+→R+

‖W1 −W φ
2 ‖p

with the infimum going over isomorphisms. Note that by Remark 49, for non-negative
graphons in Lp, this definition is equivalent to the one given at the beginning of Appendix A.

Proposition 50 Let p ≥ 1, and let W1 and W2 be graphons in Lp. Then

(i) δ1(W1,W2) = 0 if and only if δ�(W1,W2) = 0, and

(ii) if W1 and W2 are non-negative or graphons over R+, then δp(W1,W2) = 0 if and only
if δ�(W1,W2) = 0.

Proposition 50 (and hence Proposition 7) and Proposition 8 follow from the next
proposition.

Proposition 51 For i = 1, 2, let Wi = (Wi,Si) be a graphon over a Borel space Si such
that δ�(W1,W2) = 0 and µ1(S1) = µ2(S2). Then there exists a measure µ on S1 × S2 such
that

(i) ‖W π1
1 −W

π2
2 ‖�,µ = 0,

(ii) the first (resp. second) marginal of µ is dominated by µ1 (resp. µ2), i.e., for any A ∈ S1

(resp. A ∈ S2) we have µ(A× S2) ≤ µ1(A) (resp. µ(S1 ×A) ≤ µ2(A)),

(iii) if A ∈ S1 is such that µ(A× S2) < µ1(A) then µ1(A ∩ E1) > 0, where

Ei :=

{
x ∈ Si :

∫

Si

|Wi(x, x
′)| dx′ = 0

}
for i = 1, 2,

and the same property holds with the roles of W1 and W2 interchanged, and

(iv) in particular, if µ1(E1) = µ2(E2) = 0 with Ei as in (iii), then µ is a coupling measure.

Remark 52 The analogous statement to Proposition 51 for graphons over probability spaces
(see, for example, the paper of Janson, 2013, Theorem 6.16) states that when the underlying
space is a Borel probability space, the infimum in the definition of the cut distance using
couplings is attained. Proposition 51 says that the same result is true in our setting of
σ-finite measure spaces if we make two additional assumptions: (a) the cut distance between
the graphons is zero, and (b) µi(Ei) = 0 for i = 1, 2, where Ei is defined in part (iii) of
the proposition. We remark that both of these assumptions are necessary; see the examples
following this remark.
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Janson (2016, Theorem 5.3) proves a related result, stating that if the cut distance of two
graphons over σ-finite Borel spaces is zero, then there are trivial extensions of these graphons
such that the extensions can be coupled so as to be equal almost everywhere. Proposition 51
implies a similar result, namely Proposition 8, which states that under this assumption, the
restrictions of the two graphons to the sets Si \ Ei can be coupled so that they are equal a.e.
To see this, we note that by Proposition 50 two graphons W1,W2 with cut distance zero have
distance zero in the metric δ1, which in turn implies that |W1| and |W2| have distance zero
in δ1 and hence in δ�. By Lemma 45, this in turn implies that µ1(S1 \ E1) = µ2(S2 \ E2),
which allows us to use Proposition 51 to deduce the claim.

Example 53 Assumption (a) in Remark 52 is necessary by the following counterexample,
which illustrates that there are graphons W1,W2 over R+ such that ‖W π1

1 −W
π2
2 ‖�,µ >

δ�(W1,W2) for all coupling measures µ. Let W1 = (W1,R+) be an arbitrary graphon such
that W1 is strictly positive everywhere, and let W2 = (W2,R+) be defined by W2(x, y) =
W1(x− 1, y − 1) for x, y ≥ 1, W2(x, y) = −1 for x, y ∈ [0, 1), and W2(x, y) = 0 otherwise.
First observe that δ�(W1,W2) ≤ 1, since if φn : R+ → R+ is defined by φn(x) = x+ 1 for
x ∈ [0, n], φn(x) = x− n for x ∈ (n, n+ 1], and φn(x) = x for x > n+ 1, then

lim
n→∞

‖W1 −W φn
2 ‖� = 1.

Then observe that ‖W π1
1 −W

π2
2 ‖�,µ > 1 for all coupling measures µ, since if S = R2

+ and
T = R+ × [0, 1] then

‖W π1
1 −W

π2
2 ‖�,µ ≥

∣∣∣∣
∫

S×T
W π1

1 −W
π2
2 dµ dµ

∣∣∣∣

=

∣∣∣∣∣

∫

R+×T
W1(x, π1(y)) dλ dµ−

∫

R+×[0,1]
W2 dλ dλ

∣∣∣∣∣ > 1.

Assumption (b) is necessary by the following counterexample, which illustrates that there are
non-negative graphons W1,W2 over R+ such that δ�(W1,W2) = 0 and ‖W1 −W2‖�,µ > 0
for all coupling measures µ. Letting W1 and W2 be defined as above, except that W2(x, y) = 0
for all x, y ∈ R+ for which either x < 1 or y < 1, we proceed as in case (a) to conclude that
the graphons satisfy the desired property.

Proof of Proposition 51 First we note that for µ1(S1) = µ2(S2) = 1, the proposition
follows immediately from a result of Janson (2013, Theorem 6.16), which in fact gives µ as a
coupling of µ1 and µ2. The case µ1(S1) = µ2(S2) = c <∞ with c 6= 1 can be reduced to the
case c = 1 by considering the graphons W ′i = (Wi,S ′

i ) where S ′
i is obtained from Si by

multiplying the measures µi by 1/c, turning them into probability measures. All that is left
to consider is therefore the case µ1(S1) = µ2(S2) =∞.

Next we argue that we may assume Si is atomless for i = 1, 2. Assuming the proposition
has been proved for the case of atomless Borel measure spaces, and given graphons Wi over
arbitrary Borel measure spaces, we define graphons W̃i over the measure space S̃i defined as
the product of Si and [0, 1], such that W̃i =Wφi

i for the projection map φi : Si× [0, 1]→ Si.

Assume that µ̃ is a measure on S̃1 × S̃2 such that the statements of the proposition hold
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for µ̃ and W̃1, W̃2. Defining a measure µ for S1 × S2 by letting µ be the pushforward of
µ̃ for the map S̃1 × S̃2 → S1 × S2 sending

(
(x1, r1), (x2, r2)

)
7→ (x1, x2), one easily checks

that µ is a measure satisfying the conclusions of the proposition for W1 and W2. It follows
that we may assume the spaces Si are atomless Borel measure spaces, and by Lemma 33
we may assume that they are R+ equipped with the Lebesgue measure; we will make these
assumptions in the remainder of the proof. In particular, we will no longer use the notation
µ1 and µ2 from the proposition statement, since they are now both Lebesgue measure λ; it
will be convenient to use the notation µn for other purposes.

Consider a sequence of coupling measures (µn)n∈N such that ‖W π1
1 −W

π1
2 ‖�,µn → 0.

For any given M > 0, let µMn = µn|[0,M ]2 . The measures µMn are not necessarily coupling
measures, but their marginals are dominated by the Lebesgue measure on [0,M ], and they
satisfy limn→∞ ‖W π1

1 −W
π2
2 ‖�,µMn = 0. Furthermore, as a sequence of measures of uniformly

bounded total mass over a compact metrizable space, they have a subsequence that converges
in the weak topology (Billingsley, 1999, Theorem 5.1), i.e., in the topology in which the
integrals over all continuous functions on [0,M ]2 converge. Let µM be some subsequential
limit, and note that as a limit of a sequence of measures having this property, the marginals
of µM are dominated by the Lebesgue measure on [0,M ] as well. Note also that µMn × µMn
converges weakly to µM × µM along any subsequence on which µMn converges weakly to µM

(Billingsley, 1999, Theorem 2.8). We will argue that

∣∣∣∣
∫

A×B

(
W π1

1 −W
π2
2

)
dµM dµM

∣∣∣∣ = 0 (13)

for all measurable subsets A,B ⊆ [0,M ]2.

Indeed, given two such subsets and ε > 0, let W̃i be continuous functions over [0,M ]2 such

that ‖Wi−W̃i‖1,λ|[0,M ]2
≤ ε for i = 1, 2, and let f, g : [0,M ]2 → [0, 1] be continuous functions

such that (‖W̃1‖∞ + ‖W̃2‖∞)‖1A − f‖1,µM ≤ ε and (‖W̃1‖∞ + ‖W̃2‖∞)‖1B − g‖1,µM ≤ ε

(existence of appropriate functions W̃i, f, g follows from, for example, Stroock, 2011b,
Corollary 3.2.15). Using the fact that |

∫
f(x)g(y)(W π1

1 (x, y) − W π2
2 (x, y)) dµMn dµMn | ≤

‖W π1
1 −W

π2
2 ‖�,µMn and the fact that the marginals of µMn and µM are dominated by the

Lebesgue measure on [0,M ], this allows us to conclude that for some sufficiently large n
chosen from the subsequence along which µMn converges,

∣∣∣∣
∫

A×B

(
W π1

1 −W
π2
2

)
dµM dµM

∣∣∣∣ ≤
∣∣∣∣
∫

A×B

(
W̃ π1

1 (x, y)− W̃ π2
2 (x, y)

)
dµM dµM

∣∣∣∣+ 2ε

≤
∣∣∣∣
∫
f(x)g(y)

(
W̃ π1

1 (x, y)− W̃ π2
2 (x, y)

)
dµM dµM

∣∣∣∣+ 4ε

≤
∣∣∣∣
∫
f(x)g(y)

(
W̃ π1

1 (x, y)− W̃ π2
2 (x, y)

)
dµMn dµMn

∣∣∣∣+ 5ε

≤
∣∣∣∣
∫
f(x)g(y)

(
W π1

1 (x, y)−W π2
2 (x, y)

)
dµMn dµMn

∣∣∣∣+ 7ε

≤ ‖W π1
1 −W

π2
2 ‖�,µMn + 7ε ≤ 8ε.

Since ε was arbitrary, this proves (13).
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For each M ∈ N we let µM be a measure as in the previous paragraph. We may assume
the subsequence along which µM+1

n converges to µM+1 is a subsequence of the subsequence
along which µMn converges to µM . This implies that µM+1|[0,M ]2 = µM for all M ∈ N, so

there is a measure µ on R2
+ such that µ|[0,M ]2 = µM . Furthermore, there is a subsequence of

(µn)n∈N converging weakly to µ, such that for any M ∈ N the measures µn|[0,M ]2 converge
weakly to µ|[0,M ]2 along this subsequence, and as a limit of measures with these properties,
the measure µ satisfies (ii), as well as

sup
A,B⊆R2

+

∣∣∣∣
∫

A×B
W π1

1 −W
π2
2 dµ dµ

∣∣∣∣ = 0,

where, a priori, the supremum is over measurable, bounded subsets A,B ⊂ R2
+. But it

is easy to see that if the supremum over these sets is zero, then the same holds for the
supremum over all measurable subsets A,B ⊆ R2

+ (use (ii) to conclude that the integrand is
in L1, which means it can be approximated by functions over bounded subsets of R4

+). The
property (i) of µ follows.

It remains to prove that µ satisfies (iii), since (iv) follows immediately from (iii). Recall
that the by definition of the measures µn,

sup
A1,A2,K

∣∣∣∣∣

∫

(A1×[K,∞))×(A2×R+)
W π1

1 −W
π2
2 dµn dµn

∣∣∣∣∣→ 0,

where the supremum is over A1, A2 ⊆ R+ and K ≥ 0. Fix any ε > 0, and observe that for
all K > 1 sufficiently large,

sup
A1,A2

∣∣∣∣∣

∫

(A1×[K,∞))×(A2×R+)
W π2

2 dµn dµn

∣∣∣∣∣ ≤ sup
A1,A2

∫

[K,∞)×R+

|W2| dλ dλ < ε,

so

lim sup
n→∞

sup
A1,A2

∣∣∣∣∣

∫

(A1×[K,∞))×A2

W1(π1(x), x′) dµn(x) dλ(x′)

∣∣∣∣∣

= lim sup
n→∞

sup
A1,A2

∣∣∣∣∣

∫

(A1×[K,∞))×(A2×R+)
W π1

1 dµn dµn

∣∣∣∣∣ < ε.

Fix any A1, A2 ⊆ R+, and observe from the above that for K sufficiently large,

lim sup
n→∞

∣∣∣∣
∫

A1×A2

W1(x, x′) d(λ− µ1,K
n )(x) dλ(x′)

∣∣∣∣ < ε,

where µ1,K
n is the projection of µn|R+×[0,K] onto the first coordinate. Choose W̃1 ∈ Cc(R2

+)

such that ‖W̃1−W1‖1 < ε, where Cc(R2
+) is the space of continuous and compactly supported

functions on R2
+ (the existence of such a function follows again from, for example, Stroock,

2011b, Corollary 3.2.15). For all K > 1 sufficiently large,
∣∣∣∣
∫

A1×A2

W̃1(x, x′) d(µ1 − µ1,K)(x) dλ(x′)

∣∣∣∣ < ε,
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where µ1,K (resp. µ1) is the projection of µ|R+×[0,K] (resp. µ) onto the first coordinate. Next

we claim that µ1,K
n |[0,K′] converges weakly to µ1,K |[0,K′] for any K,K ′ > 0. To see that,

we need to show that for any continuous function f : [0,K ′]→ R+ the associated integral
converges when n→∞. To this end, we approximate the function (x, x′) 7→ f(x)1x′∈[0,K]

(with f(x) = 0 for x > K ′) by a function g : R2
+ → R, where g(x, x′) = f̂(x)χ(x′), f̂ : R+ →

R+ is a continuous function with support in [0,K ′] approximating f and satisfying ‖f̂‖∞ ≤
‖f‖∞, and χ : R+ → [0, 1] is a continuous function with support in [0,K] approximating
the indicator function of the set [0,K]. Since f̂ and χ can be chosen to be arbitrarily close
approximations in the L1 norm and the marginals of µn are given by Lebesgue measure, this
implies the claim. Therefore we can find nK ∈ N depending on K, such that for all n ≥ nK

∣∣∣∣
∫

A1×A2

W̃1(x, x′) d(µ1,K − µ1,K
n )(x) dλ(x′)

∣∣∣∣ < ε.

Combining the above estimates and using the triangle inequality, we get that for sufficiently
large K and n ≥ nK ,

∣∣∣∣
∫

A1×A2

W1(x, x′) d(λ− µ1)(x) dλ(x′)

∣∣∣∣ ≤
∣∣∣∣
∫

A1×A2

W1(x, x′)− W̃1(x, x′) d(λ− µ1)(x) dλ(x′)

∣∣∣∣

+

∣∣∣∣
∫

A1×A2

W̃1(x, x′) d(λ− µ1,K
n )(x) dλ(x′)

∣∣∣∣

+

∣∣∣∣
∫

A1×A2

W̃1(x, x′) d(µ1,K
n − µ1,K)(x) dλ(x′)

∣∣∣∣

+

∣∣∣∣
∫

A1×A2

W̃1(x, x′) d(µ1,K − µ1)(x) dλ(x′)

∣∣∣∣
< 4ε.

Since ε > 0 was arbitrary this implies that

∣∣∣∣
∫

A1×A2

W1(x, x′) d(λ− µ1)(x) dλ(x′)

∣∣∣∣ = 0.

Since λ− µ1 is absolutely continuous with respect to λ, we know by the Radon-Nikodym
theorem that there is a non-negative function f such that d(λ− µ1)(x) = f(x) dλ(x). The
Lebesgue differentiation theorem now says that W1(x, x′)f(x) = 0 almost everywhere, which
implies (iii).

Proof of Proposition 50 Since δ�(W1,W2) ≤ δ1(W1,W2), we only need to prove that
δ�(W1,W2) = 0 implies δ1(W1,W2) = 0 in order to prove (i). Assume first that the
graphons are over R+, and let µ be as in Proposition 51. Then W π1

1 −W
π2
2 = 0 µ-almost

everywhere. For each n ∈ N let µn be some arbitrary coupling measure on S1×S2 such that
µn|[0,n]2 = µ|[0,n]2 . Then limn→∞ ‖W π1

1 −W
π2
2 ‖1,µn = 0, so δ1(W1,W2) = 0. To obtain the

result for graphons over general measure spaces we use Proposition 10, the triangle inequality,
and the fact that two graphons have distance zero for δ� and δ1 if one is a pullback of the
other.
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For (ii) with graphons over R+ and δ� defined in terms of measure-preserving transfor-
mations, we will first prove that δ�(W1,W2) = 0 implies δp(W1,W2) = 0. This follows by
the exact same argument as in the preceding paragraph, i.e., by using Proposition 51 to
construct a measure µ and coupling measures µn on S1 × S2.

Now we will prove that δp(W1,W2) = 0 implies δ�(W1,W2) = 0, still assuming the
graphons are over R+ and that δp is defined in terms of measure-preserving transformations.
By part (i) it is sufficient to show that δp(W1,W2) = 0 implies δ1(W1,W2) = 0. Fix ε > 0
and let A1, A2 ⊆ R+ be such that ‖Wi −Wi1Ai×Ai‖1 < ε/2 and M := λ(A1) + λ(A2) <∞.
By Hölder’s inequality, for any isomorphism φ : R+ → R+ and A := A1 ∪ φ−1(A2),

‖W1 −W φ
2 ‖1 ≤ ‖(1− 1A×A)(W1 −W φ

2 )‖1 + ‖(W1 −W φ
2 )1A×A‖1

≤ ε+ ‖W1 −W φ
2 ‖p ·M

2−2/p.

Taking the infimum over φ we see that δ1(W1,W2) ≤ ε+M2−2/pδp(W1,W2) = ε. Since ε
was arbitrary, this shows that δ1(W1,W2) = 0.

We get (ii) for non-negative graphons and δp defined in terms of couplings by using
Proposition 48 and Remark 49, and to move from graphons over R+ to graphons over a
general σ-finite space we use Lemma 47.

Appendix C. Measurability properties of graph processes

Recall the definition of a graph process (Definition 23) and the measurable space of graphs G,
as well as what it means for two graph processes to be equal up to relabeling of the vertices
(Definition 24). Before stating our main result about the measurability of the relation of
being equal up to relabeling, we state and prove the following simple lemma.

Lemma 54 Let G = (Gt)t≥0 be a graph process.

(i) Let V ⊂ V ′ ⊂ N and E ⊂ E′ ⊂
(N

2

)
be finite sets. Then there are increasing sequences

(ak)k∈N and (bk)k∈N of real numbers such that

{t ∈ R+ : V ′ ∩ V (Gt) = V and E′ ∩ E(Gt) = E} =
⋃

k∈N
[ak, bk).

Furthermore, for any set of the form T =
⋃
k∈N[ak, bk) with ak, bk as above, the event

that T = {t ∈ R+ : V ′ ∩ V (Gt) = V and E′ ∩ E(Gt) = E} is measurable.

(ii) For i = 1, 2 let Vi ⊂ V ′i ⊂ N and Ei ⊂ E′i ⊂
(N

2

)
be finite sets, let Gi = (Git)t≥0 be

a graph process, and let Ti(Gi) be the set of times for which V ′i ∩ V (Git) = Vi and
E′i ∩ E(Git) = Ei. Then the event that T1(G1) = T2(G2) is measurable.

(iii) The event that a specified vertex in N is isolated for all times is measurable.

(iv) If G = (Gt)t≥0 is projective, then the birth time tv ∈ [0,∞] of any vertex v ∈ N is
measurable, and under the assumptions (5) from Section 2.4, the map defined in (4) is
measurable, where the σ-algebra used on the space of measures is defined above (4).
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Proof The time set considered in (i) takes the required form since the set of graphs
{G : V ′∩V (G) = V and E′∩E(G) = E} is an open set in G and since G = (Gt)t≥0 is càdlàg.
The measurability claim in (i) follows since the event in question occurs if and only if the
two time sets have the same intersection with Q. The statement (ii) follows by a similar
argument. Both statements (iii) and (iv) immediately follow from (i).

Proposition 55 The event that two graph processes (Gt)t≥0 and (Ĝt)t≥0 are equal up to
relabeling is measurable.

Proof The proposition is immediate in the case where
⋃
t≥0 V (Gt) or

⋃
t≥0 V (Ĝt) is finite,

since the set of maps φ : [n]→ [n] is finite, and given any φ the event that this map satisfies
the requirements of Definition 24 is measurable by Lemma 54. We may therefore assume
that both

⋃
t≥0 V (Gt) and

⋃
t≥0 V (Ĝt) are infinite. We may further assume without loss of

generality that
⋃
t≥0 V (Gt) =

⋃
t≥0 V (Ĝt) = N; we may do this upon relabeling the vertices

of both graph processes.

Next, we reduce the proof of the proposition to the case where no vertices are isolated
for all times. For V ⊆ N let GVt denote the induced subgraph of Gt that has vertex set
V ∩ V (Gt). Let V0 ⊆ N (resp. V̂0 ⊆ N) denote the set of vertices for (Gt)t≥0 (resp. (Ĝt)t≥0)

that are isolated for all times. Then (Gt)t≥0 and (Ĝt)t≥0 are equal up to relabeling of the

vertices if and only if this property holds for (GV0t )t≥0 and (ĜV̂0t )t≥0 and for (G
N\V0
t )t≥0

and (Ĝ
N\V̂0
t )t≥0. To reduce to the case in which no vertices are isolated for all times,

it is sufficient to show measurability of the event that (GV0t )t≥0 and (ĜV̂0t )t≥0 are equal
up to relabeling of the vertices. We say that two vertices i, j ∈ V0 are equivalent if
{t ≥ 0 : i ∈ V (GV0t )} = {t ≥ 0 : j ∈ V (GV0t )}. Equivalence for two vertices i, j ∈ V̂0 and for

two vertices i ∈ V0 and j ∈ V̂0 is defined similarly. We observe that (GV0t )t≥0 and (ĜV̂0t )t≥0

are equal up to relabeling of the vertices if and only if each equivalence class has equal
cardinality in V0 and V̂0. The latter event is measurable, since for any two vertices the event
that these two vertices are equivalent is measurable by Lemma 54. Thus, we can assume
that no vertices are permanently isolated.

To complete the proof, we must determine whether there exists a bijection φ0 : N→ N
satisfying the properties of the map φ in Definition 24, i.e., whether there is a bijective map
φ0 : N → N such that for all times t ≥ 0, φ0(Gt) = Ĝt. We will construct such a map by
first constructing a sequence of maps φn defined on a growing sequence of domains, and
then using a subsequence construction to transform them into a map φ0 : N→ N with the
desired properties. We will show that this construction succeeds if and only if the two graph
processes are equal up to relabeling.

To construct the maps φn, we define A0
n to be the set of injective maps φ : D → N such

that D is finite, {1, . . . , dn/2e} ⊆ D, and {1, . . . , bn/2c} ⊆ φ(D). Let An to be the set of

maps φ ∈ A0
n such that φ(GDt ) = Ĝ

φ(D)
t for all t ≥ 0. Note that An is non-empty for all n if

the two graph processes are equal up to relabeling (just choose φ to be a restriction of the
bijection φ0). Note further that the set A0

n is countable, and that for each φ ∈ A0
n the event

that φ ∈ An is measurable by Lemma 54.
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After these preparations, we are ready to construct the map φ0. First we define φ0(1).
For each j ∈ N define the event Bj by Bj =

⋂
n∈NBj,n, where Bj,n is the event that there

exists a map φ ∈ An for which φ(1) = j. If the graph processes are equal up to relabeling,
then Bj must occur for some j. We will prove that conversely, if Bj occurs for some j,
then the graph processes are equal up to relabeling. Since Bj is a countable intersection of
measurable events, this will finish our proof that the event that the two graph processes are
equal up to relabeling is measurable.

To prove that the event Bj implies the existence of a bijection φ0 such that φ0(Gt) = Ĝt
for all t ≥ 0, we first note that the occurrence of Bj implies the existence of a sequence of
maps φn ∈ An such that φn(1) = j. Accordingly, we set φ0(1) = j. In the second step of the
construction (explained below), we will determine φ−1

0 (1) by passing to a subsequence for
which φ−1

n (1) is constant. More generally, in the kth step of the construction, we will pass
to a subsequence to ensure that φn(i) is constant for 1 ≤ i ≤ dk/2e and φ−1

n (i) is constant
for 1 ≤ i ≤ bk/2c.

We will carry out this construction by induction on k. Suppose that we have defined
φ0(1), . . . , φ0(dk/2e) and φ−1

0 (1), . . . , φ−1
0 (bk/2c) so that there exists a sequence (φkn)n≥k of

maps φkn ∈ An for which

φkn(i) = φ0(i) for all n ≥ k and all i ≤ dk/2e, and

(φkn)−1(i) = φ−1
0 (i) for all n ≥ k and all i ≤ bk/2c.

Assume first that k is odd, in which case we need to define φ−1
0 (b(k + 1)/2c). Choose t

in such a way that b(k + 1)/2c is not isolated in Ĝt. Then (φkn)−1(b(k + 1)/2c) cannot be
isolated in Gt either, and since Gt contains only a finite number of edges, we know there
exists a finite set V such that for all n ≥ k, (φkn)−1(b(k + 1)/2c) ∈ V . But this implies
that we can find a subsequence of (φkn)n≥k on which (φkn)−1(b(k + 1)/2c) takes a fixed value,
which we use to define φ−1

0 (b(k + 1)/2c). To conclude we need to prove the existence of a
sequence φk+1

n ∈ An satisfying the induction hypothesis. For n in the subsequence obtained
above we define φk+1

n = φkn. To turn this subsequence into a sequence φk+1
n ∈ An defined

for all n ≥ k + 1, we can simply reuse elements to fill in any gaps that occur before them,
because An ⊂ Am for m < n. This completes the proof when k is odd, and the even case
differs only in notation.

Appendix D. Random Graph Models

The main goal of this appendix is to establish Theorems 27 and 28. Proposition 56 will be
used to prove left convergence of graphon processes in Section 2.5. It will also be applied
in the proof of Theorem 28(i) in this appendix, where we need to consider the normalized
number of edges in a graphon process.

A result of Lovász and Szegedy (2006, Corollary 2.6) in the setting of graphons over
probability spaces is closely related to the following proposition. However, the proofs are
different, even if both rely on martingale techniques. Note that in the course of proving
the below proposition we give an alternative proof of a result of Veitch and Roy (2015,
Theorem 5.3) for the special case of graphs with no self-edges. Recall from Section 2.5 that
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for a simple graph F and a simple graph G we let inj(F,G) denote the number of injective
adjacency preserving maps φ : V (F )→ V (G).

Proposition 56 Let W = (W,S ), where W : S × S → [0, 1] is a symmetric, measurable
(but not necessarily integrable) function, and S = (S,S, µ) is a σ-finite measure space. Let
F be a simple graph with vertex set V (F ) = {1, . . . , k} for k ≥ 2, such that F has no isolated
vertices. Then a.s.

lim
t→∞

t−kinj(F,Gt(W)) =

∫

Sk

∏

(i,j)∈E(F )

W (xi, xj) dx1 · · · dxk, (14)

where both sides should be read as elements of the extended non-negative reals [0,∞].

Remark 57 Note that the proposition makes no integrability assumptions on W . All
that is used is that W is measurable. As a consequence, the proposition can deal with
situations where, say, the triangle density converges, even though Gt(W) has infinitely
many edges. An extreme example of such a behavior can be obtained by taking W =
(W,R+) to be the “bipartite” graphon defined by W (x, y) =

∑
i,j∈N 12i−2<x<2i−112j−1<y<2j +∑

i,j∈N 12i−1<x<2i12j−2<y<2j−1, leading to a sequence of graphs Gt(W) where every vertex
has a.s. infinite degree, while all subgraph frequencies for graphs F that are not bipartite
converge to zero.

Proof of Proposition 56 We first prove the proposition under the assumption that the
right side of (14) is finite. Throughout the proof we let Gt := G̃t(W) be the graphon process
generated by W with isolated vertices. Note that the left side of (14) is invariant under
replacing Gt(W) with G̃t(W), because F has no isolated vertices. For each t > 0 define Y−t
to be the left side of (14) (with Gt(W) replaced by Gt), i.e.,

Y−t := t−k inj(F,Gt) = t−k
∑

v1,...,vk∈V (Gt)

∏

(i,j)∈E(F )

1(vi,vj)∈E(Gt).

As a first step, we will prove that for each t > 0,

E[Y−t] =

∫

Sk

∏

(i,j)∈E(F )

W (xi, xj) dx1 · · · dxk. (15)

We may assume that µ(S) <∞, since we can write S as a union of increasing sets Sm of
finite measure for each m ∈ N, and by the monotone convergence theorem it is sufficient
to establish (15) with W replaced by W1Sm×Sm , and with Y−t defined in terms of graphs
where we only consider vertices v = (t, x) for which x ∈ Sm. If N := |V (Gt)| < k, then
Y−t = 0. If N ≥ k, then

E[Y−t |N ] =
1

tk
N !

(N − k)!

1

µ(S)k

∫

Sk

∏

(i,j)∈E(F )

W (xi, xj) dx1 · · · dxk,

since we can form N !
(N−k)! ordered sets of size k from V (Gt), and the probability that a

uniformly chosen injective map from V (F ) to V (Gt) is a homomorphism, is given by

1

µ(S)k

∫

Sk

∏

(i,j)∈E(F )

W (xi, xj) dx1 · · · dxk.
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Since N has the law of a Poisson random variable with parameter tµ(S) we can conclude
that (15) holds:

E[Y−t] =
∞∑

n=0

P(N = n)E[Y−t |N = n]

=
∞∑

n=k

(tµ(S))n

n!
e−tµ(S) 1

tk
n!

(n− k)!

1

µ(S)k

∫

Sk

∏

(i,j)∈E(F )

W (xi, xj) dx1 · · · dxk

=

∫

Sk

∏

(i,j)∈E(F )

W (xi, xj) dx1 · · · dxk,

implying in particular that Yt is integrable for all t < 0 given that for now we assumed
that the right side of (14) is finite. Note that in particular this implies that Yt is a.s. finite,
even though W may be such that the event that Gt has infinitely many edges has non-zero
probability.

Let Ĝt be identical to Gt, except that a vertex v = (t, x) ∈ V (Gt) is labeled only with
x. In order words, conditioning on a realization of Ĝt is equivalent to conditioning on a
realization of Gt, except that the time the different vertices were born (i.e., the time they
appeared in the graphon process (G̃t)t≥0) is unknown. Note that since S may have point

masses multiple vertices of Ĝt may have the same label, but they are still considered to be
different. For t ≤ −1, define St to be the σ-algebra generated by (Ĝs)s≥−t. Then Ss ⊆ St
for s ≤ t ≤ −1, so (St)t≤−1 is a filtration, and Yt is measurable with respect to Ĝ−t and
hence St; in other words, (Yt)t≤−1 is adapted to the filtration.

Let t > s > 0. Given any k distinct vertices in Ĝt, the probability (conditioned on
(Ĝt′)t′≥t) that all k vertices are also in Ĝs is given by (s/t)k. Since Ĝs is an induced subgraph

of Ĝt, it follows that

E[Y−s | S−t] = E[Y−s | (Ĝt′)t′≥t]

=
1

sk

∑

v1,...,vk∈V (Ĝt)

∏

(i,j)∈E(F )

1(vi,vj)∈E(Gt) ·

P
(
v1, . . . , vk ∈ V (Ĝs) | v1, . . . , vk ∈ V (Ĝt)

)

= Y−t,

proving that (Yt)t<0 is a backwards martingale. The limit Y−∞ = limt→∞,t∈Q Y−t exists
almost surely (Kallenberg, 2002, Theorem 7.18). Since E[Y−t] <∞ for all t > 0 we know
that a.s., Y−t <∞ for all t > 0, which implies that a.s., |E(Gt)| <∞ for all t > 0. Therefore
(Yt)t<0 has finitely many discontinuities in any bounded interval, and is left-continuous with
limits from the right. It follows that Y−∞ = limt→∞ Y−t; i.e., we do not need to take the
limit along rationals.

To complete the proof it is sufficient to prove that the limit Y−∞ is equal to the right
side of (15) almost surely. To establish this it is sufficient to prove that Y−∞ is equal to a
deterministic constant almost surely, since (Yt)t<0 is uniformly integrable (Kallenberg, 2002,
Theorem 7.21), which implies that (Yt)t<0 converges to Y−∞ also in L1.

51



Borgs, Chayes, Cohn, and Holden

We will use the Kolmogorov 0-1 law (Stroock, 2011a, Theorem 1.1.2) to deduce this. For
any n ∈ N define Vn := {(s, x) ∈ V : n− 1 ≤ s < n}. Let Fn be the σ-algebra generated by
the set Vn and the edges between the vertex set Vn and the vertex set

⋃
1≤m≤n Vm. Since

the randomness of the edges can be represented as an infinite sequence of independent
uniform random variables, the σ-algebras Fn can be considered independent even if the
edges considered in Fn join vertices in Vn and Vm for m < n. In order to apply the 0-1 law
it is sufficient to prove that Y−∞ is measurable with respect to the σ-algebra generated by⋃
n≥n0

Fn for all n0 ∈ N.
Define Y−t,≥n0 in the same way as Y−t, except that instead of summing over vertices

in V (Gt), we sum over vertices in V (Gt) ∩ V≥n0 , where V≥n0 =
⋃
n≥n0

Vn. Since Y−t,≥n0

is measurable with respect to the σ-algebra generated by
⋃
n≥n0

Fn, all we need to show
is that for all n ≥ n0, a.s., Y−t − Y−t,≥n0 → 0 as t → ∞. The difference between Y−t and
Y−t,≥n0 can then be bounded by

t−k
∑

v1,...,vk∈V (Gt)
ti≤n0 for some i∈[k]

∏

(i,j)∈E(F )

1(vi,vj)∈E(Gt),

where ti is the time label of vi. Conditioned on v1, . . . , vk ∈ V (Gt), the probability that at
least one of them has time label ti ≤ t0 is bounded by kt0/t. Continuing as in the proof of
(15), we therefore obtain that

0 ≤ E[Y−t − Y−t,≥n0 ] ≤ k
( t0
t

)∫

Sk

∏

(i,j)∈E(F )

W (xi, xj) dx1 · · · dxk. (16)

Since the limit Y−∞ = limt→∞ Y−t exists, we can calculate Y−∞ along any sequence, say
the sequence (Y−n2)n∈N. The bound (16) combined with Markov’s inequality and the
Borel-Cantelli lemma therefore implies that Y−∞ = limn→∞ Y−n2,≥n0

, proving that Y−∞
is measurable with respect to the σ-algebra generated by

⋃
n≥n0

Fn, as required for the
application of the 0-1 law.

This completes the proof of the proposition under the assumption that the right side of
(14) is finite. If the right side is infinite, we note that for any set A of finite measure (14)
holds with W1A×A instead of W on both the left side and the right side. We can make the
right side arbitrarily large by increasing A. The left side is monotone in A, and therefore
the limit inferior of the left side (with W , not W1A×A) is larger than any fixed constant,
and hence is equal ∞.

Proof of Theorem 28 (i) Since the result of the theorem is immediate for ‖W‖1 = 0, we
will assume throughout the proof that ‖W‖1 > 0. Since δ�(G̃t, Gt) = 0 by (3), it is enough
to prove the statement for either (G̃t)t≥0 or (Gt)t≥0.

If S has finite total mass, then, a.s., |V (G̃t)| is finite for each fixed t ≥ 0, and conditioned
on the size of |V (G̃t)|, the graph G̃t is a W-random graph in the sense of the theory of
dense graph convergence. The results of Borgs, Chayes, Lovász, Sós, and Vesztergombi

(2008) imply that δ�(G̃t, W̃) → 0 and ‖W G̃t‖1 → ‖W̃‖1 where W̃ = (W̃ , S̃ ) is obtained

from W by normalizing the measure to a probability measure (giving, in particular, ‖W̃‖1 =
‖W‖1/π(S)2.) Combined with Lemma 44, this implies that δs�(G̃t,W)→ 0 when π(S) <∞.
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If π(S) = ∞, we use Lemma 47, and the observation that two graphons generate
graphon processes with the same law if one graphon is a pullback of the other, to reduce
the proof to the case S = (R+,B, λ). Given 0 < ε < 1/2 choose M > 0 such that
‖W −W1[0,M ]2‖1 < ε‖W‖1, and define WM to be the graphon WM = W1[0,M ]2 over [0,M ],

and G̃Mt to be the induced subgraph of G̃t on the set of vertices (s, x) such that x ≤ M .

Define W̃ G̃M
t ,s := W G̃M

t (λM · , λM · ) with λM := M−1‖W‖1/21 . In the cut metric δ�, the

stretched graphon W̃ G̃M
t ,s then converges to W̃ s

M := WM (‖W‖1/21 · , ‖W‖1/21 · ), again by the
convergence of W-random graphs for W defined on a probability space.

Furthermore, by Proposition 56 applied to the graph F consisting of a single edge, we
have that a.s., the number of edges in G̃Mt divided by t2 converges to 1

2‖W1[0,M ]2‖1, so in

particular the time tM where G̃Mt has at least one edge is a.s. finite. For the rest of this
proof, we will always assume that t ≥ tM .

Defining G′t to be the graph obtained from G̃t by removing all isolated vertices (s, x) from
V (G̃t) for which x > M , we note that by (3), it is sufficient to prove that δs�(G′t,W)→ 0.
Recall that each vertex v = (s, x) of G′t corresponds to an interval when we define the
stretched canonical graphon WG′t,s of G′t. Assume the intervals are ordered according
the value of x; i.e., if the vertices v = (s, x) and v′ = (s′, x′) satisfy x < x′, then the
interval corresponding to v is to the left on the real line of the interval corresponding
to v′. Noting that by our assumption t ≥ tM , there exists at last one vertex v = (s, x)

in G′t such that x ≤ M , we define the graphon W̃G′t,s = (W̃G′t,s,R+) to be a “stretched”
version of WG′t such that the vertices v = (s, x) for which x ∈ [0,M ] correspond to the

interval [0, λ−1
M ]. In other words, W̃G′t,s = WG′t,s(rt · , rt · ) for some appropriately chosen

constant rt > 0. To calculate rt, we note that WG′t,s = WG′t(λ · , λ · ) with λ = ‖WG′t‖1/21 =

|V (G′t)|−1
√

2|E(G′t)| and W̃G′t,s = WG′t(λ′ · , λ′ · ) with λ′ = λM |V (G̃Mt )||V (G′t)|−1, giving

rt = λ′/λ =
√
λ2
M |V (G̃Mt )|2/(2|E(G′t)|). Since |V (G̃Mt )| is an exponential random variable

with expectation Mt, and |E(G′t)|/t2 = |E(Gt)|/t2 → 1
2‖W‖1 a.s. by Proposition 56, we

have that, a.s., rt → 1 as t→∞. By the triangle inequality, Lemma 36, and the fact that

W̃G′t,s|[0,λ−1
M ]2 = W̃ G̃M

t ,s,

δs�(W, G′t) ≤‖W s − W̃ s
M‖1 + δ�

(
W̃s
M , W̃

G̃M
t ,s
)

+ ‖W̃G′t,s|[0,λ−1
M ]2 − W̃

G′t,s‖1 + δ�(W̃G′t,s,WG′t,s).
(17)

The first term on the right side of (17) is bounded by ε by assumption, and the second
converges to zero as already discussed above. The third term on the right side of (17) is
the product of r−2

t and the fraction of edges of Gt for which at least one vertex v = (t, x)
satisfies x > M . By Proposition 56 (applied with the random graphs G̃Mt and G̃t and the
same simple graph F as above) and limt→∞ rt = 1 it follows that this term is less than
2ε for all sufficiently large t > 0. The fourth term on the right side of (17) converges to
zero by limt→∞ rt = 1 and Lemma 44. Since ε > 0 was arbitrary we can conclude that
limt→∞ δ

s
�(W, Gt) = 0.

Proof of Theorem 28 (ii) First we will show that the condition
∑∞

n=1 µ(Sn)−1 = ∞
is necessary. We will use proof by contradiction, and assume

∑∞
n=1 µ(Sn)−1 < ∞ and
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a.s.-limn→∞ δ
s
�(W, Gn) = 0. We will obtain the contradiction by proving that with positive

probability E(Gn) = ∅ for all n ∈ N (which clearly contradicts a.s.-limn→∞ δ
s
�(W, Gn) = 0).

By rescaling the measure of S we may assume without loss of generality that ‖W‖1 = 1.
Furthermore, we assume that µ(S) = ∞ by extending S and W to a space of infinite
measure. Note that the condition

⋃
i Si = S will not hold after such an extension has been

done, but we will not use this property in the proof. (The property
⋃
i Si = S is applied

only in the second part of the proof, where we show that the condition
∑∞

n=1 µ(Sn)−1 =∞
is sufficient.)

First we will prove that there is a random N ∈ N such that WGn,s = WGN ,s (up to
interval permutations) for all n ≥ N . Since (|E(Gn)|)n∈N is increasing, in order to do this it is
sufficient to prove that (|E(Gn)|)n∈N is bounded almost surely, and by monotone convergence,
this in turn follows once we show that supn∈N E[|E(Gn)|] <∞. Letting vi ∈ V (Gi) denote
the vertex added in step i ∈ N, and defining S0 = ∅, we obtain the desired result:

E[|E(Gn)|] =
∑

1≤i<j≤n
P[(vi, vj) ∈ E(Gn)]

=
∑

1≤i<j≤n

1

µ(Si)µ(Sj)
‖W1Si×Sj‖1

≤
n∑

i′,j′=1

‖W1(Si′\Si′−1)×(Sj′\Sj′−1)‖1
∑

i≥i′,j≥j′

1

µ(Si)µ(Sj)

≤ ‖W‖1

( ∞∑

n=1

µ(Sn)−1

)2

<∞.

Since limn→∞ δ
s
�(Gn,W) = 0 it follows that δ�(WGN ,s,W) = 0.

We saw in the above paragraph that δ�(WGN ,s,W) = 0 a.s. for some random N ∈ N.

Therefore there is a deterministic step graphon Ŵ = (Ŵ ,R+) with values in {0, 1} such

that δ�(Ŵ,W) = 0. Since the set {D
Ŵ
> 0} has finite measure, by Lemma 45, the set

A = {DW > 0} has finite measure as well. After changing W on a set of measure 0, we have

suppW ⊆ A×A. Note also that by Proposition 7 we have δ1(Ŵ ,W ) = 0.
For any n ∈ N the probability that a feature sampled from the measure µn is contained

in A is given by µ(A ∩ Sn)/µ(Sn) ≤ µ(A)/µ(Sn). Hence the Borel-Cantelli lemma implies
that finitely many vertices in

⋃
n≥1 V (Gn) have a feature in A. Therefore we can find a

deterministic n0 ∈ N such that P(xn 6∈ A for all n ≥ n0) > 0. It follows that with uniformly
positive probability conditioned on Gn0 , no edges are added to Gn after time n0.

To conclude our proof (i.e., obtain a contradiction by proving that E(Gn) = ∅ with
positive probability) it is therefore sufficient to prove that E(Gn0) = ∅ with positive

probability. We will do this by sampling a sequence of graphs (Ĝn)n∈N from Ŵ which is

close in law to (Gn)n∈N, and use that E(Ĝn) = ∅ with positive probability since Ŵ is zero
on a certain subdomain since the graphs we consider have no loops. (Note that our approach

would not have worked if we allowed for loops; if, for example, Ŵ |[0,1]2 ≡ 1 and S1, S2 ⊂ [0, 1]

we would have had P(E(Ĝn) = ∅) = 0.) Let ε > 0, and recalling that δ1(Ŵ,W) = 0, choose

a coupling measure µ̃ on S ×R+ such that ‖W π1 − Ŵ π2‖1,µ̃ < ε. By using µ̃ we can sample
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two coupled sequences of graphs (Gn)1≤n≤n0 and (Ĝn)1≤n≤n0 , such that the two sequences
have a law which is close in total variation distance, (Gn)1≤n≤n0 has the law of the graphs

in the statement of the theorem, and (Ĝn)1≤n≤n0 is sampled similarly as (Gn)n∈N but with

Ŵ instead of W. More precisely, for each n ∈ {1, . . . , n0} we sample (x, x̂) ∈ Sn × R+ from
the probability measure µ(Sn)−1µ̃|Sn×R+ , we let x (resp. x̂) be the feature of the nth vertex

of Gn (resp. Ĝn), and by using that ‖W π1 − Ŵ π2‖1,µ̃ < ε we can couple (Gn)1≤n≤n0 and

(Ĝn)1≤n≤n0 such that for each n1, n2 ∈ {1, . . . , n0} for which n1 6= n2 we have

P
({

(xn1 , xn2) ∈ E(Gn0), (x̂n1 , x̂n2) 6∈ E(Ĝn0)
}
∪

{
(xn1 , xn2) 6∈ E(Gn0), (x̂n1 , x̂n2) ∈ E(Ĝn0)

})

≤ µ(Sn1)−1µ(Sn2)−1

∫

(Sn1×R+)×(Sn2×R+)

∣∣∣W π1 − Ŵ π2
∣∣∣ dµ̃ dµ̃

< µ(Sn1)−1µ(Sn2)−1ε.

Hence the total variation distance between the laws of (Gn)1≤n≤n0 and (Ĝn)1≤n≤n0 is
bounded by n2

0µ(S1)−2ε. Since we can make this distance arbitrarily small by decreasing ε,

in order to complete our proof it is sufficient to prove that E(Ĝn0) = ∅ with a uniformly
positive probability for all coupling measures µ̃. Write R+ =

⋃N
n=0An, such that A0, . . . , AN

correspond to the steps of the step function Ŵ , with, say, A0 corresponding to the set of
all x such that

∫
Ŵ (x, y) dy = 0. For any choice of µ̃ we can find a k = kµ̃ ∈ {0, . . . , N}

such that µ̃(S1 ×Ak) ≥ µ(S1)/(N + 1). Therefore there is a uniformly positive probability
that all the vertices of Ĝn0 have a feature in Ak. On this event we have E(Ĝn0) = ∅, since

Ŵ |Ak×Ak
≡ 0 as the graphs we consider are simple (i.e., they do not have loops). This

completes our proof that the condition
∑∞

n=1 µ(Sn)−1 =∞ is necessary.
Now we will prove that the condition

∑∞
n=1 µ(Sn)−1 = ∞ is sufficient to guarantee

that a.s.-limn→∞ δ
s
�(W, Gn) = 0. We will couple (Gn)n∈N to a graphon process (G̃t)t≥0

with isolated vertices. Fix ε > 0, and choose N ∈ N sufficiently large such that ‖W −
W1SN×SN

‖� < ε. Sample (G̃t)t≥0, and independently from (G̃t)t≥0, sample (Gn)1≤n≤N as
described in the statement of the theorem. Define (tn)n≥N inductively as follows

tN = 0, tn = inf{t > tn−1 : there exists x ∈ Sn such that (t, x) ∈ V (G̃t)}.

Note that tn → ∞ a.s. as n → ∞, because the increments tn − tn−1 are independent and
exponentially distributed with mean µ(Sn)−1, and

∑∞
n=N+1 µ(Sn)−1 =∞ by assumption.

For n > N let Ĝn be the induced subgraph of G̃tn whose vertex set is

V (Ĝn) = {(t, x) ∈ V (G̃tn) : there exists ñ ∈ {N + 1, . . . , n} such that t = tñ}.

For each n > N let Gn be the union of GN and Ĝn, such that the edge set of Gn is given
by E(GN ) ∪ E(Ĝn) in addition to independently sampled edges between the vertices of GN
and the vertices of Ĝn, such that the probability of connecting vertices with features x and
x′ is W (x, x′), and such that Gn−1 is an induced subgraph of Gn. It is immediate that
(Gn)n∈N has the same law as the sequence of graphs (Gn)n∈N described in the statement of
the theorem.
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We will prove that |E(Gn)\E(G̃tn)| = o(|E(G̃tn)|) and |E(G̃tn)\E(Gn)| < ε|E(G̃tn)| for
all large n ∈ N. This is sufficient to complete the proof of the theorem, since ε > 0 was arbi-
trary, since limn→∞ δ

s
�(W, G̃tn) = 0 by part (i) of the theorem, and since δs�(Gn, G̃tn)→ 0

as n → ∞ and ε → 0 by the following argument. Define W̃Gn,s := (W̃Gn,s,R+) and

W̃Gn,s := WGn,s(r−1
n · , r−1

n · ) for rn = |E(Gn)|1/2|E(G̃tn)|−1/2; i.e., W̃Gn,s is a stretched
version of WGn,s defined such that each vertex of Gn corresponds to an interval of length
(2|E(G̃tn)|)−1/2. Then each vertex corresponds to an interval of length (2|E(G̃tn)|)−1/2

both for W̃Gn,s and for W G̃tn ,s, so by ordering the vertices appropriately when defin-

ing the graphons we have ‖W̃Gn,s −W G̃tn ,s‖1 ≤ |E(Gn)4E(G̃tn)||E(G̃tn)|−1 = on(1) +
ε. For sufficiently small ε > 0 and large n ∈ N we have |rn − 1| <

∣∣|E(Gn)|1/2 −
|E(G̃tn)|1/2

∣∣|E(G̃tn)|−1/2 < on(1)+ε, and hence Lemma 44 implies that δ�(WGn,s, W̃Gn,s) <
4ε for all sufficiently small ε > 0 and sufficiently large n ∈ N. Combining the above estimates
we get that for all sufficiently small ε > 0 and sufficiently large n ∈ N,

δs�(Gn, G̃tn) ≤ δ�(WGn,s, W̃Gn,s) + δ�(W̃Gn,s,WG̃tn ,s) ≤ 4ε+ ‖W̃Gn,s −W G̃tn ,s‖1 ≤ 6ε.

First we prove that conditioned on almost any realization of GN , |E(Gn)\E(G̃tn)| =
o(|E(G̃tn)|) as n → ∞. Note that E(Gn)\E(G̃tn) consists of the edges in E(GN ), plus
independently sampled edges between V (GN ) and V (Ĝn). Since V (Ĝn) ⊂ V (G̃tn), we
overcount the latter if we independently sample one edge for each v ∈ V (GN ) and v′ ∈ V (G̃tn),
with the probability of an edge between v and v′ given by W evaluated at the features of
v and v′. Defining deg(v; G̃tn) to be the number of edges between v ∈ V (GN ) and V (G̃tn)
obtained in this way, we thus have

|E(Gn)\E(G̃tn)| ≤ |E(GN )|+
∑

v∈V (GN )

deg(v; G̃tn).

By Proposition 56 applied with F being the simple connected graph with two vertices,
|E(G̃tn)| = Θ(t2n). In order to prove that |E(Gn)\E(G̃tn)| = o(|E(G̃tn)|) it is therefore
sufficient to prove that, conditioned on almost any realization of GN , each vertex v ∈ V (GN )
satisfies deg(v; G̃tn) ≤ Ctn for all sufficiently large n and some C > 0 depending on the
feature of the vertex. Condition on a realization of GN such that

∫
SW (x, y) dµ(y) <∞ for

all x ∈ S such that x is the feature of some vertex in GN . We will prove that if x ∈ S is the
feature of v ∈ V (GN ) then a.s.

lim
t→∞

Y−t =

∫

S
W (x, y) dµ(y), where Y−t := t−1 deg(v; G̃t) for all t > 0, (18)

which is sufficient to imply the existence of an appropriate constant C. The convergence
result (18) follows by noting that (Yt)t<0 is a backwards martingale with expectation∫
SW (x, y) dµ(y), which is left-continuous with right limits at each t < 0; see the proof of

Proposition 56 for a very similar argument. Hence the Kolmogorov 0-1 law implies (18). We
can conclude that |E(Gn)\E(G̃tn)| = o(|E(G̃tn)|).

Now we prove |E(G̃tn)\E(Gn)| < ε|E(G̃tn)|. Let Gtn be the induced subgraph of G̃tn
corresponding to vertices with feature in SN . Then

|E(G̃tn)\E(Gn)| ≤ |E(G̃tn)| − |E(Gtn)|.
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By applying Proposition 56 to each of the graphs Gtn and Ĝtn , and with F being the simple
connected graph on two vertices, it follows that

lim sup
n→∞

|E(G̃tn)|−1|E(G̃tn)\E(Gn)| ≤ lim
n→∞

|E(G̃tn)|−1(|E(G̃tn)| − |E(Gtn)|)

= ‖W‖1 − ‖W1SN×SN
‖1 = ‖W −W1SN×SN

‖1 < ε.

Proof of Theorem 27 Assume that (i) holds, i.e., δ�(W1,W2) = 0. We will prove that
(ii) and (iii) also hold. It is sufficient to prove that (ii) holds, since (ii) implies (iii).

We first consider the case when µi(Ii) <∞ for i = 1, 2, where Ii := {x ∈ Si : DWi(x) >
0}. Recall that by Proposition 21 we have µ1(I1) = µ2(I2), so by restricting the graphon Wi

to the space Ii for i = 1, 2 we obtain two graphons with cut distance zero over spaces of
finite and equal measure. By definition of Ii, almost surely no vertices of (G̃t)t≥0 will be
isolated for all times, and it is proved that (ii) holds in, for example, a paper by Janson
(2013, Theorem 8.10), who refers to papers by Borgs, Chayes, Lovász, Sós, and Vesztergombi
(2008), Borgs, Chayes, and Lovász (2010), and Diaconis and Janson (2008) for the original
proofs.

Next we consider the case where µ1(I1) = µ2(I2) =∞. We may assume µi(Si \ Ii) = 0,
since replacing the graphon Wi by its restriction to Si \ Ii amounts to removing vertices
which are isolated for all times. Part (i) of Proposition 51 now implies that we can find a
measure µ such that W π1

1 = W π2
2 µ-almost everywhere. By the assumption µi(Si \ Ii) = 0,

part (iv) of the proposition implies that µ is a coupling measure. Sampling a graphon
process from Wi may be done by associating the vertex set with a Poisson point process
on (S1 × S2) × R+ with intensity µ × λ, such that each ((x1, x2), t) ∈ (S1 × S2) × R+ is
associated with a vertex with feature xi appearing at time t.

Now we will prove that (ii) or (iii) imply (i). We will only show that (ii) implies (i), since
we can prove that (iii) implies (i) by the exact same argument. We assume (ii) holds, and
couple (G̃1

t )t≥0 and (G̃2
t )t≥0 such that G̃1

t = G̃2
t for all t ≥ 0. By Theorem 28(i) we know

that limt→∞ δ�(Wi,WG̃i
t) = 0. Since WG̃1

t = WG̃2
t for all t ≥ 0 it follows by the triangle

inequality that δ�(W1,W2) = 0, so (i) holds.

Appendix E. Compactness

In this appendix we will establish Theorem 15.

Lemma 58 Let (Wn)n∈N and (W̃n)n∈N be two sequences of graphons, with Wn = (Wn,Sn),

Sn = (Sn,Sn, µn), W̃n = (W̃n, S̃n), and S̃n = (S̃n, S̃n, µ̃n), such that there are measure-

preserving transformations φn : Sn → S̃n for which limn→∞ ‖Wn−W̃ φn
n ‖1 = 0. Furthermore,

assume that either (i) φn is a bimeasurable bijection, or (ii) Sn = S̃n × [0, 1], where [0, 1] is
equipped with Lebesgue measure, and φn : Sn → S̃n is the projection map. Then (Wn)n∈N
has uniformly regular tails iff (W̃n)n∈N has uniformly regular tails.
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Proof Let (εn)n∈N be a sequence of positive real numbers converging to zero, such that

‖Wn − W̃ φn
n ‖1 < εn for all n ∈ N. First assume (W̃n)n∈N has uniformly regular tails.

Given any ε > 0 let M > 0 be such that for all n ∈ N we can find Ũn ∈ S̃n satisfying
µ̃n(Ũn) < M and ‖W̃n − W̃n1Ũn×Ũn

‖1 < ε/2. Define Un := φ−1
n (Ũn). Since φn is measure-

preserving, µn(Un) = µn(Ũn) < M . By first using ‖Wn − W̃ φn
n ‖1 < εn (which implies that

‖(Wn − W̃ φn
n )1Un×Un‖1 < εn) and then using that φn is measure-preserving we get

‖Wn−Wn1Un×Un‖1
≤ ‖Wn − W̃ φn

n ‖1 + ‖W̃ φn
n − W̃ φn

n 1Un×Un‖1 + ‖(W̃ φn
n −Wn)1Un×Un‖1

≤ ‖W̃ φn
n − W̃ φn

n 1Un×Un‖1 + 2εn

= ‖W̃n − W̃n1Ũn×Ũn
‖1 + 2εn

< ε/2 + 2εn.

The right side is less than ε for all sufficiently large n ∈ N. Therefore (Wn)n∈N has uniformly
regular tails.

Next assume (Wn)n∈N has uniformly regular tails. We consider the two cases (i) and (ii)

separately. In case (i) it is immediate from the above result that (W̃n)n∈N has uniformly

regular tails, since ‖W̃n − W φ−1
n

n ‖1 < εn. Now consider case (ii). Given any ε > 0 let
M > 0 be such that for all n ∈ N we can find Un ∈ Sn satisfying µn(Un) < M/2 and
‖Wn −Wn1Un×Un‖1 < ε/5. Define Ũn by

Ũn :=

{
x ∈ S̃n :

∫ 1

0
1(x,s)∈Un

ds >
1

2

}
,

and define U ′n := φ−1
n (Ũn). Note that Ũn is a measurable set since (x, s) 7→ 1(x,s)∈Un

is

measurable. Then µ̃n(Ũn) < M , since

µn(Un) =

∫

S̃n

∫ 1

0
1(x,s)∈Un

ds dµ̃(x) ≥
∫

Ũn

∫ 1

0
1(x,s)∈Un

ds dµ̃(x) ≥
∫

Ũn

1

2
dµ̃(x) =

1

2
µ̃n(Ũn).

Next we will argue that

‖W̃n − W̃n1Ũn×Ũn
‖1 ≤ 2‖W̃ φn

n − W̃ φn
n 1Un×Un‖1. (19)

If (x, x′) ∈ (S̃n × S̃n)\(Ũn × Ũn) it holds by the definition of Ũn that

∫ 1

0

∫ 1

0
1((x,s),(x′,s′))∈(Sn×Sn)\(Un×Un) ds

′ ds = 1−
∫ 1

0
1(x,s)∈Un

ds

∫ 1

0
1(x′,s)∈Un

ds ≥ 1

2
,
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which implies (19) by

‖W̃n−W̃n1Ũn×Ũn
‖1 =

∫

S̃n×S̃n

dµ(x) dµ(x′)
∣∣∣W̃n(x, x′)

∣∣∣1(x,x′)∈(S̃n×S̃n)\(Ũn×Ũn)

≤ 2

∫

S̃n×S̃n

dµ(x) dµ(x′)

( ∣∣∣W̃n(x, x′)
∣∣∣1(x,x′)∈(S̃n×S̃n)\(Ũn×Ũn)

·
∫ 1

0

∫ 1

0
1((x,s),(x′,s′))∈(Sn×Sn)\(Un×Un) ds

′ ds

)

≤ 2

∫

S̃n×S̃n

dµ(x) dµ(x′)
∣∣∣W̃n(x, x′)

∣∣∣
∫ 1

0

∫ 1

0
1((x,s),(x′,s′))∈(Sn×Sn)\(Un×Un) ds

′ ds

= 2
∥∥∥W̃ φn

n 1(Sn×Sn)\(Un×Un)

∥∥∥
1

= 2‖W̃ φn
n − W̃ φn

n 1Un×Un‖1.

Using that φn is measure-preserving, the triangle inequality, that ‖W̃ φn
n −Wn‖1 < εn, and

the estimate (19) we get

‖W̃n − W̃n1Ũn×Ũn
‖1 ≤ 2‖W̃ φn

n − W̃ φn
n 1Un×Un‖1

≤ 2‖Wn −Wn1Un×Un‖1 + 4εn < 2ε/5 + 4εn.

The right side is less than ε for all sufficiently large n ∈ N, and thus (W̃n)n∈N has uniformly
regular tails.

Proof of Theorem 15 First we will prove that every δ�-Cauchy sequence has uniformly
regular tails. Let (Wn)n∈N with Wn = (Wn,Sn) be a δ�-Cauchy sequence of graphons, i.e.,
limn,m→∞ δ�(Wn,Wm)→ 0. By Lemma 58 we may assume without loss of generality that

Sn is atomless for all n ∈ N. By Lemmas 46 and 33 we can find graphons W̃n = (W̃n,R+)

and measure-preserving maps ψn : Sn → R+ such that Wn = (W̃n)ψn . Since δ�(W̃n,Wn) = 0,

(W̃n)n∈N is a Cauchy sequence. Given any ε > 0 choose N ∈ N such that δ�(W̃N , W̃n) < ε/4

for all n ≥ N . For each n ≤ N let Mn ∈ R+ be such that ‖W̃n − W̃n1[0,Mn]2‖1 < ε/3, and

define M := supn≤N Mn < ∞. To prove that (W̃n)n∈N has uniformly regular tails it is

sufficient to prove that for each n ≥ N we can find a Borel-measurable set Ãn ⊂ R+ such
that

λ(Ãn) ≤M, ‖W̃n − W̃n1Ãn×Ãn
‖1 < ε. (20)

We can clearly find an appropriate set Ãn for n = N ; indeed, we can find a set ÃN ⊂ R+

such that the second bound holds with ε/3 instead of ε. By Proposition 48(c) we can

find isomorphisms φn : R+ → R+ such that ‖W̃N − W̃ φn
n ‖� < ε/3 for all n ≥ N . Define

Ãn = φn(ÃN ), and note that

‖W̃n − W̃n1Ãn×Ãn
‖� = ‖W̃ φn

n − W̃ φn
n 1

ÃN×ÃN
‖� ≤ ‖W̃N − W̃N1

ÃN×ÃN
‖� +

2ε

3
< ε.

Observing that for non-negative graphons the cut norm is equal to the L1 norm, this gives
that (20) is satisfied and (W̃n)n∈N has uniformly regular tails. Defining An := ψ−1(Ãn), we
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have µ(An) < M and ‖Wn −Wn1An×An‖1 = ‖W̃n − W̃n1Ãn×Ãn
‖1 < ε. Hence (Wn)n∈N has

uniformly regular tails.
Now we will prove that uniform regularity of tails implies subsequential convergence for

δ�. We consider some sequence of graphons (Wn)n∈N with uniformly regular tails, and will
prove that the sequence is subsequentially convergent for δ� towards some graphon W. By
Lemma 58 we may assume without loss of generality that Sn is atomless for all n ∈ N, and
by trivially extending Wn to a graphon over a space of infinite total mass if needed, we may
assume that µn(Sn) =∞. Recall the definition of a partition of a measurable space, which
was given as part of the discussion before the statement of Proposition 20. We will prove
that we can find increasing sequences (mk)k∈N and (Mk)k∈N with values in N, such that for
each k, n ∈ N there is a partition Pn,k of Sn and a graphon Wn,k = (Wn,k,R+) such that
the following hold:

(i) We have Pn,k = {Iin,k : i = 0, . . . ,mk}, where µn(Sn \ I0
n,k) = Mk and µn(Iin,k) =

Mk/mk for i ∈ {1, . . . ,mk}.

(ii) We have δ�(Wn,Wn,k) < 1/k for all n ∈ N.

(iii) For each i1, i2 ∈ {1, . . . ,mk} the value of Wn,k on ([i1 − 1, i1)× [i2 − 1, i2))Mk/mk is
constant and equal to the value of (Wn)Pn,k

on Ii1n,k × I
i2
n,k. On the complement of

[0,Mk]
2, we have Wn,k = 0.

(iv) The partition Pn,k+1 refines the partition Pn,k. We number the elements of the
partition Pn,k+1 to be consistent with the refinement. More precisely, defining rk :=
(Mk/mk)/(Mk+1/mk+1) ∈ N to be the ratio of the partition sizes in the two partitions,
we have Iin,k =

⋃irk
j=(i−1)rk+1 I

j
n,k+1 for every i with 0 < i ≤ mk.

Partitions Pn,k and graphons Wn,k satisfying (i)–(iv) exist by the following argument.
By the assumption of uniformly regular tails, for each k ∈ N we can find an Mk ∈
N such that for appropriate sets I0

n,k satisfying µn(Sn \ I0
n,k) = Mk we have ‖Wn −

Wn1(Sn\I0n,k)×(Sn\I0n,k)‖1 < 1/(3k) for all n ∈ N. By Lemmas 46 and 33, for each n, k ∈ N the

graphon (Wn|(Sn\I0n,k)×(Sn\I0n,k), Sn \ I0
n,k) is a pullback of a graphon W̃n,k = (W̃n,k, [0,Mk])

by a measure-preserving transformation ϕn,k. By applying Szemerédi regularity for equi-

table partitions to W̃n,k (see, for example, the paper of Borgs, Chayes, Cohn, and Zhao,

2014a, Lemma 3.3) we can find appropriate mk ∈ N and partitions P̃n,k of [0,Mk] such

that ‖(W̃n,k − (W̃n,k)P̃n,k
)‖� < 1/(3k). Then the pullback of (W̃n,k)P̃n,k

along ϕn,k equals

(Wn)Pn,k
for an appropriate partition of Sn satisfying (i), and

‖Wn − (Wn)Pn,k
‖� ≤ ‖Wn −Wn1(Sn\I0n,k)×(Sn\I0n,k)‖�

+ ‖(Wn − (Wn)Pn,k
)1(Sn\I0n,k)×(Sn\I0n,k)‖�

+ ‖(Wn)Pn,k
1(Sn\I0n,k)×(Sn\I0n,k) − (Wn)Pn,k

‖�

= ‖Wn −Wn1(Sn\I0n,k)×(Sn\I0n,k)‖� + ‖W̃ϕn,k

n,k − (W̃n,k)
ϕn,k

P̃n,k
‖�

+

∥∥∥∥
(
Wn1(Sn\I0n,k)×(Sn\I0n,k) −Wn

)
Pn,k

∥∥∥∥
�

< 1/k.

60



Limits of Sparse Exchangeable Graphs

Define Wn,k as described in (iii), and note that all requirements (i)–(iv) are satisfied since
δ�(((Wn)Pn,k

,Sn),Wn,k) = 0.
By compactness, for each k ∈ N there exists a step function Uk : R2

+ → [0, 1] (with support
in [0,Mk]2) such that (Wn,k)n∈N converges pointwise and in L1 along a subsequence towards
Uk. We may assume the subsequence along which (Wn,k+1)n∈N converges is contained in
the subsequence along which (Wn,k)n∈N converges. Note that for each i1, i2 ∈ {1, . . . ,mk}
the function Uk is constant on ([i1 − 1, i1]× [i2 − 1, i2])Mk/mk. Furthermore, observe that
if k, k′ ∈ N and k′ ≥ k, the value of Uk at ([i1 − 1, i1] × [i2 − 1, i2])Mk/mk is equal to the
average of Uk′ over this set. Define the graphon Uk by Uk := (Uk,R+).

Choose M > 1, and then choose k′ such that Mk ≥Mk′ ≥M for all k ≥ k′. Let (X,Y )
be a uniformly random point in [0,Mk′ ]

2. By the observations in the preceding paragraph
(Uk(X,Y ))k≥k′ is a martingale. Hence the martingale convergence theorem implies that
the limit limk→∞ Uk(X,Y ) exists a.s. Since M was arbitrary it follows that there is a set
E ⊂ R2

+ of measure zero outside of which (Uk)k≥k′ converges pointwise. Define the graphon
U := (U,R+) as follows. For any (x1, x2) ∈ R2

+\E define U(x1, x2) := limk→∞ Uk(x1, x2),
and for any (x1, x2) ∈ E define U(x1, x2) := 0. Since the functions Uk are uniformly bounded,
martingale convergence also implies that Uk|[0,M`]2 converges to U |[0,M`]2 in L1 for each
` ∈ N.

Next we will show that limk→∞ ‖Uk − U‖1 = 0. Since limk→∞ ‖(Uk − U)1[0,M`]2‖1 = 0
for each ` ∈ N it is sufficient to prove that ‖Uk1R2

+\[0,M`]2
‖1 < 1/(3`) for all k, ` ∈ N for

which k > `. This follows by Fatou’s lemma and the inequality
∫

R2
+\[0,M`]2

|Wn,k| =
∫

[0,Mk]2\[0,M`]2
|Wn,k| ≤

∫

(Sn\I0n,k)2\(Sn\I0n,`)
2

|Wn|Pn,k

=

∫

(Sn\I0n,k)2\(Sn\I0n,`)
2

|Wn| < 1/(3`).

By the result of the preceding paragraph

lim sup
k→∞

δ�(Uk,U) ≤ lim sup
k→∞

‖Uk − U‖1 = 0,

and we conclude the proof by applying the triangle inequality to obtain

lim inf
n→∞

δ�(U ,Wn) ≤ lim sup
k→∞

lim inf
n→∞

(
δ�(U ,Uk) + δ�(Uk,Wn,k) + δ�(Wn,k,Wn)

)
= 0.

Appendix F. Basic Properties of Metric Convergent Sequences of Graphs

In this appendix we will establish Propositions 20 and 22. First we prove a lemma saying
that for a set of graphs with uniformly regular tails we may assume the sets U in Definition
13 correspond to sets of vertices.

Lemma 59 Let G be a set of graphs with uniformly regular tails. For every ε > 0 there is
an M > 0 such that for each G ∈ G we can find a set U ⊂ R+ corresponding to a set of
vertices for G such that ‖WG,s −WG,s1U×U‖1 < ε and λ(U) < M .
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Proof Since G has uniformly regular tails we can find an M > 0 such that for each G ∈ G
there is a set Ũ ⊂ R+ (not necessarily corresponding to a set of vertices for G) such
that ‖WG,s −WG,s1

Ũ×Ũ‖1 < ε/2 and λ(Ũ) < M/2. Recall that each vertex i ∈ V (G)

corresponds to an interval Ii ⊂ R+ for the stretched canonical graphon WG,s, such that
λ(Ii) is proportional to the weight of the vertex. Given a set Ũ ⊂ R+ as above, define

U :=
⋃

i∈I
Ii, where I := {i ∈ V (G) : 2λ(Ii ∩ Ũ) > λ(Ii)}.

The lemma now follows by observing that λ(U) ≤ 2λ(Ũ) < M and

‖WG,s −WG,s1U×U‖1 =
∑

i,j∈V (G) : (i,j) 6∈I×I

βi,jλ(Ii)λ(Ij)

≤ 2
∑

i,j∈V (G) : (i,j)6∈I×I

βij
(
λ(Ii)λ(Ij)− λ(Ii ∩ Ũ)λ(Ij ∩ Ũ)

)

≤ 2‖WG,s −WG,s1
Ũ×Ũ‖1

< ε.

Proof of Proposition 20 Define Mn := inf{M > 0 : supp(WGn,s) ⊆ [0,M ]2}. If (Gn)n∈N
is sparse, then lim infn→∞Mn =∞. By Lemma 59, if (Gn)n∈N has uniformly regular tails
there exists an M ′ > 0 such that if we order the vertices of Gn appropriately when defining
the canonical graphon WGn of Gn, then ‖WGn,s1[0,M ′]2‖1 > 1/2 for all n ∈ N.

The graphons WGn,r and WGn,s are related by WGn,r = M̃2
nW

Gn,s(M̃n · , M̃n · ) for

some M̃n ≥Mn (with M̃n = Mn if Gn has no isolated vertices; if Gn has isolated vertices
corresponding to the end of the interval [0, 1] for the canonical graphon WGn we will have

M̃n > Mn). If limn→∞ M̃n =∞ and ‖WGn,s1[0,M ′]2‖1 > 1/2 for all n ∈ N, then

‖WGn,r1[0,an]2‖1 > 1/2 and lim
n→∞

an = 0, where an := min
(
M ′M̃−1

n , 1
)
. (21)

The proof of (i) is complete if we can prove that (21) implies that (Gn)n∈N is not uniformly
upper regular. Assume the opposite, and let K : (0,∞)→ (0,∞) and (ηn)n∈N be as in the
definition of uniform upper regularity. Let Pn be a partition of R+ such that one of the
parts is [0, a′n], where a′n ≥ an is chosen as small as possible such that [0, a′n] corresponds
to an integer number of vertices of Gn for the canonical graphon. Then limn→∞ a

′
n = 0

since limn→∞ an = 0 and limn→∞ V (Gn) = ∞. By the first part of (21) it follows that
(WGn,r)Pn > K(1/2) on [0, a′n]2 for all sufficiently large n; hence for all sufficiently large n,

‖(WGn,r)Pn1|(WGn,r)Pn |≥K(1/2)‖1 ≥ ‖(WGn,r)Pn1[0,a′n]2‖1 = ‖WGn,r1[0,a′n]2‖1 > 1/2.

We have obtained a contradiction to the assumption of uniform upper regularity, and thus
the proof of (i) is complete.

Defining ρn := ρ(Gn) (recall the definition of ρ in the beginning of Section 2), we have

WGn,s = WGn(ρ
1/2
n · , ρ1/2

n · ) and WGn,r = ρ−1
n WGn . If (Gn)n∈N is dense and has convergent
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edge density the following limit exists and is positive: ρ := limn→∞ ρn > 0. It follows
by Lemma 44 (resp. Lemma 36) that (Gn)n∈N is a Cauchy sequence for δs� (resp. δr�) iff
(WGn)n∈N is a Cauchy sequence for δ�, since for any n,m ∈ N,

∣∣∣δs�(Gn, Gm)− δ�
(
(WGn(ρ1/2 · , ρ1/2 · ),R+), (WGm(ρ1/2 · , ρ1/2 · ),R+)

)∣∣∣
≤ δ�

(
WGn,s, (WGn(ρ1/2 · , ρ1/2 · ),R+)

)

+ δ�
(
(WGm(ρ1/2 · , ρ1/2 · ),R+),WGm,s

)

→ 0

as n,m→∞, and a similar estimate holds with δr� instead of δs�. This completes the proof
of the first assertion of (ii).

To prove the second assertion of (ii) consider the following sequence of dense graphs
(Gn)n∈N, which is a Cauchy sequence for δs� but not for δr�. For odd n let Gn be a complete
simple graph on n vertices, and for even n let Gn be the union of a complete graph on n/2
vertices and n/2 isolated vertices. This sequence converges to W1 := (1[0,1]2 ,R+) for δs�, but
does not converge for δr�.

Conversely, the following sequence of dense graphs (Gn)n∈N is a Cauchy sequence for δr�
but not for δs�. For odd n let Gn be a complete graph on n vertices, and for even n let Gn
be an Erdős-Rényi graph with edge probability 1/2. This sequence converges to W1 for δr�,
but does not converge for δs�.

Proof of Proposition 22 We will assume throughout the proof that the graphs have no
isolated vertices, since the case of o|E(Gn)| vertices clearly follows from this case. We assume
the average degree of (Gn)n∈N is bounded above by d ∈ N, and want to obtain a contradiction.
When defining the canonical stretched graphon WGn,s of Gn, each vertex of Gn corresponds
to an interval of length 1/

√
2|E(Gn)|. Since |E(Gn)|/|V (Gn)| ≤ d/2 by assumption, the

vertices of Gn correspond to an interval of length |V (Gn)|/
√

2|E(Gn)| ≥
√

2|E(Gn)|/d,
which is too stretched out to be compatible with uniformly regular tails. Explicitly, given
that Gn has no isolated vertices it follows that for any M > 0 and any Borel set I ⊂ R+

satisfying λ(I) < M ,

∫

(R+\I)×R+

WGn,s ≥
√

2|E(Gn)|/d−M√
2|E(Gn)|

.

By the assumption that limn→∞ |E(Gn)| =∞, the right side of this equation is greater than
1/(2d) for all sufficiently large n ∈ N. Since M > 0 was arbitrary, this is not compatible with
Gn having uniformly regular tails, which together with Theorem 15 gives a contradiction.

Appendix G. Exchangeability of Graphon Processes

The main goal of this appendix is to prove Theorem 26.

Lemma 60 Let (G̃n)n∈N be a sequence of simple graphs with uniformly regular tails, such
that |E(G̃n)| <∞ for all n ∈ N and limn→∞ |E(G̃n)| =∞. Fix d ∈ N, and for each n ∈ N
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let Ĝn be an induced subgraph of G̃n where all or some of the vertices of degree at most d
are removed. Then limn→∞ |E(Ĝn)|/|E(G̃n)| = 1.

Proof We wish to prove that ε := lim supn→∞ εn = 0, where εn := 1 − |E(Ĝn)|/|E(G̃n)|.
By taking a subsequence we may assume ε = limn→∞ εn. We will carry out the proof by
contradiction, and assume ε > 0. By definition of Ĝn there are at least εn|E(G̃n)| edges of G̃n
which have at least one endpoint of degree at most d. Hence there are at least εn|E(G̃n)|/d
vertices with degree between 1 and d. In the canonical stretched graphon of G̃n, each vertex
corresponds to an interval of length (2|E(G̃n)|)−1/2. Hence the total length of the intervals
corresponding to vertices of degree between 1 and d is at least 2−1/2εn|E(G̃n)|1/2d−1, which
tends to infinity as n→∞. It follows that for each M > 0 and any sets Un ⊂ R+ of measure
at most M ,

‖W G̃n,s −W G̃n,s1Un×Un‖1 ≥
(
2−1/2εn|E(G̃n)|1/2d−1 −M

)
· (2|E(G̃n)|)−1/2,

which is at least ε(23/2d)−1 when n is sufficiently large. Thus (G̃n)n∈N does not have
uniformly regular tails, and we have obtained the desired contradiction.

We will now prove Theorem 26. Note that we use a result of Kallenberg (2005, Theo-
rem 9.25) for part of the argument, a result which is also used by Veitch and Roy (2015), but
that we use it to prove Theorem 26, which characterizes exchangeable random graphs that
have uniformly regular tails, while Veitch and Roy (2015) use it to characterize exchangeable
random graphs that have finitely many edges for each finite time, but which do not necessarily
have uniformly regular tails (a notion not considered by Veitch and Roy, 2015).

Proof of Theorem 26 First assume (G̃t)t≥0 is a graphon process generated by Wα with

isolated vertices, where α is a random variable. We want to prove that (G̃t)t≥0 has uniformly
regular tails, and that the measure ξ is exchangeable. Regularity of tails is immediate
from Theorems 28(i) and 15. Exchangeability is immediate by observing that the Poisson
random measure V on R+ × S defined in the beginning of Section 2.4 is identical in law
to {(φ(t), x) : (t, x) ∈ V} for any measure-preserving transformation φ : R+ → R+ (in
particular, for the case when φ corresponds to a permutation of intervals).

To prove the second part of the theorem assume that ξ is jointly exchangeable and
that (G̃t)t≥0 has uniformly regular tails. By joint exchangeability of ξ it follows from the
representation theorem for jointly exchangeable random measures on R2

+ (Kallenberg, 2005,
Theorem 9.24) that a.s.

ξ =
∑

i,j

f(α, xi, xj , ζ{i,j})δti,tj + βλD + γλ2

+
∑

j,k

(
g(α, xj , χj,k)δtj ,σj,k + g′(α, xj , χj,k)δσj,k,tj

)

+
∑

j

(
h(α, xj)(δtj ⊗ λ) + h′(α, xj)(λ⊗ δtj )

)

+
∑

k

(
l(α, ηk)δρk,ρ′k + l′(α, ηk)δρ′k,ρk

)
,

(22)
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for some measurable functions f ≥ 0 on R4
+, g, g′ ≥ 0 on R3

+, and h, h′, l, l′ ≥ 0 on R2
+, a set

of independent uniform random variables (ζ{i,j})i,j∈N with values in [0, 1], independent unit
rate Poisson processes (tj , xj)j∈N and (σi,j , χi,j)j∈N on R2

+ for i ∈ N and (ρj , ρ
′
j , ηj)j∈N on

R3
+, an independent set of random variables α, β, γ ≥ 0, and λ (resp. λD) denoting Lebesgue

measure on R+ (resp. the diagonal x1 = x2 ≥ 0).
By the definition (4) in Section 2.4 of ξ as a sum of point masses, all the terms in

(22) involving Lebesgue measure must be zero; i.e., except on an event of probability zero,
β = γ = 0 and h(α, xj) = h′(α, xj) = 0 for all j ∈ N. Recall that by (5) each vertex can
be uniquely identified with the time t ≥ 0 when it appeared in the graph, and that each
point mass δt,t′ with t, t′ ≥ 0 represents an edge between the two vertices associated with t
and t′. Almost surely no two of the random variables ρk, ρ

′
k, ti, tj , σj,k for i, j, k ∈ N have

the same value, and hence the functions f, g, g′, l, l′ take values in {0, 1} almost everywhere.
Furthermore, since the graphs G̃t are undirected, we have g = g′ and l = l′, and f is
symmetric in its second and third input argument.

First we will argue that the subgraphs Ĝt of G̃t corresponding to the terms

f(α, xi, xj , ζ{i,j})δti,tj

have the law of a graphon process with isolated vertices generated by some (possibly random)
graphon W. Condition on the realization of α, and define the function Wα : R2

+ → [0, 1] by

Wα(x, x′) := P(f(α, x, x′, ζ{i,j}) = 1 |α) for all x, x′ ∈ R+.

It follows that, conditioned on α such that Wα ∈ L1, (Ĝt)t≥0 has the law of a graphon
process generated by Wα = (Wα,R+). To conclude we need to prove that Wα ∈ L1 almost
surely, which will be done in the next two paragraphs.

First we will argue that (Ĝt)t≥0 has uniformly regular tails. Since no two of the random
variables ρk, ρ

′
k, ti, tj , σj,k have the same value for i, j, k ∈ N, each point mass δρk,ρ′k or δρ′k,ρk

of ξ corresponds to an isolated edge, i.e., an edge between two vertices each of degree one,
and each point mass δσj,k,tj or δtj ,σj,k of ξ corresponds to an edge between the vertex tj in

Ĝt and a vertex of degree one; i.e.,
∑

k∈N(δtj ,σj,k + δσj,k,tj ) corresponds to a star centered

at the vertex associated with tj . Note that Ĝt and G̃t satisfy the conditions of Lemma 60

with d = 1. Hence limt→∞ |E(Ĝt)|/|E(G̃t)| = 1, and since G̃t has uniformly regular tails
this implies that Ĝt must also have uniformly regular tails.

We assume that Wα is not almost surely integrable, and will derive a contradiction.
We condition on α such that Wα 6∈ L1, and to simplify notation we will write W instead
of Wα. Let Ĝ+

t (resp. Ĝ−t ) be the induced subgraph of Ĝt consisting of the vertices for
which the feature x satisfies x ∈ I := {x′ ∈ R+ :

∫
R+
W (x, x′) dx′ ≥ 1} (resp. x 6∈ I).

Let W+ = (W+,R+) and W− = (W−,R+) denote the corresponding graphons (we will
see shortly that they are integrable), i.e., W+ = W1I×I and W− = W1Ic×Ic . Since
|E(Ĝt)| <∞ a.s. for each t ≥ 0 the measure ξ is locally finite a.s. We deduce from this that
λ(I) <∞ and ‖W−‖1 <∞ (Kallenberg, 2005, Theorem 9.25, (iii) and (iv)). By applying
Proposition 56 this implies further that

lim
t→∞

t−2|E(Ĝ+
t )| = 1

2
‖W+‖1 ≤

1

2
λ(I)2 <∞,
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lim
t→∞

t−2|E(Ĝ−t )| = 1

2
‖W−‖1 <∞,

and

lim
t→∞

t−2|E(Ĝt)| =∞.

It follows that if Ẽ(Ĝt) := E(Ĝt)\(E(Ĝ+
t ) ∪E(Ĝ−t )) is the set of edges having one endpoint

in V (Ĝ+
t ) and one endpoint in V (Ĝ−t ), we have

lim
t→∞
|Ẽ(Ĝt)|/|E(Ĝt)| = 1. (23)

For the stretched canonical graphon WĜt,s the edges Ẽ(Ĝt) correspond to A := (Jt ×
Jct ) ∪ (Jct × Jt) ⊂ R2

+, where Jt ⊂ R+ corresponds to V (Ĝ+
t ). Since |V (Ĝ+

t )| = Θ(t),

we have λ(Jt) = |V (Ĝ+
t )|(2|E(Ĝt)|)−1/2 = ot(1). By (23) and ‖W Ĝt,s‖1 = 1, we have

limt→∞ ‖W Ĝt,s1Ac‖1 = 0. Since λ(Jt) = ot(1) and W Ĝt,s takes values in [0, 1], we have

limt→∞ ‖W Ĝt,s1A∩U2
t
‖1 = 0 for all sets Ut ⊂ R+ of bounded measure. We have obtained a

contradiction to the hypothesis of uniform regularity of tails, since

lim
t→∞
‖W Ĝt,s1U2

t
‖1 ≤ lim

t→∞
‖W Ĝt,s1U2

t ∩A‖1 + lim
t→∞
‖W Ĝt,s1Ac‖1 = 0.

To complete the proof that (G̃t)t≥0 has the law of a graphon process with isolated
vertices, we need to argue that a.s.

l(α, ηk) = g(α, xj , χj,k) = 0 for all k, j ∈ N. (24)

Let Nt ∈ N0 denote the number of edges associated with terms of ξ of the form δρk,ρ′k +δρ′k,ρk ,

and let Ñt denote the number of edges associated with terms of ξ of the form δσj,k,tj + δtj ,σj,k .

Since Ĝt and G̃t satisfy the conditions of Lemma 60 with d = 1, and since Lemma 56 implies
that a.s.-limt→∞ |E(G̃t)|/t2 = 1

2‖W‖1, it follows that a.s.

lim
t→∞

Nt/t
2 = 0 and lim

t→∞
Ñt/t

2 = 0. (25)

We will prove (24) by contradiction, and will consider each term separately. First assume
λ(supp(l(α, · )) > 0 with positive probability. Conditioned on a realization of α such
that p := λ(supp(l(α, · )) > 0, the random variable Nt is a Poisson random variable with
expectation t2p. Hence limt→∞Nt/t

2 = p, which is a contradiction to (25). It follows that
λ(supp(l(α, · )) = 0 a.s., and thus l(α, ηk) = 0 for all k ∈ N a.s.

Now assume λ(supp(g(α, · , · ))) > 0 with positive probability. Then there exists ε > 0
such that with positive probability there is a set I ⊂ R+ (depending on α) satisfying λ(I) = ε,
and such that for all x ∈ I it holds that λ(Ix) > ε, where Ix := {x′ ∈ R+ : g(α, x, x′) = 1}.
Consider the Poisson point process (tj , xj)j∈N corresponding to the graphon process G̃t with
isolated vertices. The number of points (tj , xj) ∈ [0, t] × I evolves as a function of t as a
Poisson process with rate ε > 0; hence the number of such points divided by t converges
to ε a.s. For any given pair (tj , xj) ∈ [0, t]× I the number of points (σi,j , χi,j) ∈ [0, t]× Ixj
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for the Poisson point process (σi,j , χi,j)i∈N has the law of a Poisson random variable with
intensity greater than tε. Hence,

t−2 lim
t→∞

Ñt = t−2 lim
t→∞

∑

j,k : tj ,σj,k≤t
g(α, xj , χj,k) > ε2.

This contradicts (25), and thus completes our proof that (G̃t)t≥0 has the law of a graphon
process with isolated vertices.

Remark 61 In our proof above we observed that the assumption of exchangeability alone is
not sufficient to prove that (G̃t)t≥0 has the law of a graphon process with isolated vertices.
More precisely, without this assumption we might have W 6∈ L1 and the measure might
also consist of the terms containing g, g′ and l, l′. We observed in the proof that the terms
containing l, l′ correspond to isolated edges, and that the terms containing g, g′ correspond to
“stars” centered at a vertex in the graphon process. It is outside the scope of this paper to do
any further analysis of these more general exchangeable graphs.

Appendix H. Left Convergence of Graphon Processes

In this appendix we will prove Proposition 30. The following lemma will imply part (ii) of
the proposition.

Lemma 62 Let W be a bounded, non-negative graphon, and assume that h(Fk,W) <∞ for
a star Fk with k leaves. Then h(F,W) <∞ for all simple, connected graphs F of maximal
degree at most k.

Proof We first note that if h(Fk,W) =
∫
DW (x)k dµ(x) <∞ for a star with k leaves, then

the same holds for all stars with at most k leaves, since we know that DW ∈ L1(S) by our
definition of a graphon. Also, using that W is bounded, we assume without loss of generality
that F is a tree T of maximal degree ∆ ≤ k.

Designate one of the vertices, r, as the root of the tree, and choose a vertex u1 such that
no other vertex is further from the root. If u1 has distance 1 from r, then T is a star and
there is nothing to prove. Let u be u1’s grandparent, let v be its parent, and let u2, . . . , us
for 1 ≤ s ≤ ∆ − 1 be its siblings. Note that by our assumption on u1, all the siblings
u1, . . . , us are leaves. Furthermore, if their grandparent u is the root and the root has no
other children, then T is again a star, so we can rule that out as well.

If we remove the edge uv from T , we obtain two disjoint trees T1 and T2, and as just
argued, the one containing u is a tree with at least 2 vertices and maximal degree at
most ∆, while the second one is a star, again of maximal degree at most ∆. Because
h(T,W) ≤ ‖W‖∞h(T1,W)h(T2,W), the lemma now follows by induction.

Proof of Proposition 30 We will start by proving (i). Fix some simple connected graph
F with k vertices. By Proposition 56 applied with F and the simple connected graph on
two vertices, respectively,

lim
t→∞

t−kinj(F,Gt) = ‖W‖k/21 h(F,W), 2 lim
t→∞

t−2|E(Gt)| = ‖W‖1,
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and hence

lim
t→∞
|2E(Gt)|−k/2inj(F,Gt) = h(F,W), (26)

proving (i).

(ii) Since h(F,W) =
∫
Dk
w if F is a star with k leaves, we can use Lemma 62 to conclude

that h(F,W) <∞ for every simple connected graph F with at least two vertices. Express
hom(F,Gt) as hom(F,Gt) =

∑
Φ inj(F/Φ, Gt), where we sum over all equivalence relations

Φ on V (F ). By Proposition 56 applied with F/Φ, we have

lim
t→∞
|2E(Gt)|−k/2inj(F/Φ, Gt) = 0

unless Φ is the equivalence relation for which the number of equivalence classes equals |V (F )|.
Hence the estimate (26) holds with hom in place of inj, which completes the proof of (ii).

Next we will prove (iii). Let F be a simple connected graph with at least three vertices,
and assume d ∈ N is such that the degree of the vertices of Gn is bounded by d. We may
assume Gn has no isolated vertices, since h(F,Gn) is invariant under adding or deleting
isolated vertices. Under the assumption of no isolated vertices, we have |E(Gn)| ≥ |V (Gn)|/2.
By boundedness of degrees, hom(F,Gn) ≤ |V (Gn)|d|V (F )|−1. Combining these estimates,
h(F,Gn) ≤ |V (Gn)|1−|V (F )|/2d|V (F )|−1, from which the desired result follows.

Now we will prove (iv). We first construct an example of a sequence of graphs (Gn)n∈N
which converges for the stretched cut metric δs�, but which is not left convergent. Let

(G̃n)n∈N be a sequence of simple dense graphs with |V (G̃n)| → ∞ that is convergent in the
δ� metric, and hence also in the δs� metric.

Define Gn := G̃n for even n, and for odd n let Gn be the union of G̃n and |E(G̃n)|7/8
vertices of degree one, which are all connected to the same uniformly random vertex of
G̃n. Then (Gn)n∈N converges for δs� with the same limit as (G̃n)n∈N, since G̃n is an

induced subgraph of Gn and |E(G̃n)|/|E(Gn)| → 1. On the other hand, (Gn)n∈N is not left
convergent, since if F is the simple connected graph with three vertices and two edges, then
hom(F,Gn) = Ω(|E(G̃n)|14/8) for odd n and hence h(F,Gn)→∞ along sequences of odd n,
while h(F,Gn) converges to a finite number by the fact that dense graph sequences which
are convergent in the cut metric are left convergent.

Finally we will provide a counterexample in the reverse direction; i.e., we will construct
a sequence of graphs (Gn)n∈N which is left convergent, but does not converge for the
stretched cut metric. Let (G̃n)n∈N be left convergent and satisfy limn→∞ |E(G̃n)| =∞, and
let Gn be the union of G̃n and |E(G̃n)| isolated edges. Then (Gn)n∈N is left convergent,
since hom(F,Gn) = hom(F, G̃n) + 2|E(G̃n)| when F is the simple connected graph on
two vertices, and hom(F,Gn) = hom(F, G̃n) when F has at least three vertices. On the
other hand, (Gn)n∈N is not convergent for δs�, since it does not have uniformly regular tails.
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