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Abstract

Nesterov’s momentum trick is famously known for accelerating gradient descent, and has
been proven useful in building fast iterative algorithms. However, in the stochastic setting,
counterexamples exist and prevent Nesterov’s momentum from providing similar accelera-
tion, even if the underlying problem is convex and finite-sum.

We introduce Katyusha, a direct, primal-only stochastic gradient method to fix this
issue. In convex finite-sum stochastic optimization, Katyusha has an optimal accelerated
convergence rate, and enjoys an optimal parallel linear speedup in the mini-batch setting.

The main ingredient is Katyusha momentum, a novel “negative momentum” on top of
Nesterov’s momentum. It can be incorporated into a variance-reduction based algorithm
and speed it up, both in terms of sequential and parallel performance. Since variance
reduction has been successfully applied to a growing list of practical problems, our paper
suggests that in each of such cases, one could potentially try to give Katyusha a hug.

1. Introduction

In large-scale machine learning, the number of data examples is usually very large. To search
for the optimal solution, one often uses stochastic gradient methods which only require one
(or a small batch of) random example(s) per iteration in order to form an estimator of the
full gradient.

While full-gradient based methods can enjoy an accelerated (and optimal) convergence
rate if Nesterov’s momentum trick is used (Nesterov, 1983, 2004, 2005), theory for stochastic
gradient methods are generally lagging behind and less is known for their acceleration.

At a high level, momentum is dangerous if stochastic gradients are present. If some
gradient estimator is very inaccurate, then adding it to the momentum and moving further
in this direction (for every future iteration) may hurt the convergence performance. In other
words, when naively equipped with momentum, stochastic gradient methods are “very prune
to error accumulation” (Konečnỳ et al., 2016) and do not yield accelerated convergence rates
in general.1

∗. The arXiv version of this paper can be found at http://arxiv.org/abs/1603.05953, and may include
future revisions.

1. In practice, experimentalists have observed that momentums could sometimes help if stochastic gradient
iterations are used. However, the so-obtained methods (1) sometimes fail to converge in an accelerated
rate, (2) become unstable and hard to tune, and (3) have no support theory behind them. See Section 7.1
for an experiment illustrating that, even for convex stochastic optimization.
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In this paper, we show that at least for convex optimization purposes, such an issue can
be solved with a novel “negative momentum” that can be added on top of momentum. We
obtain accelerated and the first optimal convergence rates for stochastic gradient methods.
As one of our side results, under this “negative momenmtum,” our new method enjoys a
linear speedup in the parallel (i.e., mini-match) setting. We hope our new insight could
potentially deepen our understanding to the theory of accelerated methods.

Problem Definition. Consider the following composite convex minimization problem

min
x∈Rd

{
F (x)

def
= f(x) + ψ(x)

def
=

1

n

n∑
i=1

fi(x) + ψ(x)
}
. (1.1)

Here, f(x) = 1
n

∑n
i=1 fi(x) is a convex function that is a finite average of n convex, smooth

functions fi(x), and ψ(x) is convex, lower semicontinuous (but possibly non-differentiable)
function, sometimes referred to as the proximal function. We mostly focus on the case
when ψ(x) is σ-strongly convex and each fi(x) is L-smooth. (Both these assumptions can
be removed and we shall discuss that later.) We look for approximate minimizers x ∈ Rd
satisfying F (x) ≤ F (x∗) + ε, where x∗ ∈ arg minx{F (x)}.

Problem (1.1) arises in many places in machine learning, statistics, and operations re-
search. All convex regularized empirical risk minimization (ERM) problems such as Lasso,
SVM, Logistic Regression, fall into this category (see Section 1.3). Efficient stochastic meth-
ods for Problem (1.1) have also inspired stochastic algorithms for neural nets (Johnson and
Zhang, 2013; Allen-Zhu and Hazan, 2016a; Lei et al., 2017) as well as SVD, PCA, and
CCA (Garber et al., 2016; Allen-Zhu and Li, 2016, 2017b).

We summarize the history of stochastic gradient methods for Problem (1.1) in three
eras.

The First Era: Stochastic Gradient Descent (SGD).
Recall that stochastic gradient methods iteratively perform the following update

stochastic gradient iteration: xk+1 ← arg min
y∈Rd

{ 1

2η
‖y − xk‖22 + 〈∇̃k, y〉+ ψ(y)

}
,

where η is the step length and ∇̃k is a random vector satisfying E[∇̃k] = ∇f(xk) and
is referred to as the gradient estimator. If the proximal function ψ(y) equals zero, the
update reduces to xk+1 ← xk − η∇̃k. A popular choice for the gradient estimator is to set
∇̃k = ∇fi(xk) for some random index i ∈ [n] per iteration, and methods based on this choice
are known as stochastic gradient descent (SGD) (Zhang, 2004; Bottou). Since computing
∇fi(x) is usually n times faster than that of ∇f(x), SGD enjoys a low per-iteration cost
as compared to full-gradient methods; however, SGD cannot converge at a rate faster than
1/ε even if F (·) is strongly convex and smooth.
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The Second Era: Variance Reduction Gives Faster Convergence.
The convergence rate of SGD can be further improved with the so-called variance-

reduction technique, first proposed by Schmidt et al. (2013) (solving a sub-case of Problem (1.1))
and then followed by many others (Zhang et al., 2013; Mahdavi et al., 2013; Johnson and
Zhang, 2013; Shalev-Shwartz and Zhang, 2013; Shalev-Shwartz, 2016; Shalev-Shwartz and
Zhang, 2012; Xiao and Zhang, 2014; Defazio et al., 2014; Mairal, 2015; Allen-Zhu and Yuan,
2016). In these cited results, the authors have shown that SGD converges much faster if
one makes a better choice of the gradient estimator ∇̃k so that its variance reduces as k in-
creases. One way to choose this estimator can be described as follows (Johnson and Zhang,
2013; Zhang et al., 2013). Keep a snapshot vector x̃ = xk that is updated once every m
iterations (where m is some parameter usually around 2n), and compute the full gradient
∇f(x̃) only for such snapshots. Then, set

∇̃k = ∇fi(xk)−∇fi(x̃) +∇f(x̃) . (1.2)

This choice of gradient estimator ensures that its variance approaches to zero as k
grows. Furthermore, the number of stochastic gradients (i.e., the number of computations
of ∇fi(x) for some i) required to reach an ε-approximate minimizer of Problem (1.1) is

only O
((
n + L

σ

)
log 1

ε

)
. Since it is often denoted by κ

def
= L/σ the condition number of the

problem, we rewrite the above iteration complexity as O
(
(n+ κ) log 1

ε

)
.

Unfortunately, the iteration complexities of all known variance-reduction based meth-
ods have a linear dependence on κ. It was an open question regarding how to obtain an
accelerated stochastic gradient method with an optimal

√
κ dependency.

The Third Era: Acceleration Gives Fastest Convergence.
This open question was partially solved recently by the APPA (Frostig et al., 2015) and

Catalyst (Lin et al., 2015) reductions, both based on an outer-inner loop structure first
proposed by Shalev-Shwartz and Zhang (2014). We refer to both of them as Catalyst in
this paper. Catalyst solves Problem (1.1) using O

((
n+
√
nκ
)

log κ log 1
ε

)
stochastic gradient

iterations, through a logarithmic number of calls to a variance-reduction method.2 However,
Catalyst is still imperfect for the following reasons:

• Optimality. Catalyst does not match the optimal
√
κ dependence (Woodworth and

Srebro, 2016) and has an extra log κ factor. It yields suboptimal rate log4 T
T 2 if the objec-

tive is not strongly convex or is non-smooth; and it yields suboptimal rate log4 T
T if the

objective is both non-strongly convex and non-smooth.3

• Practicality. To the best of our knowledge, Catalyst is not very practical since each
of its inner iterations needs to be very accurately executed. This makes the stopping cri-
terion hard to be tuned, and makes Catalyst sometimes run slower than non-accelerated
variance-reduction methods. We have also confirmed this in our experiments.

• Parallelism. To the best of our knowledge, Catalyst does not give competent parallel
performance (see Section 1.2). If b ∈ {1, . . . , n} stochastic gradients (instead of one)
are computed in each iteration, the number of iterations of Catalyst reduces by O(

√
b).

2. Note that n+
√
nκ is always less than O(n+ κ).

3. Obtaining optimal rates is one of the main goals in optimization and machine learning. For instance,
obtaining the optimal 1/T rate for online learning was a very meaningful result, even though the log T/T
rate was known (Hazan and Kale, 2014; Rakhlin et al., 2012).
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In contrast, the best parallel speedup one can hope for is “linear speedup”: that is, to
reduce the number of iterations by a factor of O(b) for b ≤

√
n.

• Generality. To the best of our knowledge, being a reduction-based method, Catalyst
does not seem to support non-Euclidean norm smoothness (see Section 1.2).

Another acceleration method by Lan and Zhou (2015) is based on a primal-dual analysis
that also has suboptimal convergence rates like Catalyst. Their method requires n times
more storage compared with Catalyst for solving Problem (1.1).

In sum, it is desirable and also an open question to develop a direct, primal-only, and
optimal accelerated stochastic gradient method without using reductions. This could have
both theoretical and practical impacts to the problems that fall into the general framework
of (1.1), and potentially deepen our understanding to acceleration in stochastic settings.

1.1 Our Main Results and High-Level Ideas

We develop a direct, accelerated stochastic gradient method Katyusha for Problem (1.1) in

O
((
n+
√
nκ
)

log(1/ε)
)

stochastic gradient iterations (see Theorem 2.1).

This gives both optimal dependency on κ and on ε which was not obtained before for
stochastic gradient methods. In addition, if F (·) is non-strongly convex (non-SC), Katyusha
converges to an ε-minimizer in

O
(
n log(1/ε) +

√
nL/ε

)
stochastic gradient iterations (see Corollary 3.7).

This gives an optimal ε ∝ n
T 2 rate where in contrast Catalyst has rate ε ∝ n log4 T

T 2 . The

lower bound from Woodworth and Srebro (2016) is Ω
(
n+

√
nL/ε

)
.

Our Algorithm. If ignoring the proximal term ψ(·) and viewing it as zero, our Katyusha
method iteratively perform the following updates for k = 0, 1, . . . :

• xk+1 ← τ1zk + τ2x̃+ (1− τ1 − τ2)yk; (so xk+1 = yk + τ1(zk − yk) + τ2(x̃− yk) )

• ∇̃k+1 ← ∇f(x̃) +∇fi(xk+1)−∇fi(x̃) where i is a random index in [n];

• yk+1 ← xk+1 − 1
3L∇̃k+1, and

• zk+1 ← zk − α∇̃k+1.

Above, x̃ is a snapshot point which is updated every m iterations, ∇̃k+1 is the gradient
estimator defined in the same way as (1.2), τ1, τ2 ∈ [0, 1] are two momentum parameters,
and α is a parameter that is equal to 1

3τ1L
. The reason for keeping three vector sequences

(xk, yk, zk) is a common ingredient that can be found in all existing accelerated methods.4

Our New Technique – Katyusha Momentum. The most interesting ingredient of
Katyusha is the novel choice of xk+1 which is a convex combination of yk, zk, and x̃.
Our theory suggests the parameter choices τ2 = 0.5 and τ1 = min{

√
nσ/L, 0.5} and they

work well in practice too. To explain this novel combination, let us recall the classical
“momentum” view of accelerated methods.

4. One can of course rewrite the algorithm and keep track of only two vectors per iteration during im-
plementation. This will make the algorithm statement less clean so we refrain from doing so in this
paper.
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In a classical accelerated gradient method, xk+1 is only a convex combination of yk
and zk (or equivalently, τ2 = 0 in our formulation). At a high level, zk plays the role of
“momentum” which adds a weighted sum of the gradient history into yk+1. As an illustrative
example, suppose τ2 = 0, τ1 = τ , and x0 = y0 = z0. Then, one can compute that

yk =


x0 − 1

3L∇̃1, k = 1;

x0 − 1
3L∇̃2 −

(
(1− τ) 1

3L + τα
)
∇̃1, k = 2;

x0 − 1
3L∇̃3 −

(
(1− τ) 1

3L + τα
)
∇̃2 −

(
(1− τ)2 1

3L + (1− (1− τ)2)α
)
∇̃1, k = 3.

Since α is usually much larger than 1/3L, the above recursion suggests that the contribution
of a fixed gradient ∇̃t gradually increases as time goes. For instance, the weight on ∇̃1 is
increasing because 1

3L <
(
(1− τ) 1

3L + τα
)
<
(
(1− τ)2 1

3L + (1− (1− τ)2)α
)
. This is known

as “momentum” which is at the heart of all accelerated first-order methods.

In Katyusha, we put a “magnet” around x̃, where we choose x̃ to be essentially “the
average xt of the most recent n iterations”. Whenever we compute the next xk+1, it will
be attracted by the magnet x̃ with weight τ2 = 0.5. This is a strong magnet: it ensures
that xk+1 is not too far away from x̃ so the gradient estimator remains “accurate enough”.
This can be viewed as a “negative momentum” component, because the magnet retracts
xk+1 back to x̃ and this can be understood as “counteracting a fraction of the positive
momentum incurred from earlier iterations.”

We call it the Katyusha momentum.

This summarizes the high-level idea behind our Katyusha method. We remark here if
τ1 = τ2 = 0, Katyusha becomes almost identical to SVRG (Johnson and Zhang, 2013;
Zhang et al., 2013) which is a variance-reduction based method.

1.2 Our Side Results

Parallelism / Mini-batch. Instead of using a single ∇fi(·) per iteration, for any stochas-
tic gradient method, one can replace it with the average of b stochastic gradients 1

b

∑
i∈S ∇fi(·),

where S is a random subset of [n] with cardinality b. This is known as the mini-batch tech-
nique and it allows the stochastic gradients to be computed in a distributed manner, using
up to b processors.

Our Katyusha method trivially extends to this mini-batch setting. For instance, at least
for b ∈ {1, 2, . . . , d

√
ne}, Katyusha enjoys a linear speed-up in the parallel running time. In

other words, if ignoring communication overhead,

Katyusha can be distributed to b ≤
√
n machines with a parallel speed-up factor b.

In contrast, to the best of our knowledge, without any additional assumption, (1) non-
accelerated methods such as SVRG or SAGA are not known to enjoy any parallel speed-up;
(2) Catalyst enjoys a parallel speed-up factor of only

√
b. Details are in Section 5.

Non-Uniform Smoothness. If each fi(·) has a possibly different smooth parameter Li
and L = 1

n

∑n
i=1 Li, then an naive implementation of Katyusha only gives a complexity

that depends on maxi Li but not L. In such a case, we can select the random index i ∈ [n]
with probability proportional to Li per iteration to slightly improve the total running time.
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Furthermore, suppose f(x) = 1
n

∑n
i=1 fi(x) is smooth with parameter L, it satisfies

L ∈ [L, nL]. One can ask whether or not L influences the performance of Katyusha. We
show that, in the mini-batch setting when b is large, the total complexity becomes a function
on L as opposed to L. The details are in Section 5.

A Precise Statement. Taking into account both the mini-batch parameter b and the
non-uniform smoothness parameters L and L, we show Katyusha solves Problem (1.1) in

O
((
n+ b

√
L/σ +

√
nL/σ

)
· log

1

ε

)
stochastic gradient computations (see Theorem 5.2)

Non-Euclidean Norms. If the smoothness of each fi(x) is with respect to a non-
Euclidean norm (such as the well known `1 norm case over the simplex), our main result still
holds. Our update on the yk+1 side becomes the non-Euclidean norm gradient descent, and
our update on the zk+1 side becomes the non-Euclidean norm mirror descent. We include
such details in Section 6. To the best of our knowledge, most known accelerated methods
(including Catalyst, AccSDCA and APCG) do not work with non-Euclidean norms. SPDC
can be revised to work with non-Euclidean norms, see (Allen-Zhu et al., 2016b).

Remark on Katyusha Momentum Weight τ2. To provide the simplest proof, we
choose τ2 = 1/2 which also works well in practice. Our proof trivially generalizes to all
constant values τ2 ∈ (0, 1), and it could be beneficial to tune τ2 for different datasets.
However, for a stronger comparison, in our experiments we refrain from tuning τ2: by
fixing τ2 = 1/2 and without increasing parameter tuning difficulties, Katyusha already
outperforms most of the state-of-the-arts.

In the mini-batch setting, it turns out the best theoretical choice is essentially τ2 = 1
2b ,

where b is the size of the mini-batch. In other words, the larger the mini-batch size, the
smaller weight we want to give to Katyusha momentum. This should be intuitive, because
when b = n we are almost in the full-gradient setting and do not need Katyusha momentum.

1.3 Applications: Optimal Rates for Empirical Risk Minimization

Suppose we are given n feature vectors a1, . . . , an ∈ Rd corresponding to n data samples.
Then, the empirical risk minimization (ERM) problem is to study Problem (1.1) when each

fi(x) is “rank-one” structured: fi(x)
def
= gi(〈ai, x〉) for some loss function gi : R→ R. Slightly

abusing notation, we write fi(x) = fi(〈ai, x〉).5 In such a case, Problem (1.1) becomes

ERM: minx∈Rd
{
F (x)

def
= f(x) + ψ(x)

def
= 1

n

∑n
i=1 fi(〈ai, x〉) + ψ(x)

}
. (1.3)

Without loss of generality, we assume each ai has norm 1 because otherwise one can scale
fi(·) accordingly. As summarized for instance in Allen-Zhu and Hazan (2016b), there are
four interesting cases of ERM problems, all can be written in the form of (1.3):

Case 1: ψ(x) is σ-SC and fi(x) is L-smooth. Examples: ridge regression, elastic net;

Case 2: ψ(x) is non-SC and fi(x) is L-smooth. Examples: Lasso, logistic regression;

Case 3: ψ(x) is σ-SC and fi(x) is non-smooth. Examples: support vector machine;

5. Assuming “rank-one” simplifies the notations; all of the results stated in this subsection generalize to
constant-rank structured functions fi(x).
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Case 4: ψ(x) is non-SC and fi(x) is non-smooth. Examples: `1-SVM.

Known Results. For all of the four ERM cases above, accelerated stochastic methods were
introduced in the literature, most notably AccSDCA (Shalev-Shwartz and Zhang, 2014),
APCG (Lin et al., 2014), SPDC (Zhang and Xiao, 2015). These methods have suboptimal
convergence rates for Cases 2, 3 and 4. (In fact, they also have the suboptimal dependence on

the condition number L/σ for Case 1.) The best known rate was log(1/ε)√
ε

, log(1/ε)√
ε

, or log(1/ε)
ε

respectively for Cases 2, 3, or 4, and is a factor log(1/ε) worse than optimal (Woodworth
and Srebro, 2016).

It is an open question to design a stochastic gradient method with optimal convergence
for such problems. In particular, Dang and Lan (2014) provided an interesting attempt to
remove such log factors but using a non-classical notion of convergence.6

Besides the log factor loss in the running time,7 the aforementioned methods suffer from
several other issues that most dual-based methods also suffer. First, they only apply to
ERM problems but not to the more general Problem (1.1). Second, they require proximal
updates with respect to the Fenchel conjugate f∗i (·) which is sometimes unpleasant to work
with. Third, their performances cannot benefit from the implicit strong convexity in f(·).
All of these issues together make these methods sometimes even outperformed by primal-
only non-accelerated ones, such as SAGA (Defazio et al., 2014) or SVRG (Johnson and
Zhang, 2013; Zhang et al., 2013).

Our Results. Katyusha simultaneously closes the gap for all of the three classes of
problems with the help from the optimal reductions developed in Allen-Zhu and Hazan

(2016b). We obtain an ε-approximate minimizer for Case 2 in O
(
n log 1

ε +
√
nL√
ε

)
iterations,

for Case 3 in O
(
n log 1

ε +
√
n√
σε

)
iterations, and for Case 4 in O

(
n log 1

ε +
√
n
ε

)
iterations.

None of the existing accelerated methods can lead to such optimal rates even if the optimal
reductions are used.

Woodworth and Srebro (2016) proved the tightness of our results. They showed lower

bounds Ω
(
n+

√
nL√
ε

)
, Ω
(
n+

√
n√
σε

)
, and Ω

(
n+

√
n
ε

)
for Cases 2, 3, and 4 respectively.8

1.4 Roadmap

• In Section 2, we state and prove our theorem on Katyusha for the strongly convex case.

6. Dang and Lan (2014) work in a primal-dual φ(x, y) formulation of Problem (1.1), and produce a primal-
dual pair (x, y) so that for every fixed (u, v), the expectation E[φ(x, v) − φ(u, y)] ≤ ε. Unfortunately,
to ensure x is an ε-approximate minimizer of Problem (1.1), one needs the stronger E[max(u,v) φ(x, v)−
φ(u, y)] ≤ ε to hold.

7. In fact, dual-based methods have to suffer from a log factor loss in the convergence rate. This is so because
even for Case 1 of Problem (1.3), converting an ε-maximizer for the dual objective to the primal, one
only obtains an nκε-minimizer on the primal objective. As a result, algorithms like APCG who directly
work on the dual, algorithms like SPDC who maintain both primal and dual variables, and algorithms
like RPDG (Lan and Zhou, 2015) that are primal-like but still use dual analysis, have to suffer from a
log loss in the convergence rates.

8. More precisely, their lower bounds for Cases 3 and 4 are Ω
(

min
{

1
σε
, n+

√
n√
σε

})
and Ω

(
min

{
1
ε2
, n+

√
n
ε

})
.

However, since the vanilla SGD requires O( 1
σε

) and O( 1
ε2

) iterations for Cases 3 and 4, such lower bounds
are matched by combining the best between Katyusha and SGD.

7



Allen-Zhu

• In Section 3, we apply Katyusha to non-strongly convex or non-smooth cases by reduc-
tions.
• In Section 4, we provide a direct algorithm Katyushans for the non-strongly case.
• In Section 5, we generalize Katyusha to mini-batch and non-uniform smoothness.
• In Section 6, we generalize Katyusha to the non-Euclidean norm setting.
• In Section 7, we provide an empirical evaluation to illustrate the necessity of Katyusha

momentum, and the practical performance of Katyusha.

1.5 Notations

Throughout this paper (except Section 6), we denote by ‖·‖ the Euclidean norm. We denote
by ∇f(x) the full gradient of function f if it is differentiable, or any of its subgradients if
f is only Lipschitz continuous. Recall some classical definitions on strong convexity (SC)
and smoothness.

Definition 1.1 For a convex function f : Rn → R,

• f is σ-strongly convex if ∀x, y ∈ Rn, it satisfies f(y) ≥ f(x)+〈∇f(x), y−x〉+ σ
2 ‖x−y‖

2.
• f is L-smooth if ∀x, y ∈ Rn, it satisfies ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖.

2. Katyusha in the Strongly Convex Setting

We formally introduce our Katyusha algorithm in Algorithm 1. It follows from our high-
level description in Section 1.1, and we make several remarks here behind our specific design.

• Katyusha is divided into epochs each consisting of m iterations. In theory, m can be
anything linear in n. We let snapshot x̃ be a weighted average of yk in the most recent
epoch.

x̃ and ∇̃k correspond to a standard design on variance-reduced gradient estimators, called
SVRG (Johnson and Zhang, 2013; Zhang et al., 2013). The practical recommendation is
m = 2n (Johnson and Zhang, 2013). Our choice ∇̃k is independent from our acceleration
techniques, and we expect our result continues to apply to other choices of gradient
estimators. We choose x̃ to be a weighted average, rather than the last or the uniform
average, because it yields the tightest possible result.9

• τ1 and α are standard parameters already present in Nesterov’s full-gradient method (Allen-
Zhu and Orecchia, 2017).

We choose α = 1/3τ1L to present the simplest proof, and recall it was α = 1/τ1L in the
original Nesterov’s full-gradient method. (Any α that is constant factor smaller than
1/τ1L works in theory, and we use 1/3 to provide the simplest proof.) In practice, like
other accelerated methods, it suffices to fix α = 1/3τ1L and only tune τ1 and thus τ1 is
viewed as the learning rate.

9. If one uses the uniform average, in theory, the algorithm needs to restart every a number of epochs (that
is, by resetting k = 0, s = 0, and x0 = y0 = z0); we refrain from doing so because we wish to provide
a simple and direct algorithm. We can also use the last iterate, then the total complexity loses a factor
log(L/σ). In practice, it was reported that even for SVRG, choosing average works better than choosing
the last iterate (Allen-Zhu and Yuan, 2016).
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Algorithm 1 Katyusha(x0, S, σ, L)

1: m← 2n; � epoch length

2: τ2 ← 1
2 , τ1 ← min

{√mσ√
3L
, 12
}

, α← 1
3τ1L

; � parameters

3: y0 = z0 = x̃0 ← x0; � initial vectors

4: for s← 0 to S − 1 do
5: µs ← ∇f(x̃s); � compute the full gradient once every m iterations

6: for j ← 0 to m− 1 do
7: k ← (sm) + j;
8: xk+1 ← τ1zk + τ2x̃

s + (1− τ1 − τ2)yk;
9: ∇̃k+1 ← µs +∇fi(xk+1)−∇fi(x̃s) where i is random from {1, 2, . . . , n};

10: zk+1 = arg minz
{

1
2α‖z − zk‖

2 + 〈∇̃k+1, z〉+ ψ(z)
}

;

11: Option I: yk+1 ← arg miny
{
3L
2 ‖y − xk+1‖2 + 〈∇̃k+1, y〉+ ψ(y)

}
;

12: Option II: yk+1 ← xk+1 + τ1(zk+1 − zk) � we analyze only I but II also works

13: end for
14: x̃s+1 ←

(∑m−1
j=0 (1 + ασ)j

)−1 · (∑m−1
j=0 (1 + ασ)j · ysm+j+1

)
; � compute snapshot x̃

15: end for
16: return x̃S .

• The parameter τ2 is our novel weight for the Katyusha momentum. Any constant in
(0, 1) works for τ2, and we simply choose τ2 = 1/2 for our theoretical and experimental
results.

We state our main theorem for Katyusha as follows:

Theorem 2.1 If each fi(x) is convex, L-smooth, and ψ(x) is σ-strongly convex in the
above Problem (1.1), then Katyusha(x0, S, σ, L) satisfies

E
[
F (x̃S)

]
− F (x∗) ≤

{
O
((

1 +
√
σ/(3Lm)

)−Sm) · (F (x0)− F (x∗)
)
, if mσ

L ≤
3
4 ;

O
(
1.5−S

)
·
(
F (x0)− F (x∗)

)
, if mσ

L > 3
4 .

In other words, choosing m = Θ(n), Katyusha achieves an ε-additive error (i.e., E
[
F (x̃S)

]
−

F (x∗) ≤ ε) using at most O
((
n+

√
nL/σ

)
· log F (x0)−F (x∗)

ε

)
iterations.10

The proof of Theorem 2.1 is included in Section 2.1 and 2.2. As discussed in Section 1.1,
the main idea behind our theorem is the negative momentum that helps reduce the error
occurred from the stochastic gradient estimator.

Remark 2.2 Because m = 2n, each iteration of Katyusha computes only 1.5 stochas-
tic gradients ∇fi(·) in the amortized sense, the same as non-accelerated methods such as
SVRG (Johnson and Zhang, 2013).11 Therefore, the per-iteration cost of Katyusha is dom-
inated by the computation of ∇fi(·), the proximal update in Line 10 of Algorithm 1, plus

11. The claim “SVRG or Katyusha computes 1.5 stochastic gradients” requires one to store ∇if(x̃) in the
memory for each i ∈ [n], and this costs O(dn) space in the most general setting. If one does not store
∇if(x̃) in the memory, then each iteration of SVRG or Katyusha computes 2.5 stochastic gradients for
the choice m = 2n.

9
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an overhead O(d). If ∇fi(·) has at most d′ ≤ d non-zero entries, this overhead O(d) is
improvable to O(d′) using a sparse implementation of Katyusha.12

For ERM problems defined in Problem (1.3), the amortized per-iteration complexity of
Katyusha is O(d′) where d′ is the sparsity of feature vectors, the same as the per-iteration
complexity of SGD.

2.1 One-Iteration Analysis

In this subsection, we first analyze the behavior of Katyusha in a single iteration (i.e., for
a fixed k). We view yk, zk and xk+1 as fixed in this section so the only randomness comes
from the choice of i in iteration k. We abbreviate in this subsection by x̃ = x̃s where s
is the epoch that iteration k belongs to, and denote by σ2k+1

def
= ‖∇f(xk+1) − ∇̃k+1‖2 so

E[σ2k+1] is the variance of the gradient estimator ∇̃k+1 in this iteration.
Our first lemma lower bounds the expected objective decrease F (xk+1) − E[F (yk+1)].

Our Prog(xk+1) defined below is a non-negative, classical quantity that would be a lower
bound on the amount of objective decrease if ∇̃k+1 were equal to ∇f(xk+1) (Allen-Zhu and
Orecchia, 2017). However, since the variance σ2k+1 is non-zero, this lower bound must be
compensated by a negative term that depends on E[σ2k+1].

Lemma 2.3 (proximal gradient descent) If

yk+1 = arg min
y

{3L

2
‖y − xk+1‖2 + 〈∇̃k+1, y − xk+1〉+ ψ(y)− ψ(xk+1)

}
, and

Prog(xk+1)
def
= −min

y

{3L

2
‖y − xk+1‖2 + 〈∇̃k+1, y − xk+1〉+ ψ(y)− ψ(xk+1)

}
≥ 0 ,

we have (where the expectation is only over the randomness of ∇̃k+1)

F (xk+1)− E
[
F (yk+1)

]
≥ E

[
Prog(xk+1)

]
− 1

4L
E
[
σ2k+1

]
.

Proof

Prog(xk+1) = −min
y

{3L

2
‖y − xk+1‖2 + 〈∇̃k+1, y − xk+1〉+ ψ(y)− ψ(xk+1)

}
¬
= −

(3L

2
‖yk+1 − xk+1‖2 + 〈∇̃k+1, yk+1 − xk+1〉+ ψ(yk+1)− ψ(xk+1)

)
= −

(L
2
‖yk+1 − xk+1‖2 + 〈∇f(xk+1), yk+1 − xk+1〉+ ψ(yk+1)− ψ(xk+1)

)
+
(
〈∇f(xk+1)− ∇̃k+1, yk+1 − xk+1〉 − L‖yk+1 − xk+1‖2

)
­
≤ −

(
f(yk+1)− f(xk+1) + ψ(yk+1)− ψ(xk+1)

)
+

1

4L
‖∇f(xk+1)− ∇̃k+1‖2 .

Above, ¬ is by the definition of yk+1, and ­ uses the smoothness of function f(·), as well
as Young’s inequality 〈a, b〉 − 1

2‖b‖
2 ≤ 1

2‖a‖
2. Taking expectation on both sides we arrive

at the desired result.

12. This requires to defer a coordinate update to the moment it is accessed. Update deferral is a standard
technique used in sparse implementations of all stochastic gradient methods, including SVRG, SAGA,
APCG (Johnson and Zhang, 2013; Defazio et al., 2014; Lin et al., 2014).

10
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The following lemma provides a novel upper bound on the expected variance of the
gradient estimator. Note that all known variance reduction analysis for convex optimization,
in one way or another, upper bounds this variance essentially by 4L · (f(x̃) − f(x∗)), the
objective distance to the minimizer (c.f. Johnson and Zhang (2013); Defazio et al. (2014)).
The recent result of Allen-Zhu and Hazan (2016b) upper bounds it by the point distance
‖xk+1−x̃‖2 for non-convex objectives, which is tighter if x̃ is close to xk+1 but unfortunately
not enough for the purpose of this paper.

In this paper, we upper bound it by the tightest possible quantity which is essentially
2L ·

(
f(x̃)− f(xk+1)

)
� 4L ·

(
f(x̃)− f(x∗)

)
. Unfortunately, this upper bound needs to be

compensated by an additional term 〈∇f(xk+1), x̃ − xk+1〉, which could be positive but we
shall cancel it using the introduced Katyusha momentum.

Lemma 2.4 (variance upper bound)

E
[
‖∇̃k+1 −∇f(xk+1)‖2

]
≤ 2L ·

(
f(x̃)− f(xk+1)− 〈∇f(xk+1), x̃− xk+1〉

)
.

Proof Each fi(x), being convex and L-smooth, implies the following inequality which
is classical in convex optimization and can be found for instance in Theorem 2.1.5 of the
textbook of Nesterov (2004).

‖∇fi(xk+1)−∇fi(x̃)‖2 ≤ 2L ·
(
fi(x̃)− fi(xk+1)− 〈∇fi(xk+1), x̃− xk+1〉

)
Therefore, taking expectation over the random choice of i, we have

E
[
‖∇̃k+1 −∇f(xk+1)‖2

]
= E

[∥∥(∇fi(xk+1)−∇fi(x̃)
)
−
(
∇f(xk+1)−∇f(x̃)

)∥∥2]
¬
≤ E

[∥∥∇fi(xk+1)−∇fi(x̃)
∥∥2]

­
≤ 2L · E

[
fi(x̃)− fi(xk+1)− 〈∇fi(xk+1), x̃− xk+1〉

]
= 2L ·

(
f(x̃)− f(xk+1)− 〈∇f(xk+1), x̃− xk+1〉

)
.

Above, ¬ is because for any random vector ζ ∈ Rd, it holds that E‖ζ−Eζ‖2 = E‖ζ‖2−‖Eζ‖2;
­ follows from the first inequality in this proof.

The next lemma is a classical one for proximal mirror descent.

Lemma 2.5 (proximal mirror descent) Suppose ψ(·) is σ-SC. Then, fixing ∇̃k+1 and
letting

zk+1 = arg min
z

{1

2
‖z − zk‖2 + α〈∇̃k+1, z − zk〉+ αψ(z)− αψ(zk)

}
,

it satisfies for all u ∈ Rd,

α〈∇̃k+1, zk+1 − u〉+ αψ(zk+1)− αψ(u) ≤ −1

2
‖zk − zk+1‖2 +

1

2
‖zk − u‖2 −

1 + ασ

2
‖zk+1 − u‖2 .

Proof By the minimality definition of zk+1, we have that

zk+1 − zk + α∇̃k+1 + αg = 0

11
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where g is some subgradient of ψ(z) at point z = zk+1. This implies that for every u it
satisfies

0 =
〈
zk+1 − zk + α∇̃k+1 + αg, zk+1 − u〉 .

At this point, using the equality 〈zk+1 − zk, zk+1 − u〉 = 1
2‖zk − zk+1‖2 − 1

2‖zk − u‖2 +
1
2‖zk+1−u‖2, as well as the inequality 〈g, zk+1−u〉 ≥ ψ(zk+1)−ψ(u) + σ

2 ‖zk+1−u‖2 which
comes from the strong convexity of ψ(·), we can write

α〈∇̃k+1, zk+1 − u〉+ αψ(zk+1)− αψ(u)

= −〈zk+1 − zk, zk+1 − u〉 − 〈αg, zk+1 − u〉+ αψ(zk+1)− αψ(u)

≤ −1

2
‖zk − zk+1‖2 +

1

2
‖zk − u‖2 −

1 + ασ

2
‖zk+1 − u‖2 .

The following lemma combines Lemma 2.3, Lemma 2.4 and Lemma 2.5 all together,
using the special choice of xk+1 which is a convex combination of yk, zk and x̃:

Lemma 2.6 (coupling step 1) If xk+1 = τ1zk + τ2x̃ + (1 − τ1 − τ2)yk, where τ1 ≤ 1
3αL

and τ2 = 1
2 ,

α〈∇f(xk+1), zk − u〉 − αψ(u)

≤ α

τ1

(
F (xk+1)− E

[
F (yk+1)

]
+ τ2F (x̃)− τ2f(xk+1)− τ2〈∇f(xk+1), x̃− xk+1〉

)
+

1

2
‖zk − u‖2 −

1 + ασ

2
E
[
‖zk+1 − u‖2

]
+
α(1− τ1 − τ2)

τ1
ψ(yk)−

α

τ1
ψ(xk+1) .

Proof We first apply Lemma 2.5 and get

α〈∇̃k+1, zk − u〉+ αψ(zk+1)− αψ(u)

= α〈∇̃k+1, zk − zk+1〉+ α〈∇̃k+1, zk+1 − u〉+ αψ(zk+1)− αψ(u)

≤ α〈∇̃k+1, zk − zk+1〉 −
1

2
‖zk − zk+1‖2 +

1

2
‖zk − u‖2 −

1 + ασ

2
‖zk+1 − u‖2 . (2.1)

By defining v
def
= τ1zk+1 + τ2x̃ + (1 − τ1 − τ2)yk, we have xk+1 − v = τ1(zk − zk+1) and

therefore

E
[
α〈∇̃k+1, zk − zk+1〉 −

1

2
‖zk − zk+1‖2

]
= E

[ α
τ1
〈∇̃k+1, xk+1 − v〉 −

1

2τ21
‖xk+1 − v‖2

]
= E

[ α
τ1

(
〈∇̃k+1, xk+1 − v〉 −

1

2ατ1
‖xk+1 − v‖2 − ψ(v) + ψ(xk+1)

)
+
α

τ1

(
ψ(v)− ψ(xk+1)

)]
¬
≤ E

[ α
τ1

(
〈∇̃k+1, xk+1 − v〉 −

3L

2
‖xk+1 − v‖2 − ψ(v) + ψ(xk+1)

)
+
α

τ1

(
ψ(v)− ψ(xk+1)

)]
­
≤ E

[ α
τ1

(
F (xk+1)− F (yk+1) +

1

4L
σ2k+1

)
+
α

τ1

(
ψ(v)− ψ(xk+1)

)]
®
≤ E

[ α
τ1

(
F (xk+1)− F (yk+1) +

1

2

(
f(x̃)− f(xk+1)− 〈∇f(xk+1), x̃− xk+1〉

))
+
α

τ1

(
τ1ψ(zk+1) + τ2ψ(x̃) + (1− τ1 − τ2)ψ(yk)− ψ(xk+1)

)]
. (2.2)

12
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Above, ¬ uses our choice τ1 ≤ 1
3αL , ­ uses Lemma 2.3, ® uses Lemma 2.4 together with

the convexity of ψ(·) and the definition of v. Finally, noticing that E[〈∇̃k+1, zk − u〉] =
〈∇f(xk+1), zk − u〉 and τ2 = 1

2 , we obtain the desired inequality by combining (2.1) and
(2.2).

The next lemma simplifies the left hand side of Lemma 2.6 using the convexity of f(·),
and gives an inequality that relates the objective-distance-to-minimizer quantities F (yk)−
F (x∗), F (yk+1) − F (x∗), and F (x̃) − F (x∗) to the point-distance-to-minimizer quantities
‖zk − x∗‖2 and ‖zk+1 − x∗‖2.

Lemma 2.7 (coupling step 2) Under the same choices of τ1, τ2 as in Lemma 2.6, we
have

0 ≤ α(1− τ1 − τ2)
τ1

(F (yk)− F (x∗))− α

τ1

(
E
[
F (yk+1)

]
− F (x∗)

)
+
ατ2
τ1

(
F (x̃)− F (x∗)

)
+

1

2
‖zk − x∗‖2 −

1 + ασ

2
E
[
‖zk+1 − x∗‖2

]
.

Proof We first compute that

α
(
f(xk+1)− f(u)

) ¬
≤ α〈∇f(xk+1), xk+1 − u〉

= α〈∇f(xk+1), xk+1 − zk〉+ α〈∇f(xk+1), zk − u〉
­
=
ατ2
τ1
〈∇f(xk+1), x̃− xk+1〉+

α(1− τ1 − τ2)
τ1

〈∇f(xk+1), yk − xk+1〉+ α〈∇f(xk+1), zk − u〉

®
≤ ατ2

τ1
〈∇f(xk+1), x̃− xk+1〉+

α(1− τ1 − τ2)
τ1

(f(yk)− f(xk+1)) + α〈∇f(xk+1), zk − u〉 .

Above, ¬ uses the convexity of f(·), ­ uses the choice that xk+1 = τ1zk+τ2x̃+(1−τ1−τ2)yk,
and ® uses the convexity of f(·) again. By applying Lemma 2.6 to the above inequality, we
have

α
(
f(xk+1)− F (u)

)
≤ α(1− τ1 − τ2)

τ1
(F (yk)− f(xk+1))

+
α

τ1

(
F (xk+1)−E

[
F (yk+1)

]
+τ2F (x̃)−τ2f(xk+1)

)
+

1

2
‖zk−u‖2−

1 + ασ

2
E
[
‖zk+1−u‖2

]
− α
τ1
ψ(xk+1)

which implies

α
(
F (xk+1)− F (u)

)
≤ α(1− τ1 − τ2)

τ1
(F (yk)− F (xk+1))

+
α

τ1

(
F (xk+1)−E

[
F (yk+1)

]
+τ2F (x̃)−τ2F (xk+1)

)
+

1

2
‖zk−u‖2−

1 + ασ

2
E
[
‖zk+1−u‖2

]
.

After rearranging and setting u = x∗, the above inequality yields

0 ≤ α(1− τ1 − τ2)
τ1

(F (yk)− F (x∗))− α

τ1

(
E
[
F (yk+1)− F (x∗)

])
+
ατ2
τ1

(
F (x̃)− F (x∗)

)
+

1

2
‖zk − x∗‖2 −

1 + ασ

2
E
[
‖zk+1 − x∗‖2

]
.

13
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2.2 Proof of Theorem 2.1

We are now ready to combine the analyses across iterations, and derive our final Theorem 2.1.
Our proof next requires a careful telescoping of Lemma 2.7 together with our specific pa-
rameter choices.

Proof [Proof of Theorem 2.1] Define Dk
def
= F (yk) − F (x∗), D̃s def

= F (x̃s) − F (x∗), and
rewrite Lemma 2.7:

0 ≤ (1− τ1 − τ2)
τ1

Dk −
1

τ1
Dk+1 +

τ2
τ1
E
[
D̃s
]

+
1

2α
‖zk − x∗‖2 −

1 + ασ

2α
E
[
‖zk+1 − x∗‖2

]
.

At this point, let us define θ = 1 + ασ and multiply the above inequality by θj for each
k = sm+ j. Then, we sum up the resulting m inequalities for all j = 0, 1, . . . ,m− 1:

0 ≤ E
[(1− τ1 − τ2)

τ1

m−1∑
j=0

Dsm+j · θj −
1

τ1

m−1∑
j=0

Dsm+j+1 · θj
]

+
τ2
τ1
D̃s ·

m−1∑
j=0

θj

+
1

2α
‖zsm − x∗‖2 −

θm

2α

[
‖z(s+1)m − x∗‖2

]
.

Note that in the above inequality we have assumed all the randomness in the first s − 1
epochs are fixed and the only source of randomness comes from epoch s. We can rearrange
the terms in the above inequality and get

E
[τ1 + τ2 − (1− 1/θ)

τ1

m∑
j=1

Dsm+j · θj
]
≤ (1− τ1 − τ2)

τ1

(
Dsm − θmE

[
D(s+1)m

])

+
τ2
τ1
D̃s ·

m−1∑
j=0

θj +
1

2α
‖zsm − x∗‖2 −

θm

2α
E
[
‖z(s+1)m − x∗‖2

]
.

Using the special choice that x̃s+1 =
(∑m−1

j=0 θj
)−1 ·∑m−1

j=0 ysm+j+1 · θj and the convexity

of F (·), we derive that D̃s+1 ≤
(∑m−1

j=0 θj
)−1 ·∑m−1

j=0 Dsm+j+1 · θj . Substituting this into
the above inequality, we get

τ1 + τ2 − (1− 1/θ)

τ1
θE
[
D̃s+1

]
·
m−1∑
j=0

θj ≤ (1− τ1 − τ2)
τ1

(
Dsm − θmE

[
D(s+1)m

])

+
τ2
τ1
D̃s ·

m−1∑
j=0

θj +
1

2α
‖zsm − x∗‖2 −

θm

2α
E
[
‖z(s+1)m − x∗‖2

]
. (2.3)

We consider two cases next.

Case 1. Suppose mσ
L ≤

3
4 . In this case, we choose α = 1√

3mσL
and τ1 = 1

3αL = mασ =
√
mσ√
3L
∈ [0, 12 ] for Katyusha. It implies ασ ≤ 1/2m and therefore the following inequality

holds:

τ2(θ
m−1−1)+(1−1/θ) =

1

2
((1+ασ)m−1−1)+(1− 1

1 + ασ
) ≤ (m−1)ασ+ασ = mασ = τ1 .

14
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In other words, we have τ1 + τ2 − (1− 1/θ) ≥ τ2θm−1 and thus (2.3) implies that

E
[τ2
τ1
D̃s+1 ·

m−1∑
j=0

θj +
1− τ1 − τ2

τ1
D(s+1)m +

1

2α
‖z(s+1)m − x∗‖2

]

≤ θ−m ·
(τ2
τ1
D̃s ·

m−1∑
j=0

θj +
1− τ1 − τ2

τ1
Dsm +

1

2α
‖zsm − x∗‖2

)
.

If we telescope the above inequality over all epochs s = 0, 1, . . . , S − 1, we obtain

E
[
F (x̃S)− F (x∗)

]
= E

[
D̃S
] ¬
≤ θ−Sm ·O

(
D̃0 +D0 +

τ1
αm
‖x0 − x∗‖2

)
­
≤ θ−Sm ·O

(
1 +

τ1
αmσ

)
· (F (x0)− F (x∗))

®
= O((1 + ασ)−Sm) ·

(
F (x0)− F (x∗)

)
. (2.4)

Above, ¬ uses the fact that
∑m−1

j=0 θj ≥ m and τ2 = 1
2 ; ­ uses the strong convexity of F (·)

which implies F (x0)− F (x∗) ≥ σ
2 ‖x0 − x

∗‖2; and ® uses our choice of τ1.

Case 2. Suppose mσ
L > 3

4 . In this case, we choose τ1 = 1
2 and α = 1

3τ1L
= 2

3L as in
Katyusha. Our parameter choices help us simplify (2.3) as (noting (τ1+τ2−(1−1/θ))θ = 1)

2E
[
D̃s+1

]
·
m−1∑
j=0

θj ≤ D̃s ·
m−1∑
j=0

θj +
1

2α
‖zsm − x∗‖2 −

θm

2α
E
[
‖z(s+1)m − x∗‖2

]
.

Since θm = (1 + ασ)m ≥ 1 + ασm = 1 + 2σm
3L ≥

3
2 , the above inequality implies

3

2
E
[
D̃s+1

]
·
m−1∑
j=0

θj +
9L

8
E
[
‖z(s+1)m − x∗‖2

]
≤ D̃s ·

m−1∑
j=0

θj +
3L

4
‖zsm − x∗‖2 .

If we telescope this inequality over all the epochs s = 0, 1, . . . , S − 1, we immediately have

E
[
D̃S ·

m−1∑
j=0

θj +
3L

4
‖zSm − x∗‖2

]
≤
(2

3

)S · (D̃0 ·
m−1∑
j=0

θj +
3L

4
‖z0 − x∗‖2

)
.

Finally, since
∑m−1

j=0 θj ≥ m and σ
2 ‖z0−x

∗‖2 ≤ F (x0)−F (x∗) owing to the strong convexity
of F (·), we conclude that

E
[
F (x̃S)− F (x∗)

]
≤ O

(
1.5−S

)
·
(
F (x0)− F (x∗)

)
. (2.5)

Combining (2.4) and (2.5) we finish the proof of Theorem 2.1.

3. Corollaries on Non-Smooth or Non-SC Problems

In this section we apply reductions to translate our Theorem 2.1 into optimal algorithms
also for non-strongly convex objectives and/or non-smooth objectives.

To begin with, recall the following definition of the HOOD property:

Definition 3.1 (Allen-Zhu and Hazan (2016b)) An algorithm solving the strongly con-
vex case of Problem (1.1) satisfies the homogenous objective decrease (HOOD) property with
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T (L, σ), if for every starting point x0, it produces an output x′ satisfying E
[
F (x′)

]
−F (x∗) ≤

F (x0)−F (x∗)
4 in at most T (L, σ) stochastic gradient iterations.

Theorem 2.1 shows that Katyusha satisfies the HOOD property:

Corollary 3.2 Katyusha satisfies the HOOD property with T (L, σ) = O
(
n+

√
nL√
σ

)
.

Remark 3.3 Existing accelerated stochastic methods before this work (even for simpler
Problem (1.3)) either do not satisfy HOOD or satisfy HOOD with an additional factor
log(L/σ) in the number of iterations.

Allen-Zhu and Hazan (2016b) designed three reductions algorithms to convert an algo-
rithm satisfying the HOOD property to solve the following three cases:

Theorem 3.4 Given algorithm A satisfying HOOD with T (L, σ) and a starting vector x0.

• NonSC+Smooth. For Problem (1.1) where f(·) is L-smooth, AdaptReg(A) outputs x
satisfying E

[
F (x)

]
− F (x∗) ≤ O(ε) in T stochastic gradient iterations where

T =

S−1∑
s=0

T
(
L,
σ0
2s

)
where σ0 =

F (x0)− F (x∗)

‖x0 − x∗‖2
and S = log2

F (x0)− F (x∗)

ε
.

• SC+NonSmooth. For Problem (1.3) where ψ(·) is σ-SC and each fi(·) is
√
G-Lipschitz

continuous, AdaptSmooth(A) outputs x satisfying E
[
F (x)

]
− F (x∗) ≤ O(ε) in

T =
S−1∑
s=0

T
( 2s

λ0
, σ
)

where λ0 =
F (x0)− F (x∗)

G
and S = log2

F (x0)− F (x∗)

ε
.

• NonSC+NonSmooth. For Problem (1.3) where each fi(·) is
√
G-Lipschitz continuous,

then JointAdaptRegSmooth(A) outputs x satisfying E
[
F (x)

]
− F (x∗) ≤ O(ε) in

T =

S−1∑
s=0

T
( 2s

λ0
,
σ0
2s

)
where λ0 =

F (x0)− F (x∗)

G
, σ0 =

F (x0)− F (x∗)

‖x0 − x∗‖2
and S = log2

F (x0)− F (x∗)

‖x0 − x∗‖2
.

Combining Corollary 3.2 with Theorem 3.4, we have the following corollaries:

Corollary 3.5 If each fi(x) is convex, L-smooth and ψ(·) is not necessarily strongly
convex in Problem (1.1), then by applying AdaptReg on Katyusha with a starting vector
x0, we obtain an output x satisfying E[F (x)]− F (x∗) ≤ ε in

T = O
(
n log F (x0)−F (x∗)

ε +
√
nL·‖x0−x∗‖√

ε

)
∝ 1√

ε
iterations. (Or equivalently ε ∝ 1

T 2 .)

In contrast, the best known convergence rate was ε ∝ log4 T
T 2 or more precisely

Catalyst: T = O
((
n+

√
nL·‖x0−x∗‖√

ε

)
log F (x0)−F (x∗)

ε log L‖x0−x∗‖2
ε

)
∝ log2(1/ε)√

ε
iterations.
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Algorithm 2 Katyushans(x0, S, σ, L)

1: m← 2n; � epoch length

2: τ2 ← 1
2 ;

3: y0 = z0 = x̃0 ← x0; � initial vectors

4: for s← 0 to S − 1 do
5: τ1,s ← 2

s+4 , αs ← 1
3τ1,sL

� different parameter choices comparing to Katyusha

6: µs ← ∇f(x̃s); � compute the full gradient only once every m iterations

7: for j ← 0 to m− 1 do
8: k ← (sm) + j;
9: xk+1 ← τ1,szk + τ2x̃

s + (1− τ1,s − τ2)yk;
10: ∇̃k+1 ← µs+∇fi(xk+1)−∇fi(x̃s) where i is randomly chosen from {1, 2, . . . , n};
11: zk+1 = arg minz

{
1

2αs
‖z − zk‖2 + 〈∇̃k+1, z〉+ ψ(z)

}
;

12: Option I: yk+1 ← arg miny
{
3L
2 ‖y − xk+1‖2 + 〈∇̃k+1, y〉+ ψ(y)

}
;

13: Option II: yk+1 ← xk+1 + τ1,s(zk+1 − zk) � we analyze only I but II also works

14: end for
15: x̃s+1 ← 1

m

∑m
j=1 ysm+j ; � compute snapshot x̃

16: end for
17: return x̃S .

Corollary 3.6 If each fi(x) is
√
G-Lipschitz continuous and ψ(x) is σ-SC in Problem (1.3),

then by applying AdaptSmooth on Katyusha with a starting vector x0, we obtain an output
x satisfying E[F (x)]− F (x∗) ≤ ε in

T = O
(
n log F (x0)−F (x∗)

ε +
√
nG√
σε

)
∝ 1√

ε
iterations. (Or equivalently ε ∝ 1

T 2 .)

In contrast, the best known convergence rate was ε ∝ log2 T
T 2 , or more precisely

APCG/SPDC: T = O
((
n+

√
nG√
σε

)
log nG(F (x0)−F (x∗))

σε

)
∝ log(1/ε)√

ε
iterations.

Corollary 3.7 If each fi(x) is
√
G-Lipschitz continuous and ψ(x) is not necessarily

strongly convex in Problem (1.3), then by applying JointAdaptRegSmooth on Katyusha

with a starting vector x0, we obtain an output x satisfying E[F (x)]− F (x∗) ≤ ε in

T = O
(
n log F (x0)−F (x∗)

ε +
√
nG‖x0−x∗‖

ε

)
∝ 1

ε iterations. (Or equivalently ε ∝ 1
T .)

In contrast, the best known convergence rate was ε ∝ log T
T , or more precisely

APCG/SPDC: T = O
((
n+
√
nG‖x0−x∗‖

ε

)
log nG‖x0−x∗‖2(F (x0)−F (x∗))

ε2

)
∝ log(1/ε)

ε iterations.

4. Katyusha in the Non-Strongly Convex Setting

Due to the increasing popularity of non-strongly convex minimization tasks (most notably
`1-regularized problems), researchers often make additional efforts to design separate meth-
ods for minimizing the non-strongly convex variant of Problem (1.1) that are direct, meaning
without restarting and in particular without using any reductions such as Theorem 3.4 (De-
fazio et al., 2014; Allen-Zhu and Yuan, 2016).
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In this section, we also develop our direct and accelerated method for the non-strongly
convex variant of Problem (1.1). We call it Katyushans and state it in Algorithm 2.

The only difference between Katyushans and Katyusha is that we choose τ1 = τ1,s =
2
s+4 to be a parameter that depends on the epoch index s, and accordingly α = αs =

1
3Lτ1,s

. This should not be a big surprise because in accelerated full-gradient methods, the

values τ1 and α also decrease (although with respect to k rather than s) when there is no
strong convexity (Allen-Zhu and Orecchia, 2017). We note that τ1 and τ2 remain constant
throughout an epoch, and this could simplify the implementations.

We state the following convergence theorem for Katyushans and defer its proof to
Appendix C.1. The proof also relies on the one-iteration inequality in Lemma 2.7, but re-
quires telescoping such inequalities in a different manner as compared with Theorem 2.1.

Theorem 4.1 If each fi(x) is convex, L-smooth in Problem (1.1) and ψ(·) is not neces-
sarily strongly convex, then Katyushans(x0, S, L) satisfies

E
[
F (x̃S)

]
− F (x∗) ≤ O

(F (x0)− F (x∗)

S2
+
L‖x0 − x∗‖2

mS2

)
In other words, choosing m = Θ(n), Katyushans achieves an ε-additive error (i.e.,

E
[
F (x̃S)

]
− F (x∗) ≤ ε) using at most O

(
n
√
F (x0)−F (x∗)√

ε
+
√
nL‖x0−x∗‖√

ε

)
iterations.

Remark 4.2 Katyushans is a direct, accelerated solver for the non-SC case of Problem (1.1).
It is illustrative to compare it with the convergence theorem of a direct, non-accelerated
solver of the same setting. Below is the convergence theorem of SAGA after translating to
our notations:

SAGA: E
[
F (x)

]
− F (x∗) ≤ O

(F (x0)− F (x∗)

S
+
L‖x0 − x∗‖2

nS

)
.

It is clear from this comparison that Katyushans is a factor S faster than non-accelerated
methods such as SAGA, where S = T/n if T is the total number of stochastic itera-
tions. This convergence can also be written in terms of the number of iterations which

is O
(n(F (x0)−F (x∗))

ε + L‖x0−x∗‖2
ε

)
.

Remark 4.3 Theorem 4.1 appears worse than the reduction-based complexity in Corollary 3.7.
This can be fixed by setting either the parameters τ1 or the epoch length m in a more so-
phisticated way. Since it complicates the proofs and the notations we refrain from doing
so in this version of the paper.13 In practice, being a direct method, Katyushans enjoys
satisfactory performance.

5. Katyusha in the Mini-Batch Setting

We mentioned in earlier versions of this paper that our Katyusha method naturally gener-
alizes to mini-batch (parallel) settings and non-uniform smoothness settings, but did not
include a full proof. In this section, we carefully deal with both generalizations together.

13. Recall that a similar issue has also happened in the non-accelerated world: the iteration complexity
O(n+L

ε
) in SAGA can be improved to O(n log 1

ε
+ L

ε
) by doubling the epoch length across epochs (Allen-

Zhu and Yuan, 2016). Similar techniques can also be used to improve our result above.

18



Katyusha: The First Direct Acceleration of Stochastic Gradient Methods

Mini-batch. In each iteration k, instead of using a single ∇fi(xk+1), one can

use the average of b stochastic gradients 1
b

∑
i∈Sk ∇fi(xk+1)

where Sk is a random subset of [n] with cardinality b. This average can be computed in a
distributed manner using up to b processors. This idea is known as mini-batch for stochastic
gradient methods.

Non-Uniform Smoothness. Suppose in Problem (1.1),

each fi(x) is Li-smooth and f(x) = 1
n

∑n
i=1 fi(x) is L-smooth.

We denote by L = 1
n

∑n
i=1 Li, and assume without loss of generality L ≤ L ≤ nL. 14 We

note that L can sometimes be indeed much greater than L, see Remark 5.3.

Remark 5.1 Li and L only need to be upper bounds to the minimum smoothness parame-
ters of fi(·) and f(·) respectively. In practice, sometimes the minimum smoothness param-
eters for fi(x) is efficiently computable (such as for ERM problems).

5.1 Algorithmic Changes and Theorem Restatement

To simultaneously deal with mini-batch and non-uniform smoothness, we propose the fol-
lowing changes to Katyusha:

• Change the epoch length from m = Θ(n) to m = dnb e.

This is standard. In each iteration we need to compute O(b) stochastic gradients; there-
fore every dnb e iterations, we can compute the full gradient once without hurting the
total performance.

• Define distribution D over [n] to be choosing i ∈ [n] with probability pi
def
= Li/nL, and

define gradient estimator ∇̃k+1
def
= ∇f(x̃) + 1

b

∑
i∈Sk

1
npi

(
∇fi(xk+1) − ∇fi(x̃)

)
, where

Sk ⊆ [n] is a multiset with b elements each i.i.d. generated from D.

This is standard, see for instance Prox-SVRG (Xiao and Zhang, 2014), and it is easy to
verify E[∇̃k+1] = ∇f(xk+1).

• Change τ2 from 1
2 to min

{
L
2Lb ,

1
2

}
.

Note that if L = L then we have τ2 = 1
2b . In other words, the larger the mini-batch size,

the smaller weight we want to give to Katyusha momentum. This should be intuitive.
The reason τ2 has a more involved form when L 6= L is explained in Remark 5.4 later.

• Change L in gradient descent step (Line 19) to some other L� ≥ L, and define α = 1
3τ1L�

instead.

In most cases (e.g., when L = L or L ≥ Lm/b) we choose L� = L. Otherwise, we let

L� = L
2bτ2
≥ L. The reason L� has a more involved form is explained in Remark 5.4

later.

14. It is easy to verify (using triangle inequality) that f(x) = 1
n

∑
i∈[n] fi(x) must be L smooth. Also, if f(x)

is L-smooth then each fi(x) must be nL smooth (this can be checked via Hessian ∇2fi(x) � n∇2f(x)
or similarly if f is not twice-differentiable).
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Algorithm 3 Katyusha1(x0, S, σ, L, (L1, . . . , Ln), b)

1: m← dn/be and L← 1
n(L1 + · · ·+ Ln); � m is epoch length

2: τ2 ← min
{

L
2Lb ,

1
2

}
; � if L = L then τ2 = 1

2b
and L� = L

3: if L ≤ Lm
b then

4: τ1 ← min
{√

8bmσ√
3L

τ2, τ2
}

and L� ← L
2bτ2

;

5: else
6: τ1 ← min

{√
2σ√
3L
, 1
2m

}
and L� ← L;

7: end if
8: α← 1

3τ1L�
; � parameters

9: Let distribution D be to output i ∈ [n] with probability pi
def
= Li/(nL).

10: y0 = z0 = x̃0 ← x0; � initial vectors

11: for s← 0 to S − 1 do
12: µs ← ∇f(x̃s); � compute the full gradient once every m iterations

13: for j ← 0 to m− 1 do
14: k ← (sm) + j;
15: xk+1 ← τ1zk + τ2x̃

s + (1− τ1 − τ2)yk;
16: Sk ← b independent copies of i from D with replacement.
17: ∇̃k+1 ← µs + 1

b

∑
i∈Sk

1
npi

(
∇fi(xk+1)−∇fi(x̃s)

)
;

18: zk+1 = arg minz
{

1
2α‖z − zk‖

2 + 〈∇̃k+1, z〉+ ψ(z)
}

;

19: Option I: yk+1 ← arg miny
{
3L�
2 ‖y − xk+1‖2 + 〈∇̃k+1, y〉+ ψ(y)

}
;

20: Option II: yk+1 ← xk+1 + τ1(zk+1 − zk) � we analyze only I but II also works

21: end for
22: x̃s+1 ←

(∑m−1
j=0 θj

)−1 · (∑m−1
j=0 θj · ysm+j+1

)
; � where θ = 1 + min{ασ, 1

4m

}
23: end for
24: return xout ← τ2mx̃S+(1−τ1−τ2)ySm

τ2m+(1−τ1−τ2) .

• Change τ1 to be τ1 = min
{√

8bmσ√
3L

τ2, τ2
}

if L ≤ Lm/b or τ1 = min
{√

2σ√
3L
, 1
2m

}
if L >

Lm/b.

This corresponds to a phase-transition behavior of Katyusha1 (see Remark 5.5 later).
Intuitively, when L ≤ Lm/b then we are in a mini-batch phase; when L > Lm/b we are
in a full-batch phase.

• Due to technical reasons, we define x̃s as a slightly different weighted average (Line 22)
and output xout which is a weighted combination of x̃S and ySm as opposed to simply x̃S

(Line 24).

We emphasize here that some of these changes are not necessary for instance in the special
case of L = L, but to state the strongest theorem, we have to include all such changes. It
is a simple exercise to verify that, if L = L and b = 1, then up to only constant factors in
the parameters, Katyusha1 is exactly identical to Katyusha. We have the following main
theorem for Katyusha1:
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Theorem 5.2 If each fi(x) is convex and Li-smooth, f(x) is L-smooth, ψ(x) is σ-
strongly convex in Problem (1.1), then for any b ∈ [n],

xout = Katyusha1(x0, S, σ, L, (L1, . . . , Ln), b)

satisfies E
[
F (xout)

]
− F (x∗)

≤


O
((

1 +
√
bσ/(6Lm)

)−Sm)
·
(
F (x0)− F (x∗)

)
, if mσb

L
≤ 3

8 and L ≤ Lm
b ;

O
((

1 +
√
σ/(6L)

)−Sm) · (F (x0)− F (x∗)
)
, if m2σ

L ≤ 3
8 and L > Lm

b ;

O
(
1.25−S

)
·
(
F (x0)− F (x∗)

)
, otherwise.

In other words, choosing m = dn/be, Katyusha achieves an ε-additive error (that is,
E
[
F (xout)

]
− F (x∗) ≤ ε) using at most

S · n = O
((
n+ b

√
L/σ +

√
nL/σ

)
· log

F (x0)− F (x∗)

ε

)
stochastic gradient computations.

5.2 Observations and Remarks

We explain the significance of Theorem 5.2 below. We use total work to refer to the to-
tal number of stochastic gradient computations, and iteration complexity (also known as
parallel depth) to refer to the total number of iterations.

Parallel Performance. The total work of Katyusha1 stays the same when b ≤ (nL/L)1/2 ∈[√
n, n

]
. This means, at least for all values b ∈ {1, 2, . . . , d

√
ne}, our Katyusha1 achieves

the same total work and thus

Katyusha1 can be distributed to b ≤
√
n machines with a parallel speed-up factor b

(known as linear speed-up if ignoring communication overhead.)

In contrast, even in the special case of L = L and if no additional assumption is made, to
the best of our knowledge:

• Mini-batch SVRG requires Õ
(
n+ bL

σ

)
total work.

Therefore, if SVRG is distributed to b machines, the total work is increased by a factor
of b, and the parallel speed-up factor is 1 (i.e., no speed up).

• Catalyst on top of mini-batch SVRG requires Õ
(
n+

√
bLn√
σ

)
total work.

Therefore, if Catalyst is distributed to b machines, the total work is increased by a factor√
b, and the parallel speed-up factor is

√
b only.

When preparing the journal revision (i.e., version 5), we found out at least in the case
L = L, some other groups of researchers very recently obtained similar results for the
ERM Problem (1.3) using SPDC (Shibagaki and Takeuchi, 2017), and for the general
Problem (1.1) (Murata and Suzuki, 2017).15 These results together with Theorem 5.2 con-
firm the power of acceleration in the parallel regime for stochastic gradient methods.

15. These two papers claimed that Katyusha does not enjoy linear speed-up for b ≤
√
n, based on an earlier

version of the paper (where we did not include the mini-batch theorem). As evidenced by Theorem 5.2,
such claims are false.
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Outperforming Full-Gradient Method. If b = n, the total work of Katyusha1 becomes
Õ
(
(L/σ)1/2n

)
. This matches the total work of Nesterov’s accelerated gradient method (Nes-

terov, 1983, 2004; Allen-Zhu and Orecchia, 2017), and does not depend on the possibly larger
parameter L.

More interestingly, to achieve the same iteration complexity Õ
(
(L/σ)1/2

)
as Nesterov’s

method, our Katyusha1 only needs to compute b = (nL/L)1/2 stochastic gradients ∇fi(·)
per iteration (in the amortized sense). This can be much faster than computing ∇f(·).

Remark 5.3 Recall L is in the range [L, nL] so indeed L can be much larger than L. For
instance in linear regression we have fi(x) = 1

2(〈ai, x〉−bi)2. Denoting by A = [a1, . . . , an] ∈
Rd×n, we have L = 1

nλmax(A>A) and L = 1
n‖A‖

2
F . If each entry of each ai is a random

Gaussian N(0, 1), then L is around d and L is around only Θ(1 + d
n) (using the Wishart

random matrix theory).

Remark 5.4 The parameter specifications in Katyusha1 look intimidating partially because
we have tried to obtain the strongest statement and match the full-gradient descent perfor-
mance when b = n. If L is equal to L, then one can simply set τ2 = 1

2b and L� = L in
Katyusha1.

Phase Transition between Mini-Batch and Full-Batch. Theorem 5.2 indicates a
phase transition of Katyusha1 at the point b0 = (nL/L)1/2.

• If b ≤ b0, we say Katyusha1 is in the mini-batch phase and the total work is Õ
(
n +√

nL/σ
)
, independent of b.

• If b > b0, we say Katyusha1 is in the full-batch phase, and the total work is Õ
(
n+b

√
L/σ

)
,

so essentially linearly-scales with b and matches that of Nesterov’s method when b = n.

Remark 5.5 We set different values for τ1 and L� in the mini-batch phase and full-batch
phase respectively (see Line 3). From the final complexities above, it should not be surprising
that τ1 depends on L but not L in the mini-batch phase, and depends on L but not L in
the full-batch phase. In addition, one can even tune the parameters so that it suffices for
Katyusha to output x̃S in the mini-batch phase and ySm in the full-batch phase; we did not
do so and simply choose to output xout which is a convex combination of x̃S and ySm.

Remark 5.6 In the simple case L = L, Nitanda (2014) obtained a total work Õ
(
n+ n−b

n−1
L
σ +

b
√
L/σ

)
, which also implies a phase transition for b. However, this result is no better than

ours for all b, and in addition, in terms of total work, it is no faster than SVRG when
b ≤ n/2, and no faster than accelerated full-gradient descent when b > n/2.

5.3 Corollaries on Non-Smooth or Non-SC Problems

In the same way as Section 3, we can apply the reductions from Allen-Zhu and Hazan
(2016b) to convert the performance of Theorem 5.2 to non-smooth or non-strongly convex
settings. We state the corollaries below:
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Corollary 5.7 If each fi(x) is convex and Li-smooth, f(x) is L-smooth, ψ(·) is not
necessarily strongly convex in Problem (1.1), then for any b ∈ [n], by applying AdaptReg
on Katyusha1 with a starting vector x0, we obtain an output x satisfying E[F (x)] −
F (x∗) ≤ ε in at most

O
(
n log F (x0)−F (x∗)

ε + b
√
L·‖x0−x∗‖√

ε
+

√
nL·‖x0−x∗‖√

ε

)
stochastic gradient computations.

Corollary 5.8 If each fi(x) is
√
Gi-Lipschitz continuous and ψ(x) is σ-SC in Problem (1.3),

then for any b ∈ [n], by applying AdaptSmooth on Katyusha1 with a starting vector x0,
we obtain an output x satisfying E[F (x)]− F (x∗) ≤ ε in at most

O
(
n log F (x0)−F (x∗)

ε + b
√
G√
σε

+

√
nG√
σε

)
stochastic gradient computations.

Corollary 5.9 If each fi(x) is
√
Gi-Lipschitz continuous and ψ(x) is not necessarily

strongly convex in Problem (1.3), then for any b ∈ [n], by applying JointAdaptRegSmooth
on Katyusha1 with a starting vector x0, we obtain an output x satisfying E[F (x)] −
F (x∗) ≤ ε in at most

O
(
n log F (x0)−F (x∗)

ε + bG‖x0−x∗‖
ε +

√
nG‖x0−x∗‖

ε

)
stochastic gradient computations.

6. Katyusha in the Non-Euclidean Norm Setting

In this section, we show that Katyusha and Katyushans naturally extend to settings where
the smoothness definition is with respect to a non-Euclidean norm.

Non-Euclidean Norm Smoothness. We consider smoothness (and strongly convexity)

with respect to an arbitrary norm ‖·‖ in domainQ
def
= {x ∈ Rd : ψ(x) < +∞}. Symbolically,

we say

• f is σ-strongly convex w.r.t. ‖ · ‖ if ∀x, y ∈ Q, it satisfies f(y) ≥ f(x) + 〈∇f(x), y−x〉+
σ
2 ‖x− y‖

2;

• f is L-smooth w.r.t. ‖ · ‖ if ∀x, y ∈ Q, it satisfies ‖∇f(x)−∇f(y)‖∗ ≤ L‖x− y‖.16

Above, ‖·‖∗
def
= max{〈ξ, x〉 : ‖x‖ ≤ 1} is the dual norm of ‖·‖. For instance, `p norm is dual

to `q norm if 1
p + 1

q = 1. Some famous problems have better smoothness parameters when
non-Euclidean norms are adopted, see the discussions in Allen-Zhu and Orecchia (2017).

Bregman Divergence. Following the traditions in the non-Euclidean norm setting (Allen-
Zhu and Orecchia, 2017), we

• select a distance generating function w(·) that is 1-strongly convex w.r.t. ‖ · ‖, and17

• define the Bregman divergence function Vx(y)
def
= w(y)− w(x)− 〈∇w(x), y − x〉.

The final algorithms and proofs will be described using Vx(y) and w(x).

16. This definition has another equivalent form: ∀x, y ∈ Q, it satisfies f(y) ≤ f(x)+〈∇f(x), y−x〉+L
2
‖y−x‖2.

17. For instance, if Q = Rd and ‖ · ‖p is the `p norm for some p ∈ (1, 2], one can choose w(x) = 1
2(p−1)

‖x‖2p;
if Q = {x ∈ Rd :

∑
i xi = 1} is the probability space and ‖ · ‖1 is the `1 norm, one can choose

w(x) =
∑
i xi log xi.
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Generalized Strong Convexity of ψ(·). We require ψ(·) to be σ-strongly convexity
with respect to function Vx(y) rather than the ‖ · ‖ norm; or symbolically,

ψ(y) ≥ ψ(x) + 〈∇ψ(x), y − x〉+ σVx(y) .

(For instance, this is satisfied if ω(y)
def
= 1

σψ(y).) This is known as the “generalized strong
convexity” (Shalev-Shwartz, 2007) and is necessary for any linear-convergence result in the
SC setting. Of course, in the non-SC setting, we do not require any (general or not) strong
convexity for ψ(·).

6.1 Algorithm Changes and Theorem Restatements

Suppose each fi(x) is Li-smooth with respect to norm ‖ · ‖, and a Bregman divergence
function Vx(y) is given. We perform the following changes to the algorithms:

• In Line 9 of Katyusha (resp. Line 10 of Katyushans), we choose i with probability
proportional to Li instead of uniformly at random.

• In Line 10 of Katyusha (resp. Line 11 of Katyushans), we change the arg min to be its
non-Euclidean norm variant (Allen-Zhu and Orecchia, 2017): zk+1 = arg minz

{
1
αVzk(z)+

〈∇̃k+1, z〉+ ψ(z)
}

• We forbidden Option II and use Option I only (but without replacing ‖y − xk+1‖2 with
Vxk+1

(y)).

Interested readers can find discussions regarding why such changes are natural in Allen-Zhu
and Orecchia (2017). We call the resulting algorithms Katyusha2 and Katyusha2ns, and
include them in Appendix E for completeness’ sake. We state our final theorems below
(recall L = 1

n

∑n
i=1 Li).

Theorem 6.1 (ext. of Theorem 2.1) If each fi(x) is convex and Li-smooth with re-
spect to some norm ‖ · ‖, Vx(y) is a Bregman divergence function for ‖ · ‖, and ψ(x) is
σ-strongly convex with respect to Vx(y), then Katyusha2(x0, S, σ, (L1, . . . , Ln)) satisfies

E
[
F (x̃S)

]
− F (x∗) ≤

{
O
((

1 +
√
σ/(9Lm)

)−Sm)
·
(
F (x0)− F (x∗)

)
, if mσ/L ≤ 9

4 ;

O
(
1.5−S

)
·
(
F (x0)− F (x∗)

)
, if mσ/L > 9

4 .

In other words, choosing m = Θ(n), Katyusha2 achieves an ε-additive error (i.e., E
[
F (x̃S)

]
−

F (x∗) ≤ ε) using at most O
((
n+

√
nL/σ

)
· log F (x0)−F (x∗)

ε

)
iterations.

Theorem 6.2 (ext. of Theorem 4.1) If each fi(x) is convex and Li-smooth with re-
spect to some norm ‖ · ‖, Vx(y) is a Bregman divergence function for ‖ · ‖, and ψ(·) is not
necessarily strongly convex, then Katyusha2ns(x0, S, (L1, . . . , Ln)) satisfies

E
[
F (x̃S)

]
− F (x∗) ≤ O

(F (x0)− F (x∗)

S2
+
LVx0(x∗)

nS2

)
.

In other words, Katyusha2ns achieves an ε-additive error (i.e., E
[
F (x̃S)

]
− F (x∗) ≤ ε)

using at most O
(
n
√
F (x0)−F (x∗)√

ε
+

√
nLVx0 (x

∗)
√
ε

)
iterations.
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The proofs of Theorem 6.1 and Theorem 6.2 follow exactly the same proof structures of
Theorem 2.1 and Theorem 4.1, so we include them only in Appendix E.

6.2 Remarks

We highlight one main difference between the proof of Katyusha2 and that of Katyusha: if ξ
is a random vector and ‖·‖ is an arbitrary norm, we do not necessarily have E[‖ξ−E[ξ]‖2∗] ≤
E[‖ξ‖2∗]. Therefore, we only used E[‖ξ−E[ξ]‖2∗] ≤ 2E[‖ξ‖2∗] + 2‖E[ξ]‖2∗ (see Lemma E.2) and
this loses a constant factor in some parameters. (For instance, α now becomes 1

9τ1L
as

opposed to 1
3τ1L

).

More interestingly, one may ask how our revised algorithms Katyusha2 or Katyusha2ns

perform in the mini-batch setting (just like we have studied in Section 5 for the Euclidean
case). We are optimistic here, but unfortunately do not have a clean worst-case statement
for how much speed-up we can get. The underlying reason is that, if D is a distribution
for vectors, µ = Eξ∼D[ξ] is its expectation, and ξ1, . . . , ξb are b i.i.d. samples from D, then
letting ξ = 1

b (ξ1 + · · · + ξb), we do not necessarily have E[‖ξ − µ‖2∗] ≤ 1
bEξ∼D[‖ξ − µ‖2∗].

In other words, using a mini-batch version of the gradient estimator, the “variance” with
respect to an arbitrary norm may not necessarily go down by a factor of b. For such reason,
in the mini-batch setting, the best total work we can cleanly state, say for Katyusha2 in

the SC setting, is only O
((
n+

√
bnL/σ

)
· log F (x0)−F (x∗)

ε

)
.

7. Empirical Evaluations

We conclude this paper with empirical evaluations to our theoretical speed-ups. We work
on Lasso and ridge regressions (with regularizer λ

2‖x‖
2 for ridge and regularizer λ‖x‖1 for

Lasso) on the following six datasets: adult, web, mnist, rcv1, covtype, sensit. We defer
dataset and implementation details to Appendix B.

Algorithms and Parameter Tuning. We have implemented the following algorithms,
all with mini-batch size 1 for this version of the paper:

• SVRG (Johnson and Zhang, 2013) with default epoch length m = 2n. We tune only one
parameter : the learning rate.

• Katyusha for ridge and Katyushans for Lasso. We tune only one parameter : the learning
rate.

• SAGA (Defazio et al., 2014). We tune only one parameter : the learning rate.

• Catalyst (Lin et al., 2015) on top of SVRG. We tune three parameters: SVRG’s learning
rate, Catalyst’s learning rate, as well as the regularizer weight in the Catalyst reduction.

• APCG (Lin et al., 2014). We tune the learning rate. For Lasso, we also tune the `2
regularizer weight.

• APCG+AdaptReg (Lasso only). Since APCG intrinsically require an `2 regularizer to be
added on Lasso, we apply AdaptReg from Allen-Zhu and Hazan (2016b) to adaptively
learn this regularizer and improve APCG’s performance. Two parameters to be tuned:
APCG’s learning rate and σ0 in AdaptReg.
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Figure 1: Comparing SVRG vs. Katyusha vs. Katyusha with τ2 = 0.

All of the parameters were equally, fairly, and automatically tuned by our code base. For
interested readers, we discuss more details in Appendix B.

We emphasize that Katyusha is as simple as SAGA or SVRG in terms of parameter
tuning. In contrast, APCG for Lasso requires two parameters to be tuned, and Catalyst
requires three. (Lin, 2016)

Performance Plots. Following the tradition of ERM experiments, we use the number of
“passes” of the dataset as the x-axis. Letting n be the number of feature vectors, each new
stochastic gradient computation ∇fi(·) counts as 1/n pass, and a full gradient computation
∇f(·) counts as 1 pass.

The y-axis in our plots represents the training objective distance to the minimum. Since
we aim to evaluate our theoretical finding, we did not include the test error. We emphasize
that it is practically also crucial to study high-accuracy regimes (such as objective distance
≤ 10−7). This is because nowadays there is an increasing number of methods that reduce
large-scale machine learning tasks to multiple black-box calls to ERM solvers (Allen-Zhu
and Li, 2017b,a; Frostig et al., 2016). In all such applications, due to error blowups between
oracle calls, the ERM solver is required to be very accurate in training error.

7.1 Effectiveness of Katyusha Momentum

In our Katyusha method, τ1 controls to the classical Nesterov’s momentum and τ2 controls
our newly introduced Katyusha momentum. We find in our theory that setting τ2 = 1/2 is
a good choice so we universally set it to be 1/2 without tuning in all our experiments. (Of
course, if time permits, tuning τ2 could only help in performance.)

Before this paper, researchers have tried heuristics that is to add Nesterov’s momentums
directly to stochastic gradient methods (Nitanda, 2014), and this corresponds to setting
τ2 = 0 in Katyusha. In Figure 1, we compare Katyusha with τ2 = 1/2 and τ2 = 0 in order
to illustrate the importance and effectiveness of our Katyusha momentum.

We conclude that the old heuristics (i.e., τ2 = 0) sometimes indeed make the method
faster after careful parameter tuning. However, for certain tasks such as Figure 1(c), without
Katyusha momentum the algorithm does not even enjoy an accelerated convergence rate.
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Figure 2: Some representative performance charts where λ is the regularizer weight. See
Figure 3 and Figure 4 in the appendix for the full plots.

7.2 Performance Comparison Across Algorithms

For each of the six datasets and each objective (ridge or lasso), we experiment on three
different magnitudes of regularizer weights.18 This totals 36 performance charts, and we
include them in full at the end of this paper. For the sake of cleanness, in Figure 2 we select
6 representative charts for ridge regression and make the following observations.

• Accelerated methods are more powerful when the regularizer weights are small (cf. Shalev-
Shwartz and Zhang (2014); Allen-Zhu et al. (2016c); Lin et al. (2014)). For instance,
Figure 2(c) and 2(f) are for large values of λ and Katyusha performs relatively the same
as compared with SVRG / SAGA; however, Katyusha significantly outperforms SVRG
/ SAGA for small values of λ, see for instance Figure 2(b) and 2(e).

• Katyusha almost always either outperform or equal-perform its competitors. The only
notable place it gets outperformed is by SVRG (see Figure 2(f)); however, this perfor-
mance gap cannot be large because Katyusha is capable of recovering SVRG if τ1 = τ2 =
0.19

• Catalyst does not work as beautiful as its theory in high-accuracy regimes, even though
we have carefully tuned parameters α0 and κ in Catalyst in addition to its learning

18. We choose three values λ that are powers of 10 and around 10/n, 1/n, 1/10n. This range can be verified
to contain the best regularization weights using cross validation.

19. The only reason Katyusha does not match the performance of SVRG in Figure 2(f) is because we have
not tuned parameter τ2. If we also tune τ2 for the best performance, Katyusha shall no longer be
outperformed by SVRG. In any case, it is not really necessary to tune τ2 because the performance of
Katyusha is already superb.
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rate. Indeed, in Figure 2(a), 2(c) and 2(f) Catalyst (which is a reduction on SVRG) is
outperformed by SVRG.

• APCG performs poorly on all Lasso tasks (cf. Figure 2(d), 2(e), 2(f)) because it is not
designed for non-SC objectives. The reduction in Allen-Zhu and Hazan (2016b) helps to
fix this issue, but not by a lot.

• APCG can sometimes be largely dominated by SVRG or SAGA (cf. Figure 2(f)): this
is because for datasets such as sensit, dual-based methods (such as APCG) cannot make
use of the implicity local strong convexity in the objective. In such cases, Katyusha is
not lost to SVRG or SAGA.

8. Conclusion

The Katyusha momentum technique introduced in this paper gives rise to accelerated con-
vergence rates even in the stochastic setting. For many classes of the problems, such con-
vergence rates are the first to match the theoretical lower bounds (Woodworth and Srebro,
2016). The algorithms generated by Katyusha momentum are simple yet highly practical
and parallelizable.

More importantly, this new technique has the potential to enrich our understanding
of accelerated methods in a broader sense. Currently, although acceleration methods are
becoming more and more important to the field of computer science, they are still often
regarded as “analytical tricks” (Juditsky, 2013; Bubeck et al., 2015) and lacking complete
theoretical understanding. The Katyusha momentum presented in this paper, however,
adds a new level of decoration on top of the classical Nesterov momentum. This decora-
tion is shown valuable for stochastic problems in this paper, but may also lead to future
applications as well. In general, the author hopes that the technique and analysis in this
paper could facilitate more studies in this field and thus become a stepping stone towards
the ultimate goal of unveiling the mystery of acceleration.
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Appendix

Appendix A. Other Related Works

For smooth convex minimization problems, (full) gradient descent converges at a rate L
ε

—or L
σ log 1

ε if the objective is σ-strongly convex. This is not optimal among the class of

first-order methods. Nesterov showed that the optimal rate should be
√
L√
ε

—or
√
L√
σ

log 1
ε

if the objective is σ-strongly convex— and this was achieved by his celebrated accelerated
(full) gradient descent method (Nesterov, 1983).

Sum-of-Nonconvex Optimization. One important generalization of Problem (1.1) is
the case when the functions fi(x) are non-convex but their average f(x) = 1

n

∑n
i=1 fi(x) is

convex. Solvers for this “sum-of-nonconvex” setting can be applied to PCA/SVD, online
eigenvector, general non-convex optimization, and more. See (Allen-Zhu, 2018a) and the
references therein.

Variance reduction was first introduced to solve this problem by Shalev-Shwartz (2016),
and APPA/Catalyst also accelerates SVRG for this problem (Garber et al., 2016). One can
similarly ask whether one can design a directly accelerated method for this more general
problem, and this was achieved by the KatyushaX method in (Allen-Zhu, 2018a). It is a
sister paper to us but uses very different sets of techniques.

Online Stochastic Optimization. Some literatures also focus on the (more general)
online variant of Problem (1.1), that is for n being sufficiently large so that the algorithm
cannot access f(x) or compute its full gradient ∇f(x). In this regime, without additional
assumption, the optimal convergence rate is 1/ε2 (or 1/ε if the function is strongly convex).
This is obtained by SGD and its hybrid variants (Lan, 2011; Hu et al., 2009).

Coordinate Descent. Another way to define gradient estimator is to set ∇̃k = d∇jf(xk)
where j is a random coordinate. This is (randomized) coordinate descent as opposed to
stochastic gradient descent. Designing accelerated methods for coordinate descent is signif-
icantly easier than designing that for stochastic gradient descent, and has indeed been done
in many previous results including (Nesterov, 2012; Lin et al., 2014; Lu and Xiao, 2013;
Allen-Zhu et al., 2016c).20 The fastest rate is O

(∑
i

√
Li/ε

)
where parameters Li corre-

spond to the coordinate smoothness of f(x) (Allen-Zhu et al., 2016c). Coordinate descent
cannot be applied to solve Problem (1.1) because in our stochastic setting, only one copy
∇fi(·) is computed in every iteration.

Hybrid Stochastic Methods. Several recent results study hybrid methods with conver-
gence rates that are generally non-accelerated and only accelerated in extreme cases.

• Lan (2011); Hu et al. (2009) obtained iteration complexity of the form O(L/
√
ε+ σ/ε2)

in the presence of stochastic gradient with variance σ. These results can be interpreted
as follows, if σ is very small, then one can directly apply Nesterov’s accelerated gradient
method and achieve O(L/

√
ε); or if σ is large then they match the SGD iteration com-

20. The reason behind it can be understood as follows. If a function f(·) is L smooth with respect to
coordinate j, then a coordinate descent step x′ ← x − 1

L
∇jf(x)ej always decreases the objective, i.e.,

f(x+ 1
L
∇jf(x)ej) < f(x). In contrast, this is false for stochastic gradient descent, because f(xk− η∇̃k)

may be even larger than f(xk).
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plexity O(σ/ε2). For Problem (1.1), these algorithms do not give faster running time
than Katyusha unless σ is very small.21

• Nitanda (2014) adds momentum to the non-accelerated variance-reduction method in
a naive manner. It corresponds to this paper but without Katyusha momentum (i.e.,
τ2 = 0). The theoretical running time of Nitanda (2014) is always slower than this paper
and cannot even outperform SVRG (Johnson and Zhang, 2013; Zhang et al., 2013) unless
κ > n2 —which is usually false in practice (see page 7 of Nitanda (2014)).22 We have
included an experiment in Section 7.1 to illustrate why Katyusha momentum is necessary.

Linear Coupling. Allen-Zhu and Orecchia (2017) proposed a framework called linear
coupling that facilitates the design of accelerated gradient methods. The simplest use of
linear coupling can reconstruct Nesterov’s accelerated full-gradient method (Allen-Zhu and
Orecchia, 2017), or to provide faster coordinate descent (Allen-Zhu et al., 2016c). More
careful use of linear coupling can also give accelerated methods for non-smooth problems
(such as positive LP (Allen-Zhu and Orecchia, 2015b,a), positive SDP (Allen-Zhu et al.,
2016a), matrix scaling (Allen-Zhu et al., 2017)) or for general non-convex problems (Allen-
Zhu and Hazan, 2016a). This present paper falls into this linear-coupling framework, but
our Katyusha momentum technique was not present in any of these cited results.

Acceleration in Nonconvex Optimization. One can also ask how does acceleration
help in non-convex optimization? This is a new area with active research going on.

In the deterministic setting, under standard Lipschitz smoothness, gradient descent finds
a point x with ‖∇f(x)‖ ≤ ε in O(ε−2) iterations (Nesterov, 2004), and acceleration is not
known to help. If second-order Lipschitz smoothness is added, then one can use momentum
to non-trivially improve the rate to O(ε−1.75) (Carmon et al., 2016; Agarwal et al., 2017).

In the finite-sum stochastic setting, gradient descent finds a point x with ‖∇f(x)‖ ≤ ε
in T = O(nε−2) stochastic gradient computations under standard Lipschitz smoothness. If
second-order Lipschitz smoothness is added, then one can use momentum to non-trivially
improve the complexity T = O(nε−1.5 + n0.75ε−1.75) (Agarwal et al., 2017).

In the online stochastic setting, SGD finds a point x with ‖∇f(x)‖ ≤ ε in T = O(ε−4)
stochastic gradient iterations under the standard Lipschitz smoothness assumption. Per-
haps surprisingly, without using momentum, one can already improve this rate to T =
O(ε−3.5) (using SGD) (Allen-Zhu, 2018b), T = O(ε−3.333) (Lei et al., 2017), or even to
T = O(ε−3.25) (Allen-Zhu, 2017) if second-order Lipschitz smoothness is added. It is unclear
whether such rates can be improved using momentum. We stress that, even if “improved
rates” can be obtained using momentum, one also needs to prove from the lower-bound side
that such “improved rates” cannot be obtained by any momentum-free method.

21. When σ is large, even if n is large, the iteration complexity of (Lan, 2011; Hu et al., 2009) becomes
O(σ/ε2). In this regime, almost all variance-reduction methods, including SVRG and Katyusha, can

be shown to satisfy ε ≤ O(
√
σ√
T

) within the first epoch, if the learning rates are appropriately chosen.

Therefore, Katyusha and SVRG are no slower than Lan (2011); Hu et al. (2009).
22. Nitanda’s method is usually not considered as an accelerated method, since it requires mini-batch size

to be very large in order to be accelerated. If mini-batch is large then one can use full-gradient method
directly and acceleration is trivial. This is confirmed by (Konečnỳ et al., 2016, Section IV.F). In contrast,
our acceleration holds even if mini-batch size is 1.
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Appendix B. Experiment Details

The datasets we used in this paper are downloaded from the LibSVM website (Fan and
Lin):
• the adult (a9a) dataset (32, 561 samples and 123 features).
• the web (w8a) dataset (49, 749 samples and 300 features).
• the covtype (binary.scale) dataset (581, 012 samples and 54 features).
• the mnist (class 1) dataset (60, 000 samples and 780 features).
• the rcv1 (train.binary) dataset (20, 242 samples and 47, 236 features).
• the sensit (combined) dataset (78, 823 samples and 100 features).

To make easier comparison across datasets, we scale every vector by the average Euclidean
norm of all the vectors in the dataset. In other words, we ensure that the data vectors
have an average Euclidean norm 1. This step is for comparison only and not necessary in
practice.

Parameter-tuning details. We select learning rates from the set {10−k, 2 × 10−k, 5 ×
10−k : k ∈ Z}, and select regularizer weights (for APCG) from the set {10−k : k ∈
Z}. We have fully automated the parameter tuning procedure to ensure a fair and strong
comparison.

While the learning rates were explicitly defined for SVRG and SAGA, there were implicit
for all accelerated methods. For Catalyst, the learning rate is in fact their α0 in the
paper (Lin, 2016). Instead of choosing it to be the theory-predicted value, we multiply
it with an extra factor to be tuned and call this factor the “learning rate”. Similarly, for
Katyusha and Katyushans, we multiply the theory-predicted τ1 with an extra factor and this
serves as a learning rate. For APCG, we use their Algorithm 1 in the paper and multiply
their theory-predicted µ with an extra factor.

For Catalyst, in principle one also has to tune the stopping criterion. After commu-
nicating with an author of Catalyst, we learned that one can terminate the inner loop
whenever the duality gap becomes no more than, say one fourth, of the last duality gap
from the previous epoch (Lin, 2016). This stopping criterion was also found by the authors
of (Allen-Zhu and Hazan, 2016b) to be a good choice for reduction-based methods.

31



Allen-Zhu

1E-12

1E-10

1E-08

1E-06

1E-04

1E-02

1E+00

0 20 40 60 80 100

APCG Catalyst SAGA SVRG Katyusha

(a) adult, λ = 10−6

1E-12

1E-10

1E-08

1E-06

1E-04

1E-02

1E+00

0 20 40 60 80 100

APCG Catalyst SAGA SVRG Katyusha

(b) adult, λ = 10−5

1E-12

1E-10

1E-08

1E-06

1E-04

1E-02

1E+00

0 20 40 60 80 100

APCG Catalyst SAGA SVRG Katyusha

(c) adult, λ = 10−4

1E-12

1E-10

1E-08

1E-06

1E-04

1E-02

1E+00

0 20 40 60 80 100

APCG Catalyst SAGA SVRG Katyusha

(d) web, λ = 10−6

1E-12

1E-10

1E-08

1E-06

1E-04

1E-02

1E+00

0 20 40 60 80 100

APCG Catalyst SAGA SVRG Katyusha

(e) web, λ = 10−5

1E-12

1E-10

1E-08

1E-06

1E-04

1E-02

1E+00

0 20 40 60 80 100

APCG Catalyst SAGA SVRG Katyusha

(f) web, λ = 10−4

1E-12

1E-10

1E-08

1E-06

1E-04

1E-02

1E+00

0 20 40 60 80 100

APCG Catalyst SAGA SVRG Katyusha

(g) mnist, λ = 10−6

1E-12

1E-10

1E-08

1E-06

1E-04

1E-02

1E+00

0 20 40 60 80 100

APCG Catalyst SAGA SVRG Katyusha

(h) mnist, λ = 10−5

1E-12

1E-10

1E-08

1E-06

1E-04

1E-02

1E+00

0 20 40 60 80 100

APCG Catalyst SAGA SVRG Katyusha

(i) mnist, λ = 10−4

1E-12

1E-10

1E-08

1E-06

1E-04

1E-02

1E+00

0 20 40 60 80 100

APCG Catalyst SAGA SVRG Katyusha

(j) rcv1, λ = 10−6

1E-12

1E-10

1E-08

1E-06

1E-04

1E-02

1E+00

0 20 40 60 80 100

APCG Catalyst SAGA SVRG Katyusha

(k) rcv1, λ = 10−5

1E-12

1E-10

1E-08

1E-06

1E-04

1E-02

1E+00

0 20 40 60 80 100

APCG Catalyst SAGA SVRG Katyusha

(l) rcv1, λ = 10−4

1E-12

1E-10

1E-08

1E-06

1E-04

1E-02

1E+00

0 20 40 60 80 100

APCG Catalyst SAGA SVRG Katyusha

(m) covtype, λ = 10−7

1E-12

1E-10

1E-08

1E-06

1E-04

1E-02

1E+00

0 20 40 60 80 100

APCG Catalyst SAGA SVRG Katyusha

(n) covtype, λ = 10−6

1E-12

1E-10

1E-08

1E-06

1E-04

1E-02

1E+00

0 20 40 60 80 100

APCG Catalyst SAGA SVRG Katyusha

(o) covtype, λ = 10−5

1E-12

1E-10

1E-08

1E-06

1E-04

1E-02

1E+00

0 20 40 60 80 100

APCG Catalyst SAGA SVRG Katyusha

(p) sensit, λ = 10−6

1E-12

1E-10

1E-08

1E-06

1E-04

1E-02

1E+00

0 20 40 60 80 100

APCG Catalyst SAGA SVRG Katyusha

(q) sensit, λ = 10−5

1E-12

1E-10

1E-08

1E-06

1E-04

1E-02

1E+00

0 20 40 60 80 100

APCG Catalyst SAGA SVRG Katyusha

(r) sensit, λ = 10−4

Figure 3: Experiments on ridge regression with `2 regularizer weight λ.
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Figure 4: Experiments on Lasso with `1 regularizer weight λ.
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Appendix C. Appendix for Section 4

C.1 Proof of Theorem 4.1

Proof [Proof of Theorem 4.1] First of all, the parameter choices satisfy the presumptions

in Lemma 2.6, so again by defining Dk
def
= F (yk)− F (x∗) and D̃s def

= F (x̃s)− F (x∗), we can
rewrite Lemma 2.7 as follows:

0 ≤ αs(1− τ1,s − τ2)
τ1,s

Dk −
αs
τ1,s

E
[
Dk+1

]
+
αsτ2
τ1,s

D̃s +
1

2
‖zk − x∗‖2 −

1

2
E
[
‖zk+1 − x∗‖2

]
.

Summing up the above inequality for all the iterations k = sm, sm+ 1, . . . , sm+m− 1, we
have

E
[
αs

1− τ1,s − τ2
τ1,s

D(s+1)m + αs
τ1,s + τ2
τ1,s

m∑
j=1

Dsm+j

]
≤ αs

1− τ1,s − τ2
τ1,s

Dsm + αs
τ2
τ1,s

mD̃s +
1

2
‖zsm − x∗‖2 −

1

2
E
[
‖z(s+1)m − x∗‖2

]
. (C.1)

Note that in the above inequality we have assumed all the randomness in the first s − 1
epochs are fixed and the only source of randomness comes from epoch s.

If we define x̃s = 1
m

∑m
j=1 y(s−1)m+j , then by the convexity of function F (·) we have

mD̃s ≤
∑n

j=1D(s−1)m+j . Therefore, using the parameter choice αs = 1
3τ1,sL

, for every s ≥ 1

we can derive from (C.1) that

E
[ 1

τ21,s
D(s+1)m +

τ1,s + τ2
τ21,s

m−1∑
j=1

Dsm+j

]

≤ 1− τ1,s
τ21,s

Dsm +
τ2
τ21,s

m−1∑
j=1

D(s−1)m+j +
3L

2
‖zsm − x∗‖2 −

3L

2
E
[
‖z(s+1)m − x∗‖2

]
. (C.2)

For the base case s = 0, we can also rewrite (C.1) as

E
[ 1

τ21,0
Dm +

τ1,0 + τ2
τ21,0

m−1∑
j=1

Dj

]
≤ 1− τ1,0 − τ2

τ21,0
D0 +

τ2m

τ21,0
D̃0 +

3L

2
‖z0 − x∗‖2 −

3L

2
E
[
‖zm − x∗‖2

]
. (C.3)

At this point, if we choose τ1,s = 2
s+4 ≤

1
2 , it satisfies

1

τ21,s
≥ 1− τ1,s+1

τ21,s+1

and
τ1,s + τ2
τ21,s

≥ τ2
τ21,s+1

.

Using these two inequalities, we can telescope (C.3) and (C.2) for all s = 0, 1, . . . , S − 1.
We obtain in the end that

E
[ 1

τ21,S−1
DSm +

τ1,S−1 + τ2
τ21,S−1

m−1∑
j=1

D(S−1)m+j +
3L

2
‖zSm − z∗‖2

]
≤ 1− τ1,0 − τ2

τ21,0
D0 +

τ2m

τ21,0
D̃0 +

3L

2
‖z0 − x∗‖2 (C.4)
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Since we have D̃S ≤ 1
m

∑m
j=1D(S−1)m+j which is no greater than

2τ21,S−1

m times the left hand
side of (C.4), we conclude that

E
[
F (x̃S)− F (x∗)

]
= E

[
D̃S
]
≤ O

(τ21,S
m

)
·
(1− τ1,0 − τ2

τ21,0
D0 +

τ2m

τ21,0
D̃0 +

3L

2
‖z0 − x∗‖2

)
= O

( 1

mS2

)
·
(
m
(
F (x0)− F (x∗)

)
+ L‖x0 − x∗‖2

)
.

Appendix D. Appendix for Section 5

D.1 One-Iteration Analysis

Similar as Section 2.1, we first analyze the behavior of Katyusha1 in a single iteration (i.e.,
for a fixed k). We view yk, zk and xk+1 as fixed in this section so the only randomness
comes from the choice of i in iteration k. We abbreviate in this subsection by x̃ = x̃s where
s is the epoch that iteration k belongs to, and denote by σ2k+1

def
= ‖∇f(xk+1)− ∇̃k+1‖2.

Our first lemma is analogous to Lemma 2.3, where note that we have replaced the use
of L in Lemma 2.3 with L� ≥ L:

Lemma D.1 (proximal gradient descent) If L� ≥ L and

yk+1 = arg min
y

{3L�
2
‖y − xk+1‖2 + 〈∇̃k+1, y − xk+1〉+ ψ(y)− ψ(xk+1)

}
, and

Prog(xk+1)
def
= −min

y

{3L�
2
‖y − xk+1‖2 + 〈∇̃k+1, y − xk+1〉+ ψ(y)− ψ(xk+1)

}
≥ 0 ,

we have (where the expectation is only over the randomness of ∇̃k+1)

F (xk+1)− E
[
F (yk+1)

]
≥ E

[
Prog(xk+1)

]
− 1

4L�
E
[
σ2k+1

]
.

Proof

Prog(xk+1) = −min
y

{3L�
2
‖y − xk+1‖2 + 〈∇̃k+1, y − xk+1〉+ ψ(y)− ψ(xk+1)

}
¬
= −

(3L�
2
‖yk+1 − xk+1‖2 + 〈∇̃k+1, yk+1 − xk+1〉+ ψ(yk+1)− ψ(xk+1)

)
= −

(L�
2
‖yk+1 − xk+1‖2 + 〈∇f(xk+1), yk+1 − xk+1〉+ ψ(yk+1)− ψ(xk+1)

)
+
(
〈∇f(xk+1)− ∇̃k+1, yk+1 − xk+1〉 − L�‖yk+1 − xk+1‖2

)
­
≤ −

(
f(yk+1)− f(xk+1) + ψ(yk+1)− ψ(xk+1)

)
+

1

4L�
‖∇f(xk+1)− ∇̃k+1‖2 .

Above, ¬ is by the definition of yk+1, and ­ uses the smoothness of function f(·), as well
as Young’s inequality 〈a, b〉 − 1

2‖b‖
2 ≤ 1

2‖a‖
2. Taking expectation on both sides we arrive

at the desired result.
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The following lemma is analogous to Lemma 2.4. The main difference is that since we
have not chosen a mini-batch of size b, one should expect the variance to decrease by a
factor of b. Also, since we are in the non-uniform case one should expect the use of L in
Lemma 2.4 to be replaced with L:

Lemma D.2 (variance upper bound)

E
[
‖∇̃k+1 −∇f(xk+1)‖2

]
≤ 2L

b
·
(
f(x̃)− f(xk+1)− 〈∇f(xk+1), x̃− xk+1〉

)
.

Proof Each fi(x), being convex and Li-smooth, implies the following inequality which
is classical in convex optimization and can be found for instance in Theorem 2.1.5 of the
textbook of Nesterov (2004).

‖∇fi(xk+1)−∇fi(x̃)‖2 ≤ 2Li ·
(
fi(x̃)− fi(xk+1)− 〈∇fi(xk+1), x̃− xk+1〉

)
Therefore, taking expectation over the random choice of i, we have

E
[
‖∇̃k+1 −∇f(xk+1)‖2

]
= ESk

[∥∥∥(1

b

∑
i∈Sk

(
∇f(x̃) +

1

npi

(
∇fi(xk+1)−∇fi(x̃)

)))
−∇f(xk+1)

∥∥∥2]
=

1

b
Ei∼D

[∥∥∥(∇f(x̃) +
1

npi

(
∇fi(xk+1)−∇fi(x̃)

))
−∇f(xk+1)

∥∥∥2]
=

1

b
Ei∼D

[∥∥∥ 1

npi

(
∇fi(xk+1)−∇fi(x̃)

)
−
(
∇f(xk+1)− f(x̃)

)∥∥∥2]
¬
≤ 1

b
Ei∼D

[∥∥∥ 1

npi

(
∇fi(xk+1)−∇fi(x̃)

)∥∥∥2]
­
≤ 1

b
·
∑
i∈[n]

2Li
n2pi

(
fi(x̃)− fi(xk+1)− 〈∇fi(xk+1), x̃− xk+1〉

)
=

2L

b
·
(
f(x̃)− f(xk+1)− 〈∇f(xk+1), x̃− xk+1〉

)
.

Above, ¬ is because for any random vector ζ ∈ Rd, it holds that E‖ζ−Eζ‖2 = E‖ζ‖2−‖Eζ‖2;
­ follows from the first inequality in this proof.

The next lemma is completely identical to Lemma 2.5 so we skip the proof.

Lemma D.3 (proximal mirror descent) Suppose ψ(·) is σ-SC. Then, fixing ∇̃k+1 and
letting

zk+1 = arg min
z

{1

2
‖z − zk‖2 + α〈∇̃k+1, z − zk〉+ αψ(z)− αψ(zk)

}
,

it satisfies for all u ∈ Rd,

α〈∇̃k+1, zk+1 − u〉+ αψ(zk+1)− αψ(u) ≤ −1

2
‖zk − zk+1‖2 +

1

2
‖zk − u‖2 −

1 + ασ

2
‖zk+1 − u‖2 .

The following lemma combines Lemma D.1, Lemma D.2 and Lemma D.3 all together,
using the special choice of xk+1 which is a convex combination of yk, zk and x̃:
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Lemma D.4 (coupling step 1) If xk+1 = τ1zk + τ2x̃+ (1− τ1 − τ2)yk, where τ1 ≤ 1
3αL�

and τ2 = L
2L�b

,

α〈∇f(xk+1), zk − u〉 − αψ(u)

≤ α

τ1

(
F (xk+1)− E

[
F (yk+1)

]
+ τ2F (x̃)− τ2f(xk+1)− τ2〈∇f(xk+1), x̃− xk+1〉

)
+

1

2
‖zk − u‖2 −

1 + ασ

2
E
[
‖zk+1 − u‖2

]
+
α(1− τ1 − τ2)

τ1
ψ(yk)−

α

τ1
ψ(xk+1) .

Proof We first apply Lemma D.3 and get

α〈∇̃k+1, zk − u〉+ αψ(zk+1)− αψ(u)

= α〈∇̃k+1, zk − zk+1〉+ α〈∇̃k+1, zk+1 − u〉+ αψ(zk+1)− αψ(u)

≤ α〈∇̃k+1, zk − zk+1〉 −
1

2
‖zk − zk+1‖2 +

1

2
‖zk − u‖2 −

1 + ασ

2
‖zk+1 − u‖2 . (D.1)

By defining v
def
= τ1zk+1 + τ2x̃ + (1 − τ1 − τ2)yk, we have xk+1 − v = τ1(zk − zk+1) and

therefore

E
[
α〈∇̃k+1, zk − zk+1〉 −

1

2
‖zk − zk+1‖2

]
= E

[ α
τ1
〈∇̃k+1, xk+1 − v〉 −

1

2τ21
‖xk+1 − v‖2

]
= E

[ α
τ1

(
〈∇̃k+1, xk+1 − v〉 −

1

2ατ1
‖xk+1 − v‖2 − ψ(v) + ψ(xk+1)

)
+
α

τ1

(
ψ(v)− ψ(xk+1)

)]
¬
≤ E

[ α
τ1

(
〈∇̃k+1, xk+1 − v〉 −

3L�
2
‖xk+1 − v‖2 − ψ(v) + ψ(xk+1)

)
+
α

τ1

(
ψ(v)− ψ(xk+1)

)]
­
≤ E

[ α
τ1

(
F (xk+1)− F (yk+1) +

1

4L�
σ2k+1

)
+
α

τ1

(
ψ(v)− ψ(xk+1)

)]
®
≤ E

[ α
τ1

(
F (xk+1)− F (yk+1) +

L

2L�b

(
f(x̃)− f(xk+1)− 〈∇f(xk+1), x̃− xk+1〉

))
+
α

τ1

(
τ1ψ(zk+1) + τ2ψ(x̃) + (1− τ1 − τ2)ψ(yk)− ψ(xk+1)

)]
. (D.2)

Above, ¬ uses our choice τ1 ≤ 1
3αL , ­ uses Lemma D.1, ® uses Lemma D.2 together with

the convexity of ψ(·) and the definition of v. Finally, noticing that E[〈∇̃k+1, zk − u〉] =
〈∇f(xk+1), zk − u〉 and τ2 = 1

2 , we obtain the desired inequality by combining (D.1) and
(D.2).

The next lemma simplifies the left hand side of Lemma D.4 using the convexity of
f(·), and gives an inequality that relates the objective-distance-to-minimizer quantities
F (yk) − F (x∗), F (yk+1) − F (x∗), and F (x̃) − F (x∗) to the point-distance-to-minimizer
quantities ‖zk − x∗‖2 and ‖zk+1 − x∗‖2.

Lemma D.5 (coupling step 2) Under the same choices of τ1, τ2 as in Lemma D.4, we
have

0 ≤ α(1− τ1 − τ2)
τ1

(F (yk)− F (x∗))− α

τ1

(
E
[
F (yk+1)

]
− F (x∗)

)
+
ατ2
τ1

(
F (x̃)− F (x∗)

)
+

1

2
‖zk − x∗‖2 −

1 + ασ

2
E
[
‖zk+1 − x∗‖2

]
.
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Proof We first compute that

α
(
f(xk+1)− f(u)

) ¬
≤ α〈∇f(xk+1), xk+1 − u〉

= α〈∇f(xk+1), xk+1 − zk〉+ α〈∇f(xk+1), zk − u〉
­
=
ατ2
τ1
〈∇f(xk+1), x̃− xk+1〉+

α(1− τ1 − τ2)
τ1

〈∇f(xk+1), yk − xk+1〉+ α〈∇f(xk+1), zk − u〉

®
≤ ατ2

τ1
〈∇f(xk+1), x̃− xk+1〉+

α(1− τ1 − τ2)
τ1

(f(yk)− f(xk+1)) + α〈∇f(xk+1), zk − u〉 .

Above, ¬ uses the convexity of f(·), ­ uses the choice that xk+1 = τ1zk+τ2x̃+(1−τ1−τ2)yk,
and ® uses the convexity of f(·) again. By applying Lemma D.4 to the above inequality,
we have

α
(
f(xk+1)− F (u)

)
≤ α(1− τ1 − τ2)

τ1
(F (yk)− f(xk+1))

+
α

τ1

(
F (xk+1)−E

[
F (yk+1)

]
+τ2F (x̃)−τ2f(xk+1)

)
+

1

2
‖zk−u‖2−

1 + ασ

2
E
[
‖zk+1−u‖2

]
− α
τ1
ψ(xk+1)

which implies

α
(
F (xk+1)− F (u)

)
≤ α(1− τ1 − τ2)

τ1
(F (yk)− F (xk+1))

+
α

τ1

(
F (xk+1)−E

[
F (yk+1)

]
+τ2F (x̃)−τ2F (xk+1)

)
+

1

2
‖zk−u‖2−

1 + ασ

2
E
[
‖zk+1−u‖2

]
.

After rearranging and setting u = x∗, the above inequality yields

0 ≤ α(1− τ1 − τ2)
τ1

(F (yk)− F (x∗))− α

τ1

(
E
[
F (yk+1)− F (x∗)

])
+
ατ2
τ1

(
F (x̃)− F (x∗)

)
+

1

2
‖zk − x∗‖2 −

1 + ασ

2
E
[
‖zk+1 − x∗‖2

]
.

D.2 Proof of Theorem 5.2

We are now ready to combine the analyses across iterations, and derive our final Theorem 5.2.
Our proof next requires a careful telescoping of Lemma D.5 together with our specific pa-
rameter choices.

Proof [Proof of Theorem 5.2] Define Dk
def
= F (yk) − F (x∗), D̃s def

= F (x̃s) − F (x∗), and
rewrite Lemma D.5:

0 ≤ (1− τ1 − τ2)
τ1

Dk −
1

τ1
Dk+1 +

τ2
τ1
E
[
D̃s
]

+
1

2α
‖zk − x∗‖2 −

1 + ασ

2α
E
[
‖zk+1 − x∗‖2

]
.

At this point, let us θ be an arbitrary value in
[
1, 1+ασ

]
and multiply the above inequality

by θj for each k = sm + j. Then, we sum up the resulting m inequalities for all j =

38



Katyusha: The First Direct Acceleration of Stochastic Gradient Methods

0, 1, . . . ,m− 1:

0 ≤ E
[(1− τ1 − τ2)

τ1

m−1∑
j=0

Dsm+j · θj −
1

τ1

m−1∑
j=0

Dsm+j+1 · θj
]

+
τ2
τ1
D̃s ·

m−1∑
j=0

θj

+
1

2α
‖zsm − x∗‖2 −

θm

2α

[
‖z(s+1)m − x∗‖2

]
.

Note that in the above inequality we have assumed all the randomness in the first s − 1
epochs are fixed and the only source of randomness comes from epoch s. We can rearrange
the terms in the above inequality and get

E
[τ1 + τ2 − (1− 1/θ)

τ1

m∑
j=1

Dsm+j · θj
]
≤ (1− τ1 − τ2)

τ1

(
Dsm − θmE

[
D(s+1)m

])

+
τ2
τ1
D̃s ·

m−1∑
j=0

θj +
1

2α
‖zsm − x∗‖2 −

θm

2α
E
[
‖z(s+1)m − x∗‖2

]
.

Using the special choice that x̃s+1 =
(∑m−1

j=0 θj
)−1 ·∑m−1

j=0 ysm+j+1 · θj and the convexity

of F (·), we derive that D̃s+1 ≤
(∑m−1

j=0 θj
)−1 ·∑m−1

j=0 Dsm+j+1 · θj . Substituting this into
the above inequality, we get

τ1 + τ2 − (1− 1/θ)

τ1
θE
[
D̃s+1

]
·
m−1∑
j=0

θj ≤ (1− τ1 − τ2)
τ1

(
Dsm − θmE

[
D(s+1)m

])

+
τ2
τ1
D̃s ·

m−1∑
j=0

θj +
1

2α
‖zsm − x∗‖2 −

θm

2α
E
[
‖z(s+1)m − x∗‖2

]
. (D.3)

We consider two cases (and four subcases) next.

Case 1. Suppose L ≤ Lm
b . In this case, we choose

τ2 = min
{ L

2Lb
,
1

2

}
∈
[ 1

2m
,
1

2

]
and L� =

L

2bτ2
≥ L

Case 1.1. Suppose mσb
L
≤ 3

8 . In this subcase, we choose

α =

√
b√

6mσL
, τ1 =

1

3αL�
= 4mαστ2 =

√
8τ22 bmσ√

3L
∈
[
0, τ2

]
⊆
[
0,

1

2

]
, and θ = 1+ασ

We have

ασ =
1√
6m2

√
bσm√
L
≤ 1

4m

and therefore the following inequality holds:

τ2(θ
m−1−1)+(1−1/θ) = τ2((1+ασ)m−1−1)+(1− 1

1 + ασ
) ≤ 2τ2mασ+ασ ≤ 4τ2mασ = τ1 .
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In other words, we have τ1 + τ2 − (1− 1/θ) ≥ τ2θm−1 and thus (D.3) implies that

E
[τ2
τ1
D̃s+1 ·

m−1∑
j=0

θj +
1− τ1 − τ2

τ1
D(s+1)m +

1

2α
‖z(s+1)m − x∗‖2

]

≤ θ−m ·
(τ2
τ1
D̃s ·

m−1∑
j=0

θj +
1− τ1 − τ2

τ1
Dsm +

1

2α
‖zsm − x∗‖2

)
.

If we telescope the above inequality over all epochs s = 0, 1, . . . , S − 1, we obtain

E
[
F (xout)− F (x∗)

] ¬
≤ 1

τ2m+ (1− τ1 − τ2)
E
[
τ2D̃

S ·
m−1∑
j=0

θj +
(
1− τ1 − τ2

)
DSm

]
­
≤ θ−Sm ·O

(
D̃0 +D0 +

τ1
ατ2m

‖x0 − x∗‖2
)

®
≤ θ−Sm ·O

(
1 +

τ1
ατ2mσ

)
· (F (x0)− F (x∗))

¯
= O((1 + ασ)−Sm) ·

(
F (x0)− F (x∗)

)
. (D.4)

Above, inequality ¬ uses the choice xout = τ2mx̃S+(1−τ1−τ2)ySm
τ2m+(1−τ1−τ2) , the convexity of F (·), and

the fact
∑m−1

j=0 θj ≥ m; inequality ­ uses the fact that
∑m−1

j=0 θj ≤ O(m) (because ασ ≤ 1
4m),

and the fact that τ2 ≥ 1
2m ; inequality ® uses the strong convexity of F (·) which implies

F (x0)− F (x∗) ≥ σ
2 ‖x0 − x

∗‖2; and inequality ¯ uses our choice of τ1.

Case 1.2. Suppose mσb
L

> 3
8 . In this case, we choose

τ1 = τ2 and α =
1

3τ1L�
=

2b

3L
≥ 1

4σm
, θ = 1 +

1

4m

(Note that we can choose θ = 1 + 1
4m because 1

4m ≤ ασ.)

Under these parameter choices, we can calculate that

(τ1 + τ2 − (1− 1/θ))θ

τ2
= 2− 1− 2τ2

4mτ2
≥ 3

2
>

5

4
and θm ≥ 5

4

thus (D.3) implies that

E
[τ2
τ1
D̃s+1 ·

m−1∑
j=0

θj +
1− τ1 − τ2

τ1
D(s+1)m +

1

2α
‖z(s+1)m − x∗‖2

]

≤ 4

5
·
(τ2
τ1
D̃s ·

m−1∑
j=0

θj +
1− τ1 − τ2

τ1
Dsm +

1

2α
‖zsm − x∗‖2

)
.
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If we telescope the above inequality over all epochs s = 0, 1, . . . , S − 1, we obtain

E
[
F (xout)− F (x∗)

] ¬
≤ 1

τ2m+ (1− τ1 − τ2)
E
[
τ2D̃

S ·
m−1∑
j=0

θj +
(
1− τ1 − τ2

)
DSm

]
­
≤
(5

4

)−S ·O(D̃0 +D0 +
τ1

ατ2m
‖x0 − x∗‖2

)
®
≤
(5

4

)−S ·O(1 +
τ1

ατ2mσ

)
· (F (x0)− F (x∗))

¯
= O((5/4)−S) ·

(
F (x0)− F (x∗)

)
. (D.5)

Above, inequality ¬ uses the choice xout = τ2mx̃S+(1−τ1−τ2)ySm
τ2m+(1−τ1−τ2) , the convexity of F (·), and

the fact
∑m−1

j=0 θj ≥ m; inequality ­ uses the fact that
∑m−1

j=0 θj ≤ O(m), and the fact that

τ2 ≥ 1
2m ; inequality ® uses the strong convexity of F (·) which implies F (x0) − F (x∗) ≥

σ
2 ‖x0 − x

∗‖2; and inequality ¯ uses our choice of τ1 and α.

Case 2. Suppose L > Lm
b . In this case, we choose

L� = L and τ2 =
L

2L�b
=

L

2Lb
∈
[
0,

1

2m

]
Case 2.1. Suppose m2σ

L ≤ 3
8 . In this subcase, we choose

α =
1√
6σL

, τ1 =
1

3αL
= 2ασ =

√
2σ√
3L
∈
[
0,

1

2m

]
, θ = 1 + ασ

We have ασ ≤ 1
4m and therefore the following inequality holds:

τ2(θ
m−1−1)+(1−1/θ) = τ2((1+ασ)m−1−1)+(1− 1

1 + ασ
) ≤ 2τ2mασ+ασ ≤ 2ασ = τ1 .

In other words, we have τ1 + τ2 − (1− 1/θ) ≥ τ2θm−1 and thus (D.3) implies that

E
[τ2
τ1
D̃s+1 ·

m−1∑
j=0

θj +
1− τ1 − τ2

τ1
D(s+1)m +

1

2α
‖z(s+1)m − x∗‖2

]

≤ θ−m ·
(τ2
τ1
D̃s ·

m−1∑
j=0

θj +
1− τ1 − τ2

τ1
Dsm +

1

2α
‖zsm − x∗‖2

)
.

If we telescope the above inequality over all epochs s = 0, 1, . . . , S − 1, we obtain

E
[
F (xout)− F (x∗)

] ¬
≤ 1

τ2m+ (1− τ1 − τ2)
E
[
τ2D̃

S ·
m−1∑
j=0

θj +
(
1− τ1 − τ2

)
DSm

]
­
≤ θ−Sm ·O

(
D̃0 +D0 +

τ1
α
‖x0 − x∗‖2

)
®
≤ θ−Sm ·O

(
1 +

τ1
ασ

)
· (F (x0)− F (x∗))

¯
= O((1 + ασ)−Sm) ·

(
F (x0)− F (x∗)

)
. (D.6)
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Above, inequality ¬ uses the choice xout = τ2mx̃S+(1−τ1−τ2)ySm
τ2m+(1−τ1−τ2) , the convexity of F (·), and

the fact
∑m−1

j=0 θj ≥ m; inequality ­ uses the fact that
∑m−1

j=0 θj ≤ O(m) (because ασ ≤ 1
4m),

and the fact that τ2m + (1 − τ1 − τ2) ≥ 1 − τ1 + (m − 1)τ2 ≥ 1/2; inequality ® uses the
strong convexity of F (·) which implies F (x0)−F (x∗) ≥ σ

2 ‖x0−x
∗‖2; and inequality ¯ uses

our choice of τ1.

Case 2.2. Suppose m2σ
L > 3

8 . In this case, we choose

τ1 =
1

2m
and α =

1

3τ1L
=

2m

3L
>

1

4σm
, θ = 1 +

1

4m

(Note that we can choose θ = 1 + 1
4m because 1

4m ≤ ασ.)

Under these parameter choices, we can calculate that

(τ1 + τ2 − (1− 1/θ))θ

τ2
=
τ1 + τ2
τ2

− 1− 2τ2
4mτ2

≥ 1 +
τ1 − 1/4m

τ2
≥ 3

2
>

5

4
and θm ≥ 5

4

thus (D.3) implies that

E
[τ2
τ1
D̃s+1 ·

m−1∑
j=0

θj +
1− τ1 − τ2

τ1
D(s+1)m +

1

2α
‖z(s+1)m − x∗‖2

]

≤ 4

5
·
(τ2
τ1
D̃s ·

m−1∑
j=0

θj +
1− τ1 − τ2

τ1
Dsm +

1

2α
‖zsm − x∗‖2

)
.

If we telescope the above inequality over all epochs s = 0, 1, . . . , S − 1, we obtain

E
[
F (xout)− F (x∗)

] ¬
≤ 1

τ2m+ (1− τ1 − τ2)
E
[
τ2D̃

S ·
m−1∑
j=0

θj +
(
1− τ1 − τ2

)
DSm

]
­
≤
(5

4

)−S ·O(D̃0 +D0 +
τ1
α
‖x0 − x∗‖2

)
®
≤
(5

4

)−S ·O(1 +
τ1
ασ

)
· (F (x0)− F (x∗))

¯
= O((5/4)−S) ·

(
F (x0)− F (x∗)

)
. (D.7)

Above, inequality ¬ uses the choice xout = τ2mx̃S+(1−τ1−τ2)ySm
τ2m+(1−τ1−τ2) , the convexity of F (·),

and the fact
∑m−1

j=0 θj ≥ m; inequality ­ uses the fact that
∑m−1

j=0 θj ≤ O(m), and that
τ2m+(1−τ1−τ2) ≥ 1−τ1+(m−1)τ2 ≥ 1/2; inequality ® uses the strong convexity of F (·)
which implies F (x0)−F (x∗) ≥ σ

2 ‖x0−x
∗‖2; and inequality ¯ uses our choice of τ1 and α.

Appendix E. Appendix for Section 6

In this section, we first include the complete pseudo-codes for Katyusha2 and Katyusha2ns.
Then, we provide a one-iteration analysis for both algorithms, in the same spirit as Section 2.1.

The final proofs of Theorem 6.1 and Theorem 6.2 are direct corollaries of such one-
iteration analysis, where the details we have already given in Section 2.2 and in Section C.1
respectively.
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E.1 Pseudo-Codes

Algorithm 4 Katyusha2(x0, S, σ, (L1, . . . , Ln))

1: m← n; L = (L1 + · · ·+ Ln)/n;

2: τ2 ← 1
2 , τ1 ← min

{√
mσ/9L, 12

}
, α← 1

9τ1L
;

3: y0 = z0 = x̃0 ← x0;
4: for s← 0 to S − 1 do
5: µs ← ∇f(x̃s);
6: for j ← 0 to m− 1 do
7: k ← (sm) + j;
8: xk+1 ← τ1zk + τ2x̃

s + (1− τ1 − τ2)yk;
9: Pick i randomly from {1, 2, . . . , n}, each with probability Li/nL;

10: ∇̃k+1 ← µs +∇fi(xk+1)−∇fi(x̃s);
11: zk+1 = arg minz

{
1
αVzk(z) + 〈∇̃k+1, z〉+ ψ(z)

}
;

� Vx(y) is the Bregman divergence function, see Section 6

12: yk+1 ← arg miny
{
9L
2 ‖y − xk+1‖2 + 〈∇̃k+1, y〉+ ψ(y)

}
;

13: end for
14: x̃s+1 ←

(∑m−1
j=0 (1 + ασ)j

)−1 · (∑m−1
j=0 (1 + ασ)j · ysm+j+1

)
;

15: end for
16: return x̃S .

Algorithm 5 Katyusha2ns(x0, S, σ, (L1, . . . , Ln))

1: m← n; L = (L1 + · · ·+ Ln)/n;
2: τ2 ← 1

2 ;
3: y0 = z0 = x̃0 ← x0;
4: for s← 0 to S − 1 do
5: τ1,s ← 2

s+4 , αs ← 1
9τ1,sL

6: µs ← ∇f(x̃s);
7: for j ← 0 to m− 1 do
8: k ← (sm) + j;
9: xk+1 ← τ1,szk + τ2x̃

s + (1− τ1,s − τ2)yk;
10: Pick i randomly from {1, 2, . . . , n}, each with probability Li/nL;
11: ∇̃k+1 ← µs +∇fi(xk+1)−∇fi(x̃s);
12: zk+1 = arg minz

{
1
αs
Vzk(z) + 〈∇̃k+1, z〉+ ψ(z)

}
;

� Vx(y) is the Bregman divergence function, see Section 6

13: yk+1 ← arg miny
{
9L
2 ‖y − xk+1‖2 + 〈∇̃k+1, y〉+ ψ(y)

}
;

14: end for
15: x̃s+1 ← 1

m

∑m
j=1 ysm+j ;

16: end for
17: return x̃S .
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E.2 One-Iteration Analysis

Similar as Section 2.1, we first analyze the behavior of Katyusha2 in a single iteration (i.e.,
for a fixed k). We view yk, zk and xk+1 as fixed in this section so the only randomness
comes from the choice of i in iteration k. We abbreviate in this subsection by x̃ = x̃s where
s is the epoch that iteration k belongs to, and denote by σ2k+1

def
= ‖∇f(xk+1)− ∇̃k+1‖2∗.

Our first lemma is analogous to Lemma E.1 except the change of the parameter and the
norm.

Lemma E.1 (proximal gradient descent) If

yk+1 = arg min
y

{9L

2
‖y − xk+1‖2 + 〈∇̃k+1, y − xk+1〉+ ψ(y)− ψ(xk+1)

}
, and

Prog(xk+1)
def
= −min

y

{9L

2
‖y − xk+1‖2 + 〈∇̃k+1, y − xk+1〉+ ψ(y)− ψ(xk+1)

}
≥ 0 ,

we have (where the expectation is only over the randomness of ∇̃k+1)

F (xk+1)− E
[
F (yk+1)

]
≥ E

[
Prog(xk+1)

]
− 1

16L
E
[
σ2k+1

]
.

Proof

Prog(xk+1) = −min
y

{9L

2
‖y − xk+1‖2 + 〈∇̃k+1, y − xk+1〉+ ψ(y)− ψ(xk+1)

}
¬
= −

(9L

2
‖yk+1 − xk+1‖2 + 〈∇̃k+1, yk+1 − xk+1〉+ ψ(yk+1)− ψ(xk+1)

)
= −

(L
2
‖yk+1 − xk+1‖2 + 〈∇f(xk+1), yk+1 − xk+1〉+ ψ(yk+1)− ψ(xk+1)

)
+
(
〈∇f(xk+1)− ∇̃k+1, yk+1 − xk+1〉 − 4L‖yk+1 − xk+1‖2

)
­
≤ −

(
f(yk+1)− f(xk+1) + ψ(yk+1)− ψ(xk+1)

)
+

1

16L
‖∇f(xk+1)− ∇̃k+1‖2∗ .

Above, ¬ is by the definition of yk+1, and ­ uses the smoothness of function f(·), as well
as Young’s inequality 〈a, b〉 − 1

2‖b‖
2 ≤ 1

2‖a‖
2
∗. Taking expectation on both sides we arrive

at the desired result.

The next lemma is analogous to Lemma 2.4 but with slightly different proof.

Lemma E.2 (variance upper bound)

E
[
‖∇̃k+1 −∇f(xk+1)‖2∗

]
≤ 8L ·

(
f(x̃)− f(xk+1)− 〈∇f(xk+1), x̃− xk+1〉

)
.

Proof Each fi(x), being convex and Li-smooth, implies the following inequality which
is classical in convex optimization and can be found for instance in Theorem 2.1.5 of the
textbook of Nesterov (2004).

‖∇fi(xk+1)−∇fi(x̃)‖2∗ ≤ 2Li ·
(
fi(x̃)− fi(xk+1)− 〈∇fi(xk+1), x̃− xk+1〉

)
(E.1)
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Therefore, taking expectation over the random choice of i, we have

E
[
‖∇̃k+1 −∇f(xk+1)‖2∗

]
= E

[∥∥ 1

npi

(
∇fi(xk+1)−∇fi(x̃)

)
−
(
∇f(xk+1)−∇f(x̃)

)∥∥2
∗
]

¬
≤ 2E

[ 1

n2p2i

∥∥∇fi(xk+1)−∇fi(x̃)
∥∥2
∗
]

+ 2
∥∥∇f(xk+1)−∇f(x̃)

)∥∥2
∗

­
≤ 4 · E

[ Li
n2p2i

(
fi(x̃)− fi(xk+1)− 〈∇fi(xk+1), x̃− xk+1〉

)]
+ 2
∥∥∇f(xk+1)−∇f(x̃)

)∥∥2
∗

®
= 4L ·

(
f(x̃)− f(xk+1)− 〈∇f(xk+1), x̃− xk+1〉

)
+ 2
∥∥∇f(xk+1)−∇f(x̃)

)∥∥2
∗

≤ 8L ·
(
f(x̃)− f(xk+1)− 〈∇f(xk+1), x̃− xk+1〉

)
.

Above, inequality ¬ is because ‖a + b‖2∗ ≤ (‖a‖∗ + ‖b‖∗)2 ≤ 2‖a‖2∗ + 2‖b‖2∗; inequality
­ follows from (E.1); equality ® follows from the probability distribution that we select i
with probability pi = Li/(nL); inequality ¯ uses (E.1) again but replacing fi(·) with f(·).

The next lemma is classical for mirror descent with respect to a general Bregman diver-
gence.

Lemma E.3 (proximal mirror descent) Suppose ψ(·) is σ-SC with respect to Vx(y).
Then, fixing ∇̃k+1 and letting

zk+1 = arg min
z

{
Vzk(z) + α〈∇̃k+1, z − zk〉+ αψ(z)− αψ(zk)

}
,

it satisfies for all u ∈ Rd,

α〈∇̃k+1, zk+1 − u〉+ αψ(zk+1)− αψ(u) ≤ −1

2
‖zk − zk+1‖2 + Vzk(u)− (1 + ασ)Vzk+1

(u) .

Proof By the minimality definition of zk+1, we have that

∇Vzk(zk+1) + α∇̃k+1 + αg = 0

where g is some subgradient of ψ(z) at point z = zk+1. This implies that for every u it
satisfies

0 =
〈
∇Vzk(zk+1) + α∇̃k+1 + αg, zk+1 − u〉 .

At this point, using the equality 〈∇Vzk(zk+1), zk+1 − u〉 = Vzk(zk+1) − Vzk(u) + Vzk+1
(u)

(known as the “three-point equality of Bregman divergence”, see Rakhlin (2009)), as well
as the inequality 〈g, zk+1 − u〉 ≥ ψ(zk+1)− ψ(u) + σVzk+1

(u) which comes from the strong
convexity of ψ(·), we can write

α〈∇̃k+1, zk+1 − u〉+ αψ(zk+1)− αψ(u)

= −〈zk+1 − zk, zk+1 − u〉 − 〈αg, zk+1 − u〉+ αψ(zk+1)− αψ(u)

≤ −Vzk(zk+1) + Vzk(u)− (1 + ασ)Vzk+1
(u) .

Finally, using Vzk(zk+1) ≥ 1
2‖zk − zk+1‖2 which comes from the strong convexity of w(x)

with respect to ‖ · ‖, we complete the proof.
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The following lemma combines Lemma E.1, Lemma E.2 and Lemma E.3 all together,
using the special choice of xk+1 which is a convex combination of yk, zk and x̃:

Lemma E.4 (coupling step 1) If xk+1 = τ1zk + τ2x̃ + (1 − τ1 − τ2)yk, where τ1 ≤ 1
9αL

and τ2 = 1
2 ,

α〈∇f(xk+1), zk − u〉 − αψ(u)

≤ α

τ1

(
F (xk+1)− E

[
F (yk+1)

]
+ τ2F (x̃)− τ2E

[
F (xk+1)

]
− τ2〈∇f(xk+1), x̃− xk+1〉

)
+ Vzk(u)− (1 + ασ)E

[
Vzk+1

(u)
]

+
α(1− τ1 − τ2)

τ1
ψ(yk)−

α

τ1
ψ(xk+1) .

Proof We first apply Lemma E.3 and get

α〈∇̃k+1, zk − u〉+ αψ(zk+1)− αψ(u)

= α〈∇̃k+1, zk − zk+1〉+ α〈∇̃k+1, zk+1 − u〉+ αψ(zk+1)− αψ(u)

≤ α〈∇̃k+1, zk − zk+1〉 −
1

2
‖zk − zk+1‖2 + Vzk(u)− (1 + ασ)Vzk+1

(u) . (E.2)

By defining v
def
= τ1zk+1 + τ2x̃ + (1 − τ1 − τ2)yk, we have xk+1 − v = τ1(zk − zk+1) and

therefore

E
[
α〈∇̃k+1, zk − zk+1〉 −

1

2
‖zk − zk+1‖2

]
= E

[ α
τ1
〈∇̃k+1, xk+1 − v〉 −

1

2τ21
‖xk+1 − v‖2

]
= E

[ α
τ1

(
〈∇̃k+1, xk+1 − v〉 −

1

2ατ1
‖xk+1 − v‖2 − ψ(v) + ψ(xk+1)

)
+
α

τ1

(
ψ(v)− ψ(xk+1)

)]
¬
≤ E

[ α
τ1

(
〈∇̃k+1, xk+1 − v〉 −

9L

2
‖xk+1 − v‖2 − ψ(v) + ψ(xk+1)

)
+
α

τ1

(
ψ(v)− ψ(xk+1)

)]
­
≤ E

[ α
τ1

(
F (xk+1)− F (yk+1) +

1

16L
σ2k+1

)
+
α

τ1

(
ψ(v)− ψ(xk+1)

)]
®
≤ E

[ α
τ1

(
F (xk+1)− F (yk+1) +

1

2

(
f(x̃)− f(xk+1)− 〈∇f(xk+1), x̃− xk+1〉

))
+
α

τ1

(
τ1ψ(zk+1) + τ2ψ(x̃) + (1− τ1 − τ2)ψ(yk)− ψ(xk+1)

)]
. (E.3)

Above, ¬ uses our choice τ1 ≤ 1
9αL

, ­ uses Lemma E.1, ® uses Lemma E.2 together with

the convexity of ψ(·) and the definition of v. Finally, noticing that E[〈∇̃k+1, zk − u〉] =
〈∇f(xk+1), zk − u〉 and τ2 = 1

2 , we obtain the desired inequality by combining (E.2) and
(E.3).

The next lemma is completely analogous to Lemma 2.7 except that we use Lemma E.4
rather than Lemma 2.6. We ignore the proof since it is a simple copy-and-paste.

Lemma E.5 (coupling step 2) Under the same choices of τ1, τ2 as in Lemma E.4, we
have

0 ≤ α(1− τ1 − τ2)
τ1

(F (yk)− F (x∗))− α

τ1

(
E
[
F (yk+1)

]
− F (x∗)

)
+
ατ2
τ1

(
F (x̃)− τ2F (x∗)

)
+Vzk(x∗)− (1 + ασ)E

[
Vzk+1

(x∗)
]
.
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