
Journal of Machine Learning Research 18 (2017) 1-29 Submitted 8/16; Revised 12/16; Published 4/17

Bayesian Learning of Dynamic Multilayer Networks

Daniele Durante durante@stat.unipd.it
Department of Statistical Sciences
University of Padova
Padova, 35121, Italy

Nabanita Mukherjee nm168@duke.edu
Department of Statistical Science
Duke University
Durham, NC 27708-0251, USA

Rebecca C. Steorts rcs46@stat.duke.edu

Departments of Statistical Science and Computer Science

Duke University

Durham, NC 27708-0251, USA

Editor: Amos Storkey

Abstract

A plethora of networks is being collected in a growing number of fields, including disease
transmission, international relations, social interactions, and others. As data streams con-
tinue to grow, the complexity associated with these highly multidimensional connectivity
data presents novel challenges. In this paper, we focus on the time-varying interconnections
among a set of actors in multiple contexts, called layers. Current literature lacks flexible
statistical models for dynamic multilayer networks, which can enhance quality in inference
and prediction by efficiently borrowing information within each network, across time, and
between layers. Motivated by this gap, we develop a Bayesian nonparametric model lever-
aging latent space representations. Our formulation characterizes the edge probabilities as
a function of shared and layer-specific actors positions in a latent space, with these positions
changing in time via Gaussian processes. This representation facilitates dimensionality re-
duction and incorporates different sources of information in the observed data. In addition,
we obtain tractable procedures for posterior computation, inference, and prediction. We
provide theoretical results on the flexibility of our model. Our methods are tested on simu-
lations and infection studies monitoring dynamic face-to-face contacts among individuals in
multiple days, where we perform better than current methods in inference and prediction.

Keywords: Dynamic multilayer network, edge prediction, face-to-face contact network,
Gaussian process, latent space model

1. Introduction

Data on social interaction processes are rapidly becoming highly multidimensional, increas-
ingly complex and inherently dynamic, providing a natural venue for machine learning as
seen in applications such as disease transmission (Marathe and Ramakrishnan, 2013), in-
ternational relations (Schein et al., 2016), social interactions (Guo et al., 2015), and others.
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While modeling of a single network observation is still an active area of research, the increas-
ing availability of multidimensional networks from World Wide Web architectures (Leetaru
and Schrodt, 2013), telecommunication infrastructures (Blondel et al., 2015) and human
sensing devices (Cattuto et al., 2010), have motivated more flexible statistical models. This
endeavor is particularly relevant in the dynamic multilayer network field, providing informa-
tion on the time-varying connectivity patterns among a set of actors in different contexts.
Notable examples include dynamic relationships between individuals according to multiple
forms of social interactions (Snijders et al., 2013), and time-varying connectivity structures
among countries based on different types of international relations (Hoff, 2015).

In modeling these highly complex networks, it is of paramount interest to learn the wiring
processes underlying the observed data and to infer differences in network structures across
layers and times. Improved estimation of the data’s generating mechanism can refine the
understanding of social processes and enhance the quality in prediction of future networks.
In order to successfully accomplish these goals, it is important to define statistical models
which can incorporate the different sources of information in the observed data, without
affecting flexibility. However, current literature lacks similar methods, to our knowledge.

Motivated by this gap, we develop a Bayesian nonparametric model for dynamic multi-
layer networks which efficiently incorporates dependence within each network, across time,
and between the different layers, while preserving flexibility. Our formulation borrows net-
work information by defining the edge probabilities as a function of pairwise similarities
between actors in a latent space. To share information among layers without affecting flex-
ibility in characterizing layer-specific structures, we force a subset of the latent coordinates
of each actor to be common across layers, and let the remaining coordinates to vary between
layers. Finally, we accommodate network dynamics by allowing these actors coordinates to
change in time, and incorporate time information by modeling the dynamic actors coordi-
nates via Gaussian processes (e.g., Rasmussen and Williams, 2006). Our model is tractable
and has a theoretical justification, while providing simple procedures for inference and pre-
diction. In addition, we find that our procedures outperform current methods in inference
and out-of-sample prediction on both simulated and real data.

The paper proceeds as follows. Section 1.1 reviews recent contributions in the literature,
and Section 1.2 provides a motivational example of dynamic multilayer networks. Section 2
describes our Bayesian latent space model, while Section 3 discusses its properties. Methods
for posterior computation and prediction are provided in Section 4. Section 5 highlights
the performance gains of our model compared to other possible competitors in a simulation
study, whereas Section 6 illustrates on infection studies, monitoring face-to-face contacts,
our success in inference and prediction, compared to possible competitors. Future directions
of research and additional fields of application are discussed in Section 7.

1.1 Related Work

Current literature for multidimensional network data considers settings in which the mul-
tiple networks are either dynamic or multilayer. Statistical modeling of dynamic networks
has focused on stochastic processes which are designed to borrow information between edges
and across time (e.g., Hanneke et al., 2010; Snijders et al., 2010; Xing et al., 2010; Yang
et al., 2011; Durante and Dunson, 2014; Crane, 2016), whereas inference for multilayer net-
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works has motivated formulations which can suitably induce dependence between edges and
across the different types of relationships—characterizing the multiple layers (e.g., Gollini
and Murphy, 2016; Han et al., 2015; Heaney, 2014). These contributions have generalized
exponential random graph models (Holland and Leinhardt, 1981; Frank and Strauss, 1986)
and latent variables models (Nowicki and Snijders, 2001; Hoff et al., 2002; Airoldi et al.,
2008) for a single network to allow inference in multidimensional frameworks, when the mul-
tiple networks arise either from dynamic or multilayer studies. These methods are valuable
building blocks for more flexible models, but fall far short of the goal of providing efficient
procedures in more complex settings when the networks are both dynamic and multilayer.

The routine collection of dynamic multilayer networks is a recent development and
statistical modeling of such data is still in its infancy. For example, Lee and Monge (2011)
considered a generalization of exponential random graph models for multilayer networks,
but performed a separate analysis for each time point. Oselio et al. (2014) focused instead
on a dynamic stochastic block model which borrows information across time and within each
network, but forces the underlying block structures to be shared between layers. Dynamic
multilayer networks are complex objects combining homogenous structures shared between
actors, layers, and smoothly evolving across time, with layer-specific patterns and across-
actor heterogeneity. Due to this, any procedure that fails to incorporate the different sources
of information in the observed data (e.g., Lee and Monge, 2011) is expected to lose efficiency,
whereas models focusing on shared patterns (e.g., Oselio et al., 2014) may lack flexibility.

More general formulations are the multilayer stochastic actor-oriented model (Snijders
et al., 2013) and the multilinear tensor regression (Hoff, 2015). Snijders et al. (2013) allowed
for dynamic inference on network properties within and between layers, but failed to incor-
porate across-actor heterogeneity. This may lead to a lack of flexibility in prediction. Hoff
(2015) considered autoregressive models with the vector of parameters having a tensor fac-
torization representation. This formulation allows for across-actor heterogeneity, but forces
the model parameters to be constant across time. In addition, the parameterization of the
interdependence between layers relies on homogeneity assumptions. Consistent with these
methods, our representation incorporates the different types of dependencies in the observed
data, but crucially preserves flexibility to avoid restrictive homogeneity assumptions.

1.2 Motivating Application

Our motivation is drawn from epidemiologic studies monitoring hourly face-to-face contacts
among individuals in a rural area of Kenya, during three consecutive days. Data are available
from the human sensing platform SocioPatterns (http://www.sociopatterns.org) and
have been collected using wearable devices that exchange low-power radio packets when two
individuals are located within a sufficiently close distance to generate a potential occasion
of contagion. Leveraging this technology it is possible to measure for each hour in the
three consecutive days which pairs of actors had a face-to-face proximity contact. These
information are fundamental to monitor the spread of diseases and learn future patterns.
Refer also to Cattuto et al. (2010) for a detailed description of the data collection technology,
and Kiti et al. (2016) for a more in-depth discussion of our motivating application.

As illustrated in Figure 1, the observed data can be structured as a dynamic multilayer

network characterized by a sequence of V ×V symmetric adjacency matrices Y
(k)
ti

collected
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15:00 to 16:00 16:00 to 17:00 17:00 to 18:00 18:00 to 19:00 19:00 to 20:00

day 1
day 2

day 3

Figure 1: For five consecutive hours in the three days, adjacency matrices Y
(k)
ti

representing
the observed contact networks. Black refers to an edge, and white to a non-edge.

on a common time grid t1, . . . , tn in different days k = 1, . . . ,K. The matrices have entries

Y
(k)
ti[vu] = Y

(k)
ti[uv] = 1 if actors v and u interact at time ti in day k, and Y

(k)
ti[vu] = Y

(k)
ti[uv] = 0

otherwise, for every v = 2, . . . , V and u = 1, . . . , v − 1. Dynamic multilayer proximity data
provide key information on infections spread (Cauchemez et al., 2011), facilitating the design
of outbreak prevention policies (Vanhems et al., 2013). The importance of this endeavor
has motivated a wide variety of descriptive studies summarizing the information provided
by face-to-face proximity data in several environments, including hospitals (Vanhems et al.,
2013), schools (Stehlé et al., 2011) and households (Kiti et al., 2016).

Although the above analyses provide key insights on the connectivity processes underly-
ing the observed proximity data, explicitly accounting for variability in network structures
via carefully tailored statistical models can lead to improved learning of the connectivity
patterns and properties, while providing methodologies for formal inference in the network
framework, including estimation techniques, uncertainty quantification and prediction. In
Section 6, we apply our methodology to this motivating application, showing how a careful
statistical model for dynamic multilayer network data can provide substantial performance
gains in learning underlying social processes and predicting future contact patterns.

2. Dynamic Multilayer Latent Space Model

Let Y
(k)
ti

denote the V ×V adjacency matrix characterizing the undirected network observed
at time ti ∈ <+ in layer k, for any ti = t1, . . . , tn and k = 1, . . . ,K. Each matrix has binary

elements Y
(k)
ti[vu] = Y

(k)
ti[uv] ∈ {0, 1} measuring the absence or presence of an edge among actors
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Type of information Illustrative example

Network information If individual v had a face-to-face contact with both actors u and w

at time ti in day k, this information may be relevant to learn the

face-to-face contact behavior between u and w at time ti in day k.

Layer information If individuals v and u had a face-to-face contact at time ti in day

k, this information may be relevant to learn the contact behavior

between v and u at the same time ti in other days.

Time information If individuals v and u had a face-to-face contact at time ti in day

k, this information may be relevant to learn the contact behavior

between v and u at the next time ti+1 in the same day.

Table 1: Relevant sources of information characterizing a dynamic multilayer network.

v and u at time ti in layer k, for every v = 2, . . . , V and u = 1, . . . , v−1. When modeling the

data Y = {Y (k)
ti

: ti = t1, . . . , tn, k = 1, . . . ,K}, we assume that Y is a realization, on a finite

time grid, of the stochastic process Y = {Y(k)(t) : t ∈ T ⊂ <+, k = 1, . . . ,K}, and seek a
provably flexible representation for the probabilistic generative mechanism associated with
the stochastic process Y. Note that, as each random adjacency matrix Y(k)(t) is symmetric
and the diagonal elements—denoting self-relations—are not of interest, it is sufficient to

model its lower triangular elements {Y(k)
vu (t) : v = 2, . . . , V, u = 1, . . . , v − 1}.

One major modeling objective is to carefully incorporate dependence among edges, be-
tween layers and across time, without affecting flexibility. Recalling the motivating applica-
tion in Section 1.2 and Figure 1, it is reasonable to expect three main sources of information
in the dynamic multilayer face-to-face contact data, summarized in Table 1. Incorporating
such information can substantially improve the quality of inference and prediction, while
facilitating dimensionality reduction. However, in reducing dimensionality and borrowing of
information, it is important to avoid restrictive formulations that lead to inadequate char-
acterizations of dynamic patterns, layer-specific structures, and across-actor heterogeneity.

We accomplish the aforementioned goals via a flexible dynamic latent bilinear model,
combining shared and layer-specific actors coordinates which are allowed to change in time
via Gaussian process priors. Section 2.1 describes our model formulation with a focus on
sharing network and layer information, whereas Section 2.2 clarifies how time information
is effectively incorporated via Gaussian processes.

2.1 Dynamic Bilinear Model with Shared and Layer-Specific Coordinates

In order to incorporate network and layer information, while preserving flexibility, we adapt
latent bilinear models for a single network (Hoff, 2005) to our dynamic multilayer framework.
In particular, we characterize the edges as conditionally independent Bernoulli random
variables given their corresponding edge probabilities, and borrow information within each
network by defining these probabilities as a function of the actors coordinates in a latent
space. In order to incorporate dependence among the different layers, we force a subset of
these coordinates to be common across layers, and allow the remaining coordinates to change
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between layers. This last choice facilitates a flexible characterization of more irregular events
and incorporates differences between layers in specific contact patterns.

Consistent with the aforementioned statistical model, and letting π
(k)
vu (t) ∈ (0, 1) denote

the probability of an edge between actors v and u at time t ∈ T in layer k, we define

Y(k)
vu (t) | π(k)

vu (t) ∼ Bern{π(k)
vu (t)}, (1)

independently for every time t ∈ T, layer k = 1, . . . ,K and pair of actors [vu], v = 2, . . . , V ,
u = 1, . . . , v − 1. To incorporate our multilayer bilinear representation having shared and
layer-specific latent coordinates, we express the log-odds of each edge probability as

logit{π(k)
vu (t)} = µ(t) +

R∑
r=1

x̄vr(t)x̄ur(t) +
H∑
h=1

x
(k)
vh (t)x

(k)
uh (t), (2)

where x̄vr(t) ∈ < is the rth coordinate of actor v at time t shared across the different layers,

whereas x
(k)
vh (t) ∈ < denotes the hth coordinate of actor v at time t specific to layer k, for

every t ∈ T, k = 1, . . . ,K, v = 1, . . . , V , r = 1, . . . , R and h = 1, . . . ,H. Finally, µ(t) ∈ <
represents a time-varying baseline parameter centering the log-odds processes to improve
computational and mixing performance.

In equation (2) the probability of an edge between actors v and u at time t ∈ T in layer k,

increases with
∑R

r=1 x̄vr(t)x̄ur(t) and
∑H

h=1 x
(k)
vh (t)x

(k)
uh (t). Note that

∑R
r=1 x̄vr(t)x̄ur(t) ∈ <

characterizes a similarity measure between actors v and u at time t common to all the

layers, whereas
∑H

h=1 x
(k)
vh (t)x

(k)
uh (t) ∈ < defines a layer-specific deviation from this shared

similarity, which enhances flexibility in modeling network structures specific to layer k.
These similarity measures are defined as the dot product of shared and layer-specific actors
coordinates in a latent space, allowing actors with coordinates in the same direction to have
an higher chance of contact than actors with coordinates in opposite directions.

The dot product characterization in equation (2) is in the same spirit as the factorization
in Hoff (2005) for a single network, and allows dimensionality reduction from n×K × V ×
(V − 1)/2 time-varying log-odds to n×{1 +V × (R+H ×K)} dynamic latent coordinates,
where typically R � V and H � V . Although it is possible to consider other concepts
of similarity when relating the latent coordinates to the log-odds (e.g., Hoff et al., 2002),
the dot product representation facilitates the definition of simple algorithms for posterior
inference and has been shown to efficiently borrow information within the network, while
accommodating topological structures of interest such as homophily, transitivity, and others.

2.1.1 Interpretation and Identifiability

Recall the motivating application described in Section 1.2, our representation has an intu-
itive interpretation. In fact, the latent coordinates of each actor may represent his propen-
sity towards R+H latent interests or tasks. According to the factorization in equation (2),
actors having propensities for the different interests in the same directions are expected to
be more similar than actors with interests in opposite directions. Therefore, these actors
are more likely to interact according to equation (1). Part of these actors interests or tasks
may be associated with a common routine or constrained by daytime schedules. Therefore,
the actors propensities towards these interests are expected to remain constant across days
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providing a subset of R shared coordinates. Finally, these propensities are allowed to change
across time inducing dynamic variations in the contacts within each day.

Although inference for the latent coordinates is potentially of interest, the factorization
in equation (2) is not unique. In fact, it is easy to show that there exist many different
latent coordinates values leading to the same collection of edge probabilities under the fac-
torization in equation (2). However, such an overcomplete representation does not lead to
identifiability issues if inference focuses on identified functionals of the latent coordinates,
and has beneficial effects in terms of posterior computation and borrowing of information
(Bhattacharya and Dunson, 2011; Ghosh and Dunson, 2009). Our focus is not on estimating
the latent coordinates, but on leveraging the factorization in equation (2) to enhance effi-
ciency in learning of identified functionals of the edge probabilities and improve prediction
of future networks. Therefore, we avoid identifiability constraints on the latent coordinates
in equation (2) as they are not required to ensure identifiability of the edge probabilities.

2.2 Gaussian Process Priors for the Time-Varying Latent Coordinates

Equation (2) facilitates borrowing of information among edges and between layers. This is
obtained by leveraging the shared dependence on a common set of latent coordinates. We
additionally incorporate across-layer heterogeneity via a set of layer-specific latent positions.
Moreover, these coordinates are allowed to vary across time in order to accommodate flexible
dynamic variations in the multilayer network structure. While it is possible to estimate the
edge probabilities separately for every time point, this approach may be suboptimal in ruling
out relevant temporal dependence. As seen in Figure 1, it is reasonable to expect a degree
of dependence between the contact networks observed at close times, with this dependence
decreasing with the time lag. Therefore, a formulation sharing information across time may
provide substantial benefits in terms of efficiency, uncertainty propagation, and prediction.

Motivated by dynamic modeling of a single network, Durante and Dunson (2014) ad-
dressed a related goal by considering Gaussian process priors for the actors latent coordi-
nates, with an additional shrinkage effect to facilitate automatic adaptation of the latent
space dimensions and avoid overfitting. In the spirit of their proposed methods, we define

x̄vr(·) ∼ GP(0, τ−1
r cx̄), with cx̄(ti, tj) = exp{−κx̄(ti − tj)2}, κx̄ > 0, (3)

independently for v = 1, . . . , V , r = 1, . . . , R and

x
(k)
vh (·) ∼ GP(0, τ

(k)−1
h cx), with cx(ti, tj) = exp{−κx(ti − tj)2}, κx > 0, (4)

independently for v = 1, . . . , V , h = 1, . . . ,H and k = 1, . . . ,K. In the prior specifica-
tion given in equations (3)–(4), the quantities cx̄(ti, tj) and cx(ti, tj) denote the squared
exponential correlation functions of the Gaussian processes for the shared and layer-specific

latent coordinates, respectively. The quantities τ−1
1 , . . . , τ−1

R and τ
(k)−1
1 , . . . , τ

(k)−1
H , for each

k = 1, . . . ,K, are instead positive shrinkage parameters controlling the concentration of the
latent coordinates around the zero constant mean function. Focusing on the prior for the
trajectories of the rth shared coordinates x̄vr(·), v = 1, . . . , V , a value of τ−1

r close to zero
forces these trajectories to be concentrated around the zero constant mean function, reduc-
ing the effect of the rth shared dimension in defining the edge probabilities in equation (2).

7



Durante, Mukherjee and Steorts

In order to penalize highly parameterized representations and facilitate adaptive deletion
of unnecessary dimensions, the above shrinkage effects are designed to be increasingly strong
as the latent coordinates indices r = 1, . . . , R and h = 1, . . . ,H increase. This goal is ac-
complished by considering the following multiplicative inverse gamma priors (Bhattacharya
and Dunson, 2011) for the shrinkage parameters:

1

τr
=

r∏
m=1

1

δm
, r = 1, . . . , R, with δ1 ∼ Ga(a1, 1), δm≥2 ∼ Ga(a2, 1), (5)

1

τ
(k)
h

=

h∏
l=1

1

δ
(k)
l

, h = 1, . . . ,H, k = 1, . . . ,K, with δ
(k)
1 ∼ Ga(a1, 1), δ

(k)
l≥2 ∼ Ga(a2, 1). (6)

According to Bhattacharya and Dunson (2011), the multiplicative inverse gamma prior in
equations (5)–(6) induces prior distributions for the shrinkage parameters with a cumulative
shrinkage effect. In particular, these priors are increasingly concentrated close to zero as
the indices r = 1, . . . , R and h = 1, . . . ,H increase, for appropriate a1 ∈ <+ and a2 ∈ <+,
facilitating adaptive dimensionality reduction and reducing overfitting issues. Refer also to
Durante (2017) for an additional discussion on the multiplicative inverse gamma prior and
its shrinkage properties. To conclude the prior specification, we let µ(·) ∼ GP(0, cµ), with
cµ(ti, tj) = exp{−κµ(ti − tj)2}, κµ > 0.

The Gaussian process prior provides an accurate choice in our setting which incorporates
time dependence, allowing the amount of information shared between networks to increase
as the time lag decreases. Beside improving efficiency, the Gaussian process prior can deal
with multilayer networks observed at potentially unequally spaced time grids, and is closely
related to the multivariate Gaussian distribution, providing substantial benefits in terms of
computational tractability and interpretability. In fact, following Rasmussen and Williams
(2006), equations (3)–(4) imply the following prior for the shared and layer-specific latent
coordinates at the finite time grid t1, . . . , tn on which data are observed:

{x̄vr(t1), . . . , x̄vr(tn)}ᵀ ∼ Nn(0, τ−1
r Σx̄), (7)

independently for v = 1, . . . , V , r = 1, . . . , R and

{x(k)
vh (t1), . . . , x

(k)
vh (tn)}ᵀ ∼ Nn(0, τ

(k)−1
h Σx), (8)

independently for v = 1, . . . , V , h = 1, . . . ,H, and k = 1, . . . ,K. In equations (7)–(8), the
n×n variance and covariance matrices Σx̄ and Σx have elements Σx̄[ij] = exp{−κx̄(ti−tj)2}
and Σx[ij] = exp{−κx(ti − tj)

2}, respectively. The same holds for the baseline process
obtaining {µ(t1), . . . , µ(tn)}ᵀ ∼ Nn(0,Σµ).

3. Model Properties

In order to ensure accurate learning and prediction, it is important to guarantee that our
factorization in equation (2) along with the Gaussian process priors for its components are
sufficiently flexible to approximate a broad variety of dynamic multilayer edge probability
processes. These properties are stated in Propositions 1 and 2. See Appendix A for detailed
proofs. In particular, Proposition 1 guarantees that equation (2) is sufficiently flexible to
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characterize any collection π(t) = {π(k)
vu (t) ∈ (0, 1) : k = 1, . . . ,K, v = 2, . . . , V, u =

1, . . . , v − 1} for every time t ∈ T.

Proposition 1 Let π(t) = {π(k)
vu (t) ∈ (0, 1) : k = 1, . . . ,K, v = 2, . . . , V, u = 1, . . . , v − 1}

denote the collection of edge probabilities between the actors in each layer at time t ∈ T.
Then every collection π(t) can be represented as in equation (2) for some R and H.

Although Proposition 1 guarantees that factorization in equation (2) is sufficiently gen-
eral, it is important to ensure that the same flexibility is maintained when defining priors on
the parameters in equation (2). Proposition 2 guarantees that our model and prior choices
induce a prior on the dynamic multilayer edge probability process with full support.

Proposition 2 If T is compact, then for every π0 = {π0(k)
vu (t) ∈ (0, 1) : t ∈ T, k =

1, . . . ,K, v = 2, . . . , V, u = 1, . . . , v − 1} and ε > 0,

pr

supt∈T

 K∑
k=1

√√√√ V∑
v=2

v−1∑
u=1

{π(k)
vu (t)− π0(k)

vu (t)}2

 < ε

 > 0,

with π
(k)
vu (t) factorized as in equation (2) with Gaussian process priors on the latent coordi-

nates.

Full prior support is a key property in ensuring that our Bayesian formulation assigns
a positive probability to a neighborhood of every possible true dynamic multilayer edge
probability process, avoiding flexibility issues that may arise if zero mass is assigned to a
subset of the parameters space where the truth may be.

In order to highlight the dependence structures induced by our model and priors, we
additionally study the prior variances and covariances associated with the log-odds processes

z = {z(k)
vu (t) = logit{π(k)

vu (t)} ∈ < : t ∈ T, k = 1, . . . ,K, v = 2, . . . , V, u = 1, . . . , v − 1}. By
conditioning on the shrinkage parameters, and leveraging equations (7) and (8), we obtain

var{z(k)
vu (t) | τ, τ (k)} = 1 +

R∑
r=1

τ−2
r +

H∑
h=1

τ
(k)−2
h , cov{z(k)

vu (t), z(k)
pq (t) | τ, τ (k)} = 1,

for every layer k = 1, . . . ,K, time t ∈ T and pairs of actors [vu], v > u and [pq], p > q with
p 6= v or q 6= u. The covariance between different layers, at the same time t ∈ T is

cov{z(k)
vu (t), z(g)

vu (t) | τ, τ (k), τ (g)} = 1 +

R∑
r=1

τ−2
r , cov{z(k)

vu (t), z(g)
pq (t) | τ, τ (k), τ (g)} = 1,

for every pair of layers k and g with k 6= g, time t ∈ T and pairs of actors [vu], v > u and
[pq], p > q with p 6= v or q 6= u. Finally, the covariances at different times are

cov{z(k)
vu (ti), z

(k)
vu (tj) | τ, τ (k)} = e−κµ(ti−tj)2

+
R∑
r=1

τ−2
r e−2κx̄(ti−tj)2

+
H∑
h=1

τ
(k)−2
h e−2κx(ti−tj)2

,

cov{z(k)
vu (ti), z

(g)
vu (tj) | τ, τ (k), τ (g)} = e−κµ(ti−tj)2

+
R∑
r=1

τ−2
r e−2κx̄(ti−tj)2

,

cov{z(k)
vu (ti), z

(k)
pq (tj) | τ, τ (k)} = cov{z(k)

vu (ti), z
(g)
pq (tj) | τ, τ (k), τ (g)} = e−κµ(ti−tj)2

,
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for every pair of layers k and g with k 6= g, times ti ∈ T, tj ∈ T and pairs of actors [vu],
v > u and [pq], p > q with p 6= v or q 6= u.

It is easy to show that a priori the log-odds of the edge probabilities have mean zero,
whereas, based on the above results, their variances increase with the sum of the shared and
layer-specific shrinkage parameters. Allowing a subset of the coordinates to be common to
all layers, has the effect of introducing dependence between the log-odds of edge probabilities
in different layers. The Gaussian process priors provide an efficient choice to incorporate
dependence between edge probabilities in different times. The strength of this dependence is
regulated by the time lag and the positive smoothing parameters κµ, κx̄ and κx. The lower
these quantities, the stronger the dependence is between coordinates in different times.

4. Posterior Computation and Prediction

Equations (1)–(2) along with the Gaussian process priors for the latent coordinates can be
seen as a nonlinear Bayesian logistic regression with the parameters entering in a bilinear
form. Although performing posterior computation in this setting is apparently a cumber-
some task, leveraging the Pólya-gamma data augmentation for Bayesian logistic regression
(Polson et al., 2013) and adapting derivations in Durante and Dunson (2014), it is possible
to obtain a simple and tractable Gibbs sampler having conjugate full conditionals. In fact,
the Pólya-gamma data augmentation allows recasting the problem from a logistic regression
to a multiple linear regression having transformed Gaussian response data, while derivations
in Durante and Dunson (2014) provide results to linearize the factorization in equation (2).

Joining the above procedures and exploiting equations (7)–(8), the updating of the la-
tent coordinates processes at every step simply relies on standard Bayesian linear regression.
Algorithm 1 in Appendix B provides derivations and guidelines for step-by-step implemen-
tation of our Gibbs sampler. We summarize below the main steps of the MCMC routine.

Step [1]: For each time ti = t1, . . . , tn, layer k = 1, . . . ,K and pair of actors [vu], v =
2, . . . , V , u = 1, . . . , v − 1, sample the corresponding Pólya-gamma augmented data.

Step [2]: Update the baseline process µ = {µ(t1), . . . , µ(tn)}ᵀ from its full conditional mul-
tivariate Gaussian distribution. This is obtained by recasting the logistic regression
for µ in terms of a multiple linear regression having transformed Gaussian response.

Step [3]: Update the shared coordinates. In performing this step we block-sample in turn
the coordinates trajectories x̄(v) = {x̄v1(t1), . . . , x̄v1(tn), . . . , x̄vR(t1), . . . , x̄vR(tn)}ᵀ of
each actor v = 1, . . . , V conditionally on the others {x̄(u) : u 6= v}. This choice allows
us to linearize equation (2), with x̄(v) acting as a coefficients vector and {x̄(u) : u 6= v}
representing appropriately selected regressors. Leveraging the Pólya-gamma data aug-
mentation also this step relies on a multiple linear regression with transformed Gaus-
sian response data, providing Gaussian full conditionals for each x̄(v), v = 1, . . . , V .

Step [4]: Update the layer-specific coordinates. For each layer k = 1, . . . ,K, this step re-
lies on the same strategy considered for the shared coordinates, providing again Gaus-

sian full conditionals for each x
(k)
(v) = {x(k)

v1 (t1), . . . , x
(k)
v1 (tn), . . . , x

(k)
vH(t1), . . . , x

(k)
vH(tn)}ᵀ,

v = 1, . . . , V and k = 1, . . . ,K. Moreover the updating can be performed separately
for each layer, allowing this step to be efficiently implemented in parallel.
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Step [5] and [6]: The updating of the gamma parameters characterizing the priors in
equations (5)–(6) follows conjugate analysis, proving gamma full conditionals.

Step [7]: Update the dynamic multilayer edge probabilities simply by applying equation
(2) to the samples of the baseline process, the shared and the layer-specific coordinates.

In performing posterior computation we set R and H at conservative upper bounds,
allowing the multiplicative inverse gamma priors for the shrinkage parameters to delete
redundant latent space dimensions not required to characterize the data. Hence, posterior
inference is not substantially affected by the choice of R and H, unless these bounds are fixed
at excessively low values compared to the complexity of the data analyzed. We additionally
assess the goodness of these bounds via in-sample and out-of-sample predictive performance.

4.1 Edge Prediction

Edge prediction is an important topic in dynamic modeling of multilayer networks. For
example some networks may have unobserved edges due to inability to monitor certain
types of relationships or actors at specific times. Likewise, some layers may be available
in time earlier than others, facilitating prediction of those yet missing. The availability of
efficient procedures that are able to reconstruct partially unobserved connectivity structures
or forecast future networks can have important consequences in many applications, such as
destabilization of terrorists networks or epidemic prevention (e.g., Tan et al., 2016).

Our statistical model for dynamic multilayer networks in equations (1)–(2) facilitates
the definition of simple procedures for formal edge prediction relying on the expectation

E{Y(k)
vu (ti) | Yobs} of the posterior predictive distribution for Y(k)

vu (ti), with Yobs denoting
the observed data. In fact, under equations (1)–(2), this functional is easily available as

E{Y(k)
vu (ti) | Yobs} = E

π
(k)
vu (ti)

[EY(k)
vu (ti)

{Y(k)
vu (ti) | π(k)

vu (ti)} | Yobs] = E{π(k)
vu (ti) | Yobs}, (9)

for every time ti ∈ T, layer k = 1, . . . ,K and actors v = 2, . . . , V , u = 1, . . . , v − 1, where

E{π(k)
vu (ti) | Yobs} simply coincides with the posterior mean of π

(k)
vu (ti). Hence prediction

requires the posterior distribution of the edge probabilities. These quantities are available
also for unobserved edges by adding the following data augmentation step in Algorithm 1:

Step [8]: Impute the missing edges given the current state of π
(k)
vu (ti) from a Bern{π(k)

vu (ti)},
for all the combinations of times ti ∈ T, layers k = 1, . . . ,K and actors v = 2, . . . , V ,
u = 1, . . . , v − 1 corresponding to unobserved edges.

5. Simulation Study

We consider a simulation study to evaluate the performance of our methodology in a simple
scenario partially mimicking the size and structure of the face-to-face dynamic multilayer
networks. Consistent with our aim we assess performance in the tasks outlined in Table 2.

To highlight the benefits of our methods (Joint Analysis), we compare the performance
with two competitors. The first (Collapsed Analysis) assumes the layers arise from a com-
mon latent space model, forcing all the actors coordinates to be shared among layers. This
formulation is a special case of our model holding out in (2) the layer-specific similarities.
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Quantity Focus of the performance assessment

Edge probabilities Assess accuracy in learning the true edge probability process underlying

the simulated network data. As already discussed, accurate modeling of the

edge probabilities π
(k)
vu (ti) is fundamental for inference and prediction.

Unobserved edges Assess out-of-sample predictive performance in forecasting future unob-

served networks leveraging the expectation E{Y(k)
vu (ti) | Yobs} of the poste-

rior predictive distribution for the unobserved edges.

Network density Accuracy in modeling the expected overall chance of connectivity θ(k)(ti) =

E[
∑V

v=2

∑v−1
u=1 Y

(k)
vu (ti)/{V (V −1)/2}] =

∑V
v=2

∑v−1
u=1 π

(k)
vu (ti)/{V (V −1)/2},

for every time ti ∈ T and layer k = 1, . . . ,K.

Actors degrees Accuracy in learning the total number of different individuals d(k)
v (ti) =

E{
∑

u6=v Y
(k)
vu (ti)} =

∑
u6=v π

(k)
vu (ti), each actor v is expected to interact

with, for every v = 1, . . . , V , time ti ∈ T and layer k = 1, . . . ,K.

Table 2: Quantities of interest, which are considered in performance assessments. Although
it is possible to provide inference on several properties, from an epidemiological
perspective, the network density and actors degrees are of interest in characterizing
the overall risk of contagion and the infectivity of each actor, respectively.

Hence, posterior analysis requires minor modifications of Algorithm 1. The second competi-
tor (Separate Analysis) estimates the dynamic latent space model of Durante and Dunson
(2014) separately for each layer. Although both methods are reasonable choices, modeling
only shared structures lacks flexibility in capturing layer-specific patterns, whereas separate
analyses lose efficiency in inference and prediction when the layers share common patterns.
We describe the simulation setting in Section 5.1 and discuss results in Section 5.2.

5.1 Outline of the Simulation Settings

We consider V = 30 actors whose connections are monitored for K = 2 days on the same
time grid t1, . . . , t17, with ti ∈ T = {1, . . . , 17}. In simulating the networks, we sample the
edges from conditionally independent Bernoulli variables given their corresponding edge
probabilities as in equation (1), with these probabilities defined to mimic possible scenarios
in our application. To accomplish this goal, we consider, for each day, five representative
edge probability matrices π0(k)(ti) at times ti ∈ {1, 5, 9, 13, 17}, displayed in Figure 2, and
define the matrices at the remaining times as a convex combination of these representative
matrices. Focusing, for example, on the times t14, t15 and t16 between t13 and t17, we let

π0(k)(t14) = 0.75π0(k)(t13) + 0.25π0(k)(t17),

π0(k)(t15) = 0.50π0(k)(t13) + 0.50π0(k)(t17),

π0(k)(t16) = 0.25π0(k)(t13) + 0.75π0(k)(t17).

The same construction holds for all the other time windows, except for times t4 and t6,
where we induce a more rapid variation by letting π0(k)(t4) = π0(k)(t6) = π0(k)(t5), instead
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time 1 time 5 time 9 time 13 time 17

layer 1
layer 2

Figure 2: True representative edge probability matrices π0(k)(ti). The color in each cell
goes from white to black as the corresponding edge probability goes from 0 to 1.

of π0(k)(t4) = 0.25π0(k)(t1) + 0.75π0(k)(t5), and π0(k)(t6) = 0.75π0(k)(t5) + 0.25π0(k)(t9). We
incorporate this setting to study the effects of the Gaussian process’ constant smoothness
assumption in scenarios having time-varying smoothness. In order to empirically evaluate
Proposition 1, the edge probability matrices in Figure 2 are not generated from equation
(2), but are instead constructed to characterize possible face-to-face contact scenarios.

Focusing on the first day, which corresponds to layer k = 1, the edge probability matrices
at times t1, t9 and t17 characterize contacts during breakfast, lunch and dinner, respectively.
These favor block-structures due to homophily by age and gender. In fact, it is reasonable
to expect that young individuals, adult women and adult men, corresponding to actors in
the first, second, and third block, may have a higher chance of contact with individuals in
the same socio-demographic group. We additionally allow adult women to have a moderate
chance of contact with young individuals and adult men during breakfast, lunch, and dinner
times. The edge probability matrix at time t5 characterizes instead block-structures due
environmental restrictions during the morning, with young individuals attending school,
adult women sharing the house, and two sub-groups of adult men working in two different
places. Finally, the edge probability matrix at time t13 is similar to the one at time t5 with
exception of an increased chance of contact between young individuals and adult women
who are expected to share the same environment in the afternoon after school.

The dynamic contact networks in the different days share similar patterns, as shown in
Figure 1. We maintain this property by considering the same representative edge probability
matrices in the second day, which corresponds to layer k = 2, with exception of t5 and t13.
In the morning of the second day, we assume five young individuals contract a disease and
remain at home. This increases their chance of contact with the adult women taking care of
them, and reduces the probability of a contact with the other young individuals. The edge
probability matrix in the afternoon of the second day characterizes a similar scenario, but
focuses on five adult men. Including different edge probability matrices at times t5 and t13,
allows us to assess performance in learning layer-to-layer differences in contact patterns.
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Squared Posterior Bias Posterior Variance Posterior Concentration

n ↓ V ↓ n ↓ V ↓ n ↓ V ↓
Joint 0.009 0.014 0.012 0.011 0.018 0.016 0.020 0.032 0.028
Collapsed 0.016 0.019 0.019 0.007 0.011 0.010 0.023 0.030 0.029
Separate 0.016 0.025 0.019 0.018 0.027 0.023 0.034 0.052 0.042

Table 3: For our methodology and the two competitors, measures of posterior concentration
around the true dynamic multilayer edge probability process, at varying n and V .
Bold numbers are the measures associated with our initial simulation scenario.

In order to assess predictive performance, we perform posterior analysis under our model
and the competing methods, holding out from the observed data the networks from time t13

to t17 in the second day. This choice provides a scenario of interest in our application. For
example a subset of actors may contract a disease at time t12 in the second day, motivating
the design of prevention policies relying on the forecasted contact patterns at future times.

5.2 Results in the Simulation

We perform posterior computation under our model with κµ = κx̄ = κx = 0.05 to favor
smooth trajectories a priori and a1 = 2, a2 = 2.5 to facilitate adaptation of the latent spaces
dimensions. Although our model can be easily modified to learn these hyperparameters from
the data as in Murray and Adams (2010) and Bhattacharya and Dunson (2011), respectively,
borrowing of information within the dynamic multilayer networks has the effect of reducing
sensitivity to the choice of the hyperparameters. In fact, we found results robust to moderate
changes in these quantities, and therefore prefer to elicit them to improve convergence and
mixing. We consider 5000 Gibbs iterations with R = H = 5, and set a burn-in of 1000.
Traceplots for the time-varying edge probabilities in the two layers show no evidence against
convergence, and mixing is good in our experience with most of the effective sample sizes
for the quantities of interest being around 1500 out of 4000 samples. Posterior computation
for our competitors is performed with the same smoothing parameters and a1 = 2, a2 = 2.5,
using R+H = 10 dimensional latent spaces, to improve comparison with our results.

5.2.1 Performance in Learning the True Edge Probability Process

Flexible modeling of π(k)(t) is fundamental for learning and prediction. Table 3 summarizes
the concentration of the posterior distributions for the dynamic multilayer edge probabilities

using the posterior mean of the squared difference between π
(k)
vu (ti) | Yobs and π

0(k)
vu (ti). To

provide empirical insights on posterior consistency we study this property also at varying n
and V . In the first case we focus on the dynamic multilayer network studied at odd times
ti ∈ {1, 3, 5, . . . , 17}, whereas in the second case we consider the reduced networks where
four actors within each block are not analyzed. To highlight the contribution of the squared
posterior bias and the posterior variance, we factorize the concentration measure as

E([{π(k)
vu (ti) | Yobs} − π0(k)

vu (ti)]
2) = [E{π(k)

vu (ti) | Yobs} − π0(k)
vu (ti)]

2 + var{π(k)
vu (ti) | Yobs}.

To assess the overall performance, these measures are averaged across the edge probabilities
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Out-of-Sample Predictive Performance
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Figure 3: For times from t13 to t17 —held out in the second day from posterior computation
—boxplots of the areas under the ROC curves (AUC) when predicting the un-
observed edges with our method and the two competitors, from 100 simulations.

characterizing the dynamic multilayer network process.
According to Table 3, borrowing of information across layers has the effect of reducing

both bias and posterior variance compared to the separate analyses, improving accuracy and
efficiency in inference and prediction. Enhancing flexibility via layer-specific latent coordi-
nates additionally facilitates bias reduction compared to collapsed analyses, but provides
posterior distributions with slightly higher variance. This result is not surprising provided
that the collapsed analyses assume the edge probability process to be common across layers,
reducing the number of parameters. Moreover, although low variance is a desired feature
when bias is small, this property may lead to poor inference and prediction when the pos-
terior distribution is centered far from the truth. In our simulation—having few differences
between the true edge probability processes in the two layers—the bias is low also for the
collapsed analyses, but this bias is expected to grow when the layers have more differences.

The above results are maintained at varying n and V , while showing improved concen-
tration for higher n or V . Although it would be interesting to prove posterior consistency,
state-of-the-art literature provide results for the single binary outcome case (e.g., Ghosal and
Roy, 2006), and it is not clear how to adapt this theory to our much complex network–valued
data. However, results in Table 3 provide positive empirical support for this property.

5.2.2 Out-of-sample Predictive Performance

As discussed in Sections 2 and 4, developing models characterized by lower bias is important
to improve inference and prediction. In fact, our method has an improved ability to predict
unobserved edges compared to the competing models, as shown in Figure 3.1 In predicting
held-out edges we leverage the procedures discussed in Section 4.1. Since equation (1) is also
valid for our competitors, results in Section 4.1 can be used for the collapsed and separate

1. In assessing predictive performance in Figure 3, we generate for each time from t13 to t17—held out in
the second day from posterior computation—100 networks from (1) with edge probabilities π

0(2)
vu (ti), and

compute for each network the area under the ROC curve when predicting its edges with the expectation
of the posterior predictive distribution associated with each method—according to Section 4.1.
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Joint Analysis [network density] Collapsed Analysis [network density] Separate Analysis [network density]
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Figure 4: For the three methods, posterior mean (grey lines) and pointwise 0.95 credibility
intervals (grey segments) for the dynamic expected network density (upper pan-
els) and the dynamic expected degree of the first actor (lower panels) in the two
layers. Black lines are the true trajectories, and triangles the held-out networks.

analyses after replacing E{π(k)
vu (ti) | Yobs} with E{πvu(ti) | Yobs} and E{π(k)

vu (ti) | Y (k)

obs},
respectively.

According to Figure 3 the separate analysis obtains good predictive performance for the
times subsequent to the last observed network, but this accuracy decays with increasing time
lag. As the underlying edge probability process is smooth, it is reasonable to expect good
predictive performance at time t13 exploiting information at time t12, whereas the reduced
accuracy for later times is likely due to inefficient exploitation of the information from the
first layer. As expected, the collapsed analysis provides accurate predictions when there is a
high degree of similarity between the edge probabilities in the two layers, such as at time t17,
but the accuracy decreases in correspondence of more evident differences. Differently from
the above procedures, our model incorporates dependence between layers without assuming
a single edge probability process common to all of them, providing predictions which are
less sensitive to the underlying data generating mechanism. In fact, as shown in Figure 3,
we obtain an improved prediction of unobserved edges compared to the competing methods.

5.2.3 Performance in Learning Network Properties of Interest

Accurate modeling of the dynamic multilayer edge probabilities has key benefits in improv-
ing inference on time-varying network structures in the different layers. Figure 4 summarizes
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the posterior distribution of the dynamic expected network density, and the time-varying
expected degree of a selected actor in the two layers.

As shown in Figure 4, our method outperforms the competing approaches also in provid-
ing inference for the selected network properties. The collapsed analysis forces the trajec-
tories of these networks summary measures to be equal across layers, causing poor perfor-
mance in capturing differences among layers in specific times. Modeling the dynamic edge
probability processes underlying each layer separately improves flexibility, but the inefficient
exploitation of the information shared between layers leads to poor performance in modeling
network properties associated with unobserved edges. Our formulation in equations (1)–(2)
incorporates dependence between layers and preserves flexibility via a set of layer-specific
latent coordinates, which reduces in-sample and out-of-sample bias. Although our model
has accurate performance, the constant smoothness assumption characterizing the Gaussian
process priors leads to a slight over-smoothing around the more rapid variation in times t4
and t6. One possibility to avoid this behavior is to replace the Gaussian process priors with
nested Gaussian processes (Zhu and Dunson, 2013) having time-varying smoothness.

6. Application to Dynamic Multilayer Face-to-Face Contact Data

We now turn to applying the methods proposed in Sections 2 and 4 to the face-to-face con-
tact networks described in Section 1.2. Raw contact data are available for 75 individuals
belonging to five different households in rural Kenya. Each household has different families
living in the same compound and reporting to one head. Face-to-face contacts for the indi-
viduals in each household are collected hourly from 06:00 to 20:00 during three consecutive
days, with these three days windows differing for most of the households. Hence, contact
data are unavailable for almost all the pairs corresponding to actors in different households,
making it impossible for any methodology to infer across-households connectivity structures.
In order to avoid complications due to non-overlapping days, we focus on the face-to-face
contact networks for the individuals in the most populated household comprising V = 29
actors. This choice is further supported by the fact that within households contacts play a
fundamental role in the speed of contagion, motivating primary interests in household-based
analyses; see e.g., House and Keeling (2009) and the references cited therein.

6.1 Results in the Application

The face-to-face proximity data can be structured as a dynamic multilayer network recording
for each day k ∈ {1, 2, 3} the time-varying face-to-face contacts among the V = 29 actors
on the same hourly basis t1, . . . , t14, where ti ∈ {1, . . . , 14} is simply a discrete time index
denoting the current hour. We apply our statistical model and the competing methods to
the aforementioned data, where we hold out the contact network at the last time in the

third day Y
(3)
t14

to assess out-of-sample predictive performance.2

2. Posterior computation under the three models uses the same default hyperparameters as in the simulation
study. Similarly to the simulation study, we consider 5000 Gibbs iterations and obtain no evidence against
convergence after a burn-in of 1000. The effective sample sizes for the quantities of interest for inference
are around 1200 out of 4000 samples. Although this provides a slightly reduced result compared to the
simulation studies, the mixing is still good given the complexity of our dynamic multilayer network data.
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Area under the curve Accuracy with cutoff 0.5

Number of latent coordinates 8 10 12 8 10 12

Joint In–sample 0.97 0.97 0.97 95% 95% 94%
Out–of–sample 0.95 0.95 0.95 94% 94% 95%

Collapsed In–sample 0.94 0.94 0.95 92% 92% 92%
Out–of–sample 0.95 0.95 0.95 94% 94% 94%

Separate In–sample 0.97 0.97 0.97 94% 94% 94%
Out–of–sample 0.82 0.83 0.82 89% 89% 89%

Table 4: For our method and the two competitors, in-sample and out-of-sample predictive
performance measured via the AUC, and the percentage of correctly predicted
edges—using a cutoff probability of 0.5—at varying R+H, with R = H.

6.1.1 In-sample and Out-of-sample Predictive Performance

As one assessment of our proposed methodology, Table 4 compares our performance for in-
sample and out-of-sample edge prediction with those provided by the competing procedures.
Consistent with the strategy outlined in equation (9), the ROC curves for in-sample edge
prediction are constructed using the observed data Yobs and the posterior mean of their
corresponding edge probabilities, estimated under the three different methods. The ROC
curves for assessing out-of-sample predictive performance are defined in a similar way, but
focusing on the held-out network at time t14 in day 3. To evaluate sensitivity to the choice
of the upper bounds for the latent space dimensions, we study predictive performance also
under other settings of R and H, including R = H = 4 and R = H = 6.

Edge prediction is clearly more accurate in-sample than out-of-sample. This is because
Yobs is part of the posterior computation, whereas the network at time t14 in day 3 is held
out. According to Table 4, the separate analysis achieves comparable results to our model
for in-sample edge prediction in accommodating layer-specific patterns, but provides poor
predictions of future edges due to inability to incorporate information from the previous
days. The collapsed analysis allows instead borrowing of information between the three days
via shared coordinates, but does not incorporate differences in contact patters across these
days. As a result, the collapsed analysis provides comparable performance to our model for
out-of-sample edge prediction, but has a reduced in-sample predictive ability. Our dynamic
multilayer representation efficiently incorporates both shared structures and layer-specific
differences, facilitating good predictive performance both in-sample and out-of-sample. As
discussed in Section 4, these results are not substantially affected by moderate variations in
R and H, and therefore we perform posterior inference for R = H = 5, as in the simulation.

6.1.2 Learning Network Properties of Interest

The above results motivate additional posterior analyses of the dynamic multilayer stochas-
tic process estimated under our model. Figure 5 summarizes the posterior distribution for
the trajectory of the expected network density in the three days. The expected frequency
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Network Density in day 1 Network Density in day 2 Network Density in day 3
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Figure 5: Posterior mean (grey lines) and pointwise 0.95 credibility intervals (grey seg-
ments) for the time-varying expected network density in the three days. The
triangle for the last time in the third day denotes the held-out contact network.

of proximity contacts evolves on similar patterns during the three days, while showing some
day-specific variations at certain hours. This result further confirms the importance of an-
alyzing such data with statistical models that are able to borrow information across days,
while maintaining flexibility in capturing day-specific patterns. Consistent with Kiti et al.
(2016), the expected network density remains in general on low levels during the morning
and afternoon when the actors are in different environments such as school and workplace,
and peaks in correspondence of lunch and dinner times when the households members con-
gregate. We learn a similar pattern when considering the dynamic expected frequencies
of contact within and between groups of actors having similar traits, such as gender and
age.3 These trajectories provide key additional information compared to the expected net-
work density, highlighting how infectious diseases can spread within and between groups of
actors. The posterior mean of these trajectories is visualized in Figure 6.

According to Figure 6, all the trajectories inherit the pattern discussed for the expected
network density, with clear peaks during lunch and dinner times. Although there are not
evident differences in the dynamic expected frequencies of face-to-face contact within and
between gender groups, we notice how contacts among males are typically less likely than
contacts between females, whereas face-to-face interactions among actors of different genders
become notable during lunch. Therefore, these hours might be at risk of spreading diseases
from a gender group to the other. Consistent with the static analyses considered in Kiti et al.
(2016), we observe more differences in the trajectories by age groups, with a substantially
high chance of contact between young actors, whereas the dynamic expected frequency of
interaction among adults remains on low levels. In fact, young individuals potentially have
less restrictions from environment or work schedule than adults, and therefore have more
chances of interaction, especially with actors of their same age. Hence, diseases may spread
more easily among young individuals and reach adults during lunch times when the chance
of contact between the two age groups is higher.

3. We can easily derive the posterior mean of these trajectories by averaging, for each time ti and day k, all
the estimated edge probabilities corresponding to pairs of actors having the same combination of traits,
e.g., both males, both females, one male and one female.
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Block Probabilities by Gender in day 1 Block Probabilities by Gender in day 2 Block Probabilities by Gender in day 3
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Figure 6: Upper panels: posterior mean of the dynamic expected frequencies of contact for
actors having same gender—both males or both females—and different gender,
in each day. Lower panels: same quantities with respect to high (≥ 15) and low
(<15) age groups.

Figures 5 and 6 provide global measures for the dynamic risk of contagion in the network
and for groups of actors. In order to develop more refined prevention policies it is of key
interest to monitor the infectivity of each actor, and how this measure evolves with time and
days. Consistent with this goal, Figure 7 provides a graphical analysis of selected contact
networks, with the actors positions depending on the estimated edge probabilities averaged,
for each day, over the two time windows having the more dense networks which may lead to
a faster disease spread. As shown in Figure 7, the contact patterns in the same time win-
dow share a similar configuration across the three days, while displaying some day-to-day
difference in the connectivity behavior of subsets of actors. For example, the community
structure formed by actors 6, 17 and 28 during lunch times is less separated from the rest
of the network in the first day, compared to the second and third day. This result provides
additional support for our methodology which can simultaneously incorporate shared pat-
terns and possible day-specific deviations from these common structures. Consistent with
Figures 5 and 6, young individuals—represented by circles—are typically characterized by
more frequent contacts, whereas the adult actors—corresponding to squares—have a more
peripheral position in the network. As a result the degree of the young individuals is typi-
cally higher, making these actors particularly relevant in the economy of disease contagion
and transmission. In this respect, actors 9 and 15 may represent dangerous hubs.
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Figure 7: Weighted network visualization with weights obtained by averaging the posterior
mean of the edge probabilities in the two time windows having the more dense
networks, within each of the three days. Squares and circles represent the actors
having high (≥ 15) and low (< 15) age, respectively. The color of each node goes
from white to dark red as the estimated expected degree of the corresponding ac-
tor increases, relative to the others. Actors positions are obtained by applying the
Fruchterman and Reingold (1991) force–directed placement algorithm, whereas
the width of each edge is proportional to its averaged edge probability.

We can additionally notice some community structure within the network, particularly
during dinner times. For example, actors 3, 10, 12, 14, 24 and 25 are tightly connected, but
separated from the others, with exception of the young subjects 10 and 24 which may play
a key role in the transmission of a disease from their community to the rest of the network.
Other two communities can be more clearly observed during dinner times in day three. It is
interesting to notice how these groups of actors comprise both young and adult individuals,
and therefore may represent different families within the household under analysis.

7. Discussion

The increasing availability of multidimensional, complex, and dynamic information on so-
cial interaction processes motivates a growing demand for novel statistical models. In order
to successfully enhance quality in inference and prediction, these models need to efficiently
incorporate the complex set of dependencies in the observed data, without affecting flexi-
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bility. Motivated by this consideration and by epidemiological studies monitoring disease
transmission via dynamic face-to-face interactions, we have developed a Bayesian nonpara-
metric model for dynamic multilayer networks leveraging latent space representations. In
order to preserve flexibility and borrow information across layers and time, we modeled the
edge probabilities as a function of shared and layer-specific latent coordinates which evolve
in time via Gaussian process priors. We provided theoretical support for our model, and
developed simple procedures for posterior computation and formal prediction. Finally, we
illustrated on both simulated data and on infection studies monitoring face-to-face contacts
that our methods perform better than competitors in terms of inference and prediction.

Although we focus on face-to-face interaction networks collected at multiple times and
days, our methods have a broad range of applications. Notable examples include dynamic
cooperations among countries with respect to different types of international relations, time-
varying interactions between researchers according to multiple forms of academic collab-
orations, and dynamic contacts between terrorists in relation to different types of dark
interactions. In all these relevant applications, our flexible methodology can provide an
appealing direction in accurately learning and predicting hidden wiring mechanisms and
their implication in several environments and phenomena.

In addition, our methods motivate further directions of research. An important one is to
facilitate scaling to larger dynamic multilayer network data. Currently, the computational
complexity of our Gibbs sampler—as a function of the dimensions of the input data—is
of order O(V Kn3), and corresponds to the most intensive step updating the layer-specific
latent coordinates trajectories for the V actors. Although the latent space representation
reduces computational complexity from quadratic in the number of actors V to linear, the
cubic complexity in the number of time points n associated with the Gaussian process prior,
may still represent a computational barrier when data are monitored for wide time windows.
A possible strategy to successfully address this issue is to consider more scalable processes
such as the low-rank approximations to the Gaussian process (Banerjee et al., 2013) or state-
space models. Another important generalization is accommodating the more informative
contact counts instead of just a binary variable indicating presence or absence of face-to-
face interactions. In accomplishing this goal one possibility is to adapt the methodology
proposed in Canale and Dunson (2011) to our framework and assume the weighted edges are
realizations from a rounded Gaussian whose mean is factorized as in equation (2). Finally,
additional studies on the theoretical properties of these stochastic processes, such as those
recently considered in Crane (2017), are of relevant interest.
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Appendix A. Proofs of Propositions 1 and 2

Proof of Proposition 1. As the logistic mapping is one-to-one continuous, Proposition
1 is valid if and only if—for each time t ∈ T—every possible collection of log-odds z(t) =

{z(k)
vu (t) ∈ < : k = 1, . . . ,K, v = 2, . . . , V, u = 1, . . . , v − 1} can be factorized as

z(k)
vu (t) = µ(t) + s̄vu(t) + s(k)

vu (t) = µ(t) + x̄v(t)
ᵀx̄u(t) + x(k)

v (t)ᵀx(k)
u (t),

for all k = 1, . . . ,K, v = 2, . . . , V, u = 1, . . . , v − 1, where x
(k)
v (t) = {x(k)

v1 (t), . . . , x
(k)
vH(t)}ᵀ

and x̄v(t) = {x̄v1(t), . . . , x̄vR(t)}ᵀ, for every v = 1, . . . , V .
Assume without loss of generality µ(t) = 0 for every t ∈ T and let X̄(t) and X(k)(t) for

k = 1, . . . ,K, denote the V ×R and V ×H matrices containing the shared and layer-specific
latent coordinates, respectively, at time t ∈ T. Since we are not interested in the diagonal
elements of the V ×V edge probabilities and log-odds matrices, it is always possible to write

Z(k)(t) = S̄(t) + S(k)(t), k = 1, . . . ,K,

where Z(k)(t) is the V × V symmetric matrix having the log-odds of the edges at time t in
layer k as off-diagonal elements, whereas S̄(t) and S(k)(t) are V × V positive semidefinite

symmetric matrices having quantities s̄vu(t), v = 2, . . . , V, u = 1, . . . , v − 1 and s
(k)
vu (t),

v = 2, . . . , V, u = 1, . . . , v − 1 as off-diagonal elements. Since we are not interested in self-
relations, there is no loss of generality in assuming S̄(t) and S(k)(t) are positive semidefinite,
since for any configuration of shared and layer-specific similarities there exist infinitely many
positive semidefinite matrices having these quantities as off-diagonal elements.

Since S̄(t) and S(k)(t) are positive semidefinite, they admit the eigendecompositions
S̄(t) = Ū(t)Λ̄(t)Ū(t)ᵀ and S(k)(t) = U (k)(t)Λ(k)(t)U (k)(t)ᵀ, where Ū(t) and U (k)(t) denote

the V × Rt and V × H(k)
t matrices of eigenvectors, whereas Λ̄(t) and Λ(k)(t) are the cor-

responding diagonal matrices with the positive eigenvalues. Therefore, letting R ≥ Rt for

every t ∈ T and H ≥ H
(k)
t , for every k = 1, . . . ,K and t ∈ T, Proposition 1 follows af-

ter defining X̄(t) and X(k)(t) as the block matrices X̄(t) = {Ū(t)Λ̄(t)1/2, 0V×(R−Rt)} and

X(k)(t) = {U (k)(t)Λ(k)(t)1/2, 0
V×(H−H(k)

t )
} for every k = 1, . . . ,K.

Proof of Proposition 2. Leveraging proof of Corollary 2 in Durante and Dunson (2014),
to prove Proposition 2 it suffices to show that

pr

supt∈T

 K∑
k=1

√√√√ V∑
v=2

v−1∑
u=1

{z(k)
vu (t)− z0(k)

vu (t)}2

 < ε

 > 0,

where z
(k)
vu (t) and z

0(k)
vu (t) are the log-odds of π

(k)
vu (t) and π

0(k)
vu (t), respectively. Recalling

the proof of Proposition 1, the above probability can be factorized as

pr

supt∈T

 K∑
k=1

√√√√ V∑
v=2

v−1∑
u=1

{µ(t) + s̄vu(t) + s
(k)
vu (t)− µ0(t)− s̄0

vu(t)− s0(k)
vu (t)}2

 < ε

 ,

with s̄vu(t) = x̄v(t)
ᵀx̄u(t), s

(k)
vu (t) = x

(k)
v (t)ᵀx

(k)
u (t), s̄0

vu(t) = x̄0
v(t)

ᵀx̄0
u(t) and s

0(k)
vu (t) =

x
0(k)
v (t)ᵀx

0(k)
u (t). Exploiting the triangle inequality and the independence of the Gaussian
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process priors for the different trajectories, a lower bound for the above probability is

pr

supt∈T


√√√√ V∑

v=2

v−1∑
u=1

{µ(t)− µ0(t) + s̄vu(t)− s̄0
vu(t)}2

 < ε

2K

×
×

K∏
k=1

pr

supt∈T


√√√√ V∑

v=2

v−1∑
u=1

{s(k)
vu (t)− s0(k)

vu (t)}2

 < ε

2K

 .

Applying Theorem 2 in Durante and Dunson (2014) to each term in this factorization, it is
easy to show that all the above probabilities are strictly positive, proving Proposition 2.

Appendix B. Pseudocode for Posterior Computation

Algorithm 1 provides guidelines for step-by-step implementation of our Gibbs sampler.

Algorithm 1 Gibbs sampler for the dynamic multilayer latent space model

[1] Generate the Pólya-gamma augmented data
for each ti = t1, . . . , tn, k = 1, . . .K, v = 2, . . . , V and u = 1, . . . , v − 1 do

Sample the augmented data ω
(k)
vu (ti) from the full conditional Pólya-gamma

ω(k)
vu (ti) | − ∼ PG

{
1, µ(ti) + x̄v(ti)

ᵀx̄u(ti) + x(k)
v (ti)

ᵀx(k)
u (ti)

}
,

where PG(a, b) is the Pólya-gamma random variable with parameters a > 0 and b ∈ <.
end for
———————————————————————————————————————

[2] Update the baseline trajectory µ = {µ(t1), . . . , µ(tn)}ᵀ from µ | − ∼ Nn(µµ,Ψµ)

where Ψµ =
[
diag

{∑K
k=1

∑V
v=2

∑v−1
u=1 ω

(k)
vu (t1), . . . ,

∑K
k=1

∑V
v=2

∑v−1
u=1 ω

(k)
vu (tn)

}
+ Σ−1

µ

]−1

and µµ = Ψµηµ with

ηµ =


∑K

k=1

∑V
v=2

∑v−1
u=1{Y

(k)
t1[vu] − 1/2− ω(k)

vu (t1)[x̄v(t1)ᵀx̄u(t1) + x
(k)
v (t1)ᵀx

(k)
u (t1)]}

...∑K
k=1

∑V
v=2

∑v−1
u=1{Y

(k)
tn[vu] − 1/2− ω(k)

vu (tn)[x̄v(tn)ᵀx̄u(tn) + x
(k)
v (tn)ᵀx

(k)
u (tn)]}

 .
———————————————————————————————————————

[3] Sample the vectors of shared coordinates x̄v(t1), . . . , x̄v(tn) for v = 1, . . . , V
for each actor v = 1, . . . , V do

Block-sample {x̄v(t1), . . . , x̄v(tn)} given the others {x̄u(ti) : u 6= v, ti = t1, . . . tn}.

[a] Let x̄(v) = {x̄v1(t1), . . . , x̄v1(tn), . . . , x̄vR(t1), . . . , x̄vR(tn)}ᵀ

[b] Define a Bayesian logistic regression with x̄(v) acting as coefficient vector and hav-

ing prior, according to equation (7), x̄(v) ∼ Nn×R
{

0, diag(τ−1
1 , . . . , τ−1

R )⊗ Σx̄

}
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[c] For every k = 1, . . . ,K, the Bayesian logistic regression for the updating of x̄(v) is

Y
(k)

(v) ∼ Bern(π
(k)
(v)), logit(π

(k)
(v)) = 1V−1 ⊗ µ+ X̄(−v)x̄(v) +X

(k)
(−v)x

(k)
(v),

with

• Y
(k)

(v) obtained by stacking vectors {Y (k)
t1[vu], . . . , Y

(k)
tn[vu]}

ᵀ for all pairs having
v as a one of the two actors

• π
(k)
(v) the corresponding vector of edge probabilities

• x
(k)
(v) = {x(k)

v1 (t1), . . . , x
(k)
v1 (tn), . . . , x

(k)
vH(t1), . . . , x

(k)
vH(tn)}ᵀ

• X̄(−v) and X
(k)
(−v)the matrices of regressors whose entries are suitably chosen

from {x̄u(ti) : u 6= v, ti = t1, . . . tn} and {x(k)
u (ti) : u 6= v, ti = t1, . . . tn}

According to the above specification, and letting Ω
(k)
(v) denote the diagonal matrix

with the corresponding Pólya-gamma augmented data, we obtain

x̄(v) | − ∼ Nn×R

(
µx̄(v)

,Ψx̄(v)

)
,

with

Ψx̄(v)
= {X̄ᵀ

(−v)(Ω
(1)
(v) + . . .+ Ω

(K)
(v) )X̄(−v) + diag(τ1, . . . , τR)⊗ Σ−1

x̄ }−1,

µx̄(v)
= Ψx̄(v)

(X̄ᵀ
(−v)[

∑K
k=1{Y

(k)
(v) − 1V−1⊗1n0.5−Ω

(k)
(v)(1V−1⊗µ+X

(k)
(−v)x

(k)
(v))}]).

end for
———————————————————————————————————————

[4] Sample the layer-specific coordinates x
(k)
v (t1), . . . , x

(k)
v (tn) for v = 1, . . . , V and

k = 1, . . . ,K
for each layer k = 1, . . . ,K do

for each actor v = 1, . . . , V do

Block-sample {x(k)
v (t1), . . . , x

(k)
v (tn)} given {x(k)

u (ti) : u 6= v, ti = t1, . . . tn}. In par-

ticular, letting x
(k)
(v) = {x(k)

v1 (t1), . . . , x
(k)
v1 (tn), . . . , x

(k)
vH(t1), . . . , x

(k)
vH(tn)}ᵀ and adapting

derivations in step [3] to the sampling of the layer-specific coordinates, we obtain

x
(k)
(v) | − ∼ Nn×H

(
µ
x

(k)
(v)

,Ψ
x

(k)
(v)

)
,

with

Ψ
x

(k)
(v)

= {X(k)ᵀ
(−v)Ω

(k)
(v)X

(k)
(−v) + diag(τ

(k)
1 , . . . , τ

(k)
H )⊗ Σ−1

x }−1,

µ
x

(k)
(v)

= Ψ
x

(k)
(v)

[X
(k)ᵀ
(−v){Y

(k)
(v) − 1V−1 ⊗ 1n0.5− Ω

(k)
(v)(1V−1 ⊗ µ+ X̄(−v)x̄(v))}].

end for
end for
———————————————————————————————————————
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[5] Update the gamma quantities defining the shared shrinkage parameters
τ−1

1 , . . . , τ−1
R

δ1 | − ∼ Ga

{
a1 +

V × n×R
2

, 1 +
1

2

R∑
m=1

θ(−1)
m

V∑
v=1

x̄ᵀvmΣ−1
x̄ x̄vm

}
,

δr≥2 | − ∼ Ga

{
a2 +

V × n× (R− r + 1)

2
, 1 +

1

2

R∑
m=r

θ(−r)
m

V∑
v=1

x̄ᵀvmΣ−1
x̄ x̄vm

}
,

where θ
(−r)
m =

∏m
f=1,f 6=r δf for r = 1, . . . , R and x̄vm = {x̄vm(t1), . . . , x̄vm(tn)}ᵀ.

———————————————————————————————————————

[6] Sample the variables defining the layer-specific parameters τ
(k)−1
1 , . . . , τ

(k)−1
H ,

k = 1, . . . ,K
for each layer k = 1, . . . ,K do

δ
(k)
1 | − ∼ Ga

{
a1 +

V × n×H
2

, 1 +
1

2

H∑
l=1

θ
(−1)
l

V∑
v=1

x
(k)ᵀ
vl Σ−1

x x
(k)
vl

}
,

δ
(k)
h≥2 | − ∼ Ga

{
a2 +

V × n× (H − h+ 1)

2
, 1 +

1

2

H∑
l=h

θ
(−h)
l

V∑
v=1

x
(k)ᵀ
vl Σ−1

x x
(k)
vl

}
,

where θ
(−h)
l =

∏l
f=1,f 6=h δ

(k)
f for h = 1, . . . ,H and x

(k)
vl = {x(k)

vl (t1), . . . , x
(k)
vl (tn)}ᵀ.

end for
———————————————————————————————————————

[7] Obtain the posterior samples for the edge probabilities π
(k)
vu (ti) via

π(k)
vu (ti) = [1 + exp{−µ(ti)− x̄v(ti)ᵀx̄u(ti)− x(k)

v (ti)
ᵀx(k)

u (ti)}]−1,

for every ti = t1, . . . , tn, layer k = 1, . . . ,K and actors v = 2, . . . , V , u = 1, . . . , v − 1.
———————————————————————————————————————

[8] Impute the missing edges given the current state of π
(k)
vu (ti) from a Bern{π(k)

vu (ti)},
for all the combinations of times ti ∈ T, layers k = 1, . . . ,K and actors v = 2, . . . , V ,
u = 1, . . . , v − 1 corresponding to unobserved edges.
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