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Abstract

Large-scale data containing multiple important rare clusters, even at moderately high
dimensions, pose challenges for existing clustering methods. To address this issue, we
propose a new mixture model called Hidden Markov Model on Variable Blocks (HMM-VB)
and a new mode search algorithm called Modal Baum-Welch (MBW) for mode-association
clustering. HMM-VB leverages prior information about chain-like dependence among
groups of variables to achieve the effect of dimension reduction. In case such a dependence
structure is unknown or assumed merely for the sake of parsimonious modeling, we develop a
recursive search algorithm based on BIC to optimize the formation of ordered variable blocks.
The MBW algorithm ensures the feasibility of clustering via mode association, achieving
linear complexity in terms of the number of variable blocks despite the exponentially
growing number of possible state sequences in HMM-VB. In addition, we provide theoretical
investigations about the identifiability of HMM-VB as well as the consistency of our approach
to search for the block partition of variables in a special case. Experiments on simulated
and real data show that our proposed method outperforms other widely used methods.

Keywords: Gaussian mixture model, hidden Markov model, modal Baum-Welch algorithm,
modal clustering

1. Introduction

Clustering is one of the most important topics in unsupervised learning, the goal of which
is to discover structures from a collection of unlabeled data. Finite mixture modeling is
a major statistical framework for clustering. Without attempting to review its expansive
applications, we offer instead a few examples as a glimpse at the incredibly broad usage of
mixture modeling (Escobar and West (1995); Allenby et al. (1998); McLachlan et al. (2002);
Kasahara and Shimotsu (2009)).

One important advantage of the mixture model is that the goodness of fit to any data
can be improved by increasing the number of mixture components. The simplest approach
to clustering based on a mixture model is to assign each component to an individual cluster.
However, there are several drawbacks to equate clusters with mixture components, among
which is that the parametric distribution of a component is too restrictive for the potentially
diverse shapes of clusters (see Li et al. (2007) for a thorough discussion). Various strategies
have been proposed to merge multiple mixture components so that an individual cluster
can be more properly modeled (Hennig, 2010; Li, 2005; Pyne et al., 2009; Finak et al.,
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2009; Chan et al., 2010; Aghaeepour et al., 2011; Lin et al., 2016; Melnykov, 2016). In the
statistical learning literature, a prominent method for merging multiple mixture components
into one cluster is based on the modes of the mixture density, the so-called modal clustering
by Li et al. (2007). We discuss this method in more detail in Section 2.

Despite their wide applications, existing mixture modeling approaches are severely
challenged by high dimensional data encountered in certain research areas, for example,
cell subset identification using data generated by the high-throughput single-cell technolo-
gies (Perfetto et al., 2004; Bandura et al., 2009; Maecker et al., 2012; Chattopadhyay et al.,
2014; Spitzer and Nolan, 2016). These data sets contain a large number of highly unbalanced
clusters. Furthermore, the most interesting clusters for scientific investigation are often
of remarkably low occurrence. Even when the data dimension is not impressively large
by today’s standard, say in the order of tens, existing methods have much difficulty for
detecting clusters of very low probabilities. Low probability mixture components tend to
be “concealed” by large background clusters in the data. For the usual mixture modeling
approach, in order to capture the rare clusters, we must increase the number of components
dramatically. On the other hand, the curse of dimensionality prevents the use of many
components; the growing computational intensity is also a concern.

Our new method is motivated by the popular manual gating analysis of single-cell
cytometry data (details in Section 5.2), in which the variables are divided into groups based
on prior information and examined sequentially. The key idea here is to exploit the chain-like
dependence among groups of variables in the construction of a mixture model. Lin et al.
(2013) used this idea to build a relatively primitive model. In this approach, the variables
are partitioned into two groups, and the mixture model is estimated using the hierarchical
Dirichlet process prior. This two-block model is substantially more efficient and accurate in
rare clusters identification than the conventional mixture models are. The existing method,
however, is unable to move beyond two variable blocks in practice due to the exponential
computational complexity. The Markov chain Monte Carlo (MCMC) simulation for the
two-block model is already highly intensive and is coupled by the long-standing issue of
label switching when MCMC is applied to estimate mixture models (e.g., Richardson and
Green (1997); Celeux et al. (2000); Stephens (2000)).

The aim of this paper is to design an effective and computationally accessible statistical
model that can fit data robustly in both high and low probability regions and can identify
clusters of non-Gaussian shapes. We propose a new model to exploit sequential dependence
among variable groups. We also develop an algorithm to search for such a dependence
structure when it is unknown. Our experiments show that even if the sequential dependence
is not backed up by domain knowledge, it can still be useful as a mathematical mechanism
for parsimonious modeling.

Our major contributions include: (1) We develop a hidden Markov model on variable
blocks (HMM-VB) to leverage the sequential dependence structure among variable groups.
To the best of our knowledge, this work is the first to exploit sequential dependence among
variable groups by HMM. (2) We derive the Baum-Welch estimation algorithm for HMM-VB
and the new Modal Baum-Welch (MBW) algorithm for finding modes of a HMM-VB, based
on which clusters are formed. MBW achieves linear computational complexity without
compromising optimality. (3) We develop a search algorithm to determine the grouping and
ordering of the variables for a HMM-VB when variable groups are not pre-specified. (4) We
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develop theorems on the identifiability of HMM-VB given the variable block structure and
the identifiability of the variable blocks under certain conditions. We prove the consistency
of the BIC criterion for finding the variable blocks in a special case.

The rest of the paper is organized as follows. In Section 2, we introduce notations and
overview existing techniques most relevant to our proposed methods. In Section 3, we present
HMM-VB and efficient algorithms for model fitting and modal clustering. In Section 4, we
provide theoretical results on identifiability, consistency, and the mode search algorithm for
HMM-VB. Proofs of the theorems appear in Appendix B∼D. In Section 5, experimental
results are reported for both simulated and real data including mass cytometry, single-cell
genomics, and image data. Comparisons are made with some competing models and popular
methods. We conclude with discussions in Section 6.

2. Preliminaries

Given a random vector X = (X1, X2, ..., Xd)
′ ∈ Rd, let xi = (xi1, ..., xid)

′ ∈ Rd be the i-th
sample of X, where i = 1, ..., n. Denote by X = (x1,x2, ...,xn) ∈ Rn×d the data matrix, and
we let Xj be the j-th column of X which contains the values of Xj across all the sample
points. For ease of notation, we let x ∈ Rd be a realization of the random vector X.

The finite Gaussian mixture model (GMM) is commonly used for clustering. A GMM
with M components has the density function: f(x|θ) =

∑M
k=1 πkφ(x|θk) , where πk is

the mixture component prior probability and φ(· | θk) is the multivariate normal density
parameterized by θk = (µk,Σk), µk being the d-dimensional mean vector and Σk the
d × d covariance matrix. For model estimation, a latent indicator Z ∈ {1, 2, ...,M} with
P (Z = k) = πk is used. Specifically, conditioning on Z = k, X follows the k-th component
distribution. Z is also called the component identity of X. To perform clustering, the usual
approach is to compute the posterior probability P (Z = k|X = x) and assign x to the
cluster with the maximum posterior. However, this approach is inadequate to model clusters
with arbitrary shapes and cannot ensure that the clusters are reasonably separated. One
major idea explored in the literature is to merge multiple mixture components for a better
and more flexible representation of an individual cluster. We refer to Melnykov and Maitra
(2010) for a thorough review on clustering based on finite mixture models.

Banfield and Raftery (1993) and Celeux and Govaert (1995) propose to decompose the
covariance matrix of the mixture components in a GMM into parts that control volume,
shape, and orientation respectively and allow model constraints to be imposed in these
aspects either individually or by combination. A model selection criterion is then used to
choose a GMM in terms of not only the number of components but also the constraints on
covariance matrices. A popular R package, namely Mclust (Fraley and Raftery, 2006), is
implemented for this method, which we will use for comparison.

The Modal EM (MEM) algorithm developed by Li et al. (2007) performs efficient merging
of mixture components. It resembles the expectation-maximization (EM) algorithm (Demp-
ster et al., 1977), as reflected by the name “modal EM”. However, the objective of MEM is to
find an increasing path from any data point to a local maximum of a given density. Hence, the
optimization objective of MEM is to find a local maximizer over x for f(x|θ) under a given
θ, while EM is to find local maxima over θ for f(x|θ) given x. Consider a general mixture
density f(x) =

∑M
k=1 πkfk(x), where fk(x) is the density of the k-th mixture component.
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Starting from any initial value denoted by x[0], MEM solves a local maximum of the mixture

density by the following two iterative steps: (1) At iteration r, let pk = πkfk(x[r])

f(x[r])
, k = 1,

..., M ; (2) Update x[r+1] = argmaxx

∑M
k=1 pk log fk(x). MEM stops when a pre-specified

stopping criterion is met. Specifically for GMM with f(x) =
∑M

k=1 πkφ(x|µk,Σk), MEM
becomes

1. E-step: Solve

pk =
πkφk(x

[r] | µk,Σk)

f(x[r])
, k = 1, ..., M. (1)

2. M-step: Solve

x[r+1] =

(
M∑
k=1

pk · Σ−1
k

)−1

·

(
M∑
k=1

pk · Σ−1
k µk

)
. (2)

The computational efficiency of MEM enabled the development of a new clustering
approach by Li et al. (2007), referred to as modal clustering. In Li et al. (2007), a non-
parametric Gaussian kernel density estimate is used, and MEM is applied to find the mode
associated with every point. Data points associated with the same mode are assigned to the
same cluster. In Lee and Li (2012), modal clustering based on the general finite GMM is
studied. For computational efficiency, instead of applying MEM to every data point, it is
applied to the means of the mixture components. Components with mean vectors associated
with the same mode are merged into one cluster. Whether a point-wise mode association or
a component-wise mode association is preferred depends on the nature of the application
and the computational resources. In practice, the difference in the clustering results we have
observed is quite small. We refer to the clustering method based on component-wise mode
association as modal GMM and use it as a baseline for comparison with our new method.

Under the framework of modal clustering, the purpose of a mixture component is primarily
for good density estimation. We no longer rely on a one-to-one correspondence between
mixture components and clusters. Mode association also ensures that different clusters of
data are well separated. See Li et al. (2007) for more detailed discussion on these advantages.
The flexibility provided by modal clustering for fitting data is precisely what we need for
the applications we consider. In the next section, we propose a HMM-type model which can
be cast as a mixture model with an enormous number of components, even exceeding the
data size. This complexity causes no difficulty in clustering via mode association.

3. Hidden Markov Model on Variable Blocks

As discussed in Section 1, in some specific application domains, a sequential dependence
structure among groups of variables is available. This dependence prompts us to model a
subset of variables conditioning on some other subset of variables. If we view the sequential
ordering of the variable blocks as a “timeline”, it seems natural to employ a HMM-type model,
where each variable block follows a mixture distribution and the statistical dependence
among the blocks is captured by the Markov process of the underlying states (that is, the
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mixture component identities). The description of a conventional HMM is provided in
Appendix A. We call our new model Hidden Markov Model on Variable Blocks (HMM-VB).

Suppose the d-dimensional random vector X is partitioned into T blocks indexed by
t = 1, 2, ..., T . Let the number of variables in block t be dt, where

∑T
t=1 dt = d. Assume that

the d1 variables in block 1 have indices before the d2 variables in block 2, and so on. In general,
obviously, such an ordering of variables may not hold. But this is only a matter of naming the
variables and has no effect on our results. Let X(t) denote the t-th variable block. Without
loss of generality, let X(1) = (X1, X2, ..., Xd1)′ and X(t) = (Xmt+1, Xmt+2, ..., Xmt+dt)

′,
where mt =

∑t−1
τ=1 dτ , for t = 2, ..., T .

Denote the underlying state of X(t) as st, t = 1, ..., T . Let the index set of st be
St = {1, 2, ...,Mt}, where Mt is the number of mixture components for variable block X(t),
t = 1, ..., T . Let the set of all possible sequences be Ŝ = S1 × S2 · · · × ST . |Ŝ|=

∏T
t=1Mt.

We assume:

1. {s1, s2, ..., sT } follow a Markov chain. Let πk = P (s1 = k), k ∈ S1. Let the transition

probability matrix At = (a
(t)
k,l) between st and st+1 be defined by a

(t)
k,l = P (st+1 =

l|st = k), k ∈ St, l ∈ St+1.

2. Given st, X
(t) is conditionally independent from other st′ and X(t′), for all t′ 6= t.

We also assume that given st = k, the conditional density of X(t) is the Gaussian

distribution φ(X(t) | µ(t)
k ,Σ

(t)
k ).

Let s = {s1, ..., sT }. A realization of X is x, and a realization of X(t) is x(t). To summarize,
the density of HMM-VB is given by

f(x) =
∑
s∈Ŝ

(
πs1

T−1∏
t=1

a(t)
st,st+1

)
·
T∏
t=1

φ(x(t)|µ(t)
st ,Σ

(t)
st ). (3)

Remark 1: Figure 1 illustrates two major differences between HMM-VB and the conventional
HMM. (1) The variable blocks X(t)’s are not from the same vector space. Hence, the
parameters of the distribution of X(t) given st = k depend not only on k but also on t; (2)
The underlying Markov chain for {s1, ..., sT } is not time invariant. In fact, the state space
St varies with t.

Remark 2: Although the density function of HMM-VB in Eq. (3) indicates block diagonal
covariance matrices, there are important differences from a typical GMM with the same
constraint on the covariance. First, the Gaussian mean vectors in Eq. (3) reside on a lattice
in the Cartesian product space Rd1 ×Rd2 · · · × RdT . Secondly, the number of components
grows exponentially with T . In fact, it is often larger than the sample size. The enormous
number of components cannot be handled by a typical covariance constrained GMM from
either estimation or computational feasibility perspectives.

Remark 3: Since HMMs can be represented as singly connected directed acyclic graphs,
HMM-VB is a special case of graphical models (e.g., Bishop (2006); Koller and Friedman
(2009)). We named our model HMM-VB because we derived the estimation method based
on the popular Baum-Welch algorithm for HMM. Moreover, HMM itself is a widely known
model in machine learning as well as statistics.

5



Lin and Li

Figure 1: Comparison between HMM-VB and HMM models. The observations under HMM
have to be of a fixed dimension, 2 in this illustration. Typically, only one transition
probability matrix is applied through time, and the set of distributions conditioned
on the states at any time spot is also fixed. HMM-VB models data across blocks of
different variables, possibly of different dimensions. Both the transition probability
matrix and the set of conditional distributions are defined individually at every
“time” spot.

3.1 Maximum Likelihood Estimation

HMM is usually estimated by the EM algorithm. However, because the cardinality of S̄
grows exponentially with the sequence length, the computational complexity of a direct
application of EM is of exponential complexity. This technical hurdle was overcome by the
Baum-Welch (BW) algorithm which achieves complexity of linear order in the sequence
length and quadratic in the number of states without compromising optimality. The BW
algorithm, a special instance of EM, was developed in the 1960’s before the general EM
algorithm was developed in the 1970’s. As a result, we still call the estimation algorithm
Baum-Welch, following the convention of the literature on HMM. We present the BW
algorithm for HMM model estimation in Appendix A. For a detailed exposure to HMM, we
refer to Young et al. (1997).

We now present the corresponding BW algorithm for HMM-VB. It can be proved that
the BW algorithm for HMM is an exact EM algorithm. The derivation of the BW algorithm
for HMM-VB is similar to the derivation of BW for the usual HMM. We thus omit it
here. Clearly, it is not meaningful to estimate HMM-VB using a single sequence, which is
essentially a single data point in this case. HMM-VB is after all a model for X ∈ Rd.

Denote by xi = (x
(1)
i , x

(2)
i , ..., x

(T )
i )′ the ordered and grouped i-th sample according

to the given variable blocks. We denote the original i-th sample before ordering by x̆i.
Consider estimation of HMM-VB based on a data set {x1,x2, ...,xn}. We define Lk(xi, t)
and Hk,l(xi, t) similarly as in Eq. (8) and Eq. (9) in Appendix A. For i = 1, ..., n,

Lk(xi, t) = P (si,t = k | xi) , k ∈ St, (4)

Hk,l(xi, t) = P (si,t = k, si,t+1 = l | xi) , k ∈ St, l ∈ St+1. (5)
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The BW algorithm iterates the following two steps:

1. E-step: Under the current set of parameters, compute Lk(xi, t), i = 1, ..., n, k ∈ St,
t = 1, ..., T , and Hk,l(xi, t), i = 1, ..., n, k ∈ St, l ∈ St+1, t = 1, ..., T − 1.

2. M-step: Update parameters by

µ
(t)
k =

∑n
i=1 Lk(xi, t)x

(t)
i∑n

i=1 Lk(xi, t)
, k ∈ St, t = 1, ..., T,

Σ
(t)
k =

∑n
i=1 Lk(xi, t)

(
x

(t)
i − µ

(t)
k

)(
x

(t)
i − µ

(t)
k

)′∑n
i=1 Lk(xi, t)

, k ∈ St, t = 1, ..., T,

a
(t)
k,l =

∑n
i=1Hk,l(xi, t)∑n
i=1 Lk(xi, t)

, k ∈ St, l ∈ St+1, t = 1, ..., T − 1,

πk ∝
n∑
i=1

Lk(xi, 1), k ∈ S1, s.t.
∑
k∈S1

πk = 1.

The above equations can be easily extended to the case of weighted sample points. It can
occur in practice that each sample point is assigned with a weight. For instance, quantization
is often used to reduce the data size significantly. Instead of using the original data, one
may use the quantized points, each of which can represent a different number of original
points and hence is assigned with a weight proportional to that number. Suppose weight wi
is assigned to sample xi. The E-step is not affected. In the M-step, we can simply multiply
wi in front of each summand appeared in the equations above.

The forward-backward algorithm for computing Lk(xi, t) and Hk,l(xi, t) is essentially
the same as the forward-backward algorithm for the usual HMM. The fact that the variable
blocks are not from the same vector space and the state spaces vary with t does not cause
any intrinsic difference. Suppress the sample index i and consider one sample point x.

Define the forward probability αk(x, t) as the joint probability of observing the first t
variable blocks x(τ), τ = 1, ..., t, and being in state k at time t:

αk(x, t) = P (x(1), x(2), ..., x(t), st = k), k ∈ St.

This probability can be evaluated by the following recursive formula:

αk(x, 1) = πkφ(x(1) | µ(1)
k ,Σ

(1)
k ) , k ∈ S1 ,

αk(x, t) = φ(x(t) | µ(t)
k ,Σ

(t)
k )

∑
l∈St−1

αl(x, t− 1)a
(t−1)
l,k , 1 < t ≤ T, k ∈ St.

Define the backward probability βk(x, t) as the conditional probability of observing the
variable blocks after time t, x(τ), τ = t+ 1, ..., T , given the state at block t is k:

βk(x, t) = P (x(t+1), ..., x(T ) | st = k), 1 ≤ t ≤ T − 1, k ∈ St,
Set βk(x, T ) = 1, for all k ∈ ST .
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The backward probability can be evaluated using the following recursion:

βk(x, T ) = 1, k ∈ ST ,
βk(x, t) =

∑
l∈St+1

a
(t)
k,lφ(x(t+1) | µ(t+1)

l ,Σ
(t+1)
l )βl(x, t+ 1), 1 ≤ t < T, k ∈ St.

The probabilities Lk(x, t) and Hk,l(x, t) are solved by

Lk(x, t) = P (st = k | x) =
P (x, st = k)

P (x)
=
αk(x, t)βk(x, t)

P (x)
, k ∈ St,

Hk,l(x, t) = P (st = k, st+1 = l | x) =
P (x, st = k, st+1 = l)

P (x)

=
1

P (x)
αk(x, t)a

(t)
k,lφ(x(t+1) | µ(t+1)

l ,Σ
(t+1)
l )βl(x, t+ 1), k ∈ St, l ∈ St+1.

The normalizing factor P (x) =
∑

k∈St αk(x, t)βk(x, t) holds for any t.
To initialize the model, we design several schemes. In our experiments, models from

different initializations are estimated and the one with the maximum likelihood is chosen. In
our baseline initialization scheme, k-means clustering is applied individually to each variable
block using all the data instances. Based on the clustering result of k-means, we take every
cluster as one mixture component and compute the sample mean and sample covariance
matrix of data in that cluster. To reduce the sensitivity to the initial clustering result, we
also compute the pooled common sample covariance matrix for the clusters. The initial
covariance matrix of a component is then set as a convex combination of the cluster-specific
sample covariance and the common sample covariance. The transition probabilities are
always initialized to be uniform. Under the second initialization scheme, we randomly
sample a subset from the whole data and apply the baseline initialization to the subset.
Under the third initialization scheme, we randomly pick a subset from the data and treat
points in this subset as the cluster centroids of the k-means. These centroids will induce a
cluster partition of the whole data, based on which we initialize the component means and
covariance matrices in the same way as the baseline method. Both the second and the third
initialization schemes are repeated several times with different random starts.

3.2 Modal Baum-Welch Algorithm

HMM-VB can be viewed as a special case of a GMM where each component of the GMM
corresponds to a particular sequence of states s = {s1, ..., sT }, that is, a combination of
states for all the variable blocks. We call this equivalent GMM the GMM mapped from

HMM-VB. Each component is a Gaussian distribution with mean µs = (µ
(1)
s1 , µ

(2)
s2 , ..., µ

(T )
sT )

(column-wise stack of vectors) and a covariance matrix, denoted by Σs, that is block diagonal.

The t-th diagonal block in Σs is Σ
(t)
st with dimension dt × dt. We can thus readily apply the

modal clustering framework for GMM to data modeled by HMM-VB. However, the number
of components in the mapped GMM is M =

∏T
t=1Mt, which grows exponentially with T

assuming similar Mt’s. A direct application of the MEM algorithm (see Eq. (1) and (2)) is
computationally infeasible. We discover that because of the block diagonal structure of the
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covariance matrix of the GMM mapped from HMM-VB, we can in fact avoid computing
the posterior of x belonging to each component (exponentially many of them!). Instead, we
only need Lk(x, t) for all k and t when updating x in the M-step of MEM. Because the BW
algorithm solves Lk(x, t) at a complexity linear in T , we can achieve linear complexity for
solving the modes of HMM-VB as well. We call this new algorithm Modal Baum-Welch
(MBW) Algorithm.

We denote by x(t),r the value of the t-th variable block at iteration r, and let x[r] =
(x(1),r, x(2),r, ..., x(T ),r) be the concatenated and properly ordered full vector at iteration r.
The equivalence of MBW and the Modal EM algorithm is ensured by Theorem 7 in Section
4.3, which is proved in Appendix D.

The MBW algorithm iterates the following two steps:

1. E-step: Compute Lk(x
[r], t), for k ∈ St, t = 1, ..., T .

2. M-step: For t = 1, ..., T ,

x(t),r+1 =

∑
k∈St

Lk(x
[r], t) ·

(
Σ

(t)
k

)−1

−1∑
k∈St

Lk(x
[r], t) ·

(
Σ

(t)
k

)−1
· µ(t)

k

 .

The clustering method based on MBW is straightforward. We first find the state sequence

s
(∗)
i with maximum posterior given xi by the Viterbi algorithm (Young et al., 1997):

s∗i = arg max
s∈Ŝ

P (s | xi), i = 1, ..., n.

Since different xi’s may yield the same sequence, we then identify the collection of distinct s∗i .

For each distinct sequence, say s∗, find µs∗ = (µ
(1)
s∗1
, µ

(2)
s∗2
, ..., µ

(T )
s∗T

). Use µs∗ as an initialization

for MBW to find the mode associated with it. If µs∗i and µs∗j are brought to the same mode
by MBW, the corresponding data vectors xi and xj are put into the same cluster. When
|Ŝ| is very large, the number of different s∗i ’s can become close to the data size. Hence, the
amount of computation we can save by seeking modes starting from µs∗i ’s instead of the
original data diminishes. As a result, in such cases, we recommend seeking modes directly
from the original data.

3.3 Computational Complexity

For both the BW estimator of HMM-VB and the MBW algorithm, the vast majority of
the computation is on obtaining Lk(xi, t) and Hk,l(xi, t), i = 1, ..., n, t = 1, ..., T , k ∈ St,
l ∈ St+1. For clarity of discussion, suppose the number of states in each block, |St|, is a
constant. Then the complexity for computing the two quantities is O(nT |St|2).

The two quantities Lk(xi, t) and Hk,l(xi, t) can be computed separately for each sample
xi. Thus the E-step in both the BW and the MBW algorithms are easily parallelizable by
simply dividing the data among multiple processors. For the MBW algorithm, since we
search for the mode separately starting from each sample point, the M-step is also naturally
parallelizable. For the BW estimation algorithm, in the M-step, some quantities need to be
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transmitted to a central processor to update the parameters, which will then be broadcast to
the distributed processors. However, an inspection of the M-step shows that we do not need
to communicate Lk(xi, t) and Hk,l(xi, t) for every sample point xi to the central processor.
Suppose the first processor treats a data segment containing points 1, 2, ..., n1. It only needs

to send
∑n1

i=1 Lk(xi, t),
∑n1

i=1 Lk(xi, t)x
(t)
i ,

∑n1
i=1 Lk(xi, t)x

(t)
i x

(t)′

i ,
∑n1

i=1Hk,l(xi, t), k ∈ St,
l ∈ St+1, t = 1, ..., T , to the central processor. Thus the communication load from a processor
treating one data segment to the central processor does not depend on the data size and is
nearly as low as the number of parameters in the model (the negligible relative difference
shrinks quickly when |St| grows). The central processor can then update the parameters
precisely according to the formula in the M-step. Since the design of the parallel algorithm
of BW is simple, we hereby skip the details for brevity.

3.4 Constructing Variable Dependence Structure

We refer to the grouping and ordering of the variable blocks, that is, the formation of X(t),
t = 1, ..., T , as the dependence structure or variable block structure. We have so far assumed
that the dependence structure of HMM-VB is given. To complete our new framework for
clustering, we now address how to determine such a dependence structure when it is not
pre-specified. We propose to seek a dependence structure that yields the HMM-VB with the
minimum BIC for the data. We use the following definition of BIC:

BIC = −2 log(L̂) + k log(n),

where L̂ is the maximum value of the likelihood function, n is the sample size, and k is
the number of free parameters to be estimated. The challenge lies in the computational
complexity of the combinatorial optimization problem. An exhaustive search is intractable
even for moderate dimensions (the number of possible groupings and orderings is much
larger than that of variable permutations). To achieve computational feasibility, we design a
greedy local search scheme.

We first generate an ordering of the variables based on some prior knowledge or on
a random permutation, which we call raw ordering hereafter. The raw ordering is not
necessarily the final ordering of the variables after the grouping is decided, although the
former indeed strongly influences the latter. We may generate several random raw orderings of
the variables. Given any raw ordering, the variables are grouped by a step-wise optimization
procedure. Based on the likelihoods of the corresponding HMM-VBs, the dependence
structure will be chosen under each raw ordering. We then compare structures found from
all the raw orderings and select the best from them.

Denote the raw ordering of the variables by Q, with Q(j) ∈ {1, ..., d}, for j = 1, ..., d.
Note that Q(j) is a bijection between {1, ..., d} and itself. Denote by G the grouping for the
original variable vector. For example, if Q = (3, 2, 1), with d = 3, then the specified ordering
of the input data for HMM-VB is (XQ(1), XQ(2), XQ(3)) = (X3, X2, X1). Suppose that there
are two variable blocks, where X2 and X3 form the first variable block and X1 belongs to the
second block. Then G(Q(1)) = 1, G(Q(2)) = 1 and G(Q(3)) = 2, or equivalently G(1) = 2,
G(2) = 1, and G(3) = 1.

Next, we determine how the variables are grouped based on a step-wise selection process.
The variables are treated one by one in the order given by Q. The algorithm ensures that

10
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G(Q(1)), ..., G(Q(j − 1)) have been determined when solving G(Q(j)). Specifically, suppose
G(Q(1)), ..., G(Q(j − 1)) ∈ {1, 2, ..., g}. That is, the first j − 1 ordered variables have been
put into g non-empty groups. Note that g ≤ j − 1. The possible value for G(Q(j)) is 1,
..., g, or g + 1. If the Q(j)-th variable is put in any existing group, then G(Q(j)) ≤ g;
otherwise it forms by itself a new group with identity number g + 1. In order to determine
G(Q(j)), we compare exhaustively the structures with G(Q(j)) = 1, 2, ..., g, g + 1, which
means experimenting with putting the Q(j)-th variable in each existing group as well as
forming a new group by the Q(j)-th variable alone. We use each structure to estimate a
HMM-VB for the first j ordered variables: XQ(1), XQ(2), ..., XQ(j) (note that this is not the
full dimensional data). These HMM-VBs are compared by BIC using the j-dimensional
data, and the one with the optimal BIC is chosen, which in turn determines G(Q(j)). The
process is repeated to sweep through all the variables until the full dimension j = d.

Note that we need to specify the number of components for each variable block. After
extensive numerical experiments, we set Mt = 10 if dt ≤ 5, Mt = 15 if dt ∈ [6, 10], otherwise,
Mt = dt + 10 for t being any variable block. In addition, the greedy local search algorithm
is quite robust to the change in the number of mixture components.

We denote the BIC of the estimated HMM-VB under raw ordering Q and group-
ing G(Q(1)), ..., G(Q(j)) for the partial data containing the first j ordered variables by
LBIC(XQ(1),...,Q(j), G(Q(1)), ..., G(Q(j)), θ), where θ denotes the parameters of HMM-VB.
Recall that XQ(j) denotes the Q(j)-th column of the data matrix X. Our step-wise selection
algorithm under a given raw ordering Q is as follows:

1. Input data matrix X and the ordering structure {Q(1), ..., Q(d)}.

2. Set j = 1, g = 1, G(Q(1)) = 1.

3. For j = 2, ..., d

(a) For each k = 1, ..., g, g + 1, obtain the maximum likelihood estimation of
HMM-VB for partial data composed of XQ(1),XQ(2), ...,XQ(j) under structure Q
and (G(Q(1)), ..., G(Q(j − 1)), G(Q(j)) = k). Let the estimated parameter at k
be θ∗,k.

(b) Compute

G∗(Q(j)) = argmin
k∈{1,...,g,g+1}

LBIC(XQ(1),...,Q(j), G(Q(1)), ..., G(Q(j)) = k, θ∗,k).

(c) Set G(Q(j))←− G∗(Q(j)).

(d) If G(Q(j)) = g + 1, set g ←− g + 1.

Note that if the prior knowledge of the ordering structure is unknown, we randomly
generate the raw ordering {Q(j)}dj=1 multiple times and adopt the one achieving the optimal
BIC. We find that this approach performs well empirically as illustrated in the experiment
section. It is also not difficult to see that this algorithm runs on the order of O(d2), which is
efficient in practice.

11
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4. Theoretical Properties

We study the identifiability of HMM-VB, prove the consistency of using BIC for model
selection in a special case, and prove the optimality of MBW algorithm for HMM-VB.

4.1 Identifiability

Since HMM-VB can be viewed as a special case of a GMM, we need to ensure model
identifiability, which is a necessary condition for estimating the parameters of a mixture
model consistently. Specifically, we need to make sure that no two essentially different
mixture parameters define the same distribution. We now introduce a type of GMM
that includes HMM-VB as a special case and prove some results that help establish the
identifiability of HMM-VB. A list of new definitions and notations is provided first.

The variable blocks X(t), t = 1, ..., T are mutually exclusive and collectively exhaustive
(that is, their union is the set of all the variables). For brevity, with a slight abuse of
notation, using X(t) to mean both a subvector of X as well as a set of variables, but
ensure that the specific meaning is clear from context. Denote a variable partition by
P = {X(1), X(2), ..., X(T )}.

1. Lattice GMM: Denote the Gaussian parameter of a mixture component for variable

block X(t) by θ
(t)
it

= (µ
(t)
it
,Σ

(t)
it

), it = 1, ...,Mt. We define a lattice GMM on a variable
partition P as a GMM that bears the form

f(x) =

M1∑
i1=1

M2∑
i2=1

· · ·
MT∑
iT =1

π(i1, ..., iT ) ·
T∏
t=1

φ(x(t) | θ(t)
it

). (6)

For a lattice GMM, a component is indexed by a T -tuple (i1, ..., iT ). Denote the
number of components for each variable block collectively by M = {M1, ...,Mt}. We
introduce latent state variables st for each block X(t), st ∈ {1, ...,Mt}, t = 1, ..., T .
The joint pmf of st’s is given by π(i1, ..., iT ). We use Π(s1, ..., sT ) to denote the joint
pmf of s1, ..., sT and Π(st1 , st2 , ..., stk) to denote the marginal pmf of any subset of the
latent states.

Θ(t) = {θ(t)
it
, it = 1, ...,Mt} is the grid of parameters for variable block X(t). Clearly,

a lattice-GMM is a mixture of components whose parameters are points from the
Cartesian product of the grid of each variable block: Θ = Θ(1) ×Θ(2) · · · ×Θ(T ). We
call Θ the lattice of parameters for the full dimensional vector X.

We say θ
(t)
it
∈ Θ(t) exists if P (st = it) > 0, or equivalently there is at least one set of i1,

..., it−1, it+1, ..., iT such that π(i1, i2, ..., iT ) > 0. We say that the grid Θ(t) is distinct

if θ
(t)
it
6= θ

(t)
i′t

for any it 6= i′t. The grid Θ(t) is non-redundant if it is distinct and every

θ
(t)
it
∈ Θ(t), it = 1, ...,Mt, exists. If Θ(t) is not non-redundant, then we can shrink the

grid Θ(t) by eliminating some θit ’s and/or merging identical θit ’s in the set. Lattice Θ
is non-redundant if all Θ(t), t = 1, ..., T are non-redundant.

2. Tight variable partition: P is a tight variable partition (or simply tight partition) for a
lattice GMM if by Eq. (6), the component prior π(i1, ..., iT ) > 0 for all the T -tuples
(i1, ..., iT ).

12
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3. Maximum variable partition: A variable partition P1 is nested in partition P2, denoted
by P1 � P2 or P2 ≺ P1, if every variable block of P1 is a subset of a variable block of
P2. That is, the partition P1 can be obtained from P2 by further dividing a variable
block into smaller blocks. P is a maximum variable partition (or simply maximum
partition) for a lattice GMM if P is a tight variable partition and there exists no other
tight partition P ′ for the GMM such that P ′ � P.

We let M to denote the collection of parameters that specify a lattice GMM on the
variable partition P . M = {M,Θ,Π(s1, ..., sT )}. We also use MX(t) to denote the marginal
GMM for X(t) derived from M. For instance, MX(t) = {Mt,Θ

(t),Π(st)}. Similarly, we can
have marginal GMM for multiple variable blocks, e.g., MX(t),X(t+1) .

Suppose O is a permutation function from one index set to another and Γ is a set
of indexed parameters. We denote the permuted parameters by O(Γ). For instance, if
Γ = {µ1, µ2, µ3} and O permutes {1, 2, 3} to {3, 2, 1}, then O(Γ) = {µ3, µ2, µ1}. Consider an
index given by a T -tuple (i1, ..., iT ) and Ot is a permutation function on the tth position it.
We use O1:T = O1×O2 · · · ×OT to denote the permutation on the T -tuple: (i1, i2, ..., iT )→
(O1(i1),O2(i2), ...,OT (iT )).

Lemma 1 The identifiability of GMM gives that
∑M

k=1 πkφ(X|µk,Σk) =
∑M∗

l=1 π
∗
l φ(X|µ∗l ,Σ∗l )

with distinct (µk,Σk)’s, distinct (µ∗l ,Σ
∗
l )’s, and all the priors πk > 0 and π∗l > 0, k = 1, ...,M ,

l = 1, ...,M∗ implies M = M∗ and up to a permutation of mixture components, πk = π∗k,
µk = µ∗k and Σk = Σ∗k.

See for instance Yakowitz and Spragins (1968); Titterington et al. (1985).

Theorem 2 Let M and M′ be two sets of parameters for a lattice GMM on the same
variable partition P. Assume that M and M′ specify the same density function and their
lattices Θ and Θ′ are both non-redundant. Then the number of components for each variable
block Mt = M ′t, t = 1, ..., T . There exists a unique permutation Ot : it → i′t for each variable
block X(t) such that M′

X(t) = Ot(MX(t)) and M′ = O1:T (M).

Remark: Mt = M ′t and M′
X(t) = Ot(MX(t)) are simple results of Lemma 1. The

assumption that Θ and Θ′ are non-redundant does not imply every prior in Eq. (6) is
positive. Hence Lemma 1 cannot be directly applied to prove M and M′ are identical up to
permutation. We provide the proof for Theorem 2 in Appendix B.

The generic HMM-VB density in Eq. (3), given a pre-determined variable block structure
can be re-written as

f(x) =

M1∑
i1=1

M2∑
i2=1

· · ·
MT∑
iT =1

(
πi1a

(1)
i1,i2

a
(2)
i2,i3
· · · a(T−1)

iT−1,iT

)
·
T∏
t=1

φ(x(t)|µ(t)
it
,Σ

(t)
it

). (7)

It is clear that HMM-VB is a lattice GMM on partition P. Specifically, the parameter set

M for a HMM-VB is M = {M,Θ, πi1 , a
(t−1)
it−1,it

, i1 = 1, ...,M1, it = 1, ...,Mt, t = 2, ..., T}.
We prove the following lemma in Appendix B which specifies the conditions under which

a HMM-VB has non-redundant lattice.
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Lemma 3 The HMM-VB in Eq. (7) has non-redundant lattice Θ if and only if Θ is distinct
and πi1 > 0, for ∀i1 ∈ {1, ...,M1} and for ∀t = 2, ..., T and it ∈ {1, ...,Mt}, there exists at

least one it−1 ∈ {1, ...,Mt−1} such that a
(t−1)
it−1,it

> 0.

Corollary 4 For a given variable block structure, if two HMM-VBs, M and M′, both have
non-redundant lattices Θ and Θ′, and define the same density function, then there exists a
unique permutation Ot for the mixture components of every variable block X(t), t = 1, ..., T ,
such that M′ = O1:T (M).

Remark: Corollary 4 establishes the identifiability of HMM-VB under a given variable
block structure. By Theorem 2, it is obvious that M′ = O1:T (M), Θ′ = O1:T (Θ), and
Π′(s1, ..., sT ) = O1:T (Π(s1, ..., sT )). We only need to show that the last equation implies
that the transition probabilities are identical up to permutation O1:T . We prove this in
Appendix B.

We have so far assumed that the partition P for the lattice GMM is given. A natural
question is whether P is identifiable. To answer the question, we assume P is a tight variable
partition. Without this constraint, we can express any GMM with M components as a
lattice GMM with every block containing a single variable and every block being assigned
with M components. The number of components for the lattice GMM will be Md with only
M components assigned with non-zero priors. If we restrict to tight variable partitions, the
maximum partition will not be trivial. Furthermore, we can prove that the the maximum
partition always exists and is unique. Thus the identifiability of a GMM (according to
Lemma 1) ensures that the maximum partition is identifiable. That is, the variable block
structure, in its most refined partition, is identifiable.

Theorem 5 The maximum variable partition of a GMM exists and is unique.

The proof is given in Appendix B.

SupposeM is a HMM-VB on a tight partition P . It is obvious that P is a tight partition
for a HMM-VB if and only if πi1 > 0, ∀i1 ∈ {1, ...,M1}, and all the transition probabilities
are positive. If P is a maximum partition for the equivalent lattice GMM of M, P is
identifiable once M is given (by Theorem 5). However, because the latent states s1, ..., sT
of the HMM-VB follow a Markov chain (an extra constraint), even if P cannot be further
refined for the HMM-VB, it is not necessarily the maximum partition for the corresponding
lattice GMM. In other words, a lattice GMM that is not a HMM-VB on its maximum
partition can be an HMM-VB on a coarser partition. Another subtlety with HMM-VB
is that even when P is identifiable, the order of the variable blocks is not for the simple
reason that a reversed Markov chain is still Markov. The fact that the order of the variable
blocks is not identifiable is also clear from the extreme case when the latent states s1, ..., sT
are independent and therefore any order of them is valid. On the other hand, because our
mode-based clustering method for HMM-VB searches for the modes of the joint density, the
modes are not affected as long as the equivalent lattice GMM is the same. Hence regardless
of the order of the variable blocks (e.g., forward chain or backward chain), if the HMM-VB
is a correct model, the modes will not change, and neither will the clustering result.
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4.2 Consistency of BIC for Model Selection

In this section, we prove a special case that the probability of selecting the true variable
block structure by minimizing BIC approaches 1 as n→∞ under some assumptions and
the conditions that the true variable structure is among the candidates and the number of
components for each variable block is known.

Let the number of variable blocks be T and its true value be T 0. Denote the true number
of components in each block by M0

t , t = 1, ..., T 0. Also let M0T
0

= {M0
1 , ...,M

0
T 0}. Denote

the variable index sets of the true ordered blocks by C0T
0

= (C0
1 , C

0
2 , ..., C

0
T 0). For example,

C0
1 contains the indices of the variables in the first block. For a particular sequence of variable

blocks CT = (C1, C2, ..., CT ), we use the notation X(Ct) to denote the tth block of variables
according to CT . Denote the parameters of a model collectively by γ(CT ,MT ) ∈ Γ(CT ,MT ),
where Γ(CT ,MT ) is the space of the parameters.

Denote by g the true density function of X. Let DKL(g||f) =
∫
g(x) log(g(x)/f(x))dx be

the Kullback-Leibler divergence from density f to g. We define the following two notations:

γ∗(CT ,MT ) = argmin
γ
(CT ,MT )

∈Γ
(CT ,MT )

DKL(g||f(.|γ(CT ,MT )))

= argmax
γ
(CT ,MT )

∈Γ
(CT ,MT )

EX{log f(X|γ(CT ,MT ))},

γ̂(CT ,MT ) = argmax
γ
(CT ,MT )

∈Γ
(CT ,MT )

1

n

n∑
i=1

log{f(xi|γ(CT ,MT ))}.

Consider the case where the true model contains finite T 0 variable blocks and all the
models in consideration are restricted to have the same number of variable blocks (T = T 0).
To simplify the notation, all the dependence over T 0 and T is omitted below. We make two
assumptions:

A1 There exists a unique (C0,M0) such that g = f(.|γ∗(C0,M0)) for some parameter value γ∗.
As discussed previously, when the order of the variable blocks is reversed, we obtain a

HMM-VB that yields the same density function for X although parameterized differently.
Hence, the order is not identifiable. Thus, the uniqueness in assumption A1 is implicitly
up to a reverse ordering. To further simplify the notation, the dependency over M0 is
omitted below.

A2 γ∗(C) and γ̂(C) are assumed to belong to a compact subspace Γ′(C):

Γ′
(C) = (Λ×A× B(η, |C1|)M

0
1 ×DM0

1

|C1| × B(η, |C2|)M
0
2 ×DM0

2

|C2| × · · · × D
M0

T

|CT | × B(η, |CT |)M
0
T ) ∩ Γ(C),

where

[1] Λ = {(π1, ..., πM0
1
) ∈ [0, 1]M

0
1 ;
∑M0

1
k=1 πk = 1} denotes the set of possible proportions,

[2] A =




a1,1 a1,2 · · · a1,M0

t+1

a2,1 a2,2 · · · a2,M0
t+1

...
... · · ·

...
aM0

t ,1
aM0

t ,2
· · · aM0

t ,M
0
t+1

 ∈ [0, 1]M
0
t ×M0

t+1 ;∀j ∈ 1 : M0
t ,
∑M0

t+1

k=1 aj,k = 1



T−1

t=1

,
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[3] B(η, d) = {x ∈ Rd, ||x||≤ η}, where ∀x ∈ Rd, ||x||=
√∑d

i=1 x
2
i ,

[4] |C| denotes the cardinality of the set C,

[5] Dd is the set of d×d positive definite matrices with eigenvalues in [a, b] with 0 < a < b.

Theorem 6 Under the special case that T = T 0 < ∞, and assumptions A1, A2, the
ordered variable block structure Ĉ that minimizes BIC under a given M0 is consistent in the
sense that P (Ĉ = C0)→ 1 as n→∞.

The proof is given in Appendix C.

Remark: We point out that the proved consistency in the asymptotic setting as stated
above holds for marginal likelihood approaches as well. We observe empirically, however, that
BIC performs better for model selection when the sample size is only modestly large. This
is expected as BIC addresses overfitting, which has been discussed extensively in literature
(e.g., Burnham and Anderson (2003)). Our simulation study in Section 5.1.1 further confirms
the advantage of BIC when the sample size is modestly large.

4.3 Modal Baum-Welch Algorithm and Its Optimality

Recall the definition for probability Lk(x, t) = P (st = k | x), k ∈ St, t = 1, ..., T .

Theorem 7 For a HMM-VB, suppose the solution of the M-step in the MEM algorithm
provided by Eq. (2) is divided into blocks x[r+1] = (x(1),r+1, ..., x(T ),r+1). Then

x(t),r+1 =

∑
k∈St

Lk(x
[r], t) ·

(
Σ

(t)
k

)−1

−1∑
k∈St

Lk(x
[r], t) ·

(
Σ

(t)
k

)−1
· µ(t)

k

 , t = 1, ..., T.

This theorem ensures that the MBW algorithm is the exact special case of the MEM
algorithm when the GMM is a HMM-VB. The proof is provided in Appendix D.

5. Experiments

In this section, we present experimental results on several simulated data sets (Section 5.1),
one mass cytometry data (Section 5.2), and two data sets with very high dimensions (Sec-
tion 5.3). For each data set, the BW algorithm was run repeatedly starting from multiple
initial models. In Section 3.1, the different ways of initialization are described. Among the
final models, we choose the one yielding the maximum likelihood.

5.1 Simulation with Various Types of Variable Block Structures

We first conduct simulation studies to examine the effectiveness of HMM-VB at capturing
small clusters, the overall clustering performance, and its robustness against different
parameter settings.
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5.1.1 Two variable blocks

Using a similar set-up as in Lin et al. (2013), a sample of size 10, 000 with dimension d = 8
is drawn from a hierarchical mixture model. There are two variable blocks. Following the
notations in the previous section, xi is divided into two variable blocks, also called subvectors,

x
(1)
i and x

(2)
i . The first subvector contains the first 5 dimensions: x

(1)
i = (xi,1, ..., xi,5), with

d1 = 5. The second subvector contains the last 3 dimensions: x
(2)
i = (xi,6, xi,7, xi,8), with

d2 = 3. In particular, x
(1)
i ’s are generated from a mixture of 7 normal distributions such that

the last two normal distributions (assigned with component priors 0.01 and 0.02 respectively)
have high mean values for the second and third dimensions. The other normal components

have very different proportions and mean vectors. The second subvector, x
(2)
i ’s, are generated

from a mixture of 10 normal distributions, where only two of them have high mean values

across all three dimensions. The component proportions of x
(2)
i vary according to which

normal component x
(1)
i was generated from, as in the assumption of HMM-VB. A detailed

description of the data generation mechanism is in Appendix E. The data is designed to
have at least one distinct cluster after standardization (subtract mean and divided by the
standard error). In particular, the standardized data have a well-separated region that the
five dimensions x2, x3, x6, x7, x8 are of high positive values, and the rest are negative. The
particular designed data region contains 100 data points, which account for only 1% of the
data.

We also run the MBW algorithm to find modes of the true density (see Appendix E). The
result serves two purposes: 1) to validate the effectiveness of MBW for finding small clusters
when there is no model estimation error; 2) to be used as a ground truth for comparison
with our HMM-VB method. MBW identifies perfectly that particular cluster of size 100. In
addition, it finds in total 16 modes (clusters). Among them, there are two additional small
clusters of size 54 and 98 respectively. Figure 5.1.1 (Left) shows the three smallest clusters.

To fit HMM-VB given the dependence structure among the 8 variables, we only need
to specify M1 and M2, the numbers of mixture components for the two variable blocks. If
casted as a GMM, the HMM-VB has M1 ×M2 components for the full dimensional data.
Model selection by BIC is conducted to select the optimal M1 and M2. Summaries on
various model specifications are listed in Figure 5.1.1 (Right). The model with M1 = 7 and
M2 = 10 has the lowest BIC and is thus chosen.

Recall that we search modes by MBW starting from the mean of every component that
has been chosen by a data vector according to the maximum a posteriori rule. We call the
components that have not been chosen by any data point the empty mixture components,
while the others are nonempty. Figure 5.1.1 (Right) shows that even though the total number
of nonempty mixture components increases with M1 and M2, the number of clusters after
modal clustering remains relatively stable.

In Table 1, we compare clustering results of HMM-VB with four baseline methods:
K-means, agglomerative hierarchical clustering on a set of dissimilarities, Mclust, and modal
GMM. We also tried other methods, such as spectral clustering using R kernlab package,
pdfCluster (Azzalini and Menardi, 2014) using R pdfCluster package, and the mean-shift
algorithm (Fukunaga and Hostetler, 1975; Cheng, 1995) using R MeanShift package. R
pdfCluster program was aborted by the computer system when applied to the data. R
kernlab and MeanShift packages failed to obtain results after several hours, while the
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(M1, M2) BIC # nonempty # clusters
components

(3, 3) 183, 687.4 8 2
(3, 5) 176, 134.6 9 7
(7, 10) 163, 486.1 35 16
(8, 10) 163, 724.0 37 16
(10, 10) 164, 245.1 45 16
(10, 15) 164, 822.9 70 17
(15, 10) 165, 338.6 56 16
(15, 15) 166, 313.4 85 18
(20, 15) 167, 761.7 121 17
(20, 20) 206, 478.6 158 19

Figure 2: (Left): Visualization of the simulated data in Section 5.1.1 based on the first three
principal components (PC). The smallest three clusters are plotted in blue (54
observations), green (98), red (100), and the rest are in grey. (Right): Comparisons
of BIC, total number of nonempty components and clusters under various model
specifications (M1 and M2).

methods in Table 1 take less than one minute. For K-means, hierarchical clustering, and
Mclust, we used the three R functions kmeans (with 20 starting points), hclust and Mclust.
In this analysis, we treat the 16 clusters found by MBW applied to the true mixture density
as the ground truth. Hence, for K-means and hierarchical clustering, we manually set 16
as the number of clusters. The number of normal mixture components and the covariance
structure are determined by BIC in the Mclust package (the package version is 5.2.3). More
specifically, we let Mclust search a maximum of 20 mixture components and then used the
BIC to choose among all the default covariance matrix models, as computational errors were
generated when searching over all the models. For this data set, the optimal number of
clusters chosen by Mclust is 15. The modal GMM analysis is performed using the same C
codes for fitting the HMM-VB model. We simply specified a single variable block containing
all the 8 variables. The HMM-VB model is then reduced to a usual GMM. In addition, we
let the total number of mixture components be 7× 10 = 70.

The first column of Table 1 shows the 16 true clusters and their cluster sizes. Let us call
the true clusters E∗1 , ..., E∗16. Results about each true cluster occupy one row in the table,
while results obtained from every clustering method are reported in one column. Take the
first row for cluster E∗1 as an example. E∗1 has 5, 098 data points. A cluster generated by
any method is described by a pair of numbers, the one outside the parenthesis being the size
of the cluster and the one inside being the number of points shared with the true cluster.
For instance, HMM-VB generates a cluster containing 5, 096 points, among which 5, 088 are
shared with E∗1 . This cluster is the best match with E∗1 . In comparison, modal GMM yields
a cluster of size 4, 695 overlapping E∗1 by 4, 467. By K-means, hierarchical clustering or
Mclust, E∗1 is split roughly into three clusters. Thus three pairs of cluster sizes are recorded
in the first row under each method. For clarity of presentation, if the overlap between a

18



Clustering with HMM-VB

cluster and any E∗i is too small, the cluster is not listed in the ith row. Reversely, a cluster
generated by a certain method may also cover a substantial portion of points from multiple
true clusters. For instance, hierarchical clustering yields one small cluster of size 257, which
contains both part of E∗1 and E∗2 . A cluster of size 154 generated by K-means contains
E∗5 and E∗8 . Therefore, a single cluster generated by a certain method may be reported in
multiple rows. To indicate clearly such a case, the same color (except for black) is used to
mark out a single cluster in any column. If a cluster is reported only once in any column,
the result is shown in black (in other words, black is not a color code).

True cluster HMM-VB K-means HC Mclust Modal GMM
1, 700(1, 693) 1, 192(1, 140) 2,240(2,239)

1 : 5, 098 5, 096(5, 088) 1, 452(1, 447) 3, 852(3, 757) 2, 815(2, 815) 4, 695(4, 467)
1, 477(1, 474) 257(116) 211(28)

2 : 184 187(184) 638(173) 257(132) 211(182) 4, 695(140)

3 : 483 483(483) 485(481) 400(394) 482(482) 299(297)
81(81) 179(179)

4 : 258 263(254) 254(249) 257(247) 260(256) 214(18)

5 : 100 100(100) 154(100) 154(100) 154(100) 152(100)

6 : 375 375(373) 380(371) 1, 242(362) 378(375) 374(362)

7 : 345 346(345) 510(338) 500(338) 513(345) 377(338)

8 : 54 54(54) 154(54) 154(54) 154(54) 152(52)

9 : 161 161(161) 510(156) 500(155) 513(161) 145(143)

10 : 502 505(502) 499(499) 552(499) 506(502) 348(348)
155(153)

11 : 201 195(191) 201(193) 198(188) 198(196) 214(196)

12 : 98 98(98) 98(98) 98(98) 98(98) 98(98)

13 : 384 384(384) 384(383) 383(382) 384(384) 383(383)

14 : 915 914(908) 929(907) 1, 242(841) 919(913) 852(848)
2(1) 4, 695(60)

15 : 707 704(704) 704(704) 697(697) 707(707) 556(556)
2(1) 149(149)

16 : 135 135(135) 135(135) 135(135) 135(135) 299(1)

Time 4.087s 1.106s 4.245s 1.457s 48.169s

Table 1: Comparisons of clustering performance among HMM-VB, K-means, hierarchical
clustering (HC), Mclust, and modal GMM for the simulation data in Section 5.1.1.

Table 1 demonstrates that HMM-VB outperforms clearly the other methods in terms of
matching the true clusters, especially for the rare clusters. K-means, hierarchical clustering,
and Mclust tend to yield similar-sized clusters. All of them split the largest true cluster E∗1
into 3 smaller ones. Except for HMM-VB, all the other four methods fail to correctly identify
all three smallest clusters, E∗5 , E∗8 and E∗12. Specifically, according to the four methods,
E∗5 and E∗8 are in the same cluster. The CPU time per model fitting (based on the best
model specification) on an iMac with Intel Core i7 3.0GHz/8GB memory is recorded, given
in the last row of Table 1. The unit of time is second. Under the same specification of
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the number of clusters, K-means is faster than hierarchical clustering. Mclust is performed
on 15 mixture components, while both HMM-VB and modal GMM are fitted using 70
mixture components. The fact that HMM-VB is much faster than modal GMM shows the
computational advantage to regularize a general GMM by a variable block structure.

In addition, we use this simulation data to test the search algorithm for the variable
block structure, which is described in Section 3.4. We run the algorithm with 6 different
initial random permutations. The algorithm successfully selects the correct variable blocks
according to the true distribution. Furthermore, to empirically demonstrate the efficiency of
BIC for model selection, we also incorporate the comparison with (log) marginal likelihood
approach in Table 2. Both approaches select the same model under the larger sample size.

Random permutation Log marginal likelihood BIC
n = 10, 000

3, 1, 8, 5, 7, 2, 6, 4 (3, 5, 2, 4) ∗ (1, 8, 7, 6) : −80887.22 (3, 1, 8, 5, 7, 2, 6, 4) : 167105.9

6, 4, 7, 3, 5, 2, 8, 1 (6, 7, 8) ∗ (4, 3, 5) ∗ (2) ∗ (1) : −80330.64† (6, 4, 7, 3, 5, 2, 8, 1) : 167113.3
4, 6, 8, 5, 7, 2, 3, 1 (4) ∗ (6, 8, 5, 7) ∗ (2, 3) ∗ (1) : −82102.33 (4, 6, 8, 5, 7) ∗ (2, 3, 1) : 166259
4, 6, 5, 8, 1, 3, 7, 2 (4, 5, 3, 2) ∗ (6, 8, 1, 7) : −80924.62 (4, 6, 5, 8, 1, 3, 7, 2) : 167593.6
5, 3, 2, 6, 8, 7, 1, 4 (5, 1, 4) ∗ (3, 2) ∗ (6, 7) ∗ (8) : −80693.58 (5, 3, 2, 1, 4) ∗ (6, 8, 7) : 164213.2∗

7, 4, 5, 3, 1, 6, 8, 2 (7, 6, 8) ∗ (4, 3, 1) ∗ (5) ∗ (2) : −80343.08 (7, 4, 5, 3, 1, 6, 8, 2) : 167468.1

n = 50, 000

3, 1, 8, 5, 7, 2, 6, 4 (3, 8, 7, 2, 6, 4) ∗ (1, 5) : −406073.13 (3, 1, 2, 4) ∗ (8, 5, 6) ∗ (7) : 817840.6
6, 4, 7, 3, 5, 2, 8, 1 (6, 4, 7, 3, 2, 8, 1) ∗ (5) : −403308.14 (6, 4, 7, 3, 2, 8, 1) ∗ (5) : 814125.2
4, 6, 8, 5, 7, 2, 3, 1 (4, 6, 8, 7) ∗ (5, 2, 3) ∗ (1) : −402800.94 (4, 6, 8, 7) ∗ (5, 2, 3, 1) : 809706.6
4, 6, 5, 8, 1, 3, 7, 2 (4, 6, 8, 7) ∗ (5, 1) ∗ (3, 2) : −402785.41 (4, 6, 8, 7) ∗ (5, 1) ∗ (3, 2) : 810212.5

5, 3, 2, 6, 8, 7, 1, 4 (5, 3, 2, 1, 4) ∗ (6, 8, 7) : −402450.86† (5, 3, 2, 1, 4) ∗ (6, 8, 7) : 809110.6∗

7, 4, 5, 3, 1, 6, 8, 2 (7, 6, 8) ∗ (4, 3, 1) ∗ (5, 2) : −402624.38 (7, 4, 5, 6, 8, 2) ∗ (3, 1) : 822285.2

Table 2: Comparison of BIC and log marginal likelihood for model selection using 6 initial
random permutations under two different sample sizes. We mark the model selected
by BIC with ? and the model selected by log marginal likelihood with †. We use
parentheses to indicate a particular variable block, and ∗ to separate the different
variable blocks.

5.1.2 No Information on Variable Blocks

We now study the clustering performance of HMM-VB when there are no clear-cut vari-
able block structures. A sample of size 10, 000 with d = 5 dimensions is drawn from a
10−component GMM. We ensure that all the 10 components correspond one-to-one with 10
distinct clusters by setting mean vectors far apart. Hence, each cluster can be described by
a single Gaussian component. The detailed description of the data generation mechanism is
in Appendix E. Figure 3 shows the scatter plots of the generated data. Colors indicate the
cluster membership. Several clusters overlap tremendously within two-dimensional space.
As in the previous experiment (Section 5.1.1), we run MBW on the true model density,
which identifies in total 10 clusters with cluster memberships matching precisely the true
latent component identities.
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Figure 3: Pairwise scatter plots of simulated data from Section 5.1.2. Colors indicate the
cluster membership.

True cluster HMM-VB M1,2;M3 K-means HC Mclust Modal GMM
1 : 96 94(94); 96(96) 1582(71) 766(95) 96(96) 96(96)

2327(24)

2 : 190 190(190); 182(180) 191(190) 538(190) 190(190) 190(190)

3 : 2304 2302(2302); 2300(2300) 2327(2303) 2133(2133) 2304(2304) 2304(2304)
817(171)

4 : 993 991(987); 985(980) 1010(992) 817(321) 993(993) 993(993)
766(671)

5 : 1509 1512(1508); 1507(1506) 1582(1508) 1517(1509) 1509(1509) 1509(1509)

6 : 1012 1002(983); 997(976) 908(903) 817(325) 1009(1008) 1010(1009)
936(22); 966(28) 942(29) 593(591)

1967(89)

7 : 982 971(965); 911(906) 517(517) 538(348) 986(982) 985(982)
971(965); 46(46) 528(463) 1967(28)

521(520)
84(84)

8 : 972 979(962); 942(938) 971(955) 1967(919) 971(971) 972(971)
979(962); 966(20) 1064(53)

9 : 1011 1015(1009); 1017(1008) 1024(1009) 1064(1011) 1011(1011) 1011(1011)

10 : 931 936(903); 966(910) 942(909) 1967(931) 931(930) 930(929)
971(16)

Time 32.823s 0.298s 2.636s 0.902s 1.108s

Table 3: Comparison of clustering performance among three HMM-VB models, K-means,
hierarchical clustering (HC), Mclust, and modal GMM for simulation data in
Section 5.1.2. The first two HMM-VB models give the same results for major
clusters.

To demonstrate the robustness of HMM-VB under different variable block structures,
we fit the data using different model specifications. We let model M1 be a HMM-VB
with 5 variable blocks each containing one variable and ordered by the given indices of the
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variables. The number of components for each block chosen by BIC is Mt = 7, t = 1, ..., 5.
Model M2 is defined similarly as M1, but we reverse the ordering of the variables such
that x = (x5, x4, ..., x1). Lastly, we let M3 be a HMM-VB with 5 variable blocks ordered
by a random permutation x = (x1, x3, x4, x2, x5). Table 3 shows the clustering results for
the three HMM-VB models and the other four baseline methods. The format of the results
in this table is the same as that for Table 1 in the previous section. Again we pre-set the
number of clusters for K-means, hierarchical clustering, and modal GMM as the true value.
The model specification for Mclust is similar to the previous experiment, but we allow
Mclust to search for up to 12 Gaussian components. For clarity of presentation, clusters
that share fewer than 5 points with any true cluster are not reported in Table 3. As expected
M1 and M2 yield very similar results. As discussed at the end of Section 4.1, when the
ordering of the variable blocks is reversed, the GMM casted from the HMM-VB is essentially
the same. Small differences may arise due to some random factors caused by initialization.
We simply report results from one of the two models. Table 3 suggests that HMM-VB is
quite robust to the ordering of the variables. Both K-means and hierarchical clustering fail
to extract the cluster structures. As expected, both Mclust and modal GMM can accurately
recover all the clusters because the data is generated according to the generic GMM model.

The search scheme for selecting the optimal variable block structure determines that
only one variable block is needed (that is, the usual GMM). This is consistent with the true
model. However, Table 3 shows that although the HMM-VB with five blocks is not the
right model, it can still perform reasonably well for clustering. This finding suggests that
HMM-VB can be a new strategy to regularize a GMM, the complexity of which is normally
only controlled by the number of components or constraints on the covariance matrices.

5.1.3 Large Data Size

Since HMM-VB is motivated by single-cell data analysis, where the sample size can be
up to several millions, we now study the performance of HMM-VB for large data sets
with moderately high dimensions. We let dimension d = 40, and sample size n ranges
from 100, 000, 1, 000, 000 and 5, 000, 000. The first 10 dimensions are generated from a
3-component GMM. The remaining 30 dimensions are generated from a 5-component GMM,
where the mixture component proportions vary according to which normal component the
first 10 dimensions are generated from. In addition, the covariance matrices of the last 30
dimensions are block diagonal, containing two blocks of sizes 10×10 and 20×20. Furthermore,
by specifically designing the mean vectors and the transition probability matrix from the
first 10 dimensions to the rest, the data generated contain 5 distinct normal components
which correspond to 5 distinct clusters. The detailed description for the data generation is
in Appendix E. The relative proportions for the 5 clusters are about 0.005, 0.045, 0.07, 0.18,
and 0.7.

In this particular study, Mclust encounters some numerical errors when performing model
selection. Because K-means and hierarchical clustering perform poorly in the previous two
studies, we hereby focus on the comparison between HMM-VB and modal GMM. To fit HMM-

VB, we divide the 40 dimensions into 3 blocks: x
(1)
i = (xi,1, ..., xi,10), x

(2)
i = (xi,11, ..., xi,20),

x
(3)
i = (xi,21, ..., xi,40). According to the model specification, we let M1 = 3, M2 = 5, and
M3 = 5. To fit modal GMM, we let the total number of mixture components to be 3×5 = 15.
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True cluster HMM-VB Modal GMM
n = 100, 000

1 : 510 510(510) 4, 940(510)
2 : 4, 430 4, 430(4, 430) 4, 940(4, 430)
3 : 7, 006 7, 006(7, 006) 7, 006(7, 006)
4 : 17, 995 17, 995(17, 995) 17, 995(17, 995)
5 : 70, 059 70, 059(70, 059) 70, 059(70, 059)

Time 4.1 mins 9.9 mins

n = 1, 000, 000

1 : 5, 045 5, 045(5, 045) 50, 279(5, 045)
2 : 45, 234 45, 234(45, 234) 50, 279(45, 234)
3 : 69, 684 69, 684(69, 684) 69, 684(69, 684)
4 : 180, 789 180, 789(180, 789) 180, 789(180, 789)
5 : 699, 248 699, 248(699, 248) 699, 248(699, 248)

Time 40.59 mins 64.55 mins

n = 5, 000, 000

1 : 25, 119 25, 119(25, 119) 250, 142(25, 119)
2 : 225, 023 225, 023(225, 023) 250, 142(225, 023)
3 : 351, 202 351, 202(351, 202) 351, 202(351, 202)
4 : 899, 498 899, 498(899, 498) 899, 498(899, 498)

5 : 3, 499, 158 3, 499, 158(3, 499, 158) 3, 499, 158(3, 499, 158)
Time 56.56 mins 322.25 mins

Table 4: Comparison of clustering performance between HMM-VB and modal GMM for
simulation study in Section 5.1.3.

Table 4 shows the clustering results for the two models for simulated data of three
different sample sizes. HMM-VB correctly identifies all the clusters for the three data sets.
However, modal GMM cannot separate the two smallest clusters. In addition, HMM-VB
requires much shorter computation time than modal GMM, even though the equivalent
GMM of the HMM-VB has 3× 5× 5 = 75 components. The difference in computation time
is even more dramatic when the sample size is large. In order to detect more accurately
the rare clusters by modal GMM, we could increase the number of mixture components.
However, the increase may have to be large causing much slower computation.

5.1.4 Clustering Variation Study

To investigate the variation of clustering results for the above three simulations, we in addition
randomly generate 100 replicates from the two variable blocks model in Section 5.1.1, 100
replicates from the 10-component GMMs with randomly generated covariance matrices
described in Section 5.1.2, and only 10 replicates for the model in Section 5.1.3 due to the
extensive computational time caused by large data size. We use the adjusted Rand index
(ARI) (Rand, 1971) to assess the similarity between the clustering result by each method
and the true cluster assignments. Summaries based on the ARI for the first two simulation
studies are shown in Figure 4, and that for the last simulation is provided in Table 5.

For the simulation in Section 5.1.1, the variables have a two block structure. The average
ARI achieved by HMM-VB is substantially better than the other methods, and the variation
of the HMM-VB results is much smaller than those by Mclust or modal GMM. For the
simulation in Section 5.1.2, Model 1 is used for HMM-VB. The variable structure assumed
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Figure 4: Boxplots of ARI based on 100 replicates generated by simulations in Section 5.1.1
and 5.1.2.

by HMM-VB is not right, while Mclust and modal GMM are based on the correct model.
Nevertheless, the boxed range of ARIs by HMM-VB overlaps with that by Mclust although
the average by HMM-VB is lower. The best result is obtained by modal GMM. For the third
simulation in Section 5.1.3, although both HMM-VB and modal GMM yield high ARIs, the
average number of clusters obtained by HMM-VB is always the same or nearly the same as
the true value, while that by modal GMM is consistently lower by one. Finally, we note
that ARI measures overall similarity between clustering results. Thus small clusters matter
less than large clusters for ARI. If finding rare clusters is important, we should not rely only
on ARI to evaluate the methods. Results shown in Table 1, 3, and 4 can be more pertinent.

Sample size mean ARI median ARI sd ARI C̄
HMM-VB

100, 000 1 1 0 5
1, 000, 000 1 1 0 5
5, 000, 000 0.9999 1 2.88 × 10−4 4.9

Modal GMM

100, 000 0.9991 0.9991 5.74 × 10−5 4
1, 000, 000 0.9992 0.9991 2.88 × 10−4 4.1
5, 000, 000 0.9513 0.9991 0.15 4.1

Table 5: Summaries of ARI and the mean number of clusters found (C̄) based on 10 replicates
generated by the simulation in Section 5.1.3.
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5.2 Study of CyTOF Data

As a motivating example, current high-throughput flow cytometry experiments routinely
measure 10 ∼ 20 parameters (cell markers/variables) on a large number of single cells. The
current mass cytometry (CyTOF) can measure up to 50 parameters at a single cell level. A
key first step to analyze this wealth of data is to partition the data (cells) from a blood or
tissue sample into clusters based on the measured cell markers. The identified clusters are
usually referred to as (cell) subsets.

Many studies adopt clustering based on mixture models to identify cell subsets objectively
and automatically for single-cell data analysis (e.g., Boedigheimer and Ferbas (2008); Lo et al.
(2008); Chan et al. (2008); Pyne et al. (2009); Aghaeepour et al. (2013); Lin et al. (2016)).
One challenge encountered is that cell subsets of interest are typically of low frequencies
(e.g., ∼ 0.01% of total cells), while it is important to detect cell heterogeneity, especially
very low frequency cell subsets for subsequent analysis, e.g., to understand the association
between cellular heterogeneity and disease progression (Darrah et al., 2007; Lin et al., 2015a;
Seshadri et al., 2015; Corey et al., 2015).

One important structure of the CyTOF data is a natural chain-like dependence among
groups of variables (e.g., Roederer et al. (2004); Perfetto et al. (2004)). Biologists utilize such
inherent property of the data to manually identify cell subsets by sequentially visualizing
data on the groups of variables, known as manual gating, which has been extensively used
in real data analysis. Specifically, the manual gating is a manual sequential process that
visually demarcates cells in bounded regions (called gates) on histogram or 2-D scatter
plot projections. Interestingly, the modal clustering technique has been applied to assist
manual gating for cytometric data by Ray and Pyne (2012). Figure 5 provides a simplified
illustration of the manual gating analysis on one flow cytometry data. Red lines are the
gates, and cells within the region defined by the gates are identified as a specific cell subset.
For example, to discriminate CD4+ T cells, which is one major cell subset, a sequence
of subsetting procedures is performed. Two physical markers, Forward (FSC-A) and side
(SSC-A) light scatter, are first used to distinguish lymphocytes from all the live cells.
Lymphocytes can then be further partitioned based on 3 fluorescence parameters: CD3, CD4,
and CD8 cell-surface markers. CD4+ T cells are the subclass of lymphocytes having high
values of CD3 and CD4 but low value of CD8. Within CD4+ T-cell populations, additional
functional markers such as intracellular makers (IL2 and IFNg) can further distinguish many
functionally different CD4+ T-cell subsets. The sequence of groups of markers to use is
called gating hierarchy, which is determined by expert knowledge. The shape and location
of the gates are manually drawn. The gates are typically used to dichotomize the continuous
marker expressions into binary value: positive and negative.

In manual gating analysis, the variables are grouped and ordered based on expert
knowledge. By using the well-established gating hierarchy that projects cells on lower
dimensions, each subplot provides a finer resolution of the cellular heterogeneity. In the
sequential visualization process, any move one step further means a new group of variables
are examined. Despite its wide usage, the manual gating analysis is highly subjective, time
consuming, and hard to reproduce.

In this section, we study the performance of HMM-VB on a data set obtained from
CyTOF experiment (Becher et al., 2014). The particular data set that we analyze here is
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Figure 5: A simplified example of cell subsets identification by manual gating analysis. The
flow cytometry measurements on single cells from a blood sample are shown using
4 heat maps of 2-D scatter plots projected on different dimensions (markers). The
red lines on each subplots are called gates. Cells within the red lines are the subset
of interest, which is subsetted and projected on the next subplot in the sequence.
The percentages are the frequencies of the identified cell subsets relative to the
total number of cells.

from mouse lung sample obtained from three C57BI6 wild-type mice and three Csf2rb−/−

mice, which in total contains 46, 204 single cells with 39 measured cell markers. According
to the gating hierarchy provided in Becher et al. (2014), it defines roughly 11 variable blocks,
with maximum block size 8 and minimum block size 1. Becher et al. (2014) performed
automated clustering on a projected (latent) 2−dimensional space by first using nonlinear
dimension reduction technique on the original 39−dimensional space. However, it has been
studied, e.g. Lin et al. (2015b), that dimension reduction generates a “cluttered” display,
which can prevent density estimation from accurately representing low probability regions.

We first standardized the data to compensate for the nearly singular covariance matrix
when a single Gaussian is fit despite the moderate dimension. This factor prevents the
direct use of GMM. We note that HMM-VB encounters no difficulty in fitting the original
data because of the smaller dimensions of the individual variable blocks. In order to
compare modal GMM and HMM-VB, we work on the standardized data through the rest of
the section.

We first fit the data using HMM-VB. There are 11 variable blocks. For the ith variable
blocks with dimension lower than 4, we set the corresponding number of mixture components
Mi = 5. For the jth variable blocks with dimension between 5 and 7, we set the number of
components Mj = 10. For the other variable blocks, we set the number of components to 15.
After modal clustering, this model results in 194 clusters of size greater than 5. The average
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CPU time per model fitting is 11.4 min. We then fit the data using GMM with M = 500.
On the same iMac, the model fitting takes 284.2 min, 25 times longer than does HMM-VB.
Modal clustering results in 232 clusters of size greater than 5.

We compare the performance of the two models for clustering a relatively low probability
region, which is shown in Figure 6. Specifically, Figure 6 compares the finer cellular
compositions of one well separated region, which is visualized on two latent dimensions
obtained from a dimension reduction technique applied to the original 39 dimensions, as
provided by the result of Becher et al. (2014). HMM-VB (right subplot) uses 18 clusters to
define this particular region. GMM (left subplot) uses 40 clusters to define the same region.
However, some of the clusters include cells that are visually far away from the particular
region. This result indicates that GMM has difficulty in estimating the structure of this
moderately high-dimensional data.

Figure 6: Left: GMM clustering analysis for a particular data region of one selected mouse.
Right: The corresponding HMM-VB clustering analysis. The data is shown in
grey. Clustering results are in different colors with one color defines one cluster.

5.3 Examples of Very High Dimensional Data

We apply HMM-VB to two data sets with dimension d� n.

5.3.1 Single-Cell Genomics Data

Current single-cell genomics technologies can routinely generate transcriptomics data at
the single-cell level. Similar to the cytometry data, a key first analysis step is to identify
cellular heterogeneity among single cells. The challenge is to cluster high dimensional data
with substantially more variables (genes) than objects (cells). Existing clustering methods
fall roughly into two categories. The first category is based largely on pairwise similarity
measures among single cells (e.g., Guo et al. (2015); Wang et al. (2017)). The second category
applies clustering, e.g., K-means and mixture models, in a reduced dimension space (typically
2 or 3 dimensions) obtained by principal component analysis or other nonlinear dimension
reduction techniques (e.g., Satija et al. (2015); Žurauskienė and Yau (2016); Kiselev et al.
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Cell type: size HMM-VB

2338: 22 22(22)
2339: 17 17(17)
HL60: 54 54(54)
iPS: 23 23(23)

K562: 42 42(42)
NPC: 15 15(15)
BJ: 37 29(29); 9(8)

GW16: 26 28(15); 22(11)
GW21: 8 28(5); 22(3)

GW21+3: 16 28(8); 22(8)
Kera: 40 39(39); 9(1)

Figure 7: (Left): Visualization of the single cell RNA-seq data based on the first two principal
components. Colors indicate the 11 cell types. (Right): Clustering performance
for HMM-VB compared with the 11 cell types.

(2017)). Here, we study the performance of HMM-VB on a single-cell RNA-seq data set
for 300 cells whose transcriptional measurements were taken across 8, 686 genes. The data
set is obtained from the Github repository: https://github.com/JustinaZ/pcaReduce

provided by Žurauskienė and Yau (2016). The data were derived from 11 cell types: K562 –
myeloid (chronic leukemia); HL60 – myeloid (acute leukemia); CRL-2339 – lymphoblastoid;
iPS – pluripotent; CRL-2338 – epithelial; BJ – fibroblast (from human foreskin); Kera –
foreskin keratinocyte; NPC – neural progenitor cells; GW(16, 21, 21+3) – fetal cortex at
gestational week (16,21, 21+3 weeks). Figure 7 (Left) shows the data projected on the first
two principal components for visualization. It is clear that the 11 cell types in the two-
dimensional principal component space cannot be separated into distinct groups. Žurauskienė
and Yau (2016) perform clustering analysis in the subspace spanned by the first 30 principal
components, and demonstrate the superiority of pcaReduce in terms of clustering accuracy
over some competing methods. However, pcaReduce can only correctly identify 4 cell types
which are HL60, CRL-2339, CRL-2338, and NPC.

We first identified the top 500 highly variable genes based on their sample variances after
applying log transformation. We then fit this reduced data of size 300× 500 using HMM-VB.
The genes are divided into 5 variable blocks of equal dimension, and each block is set to
have 40 mixture components. We also tried other model specifications, and they yielded
similar clustering results. HMM-VB identifies 12 cell clusters. More importantly, HMM-VB
not only correctly identifies the 4 cell types that were also discovered by pcaReduce, it also
finds correctly 2 other cell types: iPS and K562. Moreover, pcaReduce groups the three
cell types GW(16, 21, 21+3) into one cluster. HMM-VB partitions these three cell types
into two clusters, which could be visually supported by Figure 7 (Left). Figure 7 (Right)
provides the details of the clustering performance.

Because the dimension is higher than the data size for this data set, we constrained
the covariance matrix for each variable block to be diagonal. This constraint can be offset
by having more components for a good fit of data. We found that when the dimension
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of the variable block is at similar order of the data size, without any constraint, the
estimated covariance matrix is sometimes singular or ill-conditioned even if a single Gaussian
distribution is assumed. We also found that the number of modes in a HMM-VB can become
quite large if the number of variable blocks is large, while the number of modes is much more
stable with the increase of components in each variable block. In summary, as practical
guidance on the usage of HMM-VB for very high dimensional data (d� n), we recommend
the use of diagonal covariance and the avoidance of too many variable blocks.

5.3.2 Image Data Analysis

We take a collection of general-purpose photograph images and represent each image by a
high dimensional vector. First, the Red, Blue, and Green values of each pixel in an image
are converted to the LUV color space. Second, each image is divided into 50× 50 blocks and
the average LUV values of all the pixels in each block are used to characterize this block.
The whole image is represented by a stacked vector of the LUV values of the 2500 blocks.
Thus the dimension of the data is d = 7500. We put the LUV values of every image block
into one variable block. There are thus 2500 variable blocks each of dimension 3. These
variable blocks are ordered according to a zig-zag row by row scan, that is, to scan from left
to right in the first row, then right to left in the second, so on so forth. Clearly, because
each variable block corresponds to a particular location in the image plane, the clustering
result based on HMM-VB will be sensitive to the position of objects in an image. For
many applications in multimedia retrieval or computer vision, such sensitivity is undesirable.
However, our purpose here is not to promote our experiment as a standard for clustering
images, but to show the viability of our method when d � n. We acknowledge that for
any particular application, it may be necessary to perform certain pre-processing, such as
extracting sub-images based on segmentation, etc. An in-depth evaluation from an image
analysis perspective is beyond the scope of this paper.

We estimated the HMM-VB on the aforementioned variable block structure, assuming
5 mixture components for each block. Since the dimension of the variable blocks is small,
we did not constrain the covariance matrices to be diagonal in this analysis. We estimated
a model for a set of 200 photos of flowers, a set of 200 photos of city scenes, and a set of
2400 photos of various themes. On a Mac with Intel Core i5 3.5GHz/16GB Memory, the
time for training is respectively 263, 326, 2118 seconds for the three data sets, and the time
for solving the modes for all the images in a data set is respectively 118, 141, 1930 seconds.
We found that due to the very high dimension, if we apply the same stringent criterion of
identical modes, then nearly every image becomes a single cluster. We obtain larger clusters
when the criterion is relaxed. We show in Figure 8 example clusters generated.

6. Discussion

We have developed a novel mixture model, namely, HMM-VB, with the goal of automated
clustering of large-scale and high-dimensional data that contain rare clusters. One key feature
of HMM-VB is its ability to leverage sequential dependence among groups of variables for
more effective clustering, especially in identifying rare clusters that are almost undetectable
by existing mixture modeling approaches. Technically, our clustering method integrates
two new algorithms, one for estimating HMM-VB and the other for performing modal
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(a) Flower (b) City scenes

Figure 8: Example images in the clusters generated for two data sets. The clusters are
separated by the horizontal bars.

clustering, both necessary for making the new model a practical tool in large-scale data
analysis. Because the number of mixture components grows exponentially with the number
of variable groups, existing EM and MEM algorithms for estimation and mode identification
have intractable exponential complexity. We have derived and implemented algorithms with
linear complexity in the number of variable blocks for both tasks.

We have so far declared clusters based on association with identical modes. Due to the
huge number of mixture components in the GMM casted from HMM-VB, many tiny clusters
can be generated. The total number of points in those clusters can be a small fraction of the
entire data. In this situation, more sophisticated methods that measure the separability of
these tiny clusters and other larger ones can be used for clustering (e.g., Lee and Li (2012)).
As another direction of future work, we can test the capability of the variable block search
algorithm to reveal hidden dependence structure among the variables or to help validate
existing gating hierarchy.
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Appendix A

We present here the conventional HMM and the Baum-Welch (BW) algorithm for estimation.
Consider sequential data x = {x1, x2, ..., xt, ..., xT }, with xt ∈ Rd. Same as in the mixture
model, assume there is an underlying state st associated with every xt, for t = 1, ..., T . The
underlying state is the counterpart of the mixture component identity in GMM. The state
st ∈ S = {1, 2, ...,M}, where M is the number of states. Let the set of all possible state
sequences be S̄, that is, the set of T -tuples on S. |S̄|= MT . Denote s = {s1, ..., sT } ∈ S̄.
The basic assumptions of a HMM are:

1. The underlying states {s1, s2, ..., sT } follow a Markov chain. The Markov chain is
usually time invariant with transition probability matrix A = (ak,l), where ak,l =
P (st+1 = l | st = k), k, l ∈ S. Denote the initial probabilities of states by πk = P (s1 =
k), k ∈ S.

2. Given the hidden state st, the observation xt is conditionally independent from st′

and xt′ for any t′ 6= t, and the distribution of xt given st depends on st, but not on t.
Denote the conditional density of P (xt|st = k) by ϕk(xt). In particular, for Gaussian
HMM, ϕk(xt) = φ(xt|µk,Σk).

In summary,

P (x, s) = P (s)P (x | s) = πs1ϕs1(x1)as1,s2ϕs2(x2) · · · asT−1,sTϕsT (xT ),

P (x) =
∑
s∈S̄

P (s)P (x | s) =
∑
s∈S̄

πs1ϕs1(x1)as1,s2ϕs2(x2) · · · asT−1,sTϕsT (xT ).

The parameters to be estimated in a HMM are the transition probabilities: ak,l, k, l = 1, ...,M ,
the initial probabilities: πk, k = 1, ...,M , and µk, Σk for each state k = 1, ...,M .

Under a set of parameters, let Lk(t) be the conditional probability of being in state k at
position t given the entire observed sequence x = {x1, x2, ..., xT }. Let I(·) be the indicator
function that equals 1 when the argument is true and 0 otherwise. Then

Lk(t) = P (st = k|x) =
∑
s

P (s | x)I(st = k), k ∈ S. (8)

Let Hk,l(t) be the conditional probability of being in state k at position t and being in state
l at position t+ 1, i.e., seeing a transition from k to l at t, given the entire observed sequence
x. Then

Hk,l(t) = P (st = k, st+1 = l|x)

=
∑
s

P (s | x)I(st = k)I(st+1 = l) , k, l ∈ S. (9)

Note that Lk(t) =
∑M

l=1Hk,l(t),
∑M

k=1 Lk(t) = 1. Since s ∈ S̄ and the |S̄|= MT , it is
infeasible to compute Lk(t) and Hk,l(t) by the above equations directly. As part of the BW
algorithm, the forward-backward algorithm is used to compute Lk(t) and Hk,l(t) efficiently.
The amount of computation needed is at the order of M2T ; and the memory required is at
the order of MT .
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Define the forward probability αk(t) as the joint probability of observing the first t
vectors xτ , τ = 1, ..., t, and being in state k at time t:

αk(t) = P (x1, x2, ..., xt, st = k).

This probability can be evaluated by the following recursive formula:

αk(1) = πkϕk(x1), 1 ≤ k ≤M,

αk(t) = ϕk(xt)

M∑
l=1

αl(t− 1)al,k, 1 < t ≤ T, 1 ≤ k ≤M.

Define the backward probability βk(t) as the conditional probability of observing the
vectors after time t, xτ , τ = t+ 1, ..., T , given the state at time t is k.

βk(t) = P (xt+1, ..., xT | st = k), 1 ≤ t ≤ T − 1,

βk(T ) = 1, for all k.

As with the forward probability, the backward probability can be evaluated using the
following recursion:

βk(T ) = 1,

βk(t) =

M∑
l=1

ak,lϕl(xt+1)βl(t+ 1) , 1 ≤ t < T.

The probabilities Lk(t) and Hk,l(t) are solved by

Lk(t) = P (st = k | x) =
P (x, st = k)

P (x)
=

1

P (x)
αk(t)βk(t),

Hk,l(t) = P (st = k, st+1 = l | x) =
P (x, st = k, st+1 = l)

P (x)

=
1

P (x)
αk(t)ak,lϕl(xt+1)βl(t+ 1),

where P (x) =
∑M

k=1 αk(t)βk(t).

For notational brevity, we assume all the sequences are of length T . The extension to
sequences of different lengths is trivial. Denote the ith sequence by xi = {xi,1, xi,2, ..., xi,T },
i = 1, ..., n. In each iteration, we compute the forward and backward probabilities for each
sequence separately as previously described. We also compute Lk(t) and Hk,l(t) separately
for each sequence. As a general pattern of notations, we put a superscript (i) to indicate the
quantities for the ith sequence.
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1. Compute the forward and backward probabilities α
(i)
k (t), β

(i)
k (t), k = 1, ...,M , t =

1, ..., T , i = 1, ..., n, under the current set of parameters.

α
(i)
k (1) = πkϕk(xi,1), 1 ≤ k ≤M, 1 ≤ i ≤ n,

α
(i)
k (t) = ϕk(xi,t)

M∑
l=1

α
(i)
l (t− 1)al,k, 1 < t ≤ T, 1 ≤ k ≤M, 1 ≤ i ≤ n,

β
(i)
k (T ) = 1, 1 ≤ k ≤M, 1 ≤ i ≤ n,

β
(i)
k (t) =

M∑
l=1

ak,lϕl(xi,t+1)β
(i)
l (t+ 1), 1 ≤ t < T, 1 ≤ k ≤M, 1 ≤ i ≤ n.

2. Compute L
(i)
k (t), H

(i)
k,l (t) using α

(i)
k (t), β

(i)
k (t). Let P (xi) =

∑M
k=1 α

(i)
k (1)β

(i)
k (1).

L
(i)
k (t) =

1

P (xi)
α

(i)
k (t)β

(i)
k (t),

H
(i)
k,l (t) =

1

P (xi)
α

(i)
k (t)ak,lϕl(xi,t+1)β

(i)
l (t+ 1).

3. Update the parameters using L
(i)
k (t), H

(i)
k,l (t).

µk =

∑n
i=1

∑T
t=1 L

(i)
k (t)xi,t∑n

i=1

∑T
t=1 L

(i)
k (t)

,

Σk =

∑n
i=1

∑T
t=1 L

(i)
k (t)(xi,t − µk)(xi,t − µk)′∑n
i=1

∑T
t=1 L

(i)
k (t)

,

ak,l =

∑n
i=1

∑T−1
t=1 H

(i)
k,l (t)∑n

i=1

∑T−1
t=1 L

(i)
k (t)

.

Appendix B

We prove the results in Section 4.1.

The proof for Theorem 2

Proof Because M and M′ define the same density function, their marginal densities on
any block X(t) are also identical. Since Θ(t) is non-redundant for any t, by Lemma 1, we
have M′

X(t) = Ot(MX(t)), where Ot is the permutation on the mixture components of X(t),

for t = 1, ..., T . The permutation Ot is unique because Θ(t) is distinct.

Again by Lemma 1, if we remove all the components in M and M′ with zero priors,
that is, P (s1 = i1, s2 = i2, ..., st = iT ) = 0 and P (s′1 = i′1, s

′
2 = i′2, ..., s

′
T = i′T ) = 0, the two

models have the same number of components, and the Gaussian component parameters as
well as the positive priors inM andM′ are identical up to permutation. Let the permutation
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that matches the two models be O∗. Note that O∗ is only defined on T -tuples (i1, ..., iT )
such that P (s1 = i1, s2 = i2, ..., st = iT ) > 0.

Let O1:T = O1 ×O2 · · · OT . It is obvious that Θ′ = O1:T (Θ). Consider a T -tuple with
P (s1 = i1, ..., sT = iT ) > 0. Let (i∗1, ..., i

∗
T ) = O∗(i1, ..., iT ). By Lemma 1,

µ
(t)
it

= µ′
(t)
i∗t
, Σ

(t)
it

= Σ′
(t)
i∗t
,

µ
(t)
it

= µ′
(t)
Ot(it)

, Σ
(t)
it

= Σ′
(t)
Ot(it)

.

Because Θ
′(t) is distinct, i∗t = Ot(it), for t = 1, ..., T . Thus we have shown that if

P (s1 = i1, ..., sT = iT ) > 0, O∗(i1, ..., iT ) = O1:T (i1, ..., iT ). Because M and M′ have
the same number of components with positive priors, if P (i1, ..., iT ) = 0, we can extend
the definition of O∗ to these T -tuples by simply setting it to O1:T . Thus we have shown
M′ = O1:T (M).

The proof for Lemma 3

Proof Because Θ(t) is non-redundant for t = 1, ..., T , and πi1 = P (s1 = i1), we have
πi1 > 0, ∀i1 ∈ {1, ...,M1}. We also have P (st = it) > 0, ∀it ∈ {1, ...,Mt}, t = 2, ..., T . Since

P (st = it) =
∑Mt−1

it−1=1 P (st−1 = it−1)a
(t−1)
it−1,it

and P (st = it) > 0, there exist at least one it−1

such that a
(t−1)
it−1,it

> 0.
The reverse can be proved by induction. Because πi1 = P (s1 = i1) and πi1 > 0, we have

P (s1 = i1) > 0, ∀i1 ∈ {1, ...,M1}. Assume P (st−1 = it−1) > 0, ∀it−1 ∈ {1, ...,Mt−1}, then

P (st = it) =
∑Mt−1

it−1=1 P (st−1 = it−1)a
(t−1)
it−1,it

> 0 because at least for one it−1, the summand

P (st−1 = it−1)a
(t−1)
it−1,it

> 0.

The proof for Corollary 4

Proof Because HMM-VB on partition P is a lattice GMM on the same partition, by
Theorem 2, there exists a unique permutation Ot for each variable block X(t), t = 1, ..., T
such that M′ = O1:T (M) and Θ′ = O1:T (Θ).

We only need to show that under permutation O1:T , πi1 , a
(t−1)
it−1,it

, i1 = 1, ...,M1, it =

1, ...,Mt, t = 2, ..., T are also identical. By Theorem 2, Π(s1, ..., sT ) and Π′(s′1, ..., s
′
T ) are

identical up to permutation O1:T . The same is true for any marginal Π(st) or Π(st−1, st).
That is

P (st = it) = P (s′t = Ot(it)), ∀t = 1, ..., T, ∀it = 1, ...,Mt.

Since πi1 , i1 = 1, ...,M1, is the marginal Π(s1), it is identical to π′i1 up to permutation O1.
Under permutation Ot−1:t, we have

P (s′t−1 = Ot−1(it−1), s′t = Ot(it)) = P (st−1 = it−1, st = it).

Also,

P (s′t−1 = Ot−1(it−1), s′t = Ot(it)) = P (s′t−1 = Ot−1(it−1))a
′(t−1)
Ot−1(it−1),Ot(it)

,
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P (st−1 = it−1, st = it) = P (st−1 = it−1)a
(t−1)
it−1,it

.

Because Θ and Θ′ are non-redundant, P (st−1 = it−1) > 0, ∀it−1, and similarly P (s′t−1 =
i′t−1) > 0, ∀i′t−1, we thus have

a
′(t−1)
Ot−1(it−1),Ot(it)

= a(t−1)(it−1, it),

∀t = 2, ..., T, ∀it−1 = 1, ...,Mt−1, ∀it = 1, ...,Mt.

The proof for Theorem 5

Proof If all the variables are put in one block, we can remove any component with zero
prior. Hence, the partition containing only one block is always a tight partition. Thus a
tight partition always exists. Because there are only finitely many partitions, the maximum
partition must exist. We have proved the existence of a maximum partition for any GMM.

We now prove the uniqueness. Suppose P1 and P2 are both maximum partitions and
P1 6= P2. Let Pi = {X(i,1), X(i,2), ..., X(i,Ti)}, i = 1, 2. Let the kth Gaussian component

parameter for block X(i,j) in partition Pi be θ
(i,j)
k . For any sub-vector of X(i,j) that contains

some of the variables in X(i,j), which for instance is denoted by X(i,j,l), we denote the

projection of θ
(i,j)
k on the sub-vector by θ

(i,j)
k (X(i,j,l)). Specifically, the mean vector projected

on X(i,j,l) is a sub-vector of the mean vector µ
(i,j)
k keeping the corresponding dimensions

in X(i,j,l), and the covariance matrix projected on X(i,j,l) is a sub-matrix of the covariance

Σ
(i,j)
k keeping the entries for the covariances between the dimensions in X(i,j,l).

By definition of maximum partition, P1 � P2 and vice versa P1 ⊀ P2. Therefore there
exists a X(1,j) such that the variables in this block do not belong to a single block in P2.
Without loss of generality and for brevity of notation, assume X(1,1) is such a block and
its variables fall into K blocks in P2. We divide block X(1,1) into K sub-blocks such that
each sub-block belongs to a distinct block in P2. Denote the K sub-blocks by X(1,1,k).
X(1,1) = {X(1,1,1), X(1,1,2), ..., X(1,1,K)}. Again without loss of generality assume sub-block
X(1,1,k) ⊂ X(2,k), k = 1, ...,K.

Suppose the number of components for each block in P1 is M1, ..., MT1 , and the number
of components for each block in P2 is M ′1, ..., M ′T2 . Without loss of generality, we can
assume the lattice Θ and Θ′ corresponding to P1 and P2 are non-redundant. The fact all
the component parameters in Θ (or Θ′) exist is guaranteed already by P1 (or P2) being a
tight partition. If any Θ(t) is not distinct (containing identical components), we can always
combine those components without affecting the partition P1. Therefore we can assume Θ
and Θ′ are non-redundant without the loss of generality.

Let the underlying component identity be sj , j = 1, ..., T1 for P1 and s′j , j = 1, ..., T2

for P2. Because the GMM is a lattice-GMM on both P1 and P2, the marginal density of
variable block X(1,1) according to partition P1 and P2 respectively is given by

fX(1,1)(x(1,1)) =

M1∑
i1=1

P (s1 = i1)φ(x(1,1) | θ(1,1)
i1

), (10)

35



Lin and Li

fX(1,1)(x(1,1)) =

M ′1∑
i′1=1

· · ·
M ′K∑
i′K=1

P (s′1 = i′1, ..., s
′
K = i′K)

K∏
j=1

φ(x(1,1,j) | θ(2,j)
i′j

(X(1,1,j))). (11)

Because both P1 and P2 are tight partitions, the priors in Eqs. (10) and (11) are all
positive. The components in mixture (10) are distinct by the non-redundancy of Θ, while the
components in (11) may not because X(1,1,j)’s are sub-vectors of the blocks in P2. However,
if they are not distinct, we can combine components without losing the positive priors on
the components. To be strict, suppose we combined components and mixture model (11)
becomes the following model containing distinct components:

fX(1,1)(x(1,1)) =

M
′′
1∑

i
′′
1 =1

· · ·
M
′′
K∑

i
′′
K=1

P (s
′′
1 = i

′′
1 , ..., s

′′
K = i

′′
K)

K∏
j=1

φ(x(1,1,j) | θ(2,j)

i
′′
j

(X(1,1,j))). (12)

By the identifiability of GMM (Lemma 1), the number of terms in Eq. (12), M
′′
1 ×

M
′′
2 · · · ×M

′′
K = M1 and for each i1, there is a unique K-tuple (i

′′
1 , i
′′
2 , ..., i

′′
K) such that

φ(x(1,1) | θ(1,1)
i1

) =
K∏
j=1

φ(x(1,1,j) | θ(2,j)

i
′′
j

(X(1,1,j))). (13)

The density of the full-dimensional X according to P1 is

fX(1,1)(x(1,1)) =

M1∑
i1=1

· · ·
MT∑
iT =1

π(i1, i2, ..., iT )
T∏
j=1

φ(x(1,j) | θ(1,j)
ij

).

Because the map from i1 to (i
′′
1 , i
′′
2 , ..., i

′′
K) is bijective, we can define a set of prior

π̃(i
′′
1 , i
′′
2 , ..., i

′′
K , i2, i3, ..., iT ) = π(i1, i2, ..., iT ).

By Eq. (13), we can write

fX(x) =

M
′′
1∑

i
′′
1 =1

· · ·
M
′′
K∑

i
′′
K=1

M2∑
i2=1

· · ·
MT∑
iT =1

π̃(i
′′
1 , ..., i

′′
K , i2, ..., iT ) ·

K∏
l=1

φ(x(1,1,l) | θ(2,l)

i
′′
l

(X(1,1,l)))
T∏
j=2

φ(x(1,j) | θ(1,j)
ij

). (14)

Eq. (14) shows that the GMM is a lattice-GMM on the partition

P3 = {X(1,1,1), X(1,1,2), · · · , X(1,1,K), X(1,2), ..., X(1,T )} ,

and P3 is a tight partition. Clearly, P3 � P1 and P3 6= P1. This contradicts the assumption
that P1 is a maximum partition. We have thus proved the maximum partition is unique.
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Appendix C

In this section, we prove Theorem 6.
Proof We follow the idea of the proof of Theorem 2 in Maugis et al. (2009). According to
the definition, Ĉ = argminC∈C BIC(C), where C is the set of all possible partitions under
T = T 0,

BIC(C) = −2
n∑
i=1

log(f(xi|γ̂(C))) + λ(C) log(n),

where λ(C) is the number of model parameters for variable blocks C. Thus

P (Ĉ = C0) = P (BIC(C0) ≤ BIC(C),∀C ∈ C)
= P (BIC(C)−BIC(C0) ≥ 0, ∀C ∈ C).

Denote by ν(C) = λ(C)− λ(C0) and ∆BIC(C) = BIC(C)−BIC(C0), then

∆BIC(C) = 2n{ 1

n

n∑
i=1

log[
f(xi|γ̂(C0))

g(xi)
]− 1

n

n∑
i=1

[
f(xi|γ̂(C))

g(xi)
]}+ ν(C) log(n). (15)

All the possible partition C can be decomposed as follows

C = C0 ∪ {C ∈ C;DKL(g||f(.|γ∗(C))) 6= 0}.

Let C1 = {C ∈ C;DKL(g||f(.|γ∗C)) 6= 0}. We only need to prove that

∀C ∈ C1, P (∆BIC(C) < 0) −−−→
n→∞

0.

Let Qn(C) = 1
n

∑n
i=1 log[

f(xi|γ̂(C))

g(xi)
], and Q(C) = −DKL(g||f(.|γ∗(C))),

Following Eq. (15), we then have

P (∆BIC(C) < 0) = P (2n[Qn(C0)−Qn(C)] + ν(C) log(n) < 0)

=P (Qn(C0)−Q(C0) +Q(C0)−Q(C) +Q(C)−Qn(C) +
ν(C) log(n)

2n
< 0).

Thus, for all ε > 0, and according to the Lemma 8 below,

P (∆BIC(C) < 0) ≤P (Q(C0)−Qn(C0) > ε) + P (Qn(C)−Q(C) > ε)+

P (Q(C0)−Q(C) +
ν(C) log(n)

2n
< 2ε).

From Proposition 1 below, ∀C,Qn(C) P−−−→
n→∞

Q(C). Thus,

∀ε > 0, P (Qn(C)−Q(C) > ε) ≤ P (|Qn(C)−Q(C)|> ε) −−−→
n→∞

0.

Then,

P (Q(C0)−Q(C) +
ν(C) log(n)

2n
< 2ε) ≤ P (Q(C0)−Q(C)− 2ε < |ν(C) log(n)

2n
|).
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We know that ν(C) log(n)
2n −−−→

n→∞
0 and Q(C0) − Q(C) > 0 because C ∈ C1. Taking ε =

Q(C0)−Q(C)
4 > 0, we get

P (Q(C0)−Q(C) +
ν(C) log(n)

2n
< 2ε) ≤ P (

Q(C0)−Q(C)

2
< |ν(C) log(n)

2n
|) −−−→

n→∞
0.

Finally, P (∆BIC(C) < 0) −−−→
n→∞

0.

Lemma 8 Let A and B be two real random variables,

∀ε ∈ R, P (A+B ≤ 0) ≤ P (A ≤ ε) + P (−B > ε).

Proposition 1 Under Assumptions A1 and A2, ∀C ∈ C,

1

n

n∑
i=1

log{ g(xi)

f(xi|γ̂(C))
} P−−−→

n→∞
DKL(g||f(.|γ∗(C))).

Proof By the law of large numbers, if E[|log(g(X))|] <∞,

1

n

n∑
i=1

log[g(xi)]
P−−−→

n→∞
EX [log(g(X))]. (16)

If we can show that for the family

G(C) := {log[f(.|γ)]; γ ∈ Γ′(C)},

the following holds

1

n

n∑
i=1

log[f(xi|γ̂(C))]
P−−−→

n→∞
EX [log f(X|γ∗(C))] , (17)

then Proposition 1 is proved by combining Eqs. (16) and (17).

Now we only need to prove that EX [log f(X)] <∞. First, by the Assumption A1, Γ′(C)

is a compact metric space. And for all x ∈ Rp, γ(C) ∈ Γ′(C) → log[f(x|γ(C))] is continuous.
We just need to verify that there is an envelope function G of G(C) being g-integrable.
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Denote by M = [M0
2 ] × [M0

3 ] × · · · × [M0
T ] = {1, 2, ...,M0

2 } × {1, 2, ...,M0
3 } × · · · ×

{1, 2, ...,M0
T }. We first write out log[f(x|γ(C))] explicitly:

log[f(x|γ(C))] = log
[ M0

1∑
k1=1

πk1
∑

(k2,k3,...,kT )∈M

ak1,k2ak2,k3 · · · akT−1,kT ΠT
j=1N(x(Cj)|µ(j)

kj
,Σ

(j)
kj

)
]

= log
[ M0

1∑
k1=1

πk1
∑

(k2,k3,...,kT )∈M

ak1,k2ak2,k3 · · · akT−1,kT

ΠT
j=1(2π)−|Cj |/2|Σ(j)

kj
|−1/2exp{−

(x(Cj) − µ(j)
kj

)′Σ
(j)
kj

−1
(x(Cj) − µ(j)

kj
)

2
}

≤ log
[ M0

1∑
k1=1

πk1
∑

(k2,k3,...,kT )∈M

ak1,k2ak2,k3 · · · akT−1,kT (2πa)−
d
2

]
≤ − d

2
log[2πa],

where x(Cj) being the Cj−th variable block. The inequality is obtained according to Lemma 9

and (x(Cj) − µ(j)
kj

)′Σ
(j)
kj

−1
(x(Cj) − µ(j)

kj
) ≤ 0, for j = 1, 2, ..., T , hence is exponential function

bounded by 1.

Now we need to obtain a lower bound, and we use the concavity of the logarithm function:

log[f(x|γ(C))] ≥
M0

1∑
k1=1

πk1
∑

(k2,k3,...,kT )∈M

ak1,k2ak2,k3 · · · akT−1,kT

ΠT
j=1(2π)−|Cj |/2|Σ(j)

kj
|−1/2exp{−

(x(Cj) − µ(j)
kj

)′Σ
(j)
kj

−1
(x(Cj) − µ(j)

kj
)

2
}

=− d

2
log(2π)− 1

2

M0
1∑

k1=1

πk1
∑

(k2,k3,...,kT )∈M

ak1,k2ak2,k3 · · · akT−1,kT

{ T∑
j=1

log[|Σ(j)
kj
|]

+

T∑
j=1

(x(Cj) − µ(j)
kj

)′Σ
(j)
kj

−1
(x(Cj) − µ(j)

kj
)
}
.

According to Lemma 9 and ∀kj , µ(j)
kj
∈ B(η, |Cj |)

(x(Cj) − µ(j)
kj

)′Σ
(j)
kj

−1
(x(Cj) − µ(j)

kj
) ≤
||x(Cj) − µ(j)

kj
||2

a

≤
2(||x(Cj)||2+||µ(j)

kj
||2)

a

≤ 2(||x(Cj)||2+η2)

a
.

39



Lin and Li

Hence,

log[f(x|γ(C))] ≥ −
d

2
log(2π)− 1

2

M0
1∑

k1=1

πk1
∑

(k2,k3,...,kT )∈M

ak1,k2ak2,k3 · · · akT−1,kT

{
log(bd) +

T∑
j=1

2

a
(||x(Cj)||2+η2)

}
= −d

2
log(2πb)− ||x||

2+2η

a
.

Hence, each function of the family G(C) is bounded by

−d
2

log(2πb)− ||x||
2+2η

a
≤ log[f(x|γ(C))] ≤

d

2
log[2πa].

Therefore, for all γ(C) ∈ Γ′(C) and all x ∈ Rp,

|log[f(x|γ(C))]|≤ Z1(a, b, η) + Z2(η, a)||x||2

defining the envelope function G, where Z1(a, b, η) and Z2(η, a) are two positive constants.
In order to verify that G is g-integrable, we need to show that

∫
||x||2g(x)dx <∞.∫

||x||2g(x)dx =

∫
||x||2f(x|γ∗(C0))dx

=

M0
1∑

k1=1

πk1
∑

(k2,k3,...,kT )∈M

ak1,k2ak2,k3 · · · akT−1,kT

∫
||x||2φ(x|µ(k1,k2,...,kT ),Σ(k1,k2,...,kT ))dx

≤
M0

1∑
k1=1

πk1
∑

(k2,k3,...,kT )∈M

ak1,k2ak2,k3 · · · akT−1,kT (2
T∑
j=1

||µ(j)
kj
||2+2

T∑
j=1

tr(Σ
(j)
kj

)),

where µ(k1,k2,...,kT ) = (µ
(1)
k1
, µ

(2)
k2
, ..., µ

(T )
kT

) and Σ(k1,k2,...,kT ) is block diagonal with the t-th

diagonal block being Σ
(t)
kt

, for t = 1, 2, ..., T . Because
∫
||x||2φ(x|0,Σ)dx = tr(Σ). Then

using the triangle inequality, we get
∫
||x||2φ(x|µ,Σ)dx ≤ 2(||µ||2+tr(Σ)). Further, from

Lemma 9, ∫
||x||2g(x)dx ≤ 4η2 + 2bp.

Hence, G is g-integrable. Since log(g) ∈ G(C0), it implies that E[|log g(X)|] ≤ E[G(X)] <∞.
We then prove the theorem.

Lemma 9 Let Σ ∈ Dd, where Dd is defined in A1. Then

1. ad ≤ |Σ|≤ bd and tr(Σ) ≤ bd

2. ∀x ∈ Rd, x′x/b ≤ x′Σ−1x ≤ x′x/a

Proof See for instance Maugis et al. (2007).
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Appendix D

We prove Theorem 7 in Section 4.3. A configuration of a set of states is a particular tuple of
values for these states. Use notation Ψ(·) for the set of all possible configurations of any
group of states.

Proof For a HMM-VB, the configuration of the whole state sequence s = {s1, s2, ..., sT } is
treated as the index for one mixture component in the mapped GMM. The set of all possible
configurations is Ψ({s1, ..., sT }). Let Ŝ = Ψ({s1, ..., sT }) and St = Ψ(st). Each component

is a Gaussian distribution with mean µs = (µ
(1)
s1 , µ

(2)
s2 , ..., µ

(T )
sT ) (column-wise stack of vectors)

and a covariance matrix, denoted by Σs, that is block diagonal. The tth diagonal block in

Σs is Σ
(t)
st with dimension dt × dt

Σs =


Σ

(1)
s1 0 0 · · · 0

0 Σ
(2)
s2 0 · · · 0

· · · · · · · · · · · · · · ·
0 0 0 · · · Σ

(T )
sT

 .

If we apply MEM directly to HMM-VB and keep in mind that s is the index for the mixture
component, we need to compute the posterior P (s | x) in the E-step and∑

s∈Ŝ

P (s | x)Σ−1
s

−1∑
s∈Ŝ

P (s | x)Σ−1
s µs


in the M-step. The computational hurdle is that the number of possible sequences s, that is,
|Ŝ|, grows exponentially with T (assuming similar |St|).

Because Σs is block diagonal, we have∑
s∈Ŝ

P (s | x)Σ−1
s

−1∑
s∈Ŝ

P (s | x)Σ−1
s µs



=



(∑
s∈Ŝ P (s | x)

(
Σ

(1)
s1

)−1
)−1(∑

s∈Ŝ P (s | x)
(

Σ
(1)
s1

)−1
µ

(1)
s1

)
(∑

s∈Ŝ P (s | x)
(

Σ
(2)
s2

)−1
)−1(∑

s∈Ŝ P (s | x)
(

Σ
(2)
s2

)−1
µ

(2)
s2

)
...
...(∑

s∈Ŝ P (s | x)
(

Σ
(T )
sT

)−1
)−1(∑

s∈Ŝ P (s | x)
(

Σ
(T )
sT

)−1
µ

(T )
sT

)


.

Hence the tth variable block of x is given by

x(t) =

∑
s∈Ŝ

P (s | x)
(

Σ(t)
st

)−1

−1∑
s∈Ŝ

P (s | x)
(

Σ(t)
st

)−1
µ(t)
st

 , t = 1, 2, ..., T.
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Let I(·) be the indicator function that equals 1 when the argument is true. Note that

∑
s∈Ŝ

P (s | x)
(

Σ(t)
st

)−1
=

∑
k∈St

∑
s∈Ŝ

P (s | x)I(st = k)

 · (Σ
(t)
k

)−1

=
∑
k∈St

Lk(x, t) ·
(

Σ
(t)
k

)−1

according to the definition of Lk(x, t) in Eq. (4). By the same technique, we can show that

∑
s∈Ŝ

P (s | x)
(

Σ(t)
st

)−1
µ(t)
st =

∑
k∈St

Lk(x, t) ·
(

Σ
(t)
k

)−1
µ

(t)
k .

It is interesting to note that Theorem 7 extends easily to a model more general than
HMM-VB. For HMM-VB, s1, ..., sT follow a finite state Markov chain. Bayesian network
(BN) is a generalization of Markov chain on a directed acyclic graph (DAG), which is defined
by all the conditional distributions of every state given any configuration of its parent states.
If there is no parent, the marginal distribution of a state is specified. See Jensen (1996)
for an introduction to BN. If we assume that the latent states s1, ..., sT are governed by
a BN, and the observed X(t) conditioned on st follows a parametric distribution and is
conditionally independent of any other X(t′) and st′ , then we obtain a special lattice MM
more broadly defined than HMM-VB. We call this model Mixture with Latent Bayesian
Network (MLBN). Define the following probability for MLBN:

Lk(x, t) = P (st = k | x), k ∈ St, t = 1, ..., T. (18)

Clearly, the above definition is the same as Eq. (4) in the special case of HMM-VB. The
MBW algorithm in Section 3.2 for HMM-VB applies to MLBN in general. We only need
to use the definition in Eq. (18) for Lk(x

[r], t). Theorem 7 can be proved for MLBN in the
same way.

Appendix E

In this section, we provide the details for the data generation schemes of the simulation
studies. We follow the notations in Eq. (3).
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Simulation study in Section 5.1.1

It is a two-block design. The first variable block has 5 variables and is generated from a
normal mixture of 7 components. We set π = (0.51, 0.09, 0.20, 0.07, 0.10, 0.01, 0.02),

µ(1) =


µ

(1)
1

µ
(1)
2
...

µ
(1)
7

 =



0 0 0 0 0
0 −1 4.5 0 0

4.5 −2 0 0 0
0 0 4 −1 4
0 3 0 5 0
0 7 7 0 0
0 7.7 8 0 0


,

Σ
(1)
1:5 = 1.5I5, Σ

(1)
6 = I5, Σ

(1)
7 = 0.5I5.

The second variable block has 3 variables, and is generated from a mixture of 10 Gaussian
components. We set the transition probability matrix as

a(1) =



1 0 0 0 0 0 0 0 0 0
0.22 0.5 0.28 0 0 0 0 0 0 0

0 0 0 0.19 0 0 0 0 0.46 0.35
0 0 0 0.50 0.2 0.3 0 0 0 0
0 0 0 0 0.2 0.11 0.31 0.38 0 0
0 0 0.14 0.66 0 0.20 0 0 0 0
0 0 0.15 0 0 0.2 0 0 0 0.65


,

µ(2) =


µ

(2)
1

µ
(2)
2
...

µ
(2)
10

 =



0 0 0
−4 −4 −4
6.5 6.5 6.5
−1 5 0
−1.5 0 5

6 7 6.5
−4.0 2 4.5

5 −5 −5
−4 0 0
5 −4.5 −6


,

Σ
(2)
1,4,5 = 2I3, Σ

(2)
2 =

 2.0 0.2 0.2
0.2 2.0 0.2
0.2 0.2 2.0

 , Σ
(2)
3 =

 2.0 0.9 0.9
0.9 2.0 0.9
0.9 0.9 1.5

 , Σ
(2)
6 =

 2.0 0.9 0.9
0.9 1.5 0.9
0.9 0.9 2.0

 ,

Σ
(2)
7 =

 2.0 −0.6 −0.6
−0.6 2.0 0.6
−0.6 0.6 2.0

 , Σ
(2)
8 =

 2.0 −0.6 −0.6
−0.6 5/3 0.6
−0.6 0.6 5/3

 , Σ
(2)
9,10 =

 5/3 −0.6 −0.6
−0.6 5/3 0.6
−0.6 0.6 5/3

 .

Simulation study in Section 5.1.2

The data is generated from a GMM with 10 components. Hence all the variables form one
single variable block. We set

π = (0.01, 0.02, 0.23, 0.1, 0.15, 0.098, 0.098, 0.098, 0.098, 0.098),
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µ =


µ1

µ2
...
µ10

 =



5 5 5 5 5
−5 −5 −5 −5 −5
5 5 0 5 0
5 0 0 5 5
0 0 5 5 5
0 0 0 0 0
0 0 −5 −5 −5
−5 −5 0 0 −5
−5 −5 −5 0 0
−5 0 0 0 −5


.

All the variance matrices are independently generated from an inverse Wishart distribution
with 10 degrees of freedom and diagonal scale matrix 7I5.

Simulation study in Section 5.1.3

The first 10 dimensions of the data are generated from a 3-component GMM. We set
π = (0.05, 0.25, 0.70),

µ(1) =

 µ
(1)
1

µ
(1)
2

µ
(1)
3

 =

 0 0 0 0 0 0 0 0 0 0
5 5 5 5 5 5 5 5 5 5
−5 −5 −5 −5 −5 −5 −5 −5 −5 −5

 ,

and Σ
(1)
1:3 are independently generated from an inverse Wishart distribution with 15 degrees

of freedom and diagonal scale matrix 7I10.
The rest 30 dimensions are conditionally generated from a 5-component GMM. We set

the transition probability matrix as

a(1) =

 0.1 0.9 0 0 0
0 0 0.28 0.72 0
0 0 0 0 1

 ,

µ(2) =


µ

(2)
1

µ
(2)
2

· · ·
µ

(2)
5

 =


~030

~530

~−530

~−515,~515

~515, ~−515

 ,

where ~vl denotes a vector of the form (v, v, ..., v) with l elements of the same value v. Σ
(2)
1:5

are block diagonals, which have the form of

Σ
(2)
k =

(
A

(2)
k 0

0 B
(2)
k

)
,

where k = 1, ..., 5, A
(2)
k is of size 10× 10, which is independently generated from an inverse

Wishart distribution with 15 degrees of freedom and diagonal scale matrix 7I10. B
(2)
k is of

size 20× 20, and is independently generated from an inverse Wishart distribution with 25
degrees of freedom and diagonal scale matrix 7I10.
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