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Abstract
It is usual in machine learning theory to assume that the training and testing sets comprise of draws
from the same distribution. This is rarely, if ever, true and one must admit the presence of corrup-
tion. There are many different types of corruption that can arise and as of yet there is no general
means to compare the relative ease of learning in these settings. Such results are necessary if we
are to make informed economic decisions regarding the acquisition of data.

Here we begin to develop an abstract framework for tackling these problems. We present a generic
method for learning from a fixed, known, reconstructible corruption, along with an analyses of its
statistical properties. We demonstrate the utility of our framework via concrete novel results in
solving supervised learning problems wherein the labels are corrupted, such as learning with noisy
labels, semi-supervised learning and learning with partial labels.
Keywords: Supervised Learning, Generalized Supervision, Decision Theory, Minimax Bounds,
Data Processing, Noise

1. Introduction

The goal of supervised learning is to find,

arg min
f∈F

E(x,y)∼P `(y, f(x)),

where F is a hypothesis class of functions and ` is loss function. Usually the decision maker is
not given direct access to P , but rather a training set comprising n iid samples {(xi, yi)}ni=1 from
P . There are many algorithms for solving this problem, for example empirical risk minimization
(ERM), and this problem is well understood.

There are many other types of data one could learn from. For example in semi-supervised learning
(Chapelle et al., 2010) the decision maker is given n instance label pairs and m instances devoid
of labels. In learning with noisy labels (Angluin and Laird, 1988; Kearns, 1998; Natarajan et al.,
2013), the decision maker observes instance label pairs where the observed labels have been cor-
rupted by some noise process. There are many variants including, but not limited to, learning with
label proportions (Quadrianto et al., 2009), learning with partial labels (Cour et al., 2011), multiple
instance learning (Maron and Lozano-Pérez, 1998) as well as combinations of the above.
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Abstractly, all of these problems can be understood as corrupted learning problems, in that the
“ideal” clean training set is contaminated by a fixed and in general unknown noise process. What is
currently lacking is a general theory of learning from corrupted data, as well as means to compare
the relative usefulness of different data types. Such a theory is required if one wishes to make in-
formed economic decisions on which data sets to acquire.

To make progress, we consider abstract prediction problems that have been contaminated by a
fixed, known corruption. We demonstrate a generic method for learning from corrupted data, if
the corruption is reconstructible. We show the utility of this framework via concrete novel results in
supervised learning problems wherein the label has been corrupted, as in learning with label noise,
semi-supervised learning and learning with partial labels.

We do not explicitly consider corruption of the instance nor corruption of the label that depends
on the instance. While certain examples of these problems are reconstructible, they are not our
interest here. We also do not consider non-reconstructible problems such as multiple instance learn-
ing/learning with label proportions.

The concrete contributions of this paper are:

• A general method for learning from corrupted labels based on a generalization of the method
of unbiased estimators presented in Natarajan et al. (2013) and implicit in the earlier work of
Kearns (1998) (theorems 5 and 6).

• Upper and lower bounds on the risk of learning from combinations of corrupted labels, with
some analyses of their tightness (theorems 7 and 16). Our results greatly extend the state of
the art of Crammer et al. (2005), both in scope and in completeness.

• Demonstration of the computational feasibility of our approach via the preservation of con-
vexity (theorem 29).

Elements of our framework have appeared elsewhere, for example in Crammer et al. (2005); Cid-
Sueiro et al. (2014); Blanchard et al. (2016); Natarajan et al. (2013). While not the complete story
for all problems, the contributions outlined above make progress toward the final goal of informed
economic decisions. The end result is a collection of general tools that allow one to learn from and
compare the usefulness of various corrupted labels.

2. Basic Notation

Let R+ be the set of non-negative real numbers. Let Y X be the set of functions with domain X and
range Y . For a set X define the functions idX(x) = x, and 1X(x) = 1. For a function f ∈ RX×Y

and y ∈ Y , we denote the partial function f(−, y) ∈ RX , with f(−, y)(x) = f(x, y), with similar
notation for fixing the first argument. We denote the dual space of RX , the set of linear maps
RX → R, by (RX)∗. We take the general view that a probability distribution is an element of the
dual.

Definition 1 A probability distribution on a set X is an element of (RX)∗, i.e. a linear function
〈P,−〉 : RX → R, such that:
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1. 〈P,1X〉 = 1.

2. If f(x) ≤ g(x), ∀x ∈ X then 〈P, f〉 ≤ 〈P, g〉.

The linear function 〈P,−〉 is called an expectation. For a large class of general topological spaces,
this definition is equivalent to the usual one in terms of measures on sigma algebras (Rudin, 1991).
If X is finite, a distribution is nothing more than a vector.

At times we use the standard prefix notation, with EP f = 〈P, f〉. Define the set of all distributions
on a set X to be P(X). For any x ∈ X define the point mass distribution δx, with 〈δx, f〉 = f(x)
for all functions f . Finally, for a boolean predicate p : X → {True,False}, let [[p(x)]] = 1 if p(x)
is true and 0 otherwise. Other notation will be developed as necessary.

3. The General Decision Problem

Consider the problem faced by a scientist in a laboratory. In front of them is a beaker, containing
an unknown substance. Available to them are a myriad of experiments that can be performed to
ascertain its identity. The scientist could attempt to ignite it, mix a bit of it with a known substance
and see what happens, x-ray a sample, throw some of it at high velocity toward an oncoming beam
of electrons and so on. Due to time and budget constraints, only a limited number of experiments
can be performed to ascertain the substance’s true identity. Therefore the scientist should focus their
effort on the “most informative” experiments. Of course, what is informative depends on how the
substance is to be used. For example, if the scientist wishes to sprinkle some of it on their food to
enhance its flavor, misidentifying arsenic as table salt is a very bad idea. However, if they want to
sprinkle it on the snails in their garden, this distinction is less important. The focus of this section
is the abstract formulation of this problem. We consider the problem of how a decision maker, or
scientist, uses observations from experiments to inform their actions.

Let Θ be a set of possible values of some unknown quantity, and A the set of actions available
to the decision maker. The consequence of an action is measured by a loss function L : Θ×A→ R.
A negative loss represents a gain to the decision maker. In light of our previous example, Θ are
the possible substances that could be in the beaker, A is what the decision maker can do with the
substance (eat it, put it on snails and so on), and L measures the consequence of an action to the sci-
entist (L(arsenic, eat) should be high). The norm of a loss function is given by its largest possible
consequence (positive or negative), ‖L‖∞ = maxθ,a|L(θ, a)|.

Unknown to the decision maker is the exact value of θ. To discover this, the decision maker is
guided by experiments. Let Z be the set of possible outcomes of an experiment. We will assume
that Z has enough mathematical structure so as to make sense of the theorems. As is standard in
machine learning, the reader can assume that Z is of the form X × Y where X is a compact sub-
set of Rd and Y is a finite set. All of the key ideas can be gleaned from assuming Z finite. This
places no restrictions whatsoever one the usefulness of the theory in application to computer science
problems. After all, computers work perfectly well with finite state spaces. The outcome of the ex-
periment, z ∈ Z , is assumed related to the unknown, certain outcomes are more strongly linked to
certain values of θ. The relationship between the unknown and the outcome of the experiment is
modeled by a transition.
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3.1 Transitions

Definition 2 A transition from a set X to a set Y is a linear map T : (RX)∗ → (RY )∗.

While abstract in appearance, we remark that when X and Y are finite, a transition is nothing more
than a matrix. In general, a transition is an integral operator. Denote the set of all transitions from
X to Y by T(X,Y ). We call a transition Markov if T (P(X)) ⊆ P(Y ), ie it maps distributions over
X to distributions over Y . When X and Y are finite, Markov transitions are represented by column
stochastic matrices.

Markov transitions constitute a modern approach to conditional probability (Chang and Pollard,
1997; Torgersen, 1991; Le Cam, 1964; Chentsov, 1982). The distribution,

T (x) := T (δx)

is how the decision maker summarizes their uncertainty about Y if the true value of X is x. In fact
a transition is completely determined by its value on point masses. Every function φ ∈ Y X defines
a transition with,

〈φ(α), f〉Y := 〈α, f ◦ φ〉X , ∀f ∈ RY , ∀α ∈ (RX)∗.

Such a transition is called deterministic. Transitions can be combined in series and in parallel.

For transitions T ∈ T(X,Y ) and S ∈ T(Y,Z) we can define S ◦ T ∈ T(X,Z) by usual func-
tion composition. If X,Y and Z are finite, then this is just matrix multiplication. If T and S are
Markov, this is just iterated expectation. Intuitively, this can be seen as “marginalizing” over Y in
the Markov chain,

X → Y → Z.

Combination of transitions in series models corruptions that are performed one after another.

Transitions can be combined in parallel. For α, β ∈ (RX)∗, denote the product by α ⊗ β ∈
(RX×X)∗. If Ti ∈ T(Xi, Yi), i ∈ [1; k], are transitions then denote,

⊗ki=1Ti ∈ T(×ki=iXi,×ki=1Yi)

with ⊗ki=1Ti(x) = T1(x1) ⊗ · · · ⊗ Tk(xk), where × denotes the Cartesian product and ⊗ denotes
products of duals. Transitions can also be replicated. For any transition T ∈ T(X,Y ) we denote
the replicated transition Tn ∈ T(X,Y n), n ∈ {1, 2, . . . }, with,

Tn(x) := T (x)⊗ · · · ⊗ T (x)︸ ︷︷ ︸
n times

:= T (x)n,

the n-fold product of T (x).

Parallel composition of transitions models performing two different experiments as well as the re-
peated performance of the same experiment.
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3.2 Experiments and Risk

An experiment is a Markov transition e ∈ T(Θ,Z). We call Z the observation space of the exper-
iment. The distribution e(θ) summarizes uncertainty in the observation when θ is the value of the
unknown. After observing the results of an experiment, the decision maker is tasked with choosing
a suitable action. They do this via a learning algorithm.

In our language, a learning algorithm is a Markov transition A ∈ T(Z, A) 1. A(z) summarizes
the decision makers uncertainty in which action to choose. We define the risk,

RiskL(θ, e,A) := Ez∼e(θ)Ea∼A(z)L(θ, a) = 〈A ◦ e(θ), L(θ,−)〉 .

The risk measures the quality of the final action chosen by the decision maker when they use the
learning algorithm A, after performing experiment e, assuming θ is the true value of the unknown.
The risk does not provide a single number for the comparison of experiments, rather it provides an
entire risk profile. To compare experiments directly we use the minimax risk,

RiskL(e) := inf
A

sup
θ

RiskL(θ, e,A),

3.3 The Standard Prediction Problem

The preceding framework for defining and measuring the value of different experiments was largely
conceived in the field of theoretical statistics, in the works of von Neumann and Morgenstern (1947);
Blackwell (1951); DeGroot (1962) and Le Cam (1964). There is a perceived tension between the
goals of statistics, that is to discover θ, versus the goals of machine learning, that is to predict the
outcomes of the experiment e. As we now show, this distinction is only superficial. Let ` : Z×A→
R be a “predictive” loss, that measures how well the action a predicts the outcome of the experiment
e. Common examples include:

Observations Z Actions A Loss `

Density Estimation X ⊆ Rd Model Θ ⊆ P (X) − log(Pθ(x))

Classification X × {±1} Function class F ⊆ {±1}X [[y = f(x)]]

Regression X × R Function class F ⊆ RX (y − f(x))2

Supervised Learning X × Y Function class F ⊆ P(Y )X `(y, f(x))

Due to the frequency with which we take expectations we overload our notation and define,

`(P,Q) := Ez∼PEa∼Q`(z, a).

In learning theory, `(P,Q) as defined above is refered to as the risk, here we reserve the term risk
for its more classical statistical definition. Let Θ = P(Z), the set of all possible distributions on the
observation space. The loss function L : P(Z)× P(A)→ R of interest is the regret,

L(P,Q) := `(P,Q)− inf
a∈A

`(P, a),

Let en be the experiment that maps each P ∈ P(Z) to its n-fold product Pn. Then,

RiskL(en) = inf
A

sup
P

ES∼Pn`(P,A(S))− inf
a∈A

`(P, a),

1. We adopt the common terminology of algorithm, while not addressing computational issues.
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is the minimax regret, a central object in learning theory. Therefore, the prediction problem of ma-
chine learning can be understood in the more general language of experiments. It is these problems
that are of central interest in this paper. For the remainder L will represent the regret for a loss `.

4. Corrupted Prediction Problems

Due to limitations in the measurement apparatus available to the decision maker, rather than observ-
ing z ∈ Z , it is often the case that the decision maker observes a corrupted z̃ in a potentially different
observation space Z̃ . We model the corruption process via a Markov transition T ∈ T(Z, Z̃).

Definition 3 A corruption is a Markov transition T(Z, Z̃).

For example, we may wish to learn a relationship between measured symptoms and a medical diag-
nosis, as provided to us by an expert. To do so, rather than access to the expert’s data, we are given
data from one of their apprentices. Here T models the hypothesized link between the expert’s and
apprentice’s data. The goal of predicting as well as the expert remains.

More concretely, we are interested in supervised learning problems wherein,

Z = X × Y and Z̃ = X × Ỹ ,

with T corrupting only the label Y and acting as the identity on the instance X ,

T = idX ⊗ TY .

Prominent examples include:

• Learning with Label Noise:

TY =

(
1− σ−1 σ1

σ−1 1− σ1

)
.

• Semi Supervised Learning:

TY =

 σ−1 0

0 σ1

1− σ−1 1− σ1


• Learning with partial labels: We assume that a partial label always includes the true label

as one of the possibilities and furthermore that spurious labels are added with probability σ.

TY =



(1− σ)2 0 0

0 (1− σ)2 0

0 0 (1− σ)2

(1− σ)σ (1− σ)σ 0

(1− σ)σ 0 (1− σ)σ

0 (1− σ)σ (1− σ)σ

σ2 σ2 σ2


.
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For convenience we define the corrupted experiment ẽ = T ◦ e. We order the utility of different
corruptions via the minimax risk,

RiskL(ẽn) := min
A

max
P

RiskL(P, ẽn,A).

Note that the domain of A is now Z̃n. Ideally we wish to compare RiskL(ẽn) with RiskL(en), the
minimum risk of the corrupted and the clean experiments. By the general data processing theorem,
RiskL(ẽn) ≥ RiskL(en), however this does not allow one to rank the utility of different T .

Even after many years of directed research, in general we can not compute RiskL(en) exactly,
let alone RiskL(ẽn) for general corruptions. Consequently our effort for the remaining turns to
upper and lower bounds of RiskL(ẽn).

4.1 Corruption Corrected Losses

When convenient we use the shorthand T (P ) = P̃ . Natarajan et al. (2013) introduced a method of
learning classifiers from data subjected to label noise, called the “method of unbiased estimators”.
Here we show that this method can be generalized to other corruptions.

Recall that a transition T ∈ T(Z, Z̃) is a linear map T : (RZ)∗ → (RZ̃)∗. Associated with
any transition is a dual or adjoint linear map T ∗ : RZ̃ → RZ with,〈

α, T ∗(f̃)
〉
Z

:=
〈
T (α), f̃

〉
Z̃
, ∀f̃ ∈ RZ̃ , ∀α ∈ (RZ)∗,

In words, T ∗ “pulls back” functions of the corrupted sample to functions of the clean sample. When
T is a matrix, T ∗ is the transpose of T . We wish to go in the other direction, to transfer functions
of clean samples to those of corrupted samples.

Definition 4 A transition T ∈ T(Z, Z̃) is reconstructible if T has a left inverse; that is there exists
a transition R ∈ T(Z̃,Z) such that R ◦ T = id(RZ)∗ .

Intuitively, T is reconstructible if there is some transformation that “undoes” the effects of T . Note
that R need not be Markov for Markov T . We denote the set of all reconstructible transitions by
T←(Z, Z̃).

Many forms of corrupted learning are reconstructible, including semi-supervised learning, learn-
ing with label noise and learning with partial labels for all but a few pathological cases. Appendix
A contains several worked examples.

We call a left inverse of T a reconstruction. For concreteness one can always take,

R = (T ∗T )−1T ∗,

the Moore-Penrose pseudo inverse of T . For invertible T , R is given by the standard inverse. In
general it will be useful to consider other reconstructions. In particular, for the proof of theorem 29,
we use reconstructions with,

R∗(1Z) = 1Z̃ ,
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ie those which preserve the constant loss function. This condition is always satisfied when T is
invertible. More broadly, there is no loss in generality working with such reconstructions.

Reconstructible transitions are exactly those where we can transfer a function of the clean z to
one of the corrupted z̃ while preserving expectations. By properties of adjoints,

〈P, f〉 = 〈R ◦ T (P ), f〉 = 〈T (P ), R∗(f)〉 .

In words, to take expectations of f with samples from P̃ , we use the corruption corrected f̃ =
R∗(f). Recall the partial loss function `(−, a) ∈ RZ . Using R we can reconstruct the partial loss
from corrupted examples.

Theorem 5 (Corruption Corrected Loss) For all reconstructible corruptions T ∈ T(Z, Z̃) and
loss functions ` : Z ×A→ R define the corruption corrected loss `R : Z̃ ×A→ R with,

`R(−, a) = R∗(`(−, a)), ∀a ∈ A.

Then for all distributions P ∈ P(Z), Ez∼P `(z, a) = Ez̃∼P̃ `R(z̃, a).

4.1.1 USES OF CORRUPTION CORRECTED LOSSES IN SUPERVISED LEARNING

In supervised learning Z = X × Y and the goal is to find a function that predicts y ∈ Y from
x ∈ X with low expected loss. Given a suitable function class F ⊆ AX and a loss ` : Y × A→ R
one attempts to find,

f∗ = arg min
f∈F

E(x,y)∼P `(y, f(x)).

If the labels have been corrupted by TY ∈ T(Y, Ỹ ), we can correct for the corruption and find,

f∗ = arg min
f∈F

E(x,ỹ)∼P̃ `RY (ỹ, f(x)) = arg min
f∈F

E(x,y)∼P `(y, f(x)).

4.1.2 A WORKED EXAMPLE: LEARNING WITH SYMMETRIC LABEL NOISE

When learning under symmetric label noise, the decision maker is required to predict a binary label
y ∈ {−1, 1}, where y∼P . Rather than observing the true y, the decision maker observes ỹ, where
ỹ = y with probability 1 − σ and ỹ = −y with probability σ. This process can be modeled by the
following corruption and reconstruction respectively;

T =

(
1− σ σ

σ 1− σ

)
, R∗ =

1

1− 2σ

(
1− σ −σ
−σ 1− σ

)
.

Note that R is not Markov, as some of the entries of R are negative. For a loss ` : {−1, 1}×A→ R
we have, (

`R(−1, a)

`R(1, a)

)
=

1

1− 2σ

(
1− σ −σ
−σ 1− σ

)(
`(−1, a)

`(1, a)

)
,

or more compactly,

`R(y, a) =
(1− σ)`(y, a)− σ`(−y, a)

1− 2σ
.

This is equivalent to the “method of unbiased estimators” of Natarajan et al. (2013). Several exam-
ples of corruption corrected losses are given in appendix A.
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4.1.3 WHEN TO APPEAL TO A SURROGATE LOSS

Many loss functions in machine learning are non convex, the zero one loss a prime example. Rather
than minimizing one of these losses directly, it is common to instead minimize a convex surro-
gate loss function, such as the hinge loss. When learning in the presence of corruption we face a
dilemma; when does one appeal to a surrogate? The method of unbiased estimators first appeals to
a surrogate loss before correcting for noise. The method of label dependent costs (Natarajan et al.,
2013) first corrects for noise before appealing to a surrogate.

4.2 Similarities with Other Frameworks

The framework here shares common points with two other broad directions in the literature, in the
line of working of Cid-Sueiro et al. (2014) and Blanchard et al. (2016).

Cid-Sueiro et al. (2014); Cid-Sueiro (2012) consider the problem of learning when the corruption
is only partially known. They also use transitions (stochastic matrices) and their reconstructions to
construct loss functions that “correct for” noise in the labeling process. Their development closely
mirrors that of section 11, with subtle differences (see section 11.3).

Blanchard et al. (2016) consider the closely related problem of learning under mutually contam-
inated distributions. For example, in binary classification many performance measures can be opti-
mized with access to samples from P1, P−1 ∈ P(X), the distribution over instances given a positive
or negative label respectively. In practice however the samples can be mixed, yielding distributions,

P̃±1 = (1− π±1)P1 + π±1P−1.

In general the mixing constants π±1 are unknown. Under the assumption that P1 and P−1 are
mutually irreducible, Blanchard et al. (2016) shows that one can reconstruct the clean distributions
together with the mixing coefficients, providing means to estimate the corruption. Their framework
has been extended to other problems (Katz-Samuels and Scott, 2016).

5. Upper Bounds for Corrupted Learning

In this section we develop upper bounds on the risk of any algorithm that learns from a corrupted
sample, in terms of the sample risk, S̃∼P̃n. For simplicity we assume that A is finite. This assump-
tion can be removed by PAC-Bayesian bounds (as we do in the appendix), via covering number
arguments (Bartlett et al., 1997) or via more refined bounds from empirical process theory (Bartlett
and Mendelson, 2006).

By an application of the PAC-Bayes bound (Zhang, 2006), one has for all algorithmsA ∈ T(Z̃n, A)
and distributions P ∈ P(Z),

ES̃∼P̃n`R(P̃ ,A(S̃)) ≤ ES̃∼P̃n`R(S̃,A(S̃)) + ‖`R‖∞

√
2 log(|A|)

n
.

By the construction of `R, `R(P̃ ,A(S̃)) = `(P,A(S̃)), and the above bound yields the following
theorem.
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Theorem 6 For all reconstructible T ∈ T(Z, Z̃), algorithms A ∈ T(Z̃n, A), distributions P ∈
P(Z) and bounded loss functions `,

ES̃∼P̃n`(P,A(S̃)) ≤ ES̃∼P̃n`R(S̃,A(S̃)) + ‖`R‖∞

√
2 log(|A|)

n
.

A similar result also holds with high probability on draws from P̃n. This bound motivates the
following algorithm for learning from corrupted data,

AERM (S̃) = arg min
a∈A

`R(S̃, a).

As this algorithm minimizes the loss on the sample,

ES̃∼P̃n`R(S̃,AERM (S̃)) ≤ ES̃∼P̃n`R(S̃, a) = `(P, a), ∀a ∈ A.

Together with theorem 6 we have,

ES̃∼P̃n`(P,AERM (S̃)) ≤ inf
a
`(P, a) + ‖`R‖∞

√
2 log(|A|)

n
, ∀P

yielding,

RiskL(ẽn) ≤ ‖`R‖∞

√
2 log(|A|)

n
.

Similarly,

RiskL(en) ≤ ‖`‖∞

√
2 log(|A|)

n
.

Therefore, the ratio ‖`R‖∞‖`‖∞ measures the relative difficulty of corrupted versus clean learning, as
judged solely by our upper bound.

5.1 Upper Bounds for Combinations of Corrupted Data

Recall that our final goal is to quantify the utility of a data set comprising different corrupted data.
For example in learning with noisy labels out of n data, there could be n1 clean, n2 slightly noisy
and n3 very noisy samples and so on. More generally we assume access to a corrupted sample S̃,
made up of k different types of corrupted data, with S̃i∼P̃ni , i ∈ [1; k].

Theorem 7 Let Ti ∈ T(Z, Z̃i) be a collection of k reconstructible corruptions. Let P̃ = ⊗ki=iP̃
ni
i ,

Z̃ = ×ki=1Z̃
ni
i , n =

∑k
i=1 ni and ri = ni

n . Then for all algorithms A ∈ T(Z̃, A), distributions
P ∈ P(Z) and bounded loss functions `,

ES̃∼P̃ `(P,A(S̃)) ≤ ES̃∼P̃

k∑
i=1

ri`Ri(S̃i,A(S̃)) +K

√
2 log(|A|)

n
,

where K =

√
k∑
i=1

ri‖`Ri‖2∞.
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A similar result also holds with high probability on draws from P̃ . Theorem 7 is a generalization of
the final bound appearing in Crammer et al. (2005) that only pertains to symmetric label noise and
binary classification. Theorem 7 suggests the following means of choosing ni examples from each
of the corrupted experiments. Let ci be the cost of acquiring data corrupted by Ti. First, choose data
from the Ti with lowest ci‖`Ri‖2∞ until picking more violates the budget constraint. Then choose
data from the second lowest and so on.

One must be careful when comparing upper bounds, as there may exist alternate methods for learn-
ing from the corrupted sample with better properties. In the next section we present arguments
indicating this is not the case.

6. Lower Bounds for Corrupted Learning

Thus far we have developed upper bounds for ERM algorithms. In particular we have found that
reconstructible corruption does not affect the rate at which learning occurs, it only affects constants
in the upper bound. Can we do better? Are these constants tight? To answer this question we
develop lower bounds for corrupted learning.

Here we review Le Cam’s method (see Yu (1997) for a more detailed account), a powerful technique
for generating lower bounds for decision problems that very often gives the correct rate and depen-
dence on constants (including being able to reproduce the standard VC dimension lower bounds for
classification presented in Massart and Nédélec (2006)). In recent times it has been used to establish
lower bounds for: differentially private learning (Duchi et al., 2013), learning in a distributed set up
(Zhang et al., 2013), function evaluations required in convex optimization (Agarwal et al., 2012) as
well as generic lower bounds in statistical estimation problems (Yang and Barron, 1999). We show
how this method can be extended using the strong data processing theorem (Cohen and Kemper-
mann, 1998) to provide a general tool for lower bounding the possible performance attainable in
corrupted prediction problems.

We stress that these techniques apply to general experiments e ∈ T(Θ,Z), and general loss func-
tions L : Θ×A→ R, and not only the predictive problems of interest here.

6.1 Le Cam’s Method and Minimax Lower Bounds

Le Cam’s method proceeds by reducing a general decision problem to an easier binary classification
problem, before relating the best possible performance on this classification problem to the minimax
risk. Let Θ be a set of unknowns, e ∈ T(Θ,Z) an experiment and L : Θ × A → R a loss. We
assume further that infa L(θ, a) = 0 for all θ ∈ Θ. Define the separation ρ : Θ×Θ→ R,

ρ(θ1, θ2) := inf
a
L(θ1, a) + L(θ2, a).

The separation measures how hard it is to act well against both θ1 and θ2 simultaneously. Further-
more define the variational divergence,

V (P,Q) := sup
f∈[−1,1]Z

EP f − EQf, ∀P,Q ∈ P(Z),

11



VAN ROOYEN, WILLIAMSON

The variational divergence measures how hard to is to distinguish two distributions P and Q and is
deeply related to binary classification.

Lemma 8 For all experiments e ∈ T(Θ,Z) and loss functions L,

RiskL(e) ≥ 1

4
sup

θ1,θ2∈Θ
ρ(θ1, θ2) (1− V (e(θ1), e(θ2))) .

A compact proof is given in appendix B. This lower bound is a trade off between distances measured
by ρ and statistical distances measured by the variational divergence. A decision problem is easy if
proximity in variational divergence of e(θ1) and e(θ2) (hard to distinguish θ1 and θ2 statistically)
implies proximity of θ1 and θ2 in ρ (hard to distinguish θ1 and θ2 with actions).

Lemma 8 suggests that to rank the difficulty of various experiments, one should work with their
Le Cam function.

Definition 9 Let e be an experiment and L a loss. The Le Cam function of e is,

Le CamL (e, γ) =
1

4
sup

θ1,θ2∈Θ
ρ(θ1, θ2) (1− γV (e(θ1), e(θ2))) , ∀γ ≥ 0.

Lemma 8 can be restated as,
RiskL(e) ≥ Le CamL (e, 1).

REPLICATION AND RATES

We wish to lower bound how the risk decreases as n, the number of times the experiment is repli-
cated, grows. The following lemma provides a simple way to do this.

Lemma 10 For all collections of distributions Pi, Qi ∈ P(Zi), i ∈ [1; k],

V (⊗ki=1Pi,⊗ki=1Qi) ≤
k∑
i=1

V (Pi, Qi).

We make use of the specific case where Pi = P and Qi = Q for all i. Lemma 8 and lemma 10
yield the following.

Lemma 11 For all experiments e ∈ T(Θ,Z), loss functions L and n,

RiskL(en) ≥ Le CamL (en, 1) ≥ Le CamL (e, n).

OTHER METHODS FOR OBTAINING MINIMAX LOWER BOUNDS

There are many other techniques for constructing lower bounds in terms of functions of pairwise
KL divergences (Yu, 1997) as well as functions of pairwise f -divergences (Guntuboyina, 2011).
Ultimately these methods replace the Variational divergence and separation in lemma 11 with a
more general function of the experiment. While such methods are often required to get tighter
lower bounds, all of what follows can be applied to these more intricate techniques. For the sake of
conceptual clarity we proceed with Le Cam’s method.

12
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6.2 Measuring the Amount of Corruption

Rather than the experiment e, in corrupted learning we work with the corrupted experiment ẽ. The
data processing theorem for f -divergences states that,

V (T (P ), T (Q)) ≤ V (P,Q), ∀P,Q ∈ P(Z).

Thus any lower bound achieved by Le Cam’s method for e can be directly transferred to one for
ẽ. However, this provides us with no means to rank different T . For some T , the data processing
theorem can be strengthened.

Definition 12 The Clarity of a Markov transitions T ∈ T(Z, Z̃) is,

Clarity(T ) := sup
P,Q∈P(Z)

V (T (P ), T (Q))

V (P,Q)
.

One has,
V (T (P ), T (Q)) ≤ Clarity(T )V (P,Q), ∀P,Q ∈ P(Z).

Clarity(T ) measures how much T corrupts. For example, if T is constant and maps all P to the
same distribution, then Clarity(T ) = 0. If T is an invertible function, then Clarity(T ) = 1. When
Z and Z̃ are finite,

Clarity(T ) = sup
v∈Ω

‖T (v)‖1
‖v‖1

,

where Ω = {v :
∑
vi = 0, v 6= 0}. Hence Clarity(T ) is the operator 1-norm of T when restricted

to Ω. Clarity behaves as expected under composition.

Lemma 13 For all transitions T1 ∈ T(Z, Z̃1) and T2 ∈ T(Z̃1, Z̃2),

Clarity(T2 ◦ T1) ≤ Clarity(T2)Clarity(T1) ≤ min(Clarity(T2),Clarity(T1)).

Hence T2 ◦ T1 is at least as corrupt as either of the Ti.

Clarity(T ) was first used by Dobrushin (1956), where it is called the coefficient of ergodicity and
is used to prove rates of convergence of Markov chains to their stationary distribution.

6.3 Lower bounds Relative to the Amount of Corruption

Together with lemma 11, the Clarity leads to meaningful lower bounds that allow the comparison
of different corrupted experiments.

Theorem 14 For all experiments e, loss functions L, corruptions T ∈ T(Z, Z̃) and γ ≥ 0,

Le CamL (T ◦ e, γ) ≥ Le CamL (e,Clarity(T )γ).

The proof is a simple application of the strong data processing theorem. Together with lemma 11,
the above lemma yields the following corollary.

Corollary 15 For all experiments e, loss functions L, corruptions T ∈ T(Z, Z̃) and n,

RiskL(ẽn) ≥ Le CamL (e,Clarity(T )n)

13
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In particular if Le Cam’s method yields a lower bound of C√
n

for the clean problem, as is usual for

many machine learning problems, theorem 15 yields a lower bound of C√
Clarity(T )n

for the corrupted

problem. The rate at which one learns is unaffected, only the constants. A penalty of Clarity(T ) is
unavoidable no matter what learning algorithm is used.

6.4 Lower Bounds for Combinations of Corrupted Data

As in section 5.1 we present lower bounds for combinations of corrupted data. For example in
learning with noisy labels out of n data, there could be n1 clean, n2 slightly noisy and n3 very noisy
samples and so on.

Theorem 16 Let Ti ∈ T(Z, Z̃i), i ∈ [1; k], be k corruptions. Let T = ⊗ki=1T
ni
i with n =

∑k
i=1 nk.

Then,

Le CamL (T ◦ en, γ) ≥ Le CamL

(
e,

(
n∑
i=1

niClarity(Ti)

)
γ

)
.

Furthermore,

RiskL(T ◦ en) ≥ Le CamL

(
e,

(
n∑
i=1

niClarity(Ti)

))
.

As in section 5.1, this bound suggests means of choosing data sets via the following integer program,

arg max
n1,n2...nk

k∑
i=1

Clarity(Ti)ni subject to
k∑
i=1

cini ≤ C,

where ci is the cost of acquiring data corrupted by Ti and C is the maximum total cost. This is
exactly the unbounded knapsack problem (Dantzig, 1957) which admits the following near optimal
greedy algorithm. First, choose data from the Ti with highest Clarity(Ti)

ci
until picking more violates

the constraints. Then pick from the second highest and so on.

6.5 The Generality of Clarity

In light of section 6.1, it is often the case that more complicated lower bounding techniques based
on pairwise f -divergences are required to produce tight lower bounds. Recall the definition of an
f -divergence (Ali and Silvey, 1966).

Definition 17 Let f : R+ → R be a convex function with f(1) = 0. For all distributions P,Q ∈
P(Z) the f -divergence between P and Q is,

Df (P,Q) := EP f
(
dQ
dP

)
,

if P and Q are absolutely continuous, and is infinite otherwise.

Both the variational and KL divergence are examples of f divergences. Following on from the
reasoning of section 6.2, we seek a Clarityf (T ) such that,

Df (T (P ), T (Q)) ≤ Clarityf (T )Df (P,Q) ∀P,Q, f.

On the surface the choice of f matters. However, the clarity as we have defined is generic.

14
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Theorem 18 (Strong Data Processing(Theorem 4.1 of Cohen et al. (1993))) Let T ∈ T(Z, Z̃)
be a Markov transition. Then for all P,Q, f ,

Df (T (P ), T (Q)) ≤ Clarity(T )Df (P,Q).

7. Measuring the Tightness of the Upper Bounds and Lower Bounds

In the previous sections we have shown upper bounds that depend on ‖`R‖∞ as well as lower bounds
that depend on Clarity(T ). Here we compare these bounds.

Recall from theorem 5, `R(−, a) = R∗(`(−, a)). The worst case ratio ‖`R‖∞‖`‖∞ is determined by
the operator norm of R∗. For a linear map R : RX → RY define,

‖R‖1 := sup
v∈RX

‖Rv‖1
‖v‖1

and ‖R‖∞ := sup
v∈RX

‖Rv‖∞
‖v‖∞

which are two operator norms of R. They are equal to the maximum absolute column and row sum
of R respectively (Bernstein, 2009). Hence ‖R‖1 = ‖R∗‖∞.

Lemma 19 For all losses `, T ∈ T(Z, Z̃) and reconstructions R, ‖`R‖∞‖`‖∞ ≤ ‖R
∗‖∞.

Lemma 20 If T ∈ T(Z, Z̃) is reconstructible, with reconstruction R, then,

1

Clarity(T )
≤ 1/

(
inf
u∈RX

‖Tu‖1
‖u‖1

)
≤ ‖R∗‖∞.

Note that for lower bounds we look at the best case separation of columns of T , for upper bounds
we essentially use the worst. We also get the following compositional theorem.

Lemma 21 If T1 ∈ T(Z, Z̃1) and T2 ∈ T(Z̃1, Z̃2) are reconstructible, with reconstructions R1

and R2, then T2 ◦ T1 is reconstructible with reconstruction R1 ◦R2. Furthermore,

1

Clarity(T1)Clarity(T2)
≤ ‖R1 ◦R2‖1 ≤ ‖R1‖1‖R2‖1.

Proof The first statement is obvious. For the first inequality simply use lemma 20 followed by
lemma 13. The second inequality is an easy to prove property of operator norms.

7.1 Comparing Theorems 6 and 15

We have shown the following implication,

C1√
n
≤ RiskL(en) ≤ C2‖`‖∞√

n
⇒ C1√

Clarity(T )n
≤ RiskL(ẽn) ≤ C2‖`R‖∞√

n
,

for all reconstructible T . By lemma 20, in the worst case ‖`R‖∞ ≥ ‖`‖∞
Clarity(T ) . Thus in the worst

case over all losses, we arrive at upper and lower bounds for the corrupted problem that are at least
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factor of
√

Clarity(T ) apart. We do not know if this is the fault of our upper or lower bounding
techniques. However, for specific ` and T this gap can be smaller.

For example, in the problem of learning with symmetric label noise discussed in section 4.1.2,
with misclassification loss `01,

Clarity(T ) = 1− 2σ and ‖`01,T ‖ =
1− σ
1− 2σ

,

respectively. The worst case ratio of upper and lower bounds over all losses is of order 1√
1−2σ

. For

misclassification loss the actual ratio is 1−σ√
1−2σ

. For all σ ∈ [0, 2
10 ], i.e. up to 0.2 flip probability,

this ratio is never larger than 4√
15
≈ 1.03.

7.2 Comparing Theorems 7 and 16

Let Cost(T ) be the cost of acquiring data corrupted by T . Theorem 7 prefers corruptions with low
‖`R‖2∞Cost(T ), or equivalently those with high,

1

‖`R‖∞Cost(T )

Theorem 16 prefers corruptions with high,

Clarity(T )

Cost(T )
≈ ‖`‖∞
‖`R‖∞Cost(T )

.

In theorems 16 and 7 we have, respectively, best case and a worst case loss specific method for
choosing data sets. Theorem 7 combined with 1emma 19 provides a worst case loss insensitive
method for choosing data sets.

8. Corrupted Learning when Clean Learning is Fast

The contents of this paper largely solve the problem of learning from data with corrupted labels,
when learning on the original problem occurs at the standard 1√

n
rate. There are many conditions

under which clean learning is fast, here we focus on the Bernstein condition presented in Bartlett
and Mendelson (2006); van Erven et al. (2012).

Definition 22 Let P ∈ P(Z), ` a loss and aP = arg mina Ez∼P `(z, a). A pair (`, P ) satisfies the
Bernstein condition with constant K if for all a ∈ A,

Ez∼P (`(z, a)− `(z, aP ))2 ≤ K Ez∼P `(z, a)− `(z, aP )

When A is finite, such a condition leads to 1
n rates of convergence for empirical risk minimization

(ERM).

Theorem 23 Let A be ERM with A finite. If (`, P ) satisfies the Bernstein condition then for some
constant C > 0,

ES∼Pn`(P,A(S))− `(P, aP ) ≤ C log(|A|)
n

.
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Furthermore with probability at least 1− δ on a draw from Pn one has,

`(P,A(S))− `(P, aP ) ≤
C
(
log(|A|) + log

(
1
δ

))
n

.

While our lower bounding techniques will turn a lower bound of 1
n for clean learning to one of

1
α(T )n for corrupted learning, it may be the case that this bound is too optimistic, there may be no
algorithm that gives a 1

n rate of convergence.

A natural question to ask is when using the ERM algorithm for the loss `R converges quickly from
samples drawn from P̃ . Here we ask the simpler question: when does (`R, P̃ ) satisfy the Bernstein
condition?

Lemma 24 If (`R, P̃ ) satisfies the Bernstein condition with constant K then (`, P ) also satisfies
the Bernstein condition with the same constant.

This theorem (almost) rules out pathological behavior where ERM learns quickly from corrupted
data and yet slowly for clean data. The converse of lemma 24 is not true, for example consider the
case of PAC learning versus PAC learning with arbitrary instance dependent noise. In some cases
the Bernstein condition can be transfered from the clean problem to the corrupted problem, as we
now explore.

Definition 25 Let T ∈ T(Z, Z̃)be a corruption and ` a loss. A pair (`, T ) are η-compatible if for
all z ∈ Z and a1, a2 ∈ A,

Ez̃∼T (z)(`R(z̃, a1)− `R(z̃, a2))2 ≤ η(`(z, a1)− `(z, a2))2.

Theorem 26 If the pair (`, P ) satisfies the Bernstein condition with constant K and the pair (`, T )
are η-compatible then (`R, P̃ ) satisfies the Bernstein condition with constant ηK.

While by no means the final word on fast corrupted learning, this theorem does allow one to prove
interesting results in the binary classification setting.

Theorem 27 Let T be label noise, T =

(
1− σ−1 σ1

σ−1 1− σ1

)
, then the pair (`01, T ) is η-

compatible with η =
(

1+|σ−1−σ1|
1−σ−1−σ1

)2
.

One very useful example of a pair (P, `) satisfying the Bernstein condition with constant 1 is when
P is separable, ` is 01 loss and the Bayes optimal classifier is in the function class. Theorem 27
guarantees that as long as σ−1 + σ1 6= 1 (i.e. it is possible to learn from noisy labels), one learns at
a fast rate from noisy examples.
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9. Canonical Losses and Convexity

Thus far we have focused on the statistical properties of corrected loss minimization procedures.
However, performing our correction may incur a computational penalty. Even if the loss ` is con-
vex, there is no guarantee that the corrected loss remains so. Here we show that a large and useful
class of loss functions remain convex when corrected.

Recall the constant function, 1Z(z) and define,

1⊥Z :=

{
v ∈ RZ :

∑
z∈Z

v(z) = 0

}
,

those functions that are orthogonal to 1Z . Proper losses and the closely related canonical losses
form a large class of loss functions that provide means of attacking prediction problems.

Definition 28 A loss L : Z ×A→ R is canonical if A is a convex subset of 1⊥Z and,

L(z, v) = −〈δz, v〉+ Ψ(v),

for some convex function Ψ : A→ R.

Intuitively, minimizing a canonical loss reduces to “lining up” with the average observed label, with
“over confident” predictions penalized by the function Ψ. In appendix C we show that all losses
are essentially canonical losses in disguise (theorem 49). Note that canonical losses split into two
terms, one convex in v and unaffected by the observation, and a term linear in v. These losses are
particular easy to correct for corruption, as only the linear term needs to be corrected.

Theorem 29 (Correcting Canonical Losses) Let L : Z × A → R be a canonical loss. For all
reconstructible corruptions T ∈ T(Z, Z̃) there exists a reconstruction R such that,

LR(z̃, v) = −〈δz̃, R∗(v)〉+ Ψ(v)

Furthermore R can be calculated efficiently via Gaussian elimination.

We develop the necessary representation results needed to prove this theorem in appendix C.

Theorem 29 extends results presented in Natarajan et al. (2013) concerning when losses used for
learning binary classifiers remain convex when corrected for asymmetric label noise. Therefore we
need not abandon the framework of convex surrogates when the corruption is known.

9.1 Comparison with Natarajan et al. (2013)

Recall in the problem of learning with label noise,

T =

(
1− σ−1 σ1

σ−1 1− σ1

)
,
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where σy is the probability of label y being flipped. For this problem, the corrected loss is,

`R(y, a) =
(1− σ−y)`(y, a)− σy`(−y, a)

1− σ−1 − σ1
.

If ` : {±1} × R→ R is convex, smooth and satisfies,

`′′(y, a) = `′′(−y, a),

then lemma 4 of Natarajan et al. (2013) guarantees that `R is convex. Integrating twice yields,

`(y, a) = by + cyv + g(a),

For some convex function g. Rearranging one has,

`(y, a) =

(
b−1 − b1 + (c1 − c−1) a

2

)
y +

b1 + b−1 + (c1 + c−1) a

2
+ g(a)︸ ︷︷ ︸

convex in a

.

For canonical losses, corollary 50 states that any binary canonical loss is of the formL : {±1}×I →
R,

L(y, v) = −yv + Ψ(v), v ∈ I,

where I is a convex subset of R and Ψ : I → R a convex function. Letting,

ν = −
(
b−1 − b1 + (c1 − c−1) a

2

)
,

one can see that the losses considered in Natarajan et al. (2013) are affine re-parametrizations of
canonical losses. Theorem 29 is therefore a generalization of lemma 4 of Natarajan et al. (2013).

9.2 Comparison with Cid-Sueiro et al. (2014)

Section 5 of Cid-Sueiro et al. (2014) provides some discussion of the convexity of corruption cor-
rected losses. They state, without proof, that a requirement for the preservation of convexity is
that the reconstruction have non negative entries. Theorem 29 shows that this is not the case, one
can always preserve convexity as long as the correct reconstruction and parametrization of the loss
function are used.

10. Learning when the Corruption Process is Partially Known

Thus far we have considered the problem of learning when T is known. Here we consider the
problem of when T lies in a subset C ⊂ T←(Z, Z̃). For example when learning classifiers under
symmetric label noise (Angluin and Laird, 1988), the corruption is of the form,

Tσ =

(
1− σ σ

σ 1− σ

)
,

where σ 6= 1
2 . There are three ways in which one can proceed.
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If we assume access to a “gold standard” sample S∼Pn as well as a corrupted sample S̃, we can
use methods akin to those in Kearns (1998). One covers the set C to some tolerance ε with a finite
cover {Ti}ki=1. For each Ti in the cover, estimate an action ai using `Ri and the corrupted sample.
Finally, choose the ai that best predicts the gold standard sample. Using theorem 6, we know that
for a large enough corrupted sample, one of the ai has performance close to that of the optimal a.

One can attempt to estimate T from the corrupted sample. Under certain distributional assumptions
(such as separability and mutual irreducibility), Menon et al. (2015) surveys methods for estimating
T for the problem of learning under asymmetric label noise. Blanchard et al. (2016) gives theory
for these estimators. There is a growing literature extending these estimates to other problems as
well as new, computational efficient estimates (Blanchard and Scott, 2014; Katz-Samuels and Scott,
2016; Ramaswamy et al., 2016). We believe these methods can be extended to general corruptions.

In both of the above methods, operator norms can provide suitable losses/metrics that can guide
their use.

Lemma 30 Let T, T ′ ∈ T←(Z, Z̃). Then,

‖`R − `R′‖∞ ≤
∥∥R−R′∥∥

1
‖`‖∞ .

The quantity ‖R−R′‖1 is a statistically motivated distance that can be used when covering C. Fur-
thermore, it can be used when designing loss functions for estimating T .

Finally, one can look for loss functions that are “invariant” to C. This approach is explored fur-
ther in section 11 and in van Rooyen et al. (2017).

11. Corruption Invariant Loss Functions

While exact knowledge of T ∈ C ⊂ T←(Z, Z̃) is required to estimate the expected loss from a
corrupted distribution, in certain situations this is unnecessary for estimating optimal actions and
any reconstruction will suffice. In this section we formalize this notion and characterize when exact
knowledge of T is unnecessary. We assume for each T ∈ C an explicit reconstruction R, ie a
function,

Rec : C → T(Z̃,Z),

with Rec(T )T = idZ . As in theorem 29, we will assume that,

Rec(T )∗(1Z) = 1Z̃ , ∀T ∈ C.

We focus on the problem of prediction. Let ` : Z × A → R be a loss. ` provides an ordering on
P(Z ×A). P1 ≤` P2 if,

E(z,a)∼P1
`(z, a) ≤ E(z,a)∼P2

`(z, a).

In words, P1 is making better decisions than P2. One can think of P1 and P2 being the output of a
learning algorithm, although exactly how they came to be is of no concern in this section.

Let T ∈ C be the true corruption and T0 ∈ C the assumed corruption. By properties of adjoints,

〈T (P ),Rec(T0)∗`(−, a)〉 = 〈P, (Rec(T0)T )∗`(−, a)〉 .
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When using the wrong reconstruction the decision maker is effectively using the loss,

˜̀
T (−, a) := (Rec(T0)T )∗`(−, a),

in place of `. In general there is no guarantee,

P1 ≤` P2 ⇔ P1 ≤˜̀
T
P2.

In words, assuming the wrong corruption may lead to the wrong ordering. Corruption immune
losses are precisely those where the ordering is unaltered.

The reader may wonder why we focus on preserving order rather than preserving only the opti-
mal action. Invariably in machine learning we make approximations, be it via working with a finite
simple, or a restricted function class. What is key therefore is preserving what is better and not only
what is best.

Definition 31 (Order Equivalence) Let `, `′ : Z × A→ R be loss functions. ` is order equivalent
to `′ if for all P1, P2 ∈ P(A×Z),

P1 ≤` P2 ⇔ P1 ≤`′ P2.

The lemma below characterizes when losses are order equivalent.

Lemma 32 (Theorem 2, Section 7.9 of DeGroot (1962)) ` is order equivalent to `′ if and only if
there exists a constants α > 0 and β such that,

`(z, a) = α`′(z, a) + β, ∀z ∈ Z, ∀a ∈ A.

Definition 33 Let C ⊂ T(Z, Z̃) be a set of reconstructible transitions. A loss ` is immune to C if
for all T ∈ C, ` is order equivalent to ˜̀

T .

Losses that are immune to C are precisely those where exact knowledge of the corruption is unnec-
essary, assuming any T ∈ C and using its corresponding reconstruction is sufficient.

Theorem 34 Fix T0 ∈ C. A loss ` is immune to C ⊂ T←(Z, Z̃) if and only if for all T ∈ C.

(Rec(T0)T )∗`(−, a) = α(T )`(−, a) + β(T )1Z , ∀a ∈ A,

for functions α : C → R+ and β : C → R.

The proof follows directly from the definition and lemma 32. The operator (Rec(T0)T ) measures
the effect of reconstructing incorrectly.
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11.1 Constructing Corruption Immune Loss Functions

Theorem 34 provides means to test when a loss function is immune to C. Here we show how to
construct such losses. Immune losses arise from the persistent eigenvectors of (Rec(T0)T )∗.

Let S ⊂ T(Z,Z). We call v a persistent eigenvector of S if,

Mv = λ(M)v, ∀M ∈ S,

ie, v is an eigenvector for all M ∈ S, albeit with differing eigenvalue. We call the function λ :
S → R a persistent eigenvalue. Much like normal eigenspaces, we define persistent eigenspaces as
subspaces of RZ with the same persistent eigenvalue,

Eλ,S =
{
v ∈ RZ : Mv = λ(M)v, ∀T ∈ S

}
.

Persistent eigenspaces provide an alternative statement of theorem 34.

Corollary 35 Let C ⊂ T←(Z, Z̃), with T0 ∈ C. Let,

S = {(Rec(T0)T )∗ : T ∈ C} .

and let α : S → R+ be a persistent eigenvalue of S. Any loss ` of the form,

`(−, a) = v(a) + γ1Z ,

where v(a) ∈ Eα,S ∀a ∈ A and γ ∈ R is immune to C.

Therefore the search for losses that are immune to C reduces to the calculation of the persistent
eigenspaces of {(Rec(T0)T )∗ : T ∈ C}.

11.2 Examples of Corruption Immune Losses

Here we show how to apply corollary 35 to find losses that are immune to families of corruptions.

11.2.1 SYMMETRIC LABEL NOISE AND THE LINEAR LOSS

We proceed as in van Rooyen et al. (2017). In the problem of symmetric label noise Z = {−1,+1}
with,

T =

(
1− σ σ

σ 1− σ

)
and R =

1

1− 2σ

(
1− σ −σ
−σ 1− σ

)
,

for σ 6= 1
2 . Let C be all such T with σ 6= 1

2 . Define the linear loss function,

`(y, v) = −yv, v ∈ R,

or in partial form,

`(−, v) =

(
v

−v

)
.
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We can quickly verify that the linear loss is immune to C. Let T0 = idZ . As

(
1

−1

)
is an

eigenvector of T ∗ with eigenvalue of 1− 2σ we have,

T ∗`(−, v) = (1− 2σ) `(−, v), ∀v ∈ R, ∀σ 6= 1

2
.

Therefore the linear loss is immune to C.

11.2.2 MULTI-CLASS IMMUNE LOSSES

Here we consider the three-class generalization of linear loss with Z = {1, 2, 3} and,

`(−, v) = v, v ∈ 1⊥Z ,

with,

v = v1

 −
2
3

1
3
1
3

+ v2


1
3

−2
3

1
3

 , v1, v2 ∈ R.

We consider two classes of corruption, firstly three-class symmetric noise, secondly symmetric par-
tial label noise.

For three-class symmetric noise,

T =

 1− σ σ
2

σ
2

σ
2 1− σ σ

2
σ
2

σ
2 1− σ

 and R =


2−σ
2−3σ

−σ
2−3σ

−σ
2−3σ

−σ
2−3σ

2−σ
2−3σ

−σ
2−3σ

−σ
2−3σ

−σ
2−3σ

2−σ
2−3σ

 ,

for σ 6= 2
3 . Fix T0 = idZ . Both,

v = v1

 −
2
3

1
3
1
3

 and


1
3

−2
3

1
3

 ,

are eigenvalues of T ∗ with eigenvalue 2−3σ
2 . Therefore,

T ∗`(−, v) =
2− 3σ

2
`(−, v), ∀v ∈ 1⊥Z , ∀σ 6=

2

3
,

Hence linear loss is immune to three-class symmetric noise. Note that general losses are not im-
mune to symmetric three-class label noise.

23



VAN ROOYEN, WILLIAMSON

In learning under symmetric partial label noise,

T =



(1− σ)2 0 0

0 (1− σ)2 0

0 0 (1− σ)2

(1− σ)σ (1− σ)σ 0

(1− σ)σ 0 (1− σ)σ

0 (1− σ)σ (1− σ)σ

σ2 σ2 σ2


and R =


1 0 0 3−2σ

3−3σ
3−2σ
3−3σ − σ−3

3(σ−1)
1
3

0 1 0 3−2σ
3−3σ − σ−3

3(σ−1)
3−2σ
3−3σ

1
3

0 0 1 − σ−3
3(σ−1)

3−2σ
3−3σ

3−2σ
3−3σ

1
3

 ,

for σ 6= 1. Taking,

T1 =



1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

0 0 0

0 0 0


,

ie σ = 0, one has,

(RT1)∗ =

 1 0 0

0 1 0

0 0 1

 ,∀σ 6= 1.

This means that all losses are immune to symmetric partial label noise.

11.3 Comparison with Cid-Sueiro et al. (2014)

The development here closely mirrors that of Cid-Sueiro et al. (2014) with one key exception. While
we look for losses with,

(Rec(T0)T )∗`(−, a) ∼= `(−, a), ∀T ∈ C,

Cid-Sueiro et al. (2014) looks for classes of losses ` : Z ×RZ → R that are closed under the action
of (Rec(T0)T ). In particular they consider strictly proper and classification calibrated (Bartlett
et al., 2006) loss functions. They show (theorem 2) that if,

(Rec(T0)T )∗ = α(T )idZ , ∀T ∈ C,

for α(T ) > 0, then proper losses are mapped to proper losses by (Rec(T0)T )∗. By theorem 34 this
would guarantee,

(Rec(T0)T )∗`(−, a) = α(T )`(−, a), ∀T ∈ C, ∀a ∈ A, ∀`,

ie all losses are immune to C. We saw an example of this in section 11.2.2. They also show (theorem
5) that if,

(Rec(T0)T )∗ = α(T )idZ + v(T )⊗ µ, ∀T ∈ C,
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for α(T ) > 0 and v(T ) ∈ RZ , where µ is the uniform distribution over the outcomes, then classifi-
cation calibrated losses are mapped to classification calibrated losses. This yields,

(Rec(T0)T )∗`(−, a) = α(T )`(−, a) +

(∑
z∈Z

`(z, a)

)
v(T ), ∀T ∈ C, ∀a ∈ A, ∀`,

or in expectation,

〈P, (Rec(T0)T )∗`(−, a)〉 = α(T )`(P, a) + 〈P, v(T )〉 `(µ, a),

ie the effect of reconstructing incorrectly is to add a distribution dependent multiple of `(µ, a) to
the loss.

The virtue of our approach is the identification of loss functions with stronger robustness prop-
erties over standard classification calibrated losses. We direct the reader to van Rooyen et al. (2017)
for an in depth discussion.

12. Summary and a Guide to the Practitioner

Real world data sets are amalgamations of data of variable quality and type. Understanding how
to learn from and compare different corrupted data sets is therefore a problem of great practical
importance. Theorem 7, Appendix C and theorem 29 yield powerful means to do this. In concert,
they provide the following framework to the practitioner:

1. Identify the appropriate loss function for the problem at hand.

2. Acquire data in accordance with theorem 7, and any relevant financial constraints.

3. Correct for any noise present in the data, and solve for,

arg min
f∈F

n∑
i=1

`Ri(yi, f(xi)).

As long as the decision maker is willing to work with linear and kernelized function classes, this is
a convex problem with many available algorithmic solutions.
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Appendix A. Examples

Here we show examples of common corrupted machine learning problems.

A.1 Noisy Labels

We consider the problem of learning from noisy binary labels (Angluin and Laird, 1988; Natarajan
et al., 2013). Here σi is the probability that class i is has its label flipped. We have,

T =

(
1− σ−1 σ1

σ−1 1− σ1

)
and R =

1

1− σ−1 − σ1

(
1− σ1 −σ1

−σ−1 1− σ−1

)
,

This yields,

`R(y, a) =
(1− σ−y)`(y, a)− σy`(−y, a)

1− σ−1 − σ1
.

The above loss is lemma 1 in Natarajan et al. (2013). Interestingly, even if ` is positive, `R can be
negative. If the noise is symmetric with σ−1 = σ1 = σ and ` is 01 loss then,

`R(y, a) =
`01(y, a)− σ

1− 2σ
,

which is just a rescaled and shifted version of 01 loss. If we work in the realizable setting, i.e. there
is some f ∈ F with,

E(x,y)∼P `01(y, f(x)) = 0,

then the above provides an interesting correspondence between learning with symmetric label noise
and learning under distributions with large Tsybakov margin (Audibert and Tsybakov, 2007). Tak-
ing σ = 1

2 − h with P separable in turn implies P̃ has Tsybakov margin h. This means bounds
developed for this setting, such as in Massart and Nédélec (2006), can be transferred to the setting
of learning with symmetric label noise. Our lower bound reproduces the results of Massart and
Nédélec (2006).

Below is a table of the relevant parameters for learning with noisy binary labels. These results
directly extend those presented in Kearns (1998) that considered only the case of symmetric label
noise.

Learning with Label Noisy (Binary)

T

(
1− σ−1 σ1

σ−1 1− σ1

)

R∗ 1
1−σ−1−σ1

(
1− σ1 −σ1

−σ−1 1− σ−1

)
Clarity(T ) |1− σ−1 − σ1|
‖R∗‖∞ 1

|1−σ−1−σ1| max(1− σ−1 + σ1, 1− σ1 + σ−1)

‖`01,T ‖∞ 1
|1−σ−1−σ1| max(1− σ−1, 1− σ1, σ−1, σ1)
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We see that as long as σ−1 + σ1 6= 1, T is reconstructible. The pattern we see in this table is quite
common. ‖R∗‖∞ tends to be marginally greater than 1

α(T ) , with ‖`01,T ‖∞ less than both. In the
symmetric case our lower bound reproduces that of Aslam and Decatur (1996).

Finally, when working with symmetric label noise (σ−1 = σ1 = σ),

‖Rσ −Rσ′‖1 =
2|σ − σ′|

|1− 2σ||1− 2σ′|
.

For fixed true noise rate σ, the presence of a factor |1−2σ′| in the denominator means that underesti-
mating σ is preferred to overestimating. Hence when designing estimates for σ, those with negative
bias might perform better than those that are unbiased or are positively biased. Furthermore, when
covering noise rates, as per the discussion in 10, more focus should be given to higher noise rates
than to lower.
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Figure 1: Plot of ‖Rσ −Rσ′‖1 for σ = 0.2. ‖Rσ −Rσ′‖1 is a measure of how far apart two
corruptions are. This distance measure can be used when constructing estimators for the corruption

process T . See text.

A.2 Semi-Supervised Learning

We consider the problem of semi-supervised learning (Chapelle et al., 2010). Here 1 − σi is the
probability class i has a missing label. We consider the symmetric case where σ−1 = σ1 = σ.
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Symmetric Semi-Supervised Learning

T

 σ 0

0 σ

1− σ 1− σ


R∗


1−2σ+2σ2

1−3σ+5σ2−3σ3
−σ2

1−3σ+5σ2−3σ3

−σ2

1−3σ+5σ2−3σ3
1−2σ+2σ2

1−3σ+5σ2−3σ3

σ
1−2σ+3σ2

σ
1−2σ+3σ2


Clarity(T ) σ

‖R∗‖∞ 1
σ

‖`01,T ‖∞ 1−2σ+2σ2

2σ+3σ−5σ2

Once again ‖`01,T ‖∞ ≤ 1
Clarity(T ) . Our lower bound confirms that in general unlabelled data

does not help (Balcan and Blum, 2010). Rather than using the method of unbiased estimators,
one could simply throw away the unlabelled data leaving behind σn labelled instances on average.
To make further progress in this problem, as noted elsewhere (Balcan and Blum, 2010), normally
one assumes some form of compatibility between the marginal distribution of instances and the
optimal classifier. In principle, restricted versions of Le Cams method and the strong data processing
inequality could be used to give lower bounds under these different assumptions. As our interest
here are minimax bounds, we do not pursue these methods.

A.3 Three Class Symmetric Label Noise

Here we present parameters for the three class variant of symmetric label noise. We have Ỹ = Y =
{1, 2, 3} with P (Ỹ = ỹ|Y = y) = 1− σ, if y = ỹ and σ

2 otherwise.

Learning with Symmetric Label Noisy (Multiclass)

T

 1− σ σ
2

σ
2

σ
2 1− σ σ

2
σ
2

σ
2 1− σ


R∗


2−σ
2−3σ

−σ
2−3σ

−σ
2−3σ

−σ
2−3σ

2−σ
2−3σ

−σ
2−3σ

−σ
2−3σ

−σ
2−3σ

2−σ
2−3σ


Clarity(T ) |1− 3

2σ|
‖R∗‖∞ 2+σ

|2−3σ|

‖`01,T ‖∞ 2
|2−3σ| max(σ, 1− σ)

We see that as long as σ 6= 2
3 , T is reconstructible. Once again ‖`01,T ‖∞ ≤ 1

α(T ) .

A.4 Partial Labels

Here we follow Cour et al. (2011) with Y = {1, 2, 3} and Ỹ = {0, 1}Y the set of partial labels.
A partial label of (0, 1, 1) indicates that the true label is either 2 or 3 but not 1. We assume that a
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partial label always includes the true label as one of the possibilities and furthermore that spurious
labels are added with probability σ.

Learning with Partial Labels

T



(1− σ)2 0 0

0 (1− σ)2 0

0 0 (1− σ)2

(1− σ)σ (1− σ)σ 0

(1− σ)σ 0 (1− σ)σ

0 (1− σ)σ (1− σ)σ

σ2 σ2 σ2


R


1 0 0 3−2σ

3−3σ
3−2σ
3−3σ − σ−3

3(σ−1)
1
3

0 1 0 3−2σ
3−3σ − σ−3

3(σ−1)
3−2σ
3−3σ

1
3

0 0 1 − σ−3
3(σ−1)

3−2σ
3−3σ

3−2σ
3−3σ

1
3


Clarity(T ) 1− σ
‖R∗‖∞ |3−σ|+2|3−2σ|

3|1−σ|

‖`01,T ‖∞ 6−4σ
3−3σ

We see that as long as σ 6= 1, T is reconstructible. In this case ‖`01,T ‖∞ and ‖R∗‖∞ are given by
more complicated expressions (however they are both available in closed form). We display their
interrelation in a graph in below. To the best of our knowledge, no upper and lower bounds are
present in the literature for this problem.
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Figure 2: Upper and lower bounds for the problem of learning from partial labels, see text.
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Appendix B. Le Cam’s Method and Minimax Lower Bounds

The development here closely follows Duchi et al. (2013) with some streamlining. We consider a
general decision problem with unknowns Θ, observation space Z and loss L : Θ × A → R, with
infa L(θ, a) = 0. For any learning algorithm A ∈ T(Z, A) we wish to lower bound the minimax
risk,

RiskL(e) = inf
A

sup
θ

Ez∼e(θ)L(θ,A(z)).

The method proceeds by reducing a general decision problem to an easier binary classification
problem, by considering a supremum of the risk over a restricted set {θ1, θ2}. Using Markov’s
inequality we then relate this to the minimum 01 loss in a particular binary classification problem.
Finally one finds a lower bound for this quantity. With θ∼{θ1, θ2} meaning θ is drawn uniformly at
random from the set {θ1, θ2}, we have,

sup
θ

Ez∼e(θ)Ea∼A(z)L(θ, a) ≥ sup
{θ1,θ2}

Ez∼e(θ)Ea∼A(z)L(θ, a)

≥ Eθ∼{θ1,θ2}Ez∼e(θ)Ea∼A(z)L(θ, a)

≥ δEθ∼{θ1,θ2}Ez∼e(θ)Ea∼A(z)[[L(θ, a) ≥ δ]].

Recall the separation ρ : Θ×Θ→ R, ρ(θ1, θ2) = infa L(θ1, a)+L(θ2, a). The separation measures
how hard it is to act well against both θ1 and θ2 simultaneously. We now assume ρ(θ1, θ2) > 2δ.
Define f : A→ {θ1, θ2, error} where f(a) = θi if L(θi, a) < δ and error otherwise. This function
is well defined as if there exists an action a with L(θ1, a) < δ and L(θ2, a) < δ then ρ(θ1, θ2) < 2δ,
a contradiction. Let Â be the classifier that first draws a∼A(z) and then outputs f(a). We have,

sup
θ

Ez∼e(θ)Ea∼A(z)L(θ, a) ≥ δEθ∼{θ1,θ2}Ez∼e(θ)Eθ′∼Â(z)[[θ 6= θ′]]

≥ δ inf
Â∈T(Z,Θ)

Eθ∼{θ1,θ2}Ez∼e(θ)Eθ′∼Â(z)[[θ 6= θ′]]

= δ

(
1

2
− 1

2
V (e(θ1), e(θ2))

)
,

where the first line is a rewriting of of the previous in terms of the classifier Â, the second takes an
infimum over all classifiers and the final line is a standard result in theoretical statistics (see Reid
and Williamson (2011) for a modern treatment). Taking δ = ρ(θ1,θ2)

2 yields lemma 8.

B.1 Extension of Le Cam’s Method to Bayesian Risk

Rather than lower bounding supθ Ez∼e(θ)L(θ,A(z)), a Bayesian with some knowledge about the
unknown, given in the form of a prior π ∈ P(Θ), wishes to lower bound the Bayesian risk,

RiskπL(e) := inf
A

Eθ∼πEz∼e(θ)L(θ,A(z)).

Following from the second line of the derivation of Le Cam’s method, we have a lower bound,

Eθ∼{θ1,θ2}Ez∼e(θ)Ea∼A(z)L(θ, a) =
1

2
RiskL(θ1, e,A) +

1

2
RiskL(θ2, e,A)

≥ ρ(θ1, θ2)

(
1

4
− 1

4
V (e(θ1), e(θ2))

)
.
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Let µ ∈ P(Θ × Θ) be any distribution with both marginals over Θ equal to π. Averaging over this
distribution we have,

Eθ∼πRiskL(θ, e,A) ≥ E(θ1,θ2)∼µρ(θ1, θ2)

(
1

4
− 1

4
V (e(θ1), e(θ2))

)
.

This insight leads to a Bayesian version of lemma 8.

Lemma 36 Let µ ∈ P(Θ×Θ) be any distribution with both marginals over Θ equal to π. Then for
all experiments e and loss functions `,

RiskπL(e) ≥ E(θ1,θ2)∼µρ(θ1, θ2)

(
1

4
− 1

4
V (e(θ1), e(θ2))

)
.

Using this in place of lemma 8 leads to Bayesian versions of theorems 15 and 16.

Appendix C. Canonical Loss Functions and their Convexification

Here we develop general representations of loss functions L : Θ×A→ R. We assume that the set
Θ is finite.

In many statistical problems, it is natural for the space of actions A to be the set of distributions
over unknowns P(Θ).

Definition 37 A loss L : Θ× P(Θ)→ R is proper if for all distributions P ∈ P(Θ),

P ∈ arg min
Q∈P(Θ)

〈P,L(−, Q)〉Θ .

It is strictly proper if P is the unique minimizer.

A proper loss takes a predictionQ ∈ P(Θ), and then penalizes the decision maker according to how
much weight their prediction assigned to the unknown θ. Intuitively properness ensures that if the
decision maker knows P , then they minimize their expected loss by reporting P . Proper losses con-
stitute a well studied class of loss functions, that provide suitable surrogates for decision problems
(Brier, 1950; Grünwald and Dawid, 2004; Zhang, 2004; Gneiting and Raftery, 2007; Dawid, 2007;
Reid and Williamson, 2009a; Dawid, 2007; Ávila Pires et al., 2013).

As will be shown, all “sensible” losses are essentially re-parametrized proper losses. We show how
to construct proper losses from their entropies. Furthermore, we show how to render any proper loss
convex through a canonical re-parametrization. This allows the use of tools from convex analysis
(Boyd and Vandenberghe, 2004; Lucchetti, 2006) to aid in calculating optimal actions.

C.1 Entropy from Loss

Rather than working with probability distributions, we take the route of Williamson (2014) and
work with un-normalized distributions. Denote the set of all unnormalized distributions on Θ by
P+(Θ). For any loss function L, define the entropy L : P+(Θ)→ R,

L(µ) = min
a∈A
〈µ,L(−, a)〉Θ.
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L(P ) measures the uncertainty of the optimal action for the distribution P . The entropy is also
called an uncertainty function, a Bayes risk or a support function (DeGroot, 1962; Williamson,
2014). It is concave and 1-homogeneous.

Definition 38 A function f : P+(Θ)→ R is 1-homogeneous if for all x ∈ P+(Θ) and for all λ > 0,

f(λx) = λf(x).

C.2 Loss from Entropy

All loss functions give rise to an entropy. Conversely, the entropy encodes much information of its
associated loss through its super-gradients, which include all the Bayes actions for the underlying
loss.

C.2.1 BAYES ACTIONS AND SUPER-GRADIENTS

For any distribution P , define the Bayes actions for P as the set of minimizers,

AP = arg min
a∈A

〈P,L(−, a)〉 .

For any aP ∈ AP we have L(P ) = 〈P,L(−, aP )〉.

Definition 39 (Super-gradient of a concave function) Let f : P+(Θ)→ R be a concave function.
v ∈ RΘ is a super-gradient of f at the point x if for all y ∈ P+(Θ),

〈y − x, v〉+ f(x) ≥ f(y).

Denote the set of all super-gradients at a point x by ∂f(x), and the set of all super-gradients by
∂f = ∪x∂f(x). For differentiable concave functions, super-gradients are the same as regular
gradients (Lucchetti, 2006). 1-homogeneous functions afford a very simple representation via their
super-gradients.

Theorem 40 (Generalized Euler’s Homogeneous Function Theorem) Let
f : P+(Θ)→ R be a concave 1-homogeneous function. Then for all x and for all v ∈ ∂f(x),

f(x) = 〈x, v〉.

Furthermore, v ∈ ∂f(x) =⇒ v ∈ ∂f(λx) for all λ > 0.

We include a simple proof of this theorem for completeness.
Proof Firstly, for all x and all λ > 0,

〈λx− x, v〉+ f(x) ≥ λf(x),

which follows directly from the definition of a super-gradient at x and the 1-homogeneity of f .
Re-arranging yields, (1− λ)(f(x)− 〈x, v〉) ≥ 0. Letting λ→ 0+ yields f(x) ≥ 〈x, v〉. Similarly,
for all x and all λ > 0,

〈x− λx, v〉+ λf(x) ≥ f(x),
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which follows directly from the definition of a super-gradient at λx and the 1-homogeneity of f .
Re-arranging yields, (1 − λ)(f(x) − 〈x, v〉) ≤ 0. Letting λ → 0+ yields f(x) ≤ 〈x, v〉, therefore
f(x) = 〈x, v〉.

To prove the second claim, we have for all y and λ > 0,

〈y − x, v〉+ f(x) ≥ f(y)

〈λy − λx, v〉+ f(λx) ≥ f(λy),

where the first line is by definition, and the second is by 1-homogeneity. As y is arbitrary, the claim
is proved.

This theorem provides a corollary, that shows the super-gradients of a 1-homogeneous function have
a property similar to properness.

Corollary 41 Let f : P+(Θ) → R be a concave 1-homogeneous function. Then for all x, y ∈
P+(Θ) and for all vx ∈ ∂f(x), vy ∈ ∂f(y),

〈x, vy〉 ≥ 〈x, vx〉 .

We now show that the partial loss of a Bayes action is a super-gradient of L.

Theorem 42 For all loss functions L and distributions P , aP ∈ AP ⇔ L(−, aP ) ∈ ∂L(P ).

Proof For aP ∈ AP we have for all µ ∈ P+(Θ),

〈µ− P,L(−, aP )〉+ L(P ) = 〈µ,L(−, aP )〉 ≥ min
a∈A
〈µ,L(−, a)〉 = L(µ).

Hence L(−, aP ) ∈ ∂L(P ). For the converse, if L(−, aP ) ∈ ∂L(P ) then,

L(P ) = 〈P,L(−, aP )〉 = min
a∈A
〈P,L(−, a)〉 ,

meaning a is Bayes.

Therefore, once non-Bayes actions are discarded, we can identify a loss with a subset of ∂L. Rather
than working with a subset ∂L, it is advantageous to consider all of ∂L.

Definition 43 (Canonical Loss (Preliminary)) LetL : P+(Θ)→ R be a concave, 1-homogeneous
function. Then its canonical loss, L : Θ× ∂L→ R is given by, L(θ, ζ) = ζ(θ).

As will be shown, canonical losses can always be convexified. Furthermore, they maintain all of the
properties of L needed for assessing the quality of decisions.
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C.2.2 THE BAYES SUPER PREDICTION SET

The process of canonising a loss, i.e. going from,

L→ L→ L,

can create extra partial losses/actions that were not originally available to the decision maker. How-
ever, they gain no benefit from these extra actions. From any entropy define the Bayes super pre-
diction set,

SL :=
{
ζ ∈ RΘ : 〈µ, ζ〉 ≥ L(µ), ∀µ ∈ RΘ

+

}
.

By the definition,
min
a∈A
〈P,L(−, a)〉 = min

ζ∈SL
〈P, ζ〉 , ∀P ∈ P(Θ).

The Bayes super prediction set is precisely those partial losses that the decision maker need not use
over the actions available to them, no matter the distribution P . The super prediction set is convex.
Furthermore, the Bayes actions for L are the lower boundary of the super prediction set.

Lemma 44 Let L : P+(Θ) → R be a concave, 1-homogeneous function. Then ζ ∈ ∂L if and only
if,

〈µ, ζ〉 ≥ L(µ), ∀µ ∈ P+(Θ),

with equality holding for at least one µ.

The proof is a straightforward application of 1-homogeneity and super-gradients.

Canonical losses use all super gradients of L. Proper losses use some.

Corollary 45 (Loss from Entropy) Let L : P+(Θ) → R be a concave, 1-homogeneous function
and let∇L : P+(Θ)→ RΘ be a super-gradient function,∇L(µ) ∈ ∂L(µ), ∀µ. Then,

L(θ,Q) = L(θ,∇L(Q)),

is a proper loss. Furthermore if L is strictly concave then L is strictly proper.

C.3 Convexification of Losses in Canonical Form

The preceding shows how to construct losses, we begin with a concave 1-homogeneous function
and take super-gradients. Focus now turns to their convexification. Once convexified, the decision
maker gains access to the large and ever growing literature on the minimization of convex functions
to aid in the calculation of optimal actions. We closely follow Dawid (2007), with a focus on canon-
ical losses. This streamlines the development. For example, for some proper losses lemma 47 fails
to hold. Furthermore, our result on convexification of canonical losses (theorem 49), is to the best
of our knowledge novel.

Recall 1Θ ∈ RΘ is the function that always returns 1, and define 1⊥Θ to be its orthogonal com-
plement in RΘ, i.e. the functions v ∈ RΘ with,

〈1Θ, v〉 =
∑
z∈Θ

v(z) = 0.
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Define,

ΓL = {(γ, v) ∈ R× 1⊥Θ : γ1Θ + v ∈ ∂L }.

Lemma 46 Let (γ, v) ∈ ΓL. Then γ is uniquely determined by v.

Proof Fix v and suppose there exists γ1 and γ2 with γ1 < γ2 and γ11Θ + v, γ21Θ + v ∈ ∂L. By
assumption, γ21Θ + v is Bayes for some distribution P . But,

〈P, γ11Θ + v〉 = γ1 + 〈P, v〉 < γ2 + 〈P, v〉 = 〈P, γ21Θ + v〉 ,

a contradiction.

Thus we lose nothing by working with projections of losses onto 1⊥Θ. Define,

Γ̂L = proj1⊥Θ
(∂L) ⊆ 1⊥Θ.

By lemma 46 Γ̂L is in 1-1 correspondence with ∂L.

Lemma 47 Γ̂L is a convex set.

Proof To show Γ̂L is convex, we are required to show that for all ζ1, ζ2 ∈ ∂L and all λ ∈ [0, 1]
there is a constant γ such that,

λζ1 + (1− λ)ζ2 − γ1Θ ∈ ∂L.

By lemma 44, this is equivalent to,

λ 〈P, ζ1〉+ (1− λ) 〈P, ζ2〉 − L(P )︸ ︷︷ ︸
γ(P )

−γ = γ(P )− γ ≥ 0, ∀P ∈ P(Θ),

with equality holding for one P . Let γ∗ = minP γ(P ), with P ∗ the distribution that achieves the
minimum. Clearly γ(P )− γ∗ ≥ 0. Therefore,

λ 〈P, ζ1〉+ (1− λ) 〈P, ζ2〉 − γ∗ ≥ L(P ), ∀P ∈ P(Θ),

with equality for P ∗. Therefore by lemma 44, λζ1 + (1− λ)ζ2 − γ∗1Θ ∈ ∂L.

Define the function Ψ : Γ̂L → R such that,

v + Ψ(v)1Θ ∈ ∂L.

By lemma 46, Ψ is well defined.

Lemma 48 Ψ is a convex function.
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Proof Let v1, v2 ∈ Γ̂L with vλ = λv1 + (1− λ)v2. Let their partial losses be,

ζ1 = v1 + Ψ(v1)1Θ

ζ2 = v2 + Ψ(v2)1Θ

ζλ = λv1 + (1− λ)v2 + Ψ(λv1 + (1− λ)v2)1Θ,

respectively. By assumption, for all λ ∈ [0, 1] there exists a distribution Pλ such that,

〈Pλ, ζλ〉 ≤ 〈Pλ, ζ〉 , ∀ζ ∈ ∂L.

Assume there is a λ∗ such that,

λ∗Ψ(v1) + (1− λ∗)Ψ(v2) < Ψ(λ∗v1 + (1− λ∗)v2).

But then,
〈Pλ∗ , λ∗ζ1 + (1− λ∗)ζ2〉 < 〈Pλ∗ , ζλ∗〉 ,

a contradiction.

This gives the following representation theorem for canonical losses.

Theorem 49 (Representation of Canonical Losses) LetL : P+(Θ)→ R be a concave, 1-homogeneous
function. Then its canonical loss L can be represented as L : Θ× C → R, with C ⊆ 1⊥Θ a convex
set and,

L(θ, v) = −〈δθ, v〉+ Ψ(v),

for a convex function Ψ.

The situation is particularly simple for binary problems.

Corollary 50 Let Θ = {±1}. Then all canonical losses can be written as L : {±1} × I → R,

L(θ, v) = −θv + Ψ(v),

where I is a convex subset of R and Ψ : I → R a convex function.

The proof comes from the observation that,

1⊥Θ = Span((−1, 1)).

C.4 Illustrative Example: Binary Decisions and Square Loss

In binary problems, Θ = {±1}. An often used loss is the square or Brier loss. L(θ, θ̂) =
(
θ − θ̂

)2
,

where θ̂ ∈ [−1, 1]. We plot this loss in figure 3. The partial losses are given by the red curve, the
super prediction set in gray. The loss on negatives is plotted on the x-axis. In figure 4 we show
geometrically how to produce canonical coordinates.

We seek to decompose,

L(−, θ̂) =
(

(−1− θ̂)2, (1− θ̂)2
)

= α

(
1

−1

)
+ β

(
1

1

)
.
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Solving for α and β in terms of θ̂ gives,

α = 2θ̂ and β = 1 + θ̂2.

These equations can be easily solved for θ̂ giving,

β = Ψ(α) = 1 +
α2

4
.

Therefore the canonical form of square loss is,

L(θ, α) = −θα+ 1 +
α2

4
.

Notice that the only dependence on θ is via the “linear” term −θα.

Loss when θ = -1

L
os
s
w
he
n
θ
=
1

Figure 3: Plot of super prediction set and its lower boundary for square loss, see text.

Loss when θ = -1

L
os
s
w
he
n
θ
=
1

L(-, 1 /2)

proj1θ
⟂ (L(-, 1 /2))

Figure 4: Construction of canonical coordinates for square loss, see text.
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C.5 Illustrative Example: Hinge Loss

Hinge loss L : {−1, 1} × R→ R+,

L(θ, ν) = max(0, 1− θν),

is an often used, non-differentiable, loss function. Its minimization forms the basis of the support
vector machine learning algorithm (Cortes and Vapnik, 1995; Schölkopf and Smola, 2002; Steinwart
and Christmann, 2008), a popular method for learning classifiers. Here we show that the canonical
form of hinge loss is the linear loss,

L(θ, ν) = −θν, ν ∈ [−1, 1].

Figure 5 is a plot of hinge loss and its super prediction set. Shown in orange are actions with |ν| ≥ 1.
These actions are inadmissible and therefore not Bayes for any distribution over Θ. Figure 6 shows
the projection of the Bayes actions for hinge loss unto 1⊥Θ. As can be seen from the figure, linear
loss is the result of “canonizing” hinge loss.

Figure 5: Plot of super prediction set and its lower boundary for hinge loss, see text (best viewed in
color).
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Figure 6: Construction of canonical coordinates for square loss, see text.

C.6 Proof of Theorem 29

Proof As L is canonical, its partial loss function is given by L(−, v) = v+ Ψ(v)1Z . By definition,

LR(−, v) = R∗(L(−, v)) = R∗(v) + Ψ(v)R∗(1Z).

If |Z| = |Z̃|, then T is reconstructible if and only if T is invertible. As T is column stochastic,

1Z = T ∗(1Z̃).

This yields,
R∗(1Z) = R∗T ∗(1Z̃) = 1Z̃ .

For the more general case where |Z| < |Z̃|, we have for all T and all v ∈ 1⊥Z ,〈
T (v),1Z̃

〉
=
〈
v, T ∗(1Z̃)

〉
= 〈v,1Z〉
= 0.

Therefore T (1⊥Z) ⊆ 1⊥Z̃ . As left inverses are not unique, we can further restrict R to those with
R(1⊥Z̃) ⊆ 1⊥Z , or dually those with R∗(1Z) = 1Z̃ . There is always such an R, as the restriction of
T to 1⊥Z is also left invertible. Furthermore, T (1Z) /∈ 1⊥Z̃ , as T (1Z) nonnegative entries. Therefore,
we can take R restricted to 1⊥Z̃ to be the left inverse of T restricted to 1⊥Z , with RT (1Z) = 1Z .

Such an R can then be extended to all of RZ̃ . Finally, by definition, LR(z̃, v) = 〈δz̃,LR(−, v)〉,
yielding,

LR(z̃, v) = 〈δz̃, R∗(v)〉+ 〈δz̃, R∗(1Z)〉Ψ(v)

= 〈R(δz̃), v〉+ Ψ(v),

where the last line is by properties of adjoints. This function is the sum of two functions, one linear
in v the other convex and is therefore convex in v.
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C.7 Illustrative Example: Multi-class Logistic Loss and its Corrections

Here we show by example how to apply theorem 29 to construct losses for multiclass corrupted
learning problems. We take Θ = {1, 2, 3}, with L the log loss,

L(−, P ) = (− log(P1),− log(P2),− log(P3)) .

We express v ∈ 1⊥Θ as,

v = v1

 −
2
3

1
3
1
3

+ v2


1
3

−2
3

1
3

 .

Note that these basis vectors are the projections onto id⊥Θ of the partial losses, 0

1

1

 and

 1

0

1

 ,

respectively. We have,

P =

(
ev1

1 + ev1 + ev2
,

ev2

1 + ev1 + ev2
,

1

1 + ev1 + ev2

)
.

with,

L(−, v) =

 −v1 + log(1 + ev1 + ev2)

−v2 + log(1 + ev1 + ev2)

log(1 + ev1 + ev2)

 (1)

= v +

(
−1

3
(v1 + v2) + log(1 + ev1 + ev2)

)
︸ ︷︷ ︸

Ψ(v)

1Θ.

(1) is the usual form of multiclass logistic loss. For the case of symmetric noise,

T =

 1− σ σ
2

σ
2

σ
2 1− σ σ

2
σ
2

σ
2 1− σ

 and R =


2−σ
2−3σ

−σ
2−3σ

−σ
2−3σ

−σ
2−3σ

2−σ
2−3σ

−σ
2−3σ

−σ
2−3σ

−σ
2−3σ

2−σ
2−3σ

 ,

respectively. All v ∈ 1⊥Θ are eigenvalues of R, with eigenvalue 2
2−3σ , giving a corruption corrected

loss of,

LR(−, v) =
2

2− 3σ
v + Ψ(v)idΘ.

Recall for the problem of learning partial labels Θ̃ = {0, 1}Θ the set of all partial labellings. Under
the assumption that the partial label always includes the correct underlying label, and that spurious
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labels are added with probability σ,

T =



(1− σ)2 0 0

0 (1− σ)2 0

0 0 (1− σ)2

(1− σ)σ (1− σ)σ 0

(1− σ)σ 0 (1− σ)σ

0 (1− σ)σ (1− σ)σ

σ2 σ2 σ2


.

For this problem, there are several different alternatives for R. The reconstruction,

R =


1 0 0 3−2σ

3−3σ
3−2σ
3−3σ

σ−3
3(1−σ)

1
3

0 1 0 3−2σ
3−3σ

σ−3
3(1−σ)

3−2σ
3−3σ

1
3

0 0 1 σ−3
3(1−σ)

3−2σ
3−3σ

3−2σ
3−3σ

1
3

 , σ 6= 1,

is a left inverse for T and satisfies the requirements of theorem 29. For this reconstruction one has,

R∗

 −
2
3

1
3
1
3

 =



−2
3

1
3
1
3

σ−2
3(1−σ)
σ−2

3(1−σ)
2(2−σ)
3(1−σ)

0


and R∗


1
3

−2
3

1
3

 =



1
3

−2
3

1
3

σ−2
3(1−σ)
2(2−σ)
3(1−σ)
σ−2

3(1−σ)

0


,

leading to the loss,

LR(−, v) = v1



−2
3

1
3
1
3

σ−2
3(1−σ)
σ−2

3(1−σ)
2(2−σ)
3(1−σ)

0


+ v2



1
3

−2
3

1
3

σ−2
3(1−σ)
2(2−σ)
3(1−σ)
σ−2

3(1−σ)

0


+ Ψ(v)idΘ̃.

Appendix D. Proofs of Theorems in Main Text

D.1 Proof of Theorem 7

We actually prove a more general theorem, that works for infinite action sets.
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Theorem 51 Let Ti ∈ T(Z, Z̃i) be a collection of k reconstructible corruptions. Let P̃ = ⊗ki=iP̃
ni
i ,

Z̃ = ×ki=1Z̃
ni
i , n =

∑k
i=1 ni and ri = ni

n . Then for all algorithmsA ∈ T(Z̃, A), priors π ∈ P(A),
distributions P ∈ P(Z) and bounded loss functions `,

ES̃∼P̃ `(P,A(S̃)) ≤ ES̃∼P̃

k∑
i=1

ri`Ri(S̃i,A(S̃)) +K

√
2ES∼PnDKL(A(S̃), π)

n
.

where K =

√
k∑
i=1

ri‖`Ri‖2∞.

Proof Define L(S̃, a) =
∑k

i=1

∑
z̃∈S̃i `Ri(zi, a), the sum of the corrupted losses on the sample.

By theorem 2.1 of Zhang (2006) for β > 0,

ES̃∼QEa∼A(S̃) −
1

β
log(ES̃′∼Qe

−βL(S̃′,a)) ≤ ES̃∼Q

[
L(S̃,A(S̃)) +

DKL(A(S̃), π)

β

]
k∑
i=1

niES̃∼QEa∼A(S̃) −
1

β
log(Ez̃∼P̃ie

−β`Ri (z̃,a)) ≤ ES̃∼Q

[
L(S̃,A(S̃)) +

DKL(A(S̃), π)

β

]
where the first line follows from the theorem and the second from properties of the cumulant gener-
ating function. Invoking lemma A.1 of Cesa-Bianchi and Lugosi (2006) yields,

k∑
i=1

ni

(
ES̃∼Q`Ri(P̃i,A(S̃))− ‖`Ri‖

2
∞β

2

)
≤ ES̃∼Q

[
L(S̃,A(S̃)) +

DKL(A(S̃), π)

β

]
.

As the Ti are reconstructible,

ES̃∼Q`(P,A(S̃)) ≤ 1

n
ES̃∼Q

[
L(S̃,A(S̃)) +

DKL(A(S̃), π)

β

]
+

(
k∑
i=1

ri‖`Ri‖2∞
)
β

2
.

Optimizing over β yields the desired result.

Theorem 7 is recovered by taking A finite, π uniform on A and upper bounding DKL(A(S), π) ≤
log(|A|).

D.2 Proof of Lemma 10

Proof Firstly V is a metric on P(×kn=1Zi) (Reid and Williamson, 2009b). Thus,

V (⊗ki=1Pi,⊗ki=1Qi) = V (P1 ⊗ (⊗ki=2Pi), Q1 ⊗ (⊗ki=2Qi))

≤ V (P1 ⊗ (⊗ki=2Pi), Q1 ⊗ (⊗ki=2Pi)) + V (Q1 ⊗ (⊗ki=2Pi), Q1 ⊗ (⊗ki=2Qi))

= V (P1, Q1) + V (⊗ki=2Pi,⊗ki=2Qi),

where the first line is by definition, the second as V is a metric and the third is easily verified from
the definition of V . To complete the proof proceed inductively.
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D.3 Proof of Theorem 16

Proof Let

T = ⊗ki=iT
ni
i = T1 ⊗ · · · ⊗ T1︸ ︷︷ ︸

n1 times

⊗T2 ⊗ · · · ⊗ T2︸ ︷︷ ︸
n2 times

⊗ · · · ⊗ Tk ⊗ · · · ⊗ Tk︸ ︷︷ ︸
nk times

.

One has T (en(θ)) = T1(e(θ))n1 ⊗ T2(e(θ))n2 ⊗ · · · ⊗ Tk(e(θ))nk . By lemma 10,

V (T (en(θ1)), T (en(θ2)) ≤
k∑
i=1

niV (Ti(e(θ1)), Ti(e(θ2)))

≤

(
k∑
i=1

Clarity(Ti)ni

)
︸ ︷︷ ︸

K

V (e(θ1), e(θ2)).

Rearranging gives,

ρ(θ1, θ2) (1− γV (T (en(θ1), T (en(θ2))) ≥ ρ(θ1, θ2) (1−KγV (T (e(θ1), T (e(θ2))) , ∀γ > 0.

Taking supremum’s over θ1, θ2 yields,

Le CamL (T ◦ en, γ) ≥ Le CamL (e,Kγ)

Applying lemma 11 yields the result.

D.4 Proof of Lemma 13

Proof

Clarity(T2T1) = sup
P,Q∈P(Z)

‖T2 ◦ T1(P )− T2 ◦ T1(Q)‖1
‖P −Q‖1

= sup
P,Q∈P(Z)

‖T2 ◦ T1(P )− T2 ◦ T1(Q)‖1
‖T1(P )− T2(Q)‖1

‖T1(P )− T2(Q)‖1
‖P −Q‖1

≤ sup
P,Q∈P(Z)

‖T2 ◦ T1(P )− T2 ◦ T1(Q)‖1
‖T1(P )− T2(Q)‖1

sup
P,Q∈P(Z)

‖T1(P )− T2(Q)‖1
‖P −Q‖1

≤ sup
P,Q∈P(Z̃1)

‖T2(P )− T2(Q)‖1
‖P −Q‖1

sup
P,Q∈P(Z)

‖T1(P )− T2(Q)‖1
‖P −Q‖1

= Clarity(T2)Clarity(T1),

where the first line follows from the definitions, the second follows if T1(P ) 6= T2(Q) and the rest
are simple rearrangements. For the final inequality, remember that Clarity(T ) ≤ 1.
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D.5 Proof of Lemma 19

Proof By definition ‖˜̀‖∞ = supz,a |˜̀(z, a)| = supa‖˜̀a‖∞. Hence,

‖˜̀‖∞ = sup
a
‖˜̀a‖∞

≤ sup
a
‖R∗‖∞‖`a‖∞

= ‖R∗‖∞‖`‖∞,

where the second line follows from the definition of the operator norm ‖R∗‖∞.

D.6 Proof of Lemma 20

Proof Firstly ‖R‖1 = ‖R∗‖∞ (Bernstein, 2009). From the definition of ‖R‖1 we have,

‖R‖1 = sup
v∈RY

‖Rv‖1
‖v‖1

≥ sup
u∈RX

‖RTu‖1
‖Tu‖1

= sup
u∈RX

‖u‖1
‖Tu‖1

= 1/

(
inf
u∈RX

‖Tu‖1
‖u‖1

)
.

This proves the first inequality. Recall,

Clarity(T ) = sup
v∈Ω

‖T (v)‖1
‖v‖1

,

where Ω = {v ∈ RX :
∑
vi = 0, v 6= 0}. Hence infu∈RX

‖Tu‖1
‖u‖1 ≤ Clarity(T ).

D.7 Proof of Theorem 23

Proof First, define `P (z, a) = `(z, a) − `(z, aP ). `P measures the loss relative to the best action
for the distribution P . It is easy to verify that for bounded `, ‖`P ‖∞ ≤ 2‖`‖∞. We now utilize
theorem 2.1 of Zhang (2006), together with a lower bound presented in the appendix, with `P and
π uniform on A. This yields,

ES∼Pn
[
`P (P,A(S))− γEz∼P `

2
P (z,A(S))

]
≤ 1

n
ES∼Pn

[
`P (S,A(S)) + ‖`P , ‖∞

(
log(|A|)

β

)]
,

with γ = (eβ−1−β)
β‖`P ‖∞ . Firstly ERM minimizes the right hand side of the bound meaning,

1

n
ES∼Pn

[
`P (S,A(S)) + ‖`P ‖∞

(
log(|A|)

β

)]
≤ 1

n

[
‖`P ‖∞

(
log(|A|)

β

)]
.
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To see this consider the algorithm that always outputs aP , this algorithm generalizes very well
however it may be suboptimal on the sample. Secondly (`, P ) satisfies the Bernstein condition with
constant K. Therefore,

(1− γK)ES∼Pn`P (P,A(S)) ≤ 1

n

[
‖`P ‖∞

(
log(|A|)

β

)]
.

Finally chose β small enough so that γK ≤ 1. This can always be done as γ → 0 as β → 0+. The
high probability version proceeds in a similar way.

D.8 Proof of Lemma 24

Proof

KEz∼P `(z, a)− `(z, aP ) = KEz̃∼P̃ `R(z, a)− `R(z, aP )

≥ Ez̃∼P̃ (`R(z̃, a)− `R(z̃, aP ))2

= Ez∼PEz̃∼T (z)(`R(z̃, a)− `R(z̃, aP ))2

≥ Ez∼P (Ez̃∼T (z)`R(z̃, a)− Ez̃∼T (z)`R(z̃, aP ))2

= Ez∼P (`(z, a)− `(z, aP ))2,

where the first line follows from the definition of ` and because aP = aP̃ , the second as (`R, P̃ )
satisfies the Bernstein condition and finally we have used the convexity of f(x) = x2.

D.9 Proof of Theorem 26

Proof

Ez̃∼P̃ (`R(z̃, a)− `R(z̃, aP ))2 = Ez∼PEz̃∼T (z)(`R(z̃, a)− `R(z̃, aP ))2

≤ ηEz∼P (`(z, a)− `(z, aP ))2

≤ ηKEz∼P `(z, a)− `(z, aP )

= ηKEz̃∼P̃ `R(z̃, a)− `R(z̃, aP ),

where we have first used η-compatibility, then the fact that (`, P ) satisfies the Bernstein condition
with constant K and finally the definition of `R.

45



VAN ROOYEN, WILLIAMSON

D.10 Proof of Theorem 27

Proof Due to the symmetry of the left and right hand sides of the Bernstein condition, one only
needs to check the case where a1 = 1, a2 = −1. Recall,

`01,T (ỹ, a) =
(1− σ−y)`01(ỹ, a)− σy`01(−ỹ, a)

1− σ−1 − σ1

=
(1− σ−y + σy)`01(ỹ, a)− σy

1− σ−1 − σ1
.

For y = 1 it is easy to confirm (`01(1, 1)− `01(1,−1))2 = 1. We have,

`01,T (ỹ, 1)− `01,T (ỹ,−1) =
(1− σ−y + σy)(`01(ỹ, 1)− `01(ỹ,−1))

1− σ−1 − σ1

=
−ỹ(1− σ−y + σy)

1− σ−1 − σ1
.

Squaring, taking maxima and finally expectations yields the desired result.

D.11 Proof of Corollary 35

Proof Let,
`(−, a) = v(a) + γ1Z ,

where v(a) ∈ Eα,S ∀a ∈ A and γ ∈ R. Therefore for all M ∈ S and ∀a ∈ A,

M`(−, a) = Mv(a) + γM1Z

= α(M)v(a) + γ1Z

= α(M) (v(a) + γ1Z)︸ ︷︷ ︸
α(M)`(−,a)

+ (γ − γα(M))1Z︸ ︷︷ ︸
β(M)1Z

,

where the second line follows as by assumption M1Z = 1Z for all M ∈ S.
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