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Abstract

The machine learning community adopted the use of null hypothesis significance testing
(NHST) in order to ensure the statistical validity of results. Many scientific fields however
realized the shortcomings of frequentist reasoning and in the most radical cases even banned
its use in publications. We should do the same: just as we have embraced the Bayesian
paradigm in the development of new machine learning methods, so we should also use it
in the analysis of our own results. We argue for abandonment of NHST by exposing its
fallacies and, more importantly, offer better—more sound and useful—alternatives for it.
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1. Introduction

Progression of Science and of the scientific method go hand in hand. Development of new
theories requires—and at the same time facilitates—development of new methods for their
validation.

Pioneers of machine learning were playing with ideas: new approaches, such as induc-
tion of classification trees, were worthy of publication for the sake of their interestingness.
As the field progressed and found more practical uses, variations of similar ideas began
emerging, and with that the interest in determining which of them work better in prac-
tice. A typical example are the different measures for assessing the quality of attributes;
deciding which work better than others required tests on actual, real-world data. Papers
thus kept introducing new methods and measured, for instance, classification accuracies to
prove their advantages over the existing methods. To ensure the validity of such claims,
we adopted—starting with the work of Dietterich (1998) and Salzberg (1997), and later
followed by Demsar (2006)—the common statistical methodology used in all scientific areas
relying on empirical observations: the null hypothesis significance testing (NHST).
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This spread the understanding that the observed results require statistical validation.
On the other hand, NHST soon proved inadequate for many reasons (Demsar, 2008). Note-
worthy, the American Statistical Association has recently made a statement against p-values
(Wasserstein and Lazar, 2016). NHST nowadays it is also falling out of favour in other fields
of science (Trafimow and Marks, 2015). We believe that the field of machine learning is
ripe for a change as well.

We will spend a whole section demonstrating the many problems of NHST. In a nutshell:
it does not answer the question we ask. In a typical scenario, a researcher proposes a new
method and desires to prove that it is more accurate than another method on a single
data set or on a collection of data sets. She thus runs the competing methods and records
their results (classification accuracy or another appropriate score) on one or more data sets,
which is followed by NHST. The difference between what the researcher has in mind and
what the NHST provides for is evident from the following quote from a recently published
paper: “Therefore, at the 90% confidence level, we can conclude that (...) method is able to
significantly outperform the other approaches.” This is wrong. The stated 90% confidence
level is not the probability of one classifier outperforming another. The NHST computes
the probability of getting the observed (or a larger) difference between classifiers if the null
hypothesis of equivalence was true, which is not the probability of one classifier being more
accurate than another, given the observed empirical results. Another common problem
is that the claimed statistical significance might have no practical impact. Indeed, the
common usage of NHST relies on the wrong assumptions that the p-value is a reasonable
proxy for the probability of the null hypothesis and that statistical significance implies
practical significance.

As we wrote at the beginning, development of Science not only requires but also facili-
tates the improvement of scientific methods. Advancement of computational techniques and
power reinvigorated the interest for Bayesian statistics. Bayesian modelling is now widely
adopted for designing principled algorithms for learning from data (Bishop, 2007; Murphy,
2012). It is time to also switch to Bayesian statistics when it comes to analysis of our own
results.

The questions we are actually interested in—e.g., is method A better than B? Based on
the experiments, how probably is A better? How high is the probability that A is better by
more than 1%7—are questions about posterior probabilities. These are naturally provided
by the Bayesian methods (Edwards et al., 1963; Dickey, 1973; Berger and Sellke, 1987). The
core of this paper is thus a section that establishes the Bayesian alternatives to frequentist
NHST and discusses their inference and results. We eventually describe also the software
libraries with the necessary algorithms and give short instructions for their use.

2. Frequentist analysis of experimental results

Why do we need to go beyond the frequentist analysis of experimental results? To answer
this question, we will focus on a practical case: the comparison of the accuracy of classifiers
on different datasets. We initially consider two classifiers: naive Bayes (nbc) and averaged
one-dependence estimator (aode). A description of these algorithms with exhaustive refer-
ences is given in the book by Witten et al. (2011). Assume that our aim is to compare nbc
versus aode. These are the steps we must follow:
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1. choose a comparison metric;
2. select a group of datasets to evaluate the algorithms;
3. perform m runs of k-fold cross-validation for each classifier on each dataset.

We have performed these steps in WEKA, choosing accuracy as metric, on a collection
of 54 data sets downloaded from the the WEKA website! and with 10 runs of 10-fold
cross-validation. Table 1 reports the accuracies obtained on each dataset by each classifier.

First of all, we aim at knowing which is the best classifier for each dataset. The an-
swer to this question is probabilistic, since on each data set we have only estimates of the
performance of each classifier.

Datasets 10 runs of 10-fold cross-validation
anneal 94.44 98.89 94.44 98.89 ... 94.38 97.75
anneal 96.67 100.0 96.67 100.0 ... 96.63 97.75
audiology 73.91 69.56 73.91 60.87 ... 72.73 59.09
audiology 73.91 69.56 78.26 60.87 ... 72.73 59.09
breast-cancer 90.32 90.32 87.1 86.67 ... 86.67 90.0
breast-cancer 87.1 87.1 87.1 86.67 ... 83.33 86.67
cmc 51.35 50.68 54.73 59.18 ... 50.34 48.3
cmc  52.7 50.68 52.7 55.1 ... 5238 48.98
wine 100.0 95.71 97.14 9429 ... 97.14 97.1
wine 100.0 95.71 97.14 9286 ... 97.14 97.1
yeast 57.72 55.03 59.06 58.39 ... 55.4 554
yeast 57.05 55.03 59.06 5839 ... 54.05 55.4
zoo 81.82 100.0 100.0 90.0 ... 90.0 100.0
zoo 90.91 100.0 100.0 90.0 ... 90.0 100.0

Table 1: Accuracies for 10 runs of 10-fold cross-validation on 54 UCI datasets for nbc (blue
row) versus aode (white rows).

Since during cross-validation we have provided both classifiers with the same training
and test sets, we can compare the classifiers by considering the difference in accuracies
on each test set. This yields the vector of differences of accuracies € = {x1,x9,...,2n},
where n = 100 (10 runs of 10-fold cross-validation). We can compute the mean of the
vector of differences x, i.e., the mean difference of accuracy between the two classifiers, and
statistically evaluate whether the mean difference is significantly different from zero. In
frequentist analysis, we would perform a NHST using the ¢-test. The problem is that the
t-test assumes the observations to be independent. However, the differences of accuracies

1. See http://www.cs.waikato.ac.nz/ml/weka/.
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are not independent of each other because of the overlapping training sets used in cross-
validation. Thus the usual t-test is not calibrated when applied to the analysis of cross-
validation results: when sampling the data under the null hypothesis its rate of Type I errors
is much larger than a (Dietterich, 1998). Moreover, the correlation cannot be estimated
from data; Nadeau and Bengio (2003) have proven that there is no unbiased estimator of the
correlation of the results obtained on the different folds. Introducing some approximations,
they have proposed a heuristic to choose the correlation parameter: p = %, where ny,

Ny and Ngor = Nee + Ny Tespectively denote the size of the training set, of the test set and
of the whole available data set.?

Frequentist correlated t-test
The correlated t-test is based on the modified Student’s t-statistic:
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standard deviation of the data x, p is the correlation between the observations and p is the
value of the mean we aim at testing. The statistic follows a Student distribution with n —1
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For p = 0, we obtain the traditional ¢-test. For p = %, we obtain the correlated t-

test proposed by Nadeau and Bengio (2003) to account for the correlation due to the
overlapping training sets. Usually the test is run in a two-sided fashion. Its hypotheses are:
Hy:pu=0; Hj:p#0. The p-value of the statistic under the null hypotheses is:

p=2-(1-="To1(|t(z,0)])), 3)

where T,,—1(|t(x,0)|) denotes the cumulative distribution of the standardized Student distri-
bution with n—1 degrees of freedom in |¢(x, it)| for o = 0. For instance, for the first data set
in Table 1 we have that z = —0.0194, 6 = 0.01583, p = 1/10, n = 100 and so t(z,0) = —3.52.
Hence, the two-sided p-value is p = 2 - (1 — Tp—1(|t(,0)])) = 0.00065 ~ 0.001. Sometimes
the directional one-sided test is performed. If the alternative hypothesis is the positive
one, the hypotheses of the one-sided test are: Hy : p < 0; Hi : > 0. The p-value is
p=1—"Th1(t(z,0)).

Table 2 reports the two-sided p-values for each comparison on each dataset obtained via
the correlated t-test. The common practice in NHST is to declare all the comparisons such
that p < 0.05 as significant, i.e., the accuracy of the two classifiers is significantly different
on that dataset. Conversely, all the comparisons with p > 0.05 are declared not significant.

2. Nadeau and Bengio (2003) considered the case in which random training and test sets are drawn from the
original data set. This is slightly different from k-fold cross-validation, in which the folds are designed not
to overlap. However the correlation heuristic by Nadeau and Bengio (2003) has since become commonly
used to analyse the cross-validation results (Bouckaert, 2003).
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Note that these significance tests can, under the NHST paradigm, only be considered in
isolation, while combined they require either an omnibus test like ANOVA or corrections
for multiple comparisons.

Dataset p-value Dataset p-value Dataset p-value

anneal 0.001 audiology 0.622  breast-cancer 0.598

cme 0.338  contact-lenses 0.643 credit 0.479
german-credit 0.171  pima-diabetes 0.781 ecoli 0.001
eucalyptus 0.258 glass 0.162  grub-damage 0.090
haberman 0.671 hayes-roth 1.000 cleeland-14 0.525
hungarian-14 0.878 hepatitis 0.048 hypothyroid 0.287
ionosphere 0.684 iris 0.000 kr-s-kp 0.646
labor 1.000 lier-disorders 0.270 lymphography 0.018

monks1 0.000 monks3 0.220 monks 0.000
mushroom 0.000 nursery 0.000 optdigits 0.000
page 0.687 pasture 0.000 pendigits 0.452
postoperatie 0.582  primary-tumor 0.492 segment 0.000
solar-flare-C 0.035 solar-flare-m 0.596 solar-flare-X 0.004
sonar 0.777 soybean 0.049 spambase 0.000
spect-reordered 0.198 splice 0.004  squash-stored 0.940
squash-unstored 0.304 tae 0.684 credit 0.000
owel 0.000 waveform 0.417 white-clover 0.463

wine 0.671 yeast 0.576 Z00 0.435

Table 2: Two sided p-values for each dataset. The difference is significant (p < 0.05) in 19
out of 54 comparisons.

2.1 NHST: the pitfalls of black and white thinking

Despite being criticized from its inception, NHST is still considered necessary for publica-
tion, as p < 0.05 is trusted as an objective proof of the method’s quality. One of the key
problems of decisions based on p < 0.05 is that it leads to “black and white thinking”,
which ignores the fact that (i) a statistically significant difference is completely different
from a practically significant difference (Berger and Sellke, 1987); (ii) two methods that
are not statistically significantly different are not necessarily equivalent. The NHST and
this p-value-related “black and white thinking” do not allow for making informed decisions.
Hereafter, we list the limits of NHST in order of severity using, as a working example, the
assessment of the performance of classifiers.

NHST does not estimate probabilities of hypotheses. What is the probability that
the performance of two classifiers is different (or equal)? This is the question we are asking
when we compare two classifiers; and NHST cannot answer it.

In fact, the p-value represents the probability of getting the observed (or larger) differ-
ences assuming that the performance of the classifiers is equal (Hp). Formally, p = p(t(x) >
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T|Hp), where t(x) is the statistic computed from the data x, and 7 is the critical value cor-
responding to the test and the selected «. This is not the probability of the hypothesis,
p(Hol|x), in which we are interested.

Yet, researchers want to know the probability of the null and the alternative hypotheses
on the basis of the observed data, rather than the probability of the data assuming the
null hypothesis to be true. Sentences like “at the 95% confidence level, we can conclude
that (...)”, are formally correct, but they seem to imply that 1 — p is the probability of the
alternative hypothesis, while in fact 1 —p =1 — p(t(x) > 7|Hp) = p(t(x) < 7|Hp), which is
not the same as p(Hp|x). This is summed up in Table 3.

what we compute what we would like to know
p(t(x) > 7|Ho) p(Holz)
1 —p(t(zx) > 7|Ho) = p(t(z) < 7|Ho) 1 — p(Holz) = p(H|z)

Table 3: Difference between the probabilities of interest for the analyst and the probabilities
computed by the frequentist test.

Point-wise null hypotheses are practically always false. The difference between
two classifiers can be very small; however there are no two classifiers whose accuracies are
perfectly equivalent.

By using a NHST, the null hypothesis is that the classifiers are equal. However, the null
hypothesis is practically always false! By rejecting the null hypothesis NHST indicates that
the null hypothesis is unlikely; but this is known even before running the experiment. This
problem of the NHST has been pointed out in many different scientific domains (Lecoutre
and Poitevineau, 2014, Sec 4.1.2.2). A consequence is that, since the null hypothesis is
always false, by adding enough data points it is possible to claim significance
even when the effect size is trivial. This is because the p-value is affected both by
the sample size and the effect size, as discussed in the next section. Quoting Kruschke and
Liddell (2015): “null hypotheses are straw men that can virtually always be rejected with
enough data.”

The p-value does not separate between the effect size and the sample size. The
usual explanation for this phenomenon is that if the effect size Hy is small, more data is
needed to demonstrate the difference. Enough data can confirm arbitrarily small effects.
Since the sample size is manipulated by the researcher and the null hypothesis is always
wrong, the researcher can reject it by testing the classifiers on enough data. On the contrary,
conceivable differences may fail to yield small p-values if there are not enough suitable data
for testing the method (e.g., not enough datasets). Even if we pay attention not to confuse
the p-value with the probability of the null hypothesis, the p-value is intuitively understood
as the indicator of the effect size. In practice, it is the function of effect size and sample
size: same p-values do not imply same effect sizes.

Figure 1 reports the density plots of the differences of accuracy between nbc and aode
on the dataset hepatitis in two cases: (1) considering only 15 of the 100 accuracies in
Table 1 (left); (2) considering all the 100 accuracies (right). The two orange vertical lines
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define the region in which the differences of accuracy is less than 1%—the meaning of these
lines will be clarified in the next sections.

The p-value is 0.077 in the first case and so the null hypothesis cannot be rejected.
The p-value becomes 0.048 in the second case and so the null hypothesis can be rejected.
This demonstrates how adding data leads to rejection of the null hypothesis although the
difference between the two classifiers is very small in this dataset (all the mass is inside
the two orange vertical lines). Practical significance can be equated with the effect size,
which is what the researcher is interested in. Statistical significance—the p-value—is not a
measure of practical significance, as shown in the example.

150 150
100 . 100
50 50
0 0
-0.02 -0.01 0.00 0.01 0.02 -0.02 -0.01 0.00 0.01 0.02
DeltaAcc DeltaAcc

Figure 1: Density plot for the differences of accuracy between nbc and aode for the dataset
hepatitis considering only 15 of the 100 data (left) or all the data (right). Left: the
null hypothesis cannot be rejected (p = 0.077 > 0.05) using half the data. Right:
the null hypothesis is rejected when all the data are considered (p = 0.048 < 0.05),
despite the very small effect size.

NHST ignores magnitude and uncertainty. A wvery important problem with NHST
is that the result of the test does not provide information about the magnitude of the effect
or the uncertainty of its estimate, which are the key information we should aim at knowing.

A consequence of this limit is that: (i) a null hypothesis can be rejected despite a very
small effect; (ii) a null hypothesis can be rejected even though there is a large uncertainty in
the effect’s magnitude and the region of uncertainty includes (or is extremely close to) zero,
that is, no effect. Figure 1 (right) shows a case for which p = 0.048 < 0.05 and the result is
therefore declared to be statistically significant. However, from the density plot, it is clear
that the magnitude of the effect is very small (all inside the orange vertical lines bounding
the less than 1% difference of accuracy region). Thus rejecting a null hypothesis does not
provide any information about the magnitude of the effect and whether or not the effect
is trivial. Figure 2 shows two cases for which p ~ 0.001 < 0.05 and the result is therefore
declared to be statistically significant. Such p-values are similarly low, but the two cases
are extremely different. For the dataset ecoli (left), the differences of accuracy are spread
from 0.1 to —0.25 (the magnitude of the uncertainty is very large, about 35%), while in
the second case the data are spread from 0 to —0.07, a much smaller uncertainty. Thus,
rejecting a null hypothesis does not provide us with any information about the uncertainty
of the estimate.
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Figure 2: Density plot for the differences of accuracy (DeltaAcc) between nbc and aode for
the datasets ecoli (left) and iris (right). The null hypothesis is rejected (p < 0.05)
with similar p-values, even though the two cases have very different uncertainty.
For ecoli, the uncertainty is very large and includes zero.

NHST yields no information about the null hypothesis. What can we say when
NHST does not reject the null hypothesis?

The scientific literature contains examples of non-significant tests interpreted as evidence
of no difference between the two methods/groups being compared. This is wrong since
NHST cannot provide evidence in favour of the null hypothesis (see also Lecoutre and
Poitevineau (2014, Sec 4.1.2.2) for further examples on this point). When NHST does not
reject the null hypothesis, no conclusion can be made.

Researchers may be interested in the probability that two classifiers are equivalent.
For instance, a recent paper contains the following conclusion: “there is no significant
difference between (...) under the significance level of 0.05. This is quite a remarkable
conclusion.” This is not correct, we cannot conclude anything in this case! Consider for
example Figure 3 (left), which shows the density plot of the differences of accuracy between
nbc and aode for the dataset audiology. The correlated t-test gives a p-value p = 0.622 and
so it fails to reject the null hypothesis. However, NHST does not allow us to reach any
conclusion about the possibility that the two classifiers may actually be equivalent in this
dataset, although the majority of data (density plot) seems to support this hypothesis. We
tend to interpret these cases as acceptance of the null hypothesis or to even (mis)understand
the p value as a “62.2% probability that the performance of the classifiers is the same”. This
is also evident from Figure 3 (right), where a very similar p-value, p = 0.598, corresponds
to a different density plot—with more uncertainty and so less evidence in favour of the null.

There is no principled way to decide the a level. In the above examples, we rejected
the null hypothesis at a = 0.05. We understand this difference as significant, but not as
significant as if we could reject it at &« = 0.01. What is the actual meaning of this? Can we
reject it at @ = 0.037 The « level represents the crucial threshold to declare the experiment
successful. With its importance, it needs to be set with care. However, since it is used
to compare the meaningless p-values, « is equally meaningless. By using the NHST, the
researcher is forced to select an important threshold with no practical meaning. Using the
customary thresholds of 0.05 and 0.01 merely allows her/him to shift the responsibility to
the unsubstantiated traditional habit.
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Figure 3: Density plot for the differences of accuracy between nbc and aode for the datasets
audiology (left) and breast-cancer (right). In audiology, we can only say that the
null hypothesis cannot be rejected p = 0.622 (> 0.05). NHST does not allow the
conclusion that the null hypothesis is true although practically all the data lies in
the interval [—0.01,0.01] (the differences of accuracy are less than 1%). A similar
p-value corresponds to a very different situation for breast-cancer.

We pretend that « is the proportion of cases in which Hy would be falsely rejected if the
same experiment was repeated. This would be true if the p-value represented the probability
of the null hypothesis. In reality, « is the proportion of cases in which experiments yield
the data that is more extreme than expected under Hy; the actual probability of falsely
rejecting Hy is also related to the probability of Hy and the data.

For a to be meaningful, it would need to set the required effect size or at least the
probability of the hypothesis, not the likelihood of the data.

The inference depends on the sampling intention. Consider analysing a data set
of n observations with a NHST test. The sampling distribution used to determine the
critical value of the test assumes that our intention was to collect exactly n observations.
If the intention was different—for instance in machine learning you typically compare two
algorithms on all the datasets that are available—, the sampling distribution changes to
reflect the actual sampling intentions (Kruschke, 2010). This is never done, given the
difficulty of formalizing one’s intention and of devising an appropriate sampling distribution.
This problem is thus important but generally ignored. Thus for the data set the hypothesis
test (and thus the p-value) should be computed differently, depending on the intention of
the person who collected the data (Kruschke, 2010).

3. Bayesian analysis of experimental results

There are two main Bayesian approaches for the analysis of experimental results. The first
Bayesian approach, as NHST, is also based on a null value. The analyst has to set up two
competing models of what values are possible. One model assumes that only the null value
is possible. The alternative model assumes a broad range of other values is also possible.
Bayesian inference is used to compute which model is more credible, given the data. This
method is called Bayesian model comparison and uses so-called “Bayes factors” (Berger,
1985; Aitkin, 1991; Kass and Raftery, 1995; Berger and Pericchi, 1996).
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The second Bayesian approach does not set any null value. The analyst simply has to
set up a range of candidate values (prior model), including the zero effect, and use Bayesian
inference to compute the relative credibilities of all the candidate values (the posterior
distribution). This method is called Bayesian estimation (Gelman et al., 2014; Kruschke,
2015).

The choice of the method depends on the situation — is a point-wise null hypothesis
plausible ? (Bayarri and Berger, 2013, Sec.18.2.3.1)

In machine learning the estimation approach is preferable because there is not plausible
reason to believe that two different classifiers have exactly the same accuracy. For this
reason, we will focus on the Bayesian estimation approach that hereafter we will simply call
Bayesian analysis.

The first step in Bayesian analysis is establishing a descriptive mathematical model of
the data. In a parametric model, this mathematical model is the the likelihood function that
provides the probability of the observed data for each candidate value of the parameter(s)
p(Data|f). The second step is to establish the credibility for each value of the parameter(s)
before observing data, the prior distribution p(6). The third step is to use Bayes’ rule
to combine likelihood and prior to obtain the posterior distribution of the parameter(s)
given the data p(f|Data). The questions we pose in statistical analysis can be answered by
querying this posterior distribution in different ways.

As a concrete example of Bayesian analysis we will compare the accuracies of two com-
peting classifiers via cross-validation on multiple data sets (Table 1). For this purpose, we
will adopt the correlated Bayesian t-test proposed by Corani and Benavoli (2015).

Bayesian correlated t-test

The Bayesian correlated t-test is used for the analysis of cross-validation results on a single
dataset and it accounts for the correlation due to the overlapping training sets. The test is
based on the following (generative) model of the data:

xn><1 = 1n><1:u’+vn><17 (4)

where © = (z1, z2,...,2,) is the vector of differences of accuracy, 1, ., is a vector of ones,
 is the parameter of interest (the mean difference of accuracy) and v ~ MVN(0,X,,,,,) is
a multivariate Normal noise with zero mean and covariance matrix X,,,,. The covariance
matrix ¥ is characterized as follows: ¥;; = o2 and DI o?pforalli#jel,... n, where
p is the correlation and o? is the variance and, therefore, the covariance matrix takes into
account the correlation due to cross-validation. Hence, the likelihood model of data is

exp(—5(x = 1p)"Z 7! (x — 1p))

X|p, X)) = .
p(x|p, ) (QW)n/Q\/E (5)

The likelihood (5) does not allow to estimate p from data, since the maximum likelihood
estimate of p is p = 0 regardless the observations (Corani and Benavoli, 2015). This
confirms that p is not identifiable: thus the Bayesian correlated t-test adopts the same
heuristic p = T?f; suggested by Nadeau and Bengio (2003).

In Bayesian estimation, we aim at estimating the unknown parameters p, v = 1/02 and

in particular u, which is the parameter of interest in the Bayesian correlated t-test. To this

10
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end, we consider the following prior:

k
p(p, v|po, ko, a, b) = N (u;uo, ;) G (v;a,b) = NG(u, v; po, ko, a, b),

which is a Normal-Gamma distribution (Bernardo and Smith, 2009, Chap. 5) with parame-
ters (uo, ko, a,b). The Normal-Gamma prior is conjugate to the likelihood (5). If we choose
the prior parameters {pug = 0, kg — 00, a = —1/2, b = 0} (matching prior), the resulting
posterior distribution of p is the following Student distribution:

1 A
p(plx, o, ko, a, b) = St <M; n—1,z, < + p) U2> ’ (©)
n 1l—p
n R n A 2
where z = # and 62 = W For these values of the prior parameters, the

posterior distribution of p (6) coincides with the Student distribution used in the fre-
quentist correlated t-test in (2). For instance, consider the first data set in Table 1, we
have that £ = —0.0194, 6 = 0.01583, p = 1/10, n = 100 and so p(u|x, o, ko, a,b) =
St (1599, —0.0194,0.000030). The output of the Bayesian analysis is the posterior of p,
p(p|x, po, ko, a,b), which we can plot and query.

In (6), we have reported the posterior distribution obtained under the matching prior—
for which the probability of the Bayesian correlated t-test and the p-value of the frequentist
correlated t-test are numerically equivalent. Our aim is to show that although they are
numerically equivalent the inferences drawn by the two approaches are very different. In
particular we will show that a different interpretation of the same numerical value can
completely change our prospective and allow us to make informative decisions. In other
words, in this case the cassock does make the priest!

3.1 Comparing nbc and aode through Bayesian analysis: a colour thinking

Consider the dataset squash-unsorted, with the posterior computed by the Bayesian corre-
lated t-test for the difference between nbc and aode, as shown in Figure 4. The vertical
orange lines mark again the region corresponding to a difference of accuracy of less than 1%
(we will clarify the meaning of this region later in the section). In Bayesian analysis, the
experiment is summarized by the posterior distribution (in this case a Student distribution).
The posterior describes the distribution of the mean difference of accuracies between the
two classifiers.

By querying the posterior distribution, we can evaluate the probability of the hypothesis.
We can for instance infer the probability that nbc is better/worse than aode. Formally
P(nbc > aode) = 0.165 is the integral of the posterior distribution from zero to infinity or,
equivalently, the posterior probability that the mean of the differences of accuracy between
nbe and aode is greater than zero. P(aode > nbc) = 1 — P(nbc > aode) = 0.835 is the
integral of the posterior between minus infinity and zero or, equivalently, the posterior
probability that the mean of the differences of accuracy is less than zero.

Can we say anything about the probability that nbc is practically equivalent to aode?
Bayesian analysis can answer this question. First, we need to define the meaning of “prac-
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Figure 4: Posterior of the Bayesian correlated t-test for the difference between nbc and aode
in the dataset squash-unsorted.

tically equivalent”. In classification, it is sensible to define that two classifiers whose mean
difference of accuracies is less that 1% are practically equivalent. The interval [—0.01,0.01]
thus defines a region of practical equivalence (rope) (Kruschke and Liddell, 2015) for clas-
sifiers.?> Once we have defined a rope, from the posterior we can compute the probabilities:

e P(nbc < aode): the posterior probability of the mean difference of accuracies being
practically negative, namely the integral of the posterior on the interval (—oo, —0.01).

e P(nbc = aode): the posterior probability of the two classifiers being practically equiv-
alent, namely the integral of the posterior over the rope interval.

e P(nbc > aode): the posterior probability of the mean difference of accuracies being
practically positive, namely the integral of the posterior on the interval (0.01, o).

P(nbc = aode) = 0.086 is the integral of the posterior distribution between the vertical lines
(the rope) shown in Figure 4 and it represents the probability that the two classifiers are
practically equivalent. Similarly, we can compute the probabilities that the two classifiers
are practically different, which are P(nbc < aode) = 0.788 and P(nbc > aode) = 0.126.

The posterior also shows the uncertainty in the estimate, because the distribution shows
the relative credibility of values across the continuum. One way to summarize the uncer-
tainty is by marking the span of values that are the most credible and cover ¢% of the
distribution (e.g., ¢ = 90%). These are called the High Density Intervals (HDIs) and they
are shown in Figure 5 (center) for ¢ = 50,60, 70, 80, 90, 95, 99.

Thus the posterior distribution equipped with rope:

1. estimates the posterior probability of a sensible null hypothesis (the area within the
rope);

2. claims significant differences that also have a practical meaning (the area outside the
rope);

3. In classification 1% seems to be a reasonable choice. However, in other domains a different value could
be more suitable.

12
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Figure 5: Posterior HDIs of the Bayesian correlated t-test for the difference between nbc
and aode in the dataset squash-unsorted.

3. represents magnitude (effect size) and uncertainty (HDIs);
4. does not depend on the sampling intentions.

To see that, we apply Bayesian analysis to the critical cases for NHST presented in the
previous section. Figure 6 shows the posterior for hepatitis (top), ecoli (left) and iris
(right). For hepatitis, all the probability mass is inside the rope and so we can conclude
that nbc and aode are practically equivalent: P(nbc = aode) = 1. For ecoli and iris, the
probability mass is all in (—oo, 0] and so nbc < aode. However, the posterior gives us more
information: there is much more uncertainty in the iris dataset. The posteriors thus provide
us the same information as the density plots shown in Figures 1-3.
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Figure 6: Posterior for nbc vs. aode in hepatitis (top), ecoli (left) and iris (right).

Consider now Figure 7; those are two examples for which we cannot clearly say whether
nbc and aode are practically equivalent or practically different. We cannot decide in an
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obvious way and this is evident from the posterior. Compare these figures with Figure 4,
which is similar.
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Figure 7: Posterior for nbc vs. aode in audiology (left) and breast-cancer (right).

Let us repeat the previous analysis for all 54 datasets: Figure 8 reports the posteriors for
nbc versus aode in all those cases. Looking at the posteriors, we see that there are 12 cases
where aode is practically better than nbe, since all the posterior is outside (to the left of)
the rope (in the datasets ecoli, iris, monks1, monks, mushroom, nursey, optdigits, pasture,
segment, spambase, credit, owel). There are 6 datasets where nbc and aode are practically
equivalent (hayes-roth, hungarianl/, hepatitis, labor, wine, yeast), since the entire posterior
is inside the rope. We see also that there are no cases where nbc is practically better
than aode (posterior to the right of the rope). The posteriors give us information about
the magnitude of effect size, practical difference and equivalence, as well as the related
uncertainty.

3.2 Sensible automatic decisions

In machine learning, we often need to perform many analyses. So it may be convenient
to devise a tool for automatic decision from the posterior. This means that we have to
summarize the posterior in some way, with a few numbers. However, we must be aware that
every time we do that we go back to that sort of black and white analysis whose limitations
have been discussed before. In fact, by summarizing the posterior, we lose information, but
we can do so in a conscious way. We have already explained the advantages of introducing a
rope, so we can make automatic decisions based on the three probabilities P(nbc < aode),
P(nbc = aode) and P(nbc > aode). In this way, we lose information but we introduce
shades in the black and white thinking. P(nbc < aode), P(nbc = aode) and P(nbc >> aode)
are probabilities and their interpretation is clear. P(nbc = aode) is the area of the posterior
within the rope and represents the probability that nbc and aode are practically equivalent.
P(nbc < aode) is the area of the posterior to the left of the rope and corresponds to
the probability that nbc is practically better than aode. Finally, P(nbc > aode) is the
area to the right of the rope and represents the probability that aode is practically better
than nbc. Since these are the actual probabilities of the decisions we are interested in, in
classification, we need not think in terms of Type-I errors to make decisions. We can simply
make decisions using these probabilities, which have a direct interpretation—contrarily to
p-values. For instance we can decide

1. nbc < aode if P(nbc < aode) > 0.95;

14



A TUTORIAL FOR COMPARING MULTIPLE CLASSIFIERS THROUGH BAYESIAN ANALYSIS

anneal audiology breast-cancer cmc contact-lenses
80 80 50 60 10
60 6 a0 %0
40 40 o 30 5
20 2
20 20 10 10
0 0 o 0 P~ 0
004 003 002 001 000 001 002 001 000 001 002 004 002 000 002 004 003 002 001 000 001 002 02 0.1 00 01 02
credit german-credit pima-diabetes ecoli eucalyptus
8 60 80 20 60
50 50
°0 40 o0 » 40
40 30 40 10 30
20 20
20 o 20 5 o
0 o 0 0 o
003 002 -001 000 001 002 0,04 -0.03 -0.02 -0.01 000 001 002 002 001 000 001 002 015 010 -005 000 005 003 002 -001 000 001 002
glass grub-damage haberman hayes-roth cleeland-14
25 20 30 10 50
20 15 40
15 N 2 30
10 o 0 oo 20
5 N 10
0 0.0 o P
-0.10 -0.05 0.00 0.05 005 000 005 010 015 006 004 -002 000 002 0.04 0010 0005 0000 0005 0010 004 002 000 002 004
hungarian-14 hepatitis hypothyroid ionosphere iris.
100 400 30 80 100
80
75 300 20 60 pos
50 200 N 40 w0
25 100 20 20
o 0 0 N 0 0
002 001 000 001 002 0010 -0.005 0000 0005 0010 -0.10 0,05 0.00 0.05 002 001 000 001 002 003 006 004 002 000 002
kr-s-kp labor lier-disorders lymphography monks1
2 10 30 60 40
2 50
12 20 pos 30
05 30 20
10 10 20
; S o "
0 00 0 0 0
-0.10 -0.05 0.00 0.05 0010 0005 0000 0005 0010 -0.10 -0.05 0.00 0.05 006 004 -002 000 002 015 010 -005 000 005
monks3 monks mushroom nursery optdigits
150 200 400 150 150
100 oo 200 100 100
100 200
50 5 100 50 50
o 0 o o 0
-0.015 -0.010 -0.005 0.000 0.005 0.010 006 004 002 000 002 2003 002 001 000 001 006 -004 002 000 002 006 004 002 000 002
page-blocks pasture-production pendigits postoperatie primary-tumor
30 150 80 20 50
40
20 100 o0 15 b
40 10
10 50 2
20 B 10
0 0 0 0 0 N
0050  -0.025 0000 0025 0050 015 010 005 000 005 -0.03 01 000 001 002 010 -005 000 005 010 004 002 000 002 004
segment solar-flare-C solar-flare-m solar-flare-X sonar
80 40 40 30 40
60 30 30 2 30
40 20 20 20
20 10 10 0 10 \
0 o o 0 0
006 004 002 000 002 0075 0050 -0.025 0000 0025 -0.05 0.00 0.05 -0.10 -0.05 0.00 0.05 004 002 000 002 004
soybean spambase spect-reordered splice squash-stored
80 150 40 200 100
60 100 30 150 75
40 20 100 50
20 0 10 50 25
0 0 0 o 0.0
003 002  -001 000 001 006 004 002 000 002 006 004 -002 000 002 004 -0.015 -0.010 -0.005 0.000 0.005 0.010 02 01 00 01 02
squash-unstored tae credit owel waveform
8 50 30 80 20
40
6 i 2 60 15
4 40 10
2 10
2 10 N 20
4 o o 0 0
03 02 01 00 01 02 004 002 000 002 004 03 0.2 0.1 00 01 -0.07-0.06-0.05-0.04-0.03-0.02-0.01 0.00 0.01 010 -0.05 0.00 005
white-clover wine yeast 200
60 150 150 50
50 40
0 100 100 30
30
20 50 50 20
10 10
0 0 0 0
002 001 0.00 001 0.02 0.03 0010 -0.005 0000 0005 0010 0015 0015 -0010  -0.005 0000 0005 0010 004 003 002 001 000 001 002

Figure 8: Posteriors of nbc versus aode for all 54 datasets.

2. nbc > aode if P(nbc > aode) > 0.95;

3. nbc = aode if P(nbc = aode) > 0.95.
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We can also decide with a probability of, for instance, 0.90 or 0.80 (if this is appropriate in
the given context). Table 4 compares the Bayesian decisions based on the above rule with
the NHST decisions. The NHST fails to reject the null in 35/54 datasets; Bayesian analysis
declares the two classifiers equivalent in 6 of such datasets. Conversely, when NHST rejects
the null (in 19/54 datasets), the Bayesian analysis declares nbc<aode or nbe>aode in 14
cases, nbc=aode in 1 case and no decision in 4 cases. Overall, Bayesian analysis allows us
to make a decision in 6 + 1 + 14 = 21 datasets, while NHST makes a decision only in 19
cases.

When NHST does not reject the null

pair Data sets Bayesian decision
(out of 54) nbc=aode No decision
nbc-aode 35 6 29

When NHS'T rejects the null

air Data sets Bayesian decision
= (out of 54) i
pair nbc=aode nbc<kaode or nbc>aode No decision
nbc-aode 19 1 14 4

Table 4: Results referring to comparisons in which the NHST rejects the null.

Sometimes also in Bayesian analysis it may be convenient to think in terms of errors.
We can easily do that by defining a loss function. A loss function defines the loss we incur
in making the wrong decision. The decisions we can take are nbc<aode (denoted as a;),
nbc>aode (a,), nbc=aode (a.) or none of them (a,). Consider for instance the following
loss matrix.

a; ac ar
a; [0 20 20

a. {20 0 20

a- 120 20 0 (7)
ap, |1 1 1

The first row gives us the loss we incur in deciding a; when a; is true (zero loss), a. is true
(loss is 20) and a, is true (loss is 20). Similarly for the second and third rows. The last
row is the loss we incur in making no decision. The expected loss can be simply obtained
by multiplying the above matrix L for the vector of posterior probabilities of nbc<aode,
nbc=aode and nbc>aode (p = [pl,pc,pr]T), i.e., Lp. The row of Lp corresponding to the
lowest loss determines the final decision. Since 0.05-20 = 1, this leads to the same decision
rule discussed previously (P(-) > 0.95).

3.3 Comparing NHST and Bayesian analysis for other classifiers

In this section we extend the previous analysis to other classifiers besides nbc and aode:
hidden naive Bayes (hnb), j48 decision tree (j48) and j48 grafted (j48-gr).
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The aim of this section is to show that the pattern described above is general and it also
holds for other classifiers. The results are presented in two tables. First we report on the
cases in which NHST does not reject the null (Tab. 5). Then we report on the comparisons
in which the NHST rejects the null (Tab. 6).

The NHST test does not reject the null hypothesis (Tab. 5) in 341/540 comparisons.
In these cases the NHST does not make any conclusion: it cannot tell whether the null
hypothesis is true* or whether is false but the evidence is too weak to reject it.

By applying the Bayesian correlated t-test with rope and taking decisions as discussed
in the previous section, we can draw more informative conclusions. In 74/341=22% of the
rejections failed by NHST, the posterior probability of the rope is larger than 0.95, allowing
to declare that the two analyzed classifiers are practically equivalent. In the remaining
cases, no conclusion can be drawn with probability 0.95.

The rope thus provides a sensible null hypothesis which can be accepted on the basis of
the data. When this happens we conclude that the two classifiers are practically equivalent.
This is impossible with the NHST.

When NHST does not reject the null

pair Data sets Bayesian decision

(out of 54) P(rope) >.95 No decision
nbc-aode 35 6 29
nbc—hnb 30 0 30
nbc—j48 27 2 25
nbc—j48gr 27 2 25
aode-hnb 40 6 34
aode—j48 33 6 27
aode—j48gr 35 6 29
hnb-j48 32 3 29
hnb—j48gr 32 3 29
j48-j48gr 50 40 10
total 341 74 267
rates 74/341= 0.22 267/341=0.78

Table 5: Results referring to comparisons in which the NHST correlated t-test does not
reject the null.

Let us consider now the comparisons in which NHST claims significance (Tab. 6). There
are 199 such cases. The Bayesian estimation procedure confirms the significance of 142/199
(71%) of them: in these cases it estimates either P(left) > 0.95 or P(right) > 0.95.° In
these cases the accuracy of the two compared classifiers are practically different. In 51/199
cases (26%) the Bayesian test does not make any conclusion. This means that a sizeable
amount of probability lies within the rope, despite the statistical significance claimed by the

4. A point null is however always false, as already discussed.
5. In the comparison nbc-aode, left means nbc < aode and right nbc > aode.

17



ALESSIO BENAVOLI, GIORGIO CORANI, JANEZ DEMSAR, MARCO ZAFFALON

When NHS'T rejects the null

Data sets
pair —_— Bayesian decision

(out of 54)
pair rope difference no decision
nbc-aode 19 1 14 4
nbc-hnb 24 0 19 )
nbc—j48 27 0 20 7
nbc—j48gr 27 0 21 6
aode—hnb 14 1 6 7
aode—j48 21 1 14 6
aode—j48gr 19 1 13 5
hnb—j48 22 0 17 5
hnb-j48gr 22 0 17 5
j48-j48gr 4 2 1 1
total 199 6 142 51
rates 6/199= 0.03 142/199=0.71 51/199=0.26

Table 6: Results referring to comparisons in which the NHST rejects the null.

frequentist test. In the remaining cases (6/199=3%) the Bayesian test concludes that the
two classifiers are practically equivalent (P(rope) > 0.95) despite the significance claimed
by the NHST. In this case it draws the opposite conclusion from the NHST.

Summing up, the Bayesian test with rope is more conservative, reducing the claimed
significances by 30% as compared with the NHST. The Bayesian test is thus more conserva-
tive due to the rope, which constitutes a sensible null hypothesis, while the null hypothesis
of the NHST is surely wrong. However counting the detection of practically equivalent
classifiers as decisions, the Bayesian test with rope takes more decisions than the NHST
(222 vs. 199).

4. Comparing two classifiers on multiple data sets

So far we have discussed how to compare two classifiers on the same data set. In machine
learning, another important problem is how to compare two classifiers on a collection of ¢
different data sets, after having performed cross-validation on each data set.

4.1 The frequentist approach

There is no direct NHST able to perform such statistical comparison, i.e., one that takes as
inputs the m runs of the k-fold cross-validation differences of accuracy for each dataset and
returns as output a statistical decision about which classifier is better in all the datasets.
The usual NHST procedure that is employed for performing such an analysis has two steps:

1. compute the mean difference of accuracy for each dataset (averaging the differences
of accuracies obtained in the m runs of the k-fold cross-validation);
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2. perform a NHST to establish if the two classifiers have different performance or not
based on these mean differences of accuracy.

For our case study, nbc vs. aode, the mean differences of accuracy in each dataset com-
puted from Table 1 are shown in Table 7. We denote these measures generically with
z={z1,...,24} (in our case ¢ = 54). The recommended NHST for this task is the signed-
rank test (Demsar, 2006).

Dataset Mean Dif. Dataset Mean Dif. Dataset Mean Dif.

anneal -1.939 audiology -0.261  breast-cancer 0.467

cme -0.719  contact-lenses 2.000 credit -0.464
german-credit -1.014  pima-diabetes -0.151 ecoli -7.269
eucalyptus -0.790 glass -2.600  grub-damage 4.362
haberman -0.614 hayes-roth 0.000 cleeland-14 -0.625
hungarian-14 -0.069 hepatitis -0.212 hypothyroid -1.683
ionosphere 0.267 iris -3.242 kr-s-kp -0.833
labor 0.000 lier-disorders -1.762  lymphography -1.863

monksl -10.002 monks3 -0.343 monks -4.190
mushroom -2.434 nursery -4.747 optdigits -3.548
page-blocks 0.583 pasture -10.043 pendigits -0.443
postoperatie 1.333 primary-tumor -0.674 segment -3.922
solar-flare-C -2.776 solar-flare-m -0.688 solar-flare-X -3.996
sonar -0.338 soybean -1.112 spambase -3.284
spect-reordered -1.684 splice -0.699  squash-stored -0.367
squash-unstored -5.600 tae -0.400 credit -16.909
owel -5.040 waveform -1.809 white-clover 0.500

wine 0.143 yeast -0.202 700 -0.682

Table 7: Mean difference of accuracy (0-100) for each dataset for nbc minus aode

Frequentist signed-rank test

The Wilcoxon signed-rank test is a non-parametric statistical hypothesis test used when
comparing two paired samples. The signed-rank test assumes the observations z1,...,z,
to be i.i.d. and generated from a symmetric distribution. The test is miscalibrated if the
distribution is not symmetric. A strict usage of the test should thus include first a test for
symmetry. One should run the signed-rank only if “the symmetry test fails to reject the
null” (note that, as we discussed before, this does not actually prove that the distribution is
symmetric!). However this would make the whole testing procedure cumbersome, requiring
also corrections for the test of multiple hypotheses. In the common practice thus the test
for symmetry is not performed, and we follow this practice in this paper.

The test is typically used as follows. The null hypothesis is that the median of the
distribution from which the z;’s are sampled is 0; when the test rejects the null hypothesis,
it claims that it is significantly different from 0. The test ranks the z;’s according to
their absolute value and then compares the ranks of the positive differences and negative

19



ALESSIO BENAVOLI, GIORGIO CORANI, JANEZ DEMSAR, MARCO ZAFFALON

differences. The test statistic is:

t= > nlla) = Xt

{i: 2:>0} 1<i<j<q

where 7;(|z;|) is the rank of |z| and

R 0 otheruwise.

For instance, let us consider the following two cases z = {—2,—1,4,5} or z = {—1,4,5},
then the statistic is ¢ = 7 and, respectively, ¢ = 5. For a large enough number of samples
(e.g., ¢ > 10), the statistic under the null hypothesis is approximately normally distributed
and in this case the two-sided test is performed as follows:

a(g+1)
U e

+1)(2q+1)—tie ’
/a(q )(2(411 )—tie (8)

p=2(1 = @(|wl)),

w =

where p denotes the p-value computed w.r.t. ®, which is the cumulative distribution function
of the standard Normal distribution; #ie is an adjustment for ties in the data |z|, i.e.,
zj = —z; for some i, j, required by the nonparametric test (Sidak et al., 1999; Hollander
et al., 2013), while it is zero in case of no ties.

Being non-parametric, the signed-rank is robust to outliers. It assumes commensura-
bility of differences, but only qualitatively: greater differences count more as they top the
rank; yet their absolute magnitudes are ignored (Demsar, 2006).

4.1.1 EXPERIMENTAL RESULTS

If we apply this method to compare nbc vs. aode, we obtain p-value=10" (the rank ¢ = 162
with no ties and w is —4.8). Since the p-value is less than 0.05, the NHST concludes that
the null hypothesis can be rejected and that nbc and aode are significantly different. Table
8 reports the p-values of all comparisons of the five classifiers. The pairs nbc-aode, nbc-hnb,
j48-748¢gr are statistically significantly different. Again by applying this black and white
mechanism, we encounter the same problems as before, i.e., we do not have any idea of
the magnitude of the effect size, the uncertainty, the probability of the null hypothesis, et
cetera. The density plot of the data (the mean differences of accuracy in each dataset) for
nbc versus aode shows for instance that there are many datasets where the mean difference
is small (close to zero), see Figure 9. Instead for j48 versus j48¢gr, it is clear that the
difference of accuracy is very small.

4.2 The Bayesian analysis approach

We will present two ways of approaching the comparison between two classifiers in multiple
datasets. The first will be based on a nonparametric approach that directly extends the
Wilcoxon signed-rank test. The second is a hierarchical model.
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Figure 9: Density plot for nbc versus aode (left) and j48 versus j48¢gr (right)

Classif. 1 Classif. 2 p-value

nbc aode 0.000
nbc hnb 0.001
nbc j48 0.463
nbc j48gr 0.394
aode hnb 0.654
aode j48 0.077
aode j48gr 0.106
hnb j48 0.067
hnb j48gr 0.084
j48 j48r 0.000

Table 8: p-values for the comparison of the five classifiers.

4.2.1 NONPARAMETRIC TEST

Benavoli et al. (2014) have proposed a Bayesian counterpart of the frequentist sign and
signed-rank test, which is based on the Dirichlet process.

Bayesian sign and signed-tank test

Let z denote the scalar variable of interest and z = {z1,...,2,} denotes a vector of i.i.d.
observations of z. To derive the Bayesian sign and signed-rank test, we assume a Dirichlet
Process (DP) prior on the probability distribution of z. A DP is a distribution over prob-
ability distributions such that marginals on finite partitions are Dirichlet distributed. Like
the Dirichlet distribution, the DP is therefore completely defined by two parameters: the
prior strength s > 0 and the prior mean that, for the DP, is a probability measure Gg on
z. If we choose Gg = ¢,,, i.e., a Dirac’s delta centred on the pseudo-observation zj, the
posterior probability density function of Z has this simple expression:

n
p(2) = wobs (2) + Y wids, (2), (wo,wr,...,wn) ~ Dir(s,1,...,1), (9)
j=1
i.e., it is a mixture of Dirac’s deltas centred on the observations z; for j = 1,...,¢ and on

the prior pseudo-observation zp, whose weights are Dirichlet distributed with parameters
(s,1,...,1). We can think about (9) as a hierarchical model: p(z) depends on the weights
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w that are Dirichlet distributed. The model (9) is therefore a posterior distribution of the
probability distribution of z and encloses all the information we need for the experimental
analysis. We can summarize it in different way. If we compute:

q
9[ = P(Z < —7") = Zwif(,oo7,,n) (ZZ‘),
i=0
q
B = P(l2] <) = wilj_p(2),
i=0
q
0, =P(z>r)= szl(r’oo)(zl),
i=0

where the indicator I4(z) = 1 if z9p € A and zero otherwise, then we obtain a Bayesian
version of the sign test that also accounts for the rope [—r,r]|. In fact, 0;, 6., 0, are respec-
tively the probabilities that the mean difference of accuracy is in the interval (—oo, —7),
[—r, 7], or (r,00). Since (wg,w1,...,wy) ~ Dir(s,1,...,1), it can easily be shown that

01,0, 0 ~ Dirichlet(n; + sl_oo,—r(20), Me + 8I[—r.r(20), 7 + 81| 00)(20)), (10)

where n; is the number of observations z; that fall in (—oo, —r|, n. is the number of observa-
tions z; that fall in [—r, 7] and n, is the number of observations z; that fall in [r, c0), obviously
Ny +ne +ny = q. If we neglect sI(_oo _r(20), 8I[—rr](20), $I}r.00) (20), then (10) says that the
posterior probability of 6;, 6., 6, is Dirichlet distributed with parameters (n;, ne,n,). The
terms s1(_ o _11(20), 811—771(20), $I[,00)(20) are due to the prior. Therefore, to fully specify
the Bayesian sign test, we must choose the value of the prior strength s and where to place
the pseudo-observation zg in (—oo, —r| or [—r,7] or [r,00). We will return to this choice in
Section 4.3. Instead, if we compute
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)

then we derive a Bayesian version of the signed rank test (Benavoli et al., 2014) that also
accounts for the rope [—r,7]. This time the distribution of 6;, €, 6, has not a simple closed
form but we can easily compute it by Monte Carlo sampling the weights (wo, w1, ..., wy,) ~
Dir(s,1,...,1). Also in this case we must choose s, 2y, see Section 4.3.

It should be observed that the Bayesian signed-rank test does not require the symmetry
assumption about the distribution of the observations z;. This test works also in case the
distribution is asymmetric thanks to the Bayesian estimation approach (i.e., it estimates
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the distribution from data). This is another advantage of the Bayesian estimation approach
w.r.t. the frequentist null hypothesis tests (Benavoli et al., 2014).

4.2.2 EXPERIMENTS

Let us start by comparing nbc vs. aode by means of the Bayesian sign-rank tests without
rope (r = 0). Hereafter we will choose the prior parameter of the Dirichlet as s = 0.5 and
zo = 0; we will return to this choice in Section 4.3. Since without rope 6, = 1 — 0;, we
have only reported the posterior of 0; (denoted as “Pleft”) that represents the probability
that aode is better than nbc. The samples of the posteriors are shown in Figure 10: this is
simply the histogram of 150’000 samples of 0; generated according to (11). For all samples,
it results in 6; greater than 0.5 and so 6, = 1 —6;. So we can conclude with probability ~ 1
that aode is better than nbc. We can in fact think about the comparison of two classifiers
as the inference on the bias (6;) of a coin. In this case, all the 150’000 sampled coins from
the posterior have a bias that is greater than 0.5 and, therefore, all the coins are always
biased towards aode (which is then preferable to nbc).

This conclusion is in agreement with that derived by the frequentist sign-rank test (very
small p-value, see Table 8).

1500

1000

- I|| i
0 _......III‘I'“ |‘L
7 0.8 0.9 1.0

0.5 0.6 0.
Pleft

Figure 10: Posterior for nbc vs. aode for the Bayesian sign-rank test.

The introduction of the rope partially changes the previous conclusion. A way to visu-
alize the posterior of 6;,0., 0, in this case, is by plotting the 150’000 Monte Carlo samples
of these probabilities in barycentric coordinates: each trinomial vector of probabilities is
a point in the simplex having vertices {(1,0,0),(0,1,0),(0,0,1)}. The three vertices are
respectively denoted as “aode”, “rope” and “nbc” and represent decisions with certainty in
favour of “aode”, “rope” and, respectively, “nbc”. Figure 11 reports the simplex as well as
the two-dimensional projections of the posterior for the Bayesian sign-rank test. In partic-
ular Figure 11 reports the marginal of the posterior distribution of “aode” vs. “rope” (left);
the marginal of the posterior distribution “nbc” vs. “rope” (right). From these two figures
we can deduce the other marginal since 6, + 6, +6,, = 1. Finally, Figure 11 (bottom) reports
the joint of the three variables in barycentric coordinates (we are again exploiting the fact
that ;4 0.+ 0, = 1). In particular, Figure 11 (bottom) reports the samples from the poste-
riors (cloud of points), the simplex (the large orange triangle) and three regions (in orange)
that are limited by the level curves: §; > max(6;,6;) with ¢ # j # k (hypothesis i is more
probable than both hypotheses j, k together). For instance, the region at the bottom-right
of the triangle is relative to the case where “aode” is more probable than “rope” and “nbc”
together; the region at the top of the triangle represents the case where “rope” is more
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Figure 11: Posterior for nbc vs. aode for the Bayesian sign-rank test.

probable than “aode” and “nbc” together; the region at the left of the triangle corresponds
to the case where “nbc” is more probable than “aode” and “rope” together. Hence, if all
the points fall inside one of these three regions, we conclude that such hypothesis is true
with probability &~ 1. Looking at Figure 11 (bottom), it is evident that the majority of
cases support aode more than rope and definitively more than nbc. We can quantify this
numerically by counting the number of points that fall in the three regions, see first row
in Table 9. aode is better in 90% of cases, while rope is selected in the remaining 10%.
We can therefore conclude with probability 90% that aode is practically better than nbc.
Table 9 reports also these probabilities for the other comparisons of classifiers computed
using 150’000 Monte Carlo samples. We conclude that hnb is practically better than nbc
with probability 0.999; aode and hnb are equivalent with probability 0.95; aode is better
than 748 and j48¢gr with probability 0.9; Anb is better than j48 and j48¢r with probability
greater than 0.95 and finally j48 and j/8¢r are practically equivalent. These conclusions
are in agreement with the data.

The computational complexity of the Bayesian sign-rank test is low. The comparison
of two classifiers (based on 150’000 samples) takes less than one second on a standard
computer.

4.3 Choice of the prior

In the previous section, we have selected the prior parameters of the Dirichlet process as
s = 0.5 and 2y = 0. In terms of rank, this basically means that the prior strength is
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Figure 12: Posterior for nbc vs. aode for Bayesian sign-rank test.

equivalent to that of one pseudo-observation that is located inside the rope (Benavoli et al.,
2014). How are the inferences sensitive to this choice? For instance, we can see how the
probabilities on Table 9 would change based on zy. We have considered two extreme cases
29 = —oo and zp = oo and reported these probabilities in Table 10 and 11 (this is an
example of robust Bayesian analysis (Berger et al., 1994)). It is evident that the position
of zp has only a minor effect on the probabilities. We could have performed this analysis
jointly by considering all the possible Dirichlet process priors obtained by varying zy € R.
This set of Dirichlet priors is called “Imprecise Dirichlet Process” (IDP). IDP allows us to
start the inference with very weak prior assumptions, much in the direction of letting data
speak for themselves. More details about the properties of IDP and the choice of the prior
can be found in Benavoli et al. (2014, 2015b); Walley (1996).
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Classif. 1 Classif. 2 left  rope right
nbc aode 0.000 0.103 0.897

nbc hnb 0.000 0.001 0.999

nbc j48 0.228 0.004 0.768

nbc j48gr 0.182 0.002 0.815

aode hnb 0.001 0.956 0.042
aode j48 0.911 0.026 0.063
aode j48gr 0.892 0.035 0.073
hnb j48 0.966 0.015 0.019

hnb j48gr 0.955 0.020 0.025

j48 j48gr 0.000 1.000 0.000

Table 9: Probabilities for the ten comparisons of classifiers. Left and right refer to the

columns Classif. 1 (left) and Classif. 2 (right).

Classif. 1 Classif. 2 left rope right
nbc aode 0.000 0.112 0.888
nbc hnb  0.000 0.001 0.999
nbc j48 0.262 0.004 0.734
nbc j48gr 0.213 0.003 0.784
aode hnb 0.002 0.961 0.037
aode j48 0.922 0.024 0.053
aode j48gr 0.906 0.033 0.061
hnb j48 0.971 0.014 0.016
hnb j48gr 0.961 0.018 0.021
j48 j48gr 0.000 1.000 0.000

Table 10: Probabilities for the ten comparisons of classifiers with zp = co. Left and right
refer to the columns Classif. 1 (left) and Classif. 2 (right).

4.3.1 HIERARCHICAL MODELS

In Section 3 we have presented the Bayesian correlated t-test that is used for the analysis of
cross-validation results on a single dataset. In particular, it makes inference about the mean
difference of accuracy between two classifiers in the i-th dataset (u;) by exploiting three
pieces of information: the sample mean (Z;), the variability of the data (sample standard
deviation 6;) and the correlation due to the overlapping training set (p). This test can only
be applied to a single dataset. We have already discussed the fact that there is no direct
NHST able to extend the above statistical comparison to multiple datasets, i.e., that takes
as inputs the m runs of the k-fold cross-validation results for each dataset and returns as
output a statistical decision about which classifier is better in all the datasets. The usual
NHST procedure that is employed for performing such analysis has two steps: (1) compute

26



A TUTORIAL FOR COMPARING MULTIPLE CLASSIFIERS THROUGH BAYESIAN ANALYSIS

Classif. 1 Classif. 2 left  rope right

nbc aode 0.000 0.096 0.904
nbc hnb 0.000 0.001 0.999
nbc j48 0.201 0.004 0.795
nbc j48gr 0.159 0.002 0.839
aode hnb 0.001 0.950 0.049
aode j48 0.892 0.028 0.080
aode j48gr 0.872 0.037 0.091
hnb j48 0.957 0.017 0.027
hnb j48gr 0.944 0.022 0.034
j48 j48gr 0.000 1.000 0.000
Table 11: Probabilities for the ten comparisons of classifiers with zg = —oo. Left and right

refer to the columns Classif. 1 (left) and Classif. 2 (right).

the mean difference of accuracy for each dataset Z;; (2) perform a NHST to establish if
the two classifiers have different performance or not based on these mean differences of
accuracy. This discards two pieces of information: the correlation p and sample standard
deviation &; in each dataset. The standard deviation is informative about the accuracy of z;
as an estimator of u;. The standard deviation can largely vary across data sets, as a result
of each data set having its own size and complexity. The aim of this section is to present
an extension of the Bayesian correlated t-test that is able to make inference on multiple
datasets and at the same time to account for all the available information (mean, standard
deviation and correlation). In Bayesian estimation, this can be obtained by defining a
hierarchical model (Corani et al., 2017). Hierarchical models are among the most powerful
and flexible tools in Bayesian analysis.

Bayesian hierarchical correlated t-test
The hierarchical correlated t-test is based on following hierarchical probabilistic model:

X; ~ MVN(lMZ,El), (12)
- iq ~ t(ko, 00, V), (13)
01...0¢ ~ unif(0, 7). (14)
Equation (12) models the fact that the cross-validation measures x; = {zi1, %2, ..., Tin}

of the i-th data set are jointly multivariate-normal distributed with the same mean (u;),
same variance (o0;) and correlation (p). In fact, it states that, for each dataset i, x; is
multivariate normal with mean 1p; (where 1 is a vector of ones) and covariance matrix X;
defined as follows: the diagonal elements are 02-2 and the out-of-diagonal elements are ,002-2 ,
where p = Z—:j This model is the same we discussed in Section 3. Equation (13) models
the fact that the mean difference of accuracies in the single datasets, p;, depends on pg
that is the average difference of accuracy between the two classifiers on the population of
data sets. This is the quantity we aim at estimating. Equation (13) assumes the p;’s to
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be drawn from a high-level Student distribution with mean g, variance 0(2) and degrees
of freedom v. The choice of a Student distribution at this level of the hierarchical model
enables the model to robustly deal with data sets whose u;’s are far away from the others
(Gelman et al., 2014; Kruschke, 2013). Moreover the heavy tails of the Student make more
cautious the conclusions drawn by the model.

The hierarchical model assigns to the i-th data set its own standard deviation o;, as-
suming the 0;’s to be drawn from a common distribution, see Equation (14). In this way it
realistically represents the fact the estimates referring to different data sets data sets have
different uncertainty. The high-level distribution of the ¢;’s is unif(0, ), as recommended
by Gelman (2006), as it yields inferences which are insensitive to &, if & is large enough.
To this end we set & = 1000 - 5 (Kruschke, 2013), where 5§ = >_75;/q.

We complete the model with the prior on the parameters dg, og and v of the high-level
distribution. We assume &g to be uniformly distributed within 1 and -1. This choice works
for all the measures bounded within +1, such as accuracy, AUC, precision and recall. Other
type of indicators might require different bounds.

For the standard deviation o9 we adopt the prior unif(0, sp), with $§o = 1000sz, where
sz is the standard deviation of the Z;’s.

As for the prior p(v) on the degrees of freedom, there are two proposals in the literature.
Kruschke (2013) proposes an exponentially shaped distribution which balances the prior
probability of nearly normal distributions (¥ >30) and heavy tailed distributions (v <30).
We re-parameterize this distribution as a Gamma(«,3) with a=1, = 0.0345. Judrez and
Steel (2010) proposes instead p(r) = Gamma(2,0.1), assigning larger prior probability to
normal distributions.

We have no reason for preferring a prior over another, but the hierarchical model shows
some sensitivity on the choice of p(r). We model this uncertainty by representing the
coefficients a and /3 of the Gamma distribution as two random variables (hierarchical prior).
In particular we assume p(v) = Gamma(a, §), with o ~ unif(a, @) and § ~ unif(3, B),
setting a=0.5, a=>5, $=0.05, 5=0.15. The simulations in (Corani et al., 2017) show that
the inferences of the model are stable with respect to perturbations of a, @, 8, and 3, and
that the resulting hierarchical generally fits well the experimental data. B

These considerations are reflected by the following probabilistic model:

v~ Ga(a, B), (15)
a ~ unif((a, @), (16)
B ~ unif (8, B), (17)
po ~ unif(—1,1), (18)
oo ~ unif (0, d9). (19)

We want to make inference about the pu;’s and pg. Such inferences are computed by
marginalizing out the o;’s, and thus accounting for the different uncertainty which char-
acterizes each data set. This characteristic is unique among the methods discussed so far.
Computations in hierarchical models are obtained by Markov-Chain Monte Carlo sampling.
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A further merit of the hierarchical model is that it jointly estimates the u;’s while the
existing methods estimate independently the difference of accuracy on each data set using
the z;’s. The consequence of the joint estimation performed by the hierarchical model is
that shrinkage is applied to the Z;’s. The hierarchical model thus estimates the p;’s more
accurately than the Z;’s adopted by the other tests. This result is valid under general
assumptions, such as a severe misspecification between the high-level distributions of the
true generative model and of the fitted model (Corani et al., 2017). By applying the rope
on the posterior distribution of the u;’s and the ug in a similar way to what discussed for
the Bayesian correlated t-test, the model is able to detect equivalent classifiers and to claim
significances that have a practical impact.

4.3.2 EXPERIMENTS

In the experiments, we have computed the posterior of g, og, v for the ten pairwise compar-
isons between the classifiers nbc, aode, hnb, j48 and j48¢r. As inference we have computed
the prediction on the next (unseen) dataset, which is formally equivalent to the inference
computed by the Bayesian signed-rank test. For instance, for nbc vs. aode, we have com-
puted the probabilities that in the next dataset nbc is better than aode (6, ), nbc is equivalent
to aode (0.), aode is better than nbc (6;). This is the procedure we have followed:

1. we have sampled pug, 0g, v from the posteriors of these parameters;

2. for each sample of g, o0p, v we have defined the posterior of the mean difference of
accuracy on the next dataset, i.e., t(tnewst; o, 00, V);

3. from t(pnext; fo, 00, v) we have computed the probabilities 6; (integral on (—oo,7]), 0.
(integral on [—r,r]) and 6, (integral on [r,00)).

We have repeated this procedure 4’000 times, obtaining 4’000 samples of (;, 6., 6,) and the
results are shown in Figure 13. The results are quite in agreement with those of the Bayesian
signed-rank test. For instance, it is evident that aode is clearly better than nbc. We can
quantify this numerically by counting the number of points that fall in the three regions
(see the first row in Table 12). aode is better in almost 100% of cases. Table 12 reports also
these probabilities for the other comparisons of classifiers computed using 4’000 Monte Carlo
samples. By comparing Tables 12 and 9, we can see that the two tests are substantially
in agreement apart from differences in aode vs. j48 and j48gr. The hierarchical test is
taking into account of all available infromation: the sample mean (Z;), the variability of the
data (sample standard deviation ;) and the correlation due to the overlapping training set
(p), while the Bayesian signed rank only considers z;. Therefore, when the two tests differ
substantially, it means that there is substantial variability of the cross-validation estimate.

We have implemented the hierarchical model in Stan (http://mc-stan.org) (Carpenter
et al., 2016), a language for Bayesian inference. The analysis of the results of 10 runs of 10-
fold cross-validation on 54 data sets (that means a total of 5400 observations) takes about
three minutes on a standard computer.
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Figure 13: Posterior of nbc versus aode for all 54 datasets.

Classif. 1 Classif. 2 left rope right

nbc aode 0 0.28 0.72
nbc hnb 0 0 1
nbc j48 0.2 0.01 0.79
nbc j48gr 0.15 0.01 0.84
aode hnb 0 1 0
aode j48 046 0.51 0.03
aode j48gr 0.41 0.56 0.03
hnb j48 0.91 0.07 0.02
hnb j48gr 0.92 0.05 0.03
j48 j48gr 0 1 0

Table 12: Probabilities for the ten comparisons of classifiers. Left and right refer to the
columns Classif. 1 (left) and Classif. 2 (right).

4.4 Choice of the hyper-priors parameters

The choice of of the hyper-priors parameters can be critical in Bayesian hierarchical models.
We have conducted a sensitivity analysis by using different constants in the top-level gamma
and uniform distributions, to check whether they have any notable influence on the resulting
posterior distribution. Whether all gamma/uniform distributions are assumed, the results
are essentially identical. More details about this sensitivity analysis are reported in Corani
et al. (2017). This means that for the hierarchical model inferences and decisions are stable
w.r.t. the choice of the hyper-parameters.

4.5 Bayesian signed rank or hierarchical model?

So far we have presented two methods for comparing two classifiers on multiple datasets:
Bayesian signed-rank and hierarchical model. Which one should we use for comparing
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classifiers? In our opinion, the hierarchical model is preferable because it takes as inputs the
m runs of the k-fold cross-validation results for each dataset and so it makes inference about
the mean difference of accuracy between two classifiers in the i-th dataset (u;) by exploiting
all available information: the sample mean (Z;), the variability of the data (sample standard
deviation 6;) and the correlation due to the overlapping training set (p). Conversely, the
Bayesian signed rank only considers Z;. On the other hand, the hierarchical model is slower
than the Bayesian signed rank. In machine learning, we often need to run statistical tests
hundreds of times for instance for features selection or algorithms racing and, in this case,
it is more convenient to use a light test as the Bayesian signed rank.

5. Comparisons of multiple classifiers

Another important problem with NHST is the issue of multiple hypothesis testing. Con-
sidering the results in Table 8, which reports the p-values for the comparison of the five
classifiers obtained by the Wilcoxon signed-rank test. From the p-values, we concluded
that “nbc was found significantly better than aode and hnb, and algorithms j48 and j48gr
were significantly different, while there were no significant differences between other pairs”.
When many tests are made, the probability of making at least one Type 1 error in any of
the comparisons increases. One of the most popular fixes to this problem is the Bonferroni
correction. The Bonferroni correction adjusts the p-value at which a test is evaluated for sig-
nificance according to the number of tests being performed. More specifically, the adjusted
p-value is calculated as the original p-value divided by the number of tests being performed.
Implicitly, Bonferroni’s correction assumes that these test statistics are independent. So
in our current example an overall desired significance level of 0.05 would translate into
individual tests each using a p-value threshold of 0.05/10 = 0.005 (we are performing 10
comparisons). In this case, this would not change our previous sections, since all significant
p-values were less than 0.005. The Bonferroni correction reduces false rejections but it also
increases the number of instances in which the null is not rejected when actually it should
have been. Thus, the Bonferroni adjustment can reduce the power to detect an important
effect. Motivated by this issue of the Bonferroni correction, researchers have proposed al-
ternative procedures. The goal of these methods typically is to reduce the family-wise error
rate (that is, the probability of having at least one false positive) without sacrificing power
too much. A natural way to achieve this is by considering the dependence across tests
(Westfall et al., 1993).

We have already discussed in Section 2 the pitfalls of NHST Type I error thinking.
Type I error underlies these corrections and, therefore, corrections inherit all its problems.
The most critical one is that the correction factor depends on the way the analyst intends to
conduct the comparison. For instance, the analyst may want to compare nbc with the other
four classifiers (in this case the Bonferroni correction would be 0.05/4 = 0.0125—he/she is
conducting only four comparisons) or to perform all the ten comparisons (0.05/10) and so
on. This creates a problem because two analysts can ¢ draw different conclusions from the
same data because of the variety of comparisons that they made. Another important issue
with the multiple-comparison procedure based on mean-ranks test is described in Benavoli
et al. (2016).
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How do we manage the problem of multiple hypothesis testing in Bayesian analysis?
Paraphrasing Gelman et al. (2012): “in Bayesian analysis we usually do not have to worry
about multiple comparisons. The reason is that we do not worry about Type I error,
because the null hypothesis is hardly believable to be true.” How does Bayesian Analysis
mitigate false alarms? Gelman et al. (2012) suggest using multilevel analysis (in our case
a hierarchical Bayesian model on multiple classifiers). Multilevel models perform partial
pooling; they shift estimates toward each other. This means that the comparisons of the
classifiers are more conservative, in the sense that intervals for comparisons are more likely
to include zero. This may be a direction to pursue in future research. In this paper, we
instead mitigate false alarms through the rope. The rope mitigates false alarms because it
decreases the asymptotic false alarm rate (Kruschke, 2013).

6. Software and available Bayesian tests

All the tests that we have presented in this paper are available in R and Python code at
https://github.com/BayesianTestsML/tutorial/.

Moreover, the code that is necessary to replicate all the analyses we performed in this paper
is also available at the above URL in form of Ipython notebooks (implemented in Python
and Julia). The software is open source and that can be freely used, changed, and shared
(in modified or unmodified form).

Machine learning researchers may be interested in using other Bayesian tests besides
the ones we have discussed in this paper. General Bayesian parametric tests can be found
in Kruschke (2015) (together with R code) and also in Gelman et al. (2013). We have
specialized some of these tests to the case of correlated data, such as the Bayesian correlated
t-test (Corani and Benavoli, 2015) discussed in Section 3. We have also implemented several
Bayesian nonparametric tests for comparing algorithms: Bayesian rank test (Benavoli et al.,
2015b), Friedman test (Benavoli et al., 2015a) and tests that account for censored data
(Mangili et al., 2015). Finally, we have developed an extension of the Bayesian sign test to
compare algorithms taking into account multiple measures at the same time (accuracy and
computational time for instance) (Benavoli and Campos, 2015). For the analysis of multiple
data sets, another approach has been proposed by Lacoste et al. (2012) that models each
data set as an independent Bernoulli trial. The two possible outcomes of the Bernoulli trial
are the first classifier being more accurate than the second or vice versa. This approach
yields the posterior probability of the first classifier being more accurate than the second
classifier on more than half of the ¢ data sets. A shortcoming is that its conclusions apply
only to the q available data sets without generalizing to the whole population of data sets

7. Conclusions

We discourage the use of frequentist null hypothesis significance tests (NHST) in machine
learning and, in particular, for comparison of the performance of classifiers. In this, we
follow the current trends in other scientific areas. For instance, the journal of Basic and
Applied Social Psychology, has banned the use of NHSTs and related statistical proce-
dures (Trafimow and Marks, 2015). We believe that also in machine learning is time to
move on from NHST and p-values.
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In this paper, we have discussed how Bayesian analysis can be employed instead of
NHST. In particular, we have presented three Bayesian tests: Bayesian correlated t-test,
Bayesian signed rank test and a Bayesian hierarchical model that can be used for comparing
the performance of classifiers and that solve the drawbacks of the frequentist tests. All
the code of these tests is freely available and so researchers can already use these tests
for their analysis. In this paper, we have mainly discussed the use of Bayesian tests for
comparing the performance of algorithms. However, in machine learning, NHST statistical
tests are also employed inside the algorithms. For instance, nonparametric tests are used in
racing algorithms, independence tests are used to learn the structure of Bayesian networks,
etcetera. Bayesian tests can be used to replace all NHST tests because of their advantages
(for instance, Bayesian tests can assess whether two algorithms are similar through the use
of the rope (Benavoli et al., 2015a)).
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