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Abstract

In this paper, we explore statistical versus computational trade-off to address a basic ques-
tion in the application of a distributed algorithm: what is the minimal computational
cost in obtaining statistical optimality? In smoothing spline setup, we observe a phase
transition phenomenon for the number of deployed machines that ends up being a simple
proxy for computing cost. Specifically, a sharp upper bound for the number of machines is
established: when the number is below this bound, statistical optimality (in terms of non-
parametric estimation or testing) is achievable; otherwise, statistical optimality becomes
impossible. These sharp bounds partly capture intrinsic computational limits of the dis-
tributed algorithm considered in this paper, and turn out to be fully determined by the
smoothness of the regression function. We name the asymptotic analysis on such split-and-
aggregation estimation/inference as “splitotic” theory. As a side remark, we argue that
sample splitting may be viewed as an alternative form of regularization, playing a similar
role as smoothing parameter.

Keywords: divide-and-conquer, computational limits, smoothing spline, splitotic theory

1. Introduction

In the parallel computing environment, divide-and-conquer (D&C) method distributes data
to multiple machines, and then aggregates local estimates computed from each machine
to produce a global one. Such a distributed algorithm often requires a growing number of
machines in order to process an increasingly large dataset. A practically relevant question is
“how many processors do we really need in this parallel computing?” or “shall we allocate all
our computational resources in the data analysis?” Such questions are related to the minimal
computational cost of this distributed method (which will be defined more precisely later).

The major goal of this paper is to provide some “theoretical” insights, namely, a splitotic
theory, for the above questions from a statistical perspective. Specifically, we consider a
classical nonparametric regression setup:

yl = f(l/N) + εl, l = 0, 1, . . . , N − 1, (1)
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where εl’s are iid random errors with E{εl} = 0 and V ar(εl) = 1, in the following distributed
algorithm:
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denoted as f̂N f̄ = (1/s)
∑s

j=1 f̂j

We assume that the total sample size is N , the number of machines is s and the size of each
sub-sample is n. Hence, N = s×n. Each machine produces an individual smoothing spline
estimate f̂j to be defined in (3) (Wahba (1990)).

A known property of the above D&C strategy is that it can preserve statistical efficiency
for a wide-ranging choice of s (as demonstrated in Figure 1), say log s/ logN ∈ [0, 0.4],
while largely reducing computational burden as log s/ logN increases (as demonstrated in
Figure 2). An important observation from Figure 1 is that there is an obvious blowup
for mean squared errors of f̄ when the above ratio is beyond some threshold, e.g, 0.8 for
N = 10000. Hence, we are interested in knowing whether there exists a critical value of
log s/ logN in theory, beyond which statistical optimality no longer exists. For example,
mean squared errors will never achieve minimax optimal lower bound (at rate level) no
matter how smoothing parameters are tuned. Such a sharpness result partly captures
the computational limit of the particular D&C algorithm considered in this paper, also
complementing the upper bound results in Shang and Cheng (2015); Zhang et al. (2015);
Zhao et al. (2016).

Our first contribution is to establish a sharp upper bound of s under which f̄ achieves
the minimax optimal rate Nm/(2m+1), where m represents the smoothness of f0. By “sharp”
upper bound, we mean the largest possible upper bound for s to gain statistical optimality.
This result is established by directly computing (non-asymptotic) upper and lower bounds
of mean squared error of f̄ . These two bounds hold uniformly as s diverges, and thus imply
that the rate of mean squared error transits once s reaches the rate N2m/(2m+1), which we
call as phase transition in divide-and-conquer estimation. In fact, the choice of smoothing
parameter, denoted as λ, also plays a very subtle role in the above phase transition. For
example, λ is not necessarily chosen at an optimal level when s attains the above bound as
illustrated in Figure 3.

Our second contribution is a sharp upper bound of s under which a simple Wald-type
testing method based on f̄ is minimax optimal in the sense of Ingster (1993). It is not
surprising that our testing method is consistent no matter s is fixed or diverges at any rate.
Rather, this sharp bound is entirely determined by analyzing its (non-asymptotic) power.
Specifically, we find that our testing method is minimax optimal if and only if s does not
grow faster than N (4m−1)/(4m+1). Again, we observe a subtle interplay between s and λ as
depicted in Figure 3.

One theoretical insight obtained in our setup is that a more smooth regression function
can be optimally estimated or tested at a shorter time. In addition, the above Figure 3
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COMPUTATIONAL LIMITS OF A DISTRIBUTED ALGORITHM

Figure 1: Mean-square errors (MSE) of f̄ based on 500 independent replications under different choices of

N and s. The values of MSE stay at low levels for various choice of s with log s/ logN ∈ [0, 0.7].

True regression function is f0(z) = 0.6b30,17(z) + 0.4b3,11(z) with ba1,a2 the density function for

Beta(a1, a2).
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Figure 2: Computing time of f̄ based on a single replication under different choices of s when N = 10, 000.

The larger the s, the smaller the computing time.

implies that s and λ play an interchangeable role in obtaining statistical optimality. There-
fore, we argue that it might be attempting to view sample splitting as an alternative form
of regularization, complementing the use of penalization in smoothing spline. In practice,
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Figure 3: Two lines indicate the choices of s � Na and λ � N−b, leading to minimax optimal estimation

rate (left) and minimax optimal testing rate (right). Whereas (a, b)’s outside these two lines lead

to suboptimal rates. Results are based on smoothing spline regression with regularity m ≥ 1.

we propose to select λ via a distributed version of generalized cross validation (GCV); see
Xu et al. (2017).

In the end, we want to mention that our theoretical results are developed in one-
dimensional models under fixed design. This setting allows us to develop proofs based
on exact analysis of various Fourier series, coupled with properties of circulant Bernoulli
polynomial kernel matrix. The major goal of this work is to provide some theoretical in-
sights in a relatively simple setup, which are useful in extending our results to more general
setup such as random or multi-dimensional design. Efforts toward this direction have been
made by Liu et al. (2017) who derived upper bounds of s for optimal estimation or testing
in various nonparametric models when design is random and multi-dimensional.

2. Smoothing Spline Model

Suppose that we observe samples from model (1). The regression function f is smooth in
the sense that it belongs to an m-order (m ≥ 1) periodic Sobolev space:

Sm(I) =

{ ∞∑
ν=1

fνϕν(·) :
∞∑
ν=1

f2
ν γν <∞

}
,

where I := [0, 1] and for k = 1, 2, . . .,

ϕ2k−1(t) =
√

2 cos(2πkt), ϕ2k(t) =
√

2 sin(2πkt),
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γ2k−1 = γ2k = (2πk)2m.

The entire dataset is distributed to each machine in a uniform manner as follows. For
j = 1, . . . , s, the jth machine is assigned with samples (Yi,j , ti,j), where

Yi,j = yis−s+j−1 and ti,j =
is− s+ j − 1

N

for i = 1, . . . , n. Obviously, t1,j , . . . , tn,j are evenly spaced points (with a gap 1/n) across I.
At the jth machine, we have the following sub-model:

Yi,j = f(ti,j) + εi,j , i = 1, . . . , n, (2)

where εi,j = εis−s+j−1, and obtain the jth sub-estimate as

f̂j = arg min
f∈Sm(I)

`j,n,λ(f).

Here, `j,n,λ represents a penalized square criterion function based on the jth subsample:

`j,n,λ(f) =
1

2n

n∑
i=1

(Yi,j − f(ti,j))
2 +

λ

2
J(f, f), (3)

with λ > 0 being a smoothing parameter and J(f, g) =
∫
I f

(m)(t)g(m)(t)dt1

3. Minimax Optimal Estimation

In this section, we investigate the impact of the number of machines on the mean squared
error of f̄ . Specifically, Theorem 3.1 provides an (non-asymptotic) upper bound for this
mean squared error, while Theorem 3.2 provides a (non-asymptotic) lower bound. Notably,
both bounds hold uniformly as s diverges. From these bounds, we observe an interesting
phase transition phenomenon that f̄ is minimax optimal if s does not grow faster than
N2m/(2m+1) and an optimal λ � N−2m/(2m+1) is chosen, but the minimax optimality breaks
down if s grows even slightly faster (no matter how λ is chosen). Hence, the upper bound
of s is sharp. Moreover, λ does not need to be optimal when this bound is attained. In
some sense, a proper sample splitting can compensate a sub-optimal choice of λ.

In this section, we assume that εl’s are iid zero-mean random variables with unit vari-
ance. Denote mean squared error as

MSEf0(f) := Ef0{‖f − f0‖22},

where ‖f‖2 =
√∫

I f(t)2dt. For simplicity, we write Ef0 as E later. Define h = λ1/(2m).

Theorem 3.1 (Upper Bounds of Variance and Squared Bias) Suppose h > 0, and N is
divisible by n. Then there exist absolute positive constants bm, cm ≥ 1 (depending on m
only) such that

E{‖f̄ − E{f̄}‖22} ≤ bm
(
N−1 + (Nh)−1

∫ πnh

0

1

(1 + x2m)2
dx

)
, (4)

‖E{f̄} − f0‖2 ≤ cm
√
J(f0)(λ+ n−2m +N−1) (5)

for any fixed 1 ≤ s ≤ N .

1. For simplicity, we denote J(f, f) = J(f) later.
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From (17) and (18) in Appendix, we can tell that f̄ − E{f̄} is irrelevant to f0. So is
the upper bound for the (integrated) variance in (4). However, this is not the case for the
(integrated) bias ‖E{f̄}− f0‖2, whose upper bound depends on f0 through its norm J(f0).
In particular, the (integrated) bias becomes zero if f0 is in the null space, i.e., J(f0) = 0,
according to (5).

Since

MSEf0(f̄) = E{‖f̄ − E{f̄}‖22}+ ‖E{f̄} − f0‖22, (6)

Theorem 3.1 says that

MSEf0(f̄) ≤ bm
(
N−1 + (Nh)−1

∫ πnh

0

1

(1 + x2m)2
dx

)
+ c2

mJ(f0)(λ+ n−2m +N−1). (7)

When we choose h � N−1/(2m+1) and n−2m = O(λ), it can be seen from (7) that f̄ is
minimax optimal, i.e., ‖f̄ − f0‖2 = OP (N−m/(2m+1)). Obviously, the above two conditions
hold if

λ � N−2m/(2m+1) and s = O(N2m/(2m+1)). (8)

From now on, we define the optimal choice of λ as N−2m/(2m+1), denoted as λ∗; according
to Zhang et al. (2015). Alternatively, the minimax optimality can be achieved if s �
N2m/(2m+1) and nh = o(1), i.e., λ = o(λ∗). In other words, a sub-optimal choice of λ
can be compensated by a proper sampling splitting strategy. See Figure 3 for the subtle
relation between s and λ. It should be mentioned that λ∗ depends on N (rather than n)
for achieving optimal estimation rate. In practice, we propose to select λ via a distributed
version of GCV; see Xu et al. (2017).

Remark 3.1 Under random design and uniformly bounded eigenfunctions, Corollary 4 in
Zhang et al. (2015) showed that the above rate optimality is achieved under the following
upper bound on s (and λ = λ∗)

s = O(N (2m−1)/(2m+1)/ logN).

For example, when m = 2, their upper bound is N0.6/ logN (versus N0.8 in our case). We
improve their upper bound by applying a more direct proof strategy.

To understand whether our upper bound can be further improved, we prove a lower
bound result in a “worst case” scenario. Specifically, Theorem 3.2 implies that once s is
beyond the above upper bound, the rate optimality will break down for at least one true
f0.

Theorem 3.2 (Lower Bound of Squared Bias) Suppose h > 0, and N is divisible by n.
Then for any constant C > 0, it holds that

sup
f0∈Sm(I)
J(f0)≤C

‖E{f̄} − f0‖22 ≥ C(amn
−2m − 8N−1),

where am ∈ (0, 1) is an absolute constant depending on m only, for any fixed 1 < s < N .
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It follows by (6) that

sup
f0∈Sm(I)
J(f0)≤C

MSEf0(f̄) ≥ sup
f0∈Sm(I)
J(f0)≤C

‖E{f̄} − f0‖22 ≥ C(amn
−2m − 8N−1). (9)

It is easy to check that the above lower bound is strictly slower than the optimal rate
N−2m/(2m+1) if s grows faster than N2m/(2m+1) no matter how λ is chosen. Therefore, we
claim that N2m/(2m+1) is a sharp upper bound of s for obtaining an averaged smoothing
spline estimate.

In the end, we provide a graphical interpretation for our sharp bound result. Let s = Na

for 0 ≤ a ≤ 1 and λ = N−b for 0 < b < 2m. Define ρ1(a), ρ2(a) and ρ3(a) as

Upper bound of squared bias: N−ρ1(a) � λ+ n−2m +N−1,

Lower bound of squared bias: N−ρ2(a) � max{n−2m −N−1, 0},

Upper bound of variance: N−ρ3(a) � N−1 + (Nh)−1

∫ πnh

0

1

(1 + x2m)2
dx,

based on Theorems 3.1 and 3.2. A direct examination reveals that

ρ1(a) = min{2m(1− a), 1, b}

ρ2(a) =

{
2m(1− a), a > (2m− 1)/(2m)
∞, a ≤ (2m− 1)/(2m)

ρ3(a) = max{a, (2m− b)/(2m)}

Figure 4 displays ρ1, ρ2, ρ3 for λ = N−2m/(2m+1). It can be seen that when a ∈ [0, 2m/(2m+
1)], upper bounds of squared bias and variance maintain at the same optimal rateN−2m/(2m+1),
while the exact bound of squared bias increases above N−2m/(2m+1) when a ∈ (2m/(2m+
1), 1). This explains why transition occurs at the critical point a = 2m/(2m+1) (even when
the upper bound of variance decreases below N−2m/(2m+1) when a ∈ (2m/(2m+ 1), 1)).

It should be mentioned that when λ 6= N−2m/(2m+1), i.e., b 6= 2m/(2m+ 1), suboptimal
estimation almost always occurs. More explicitly, b < 2m/(2m+1) yields ρ1(a) < 2m/(2m+
1) for any 0 ≤ a ≤ 1. While b > 2m/(2m + 1) yields ρ2(a) < 2m/(2m + 1) for any
2m/(2m + 1) < a ≤ 1; yields ρ3(a) < 2m/(2m + 1) for any 0 ≤ a < 2m/(2m + 1). The
only exception is a = 2m/(2m + 1) which yields ρ1 = ρ2 = ρ3 = 2m/(2m + 1) for any
b > 2m/(2m+ 1).

Remark 3.2 As a side remark, we notice that each machine is assigned with n � N1/(2m+1)

samples when s attains its upper bound in the estimation regime. This is very similar as
the local polynomial estimation where approximately N1/(2m+1) local points are used for
obtaining optimal estimation (although we realize that our data is distributed in a global
manner).

Remark 3.3 Under repeated curves with a common design, Cai and Yuan (2011) observed
a similar phase transition phenomenon for the minimax rate of a two-stage estimate, where
the rate transits when the number of sample curves is nearly N2m/(2m+1). This coincides
with our observation for s. However, the common design assumption, upon which their
results crucially rely, clearly does not apply to our divide-and-conquer setup, and our proof
techniques are significantly different. Rather,Theorems 3.1 and 3.2 imply that the results in
Cai and Yuan (2011) may still hold for a non-common design.
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Figure 4: Plots of ρ1(a), ρ2(a), ρ3(a) versus a, indicated by thick solid lines, under λ = N−2m/(2m+1).

ρ1(a), ρ2(a) and ρ3(a) indicate upper bound of squared bias, lower bound of squared bias and

upper bound of variance, respectively. ρ2(a) is plotted only for (2m − 1)/(2m) < a ≤ 1; when

0 ≤ a ≤ (2m− 1)/(2m), ρ2(a) =∞, which is omitted.

4. Minimax Optimal Testing

In this section, we consider nonparametric testing:

H0 : f = 0 v.s. H1 : f ∈ Sm(I)\{0}. (10)

In general, testing f = f0 (for a known f0) is equivalent to testing f∗ ≡ f − f0 = 0. So (10)
has no loss of generality. Inspired by the classical Wald test (Shao (2003)), we propose a
simple test statistic based on the f̄ as

TN,λ := ‖f̄‖22.

We find that testing consistency essentially requires no condition on the number of machines
no matter it is fixed or diverges at any rate. However, our power analysis, which is non-
asymptotically valid, depends on the number of machines in a nontrivial way. Specifically,
we discover that our test method is minimax optimal in the sense of Ingster (Ingster (1993))
when s does not grow faster than N (4m−1)/(4m+1) and λ is chosen optimally (different from
λ∗, though), but it is no longer optimal once s is beyond the above threshold (no matter how
λ is chosen). This is a similar phase transition phenomenon as we observe in the estimation
regime. Again, we notice an optimal choice of λ may not be necessary if the above upper
bound of s is achieved.

In this section, we assume that the model errors εi,j ’s are iid standard normal for
technical convenience. In fact, our results can be generalized to likelihood ratio test without
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assuming Gaussian errors. This extension is possible (technically tedious, though) since
likelihood ratio statistic can be approximated by TN,λ through quadratic expansion; see
Shang and Cheng (2013).

Theorem 4.1 implies the consistency of our proposed test method with the following
testing rule:

φN,λ = I(|TN,λ − µN,λ| ≥ z1−α/2σN,λ),

where µN,λ := EH0{TN,λ}, σ2
N,λ := VarH0{TN,λ} and z1−α/2 is the (1−α/2)×100 percentile

of N(0, 1). The conditions required in Theorem 4.1 are so mild that our proposed testing
is consistent no matter the number of machines is fixed or diverges at any rate.

Theorem 4.1 (Testing Consistency) Suppose that h → 0, n → ∞ when N → ∞, and
limN→∞ nh exists (which could be infinity). Then, we have under H0,

TN,λ − µN,λ
σN,λ

d−→ N(0, 1), as N →∞.

Our next theorem analyzes the non-asymptotic power of TN,λ, in which we pay particular
attention to the impact of s on the separation rate of testing, defined as

dN,λ =
√
λ+ n−2m + σN,λ.

Let B = {f ∈ Sm(I) : J(f) ≤ C} for a positive constant C.

Theorem 4.2 (Upper Bound) Suppose that h→ 0, n→∞ when N →∞, and limN→∞ nh
exists (which could be infinity). Then for any ε > 0, there exist Cε, Nε > 0 s.t. for any
N ≥ Nε,

inf
f∈B

‖f‖2≥CεdN,λ

Pf (φN,λ = 1) ≥ 1− ε. (11)

Under assumptions of Theorem 4.1, it can be shown that (see (55) in Appendix)

σ2
N,λ �

{
n
N2 , if limN→0 nh = 0,
1

N2h
, if limN→∞ nh > 0.

(12)

Given a range of λ leading to limN→∞ nh > 0, we have by (12) that dN,λ =
√
λ+ (Nh1/2)−1.

An optimal choice of λ (satisfying the above requirement) is λ∗∗ := N−4m/(4m+1) since it
leads to the optimal separating rate d∗N,λ := N−2m/(4m+1); see Ingster (1993). Meanwhile,
the constraint limN→∞ nh > 0 (together with the choice of λ∗∗) implies that

s = O(N (4m−1)/(4m+1)). (13)

The above discussions illustrate that we can always choose λ∗∗ to obtain a minimax optimal
testing (just as in the single dataset Shang and Cheng (2013)) as long as s does not grow
faster than N (4m−1)/(4m+1). In the case that limN→∞ nh = 0, the minimax optimality can
be maintained if s � N (4m−1)/(4m+1), h = o(1) and nh = o(1). Such a selection of s gives
us a lot of freedom in choosing λ that needs to satisfy λ = o(λ∗∗). A complete picture in
depicting the relation between s and λ is given in Figure 3.

We further discover in Theorem 4.3 that the upper bound (13) turns out to be sharp.

9
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Theorem 4.3 (Lower Bound) Suppose that s � N (4m−1)/(4m+1), h → 0, n → ∞ when
N → ∞, and limN→∞ nh exists (which could be infinity). Then there exists a positive
sequence βN,λ with limN→∞ βN,λ =∞ s.t.

lim sup
N→∞

inf
f∈B

‖f‖2≥βN,λd∗N,λ

Pf (φN,λ = 1) ≤ α. (14)

Recall that 1− α is the pre-specified significance level.

Theorem 4.3 says that when s� N (4m−1)/(4m+1), the test φN,λ is no longer powerful even
when ‖f‖2 � d∗N,λ. In other words, our test method fails to be optimal. Therefore, we

claim that N (4m−1)/(4m+1) is a sharp upper bound of s to ensure our testing to be minimax
optimal.

Remark 4.1 As a side remark, the existence of limN→∞ nh can be replaced by the following
weaker condition under which the results in Theorems 4.1, 4.2 and 4.3 still hold:

Condition (R) : either lim
N→∞

nh = 0 or inf
N≥1

nh > 0.

Condition (R) aims to exclude irregularly behaved s such as in the following case where s
vibrates too much along with N :

s =

{
N b1 , N is odd,
N b2 , N is even,

(15)

where h � N−c for some c > 0, b1, b2 ∈ [0, 1] satisfy b1 + c ≥ 1 and b2 + c < 1. Clearly,
Condition (R) fails under (15).

5. Discussions

This paper offers “theoretical” suggestions on the allocation of data. In a relatively sim-
ple distributed algorithm, i.e., in m-order periodic splines with evenly spaced design, our
recommendation proceeds as follows:

• Distribute to
s � N2m/(2m+1)

machines for obtaining an optimal estimate;

• Distribute to
s � N (4m−1)/(4m+1)

machines for performing an optimal test.

However, data-dependent formulae are still needed in picking a right number of machines in
practice. This might be possible in light of Figure 3 indicating that sample splitting could
be an alternative form of tuning. As for the choice of λ, we prove that it should be chosen
in the order of N even when each subsample has size n. Hence, a distributed version of
the generalized cross validation method is applied to each sub-sample; see Xu et al. (2017).

10
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Another theoretically interesting direction is how much adaptive estimation (where m is
unknown) can affect the computational limits.
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6. Appendix

Proofs of our results are included in this section.

6.1 Proofs in Section 3

Proof [Proof of Theorem 3.1] We do a bit preliminary analysis before proving (4) and (5).
It follows from Wahba (1990) that (Sm(I), J) is a reproducing kernel Hilbert space with
reproducing kernel function

K(x, y) =
∞∑
ν=1

ϕν(x)ϕν(y)

γν
= 2

∞∑
k=1

cos(2πk(x− y))

(2πk)2m
, x, y ∈ I.

For convenience, define Kx(·) = K(x, ·) for any x ∈ I. It follows from the representer
theorem (Wahba (1990)) that the optimization to problem (3) has a solution

f̂j =
n∑
i=1

ĉi,jKti,j , j = 1, 2, . . . , s, (16)

where ĉj = (ĉ1,j , . . . , ĉn,j)
T = n−1(Σj +λIn)−1Yj , Yj = (Y1,j , . . . , Yn,j)

T , In is n×n identity
matrix, and Σj = [K(ti,j , ti′,j)/n]1≤i,i′≤n. It is easy to see that Σ1 = Σ2 = · · · = Σs. For
convenience, denote Σ = Σ1. Similarly, define

K ′(x, y) =
∞∑
ν=1

ϕν(x)ϕν(y)

γ2
ν

= 2
∞∑
k=1

cos(2πk(x− y))

(2πk)4m
, x, y ∈ I.

For 1 ≤ j ≤ s, let Ωj = [K ′(ti,j , ti′,j)/n]1≤i,i′≤n. It is easy to see that Ω1 = Ω2 = · · · = Ωs.
For convenience, denote Ω = Ω1, and let Φν,j = (ϕν(t1,j), . . . , ϕν(tn,j)).

It is easy to examine that

f̄ =

∞∑
ν=1

∑s
j=1 Φν,j(Σ + λIn)−1Yj

Nγν
ϕν

=

∞∑
ν=1

∑s
j=1 Φν,j(Σ + λIn)−1(f0,j + εj)

Nγν
ϕν , (17)

11
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and

E{f̄} =

∞∑
ν=1

∑s
j=1 Φν,j(Σ + λIn)−1f0,j

Nγν
ϕν , (18)

where f0,j = (f0(t1,j), . . . , f0(tn,j))
T and εj = (ε1,j , . . . , εn,j)

T .
We now look at Σ and Ω. For 0 ≤ l ≤ n− 1, let

cl =
2

n

∞∑
k=1

cos(2πkl/n)

(2πk)2m
,

dl =
2

n

∞∑
k=1

cos(2πkl/n)

(2πk)4m
.

Since cl = cn−l and dl = dn−l for l = 1, 2, . . . , n− 1, Σ and Ω are both symmetric circulant
of order n. Let ε = exp(2π

√
−1/n). Ω and Σ share the same normalized eigenvectors as

xr =
1√
n

(1, εr, ε2r, . . . , ε(n−1)r)T , r = 0, 1, . . . , n− 1.

Let M = (x0, x1, . . . , xn−1). Denote M∗ as the conjugate transpose of M . Clearly, MM∗ =
In and Σ,Ω admits the following decomposition

Σ = MΛcM
∗, Ω = MΛdM

∗, (19)

where Λc = diag(λc,0, λc,1, . . . , λc,n−1) and Λd = diag(λd,0, λd,1, . . . , λd,n−1) with λc,l =
c0 + c1ε

l + . . .+ cn−1ε
(n−1)l and λd,l = d0 + d1ε

l + . . .+ dn−1ε
(n−1)l.

Direct calculations show that

λc,l =

{
2
∑∞

k=1
1

(2πkn)2m
, l = 0,∑∞

k=1
1

[2π(kn−l)]2m +
∑∞

k=0
1

[2π(kn+l)]2m
, 1 ≤ l ≤ n− 1.

(20)

λd,l =

{
2
∑∞

k=1
1

(2πkn)4m
, l = 0,∑∞

k=1
1

[2π(kn−l)]4m +
∑∞

k=0
1

[2π(kn+l)]4m
, 1 ≤ l ≤ n− 1.

(21)

It is easy to examine that

λc,0 = 2c̄m(2πn)−2m, λd,0 = 2d̄m(2πn)−4m, (22)

and for 1 ≤ l ≤ n− 1,

λc,l =
1

[2π(n− l)]2m
+

1

(2πl)2m

+

∞∑
k=2

1

[2π(kn− l)]2m
+

∞∑
k=1

1

[2π(kn+ l)]2m
,

λd,l =
1

[2π(n− l)]4m
+

1

(2πl)4m

+
∞∑
k=2

1

[2π(kn− l)]4m
+
∞∑
k=1

1

[2π(kn+ l)]4m
, (23)

12



COMPUTATIONAL LIMITS OF A DISTRIBUTED ALGORITHM

and for c̄m :=
∑∞

k=1 k
−2m, cm :=

∑∞
k=2 k

−2m, d̄m :=
∑∞

k=1 k
−4m, dm :=

∑∞
k=2 k

−4m,

cm(2πn)−2m ≤
∞∑
k=2

1

[2π(kn− l)]2m
≤ c̄m(2πn)−2m,

cm(2πn)−2m ≤
∞∑
k=1

1

[2π(kn+ l)]2m
≤ c̄m(2πn)−2m,

dm(2πn)−4m ≤
∞∑
k=2

1

[2π(kn− l)]4m
≤ d̄m(2πn)−4m,

dm(2πn)−4m ≤
∞∑
k=1

1

[2π(kn+ l)]4m
≤ d̄m(2πn)−4m.

For simplicity, we denote I = E{‖f̄ − E{f̄}‖22} and II = ‖E{f̄} − f0‖22. Hence,
MSEf0(f̄) = I + II.

Proof of (4)

13
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Using (19) – (23), we get that

I =
∞∑
ν=1

∑s
j=1E{|Φν,j(Σ + λIn)−1εj |2}

N2γ2
ν

=

∞∑
ν=1

∑s
j=1 trace((Σ + λIn)−1ΦT

ν,jΦν,j(Σ + λIn)−1)

N2γ2
ν

=
n

N2

s∑
j=1

trace

(
(Σ + λIn)−1

∞∑
ν=1

ΦT
ν,jΦν,j/n

γ2
ν

(Σ + λIn)−1

)

=
n

N2

s∑
j=1

trace
(
(Σ + λIn)−1Ω(Σ + λIn)−1

)
=

1

N
trace

(
M(Λc + λIn)−1Λd(Λc + λIn)−1M∗

)
=

1

N

n−1∑
l=0

λd,l
(λ+ λc,l)2

≤ 2d̄m
N(2c̄m + (2πn)2mλ)2

+(1 + d̄m)N−1
n−1∑
l=1

(2π(n− l))−4m + (2πl)−4m

(λ+ (2π(n− l))−2m + (2πl)−2m)2

≤ 2d̄m
N(2c̄m + (2πn)2mλ)2

+2(1 + d̄m)N−1
∑

1≤l≤n/2

(2πl)−4m + (2π(n− l))−4m

(λ+ (2πl)−2m + (2π(n− l))−2m)2

≤ 2d̄m
N(2c̄m + (2πn)2mλ)2

+ 4(1 + d̄m)N−1
∑

1≤l≤n/2

(2πl)−4m

(λ+ (2πl)−2m)2

≤ 2d̄m
N(2c̄m + (2πn)2mλ)2

+
2(1 + d̄m)

πNh

∫ πnh

0

1

(1 + x2m)2
dx

≤ bm

(
1

N
+

1

Nh

∫ πnh

0

1

(1 + x2m)2
dx

)
,

where bm ≥ 1 is an absolute constant depending on m only. This proves (4).

Proof of (5)

Throughout, let η = exp(2π
√
−1/N). For 1 ≤ j, l ≤ s, define

Σj,l =
1

n

∞∑
ν=1

ΦT
ν,jΦν,l

γν
,

σj,l,r =
2

n

∞∑
k=1

cos
(

2πk
(
r
n −

j−l
N

))
(2πk)2m

, r = 0, 1, . . . , n− 1.

14
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It can be shown that Σj,l is a circulant matrix with elements σj,l,0, σj,l,1, . . . , σj,l,n−1, there-
fore, by Brockwell and Davis (1987) we get that

Σj,l = MΛj,lM
∗, (24)

where M is the same as in (19), and Λj,l = diag(λj,l,0, λj,l,1, . . . , λj,l,n−1), with λj,l,r, for
r = 1, . . . , n− 1, given by the following

λj,l,r =
n−1∑
t=0

σj,l,tε
rt

=
2

n

n−1∑
t=0

∞∑
k=1

cos
(

2πk
(
t
n −

j−l
N

))
(2πk)2m

εrt

=
1

n

∞∑
k=1

η−k(j−l)∑n−1
t=0 ε

(k+r)t + ηk(j−l)∑n−1
t=0 ε

(r−k)t

(2πk)2m

=
∞∑
q=1

η−(qn−r)(j−l)

[2π(qn− r)]2m
+
∞∑
q=0

η(qn+r)(j−l)

[2π(qn+ r)]2m
, (25)

and for r = 0, given by

λj,l,0 =
n−1∑
t=0

σj,l,t

=
1

n

∞∑
k=1

∑n−1
t=0 ε

ktηk(j−l) +
∑n−1

t=0 ε
−ktη−k(j−l)

(2πk)2m

=
∞∑
q=1

ηqn(j−l) + η−qn(j−l)

(2πqn)2m
. (26)

For p ≥ 0, 1 ≤ v ≤ n, 0 ≤ r ≤ n− 1 and 1 ≤ j ≤ s, define

Ap,v,r,j =
1

s

s∑
l=1

λj,l,rx
∗
rΦ

T
2(pn+v)−1,l, Bp,v,r,j =

1

s

s∑
l=1

λj,l,rx
∗
rΦ

T
2(pn+v),l.

By direct calculation, we have for 1 ≤ v ≤ n− 1,

Φ2(pn+v)−1,lxr =
√
n/2

(
η(pn+v)(l−1)I(r + v = n) + η−(pn+v)(l−1)I(v = r)

)
,

Φ2(pn+v),lxr =
√
−n/2

(
η(pn+v)(l−1)I(r + v = n)− η−(pn+v)(l−1)I(v = r)

)
,

(27)

and

Φ2(pn+n)−1,lxr =
√
n/2I(r = 0)

(
η(p+1)n(l−1) + η−(p+1)n(l−1)

)
,

Φ2(pn+n),lxr =
√
−n/2I(r = 0)

(
η(p+1)n(l−1) − η−(p+1)n(l−1)

)
. (28)

15
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Let I(·) be an indicator function. Then we have for p ≥ 0, 1 ≤ j ≤ s and 1 ≤ v, r ≤ n−1,

Bp,v,r,j =
1

s

s∑
l=1

λj,l,rx
∗
rΦ

T
2(pn+v),l

= −1

s

√
−n/2

s∑
l=1

 ∞∑
q=1

η−(qn−r)(j−l)

[2π(qn− r)]2m
+
∞∑
q=0

η(qn+r)(j−l)

[2π(qn+ r)]2m


×
(
η−(pn+v)(l−1)I(r + v = n)− η(pn+v)(l−1)I(r = v)

)
= −

√
−n/2

 ∑
u≥−p/s

η−(pn+v)(j−1)

[2π(uN + pn+ v)]2m
I(r + v = n)

−
∑

u≥(p+1)/s

η(pn+v)(j−1)

[2π(uN − pn− v)]2m
I(r = v)

+
∑

u≥(p+1)/s

η−(pn+v)(j−1)

[2π(uN − pn− v)]2m
I(r + v = n)

−
∑

u≥−p/s

η(pn+v)(j−1)

[2π(uN + pn+ v)]2m
I(r = v)

 = ap,vx
∗
rΦ

T
2(pn+v),j , (29)

where ap,v =
∑

u≥−p/s
1

[2π(uN+pn+v)]2m
+
∑

u≥(p+1)/s
1

[2π(uN−pn−v)]2m
, for p ≥ 0, 1 ≤ v ≤

n− 1.

For v = n, similar calculations give that

Bp,n,r,j = −
√
−n/2I(r = 0)

 ∑
u≥−p/s

η−(pn+n)(j−1)

[2π(uN + pn+ n)]2m

−
∑

u≥(p+2)/s

η(pn+n)(j−1)

[2π(uN − pn− n)]2m

+
∑

u≥(p+2)/s

η−(pn+n)(j−1)

[2π(uN − pn− n)]2m
−

∑
u≥−p/s

η(pn+n)(j−1)

[2π(uN + pn+ n)]2m


= ap,nx

∗
rΦ

T
2(pn+n),j , (30)

where ap,n =
∑

u≥−p/s
1

[2π(uN+pn+n)]2m
+
∑

u≥(p+2)/s
1

[2π(uN−pn−n)]2m
, for p ≥ 0.

16
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Similarly, we have p ≥ 0, 1 ≤ j ≤ s and 1 ≤ v, r ≤ n− 1,

Ap,v,r,j =
√
n/2

 ∑
u≥−p/s

η−(pn+v)(j−1)

[2π(uN + pn+ v)]2m
I(r + v = n)

+
∑

u≥(p+1)/s

η(pn+v)(j−1)

[2π(uN − pn− v)]2m
I(r = v)

+
∑

u≥(p+1)/s

η−(pn+v)(j−1)

[2π(uN − pn− v)]2m
I(r + v = n)

+
∑

u≥−p/s

η(pn+v)(j−1)

[2π(uN + pn+ v)]2m
I(r = v)

 = ap,vx
∗
rΦ

T
2(pn+v)−1,j , (31)

and for v = n,

Ap,n,r,j =
√
n/2I(r = 0)

 ∑
u≥−p/s

η−(pn+n)(j−1)

[2π(uN + pn+ n)]2m

+
∑

u≥(p+2)/s

η(pn+n)(j−1)

[2π(uN − pn− n)]2m
+

∑
u≥(p+2)/s

η−(pn+n)(j−1)

[2π(uN − pn− n)]2m

+
∑

u≥−p/s

η(pn+n)(j−1)

[2π(uN + pn+ n)]2m

 = ap,nx
∗
rΦ

T
2(pn+n)−1,j . (32)

It is easy to check that both (29) and (31) hold for r = 0. Summarizing (29)–(32), we have
that for p ≥ 0, 1 ≤ j ≤ s, 1 ≤ v ≤ n and 0 ≤ r ≤ n− 1,

Ap,v,r,j = ap,vx
∗
rΦ

T
2(pn+v)−1,j ,

Bp,v,r,j = ap,vx
∗
rΦ

T
2(pn+v),j . (33)

To show (5), let f̄ j = (E{f̄(t1,j)}, . . . , E{f̄(tn,j)})T , for 1 ≤ j ≤ s. It follows by (18)
that

f̄ j =

∞∑
ν=1

∑s
l=1 Φν,l(Σ + λIn)−1f0,l

Nγν
ΦT
ν,j

=
1

s

s∑
l=1

(
1

n

∞∑
ν=1

ΦT
ν,jΦν,l

γν

)
(Σ + λIn)−1f0,l

=
1

s

s∑
l=1

Σj,l(Σ + λIn)−1f0,l

=
1

s

s∑
l=1

MΛj,l(Λc + λIn)−1M∗f0,l,

17
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together with (33), leading to that

M∗f̄ j =
1

s

s∑
l=1

Λj,l(Λc + λIn)−1M∗f0,l

=
∞∑
µ=1

f0
µ


1
s

∑s
l=1 λj,l,0x

∗
0ΦTµ,l

λ+λc,0
...

1
s

∑s
l=1 λj,l,n−1x

∗
n−1ΦTµ,l

λ+λc,n−1



=
∞∑
p=0

n∑
v=1

f0
2(pn+v)−1


1
s

∑s
l=1 λj,l,0x

∗
0ΦT

2(pn+v)−1,l

λ+λc,0
...

1
s

∑s
l=1 λj,l,n−1x

∗
n−1ΦT

2(pn+v)−1,l

λ+λc,n−1



+
∞∑
p=0

n∑
v=1

f0
2(pn+v)


1
s

∑s
l=1 λj,l,0x

∗
0ΦT

2(pn+v),l

λ+λc,0
...

1
s

∑s
l=1 λj,l,n−1x

∗
n−1ΦT

2(pn+v),l

λ+λc,n−1



=
∞∑
p=0

n∑
v=1

f0
2(pn+v)−1


Ap,v,0,j
λ+λc,0

...
Ap,v,n−1,j

λ+λc,n−1

+
∞∑
p=0

n∑
v=1

f0
2(pn+v)


Bp,v,0,j
λ+λc,0

...
Bp,v,n−1,j

λ+λc,n−1



=
∞∑
p=0

n∑
v=1

f0
2(pn+v)−1


ap,v

λ+λc,0
x∗0ΦT

2(pn+v)−1,j
...

ap,v
λ+λc,n−1

x∗n−1ΦT
2(pn+v)−1,j



+
∞∑
p=0

n∑
v=1

f0
2(pn+v)


ap,v

λ+λc,0
x∗0ΦT

2(pn+v),j
...

ap,v
λ+λc,n−1

x∗n−1ΦT
2(pn+v),j

 .

On the other hand,

M∗f0,j =

∞∑
µ=1

f0
µM

∗ΦT
µ,j

=

∞∑
p=0

n∑
v=1

f0
2(pn+v)−1M

∗ΦT
2(pn+v)−1,j +

∞∑
p=0

n∑
v=1

f0
2(pn+v)M

∗ΦT
2(pn+v),j

=
∞∑
p=0

n∑
v=1

f0
2(pn+v)−1

 x∗0ΦT
2(pn+v)−1,j

...
x∗n−1ΦT

2(pn+v)−1,j

+

∞∑
p=0

n∑
v=1

f0
2(pn+v)

 x∗0ΦT
2(pn+v),j

...
x∗n−1ΦT

2(pn+v),j

 .
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Therefore,

M∗(f̄ j − f0,j) =
∞∑
p=0

n∑
v=1

f0
2(pn+v)−1

 bp,v,0x
∗
0ΦT

2(pn+v)−1,j
...

bp,v,n−1x
∗
n−1ΦT

2(pn+v)−1,j



+
∞∑
p=0

n∑
v=1

f0
2(pn+v)

 bp,v,0x
∗
0ΦT

2(pn+v),j
...

bp,v,n−1x
∗
n−1ΦT

2(pn+v),j

 , (34)

where bp,v,r =
ap,v

λ+λc,r
− 1, for p ≥ 0, 1 ≤ v ≤ n and 0 ≤ r ≤ n− 1.

It holds the trivial observation bks+g,v,r = bg,v,r for k ≥ 0, 0 ≤ g ≤ s − 1, 1 ≤ v ≤ n
and 0 ≤ r ≤ n − 1. Define Cg,r =

∑∞
k=0(f0

2(kN+gn+n−r)−1 −
√
−1f0

2(kN+gn+n−r)) and

Dg,r =
∑∞

k=0(f0
2(kN+gn+r)−1 +

√
−1f0

2(kN+gn+r)), for 0 ≤ g ≤ s− 1 and 0 ≤ r ≤ n− 1. Also

denote Cg,r and Dg,r as their conjugate. By (27) and (28), and direct calculations we get
that, for 1 ≤ j ≤ s and 1 ≤ r ≤ n− 1,

δj,r ≡
∞∑
p=0

(
n∑
v=1

f0
2(pn+v)−1bp,v,rx

∗
rΦ

T
2(pn+v)−1,j +

n∑
v=1

f0
2(pn+v)bp,v,rx

∗
rΦ

T
2(pn+v),j

)

=

√
n

2

∞∑
p=0

[
(f0

2(pn+n−r)−1 −
√
−1f0

2(pn+n−r))bp,n−r,rη
−(pn+n−r)(j−1)

+(f0
2(pn+r)−1 +

√
−1f0

2(pn+r))bp,r,rη
(pn+r)(j−1)

]
, (35)

leading to that
s∑
j=1

|δj,r|2 =
n

2

s∑
j=1

∣∣∣∣ ∞∑
p=0

[
(f0

2(pn+n−r)−1 −
√
−1f0

2(pn+n−r))bp,n−r,rη
−(pn+n−r)(j−1)

+(f0
2(pn+r)−1 +

√
−1f0

2(pn+r))bp,r,rη
(pn+r)(j−1)

] ∣∣∣∣2
=

n

2

s∑
j=1

∣∣∣∣ s−1∑
g=0

(
Cg,rbg,n−r,rη

−(gn+n−r)(j−1) +Dg,rbg,r,rη
(gn+r)(j−1)

) ∣∣∣∣2

=
n

2

s−1∑
g,g′=0

s∑
j=1

(Cg,rbg,n−r,rη
−(gn+n−r)(j−1) +Dg,rbg,r,rη

(gn+r)(j−1))

×(Cg′,rbg′,n−r,rη
(g′n+n−r)(j−1) +Dg′,rbg′,r,rη

−(g′n+r)(j−1))

=
N

2

s−1∑
g=0

(|Cg,r|2b2g,n−r,r + Cg,rDs−1−g,rbg,n−r,rbs−1−g,r,r

+Dg,rCs−1−g,rbg,r,rbs−1−g,n−r,r + |Dg,r|2b2g,r,r)

=
N

2

s−1∑
g=0

|Cg,rbg,n−r,r +Ds−1−g,rbs−1−g,r,r|2 (36)

≤ N

s−1∑
g=0

(|Cg,r|2b2g,n−r,r + |Ds−1−g,r|2b2s−1−g,r,r)

= N

s−1∑
g=0

(|Cg,r|2b2g,n−r,r + |Dg,r|2b2g,r,r).
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It is easy to see that for 0 ≤ g ≤ s− 1 and 1 ≤ r ≤ n− 1,

|Cg,r|2 = (
∞∑
k=0

f0
2(kN+gn+n−r)−1)2 + (

∞∑
k=0

f0
2(kN+gn+n−r))

2

≤
∞∑
k=0

(|f0
2(kN+gn+n−r)−1|

2 + |f0
2(kN+gn+n−r)|

2)(kN + gn+ n− r)2m

×
∞∑
k=0

(kN + gn+ n− r)−2m

≤
∞∑
k=0

(|f0
2(kN+gn+n−r)−1|

2 + |f0
2(kN+gn+n−r)|

2)(kN + gn+ n− r)2m

× 2m

2m− 1
(gn+ n− r)−2m, (37)

and

|Dg,r|2 ≤
∞∑
k=0

(|f0
2(kN+gn+r)|

2 + |f0
2(kN+gn+r)−1|

2)(kN + gn+ r)2m

× 2m

2m− 1
(gn+ r)−2m. (38)

For 1 ≤ g ≤ s−1, we have ag,n−r ≤ λc,r, which further leads to |bg,n−r,r| ≤ 2. Meanwhile,
by (20), we have

0 ≤ λc,r − a0,r ≤ (2π(n− r))−2m + 2c̄m(2πn)−2m ≤ (1 + 2c̄m)(2π(n− r))−2m.

Then we have

|b0,r,r| =
λ+ λc,r − a0,r

λ+ λc,r

≤ λ+ (1 + 2c̄m)(2π(n− r))−2m

λ+ (2πr)−2m + (2π(n− r))−2m

≤ (1 + 2c̄m)
λ+ (2π(n− r))−2m

λ+ (2πr)−2m + (2π(n− r))−2m
,

leading to

r−2mb20,r,r ≤ r−2m(1 + 2c̄m)2

(
λ+ (2π(n− r))−2m

λ+ (2π(n− r))−2m + (2πr)−2m

)2

≤ r−2m(1 + 2c̄m)2

(
λ+ (2π(n− r))−2m

λ+ (2π(n− r))−2m + (2πr)−2m

)
≤ (2π)2m(1 + 2c̄m)2(λ+ (πn)−2m). (39)

The last inequality can be proved in two different cases: 2r ≤ n and 2r > n. Similarly, it
can be shown that (n− r)−2mb20,n−r,r ≤ (2π)2m(1 + 2c̄m)2(λ+ (πn)−2m).
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Then we have by (37)–(39) that

n−1∑
r=1

s−1∑
g=0

|Dg,r|2b2g,r,r ≤
n−1∑
r=1

s−1∑
g=1

∞∑
k=0

(|f0
2(kN+gn+r)|

2 + |f0
2(kN+gn+r)−1|

2)(kN + gn+ r)2m

× 2m

2m− 1
(gn+ r)−2m22 +

n−1∑
r=1

∞∑
k=0

(|f0
2(kN+r)|

2 + |f0
2(kN+r)−1|

2)(kN + r)2m

× 2m

2m− 1
r−2mb20,r,r

≤ c′m(λ+ n−2m)

n−1∑
r=1

s−1∑
g=0

∞∑
k=0

(|f0
2(kN+gn+r)|

2 + |f0
2(kN+gn+r)−1|

2)

×(2π(kN + gn+ r))2m, (40)

where c′m = max{(2π)−2m 8m
2m−1 , (1 + 2c̄m)2 2m

2m−1}. Similarly, one can show that

n−1∑
r=1

s−1∑
g=0

|Cg,r|2b2g,n−r,r ≤ c′m(λ+ n−2m)
n−1∑
r=1

s−1∑
g=0

∞∑
k=0

(|f0
2(kN+gn+r)|

2 + |f0
2(kN+gn+r)−1|

2)

×(2π(kN + gn+ r))2m. (41)

Combining (40) and (41) we get that

n−1∑
r=1

s∑
j=1

|δj,r|2 ≤ 2c′m(λ+ n−2m)N

n−1∑
r=1

s−1∑
g=0

∞∑
k=0

(|f0
2(kN+gn+r)|

2 + |f0
2(kN+gn+r)−1|

2)

×(2π(kN + gn+ r))2m. (42)

To the end of proof of (5), by (34) we have for 1 ≤ j ≤ s,

δj,0 ≡
∞∑
p=0

(
n∑
v=1

f0
2(pn+v)−1bp,v,0x

∗
0ΦT

2(pn+v)−1,j +
n∑
v=1

f0
2(pn+v)bp,v,0x

∗
0ΦT

2(pn+v),j

)

=

∞∑
p=0

(
f0

2(pn+n)−1bp,n,0x
∗
0ΦT

2(pn+n)−1,j + f0
2(pn+n)bp,n,0x

∗
0ΦT

2(pn+n),j

)
=

√
n

2

∞∑
p=0

[
(f0

2(pn+n)−1 −
√
−1f0

2(pn+n))bp,n,0η
−(p+1)n(j−1)

+(f0
2(pn+n)−1 +

√
−1f0

2(pn+n))bp,n,0η
(p+1)n(j−1)

]
=

√
n

2

s−1∑
g=0

[ ∞∑
k=0

(f0
2(kN+gn+n)−1 −

√
−1f0

2(kN+gn+n))bg,n,0η
−(gn+n)(j−1)

+
∞∑
k=0

(f0
2(kN+gn+n)−1 +

√
−1f0

2(kN+gn+n))bg,n,0η
(gn+n)(j−1)

]

=

√
n

2

s−1∑
g=0

[
Cg,0bg,n,0η

−(gn+n)(j−1) +Dg,nbg,n,0η
(gn+n)(j−1)

]
, (43)
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which, together with Cauchy-Schwartz inequality, (37)–(38), and the trivial fact |bg,n,0| ≤ 2
for 0 ≤ g ≤ s− 1, leads to

s∑
j=1

|δj,0|2 ≤ n
s∑
j=1

∣∣ s−1∑
g=0

Cg,0bg,n,0η
−(gn+n)(j−1)

∣∣2 + n
s∑
j=1

∣∣ s−1∑
g=0

Dg,nbg,n,0η
(gn+n)(j−1)

∣∣2
= N

s−1∑
g=0

|Cg,0|2b2g,n,0 +
s−1∑
g=0

|Dg,n|2b2g,n,0


≤ 2c′mn

−2mN
s−1∑
g=0

∞∑
k=0

(|f0
2(kN+gn+n)−1|

2 + |f0
2(kN+gn+n)|

2)× (2π(kN + gn+ n))2m.

(44)

Combining (42) and (44) we get that

s∑
j=1

n∑
i=1

(E{f̄}(ti,j)− f0(ti,j))
2 =

n−1∑
r=0

s−1∑
g=0

|δj,r|2

≤ 2c′m(λ+ n−2m)N
n∑
i=1

s−1∑
g=0

∞∑
k=0

(|f0
2(kN+gn+i)|

2 + |f0
2(kN+gn+i)−1|

2)

×(2π(kN + gn+ i))2m = 2c′m(λ+ n−2m)NJ(f0). (45)

Next we will apply (45) to show (5). Since f̂j is the minimizer of `j,n,λ(f), it satisfies
for 1 ≤ j ≤ s,

− 1

n

n∑
i=1

(Yi,j − f̂j(ti,j))Kti,j + λf̂j = 0.

Taking expectations, we get that

1

n

n∑
i=1

(E{f̂j}(ti,j)− f0(ti,j))Kti,j + λE{f̂j},

therefore, E{f̂j} is the minimizer to the following functional

`0j(f) =
1

2n

n∑
i=1

(f(ti,j)− f0(ti,j))
2 +

λ

2
J(f).

Define gj = E{f̂j}. Since `0j(gj) ≤ `0j(f0), we get

1

2n

n∑
i=1

(gj(ti,j)− f0(ti,j))
2 +

λ

2
J(gj) ≤

λ

2
J(f0).

This means that J(gj) ≤ J(f0), leading to

‖1

s

s∑
j=1

g
(m)
j ‖2 ≤

1

s

s∑
j=1

‖g(m)
j ‖2 ≤

√
J(f0). (46)
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Note that E{f̄} = 1
s

∑s
j=1 gj . Define g(t) = (E{f̄}(t) − f0(t))2. By (Eggermont and

LaRiccia, 2009, Lemma (2.24), pp. 58), (46) and m ≥ 1 we get that

∣∣∣∣ 1

N

N−1∑
l=0

g(l/N)−
∫ 1

0
g(t)dt

∣∣∣∣ ≤ 2

N

∫ 1

0

∣∣1
s

s∑
j=1

gj(t)− f0(t)
∣∣× ∣∣1

s

s∑
j=1

g′j(t)− f ′0(t)
∣∣dt

≤ 2

N
‖1

s

s∑
j=1

gj − f0‖2 × ‖
1

s

s∑
j=1

g′j − f ′0‖2

≤ 2

N
‖1

s

s∑
j=1

g
(m)
j − f (m)

0 ‖22 ≤
8J(f0)

N
. (47)

Combining (45) and (47) we get that

‖E{f̄} − f0‖22 ≤ c2
mJ(f0)(λ+ n−2m +N−1),

where c2
m = max{8, 2c′m}. This completes the proof of (5).

Proof [Proof of Theorem 3.2] Suppose f0 =
∑∞

ν=1 f
0
νϕν with f0

ν satisfying

|f0
ν |2 =

{
Cn−1(2π(n+ r))−2m, ν = 2(n+ r)− 1, 1 ≤ r ≤ n/2,

0, otherwise.
(48)

It is easy to see that J(f0) =
∑

1≤r≤n/2 |f0
2(n+r)−1|

2(2π(n+ r))2m ≤ C.

Consider the decomposition (34) and let δj,r be defined as in (35) and (43). It can
be easily checked that Cg,r = 0 for 1 ≤ r ≤ n/2 and 0 ≤ g ≤ s − 1. Furthermore, for
1 ≤ r ≤ n/2,

λc,r − a1,r =

∞∑
u=0

(2π(un+ r))−2m +

∞∑
u=1

(2π(un− r))−2m −
∞∑
u=0

(2π(uN + n+ r))−2m

−
∞∑
u=1

(2π(uN − n− r))−2m ≥ (2πr)−2m.

Therefore,

b21,r,r =

(
λ+ λc,r − a1,r

λ+ λc,r

)2

≥
(

λ+ (2πr)−2m

λ+ 2(1 + c̄m)(2πr)−2m

)2

≥ 1

4(1 + c̄m)2
. (49)
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Using (36) and (49), we have

s∑
j=1

(f̄ j − f0,j)
T (f̄ j − f0,j) =

s∑
j=1

n−1∑
r=0

|δj,r|2

≥
∑

1≤r≤n/2

s∑
j=1

|δj,r|2

=
∑

1≤r≤n/2

N

2

s−1∑
g=0

|Cg,rbg,n−r,r +Ds−1−g,rbs−1−g,r,r|2

=
∑

1≤r≤n/2

N

2

s−1∑
g=0

|Ds−1−g,r|2b2s−1−g,r,r

=
∑

1≤r≤n/2

N

2

s−1∑
g=0

|Dg,r|2b2g,r,r

≥
∑

1≤r≤n/2

N

2
|D1,r|2b21,r,r

≥ N

8(1 + c̄m)2

∑
1≤r≤n/2

|f0
2(n+r)−1|

2

≥ NC

16(3π)2m(1 + c̄m)2
n−2m ≡ amNCn−2m,

where am = 1
16(3π)2m(1+c̄m)2

< 1 is an absolute constant depending on m only. Then the

conclusion follows by (47). Proof is completed.

6.2 Proofs in Section 4

Proof [Proof of Theorem 4.1] For 1 ≤ j, l ≤ s, define

Ωj,l =
1

n

∞∑
ν=1

ΦT
ν,jΦν,l

γ2
ν

,

σ̃j,l,r =
2

n

∞∑
k=1

cos
(

2πk
(
r
n −

j−l
N

))
(2πk)4m

, r = 0, 1, . . . , n− 1.

Clearly Ωj,l is a circulant matrix with elements σ̃j,l,0, σ̃j,l,1, . . . , σ̃j,l,n−1. Furthermore, by
arguments (24)–(26) we get that

Ωj,l = MΓj,lM
∗, (50)

where M is the same as in (19), and Γj,l = diag(δj,l,0, δj,l,1, . . . , δj,l,n−1), with δj,l,r, for
r = 1, . . . , n− 1, given by the following

δj,l,r =

∞∑
q=1

η−(qn−r)(j−l)

[2π(qn− r)]4m
+
∞∑
q=0

η(qn+r)(j−l)

[2π(qn+ r)]4m
, (51)
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and for r = 0, given by

δj,l,0 =
∞∑
q=1

ηqn(j−l) + η−qn(j−l)

(2πqn)4m
. (52)

Define A = diag((Σ + λIn)−1, . . . , (Σ + λIn)−1︸ ︷︷ ︸
s

) and

B =


Ω1,1 Ω1,2 · · · Ω1,s

Ω2,1 Ω2,2 · · · Ω2,s

· · · · · · · · · · · ·
Ωs,1 Ωs,2 · · · Ωs,s

 .

Note that B is N ×N symmetric. Under H0, it can be shown that

‖f̄‖22 =

∞∑
ν=1

(∑s
l=1 Φν,l(Σ + λIn)−1εl

Nγ2
ν

)2

=
1

Ns

s∑
j,l=1

εTj (Σ + λIn)−1

(
1

n

∞∑
ν=1

ΦT
ν,jΦν,l

γ2
ν

)
(Σ + λIn)−1εl

=
1

Ns

s∑
j,l=1

εTj (Σ + λIn)−1Ωj,l(Σ + λIn)−1εl

=
1

Ns
εTABAε =

1

Ns
εT∆ε,

where ε = (εT1 , . . . , ε
T
s )T and ∆ ≡ ABA.

This implies that TN,λ = εT∆ε/(Ns) with µN,λ = trace(∆)/(Ns) and σ2
N,λ = 2trace(∆2)/(Ns)2.

Define U = (TN,λ − µN,λ)/σN,λ. Then for any t ∈ (−1/2, 1/2),

logE{exp(tU)} = logE{exp(tεT∆ε/(NsσN,λ))} − tµN,λ/σN,λ

= −1

2
log det(IN − 2t∆/(NsσN,λ))− tµN,λ/σN,λ

= ttrace(∆)/(NsσN,λ) + t2trace(∆2)/((Ns)2σ2
N,λ)

+O(t3trace(∆3)/((Ns)3σ3
N,λ))− tµN,λ/σN,λ

= t2/2 +O(t3trace(∆3)/((Ns)3σ3
N,λ)).

It remains to show that trace(∆3)/((Ns)3σ3
N,λ) = o(1) in order to conclude the proof.

In other words, we need to study trace(∆2) (used in σ2
N,λ) and trace(∆3). We start from

the former. By direct calculations, we get

trace(∆2) = trace(A2BA2B)

=

s∑
l=1

trace

 s∑
j=1

M(Λc + λIn)−2Γl,j(Λc + λIn)−2Γj,lM
∗


=

s∑
j,l=1

trace
(
(Λc + λIn)−2Γl,j(Λc + λIn)−2Γj,l

)
=

s∑
j,l=1

n−1∑
r=0

|δj,l,r|2

(λ+ λc,r)4
.
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For 1 ≤ g ≤ s and 0 ≤ r ≤ n− 1, define

Ag,r =
∞∑
p=0

1

[2π(pN + gn− r)]4m
.

Using (51) and (52), it can be shown that for r = 1, 2, . . . , n− 1,

s∑
j,l=1

|δj,l,r|2 =

s∑
j,l=1

∣∣∣∣ s∑
g=1

Ag,rη
−gn(j−l) +

s∑
g=1

Ag,n−rη
(g−1)n(j−l)

∣∣∣∣2

=
s∑

j,l=1

 s∑
g,g′=1

Ag,rAg′,rη
−(g−g′)n(j−l) +

s∑
g,g′=1

Ag,n−rAg′,n−rη
(g−g′)n(j−l)

+

s∑
g,g′=1

Ag,rAg′,n−rη
−(g+g′−1)n(j−l) +

s∑
g,g′=1

Ag,n−rAg′,rη
(g+g′−1)n(j−l)


= s2

s∑
g=1

A2
g,r + s2

s∑
g=1

A2
g,n−r + 2s2

s∑
g=1

Ag,rAs+1−g,n−r

≥ s2
s∑

g=1

A2
g,r + s2

s∑
g=1

A2
g,n−r. (53)

Since
s∑

g=1

A2
g,r =

s∑
g=1

 ∞∑
p=0

1

[2π(pN + gn− r)]4m

2

≥ 1

[2π(n− r)]8m
, (54)

we get that

trace(∆2) ≥
n−1∑
r=1

s2(
∑s

g=1A
2
g,r +

∑s
g=1A

2
g,n−r)

(λ+ λc,r)4

≥ s2
n−1∑
r=1

1
[2π(n−r)]8m + 1

(2πr)8m

(λ+ λc,r)4

≥ 2s2

(2 + 2c̄m)4

∑
1≤r≤n/2

1
(2πr)8m

(λ+ 1
(2πr)2m

)4

=
s2

8(1 + c̄m)4

∑
1≤r≤n/2

1

(1 + (2πrh)2m)4

≥ s2

8(1 + c̄m)4
h−1

∫ nh/2

h

1

(1 + (2πx)2m)4
dx.

Meanwhile, (53) indicates that for 1 ≤ r ≤ n− 1,

s∑
j,l=1

|δj,l,r|2 ≤ 2s2
s∑

g=1

A2
g,r + 2s2

s∑
g=1

A2
g,n−r.
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From (54) we get that for 1 ≤ r ≤ n− 1,

s∑
g=1

A2
g,r ≤

cm
(2π(n− r))8m

,

where cm > 0 is a constant depending on m only.

Similar analysis to (53) shows that

s∑
j,l=1

|δj,l,0|2 =
s∑

j,l=1

∣∣∣∣ s∑
g=1

Ag,0(ηgn(j−l) + η−gn(j−l))

∣∣∣∣2

= 2s2
s∑

g=1

A2
g,0 + 2s2

s−1∑
g=1

Ag,0As−g,0 + 2s2A2
s,0

≤ 4s2
s∑

g=1

A2
g,0 ≤ cms2(2πn)−8m.

Therefore,

trace(∆2) ≤
4s2
∑s

g=1A
2
g,0

(λ+ λc,0)4
+ 2s2

n−1∑
r=1

∑s
g=1A

2
g,r +

∑s
g=1A

2
g,n−r

(λ+ λc,r)4

≤ 4cms
2

n∑
r=1

1

(1 + (2πrh)2m)4

≤ 4cms
2h−1

∫ nh

0

1

(1 + (2πx)2m)4
dx.

By the above statements, we get that

σ2
N,λ = 2trace(∆2)/(Ns)2 �

{
n
N2 , if nh→ 0,
1

N2h
, if limN nh > 0.

(55)

To the end, we look at the trace of ∆3. By direct examinations, we have

trace(∆3) = trace(ABA2BA2BA)

=

s∑
j,k=1

trace

(
[

s∑
l=1

M(Λc + λIn)−2Γj,l(Λc + λIn)−2Γl,kM
∗]

×M(Λc + λIn)−2Γk,jM
∗)

=
s∑

j,k,l=1

trace
(
(Λc + λIn)−2Γj,l(Λc + λIn)−2Γl,k(Λc + λIn)−2Γk,j

)
=

s∑
j,k,l=1

n−1∑
r=0

δj,l,rδl,k,rδk,j,r
(λ+ λc,r)6

.
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For r = 1, 2, . . . , n− 1, it can be shown that

δj,l,rδl,k,rδk,j,r =

 ∞∑
q=1

η−qn(j−l)

(2π(qn− r))4m
+

∞∑
q=0

ηqn(j−l)

(2π(qn+ r))4m


×

 ∞∑
q=1

η−qn(l−k)

(2π(qn− r))4m
+

∞∑
q=0

ηqn(l−k)

(2π(qn+ r))4m


×

 ∞∑
q=1

η−qn(k−j)

(2π(qn− r))4m
+
∞∑
q=0

ηqn(k−j)

(2π(qn+ r))4m

 . (56)

We next proceed to show that for 1 ≤ r ≤ n− 1,

s∑
l,j,k=1

δj,l,rδl,k,rδk,j,r ≤
96m

12m− 1

(
4m

4m− 1

)3

s3

(
1

(2π(n− r))12m
+

1

(2πr)12m

)
. (57)

Using the trivial fact that Ag,r ≤ 4m
4m−1 ×

1
(2π(gn−r))4m , the first term in (56) satisfies

s∑
j,l,k=1

∞∑
q1=1

η−q1n(j−l)

(2π(q1n− r))4m

∞∑
q2=1

η−q2n(j−l)

(2π(q2n− r))4m

∞∑
q3=1

η−q3n(j−l)

(2π(q3n− r))4m

=
s∑

j,l,k=1

s∑
g1=1

Ag1,rη
−g1n(j−l)

s∑
g2=1

Ag2,rη
−g2n(l−k)

s∑
g3=1

Ag3,rη
−g3n(k−j)

=

s∑
g1,g2,g3=1

Ag1,rAg2,rAg3,r

s∑
j,l,k=1

η−g1n(j−l)η−g2n(l−k)η−g3n(k−j)

=
s∑

g1,g2,g3=1

Ag1,rAg2,rAg3,r

s∑
j=1

η(g3−g1)n(j−1)
s∑
l=1

η(g1−g2)n(l−1)
s∑

k=1

η(g2−g3)n(k−1)

= s3
s∑

g=1

A3
g,r

≤
(

4m

4m− 1

)3

s3
s∑

g=1

1

(2π(gn− r))12m

≤ 12m

12m− 1

(
4m

4m− 1

)3

s3 1

(2π(n− r))12m
.

Similarly, one can show that all other terms in (56) are upper bounded by

12m

12m− 1

(
4m

4m− 1

)3

s3

(
1

(2π(n− r))12m
+

1

(2πr)12m

)
.

Therefore, (57) holds. It can also be shown by (52) and similar analysis that

s∑
j,l,k=1

δj,l,0δl,k,0δk,j,0 ≤ s3(2πn)−12m. (58)
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Using (57) and (58), one can get that

trace(∆3) =
s∑

l,j,k=1

n−1∑
r=0

δj,l,rδl,k,rδk,j,r
(λ+ λc,r)6

. s3
n−1∑
r=1

1
(2π(n−r))12m + 1

(2πr)12m

(λ+ λc,r)
+ s3

1
(2πn)12m

(λ+ λc,0)12m

. s3
n∑
r=1

1

(1 + (2πrh)2m)6

. s3h−1

∫ nh

0

1

(1 + (2πx)2m)6
dx �

{
s3n, if nh→ 0,
s3h−1, if limN nh > 0.

(59)

Combining (55) and (59), and using the assumptions n→∞, h→ 0, we get that

trace(∆3)/((Ns)3σ3
N,λ) .

{
n−1/2, if nh→ 0,

h1/2, if limN nh > 0.
= o(1).

Proof is completed.

Proof [Proof of Theorem 4.2] Throughout the proof, we assume that data Y1, . . . , YN are
generated from the sequence of alternative hypotheses: f ∈ B and ‖f‖2 ≥ CεdN,λ. Define
fj = (f(t1,j), . . . , f(tn,j))

T for 1 ≤ j ≤ s. Then it can be shown that

NsTN,λ = Ns
∞∑
ν=1

f̄2
ν

=

s∑
j,l=1

Y T
j (Σ + λIn)−1Ωj,l(Σ + λIn)−1Yl

=

s∑
j,l=1

Y T
j M(Λc + λIn)−1Γj,l(Λc + λIn)−1M∗Yl

=
s∑

j,l=1

fTj M(Λc + λIn)−1Γj,l(Λc + λIn)−1M∗fl

+

s∑
j,l=1

fTj M(Λc + λIn)−1Γj,l(Λc + λIn)−1M∗εl

+

s∑
j,l=1

εTj M(Λc + λIn)−1Γj,l(Λc + λIn)−1M∗fl

+
s∑

j,l=1

εTj M(Λc + λIn)−1Γj,l(Λc + λIn)−1M∗εl

≡ T1 + T2 + T3 + T4. (60)
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Next we will analyze all the four terms in the above. Let f =
∑∞

ν=1 fνϕν . For 0 ≤ r ≤
n− 1 and 1 ≤ l ≤ s, define dl,r = x∗rfl. Then it holds that

dl,r =
∞∑
p=0

n∑
v=1

f2(pn+v)−1x
∗
rΦ

T
2(pn+v)−1,l +

∞∑
p=0

n∑
v=1

f2(pn+v)x
∗
rΦ

T
2(pn+v),l.

Using (27) and (28), we get that for 1 ≤ r ≤ n− 1,

dl,r =
∞∑
p=0

n−1∑
v=1

f2(pn+v)−1

(√
n

2

)(
η−(pn+v)(l−1)I(r + v = n) + η(pn+v)(l−1)I(r = v)

)

+
∞∑
p=0

n−1∑
v=1

f2(pn+v)

(
−
√
−n

2

)(
η−(pn+v)(l−1)I(r + v = n)− η(pn+v)(l−1)I(r = v)

)
=

√
n

2

∞∑
p=0

[
(f2(pn+n−r)−1 −

√
−1f2(pn+n−r))η

−(pn+n−r)(l−1)

+(f2(pn+r)−1 +
√
−1f2(pn+r))η

(pn+r)(l−1)
]
, (61)

and for r = 0,

dl,0 =
∞∑
p=0

f2(pn+n)−1x
∗
0ΦT

2(pn+n)−1,l +
∞∑
p=0

f2(pn+n)x
∗
0ΦT

2(pn+n),l

=

√
n

2

∞∑
p=0

[
(f2(pn+n)−1 −

√
−1f2(pn+n))η

−(pn+n)(l−1)

+(f2(pn+n)−1 +
√
−1f2(pn+n))η

(pn+n)(l−1)
]
. (62)

We first look at T1. It can be examined directly that

T1 =
s∑

j,l=1

(dj,0, . . . , dj,n−1)diag

(
δj,l,0

(λ+ λc,0)2
, . . . ,

δj,l,n−1

(λ+ λc,n−1)2

)
× (dl,0, . . . , dl,n−1)T

=

n−1∑
r=0

∑s
j,l=1 δj,l,rdj,rdl,r

(λ+ λc,r)2
. (63)

Using similar arguments as (29)–(33), one can show that for p ≥ 0, 1 ≤ v ≤ n, 0 ≤ r ≤ n−1
and 1 ≤ j ≤ s,

1

s

s∑
l=1

δj,l,rx
∗
rΦ

T
2(pn+v)−1,l = bp,vx

∗
rΦ

T
2(pn+v)−1,j ,

1

s

s∑
l=1

δj,l,rx
∗
rΦ

T
2(pn+v),l = bp,vx

∗
rΦ

T
2(pn+v),j , (64)

where

bp,v =

{ ∑
u≥−p/s

1
(2π(uN+pn+v))4m

+
∑

u≥(p+1)/s
1

(2π(uN−pn−v))4m
, for 1 ≤ v ≤ n− 1,∑

u≥−p/s
1

(2π(uN+pn+n))4m
+
∑

u≥(p+2)/s
1

(2π(uN−pn−n))4m
, for v = n.
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By (64), we have

s∑
j,l=1

δj,l,rdj,rdl,r =

s∑
j=1

dj,r

s∑
l=1

δj,l,rdl,r

=

s∑
j=1

dj,r

s∑
l=1

δj,l,r

(
∞∑
p=0

n∑
v=1

f2(pn+v)−1x
∗
rΦ2(pn+v)−1,l

+

∞∑
p=0

n∑
v=1

f2(pn+v)x
∗
rΦ

T
2(pn+v),l

)

=

s∑
j=1

dj,r

(
∞∑
p=0

n∑
v=1

f2(pn+v)−1

s∑
l=1

δj,l,rx
∗
rΦ

T
2(pn+v)−1,l

+

∞∑
p=0

n∑
v=1

f2(pn+v)

s∑
l=1

δj,l,rx
∗
rΦ

T
2(pn+v),l

)

= s

s∑
j=1

dj,r

(
∞∑
p=0

n∑
v=1

f2(pn+v)−1bp,vx
∗
rΦ

T
2(pn+v)−1,j +

∞∑
p=0

n∑
v=1

f2(pn+v)bp,vx
∗
rΦ

T
2(pn+v),j

)
.

It then follows from (61) and (62), trivial facts bs−1−g,r = bg,n−r and Cg,n−r = Dg,r

(both Cg,r and Dg,r are defined similarly as those in the proof of Theorem 3.1, but with f0

therein replaced by f), and direct calculations that for 1 ≤ r ≤ n− 1

s∑
j,l=1

δj,l,rdj,rdl,r =
sn

2

s∑
j=1

∞∑
p=0

[
(f2(pn+n−r)−1 +

√
−1f2(pn+n−r))η

(pn+n−r)(j−1)

+(f2(pn+r)−1 −
√
−1f2(pn+r))η

−(pn+r)(j−1)
]

×
∞∑
p=0

[
(f2(pn+n−r)−1 −

√
−1f2(pn+n−r))bp,n−rη

−(pn+n−r)(j−1)

+(f2(pn+r)−1 +
√
−1f2(pn+r))bp,rη

(pn+r)(j−1)
]

=
N

2

s∑
j=1

s−1∑
g=0

∞∑
k=0

[
(f2(kN+gn+n−r)−1 +

√
−1f2(kN+gn+n−r))η

(gn+n−r)(j−1)

+(f2(kN+gn+r)−1 −
√
−1f2(kN+gn+r))η

−(gn+r)(j−1)
]

×
s−1∑
g=0

∞∑
k=0

[
(f2(kN+gn+n−r)−1 −

√
−1f2(kN+gn+n−r))bks+g,n−rη

−(gn+n−r)(j−1)

+(f2(kN+gn+r)−1 +
√
−1f2(kN+gn+r))bks+g,rη

(gn+r)(j−1)
]

=
N

2

s∑
j=1

[
s−1∑
g=0

Cg,rη
(gn+n)(j−1) +

s−1∑
g=0

Dg,rη
−gn(j−1)

]

×

[
s−1∑
g=0

bg,n−rCg,rη
−(gn+n)(j−1) +

s−1∑
g=0

bg,rDg,rη
gn(j−1)

]

=
Ns

2

(
s−1∑
g=0

bg,n−r|Cg,r|2 +

s−1∑
g=0

bs−1−g,rCg,rDs−1−g,r

+

s−1∑
g=0

bs−1−g,n−rDg,rCs−1−g,r +

s−1∑
g=0

bg,r|Dg,r|2
)
,
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which leads to

n−1∑
r=1

∑s
j,l=1 δj,l,rdj,rdl,r

(λ+ λc,r)2
=
Ns

2

n−1∑
r=1

∑s−1
g=0 bg,r|Cs−1−g,r +Dg,r|2

(λ+ λc,r)2
. (65)

Since J(f) ≤ C, equivalently,
∑∞

ν=1(f2
2ν−1 + f2

2ν)(2πν)2m ≤ C, we get that∑
1≤r≤n/2

(f2
2r−1 + f2

2r) ≥ ‖f‖22 − C(2πn)−2m. (66)

Meanwhile, for 1 ≤ r ≤ n/2, using similar arguments as (40) and (41) one can show that
there exists a constant c′m relying on C and m s.t.

|Cs−1,r +D0,r|2 =

(
f2r−1 +

∞∑
k=0

f2(kN+N−r)−1 +

∞∑
k=1

f2(kN+r)−1

)2

+

(
f2r +

∞∑
k=1

f2(kN+r) −
∞∑
k=0

f2(kN+N−r)

)2

≥ 1

2
(f2

2r−1 + f2
2r−1)− c′mN−2m, (67)

and

|Cs−1,r +D0,r|2(2πr)2m

≤ 4

[
(
∞∑
k=0

f2(kN+N−r)−1)2 + (
∞∑
k=0

f2(kN+N−r))
2

+(
∞∑
k=0

f2(kN+r)−1)2 + (
∞∑
k=0

f2(kN+r))
2

]
(2πr)2m

≤

(
4
∞∑
k=0

f2
2(kN+N−r)−1(2π(kN +N − r))2m

∞∑
k=0

(2π(kN +N − r))−2m

+4
∞∑
k=0

f2
2(kN+N−r)(2π(kN +N − r))2m

∞∑
k=0

(2π(kN +N − r))−2m

+4
∞∑
k=0

f2
2(kN+r)−1(2π(kN + r))2m

∞∑
k=0

(2π(kN + r))−2m

+4
∞∑
k=0

f2
2(kN+r)(2π(kN + r))2m

∞∑
k=0

(2π(kN + r))−2m

)
× (2πr)2m

≤

(
8m

2m− 1

∞∑
k=0

(f2
2(kN+N−r)−1 + f2

2(kN+N−r))γkN+N−r(2π(N − r))−2m

+
8m

2m− 1

∞∑
k=0

(f2
2(kN+r)−1 + f2

2(kN+r))γkN+r(2πr)
−2m

)
× (2πr)2m,
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which, together with the fact N ≥ 2r for 1 ≤ r ≤ n/2, leads to that

∑
1≤r≤n/2

|Cs−1,r +D0,r|2(2πr)2m ≤ c′m. (68)

Furthermore, it can be verified that for 1 ≤ r ≤ n/2,

λ2
c,r − b0,r

(λ+ λc,r)
(2πr)−2m ≤ ((2πr)−2m + (2π(n− r))−2m + c̄m(2πn)−2m)2 − (2πr)−4m

((2πr)−2m + (2π(n− r))−2m)2
(2πr)−2m

≤ c′mn
−2m, (69)

which leads to that

(λ+ λc,r)
2 − b0,r

(λ+ λc,r)2
(2πr)−2m =

λ2 + 2λλc,r
(λ+ λc,r)2

(2πr)−2m +
λ2
c,r − b0,r

(λ+ λc,r)2
(2πr)−2m

≤ 2λ+ c′mn
−2m. (70)

Then, using (63)–(65) and (66)–(70) one gets that

T1 ≥ Ns

2

∑
1≤r≤n/2

b0,r|Cs−1,r +D0,r|2

(λ+ λc,r)2

=
Ns

2

 ∑
1≤r≤n/2

|Cs−1,r +D0,r|2 −
∑

1≤r≤n/2

(λ+ λc,r)
2 − b0,r

(λ+ λc,r)2
|Cs−1,r +D0,r|2


≥ Ns

2

(
1

2
‖f‖22 − c′mn−2m − c′mN−2m − c′m(2λ+ c′mn

−2m)

)
≥ C ′NsσN,λ, (71)

where the last inequality follows by ‖f‖22 ≥ 4C ′(λ + n−2m + σN,λ) for a large constant C ′

satisfying 2C ′ > 2c′m + (c′m)2. To achieve the desired power, we need to enlarge C ′ further.
This will be described later. Combining (71) with (55) and (71) we get that

T1 � s uniformly for f ∈ B with ‖f‖22 ≥ 4C ′d2
N,λ. (72)

Terms T2 and T3 can be handled similarly. To handle T2, note that T2 = fT∆ε, where
f = (fT1 , . . . , f

T
s )T , ε = (εT1 , . . . , ε

T
s )T , and ∆ is defined in the proof of Theorem 4.1. We

need to establish ∆ ≤ sIN . Define an arbitrary a = (aT1 , . . . , a
T
s )T ∈ RN , where each aj

is an (real) n-vector. Let ξj = M∗aj and ξ = (ξT1 , . . . , ξ
T
s )T . For simplicity, put ξj =
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(ξj,0, . . . , ξj,n−1)T for 1 ≤ j ≤ s. Then based on (52) and (51), we have

aT∆a = ξ∗[(Λc + λIn)−1Γj,l(Λc + λIn)−1]1≤j,l≤sξ

=

n−1∑
r=0

s∑
j,l=1

ξj,rξl,r
δj,l,r

(λ+ λc,r)2

≤
n−1∑
r=1

s
(

1
(2π(n−r))4m + 1

(2πr)4m

)∑s
j=1 |ξj,r|2

(λ+ λc,r)2

+
2s
∑∞

q=1
1

(2πqn)4m
∑s

j=1 |ξj,0|2

(λ+ λc,0)2

≤ s
n−1∑
r=0

s∑
j=1

|ξj,r|2 = sξ∗ξ = saTa,

therefore, ∆ ≤ sIN . This leads to that, uniformly for f ∈ B with ‖f‖22 ≥ 4C ′d2
N,λ, Ef{T 2

2 } =

fT∆2f ≤ sT1. Together with (72), we get that

sup
f∈B

‖f‖2≥2
√
C′dN,λ

Pf

(
|T2| ≥ ε−1/2T

1/2
1 s1/2

)
≤ ε. (73)

Note that (73) also applies to T3. By Theorem 4.1, (T4/(Ns)−µN,λ)/σN,λ isOP (1) uniformly
for f . Therefore, we can choose C ′ε > 0 s.t. Pf (|T4/(Ns)−µN,λ|/σN,λ ≥ C ′ε) ≤ ε as N →∞.

It then follows by (71), (72) and (73) that for suitable large C ′ (e.g., C ′ ≥ 2(C ′ε+z1−α/2)),

uniformly for f ∈ B with ‖f‖2 ≥ 2
√
C ′dN,λ,

Pf
(
|TN,λ − µN,λ|/σN,λ ≥ z1−α/2

)
≤ 3ε, as N →∞.

Proof is completed.

Proof [Proof of Theorem 4.3]
Define BN = bN2/(4m+1)c, the integer part of N2/(4m+1). We prove the theorem in two

cases: limN nh > 0 and nh = o(1).
Case I: limN nh > 0.
In this case, it can be shown by s � N (4m−1)/(4m+1) (equivalently n � BN , leading

to BNh � nh hence BNh → ∞) that n−6mh−4m+1/2N � (BN/n)6m. Choose g to be an
integer satisfying

n−6mh−4m+1/2N � g6m � (BN/n)6m. (74)

Construct an f =
∑∞

ν=1 fνϕν with

f2
ν =

{
C
n−1(2π(gn+ r))−2m, ν = 2(gn+ r)− 1, r = 1, 2, . . . , n− 1,

0, otherwise.
(75)

It can be seen that

J(f) =

s−1∑
r=1

f2
2(gn+r)−1(2π(gn+ r))2m = C, (76)
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and

‖f‖22 =
n−1∑
r=1

f2
2(gn+r)−1

=
C

n− 1

n−1∑
r=1

(2π(gn+ r))−2m

≥ C(2π(gn+ n))−2m = β2
N,λN

−4m/(4m+1), (77)

where β2
N,λ = C[BN/(2π(gn + n))]2m. Due to (74) and n � BN , we have gn + n � 2BN ,

which further implies βN,λ →∞ as N →∞.
Using the trivial fact bs−2−g,n = bg,n for 0 ≤ g ≤ s− 2, one can show that

s∑
j,l=1

δj,l,0dj,0dl,0 =
Ns

2

2

s−1∑
g′=0

|Cg′,0|2bg′,n +

s−2∑
g′=0

Cs−2−g′,0Cg′,0bg′,n + C2
s−1,0bs−1,n

+

s−2∑
g′=0

Ds−2−g′,nDg′,nbg′,n +D2
s−1,nbs−1,n


≤ 2Ns

s−1∑
g′=0

|Cg′,0|2bg′,n = 0, (78)

where the last equality follows by a trivial observation Cg′,0 = 0. It follows by (78), (63)
and (65) that

T1 =
Ns

2

n−1∑
r=1

∑s−1
g′=0 bg′,r|Cs−1−g′,r +Dg′,r|2

(λ+ λc,r)2

≤ Ns
n−1∑
r=1

∑s−1
g′=0 bg′,r|Cs−1−g′,r|2

(λ+ λc,r)2
+Ns

n−1∑
r=1

∑s−1
g′=0 bg′,r|Dg′,r|2

(λ+ λc,r)2

= Ns
n−1∑
r=1

∑s−1
g′=0 bs−1−g′,n−r|Cg′,n−r|2

(λ+ λc,r)2
+Ns

n−1∑
r=1

∑s−1
g′=0 bg′,r|Dg′,r|2

(λ+ λc,r)2

= 2Ns

n−1∑
r=1

∑s−1
g′=0 bg′,r|Dg′,r|2

(λ+ λc,r)2
= 2Ns

n−1∑
r=1

bg,rf
2
2(gn+r)−1

(λ+ λc,r)2
, (79)

where the last equality follows from the design of f , i.e., (75). Now it follows from (79) and
the fact bg,r ≤ c′m(2π(gn+ r))−4m, for some constant c′m depending on m only, that

T1 ≤ 2Ns
n−1∑
r=0

c′m(2π(gn+ r))−4m C
n−1(2π(gn+ r))−2m

(λ+ λc,r)2

=
2Nsc′mC

n− 1

n−1∑
r=1

(2π(gn+ r))−6m

(λ+ λc,r)2

≤ 2c′mC(2π)−6mNs(gn)−6mh−4m � sh−1/2 � NsσN,λ, (80)
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where the last “�” follows from (12).
By (73) we have that

|T2 + T3| = T
1/2
1 s1/2OPf (1) = oPf (sh−1/4) = oPf (NsσN,λ).

Hence, by (60) and Theorem 4.1 we have

TN,λ − µN,λ
σN,λ

=
T1 + T2 + T3

NsσN,λ
+
T4/(Ns)− µN,λ

σN,λ

=
T4/(Ns)− µN,λ

σN,λ
+ oPf (1)

d−→ N(0, 1).

Consequently, as N →∞

inf
f?∈B

‖f?‖2≥βN,λN−2m/(4m+1)

Pf? (φN,λ = 1) ≤ Pf (φN,λ = 1)→ α.

This shows the desired result in Case I.
Case II: nh = o(1).
The proof is similar to Case I although a bit technical difference needs to be emphasized.

Since n� BN , it can be shown that Nn−2m−1/2 � (BN/n)6m. Choose g to be an integer
satisfying

Nn−2m−1/2 � g6m � (BN/n)6m. (81)

Let f =
∑∞

ν=1 fνϕν with fν satisfying (75). Similar to (76) and (77) one can show that
J(f) = C and ‖f‖22 ≥ β2

N,λN
−4m/(4m+1), where β2

N,λ = C[BN/(2π(gn + n))]2m. It is clear
that βN,λ →∞ as N →∞. Then similar to (78), (63), (65) and (80) one can show that

T1 ≤ 2Ns
n−1∑
r=1

bg,rf
2
2(gn+r)−1

(λ+ λc,r)2

≤ 2Nsc′mC

n− 1

n−1∑
r=1

(2π(gn+ r))−6m

(λ+ λc,r)2

≤ 2c′mC(2π)−2mNsg−6mn−2m

� sn1/2 � NsσN,λ,

where the last line follows by (81) and (12). Then the desired result follows by arguments
in the rest of Case I. Proof is completed.
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