
Journal of Machine Learning Research 18 (2017) 1-49 Submitted 5/16; Revised 1/17; Published 3/17

A Unified Formulation and Fast Accelerated Proximal
Gradient Method for Classification

Naoki Ito naoki ito@mist.i.u-tokyo.ac.jp
Department of Mathematical Informatics
The University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan

Akiko Takeda atakeda@ism.ac.jp
Department of Mathematical Analysis and Statistical Inference
The Institute of Statistical Mathematics
10-3 Midori-cho, Tachikawa, Tokyo 190-8562 Japan

Kim-Chuan Toh mattohkc@nus.edu.sg

Department of Mathematics

National University of Singapore

Blk S17, 10 Lower Kent Ridge Road, Singapore 119076, Singapore

Editor: Moritz Hardt

Abstract

Binary classification is the problem of predicting the class a given sample belongs to.
To achieve a good prediction performance, it is important to find a suitable model for
a given dataset. However, it is often time consuming and impractical for practitioners
to try various classification models because each model employs a different formulation
and algorithm. The difficulty can be mitigated if we have a unified formulation and an
efficient universal algorithmic framework for various classification models to expedite the
comparison of performance of different models for a given dataset. In this paper, we
present a unified formulation of various classification models (including C-SVM, `2-SVM,
ν-SVM, MM-FDA, MM-MPM, logistic regression, distance weighted discrimination) and
develop a general optimization algorithm based on an accelerated proximal gradient (APG)
method for the formulation. We design various techniques such as backtracking line search
and adaptive restarting strategy in order to speed up the practical convergence of our
method. We also give a theoretical convergence guarantee for the proposed fast APG
algorithm. Numerical experiments show that our algorithm is stable and highly competitive
to specialized algorithms designed for specific models (e.g., sequential minimal optimization
(SMO) for SVM).

Keywords: restarted accelerated proximal gradient method, binary classification, mini-
mum norm problem, vector projection computation, support vector machine

1. Introduction

Binary classification is one of the most important problems in machine learning. Among
the wide variety of binary classification models which have been proposed to date, the most
popular ones include support vector machines (SVMs) (Cortes and Vapnik, 1995; Schölkopf
et al., 2000) and logistic regression (Cox, 1958). To achieve a good prediction performance,

c©2017 Naoki Ito, Akiko Takeda, and Kim-Chuan Toh.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v18/16-274.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v18/16-274.html

Ito, Takeda, and Toh

it is often important for the user to find a suitable model for a given dataset. However, the
task of finding a suitable model is often time consuming and tedious as different classification
models generally employ different formulations and algorithms. Moreover, the user might
have to change not only the optimization algorithms but also solvers/software in order to
solve different models. The goal of this paper is to present a unified formulation for various
classification models and also to design a fast universal algorithmic framework for solving
different models. By doing so, one can simplify and speed up the process of finding the best
classification model for a given dataset. We can also compare various classification methods
in terms of computation time and prediction performance in the same platform.

In this paper, we first propose a unified classification model which can express vari-
ous models including C-SVM (Cortes and Vapnik, 1995), ν-SVM (Schölkopf et al., 2000),
`2-SVM, logistic regression (Cox, 1958), MM-FDA, MM-MPM (Nath and Bhattacharyya,
2007), distance weighted discrimination (Marron et al., 2007). The unified model is first
formulated as an unconstrained `2-regularized loss minimization problem, which is further
transformed into the problem of minimizing a convex objective function (quadratic func-
tion, plus additional terms only for logistic regression) over a simple feasible region such as
the intersection of a box and a hyperplane, truncated simplex, unit ball, and so on. Taking
different loss functions (correspondingly different feasible regions in the transformed prob-
lem) will lead to different classification models. For example, when the feasible region is
given by the intersection of a box and a hyperplane, the unified formulation coincides with
the well-known C-SVM or logistic regression, and when the region is given by a truncated
simplex, the problem is the same as the ν-SVM.

It is commonly acknowledged that there is “no free lunch” in supervised learning in the
sense that no single algorithm can outperform all other algorithms in all cases. Therefore,
there can be no single “best” software for binary classification. However, by taking ad-
vantage of the above-mentioned unified formulation, we can design an efficient algorithm
which is applicable to the various existing models mentioned in the last paragraph. Our
proposed algorithm is based on the accelerated proximal gradient (APG) method (Beck and
Teboulle, 2009; Nesterov, 2005) and during the algorithm, only the procedure for computing
the projection onto the associated feasible region differs for different models. In other words,
by changing the computation of the projection, our algorithm can be applied to arbitrary
classification models (i.e., arbitrary feasible region) without changing the optimization algo-
rithmic framework. The great advantage of our algorithm is that most existing models have
simple feasible regions, which make the computation of the projection easy and efficient.

The APG method is known to be one of the most efficient first-order methods theoret-
ically. In order to make our APG based method practically efficient, we further employ
various techniques such as backtracking line search (Beck and Teboulle, 2009; Scheinberg
et al., 2014) and adaptive restarting strategies (O’Donoghue and Candès, 2015) to speed
up the convergence of the algorithm. Our method incorporates several speed-up strategies
while guaranteeing its convergence even for a general non-strongly convex function. Since
our method is a further improvement of the standard APG method, we will call it as fast
accelerated proximal gradient (FAPG) method. Our FAPG method improves several other
restarting schemes (Nesterov, 2013; Lin and Xiao, 2015; Su et al., 2014) which have guar-
anteed convergence in the case when the objective function is strongly convex. To make
our method even more efficient in practice, we simplify some steps in the implementation

2

A Unified Formulation and Fast APG Method for Classification

of our FAPG algorithm, though we can no longer ensure its theoretical convergence. To
summarize, while our method has extensive generality, numerical experiments show that
it performs stably and is highly competitive to specialized algorithms designed for specific
classification models. Indeed, our method solved SVMs with a linear kernel substantially
faster than LIBSVM (Chang and Lin, 2011) which implemented the SMO (Platt, 1998)
and SeDuMi (Sturm, 1999) which implemented an interior-point method. Moreover, our
FAPG method often run faster than the highly optimized LIBLINEAR (Fan et al., 2008)
especially for large-scale datasets with feature dimension n > 2000. The FAPG method can
be applied not only to the unified classification model but also to the general convex com-
posite optimization problem such as `1-regularized classification models, which are solved
faster than LIBLINEAR in most cases. It may be better to think of a stochastic variant of
our method for further improvement and we leave it as a future research topic. We focus
here on the deterministic one as the first trial to provide an efficient unified algorithm which
is applicable to all well-known existing classification models.

The rest of this paper is organized as follows. Section 2 introduces some preliminary
definitions and results on binary classification models and the APG method. Section 3
presents a unified formulation of binary classification models. In Section 4, we provide
solution methods for the unified formulation. We develop efficient algorithms for comput-
ing projections which are used in the APG method. Then we design our FAPG method
combined with various techniques to speed-up its practical convergence. The iteration com-
plexity of O

(
(log k/k)2

)
of our algorithm is also established, where k is the iteration counter.

Numerical experiments are presented in Section 5.

2. Preliminaries

In this section, we introduce some preliminary definitions on binary classification models
and the APG method.

2.1 Binary Classification Models

Let X ⊂ Rn be the input domain and {+1,−1} be the set of the binary labels. Suppose
that we have samples,

(x1, y1), . . . , (xm, ym) ∈ X × {+1,−1}.

Define M := {1, . . . ,m}, M+ := {i ∈ M | yi = +1}, and M− := {i ∈ M | yi = −1}. Let
m+ = |M+| and m− = |M−|.

We compute (w, b) for a decision function h(x) = w>x− b using these samples and use
h(x) to predict the label for a new input point x̂ ∈ X . If h(x̂) is positive (resp. negative),
then the label of x̂ is predicted to be +1 (resp. −1). Here we focus on linear learning models
by using linear functions h(x), but the discussions in this paper can be directly applied to
non-linear kernel models (Schölkopf and Smola, 2002) using nonlinear maps φ(x) mapping
x from the original space to a high dimensional space.

There are various binary classification models to compute (w, b) such as the support
vector machines (SVMs), e.g. (Cortes and Vapnik, 1995; Schölkopf et al., 2000; Schölkopf
and Smola, 2002), the margin maximized minimax probability machine (MM-MPM) (Nath

3

Ito, Takeda, and Toh

and Bhattacharyya, 2007), the model based on Fisher’s discriminant analysis (MM-FDA)
(Bhattacharyya, 2004; Takeda et al., 2013), and the logistic regression (Cox, 1958).

Many binary classification models have the following formulation which consists of the
sum of loss of each sample and a regularization term:

min
w,b

m∑
i=1

`
(
yi(w

>xi − b)
)

+
1

C
‖w‖pp, (1)

where ` : R → R is a proper, closed, and convex function; C > 0 is a parameter; and ‖·‖p
is the p-norm with p ∈ [1,∞].

2.2 Accelerated Proximal Gradient Method

In this section, we first introduce the accelerated proximal gradient (APG) method (Beck
and Teboulle, 2009) which is designed for the following problem:

min
α∈Rd

F (α) := f(α) + g(α). (2)

Note that one can express a minimization problem constrained over a set S in the form of
(2) by setting g = δS , where

δS(α) =

{
0 (α ∈ S)

+∞ (α 6∈ S)

is the indicator function of the set S.
To apply the APG method to (2), we need to assume the following conditions:

1. g : Rd → R ∪ {+∞} is a proper, closed, and convex function which is possibly
nonsmooth. Its effective domain dom(g) = {α ∈ Rd | g(α) < +∞} is closed and
convex.

2. f : Rd → R is a proper, closed, convex, and continuously differentiable function, and
its gradient ∇f(·) is Lipschitz continuous on Rd,1 i.e., there exists a constant L > 0
such that

‖∇f(α)−∇f(β)‖2 ≤ L‖α− β‖2 ∀α,β ∈ Rd. (3)

The minimum value of such L is referred to as the Lipschitz constant Lf of ∇f(·).

3. The problem (2) is solvable, i.e., the optimal value is finite and an optimal solution
α∗ exists.

Let L ≥ Lf . We define an approximate function QL : Rd → R of f(α) around β and a
mapping TL(α) : Rd → Rd as follows:

QL(α;β) = f(β) + 〈∇f(β),α− β〉+
L

2
‖α− β‖22 + g(α)

TL(β) = argmin
α∈Rd

QL(α;β).

1. It is sufficient if ∇f(·) is Lipschitz continuous on a neighborhood of dom(g): the convex hull of dom(g)∪
{βk | k = 1, 2, . . .}, where βk (k = 1, 2, . . .) are points generated at Step 3 of the APG method. Obviously,
however, it is not possible to know the points a priori.

4

A Unified Formulation and Fast APG Method for Classification

The basic proximal gradient (PG) method generates a sequence {αk}∞k=0 by

αk+1 = TL(αk) = argmin
α∈Rd

{
g(α) +

L

2

∥∥∥α− (αk − 1

L
∇f(αk)

)∥∥∥2

2

}
= proxg,L

(
αk − 1

L
∇f(αk)

)
,

where proxg,L(ᾱ) := argminα∈Rd
{
g(α) + L

2 ‖α− ᾱ‖22
}

is the proximal operator of g. If g =

δS , then proxg,Lk = PS , where PS(ᾱ) = argminα∈S ‖α− ᾱ‖2 is the orthogonal projection of
ᾱ onto the set S. In this case, the above PG method coincides with the gradient projection
method. If g(·) = ‖ · ‖1, then

(
proxg,L(α)

)
i

= sign(αi) max{0, |αi| − L} (i = 1, 2, . . . , d)
which is known as the soft-thresholding operator. Other analytical computations of the
proximal operators of various g can be found in (Parikh and Boyd, 2014, Section 6).

It is known that the PG method has the iteration complexity such that F (αk)−F (α∗) ≤
O(1/k), where α∗ is an optimal solution of (2). The APG method (Beck and Teboulle,
2009), which is also known as FISTA, is an acceleration of the PG method. It generates
two sequences

{
βk
}∞
k=1

and
{
αk
}∞
k=0

. For an arbitrary initial point β1 = α0 ∈ Rd and
t1 = 1, the APG method solves (2) through the following steps (k = 1, 2, . . .):

Accelerated Proximal Gradient Method

Step 1. Compute

αk = TL(βk) = proxg,L

(
βk − 1

L
∇f(βk)

)
.

Step 2. Compute tk+1 =
1+
√

1+4t2k
2 .

Step 3. Compute βk+1 = αk + tk−1
tk+1

(αk −αk−1).

For the APG method, the iteration complexity result such that F (αk)− F (α∗) ≤ O(1/k2)
is known (see (Beck and Teboulle, 2009, Theorem 4.4)). The second term tk−1

tk+1
(αk −αk−1)

in Step 3 can be seen as the momentum of the sequence {αk}∞k=0. It enlarges the moving
distance of the sequences {α}∞k=0, {β}∞k=1 which may lead them closer to the optimum α∗

more quickly. While various other APG methods (e.g, (Nesterov, 2013; Monteiro et al.,
2016; Su et al., 2014)) are proposed, the above APG (namely, FISTA) is used in many
applications because it is simpler to implement.

It is known that α∗ is an optimal solution of (2) if and only if α∗ = TL(α∗). More
specifically, the necessary and sufficient optimality condition for α∗ to be an optimal solution
of (2) is

∃γα ∈ ∂g(α∗) s.t. 〈∇f(α∗) + γα, α−α∗〉 ≥ 0, ∀α ∈ Rd. (4)

On the other hand, from the definition of TL(β), we have

∃γβ ∈ ∂g(TL(β)) s.t. 〈∇f(TL(β))+L
(
TL(β)−β

)
+γβ, α−TL(β)〉 ≥ 0, ∀α ∈ Rd, (5)

for any β ∈ Rd. The term L
(
TL(β)−β

)
in (5) can be seen as the residual of the optimality

condition (4). Thus it would be a natural criterion to terminate the APG if L‖TL(αk) −
αk‖2 < ε with a small constant ε > 0.

5

Ito, Takeda, and Toh

Despite having a strong iteration complexity result, the APG method may still not be
efficient enough for practical purpose. In the following, we describe several well-known
strategies to make the APG method practically efficient.

2.2.1 Backtracking Strategy

We assume that L is greater than or equals to the Lipschitz constant Lf of ∇f(α). However
it is advantageous to use a smaller value for L whenever possible since the constant L plays
the role of a step size as in a gradient descent method; fixing L to be the Lipschitz constant
Lf is usually too conservative (see Table 5 in Section 5). Thus we adopt the following
backtracking strategy (Beck and Teboulle, 2009) after Step 1 with arbitrary given constants
ηu > 1 and L0 > 0:

‘bt’: While

F (αk) > QLk(αk;βk), (6)

update Lk ← ηuLk and αk ← TLk(βk). Set Lk+1 ← Lk.

The inequality (6) in ‘bt’ ensures that the complexity result F (αk)−F (α∗) ≤ O(1/k2) still
holds. We note that the inequality F (αk) ≤ QLk(αk;βk) is satisfied if Lk ≥ Lf , i.e., it is a
weaker condition than (3).

2.2.2 Decreasing Strategy for Lk

Beck and Teboulle (2009) designed the backtracking strategy ‘bt’ so that the values of Lk
is non-decreasing. In fact, the convergence analysis of (Beck and Teboulle, 2009) requires
the value of Lk to be non-decreasing. However, it is advantageous to decrease the value of
Lk whenever possible since the constant 1

Lk
gives a larger step size.

To allow Lk to decrease, Scheinberg et al. (2014) modifies the APG method so that
{tk}∞k=1 satisfies tk/Lk ≥ tk+1(tk+1 − 1)/Lk+1 (∀k ≥ 1) and the sequences {αk}∞k=0 and
{βk}∞k=1 are generated along with {tk}∞k=1. To be specific, let us introduce the following
simple step to decrease the value of Lk, where ηd > 1 is a given constant.

‘dec’: Set Lk+1 ← Lk/ηd.

The modified APG of (Scheinberg et al., 2014) can be described as in Algorithm 1. It differs
from the original APG in that the updates of tk and βk are added to ‘bt’ and Step 2 is
modified. The convergence of Algorithm 1 is shown as follows.

Proposition 1 (from Scheinberg et al., 2014) Let S∗ be the set of optimal solutions of
(2). For any α∗ ∈ S∗, the sequence {αk}∞k=0 generated by Algorithm 1 satisfies the following
inequality:

F (αk)− F (α∗) ≤ 2ηuLf‖α0 −α∗‖22
k2

, ∀k ≥ 1.

6

A Unified Formulation and Fast APG Method for Classification

Algorithm 1 An Accelerated Proximal Gradient Method with Non-Monotonic Backtrack-
ing

Input: f , ∇f , g, proxg,L, ε > 0, L1 = L0 > 0, ηu > 1, ηd > 1, kmax > 0, β1 = α0

Output: αk

Initialize: t1 ← 1, t0 ← 0
for k = 1, . . . , kmax do

αk ← TLk(βk) = proxg,Lk

(
βk − 1

Lk
∇f(βk)

)
Step 1

while F (αk) > QLk(αk;βk) do
Lk ← ηuLk # ‘bt’

tk ←
1+

√
1+4(Lk/Lk−1)t2k−1

2

βk ← αk−1 +
tk−1−1
tk

(αk−1 −αk−2)

αk ← TLk(βk) = proxg,Lk

(
βk − 1

Lk
∇f(βk)

)
end while
if ‖Lk(TLk(αk)−αk)‖ < ε then

break
end if
Lk+1 ← Lk/ηd # ‘dec’

tk+1 ← 1+
√

1+4(Lk+1/Lk)t2k
2 # Step 2’

βk+1 ← αk + tk−1
tk+1

(αk −αk−1) # Step 3

end for

2.2.3 Restarting Strategy

The value tk−1
tk+1

∈ [0, 1) in Step 3 determines the amount of momentum in tk−1
tk+1

(αk−αk−1).

When the value tk−1
tk+1

is close to 1, i.e., the momentum is high, the sequences of solutions

{αk}∞k=0 and {βk}∞k=1 would overshoot and oscillate around the optimal solution α∗. In
order to avoid the oscillation and further speed up the convergence, O’Donoghue and Candès
(2015) introduced an adaptive restarting strategy:

‘re’: If ∇f(βk)>(αk −αk−1) + g(αk)− g(αk−1) > 0,
then update tk+1 ← 1, tk ← 0, βk+1 ← αk−1, and αk ← αk−1.

Roughly, the APG method resets the momentum back to zero and restarts from the previous
point αk−1 if the direction of motion αk−αk−1 seems to cause the (approximated) objective
value to increase, which may be a sign of overshooting. Note that the computational cost
of ‘re’ is inexpensive since ∇f(βk) has already been computed at Step 1. O’Donoghue and
Candès (2015) also provided a heuristic convergence analysis for their restarting scheme
(‘re’) when f is a strongly convex (i.e., there exists a constant µ > 0 such that f(α) −
µ
2‖α− α∗‖22 is convex) quadratic function and g = 0. However, the convergence of ‘re’ for
a general strongly convex objective function is unknown (not to mention for the general
non-strongly convex function in our problem).

There are several other restarting schemes (Nesterov, 2013; Lin and Xiao, 2015; Su
et al., 2014). They have guaranteed convergence in the case that f is strongly convex.

7

Ito, Takeda, and Toh

k iter0

K1 K2 K3

restartrestartrestart

k̄1 k̄2 k̄3

Figure 1: Illustration of Maintaining Top-Speed Strategy (‘mt’). A prohibition period of
restart for Ki iteration are imposed after the i-th restart occurs. If the condition
∇f(βk)>(αk − αk−1) < 0 is satisfied after the period passed, then the (i + 1)-
th restart occurs. The next prohibition period is doubled, i.e., Ki+1 = 2Ki.
k̄i(≥ Ki) denotes the number of iteration taken between the (i − 1)-th and i-th
restart, which will be used to convergence analysis in Section 4.2.

Nesterov (2013) proposed a restarting method, which has asymptotic linear convergence
if g is strongly convex. Lin and Xiao (2015) showed that a similar restart technique can
achieve the same convergence rate as Nesterov’s scheme if f is strongly convex. Su et al.
(2014) modeled the APG method as a second-order ordinary differential equation (ODE).
They provided a speed restarting framework that ensures a linear convergence of the ODE
with respect to time in the case that f is strongly convex and g = 0. To the best of
our knowledge, none of the restarting schemes have convergence guarantees for a general
non-strongly convex function.

2.2.4 Maintaining Top-Speed Strategy

The restarting strategy cancels out high momentum and prevents overshooting. In the
neighborhood of an optimum, however, maintaining high momentum may be effective rather
than restarting APG (see Figures 6 and 8 in Section 5), because large overshooting may
not occur. Thus we put a prohibition period of restart for Ki iteration after the i-th restart
occurs, where Ki increases as Ki = 2Ki−1 (i = 2, 3, . . .) and K1 ≥ 2. See Figure 1 for
illustration. Precisely, letting k = kre be the iteration count at which the last restart
occurs, we introduce the following step:

‘mt’: If k ≤ kre +Ki, then skip ‘re’. If restart occurs, then update kre ← k, Ki+1 ← 2Ki,
and i← i+ 1.

While a similar strategy is taken in the experiment of (Monteiro et al., 2016), its con-
vergence analysis is not provided. One of our contributions in this paper is to show that
in fact the modification ‘mt’ of the restarting strategy can ensure the convergence rate of
O
(
(log k/k)2

)
under a mild assumption. We will elaborate it in Section 4.2.

3. New Unified Formulation

In this paper, we focus on the following `2-regularized loss minimization problem:

min
w,b
L(Ã>w − ab) +

1

2C
‖w‖22, (7)

8

A Unified Formulation and Fast APG Method for Classification

where L : Rm → R is a proper, closed, and convex function; Ã ∈ Rn×l, a ∈ Rl, and C > 0
is a parameter. We will later show examples such that

• l = m, Ã = X̃ := [y1x1, y2x2, . . . , ymxm], a = y, and

• l = n, Ã = I, a = 0.

Our algorithm to be described later can be applied to a more general loss-regularized
model with p ∈ (1,∞):

min
w,b

{
L(Ã>w − ab) | ‖w‖p ≤ λ

}
, (8)

where λ > 0 is a parameter. We note that the condition p ∈ (1,∞) is required for our
unified classification algorithm because the smoothness of the dual norm of ‖ · ‖p is required
to apply the APG method to the dual problem of (8). However, if p ∈ {1,∞} and L is
smooth, the APG method can be applied to the primal problem (8). See Appendix D for
`1-regularized problems, i.e., the case of p = 1.

3.1 Dual Formulation

The dual problems of (7) is given by

min
α

{
L∗(−α) +

C

2
‖Ãα‖22 | α>a = 0

}
, (9)

where L∗(α) = supz{α>z − L(z)} is the convex conjugate of L.
The dual problem of (8) is

min
α

{
L∗(−α) + λ‖Ãα‖∗p | α>a = 0

}
, (10)

where ‖z‖∗p = sup‖w‖p≤1{z>w} is the dual norm of ‖ · ‖p. It is known that ‖ · ‖∗p = ‖ · ‖q,
where q = p/(p − 1). The problem (10) can be seen as the Fenchel dual of (8), whose
derivation is shown in Appendix A. We note that the norms ‖ · ‖p and ‖ · ‖∗q are smooth for
p ∈ (1,∞).

As shown later, in all classification models, L∗ is the sum of a smooth function and an
indicator function of a simple set S for which the projection PS can be computed efficiently.
Thus we can apply the APG method as an acceleration of the gradient projection method
to the dual problems (9) and (10). By this construction, we can ensure the fast convergence
rate of F (αk) − F (α∗) ≤ O(1/k2) for various classification models in a unified way. In
other word, the APG method can obtain a solution with desired accuracy ε > 0 in O(1/

√
ε)

iteration.
There is an existing work (Zhou et al., 2010) which applies the APG method to the

primal C-SVM, i.e., (7) with the hinge loss function. However, their method requires O(1/ε)
iteration to obtain a solution with the desired accuracy ε > 0 because it approximates the
hinge loss by a smoothed function and making the approximation tighter requires extra
iterations (Nesterov, 2005).

3.2 Relation to Existing Binary Classification Models

In this section, we show some specific examples of L and L∗.

9

Ito, Takeda, and Toh

3.2.1 C-SVM

Let Ã = X̃ and a = y in (7). Let `(z) = max{0, 1 − z} be the hinge loss and L(z) =∑m
i=1 `(zi). Then the primal problem (7) is known as the standard C-SVM (Cortes and

Vapnik, 1995). Since

L∗(−α) =
m∑
i=1

`∗(−αi), where `∗(−α) =

{
−α if α ∈ [0, 1]

+∞ otherwise,

the dual problem (9) can be reduced to

min
α

C

2
‖X̃α‖22 −α>e+ δSC (α), (11)

where SC = {α ∈ Rm | α>y = 0, 0 ≤ α ≤ e}.

3.2.2 `2-SVM

Let Ã = X̃ and a = y in (7). Let `(z) = (max{0, 1 − z})2 be the truncated squared loss
and L(z) =

∑m
i=1 `(zi). Then the primal problem (7) is known as the `2-SVM. Since

L∗(−α) =
m∑
i=1

`∗(−αi), where `∗(−α) =

{
α2

4 if α ≥ 0

+∞ otherwise,

the dual problem (9) can be reduced to

min
α

C

2
‖X̃α‖22 +

‖α‖22
4

+ δS`2 (α), (12)

where S`2 = {α ∈ Rm | α>y = 0, α ≥ 0}.

3.2.3 Logistic regression

Let Ã = X̃ and a = y in (7). Let `(z) = log(1 + exp(−z)) be the logistic loss and
L(z) =

∑m
i=1 `(zi). Then the primal problem (7) is the logistic regression (Cox, 1958).

Since

L∗(−α) =
m∑
i=1

`∗(−αi), where `∗(−α) =


α log(α) + (1− α) log(1− α) (0 < α < 1)

0 (α = 0, 1)

+∞ otherwise,

the dual problem (9) can be reduced to

min
α

C

2
‖X̃α‖22 +

∑
i:αi>0

αi log(αi) +
∑
i:αi<1

(1− αi) log(1− αi) + δSLR
(α), (13)

where SLR = {α ∈ Rm | α>y = 0, 0 ≤ α ≤ e}.
We should note that the gradient of the second and third terms in (13) is not Lipschitz

continuous on SLR and not defined at αi = 0, 1 (i ∈ M). However, since it is known that

10

A Unified Formulation and Fast APG Method for Classification

its optimal solution α∗ satisfies 0 < α∗ < e (Yu et al., 2011), we can instead solve (13) by
replacing SLR by SLR(ξ) := {α ∈ Rm | α>y = 0, ξe ≤ α ≤ (1 − ξ)e}, where ξ > 0 is a
small constant. The second and third terms in (13) are differentiable over SLR(ξ). We will
later show numerically that the resulting decision hyperplane is robust to a small deviation
of ξ (see Table 6 in Section 5).

3.2.4 ν-SVM

Let Ã = X̃ and a = y in (7). Let

L(z) = min
ρ

{
− ρ+

1

mν

m∑
i=1

max{ρ− zi, 0}
}
,

where ν ∈ (0, 1] is a given parameter. The function L(z), known as the conditional value-
at-risk (CVaR) (Rockafellar and Uryasev, 2000), is the expected value of the upper ν-tail
distribution. Gotoh and Takeda (2005) pointed out that minimizing CVaR is equivalent to
ν-SVM (Schölkopf et al., 2000), which is also known to be equivalent to C-SVM.

Since

L∗(−α) =

{
0

(
e>α = 1 and α ∈

[
0, 1

mν

]m)
+∞ otherwise,

the dual problem is given by

min
α

C

2
‖X̃α‖22 + δSν (α), (14)

where Sν = {α ∈ Rm | α>y = 0, α>e = 1, 0 ≤ α ≤ 1
mνe} is the intersection of the

hyperplane {α | α>y = 0} and the truncated simplex {α | α>e = 1, 0 ≤ α ≤ 1
mνe}. Note

that any positive value for C does not change the optimal solution of (14), and therefore,
we can set C = 1. There exists a valid range (νmin, νmax] ⊆ (0, 1] for ν, where νmin is the

infimum of ν > 0 such that X̃α∗ 6= 0, and νmax := 2 max{m+,m−}
m is the maximum of ν ≤ 1

for which Sν 6= φ. Since the parameter ν takes a value in the finite range (νmin, νmax],
choosing the parameter value for ν-SVM is often easier than that for C-SVM.

3.2.5 Distance Weighted Discrimination (DWD)

Let Ã = X̃, a = y, λ = 1 and p = 2 in (8). For a positive parameter ν, let `(z) be the
function defined by

`(z) = min
ρ

{1

ρ
+

1

mν
(ρ− z) | ρ ≥ z, ρ ≥ √mν

}

=

{
1
z if z ≥ √mν
2
√
mν−z
mν otherwise

.

Consider L(z) =
∑m

i=1 `(zi). This loss function is used in the distance weighted discrimina-
tion (DWD) (Marron et al., 2007) which is proposed as an alternative to ν-SVM. Since we

11

Ito, Takeda, and Toh

have

L∗(−α) =
m∑
i=1

`∗(−αi), where `∗(−α) =

{
−2
√
α

(
0 ≤ α ≤ 1

mν

)
+∞ otherwise,

the dual problem (9) can be equivalently reduced to

min
α

{
‖X̃α‖2 − 2

m∑
i=1

√
αi + δSDWD

(α)
}
, (15)

where SDWD =
{
α ∈ Rm | α>y = 0, 0 ≤ α ≤ 1

mνe
}

.

As in the case of the logistic regression, the second term in (15) is not differentiable at
αi = 0 (i ∈ M). However, since it is known that there exists an optimal solution α∗ such
that α∗i > 0 (i ∈ M), we can solve (15) by replacing SDWD by SDWD(ξ) =

{
α ∈ Rm |

α>y = 0, ξe ≤ α ≤ 1
mνe

}
where ξ > 0 is a small constant. The second term in (15) is

differentiable over SDWD(ξ).

3.2.6 Extended Fisher’s discriminant analysis (MM-FDA)

The well-known Fisher’s discriminant analysis (FDA) uses a decision function to maximize
the ratio of the variance between the classes to the variance within the classes. Let x̄o and
Σo, o ∈ {+,−}, be the mean vectors and the positive definite covariance matrices of xi,
i ∈Mo, respectively. Then FDA is formulated as follows:

max
w

(
w>(x̄+ − x̄−)

)2
w>(Σ+ + Σ−)w

.

Its optimal solution is given by

w∗ = (Σ+ + Σ−)−1(x̄+ − x̄−).

Let Ã = I and a = 0 in (7). Here we consider the mean-standard deviation type of risk
corresponding to FDA:

L(w) = −w>(x̄+ − x̄−) + κ
√
w>(Σ+ + Σ−)w,

where κ > 0 is a parameter. Since

L∗(−α) = sup
w

{
−α>w +w>(x̄+ − x̄−)− κ

√
w>(Σ+ + Σ−)w

)}
= sup

w
min
‖u‖2≤κ

{
−α>w +w>(x̄+ − x̄−) +w>(Σ+ + Σ−)1/2u

}
= min

u

{
δSFDA

(u) | α = (x̄+ − x̄−) + (Σ+ + Σ−)1/2u
}
,

where SFDA =
{
u ∈ Rn | ‖u‖2 ≤ κ

}
, the dual problem (9) can be reduced to

min
α,u

{
δSFDA

(u) +
C

2
‖α‖22 | α = (x̄+ − x̄−) + (Σ+ + Σ−)1/2u

}
,

12

A Unified Formulation and Fast APG Method for Classification

which is equivalent to

min
u

{
δSFDA

(u) +
∥∥(x̄+ − x̄−) + (Σ+ + Σ−)1/2u

∥∥2

2

}
. (16)

Takeda et al. (2013) showed that

κmax :=

∣∣∣∣ infu,κ κ

s.t. minu
{∥∥(x̄+ − x̄−) + (Σ+ + Σ−)1/2u

∥∥
2

+ δSFDA
(u)
}

= 0

is equivalent to FDA. Hence (16) can be seen as an extension of FDA. We will refer it as
MM-FDA in this paper.

3.2.7 Maximum Margin Minimax Probability Machine (MM-MPM)

Let Ã = I and a = 0 in (7). We consider a class-wise mean-standard deviation type of risk:

L(w) =
(
−w>x̄+ + κ

√
w>Σ+w

)
−
(
−w>x̄− + κ

√
w>Σ−w

)
.

Similar to MM-FDA, we have

L∗(w) = sup
w

{
−α>w +

(
w>x̄+ − κ

√
w>Σ+w

)
−
(
w>x̄− − κ

√
w>Σ−w

)}
= sup

w
min

‖u+‖2≤κ
‖u−‖2≤κ

{
−α>w +

(
w>x̄+ +w>Σ

1/2
+ u+

)
−
(
w>x̄− +w>Σ

1/2
− u−

)}
= min
u+,u−

{
δSMPM

(u+,u−) | α =
(
x̄+ + Σ

1/2
+ u+

)
−
(
x̄− + Σ

1/2
− u−

)}
,

where SMPM =
{

(u+,u−) ∈ Rn × Rn | ‖u+‖2 ≤ κ, ‖u−‖2 ≤ κ
}

. Thus the dual problem
(9) can be reduced to

min
α,u+,u−

{
δSMPM

(u+,u−) +
C

2
‖α‖22 | α =

(
x̄+ + Σ

1/2
+ u+

)
−
(
x̄− + Σ

1/2
− u−

)}
,

which is equivalent to

min
u+,u−

{
δSMPM

(u+,u−) +
∥∥(x̄+ + Σ

1/2
+ u+

)
−
(
x̄− + Σ

1/2
− u−

)∥∥2

2

}
. (17)

The last problem (17) is equivalent to the dual of the maximum margin minimax probability
machine (MM-MPM) (Nath and Bhattacharyya, 2007).

4. A Fast APG method for Unified Binary Classification

In this section, we first provide an efficient vector projection computation in order to apply
the APG method to the unified formulation of the binary classification models. After that,
we develop a fast APG (FAPG) method and show its convergence.

13

Ito, Takeda, and Toh

4.1 Vector Projection Computation

When applying the APG method to a constrained optimization problem over S, the pro-
jection PS onto S appears at Step 1. We need to change the computation of the projection
PS depending on the definition of S. In this section, we provide efficient projection compu-
tations for SC , S`2 , SLR(ξ), Sν , SDWD(ξ), SMPM, and SFDA.

4.1.1 Bisection Method for Projection

Many models shown in Section 3 have a linear equality and box constraints. Here we
consider the set S = {α ∈ Rm | α>e = r, l ≤ αi ≤ u (∀i ∈ M)} and provide an efficient
algorithm for computing the projection PS(ᾱ):

min
α

{1

2
‖α− ᾱ‖22 | α>e = r, l ≤ αi ≤ u, (i ∈M)

}
. (18)

We assume that (18) is feasible. One way to solve (18) is to use breakpoint search algorithms
(e.g., (Helgason et al., 1980; Kiwiel, 2008; Duchi et al., 2008)). They are exact algorithms
and have linear time complexity of O(m). Helgason et al. (1980); Kiwiel (2008) developed
the breakpoint search algorithms for the continuous quadratic knapsack problem (CQKP)
which involves the projection (18) as a special case. By integrating the breakpoint search
algorithm and the red-black tree data structure, Duchi et al. (2008) developed an efficient
update algorithm of the gradient projection method when the gradient is sparse.

In this paper, we provide a numerical algorithm for (18). Although its worst case

complexity is O
(
m log

(
ᾱmax−ᾱmin

ε′

))
, where ᾱmax = max{ᾱi | i ∈ M} and ᾱmin = min{ᾱi |

i ∈M}, it often requires less time to compute a solution α̂ such that ‖α̂− PS(ᾱ)‖∞ < ε′ =
u in practice, where u ≈ 2.22× 10−16 is the IEEE 754 double precision. Note that the error
u can occur even when using the breakpoint search algorithm because u is the supremum of
the relative error due to rounding in the floating point number system. Thus, it is sufficient
to choose ε′ = u as the stopping tolerance for our algorithm in practice. 2

The difference between the algorithms is that the breakpoint search algorithms use
binary search, whereas our algorithm uses bisection to solve an equation. It is known that
the projection (18) can be reduced to finding the root of an one dimensional monotone
function.

Lemma 2 (e.g. Helgason et al., 1980) Suppose that the problem (18) is feasible. Let

αi(θ) = min
{

max{l, ᾱi − θ}, u
}
, i ∈M

and let

h(θ) =
∑
i∈M

αi(θ).

The following statements hold:

2. Another practical way is to decrease ε′, i.e., to improve the accuracy of the projection progressively, as
APG iterates. The APG method with the inexact computation also share the same iteration complexity
O(1/k2) as the exact counterpart, as shown in (Jiang et al., 2012).

14

A Unified Formulation and Fast APG Method for Classification

−1 −0.5 0 0.5 1

0

0.5

1

1.5

2

θ
h

Figure 2: Illustration of the function h(θ) :=
∑

i∈M αi(θ). The function h is piecewise
linear.

1. h(θ) is a continuous, non-increasing, and piecewise linear function which has break-
points at ᾱi − u and ᾱi − l (i ∈M).

2. There exists θ∗ ∈ (ᾱmin − r
m , ᾱmax − r

m) such that h(θ∗) = r.

3. Let α̂i = αi(θ
∗), i ∈M . Then α̂ is an optimal solution of (18).

An example of h(θ) is illustrated in Figure 2. To solve h(θ) = r, the breakpoint search uses
the binary search to find two adjacent breakpoints that contain a solution θ∗ between them.
Then the exact solution θ∗ can be obtained by linear interpolation of the two breakpoints.

Instead of binary search, we employ the bisection method to solve the equation h(θ) = r.

Bisection Algorithm for Projection

Step 1. Set θu = ᾱmax − r
m and θl = ᾱmin − r

m .

Step 2. Set θ̂ = (θu + θl)/2

Step 3. Compute h(θ̂).

Step 4. If h(θ̂) = r, then terminate with θ̂∗ = θ̂.
Else if h(θ̂) < r, then set θu = θ̂.
Else if h(θ̂) > r, then set θl = θ̂.

Step 5. If |θu − θl| < ε′, then terminate with θ̂∗ = θ̂. Else, go to Step 2.

All steps require at mostO(m) operations and the maximum number of iteration is
⌈

log(ᾱmax−ᾱmin
ε′)

⌉
.

Thus, the computational complexity of the bisection algorithm is at mostO
(
m log(ᾱmax−ᾱmin

ε′)
)
.

As the bisection method narrows the interval (θl, θu), some of the terms αi(θ), i ∈ M ,
can be set to l, ᾱi−θ, or u for θ ∈ (θl, θu). By exploiting the property of αi(θ), we can refine
the computation of h(θ̂) in Step 3 by avoiding recalculation of certain sums. Moreover, we
can often obtain an exact solution. Let us divide M into the following three disjoint sets

15

Ito, Takeda, and Toh

for given θl and θu satisfying θl < θu:

U := {i ∈M | ᾱi − θu ≥ u (i.e., αi(θ) = u, ∀θ ∈ [θl, θu])}
L := {i ∈M | ᾱi − θl ≤ l (i.e., αi(θ) = l, ∀θ ∈ [θl, θu])}
I := M\(U ∪ L).

If ᾱi − θu ≥ l and ᾱi − θl ≤ u ∀i ∈ I, then

θ =
(
|U |u+ |L|l +

∑
i∈I

αi − r
)
/|I| (19)

is an exact solution. If I 6= φ, then we also divide I into the following three disjoint sets for
given θ̂ ∈ (θl, θu):

IU = {i ∈ I | ᾱi − θ̂ ≥ u, (i.e., αi(θ) = u ∀θ ∈ [θl, θ̂])}
IL = {i ∈ I | ᾱi − θ̂ ≤ l, (i.e., αi(θ) = l ∀θ ∈ [θ̂, θu])}
IC = I\(IU ∪ IL)

Then we have

h(θ̂) =
∑
i∈M

αi(θ̂) = |U |u︸︷︷︸
su

+ |IU |u︸ ︷︷ ︸
∆su

+ |L|l︸︷︷︸
sl

+ |IL|l︸︷︷︸
∆sl

+
∑
i∈IC

αi︸ ︷︷ ︸
sc

−|IC |θ̂.

By storing the value of each terms, we can reduce the number of additions. The resulting
algorithm can be described as Algorithm 2.

Compared to the existing breakpoint search algorithms, our bisection method can avoid
the computation of breakpoints and the comparison between them. In many cases, our
algorithm can obtain the exact solution by (19). It is often faster than the breakpoint
search algorithms in practice (see Table 2 in Section 5).

Remark 3 Mimicking (Kiwiel, 2008), we can divide the set M more finely and reduce the
recalculation of certain sums as shown in Appendix B. However, Algorithm 2 allows for
simpler implementation and runs faster on our computer systems.

In the followings, we use Algorithm 2 to compute the projection onto SC , S`2 , SLR(ξ), SDWD(ξ)
and Sν .

4.1.2 Projection for C-SVM, Logistic Regression, `2-SVM, DWD

The projection for C-SVM, logistic regression, `2-SVM, and DWD can be formulated as
follows:

min
α

{1

2
‖α− ᾱ‖22 | y>α = 0, l ≤ αi ≤ u (i ∈M)

}
, (20)

where (l, u) = (0, 1) for C-SVM, (l, u) = (0,∞) for `2-SVM, (l, u) = (ξ, 1 − ξ) for logistic
regression, and (l, u) =

(
ξ, 1

mν

)
for DWD. By transforming the variable α and the vector ᾱ

to

βi =

{
αi if yi = 1

−αi + l + u otherwise
and β̄i =

{
ᾱi if yi = 1

−ᾱi + l + u otherwise,

16

A Unified Formulation and Fast APG Method for Classification

Algorithm 2 Bisection Algorithm for (18)

INPUT: ᾱ, r, l, u, ε′ > 0 OUTPUT: α
INITIALIZE: I ←M, su ← sl ← sc ← 0, θu ← ᾱmax − r

m , θ
l ← ᾱmin − r

m # Step 1
while |θu − θl| > ε′ do

θ̂ ← θu+θl

2 # Step 2

û← u+ θ̂, l̂← l + θ̂
IU ← {i ∈ I | ᾱi ≥ û}, IL ← {i ∈ I | ᾱi ≤ l̂} # Step 3
IC ← I\(IU ∪ IL)
∆su ← |IU |u, ∆sl ← |IL|l, sc ←

∑
i∈IC αi

val← su + ∆su + sl + ∆sl + sc − |IC |θ̂
if val < r then # Step 4
θu ← θ̂, I ← IC ∪ IL
su ← su + ∆su

else if val > r then
θl ← θ̂, I ← IC ∪ IU
sl ← sl + ∆sl

else
break

end if
if ᾱi − θu ≥ l and ᾱi − θl ≤ u ∀i ∈ I then
θ̂ ← (su + sl + sc − r)/|I|
break

end if
end while
αi ← αi(θ̂), ∀i ∈M # Step 5

17

Ito, Takeda, and Toh

respectively, the problem (20) can be reduced to

min
β

{1

2
‖β − β̄‖22 | e>β = (l + u)m−, l ≤ βi ≤ u (i ∈M)

}
.

The last problem can be solved by Algorithm 2.

4.1.3 Projection for ν-SVM

In applying the APG method to ν-SVM, we shall be concerned with the projection PSν (ᾱ):

min
α

{1

2
‖α− ᾱ‖22

∣∣ α>y = 0, α>e = 1, 0 ≤ α ≤ 1

mν
e
}
. (21)

Let α+ and α− be the subvectors of α corresponding to the label +1 and −1, respectively.
Let e+ and e− be subvectors of e with size m+ and m−. From the fact that the conditions
α>y = 0 and α>e = 1 are equivalent to α>o eo = 1

2 (o ∈ {+,−}), the problem (21) can be
decomposed into the following two problems:

min
αo

{1

2
‖αo − ᾱo‖22

∣∣ e>o α =
1

2
, 0 ≤ αo ≤

1

mν
eo

}
, o ∈ {+,−}. (22)

Then, Algorithm 2 can be applied to solve (22).

4.1.4 Projection for MM-MPM and MM-FDA

The projection PSFDA
(ᾱ) of ᾱ onto SFDA =

{
α ∈ Rn | ‖α‖2 ≤ κ

}
is easy to compute; We

have
PSFDA

(ᾱ) = min
{

1,
κ

‖ᾱ‖2

}
ᾱ.

Similarly, the projection PSMPM
(ᾱ+, ᾱ−) for MM-MPM can be computed as follows:

PSMPM
(ᾱ+, ᾱ−) =

(
min

{
1,

κ

‖ᾱ+‖2

}
ᾱ+,min

{
1,

κ

‖ᾱ−‖2

}
ᾱ−

)
.

4.2 Convergence Analysis of a Fast APG Method with Speed-up Strategies

We have shown several strategies to speed-up the APG method in Section 2. While the
convergence proof has been shown for the backtracking ‘bt’ and decreasing ‘dec’ strategy,
the convergence for the restart ‘re’ and maintaining top-speed ‘mt’ strategy is unknown. In
this section, we develop a fast APG (FAPG) method by combining all these techniques and
show its convergence.

4.2.1 A Fast APG with Stabilization

In addition to the techniques in Section 2, we also employ the following practical stabilization
strategy, where it does not affect our convergence analysis.

Decreasing L (‘dec’) and restarting strategies (‘re’) shown in Section 2 are effective to
speed-up the practical convergence of the APG method, especially in early iterations and
near the optimal solution, respectively (see Figures 6 and 10 in Section 5). However, they
have opposing effects. Decreasing Lk enlarges the stepsize 1

Lk
, which extends αk − αk−1.

18

A Unified Formulation and Fast APG Method for Classification

ç√

�k+1

↵k

↵k+1

↵k�1

�k+2

ç√

�k+1

↵k�1

↵k

↵k+1�k+2

Figure 3: Effects of the value of Lk to the momentum tk−1
tk+1

(αk − αk−1) (left: Lk is large,

right: Lk is small). A smaller value of Lk gives a larger step size at Step 1
as illustrated by the solid lines. This results in high momentum at Step 3 as
illustrated by the dashed lines.

This inherently induces high momentum (as illustrated in Figure 3). On the other hand,
the restarting strategy cancels out high momentum. Hence combining them triggers the
restart frequently and makes the APG method unstable. In order to avoid the instability, it
would be necessary to reduce the ηd (rate of decreasing Lk) near the optimum. The restart
would occur when the sequences approach the optimum. Therefore we take the following
strategy to reduce the value of ηd with a constant δ ∈ (0, 1):

‘st’: Update ηd ← δ · ηd + (1− δ) · 1 when the restart occurs.

Algorithm 3 is our FAPG method which combines these strategies. The difference from
Algorithm 1 is the “if block” after Step 3.

4.2.2 Convergence Analysis

Let k̄i denotes the number of iteration taken between the (i − 1)-th and the i-th restart
(see Figure 1 for illustration). In the followings, we denote αk as α(j,kj+1) if k =

∑j
i=1 k̄i +

kj+1 (k̄j+1 ≥ kj+1 ≥ 0). In other word, α(i,ki+1) denotes a point obtained at the ki+1-th

iteration counting from the i-th restart. Note that α(i+1,0) = α(i,k̄i+1−1) (∀i ≥ 0). We will
frequently switch the notations αk and α(i,ki+1) for notational convenience.

The following lemma is useful to evaluate the function F .

Lemma 4 (from Beck and Teboulle, 2009) If F (TL(β)) ≤ QL(TL(β);β), then

F (TL(β))− F (α) ≤ L

2

{
‖β −α‖22 − ‖TL(β)−α‖22

}
, ∀α ∈ Rd.

Using Lemma 4, we obtain the following key lemma.

19

Ito, Takeda, and Toh

Algorithm 3 A Fast Accelerated Proximal Gradient (FAPG) Method with Speeding-Up
Strategies

Input: f , ∇f , g, proxg,L, ε > 0, L1 = L0 > 0, ηu > 1, ηd > 1, kmax > 0, β1 = α0 = α−1,
K1 ≥ 2, δ ∈ (0, 1)
Output: αk

Initialize: t1 ← 1, t0 ← 0, i← 1, kre ← 0
for k = 1, . . . , kmax do

αk ← TLk(βk) = proxg,Lk

(
βk − 1

Lk
∇f(βk)

)
Step 1

while F (αk) > QLk(αk;βk) do
Lk ← ηuLk # ‘bt’

tk ←
1+

√
1+4(Lk/Lk−1)t2k−1

2

βk ← αk−1 +
tk−1−1
tk

(αk−1 −αk−2)

αk ← TLk(βk) = proxg,Lk

(
βk − 1

Lk
∇f(βk)

)
end while
if ‖Lk(TLk(αk)−αk)‖ < ε then

break
end if
Lk+1 ← Lk/ηd # ‘dec’

tk+1 ← 1+
√

1+4(Lk+1/Lk)t2k
2 # Step 2’

βk+1 ← αk + tk−1
tk+1

(αk −αk−1) # Step 3

if k > kre +Ki and 〈∇f(βk), αk −αk−1〉+ g(αk)− g(αk−1) > 0 then
kre ← k, Ki+1 ← 2Ki, i← i+ 1 # ‘mt’
ηd ← δ · ηd + (1− δ) · 1 # ‘st’
tk+1 ← 1, tk ← 0, βk+1 ← αk−1, αk ← αk−1 # ‘re’

end if
end for

20

A Unified Formulation and Fast APG Method for Classification

Lemma 5 Let the sequence {αk}∞k=1(≡ {α(i,ki+1)}) be generated by Algorithm 3. The fol-
lowing inequality holds:

F (αk) ≤ F (α0), ∀k ≥ 1.

Moreover,

F (α(i,ki+1)) ≤ F (α(i,0)), ∀i ≥ 0 and ∀ki+1 ∈ {0, 1, 2, . . . , k̄i+1},

and
F (α(i+1,0)) ≤ F (α(i,0)), ∀i ≥ 0.

Proof First, assume that the restart does not occur (i.e., the steps ‘re’, ‘st’, and ‘mt’ are
not executed) until the k-th iteration. From Lemma 4, we have

F (α1)− F (α0) ≤ L1

2

{
‖β1 −α0‖22 − ‖α1 −α0‖22

}
= −L1

2
‖α1 −α0‖22 ≤ 0. (23)

For all n = 1, 2, . . ., we also have

F (αn+1)− F (αn) ≤ Ln+1

2

{
‖βn+1 −αn‖22 − ‖αn+1 −αn‖22

}
=
Ln+1

2

{(tn − 1

tn+1

)2
‖αn −αn−1‖22 − ‖αn+1 −αn‖22

}
.

Summing over n = 1, 2, . . . , k − 1, we obtain

F (αk)− F (α1)

≤ 1

2

{
L2

(t1 − 1

t2

)2
‖α1 −α0‖22 +

k−1∑
n=2

(
Ln+1

(tn − 1

tn+1

)2
− Ln

)
‖αn −αn−1‖22 − Lk‖αk −αk−1‖22

}
.

Note that t1 − 1 = 0 and
(
Ln+1

(
tn−1
tn+1

)2
− Ln

)
≤ 0 for all n ≥ 1 because

tn − 1

tn+1
=

2(tn − 1)

1 +
√

1 + 4(Ln+1/Ln)t2n
≤ 2(tn − 1)√

4(Ln+1/Ln)t2n
=

√
Ln
Ln+1

tn − 1

tn
.

Thus we have
F (αk)− F (α1) ≤ 0.

Similarly, since the restart does not occur from α(i,0) to α(i,k̄i+1) (∀i ≥ 0), we have

F (α(i,ki+1)) ≤ F (α(i,0)), ∀ki+1 ∈ {0, 1, . . . , k̄i+1},

and hence by definition,

F (α(i+1,0)) = F (α(i,k̄i+1−1)) ≤ F (α(i,0)).

Lemma 5 states that the initial function value F (α(i,0)) of each outer iteration gives an
upper bound of the subsequent function values and hence the sequence {F (α(i,0))}∞i=1 is
non-increasing as illustrated in Figure 4.

Now we are ready to show the convergence result of Algorithm 3.

21

Ito, Takeda, and Toh

0

Iteration

F
(α

k
)

.....

F(α (0 , 0))

F(α (1 , 0))

F(α (2 , 0))

(1 , 0) (2 , 0)

Figure 4: Illustration of the sequence {F (αk)}∞k=0 generated by Algorithm 3. Lemma 5
ensures that the function values F (α(i,0)) at restarted points are non-increasing
and gives upper bounds of the subsequent function values.

Theorem 6 Consider the sequence {αk}∞k=0(≡ {α(i,ki+1)}) generated by Algorithm 3. Let
S∗ be the set of optimal solutions and B := {α | F (α) ≤ F (α0)} be the level set. Assume
that there exists a finite R such that

R ≥ sup
α∗∈S∗

sup
α∈B
‖α−α∗‖2.

Then we have

F (αk)− F (α∗) ≤ 2ηuLfR
2
(log2(k + 2)

k − log2(k + 2)

)2
, ∀k ≥ 3.

Proof From Lemma 5, we have αk ∈ B for all k ≥ 1. Let αk = α(j,kj+1). We assume
kj+1 ≥ 1 without loss of generality. From Proposition 1, we have

F (α(j,kj+1))− F (α∗) ≤ 2ηuLf‖α(j,0) −α∗‖22
k2
j+1

Moreover, for all 1 ≤ i ≤ j, Lemma 5 leads to

F (α(j,kj+1))− F (α∗) ≤ F (α(j,0))− F (α∗)

≤ F (α(i,0))− F (α∗)

= F (α(i−1,k̄i−1))− F (α∗)

≤ 2ηuLf‖α(i−1,0) −α∗‖22
(k̄i − 1)2

≤ 2ηuLfR
2

(k̄i − 1)2
.

22

A Unified Formulation and Fast APG Method for Classification

Note that k̄i ≥ Ki ≥ 2. Thus we obtain

F (α(j,kj+1))− F (α∗) ≤ 2ηuLfR
2

(max{k̄1 − 1, k̄2 − 1, . . . , k̄j − 1, kj+1})2

≤ 2ηuLfR
2

(max{k̄1, k̄2, . . . , k̄j , kj+1} − 1)2

From

k ≥
j∑
i=1

Ki =
K1(2j − 1)

2− 1
≥ 2j+1 − 2,

the number of restart j is at most log2(k + 2)− 1. Hence we have

max{k̄1, k̄2, . . . , k̄j , kj+1} ≥
k

j + 1
≥ k

log2(k + 2)
, (24)

which leads to

F (α(j,kj+1))− F (α∗) ≤ 2ηuLfR
2
(log2 k

k − log2(k + 2)

)2
, ∀k ≥ 3.

The above theorem ensures the convergence of Algorithm 3 for C-SVM, ν-SVM, MM-MPM,
MM-FDA, and `2-SVM because the level set B is bounded for any initial point α0 ∈ dom(g)
since SC , Sν , SFDA, and SMPM are bounded and the objective function of `2-SVM is strongly
convex. Similarly, the algorithm is convergent for the logistic regression problem (13) if
SLR is replaced by {α ∈ Rm | α>y = 0, ξe ≤ α ≤ e} for some small constant ξ > 0. To
guarantee the convergence of Algorithm 3 for the distance weighted discrimination problem
(15), we need to replace SDWD by SDWD(ξ) :=

{
α ∈ Rm | α>y = 0, ξe ≤ α ≤ 1

mνe
}

for

some small constant ξ > 0 and make the assumption that ‖X̃α‖2 > 0 for all α ∈ SDWD(ξ).
The iteration complexity O

(
(log(k)/k)2

)
shown in Theorem 6 can be improved to

O
(
(W (k)/k)2

)
by finding a better lower bound of (24), where the Lambert’s W function

W (·) (Corless et al., 1996) is the inverse function of x exp(x) and diverges slower than log(·).

Theorem 7 Consider the sequence {αk}∞k=0(≡ {α(i,ki+1)}) generated by Algorithm 3. Let
S∗ be the set of optimal solutions and B := {α | F (α) ≤ F (α0)} be the level set. Assume
that there exists a finite R such that

R ≥ sup
α∗∈S∗

sup
α∈B
‖α−α∗‖2.

Then we have

F (αk)− F (α∗) ≤ 2ηuLfR
2
(W (2k ln 2)

k ln 2−W (2k ln 2)

)2
, ∀k ≥ 3.

Proof See Appendix C.

23

Ito, Takeda, and Toh

4.3 A Practical FAPG

In this section, we develop a practical version of the FAPG method which reduces the
computation cost of FAPG at each iterations.

4.3.1 Heuristic Backtracking Procedure

Although the APG method of (Scheinberg et al., 2014), which is employed in Algorithm 1 and
modified in Algorithm 3, can guarantee the convergence, its principal drawback is the extra
computational cost at the backtracking step. Recall that

QLk(αk;βk) = f(βk) + 〈∇f(βk), αk − βk〉+
Lk
2
‖αk − βk‖22 + g(αk).

To check the condition F (αk) ≤ QLk(αk;βk), we need to recompute f(βk) and ∇f(βk)
since βk is updated at each loop of the backtracking.

On the other hand, since the original APG of (Beck and Teboulle, 2009) does not update
βk during the backtracking step, we can reduce the computation cost by storing the value
of f(βk) and ∇f(βk). Hence we follow the strategy of (Beck and Teboulle, 2009), i.e., we
remove the steps for updating tk and βk subsequent to ‘bt’ from Algorithm 3 and restore

Step 2 as tk+1 ← 1+
√

1+4t2k
2 .

4.3.2 Skipping Extra Computations

The backtracking step (‘bt’) involves extra computation of the function value F (αk). Check-
ing the termination criteria Lk‖TLk(αk) − αk‖2 < ε also involves the extra computation
of ∇f(αk) which is needed for TLk(αk). These computation costs can be significant (see
Tables 3 and 9 in Section 5). Thus we compute the ‘bt’ and Lk‖TLk(αk) − αk‖2 in every
10 and 100 iterations, respectively.

Instead of checking the condition Lk‖TLk(αk) − αk‖2 < ε, we check whether Lk‖αk −
βk‖2 < ε at each iteration. The reason for doing so is that computing Lk‖αk−βk‖2 is much
cheaper than computing TLk(αk). It follows from (4) and (5) that if αk = βk, then αk is
an optimal solution. Moreover, Lk(α

k − βk) represents a residual of a sufficient optimality
condition for αk (and necessary and sufficient optimality condition for βk).

Finally, our practical FAPG is described as in Algorithm 4. We note that FAPG can be
applied not only to the unified formulation shown in Section 3, but also to the optimization
problem of the form (2). See Appendix D in which we demonstrate the performance of
FAPG for `1-regularized classification models.

4.4 Computation of Primal Solution from Dual Solution

Various classification models can be solved in a unified way by applying the vector projection
method and the FAPG method to the dual formulation (9) or (10). However, the primal
solution (w, b) of (7) or (8) is still required to do classification tasks. In this section, we
provide a method to compute the primal solution (ŵ, b̂) which corresponds to the dual
solution α̂.

24

A Unified Formulation and Fast APG Method for Classification

Algorithm 4 A Practical Fast Accelerated Proximal Gradient Method

Input: f , ∇f , g, proxg,L, ε > 0, L > 0, ηu > 1, ηd > 1 δ ∈ (0, 1), kmax > 0, K1 ≥ 2,
β1 = α0

Output: αk

Initialize: t1 ← 1, i← 1, kre ← 0
for k = 1, . . . , kmax do
αk ← TLk(βk) = proxg,Lk

(
βk − 1

L∇f(βk)
)

Step 1
if k mod 10 == 1 then

while F (αk) > QLk(αk;βk) do

Lk ← ηLk; αk ← TLk(βk)← proxg,Lk

(
βk − 1

Lk
∇f(βk)

)
‘bt’

end while
end if
if ‖L(αk − βk)‖ < ε or ((k mod 100 == 1) and (‖L(TL(αk)−αk)‖ < ε)) then

break
end if
Lk+1 ← Lk/ηd # ‘dec’

tk+1 ← 1+
√

1+4t2k
2 # Step 2

βk+1 ← αk + tk−1
tk+1

(αk −αk−1) # Step 3

if k > kre +Ki and 〈∇f(βk), αk −αk−1〉+ g(αk)− g(αk−1) > 0 then
kre ← k, Ki+1 ← 2Ki, i← i+ 1. # ‘mt’
ηd ← δ · ηd + (1− δ) · 1. # ‘st’
tk+1 ← 1, βk+1 ← αk−1, αk ← αk−1 # ‘re’

end if
end for

25

Ito, Takeda, and Toh

4.4.1 Computation of w

The primal vector ŵ in (8) corresponding to the dual solution α̂ (and û for MM-FDA and
MM-MPM) can be obtained as

ŵ = argmax
‖w‖p≤1

w>z, with ŵi =
sign(zi)|zi|q−1

‖z‖q−1
q

∀ i ∈M, (25)

where q = p/(p − 1) and z = Ãα̂ (i.e., z = X̃α̂ for C-SVM, `2-SVM, ν-SVM, logistic
regression, and DWD; z = α̂ = (x̄+ − x̄−) + (Σ+ + Σ−)1/2û for MM-FDA; and z = α̂ =

(x̄+ + Σ
1/2
+ û+)− (x̄− + Σ

1/2
− û−) for MM-MPM).

4.4.2 Computation of b

There are some issues on computing an optimal bias term b. For C-SVM, `2-SVM, ν-
SVM, DWD, and logistic regression, the bias term b is derived from the Lagrange multiplier
corresponding to the constraint α>y = 0. However, it is often difficult to compute the
corresponding Lagrange multiplier. In addition, MM-FDA and MM-MPM does not provide
a specific way to compute the bias term. Thus we need to estimate an appropriate value of
b.

One of the efficient ways is to estimate b as the minimum solution of training error under
a given ŵ, i.e.,

b̂ ∈ argmin
b

ρ(b) :=

m∑
i=1

`
(
yi(x

>
i ŵ − b)

)
, where `(z) =

{
1 (z < 0)

0 (otherwise).
(26)

Let ζi = x>i ŵ (i = 1, 2, . . . ,m). Let σ be the permutation such that ζσ(1) ≤ ζσ(2) ≤
. . . ≤ ζσ(m). If b < ζσ(1), then x>i ŵ − b > 0 (∀i ∈ M), i.e., all samples are predicted
as positive ŷ = +1. Then we have m− misclassified samples and thus ρ(b) = m−. If
b ∈ (ζσ(1), ζσ(2)), then only xσ(1) is predicted as negative ŷ = −1. Thus we have ρ(b) =

m− + yσ(1). Similarly, if b ∈ (ζσ(k), ζσ(k+1)), then we have ρ(b) = m− +
∑k

i=1 yσ(i). Thus,

by letting k∗ ∈ argmink
∑k

i=1 yσ(i), an arbitrary constant b̂ ∈ (ζσ(k∗), ζσ(k∗+1)) is an optimal
solution of the problem (26). The minimization algorithm is as follows:

Step 1. Compute ζi = ŵ>xi (i = 1, 2, . . . ,m).

Step 2. Sort ζi as ζσ(1) ≤ ζσ(2) ≤ . . . ≤ ζσ(m).

Step 3. Find k∗ = argmink
∑k

i=1 yσ(i).

Step 4. Compute b̂ = (ζ(k∗) + ζ(k∗+1))/2.

Its computational complexity is O
(
m(n+ logm)

)
.

4.4.3 Duality Gap

The component b obtained above is not necessarily the primal optimal solution. Moreover,
α̂ and û are close to optimal, but may not be exactly optimal due to e.g., numeric overflow.

26

A Unified Formulation and Fast APG Method for Classification

We still obtain a primal solution (ŵ, b̂) with some optimality gap guarantee. Since (ŵ, b̂)
and α̂ are the primal and dual feasible solutions, respectively, we can obtain the duality
gap by {

L(Ã>ŵ − ab̂) +
1

2C
‖ŵ‖22)

}
−
{
L∗(−α̂) +

C

2
‖Ãα̂‖22

}
for the formulations of (7) and (9); and

L(Ã>ŵ − ab̂)−
{
L∗(−α̂) + λ‖Ãα̂‖∗p

}
for the formulations of (8) and (10). Therefore, the obtained primal solution (ŵ, b̂) has a
guarantee that the gap between its objective value and the optimal value is at most the
duality gap.

5. Numerical Experiment

In this section we demonstrate the performance of our proposed FAPG algorithm. We run
the numerical experiments on a Red Hat Enterprise Linux Server release 6.4 (Santiago) with
Intel Xeon Processor E5-2680 (2.7GHz) and 64 GB of physical memory. We implemented
the practical FAPG method (Algorithm 4) in MATLAB R2013a and the bisection method
(Algorithm 2) in C++. The C++ code was called from MATLAB via MEX files.

We conducted the experiments using artificial datasets and benchmark datasets from
LIBSVM Data (Chang and Lin, 2011). The artificial datasets were generated as follows.
Positive samples {xi ∈ Rn | i ∈ M+} and negative samples {xi ∈ Rn | i ∈ M−} were dis-
tributed with n-dimensional standard normal distributions Nn(0, In) and Nn(10√

n
e, SS>),

respectively, where the elements of the n × n matrix S are i.i.d. random variables follow-
ing the standard normal distribution N (0, 1). The marginal probability of the label was
assumed to be same, i.e. P (y = +1) = P (y = −1) = 1

2 . After generating the samples,
we scaled them so that each input vector xi (∀i ∈ M) was in [−1, 1]n for the purpose of
computational stability, following LIBSVM (Chang and Lin, 2011). On the other hand,
we scaled the benchmark datasets, that are not scaled by Chang and Lin (2011), so that
xi ∈ [0, 1]n, (∀i ∈ [m]) in order to leverage their sparsity. The details of benchmark datasets
are shown in Table 1.

5.1 Projection Algorithms

Before presenting the performance of our practical FAPG algorithm, we compared the per-
formance of our bisection algorithm (Algorithm 2) against the breakpoint search algorithm
(Kiwiel, 2008, Algorithm 3.1) with random pivoting. Both algorithms were implemented
in C++. We generated Rn-valued random vectors α̃ with uniformly distributed elements
and computed the projections PSν (α̃) of α̃ onto Sν , where Sν :=

{
α | e>o αo = 1

2 , o ∈
{+,−}, 0 ≤ α ≤ 1

mνe
}

with ν = 0.5. The bisection algorithm used the accuracy of
ε′ ≈ 2.22 × 10−16 (i.e., IEEE 754 double precision). Table 2 reports the average and stan-
dard deviation of the computation times and the number of iterations of 20 trials. As we
can see from Table 2, the bisection method was faster and more stable (in the sense that
the deviations are smaller) than the breakpoint search algorithm. This explains why we

27

Ito, Takeda, and Toh

data m (m+, m−) n range density source

a8a 22,696 (5,506, 17,190) 123 [0, 1]n 0.113 (Bache and Lichman, 2013)
a9a 32,561 (7,841, 24,720) 123 [0, 1]n 0.113 (Bache and Lichman, 2013)

australian 690 (307, 383) 14 [−1, 1]n 0.874 (Bache and Lichman, 2013)
breast-cancer 683 (444, 239) 10 [−1, 1]n 1.000 (Bache and Lichman, 2013)

cod-rna 59,535 (39,690, 19,845) 8 [0, 1]n 0.999 (Uzilov et al., 2006)
colon-cancer 62 (40, 22) 2,000 [0, 1]n 0.984 (Alon et al., 1999)

covtype 581,012 (297,711, 283,301) 54 [0, 1]n 0.221 (Bache and Lichman, 2013)
diabetes 768 (500, 268) 8 [−1, 1]n 0.999 (Bache and Lichman, 2013)
duke 44 (21, 23) 7,129 [0, 1]n 0.977 (West et al., 2001)

epsilon 400,000 (199,823, 200,177) 2,000 [−0.15, 0.16]n 1.000 (Sonnenburg et al., 2008)
fourclass 862 (307, 555) 2 [−1, 1]n 0.996 (Ho and Kleinberg, 1996)

german.numer 1,000 (300, 700) 24 [−1, 1]n 0.958 (Bache and Lichman, 2013)
gisette 6,000 (3,000, 3,000) 5,000 [−1, 1]n 0.991 (Guyon et al., 2005)
heart 270 (120, 150) 13 [−1, 1]n 0.962 (Bache and Lichman, 2013)
ijcnn1 35,000 (3,415, 31,585) 22 [−0.93, 1]n 0.591 (Prokhorov, 2001)

ionosphere 351 (225, 126) 34 [−1, 1]n 0.884 (Bache and Lichman, 2013)
leu 38 (11, 27) 7,129 [0, 1]n 0.974 (Golub et al., 1999)

liver-disorders 345 (145, 200) 6 [−1, 1]n 0.991 (Bache and Lichman, 2013)
madelon 2,000 (1,000, 1,000) 500 [0, 1]n 0.999 (Guyon et al., 2005)

mushrooms 8,124 (3,916, 4,208) 112 [0, 1]n 0.188 (Bache and Lichman, 2013)
news20.binary 19,996 (9,999, 9,997) 1,355,191 [0, 1]n 3.36E-04 (Keerthi and DeCoste, 2005)

rcv1-origin 20,242 (10,491, 9,751) 47,236 [0, 0.87]n 0.002 (Lewis et al., 2004)
real-sim 72,309 (22,238, 50,071) 20,958 [0, 1]n 0.002 (McCallum)

skin-nonskin 245,057 (50,859, 194,198) 3 [0, 1]n 0.983 (Bache and Lichman, 2013)
sonar 208 (97, 111) 60 [−1, 1]n 1.000 (Bache and Lichman, 2013)
splice 1,000 (517, 483) 60 [−1, 1]n 1.000 (Bache and Lichman, 2013)

svmguide1 3,089 (1,089, 2,000) 4 [0, 1]n 0.997 (Hsu et al., 2003)
svmguide3 1,243 (947, 296) 22 [0, 1]n 0.805 (Hsu et al., 2003)

url 2,396,130 (1,603,985, 792,145) 3,231,961 [0, 1]n 3.54E-05 (Ma et al., 2009)
w7a 24,692 (740, 23,952) 300 [0, 1]n 0.039 (Platt, 1998)
w8a 49,749 (1,479, 48,270) 300 [0, 1]n 0.039 (Platt, 1998)

Table 1: Details of Datasets. We have scaled the datasets that are highlighted in boldface
type.

msec.(#iter.)
Breakpoint Bisection

dim. n range ave. std. ave. std.

100,000 [0,10]n 8.3 (25.7) 2.0 (5.4) 4.9 (31.1) 0.6 (4.7)
100,000 [0,1000]n 9.0 (27.3) 1.4 (4.1) 5.5 (27.1) 1.2 (3.2)

1,000,000 [0,10]n 94.2 (22.6) 16.2 (4.3) 49.9 (32.0) 3.4 (3.1)
1,000,000 [0,1000]n 99.1 (26.5) 15.6 (3.2) 53.4 (30.0) 4.4 (1.5)

Table 2: Runtime of Projection Algorithms

28

A Unified Formulation and Fast APG Method for Classification

101 102 103 104

Number of features n

10−3

10−2

10−1

100

101

102

103

104

105
Ti

m
e

(s
ec

.)
m=10000, ν=0.5

SeDuMi
LIBSVM
FAPG
LIBLINEAR

103 104 105

Number of samples m

10−1

100

101

102

103

104

105

Ti
m

e
(s

ec
.)

n=1000, ν=0.5

SeDuMi
LIBSVM
FAPG
LIBLINEAR

0.0 0.2 0.4 0.6 0.8 1.0
ν

10−1

100

101

Ti
m

e
(s

ec
.)

m=10000, n=100

SeDuMi
LIBSVM
FAPG
LIBLINEAR

Figure 5: Computation Time for ν-SVM

have chosen to use the bisection methods in Section 4.1 to perform the projection steps in
Algorithm 4.

5.2 ν-SVM

As mentioned in Section 3.2, the standard C-SVM (11) and ν-SVM (14) are equivalent.
Here we chose ν-SVM to solve because choosing the parameter of ν-SVM is easier than
that of C-SVM. We solved the ν-SVM (14) via our FAPG method, SeDuMi (Sturm, 1999),
and LIBSVM (Chang and Lin, 2011). SeDuMi is a general purpose optimization solver
implementing an interior point method for large-scale second-order cone problems such
as (14). LIBSVM implements the sequential minimal optimization (SMO) (Platt, 1998)
which is specialized for learning ν-SVM. For reference, we also compared the FAPG method
with LIBLINEAR (Fan et al., 2008) which implements a highly optimized stochastic dual
coordinate descent method (Hsieh et al., 2008) for C-SVM3 (Cortes and Vapnik, 1995) and
is known to be quite an efficient method; we note that it may not be a fair comparison
because LIBLINEAR omits the bias term b of C-SVM from the calculations, 4 i.e., it solves
a less complex model than the ν-SVM (14) in order to speed up the computation.

We terminate the algorithms if the violation of the KKT optimality condition is less
than ε = 10−6. The heuristic option in LIBSVM was set to “off” in order to speed up its
convergence for large datasets. In the FAPG method, (ηu, ηd, δ) were set to (1.1, 1.1, 0.8).
L0 was set to the maximum value in the diagonal elements of X̃>X̃ (i.e., the coefficient
matrix of the quadratic form). The initial point α0 was set to the center αc of Sν , i.e.
αci = 1

2mo
, i ∈Mo, o ∈ {+,−}.

5.2.1 Scalability

First, we compare the computation time with respect to the size of the datasets and pa-
rameters using artificial datasets. The results are shown in Figure 5. The left panel shows
the computation time with respect to the dimension n of the features for m = 10000 and
ν = 0.5. The FAPG method has a clear advantage when the dimension n is high, say

3. C-SVM (with the bias term b) is known to lead to the same decision function as ν-SVM if ν and C are
set properly (Schölkopf et al., 2000). The value of C corresponding to ν can be computed by LIBSVM.

4. Although LIBLINEAR can virtually deal with the bias term b by augmenting the dimension of the
samples, the best performance of the resulting model tends to be lower than the one of ν-SVM as
reported in (Kitamura et al., 2014).

29

Ito, Takeda, and Toh

Function % Time Time # Evals. Time/Eval.

∇f(α) 78.1% 14.909 1375 0.0108
f(α) 10.8% 2.053 369 0.0056
PSν (α) 6.9% 1.307 1453 0.0009

Total Runtime: 19.080

Table 3: Runtime Breakdown of the FAPG Method (sec.)

10
0

10
2

10
4

10
−10

10
−5

10
0

Iteration

||
L
(T

L
(α

k
)
−

α
k
)|
|

Violations of Optimality

bt
bt+re
bt+re+dec
bt+re+dec+st
bt+re+dec+st+mt

10
0

10
2

10
4

10
−15

10
−10

10
−5

Iteration

f
(α

k
)
−

f
(α̂

)

Gap from Optimal Objective Value

bt
bt+re
bt+re+dec
bt+re+dec+st
bt+re+dec+st+mt

10
0

10
2

10
4

10
2

10
3

10
4

10
5

Iteration

Value of Constants L

L
f

bt
bt+re
bt+re+dec

bt+re+dec+st

bt+re+dec+st+mt

Figure 6: Effect of various acceleration strategies for the APG Method.

n ≥ 103. The middle panel shows the computation time with respect to the number m
of the samples for n = 1000 and ν = 0.5. LIBSVM did not converge within a week for
m = 63000. SeDuMi, LIBLINEAR, and the APG method were scalable for the increased
number of samples m. The right panel illustrates the computation time with respect to the
parameter ν for m = 10000 and n = 100. We may observe that the FAPG method (and
LIBLINEAR) is very efficient when ν is larger than 0.1. This can be attributed to the fact
that larger ν shrinks the feasible region Sν and shorten the distance between the initial
point α0 = αc and the optimal solution α∗.

5.2.2 Runtime Breakdown

Table 3 shows the runtime breakdown of the FAPG method for the artificial dataset with
(m,n, ν) = (10000, 1000, 0.5). The computation of the gradient ∇f(α) and the function
f(α) was the most time-consuming parts in the FAPG method. Since the computations
of ‘bt’ (and ‖Lk(TLk(αk) − αk)‖) involve the extra evaluation of f(αk) (and/or ∇f(αk)),
computing them only every 100 iteration (and 10 iteration, respectively) as in Algorithm 4
would be effective to reduce the total runtime. Our projection algorithm was efficient
enough in the sense that its runtime was marginal compared to the runtime of the other
parts.

5.2.3 Effect of Each Acceleration Strategy

Figure 6 shows the running history of the FAPG method with various acceleration strategies
for the artificial dataset with (m,n, ν) = (10000, 1000, 0.5).

The left panel depicts the violations of the optimality, i.e. the values of ‖Lk(TLk(αk)−
αk)‖. The FAPG method with ‘bt+re’ restarted at k = 2594, where the sharp decrease
occurred. ‘dec’ was effective to reduce Lk‖TLk(αk) − αk‖ in the early iterations. The
FAPG method with ‘bt+re+dec’ seems to be unstable near the optimum (say k ≥ 103), but

30

A Unified Formulation and Fast APG Method for Classification

the one with ‘bt+re+dec+st’ converged stably. Moreover, ‘bt+re+dec+st+mt’ obtained
much more accurate solution than others. We note that several spikes of the values occurred
when using ‘dec’ because it sometimes leads a small value of Lk that violates the condition
(6). However, the violation was swiftly recovered in every 10 iterations by ‘bt’ and did not
affect the speed of convergence so much.

The middle panel illustrated the gap in objective value f(αk)−f(α̂) where we regarded
α̂ = α10000 of ‘bt+re+dec+st+mt’ as an optimal solution. The gap behaved similar to
the violations of the optimality ‖Lk(TLk(αk) − αk)‖. At k = 1000, the objective value
f(αk) reached f(α̂) within a relative error 0.0003% though the violation of optimality was
greater than ε = 10−6. Thus, a larger tolerance, say ε = 10−5, may also lead to a reasonable
solution in practice.

The right panel illustrated the value of constant Lk of the FAPG at each iteration
and the value of Lipschitz constant Lf ; Lf is known to be the largest eigenvalue of X̃>X̃.
While Lf = 3.61×104, the FAPG method with ‘bt+re+dec+st+mt’ leads to a much smaller
average value of 3.68× 102 for Lk, while the maximum value for Lk is 1.95× 103.

5.2.4 Benchmark Results

We also conducted experiments using the benchmark datasets. C was set to 10. The
computation time is shown in Table 4. When using linear kernel, the FAPG method out-
performed LIBSVM and SeDuMi for large datasets where m ≥ 50000. We indicated the
smallest computation time among the three methods except for LIBLINEAR by boldface
because the optimal solutions of LIBLINEAR are different from those of the other three
methods (note that LIBLINEAR solves a simpler type of SVM, i.e., C-SVM without the
bias term b). However, the FAPG method had an advantage over LIBLINEAR for many
datasets where n ≥ 2000.

When using the RBF kernel, SeDuMi broke down for datasets with m ≥ 10000 as
in the case of the artificial datasets. The FAPG method run out of memory for m ≥
50000 since it requires the m×m dense kernel matrix K to compute the gradient ∇f(α).
The FAPG can avoid the memory shortage by computing the elements of K on demand
as LIBSVM does for large datasets. Although the current implementation has room for
improvement, our practical FAPG method was still competitive with LIBSVM and had
stable and good performance for datasets with large n.

We should remark that the number of iterations taken by the FAPG method with the
RBF kernel tends to be smaller than the one with the linear kernel. However, when using
the RBF kernel, the computational complexity of ∇f(α) changes from O(mn) to O(m2).
Hence the total runtime tended to increase except for “gisette” whose n and m have the
same order of magnitude.

In summary, the FAPG method showed better performance than specialized algorithms
designed for learning SVM, such as LIBSVM and LIBLINEAR, in many datasets. Taking
into account of the generality (i.e., applicability to other models) of FAPG, one could argue
that it is a very efficient method.

Table 5 shows the values taken by the parameter Lk. We can see that our practical
FAPG method (with backtracking strategy and decreasing strategy for Lk) keep the values
of Lk to be much smaller than the Lipschitz constant Lf .

31

Ito, Takeda, and Toh

Linear RBF
data m n ν SeDuMi LIBSVM FAPG (iter) LIBLIN SeDuMi LIBSVM FAPG (iter)

a8a 22,696 123 0.368 16.82 32.31 1.70 (563) 0.06 – 68.24 72.88(343)
a9a 32,561 123 0.365 25.42 66.11 4.84 (665) 0.07 – 138.89 170.63(390)

australian 690 14 0.348 0.34 0.12 0.86 (4056) 0.003 8.03 0.049 0.076(243)
breast-cancer 683 10 0.128 0.21 0.004 0.05 (253) 0.001 6.72 0.015 0.050(144)

cod-rna 59,535 8 0.223 6.71 53.73 3.39 (588) 0.17 ** 267.56 **(**)
colon-cancer 62 2,000 0.078 0.18 0.01 0.09 (210) 0.15 0.17 0.013 0.013(109)

covtype 581,012 54 0.620 288.71 16164.88 60.75 (701) 1.55 ** – **(**)
diabetes 768 8 0.533 0.14 0.02 0.06 (306) 0.003 8.53 0.060 0.093(296)

duke 44 7,129 0.106 0.38 0.04 0.11 (317) 0.30 0.09 0.041 0.017(120)
epsilon 400,000 2,000 0.500 – – 1685.33 (2643) – ** – **(**)

fourclass 862 2 0.543 0.12 0.01 0.07 (356) 0.0004 12.34 0.069 0.068(150)
german.numer 1,000 24 0.525 0.26 0.26 0.29 (1107) 0.04 17.13 0.14 0.10(236)

gisette 6,000 5,000 0.100 4572.24 57.48 9.31 (590) 0.41 5586.74 59.07 4.93(235)
heart 270 13 0.388 0.14 0.005 0.04 (232) 0.001 0.47 0.008 0.040(196)
ijcnn1 35,000 22 0.186 7.31 53.57 5.67 (2000) 0.29 – 73.83 236.15(511)

ionosphere 351 34 0.202 0.25 0.02 0.22 (1064) 0.34 0.85 0.012 0.051(234)
leu 38 7,129 0.070 0.40 0.03 0.13 (175) 0.17 0.08 0.034 0.013(103)

liver-disorders 345 6 0.731 0.11 0.01 0.11 (736) 0.007 0.81 0.015 0.037(168)
madelon 2,000 500 0.603 29.15 11.57 0.32 (510) 87.43 133.85 3.77 0.24(108)

mushrooms 8,124 112 0.096 8.74 1.34 0.56 (435) 0.06 28505.46 5.74 19.02(661)
news20.binary 19,996 1,355,191 0.100 – 1333.26 22.29 (321) 1.57 – 929.85 51.86(11)

rcv1-origin 20,242 47,236 0.097 – 587.10 7.82 (485) 8.96 – 192.16 97.68(189)
real-sim 72,309 20,958 0.065 – 6351.62 12.71 (384) 4.33 ** 1879.90 **(**)

skin-nonskin 245,057 3 0.233 62.70 726.20 8.02 (609) 0.09 ** 4425.59 **(**)
sonar 208 60 0.117 0.29 0.12 0.33 (1922) 3.81 0.27 0.009 0.060(279)
splice 1,000 60 0.432 0.56 0.25 0.11 (331) 0.02 15.27 0.18 0.067(120)

svmguide1 3,089 4 0.180 0.35 0.08 0.15 (394) 0.003 1188.65 0.42 1.45(323)
svmguide3 1,243 22 0.408 0.36 1.07 0.93 (3248) 1.70 30.17 0.23 0.21(430)

url 2,396,130 3,231,961 0.500 – – 4853.91 (2521) – ** ** **(**)
w7a 24,692 300 0.031 69.90 135.91 14.13 (4280) 0.81 – 17.89 286.27(1208)
w8a 49,749 300 0.031 189.40 143.42 38.69 (5960) 0.47 – 124.55 1423.42(2100)

Table 4: Computation Time for Benchmark Datasets (sec.). ‘–’ means that the algorithm
did not converge with in 36000 seconds. ‘**’ means that it had run out of memory.
The best results except for LIBLINEAR are indicated by boldface. The underlined
results are better than LIBLINEAR.

32

A Unified Formulation and Fast APG Method for Classification

Linear RBF
Lk(FAPG) Lk(FAPG)

ave. max. Lf ave. max. Lf
a8a 2.99.E+03 1.54.E+04 1.43.E+05 7.00.E+01 2.27.E+02 2.00.E+04
a9a 5.59.E+03 3.38.E+04 2.05.E+05 1.37.E+02 4.99.E+02 2.88.E+04

australian 1.97.E+02 1.21.E+03 2.91.E+03 1.92.E+01 4.69.E+01 3.56.E+02
breast-cancer 9.05.E+01 2.27.E+02 1.68.E+04 1.21.E+01 2.13.E+01 4.52.E+02

cod-rna 1.05.E+03 5.65.E+03 1.24.E+05 – – –
colon-cancer 4.02.E+02 6.60.E+02 3.80.E+04 5.91.E-01 9.09.E-01 5.65.E+01

covtype 3.71.E+04 2.37.E+05 4.58.E+06 – – –
diabetes 5.21.E+01 1.53.E+02 1.76.E+03 1.64.E+01 4.69.E+01 6.34.E+02

duke 2.82.E+03 4.55.E+03 6.00.E+04 6.89.E-01 9.09.E-01 4.09.E+01
epsilon 2.09.E+04 1.85.E+05 1.40.E+05 – – –

fourclass 5.61.E+01 1.87.E+02 2.80.E+02 5.72.E+01 1.03.E+02 5.36.E+02
german.numer 2.16.E+02 1.03.E+03 8.44.E+03 1.95.E+01 4.69.E+01 4.50.E+02

gisette 1.84.E+04 5.71.E+04 2.02.E+07 9.17.E+00 2.13.E+01 3.61.E+03
heart 1.07.E+02 2.53.E+02 7.49.E+02 1.01.E+01 2.13.E+01 1.19.E+02
ijcnn1 1.20.E+03 1.05.E+04 5.89.E+03 1.93.E+02 8.84.E+02 3.12.E+04

ionosphere 2.46.E+02 9.83.E+02 2.14.E+03 1.19.E+01 2.83.E+01 2.24.E+02
leu 1.70.E+03 2.75.E+03 6.05.E+04 6.07.E-01 9.09.E-01 3.46.E+01

liver-disorders 1.27.E+01 3.85.E+01 1.84.E+03 5.04.E+00 9.68.E+00 8.23.E+02
madelon 9.54.E+01 2.87.E+02 2.44.E+05 6.54.E-01 1.00.E+00 1.92.E+03

mushrooms 1.84.E+03 6.34.E+03 2.30.E+05 2.31.E+01 1.03.E+02 1.74.E+04
news20.binary 4.63.E+01 1.03.E+02 1.17.E+03 9.09.E-01 9.09.E-01 2.00.E+04

rcv1-origin 3.20.E+01 8.30.E+01 4.49.E+02 4.42.E-01 9.09.E-01 2.02.E+04
real-sim 6.75.E+01 2.27.E+02 9.21.E+02 – – –

skin-nonskin 5.08.E+03 2.82.E+04 2.19.E+05 – – –
sonar 2.27.E+02 1.12.E+03 2.68.E+03 4.88.E+00 9.68.E+00 1.51.E+02
splice 3.59.E+02 1.11.E+03 1.74.E+03 6.63.E+00 1.06.E+01 3.57.E+02

svmguide1 3.07.E+01 1.13.E+02 2.47.E+03 1.52.E+01 4.69.E+01 2.92.E+03
svmguide3 1.53.E+02 6.68.E+02 4.92.E+03 1.22.E+01 4.69.E+01 1.15.E+03

url 9.94.E+05 1.10.E+07 1.57.E+08 – – –
w7a 5.53.E+03 4.62.E+04 6.52.E+04 4.80.E+01 1.83.E+02 2.31.E+04
w8a 1.04.E+04 1.06.E+05 1.32.E+05 1.14.E+02 4.51.E+02 4.65.E+04

Table 5: Constants for Benchmark Datasets

33

Ito, Takeda, and Toh

Artificial svmguide1 mushrooms a8a

ξ = 10−2 99.8% 95.5% 99.4% 84.7%
ξ = 10−3 100.0% 95.5% 100.0% 84.8%
ξ = 10−4 100.0% 95.5% 100.0% 84.8%
ξ = 10−5 100.0% 95.5% 100.0% 84.8%

LIBLINEAR 85.2% 90.7% 100.0% 84.7%

Table 6: Classification Accuracies with Varied ξ from 10−2 to 10−5.

101 102 103 104

Number of features n

10−1

100

101

102

103

104

Ti
m

e
(s

ec
.)

m=10000, C=1

LIBLINEAR
FAPG

103 104 105

Number of samples m

10−1

100

101

102

103

104

105

Ti
m

e
(s

ec
.)

n=1000, C=1

LIBLINEAR
FAPG

0 20 40 60 80 100
C

10−1

100

101

102

Ti
m

e
(s

ec
.)

m=10000, n=100

LIBLINEAR
FAPG

Figure 7: Computation Time for Logistic Regression.

5.3 Logistic Regression

We solved the dual logistic regression (13) via the FAPG method and LIBLINEAR (Fan
et al., 2008). LIBLINEAR implements a highly optimized stochastic dual coordinate descent
method (Yu et al., 2011) whose subproblems are solved by the Newton method. Note that,
as in the case of SVM, LIBLINEAR omits the bias term b from the calculations, i.e., it
solves a less complex model than (13). We terminate both algorithms if the violation of the
KKT optimality condition is less than ε = 10−6. In the FAPG method, (ηu, ηd, δ) were set
to (1.1, 1.1, 0.8). L0 was set to 1. The initial point α0 was set to ξe.

5.3.1 Sensitivity to ξ

Since the gradient ∇f is not defined at αi = 0, 1 (i ∈ M), we approximately solve the
problem by using the constraints ξ ≤ αi ≤ 1 − ξ (i ∈ M), where ξ > 0. Table 6 shows
the classification accuracy for ξ = 10−2, 10−3, 10−4, and 10−5. For all cases, the approxi-
mated logistic regression performed better than LIBLINEAR. The classification accuracy of
FAPG was identical for ξ ≤ 10−3, and better than the accuracy with ξ = 10−2. We employ
ξ = 10−4 in the following experiments.

5.3.2 Scalability

First, we compare the computation time with respect to the size of the datasets and pa-
rameter using artificial datasets. The results (for the linear kernel) are shown in Figure 7.
The left panel shows the computation time with respect to the dimension n of the features
for m = 10000 and C = 10. The FAPG method has a clear advantage when the dimension
n is high, say n ≥ 102. The middle panel shows the computation time with respect to the
number m of the samples for n = 1000 and C = 10. The computation time of FAPG grew

34

A Unified Formulation and Fast APG Method for Classification

Function % Time Time # Evals. Time/Eval.

∇f(α) 85.4% 10.005 1452 6.89.E-03
f(α) 12.3% 1.443 340 4.24.E-03

PSLR(α) 0.5% 0.058 1473 3.94.E-05

Total Runtime: 11.720

Table 7: Runtime Breakdown of the FAPG Method (sec.)

10
0

10
2

10
4

10
−5

10
0

Iteration

||
L
(T

L
(α

k
)
−

α
k
)|
|

Violations of Optimality

bt
bt+re
bt+re+dec
bt+re+dec+st
bt+re+dec+st+mt

10
0

10
2

10
4

10
−10

10
0

Iteration

f
(α

k
)
−

f
(α̂

)

Gap from Optimal Objective Value

bt
bt+re
bt+re+dec
bt+re+dec+st
bt+re+dec+st+mt

10
0

10
2

10
4

10
3

10
4

10
5

Iteration

Value of Constants L

bt
bt+re
bt+re+dec

bt+re+dec+st

bt+re+dec+st+mt

Figure 8: Effect of various acceleration strategies for the FAPG Method.

slower than the one of LIBLINEAR. The right panel illustrates the computation time with
respect to the parameter C for m = 10000 and n = 100. Unlike ν-SVM, the computation
time of the FAPG did not change so much depending on the parameter C because it does
not affect the area of feasible region. We can observe that the FAPG method is numerically
more stable than LIBLINEAR with respect to the changes of the parameter C.

5.3.3 Runtime Breakdown

Table 7 shows the runtime breakdown of the FAPG method for the artificial dataset with
(m,n,C) = (10000, 1000, 10). The computation of the gradient ∇f(α) and the function
f(α) was the most time-consuming parts as in the case of ν-SVM. Thus skipping back-
tracking step and evaluation of the optimality ‖Lk(αk−TLk(αk))‖ reduce the computation
time significantly because it can avoid the extra computation of f and ∇f .

5.3.4 Effect of Each Acceleration Strategy

Figure 8 shows the running history of the FAPG method with various acceleration strategies
for the dataset ‘a8a’. C was set to 10.

The left panel depicts the violations of the optimality, i.e. the values of ‖Lk(TLk(αk)−
αk)‖. ‘re’ had effect on decreasing the values after k = 762 at which the first restart
occur. ‘bt+re+dec’ just became unstable compared to ‘bt+re’ because the gradient of
the logistic regression is intrinsically large near the boundary of the feasible region SLR.
However, ‘bt+re+dec+st’ could recover from the instability. It is remarkable that only
‘bt+re+dec+st+mt’ fell below 10−6 in 10000 iterations. Thus, one could argue that ‘mt’
had a significant effect on reducing the violation. The middle panel illustrated the gap in
the objective value f(αk)− f(α̂) where we regarded α̂ = α10000 of ‘bt+re+dec+st+mt’ as
an optimal solution. ‘bt+re+dec+st+mt’ decreased the function value faster than others

35

Ito, Takeda, and Toh

m n C FAPG (iter) LIBLIN

a8a 22696 123 10 19.82 (4939) 9.82
a9a 32561 123 10 35.32 (6155) 57.62

australian 690 14 10 0.45 (1738) 0.01
breast-cancer 683 10 10 0.49 (1904) 0.004

cod-rna 59535 8 10 31.40 (3718) 2.03
colon-cancer 62 2000 10 0.11 (269) 0.16

covtype 581012 54 10 2039.19 (20143) 73.74
diabetes 768 8 10 0.20 (794) 0.01

duke 44 7129 10 0.27 (327) 0.31
epsilon 400000 2000 10 27791.25 (10873) 5225.43

fourclass 862 2 10 0.21 (851) 0.001
german.numer 1000 24 10 0.56 (1741) 0.31

gisette 6000 5000 10 20.30 (1289) 0.54
heart 270 13 10 0.15 (817) 0.02
ijcnn1 35000 22 10 14.57 (2478) 0.51

ionosphere 351 34 10 0.39 (1639) 0.31
leu 38 7129 10 0.11 (148) 0.19

liver-disorders 345 6 10 0.16 (828) 0.01
madelon 2000 500 10 2.23 (910) 1035.26

mushrooms 8124 112 10 2.26 (1224) 0.09
news20.binary 19996 1355191 10 96.24 (1263) 22.15

rcv1-origin 20242 47236 10 14.41 (1293) 11.41
real-sim 72309 20958 10 142.79 (5630) 7.80

skin-nonskin 245057 3 10 247.11 (8373) 3.59
sonar 208 60 10 0.22 (1150) 0.10
splice 1000 60 10 0.66 (1689) 6.02

svmguide1 3089 4 10 0.91 (1313) 0.16
svmguide3 1243 22 10 0.49 (1263) 0.29

url 2396130 3231961 10 – (–) –
w7a 24692 300 10 17.00 (3400) 10.69
w8a 49749 300 10 51.13 (5279) 42.77

Table 8: Computation Time for Benchmark Datasets (sec.). ‘–’ means that the algorithm
did not converge with in 36000 seconds. ‘**’ means that it had run out of memory.
The results indicated by underline are better than LIBLINEAR.

and found the minimum solution while oscillation occurred at the end of iteration. The
right panel illustrated the value of constant Lk of the FAPG at each iteration.

5.3.5 Benchmark Results

We measured computation time for the benchmark datasets. The parameter C was set to 10
throughout this experiment. The experimental results are shown in Table 8. LIBLINEAR
was efficient because it solves a less complex model (without the bias term) than (13). In
some cases, however, FAPG solved (13) faster than LIBLINEAR. The computation time
and iteration count of FAPG was nearly proportional to the number of samples m. On the
other hand, LIBLINEAR took much longer time for ‘madeon’ and ‘splice’ although they
are relatively small datasets.

Taking these results and Figure 7 into account, one could argue that the FAPG method
exhibits stable convergence empirically.

36

A Unified Formulation and Fast APG Method for Classification

101 102 103 104

Number of features n

10−2

10−1

100

101

102

103

104

105
Ti

m
e

(s
ec

.)
m=10000, κ=1

SeDuMi
FAPG

103 104

Number of samples m

10−2

10−1

100

101

102

Ti
m

e
(s

ec
.)

n=1000, κ=1

SeDuMi
FAPG

0.0 0.5 1.0 1.5 2.0 2.5 3.0
κ

10−2

10−1

100

101

102

Ti
m

e
(s

ec
.)

m=10000, n=1000

SeDuMi
FAPG

Figure 9: Computation Time for MM-MPM

5.4 MM-MPM

Next, we conducted experiments on MM-MPM (17). To the best of our knowledge, there
are no specialized methods for MM-MPM. Thus, we compared the FAPG method only
to SeDuMi (Sturm, 1999) which implements an interior point method for the large-scale
second-order cone problems such as (17). We terminated the computations if the violation
of KKT optimality is less than ε = 10−6. In the FAPG method, (ηu, ηd, δ) were set to
(1.1, 1.1, 0.8). The value of L0 was set to the maximum value in the diagonal elements of

Σ̃>Σ̃ (i.e., the coefficient matrix of the quadratic form), where Σ̃ = [Σ
1/2
+ ,−Σ

1/2
−]. The

initial point u0 = (u0
+,u

0
−) was set to the origin 0.

5.4.1 Scalability

The computation time for the artificial datasets are shown in Figure 9. The left panel
shows the results with respect to the number n of features for m = 10000 and κ = 1.
The FAPG method has a clear advantage over SeDuMi for large n, say n ≥ 103. The
middle panel illustrates the computation time with respect to the number m of samples for
n = 2000 and κ = 1. The computation time is nearly independent of the number m of

samples because the sizes of matrices Σ
1/2
o (o ∈ {+,−}), which are used for computing the

function f(u) and the gradient ∇f(u), are n× n. The right panel shows the computation
time with respect to the parameter κ for m = 10000 and n = 2000. We can observe that
a larger value of κ leads to more computation time for the FAPG method although it is
still far more efficient than SeDuMi. The effect of a larger κ on the FAPG method could
be because it gives a larger feasible region SMPM, which in turns leads to a larger distance
between the initial point u0 and the optimal solution u∗ as in the case of ν-SVM (the right
panel of Figure 5).

5.4.2 Runtime Breakdown

Table 9 shows the runtime breakdown of the FAPG method for the artificial dataset with
(m,n, κ) = (10000, 1000, 1). As in the case of ν-SVM (Table 3), the computations of the
gradient ∇f(u) and the function value f(u) are the most time-consuming parts. Thus,
computing ‘bt’ and Lk‖TLk(uk) − uk‖ periodically, which involves the computations of
f(uk) and/or ∇f(uk), is effective to reduce the total runtime. The projection PSMPM

(u)
for MM-MPM shown in Section 4.1.4 can be computed highly efficiently.

37

Ito, Takeda, and Toh

Function % Time Time # Evals. Time/Eval.

∇f(u) 75.9% 0.836 339 2.47.E-03
f(u) 14.2% 0.157 119 1.32.E-03

PSMPM(u) 3.1% 0.034 383 8.88.E-05

Total Runtime: 1.102

Table 9: Runtime Breakdown of FAPG Method for MM-MPM (sec.)

10
0

10
2

10
4

10
−15

10
−10

10
−5

Iteration

||
L
(T

L
(α

k
)
−

α
k
)|
|

Violations of Optimality

bt
bt+re
bt+re+dec
bt+re+dec+st
bt+re+dec+st+mt

10
0

10
2

10
4

10
−15

10
−10

10
−5

Iteration

f
(α

k
)
−

f
(α̂

)

Gap in Optimal Objective Value

bt
bt+re
bt+re+dec
bt+re+dec+st
bt+re+dec+st+mt

10
0

10
2

10
4

10
−1

Iteration

Value of Constants L

L
f

10−0.6

bt
bt+re
bt+re+dec

bt+re+dec+st

bt+re+dec+st+mt

Figure 10: Effect of Each Strategy for the APG Method.

5.4.3 Effect of Each Strategy

Figure 10 illustrates the running history of FAPG with various practical strategies for the
artificial dataset with (m,n, κ) = (10000, 1000, 1). As in the case of ν-SVM, ‘re’ is effective
in reducing the violation of optimality Lk‖TLk(uk)−uk‖ and the value of f(uk)−f(α̂). ‘dec’
seems to make the FAPG method to be unstable, but ‘st’ can stabilize it. ‘bt+re+dec+st’
and ‘bt+re+dec+st+mt’ decreased L‖TL(uk)− uk‖ and f(uk)− f(α̂) slightly faster than
‘bt+re’.

In the right panel, we can see that the APG method uses values smaller than Lf for Lk in

most iterations, where the Lipschitz constant Lf of the gradient∇f(u) = Σ̃>(x̄+−x̄−+Σ̃u)

is known to be the largest eigenvalue of the matrix Σ̃>Σ̃ (recall that Σ̃ = [Σ
1/2
+ ,−Σ

1/2
−] and

u = (u+,u−)).

5.4.4 Benchmark Results

Table 10 shows the computational results for the benchmark datasets. We did the exper-
iments by setting κ = κmax/2, but MM-MPM could not be solved for n ≥ 20000 because

the sizes of the n× n matrices Σ
1/2
o (o ∈ {+,−}) are extremely large.

The FAPG method was much faster than SeDuMi especially when the dimension is high,
say n ≥ 2000. Unlike for ν-SVM (Table 5), the FAPG method for MM-MPM sometimes led
to larger values of Lk than the Lipschitz constant Lf . However, the average of the values
of Lk is still smaller than Lf .

5.5 Classification Ability

Using the benchmark datasets, we compared the classification ability of classification mod-
els: ν-SVM, logistic regression, MM-MPM, and MM-FDA. Each dataset was randomly
partitioned into 10 disjoint sets. We investigated the averages of the test accuracy using

38

A Unified Formulation and Fast APG Method for Classification

Computation Time Values
L(FAPG)

data m n κmax κ SeDuMi FAPG (iter) ave. max. Lf
a8a 22,696 123 9.52.E-01 4.76.E-01 0.664 0.034 (25) 1.12.E+00 1.21.E+00 1.34.E+00
a9a 32,561 123 9.60.E-01 4.80.E-01 0.166 0.010 (25) 1.12.E+00 1.21.E+00 1.34.E+00

australian 690 14 1.23.E+00 6.17.E-01 0.054 0.006 (25) 1.85.E+00 2.00.E+00 2.06.E+00
breast-cancer 683 10 2.32.E+00 1.16.E+00 0.038 0.005 (30) 1.01.E+00 1.10.E+00 1.17.E+00

cod-rna 59,535 8 1.41.E+00 7.05.E-01 0.068 0.015 (115) 1.69.E-01 2.29.E-01 2.34.E-01
colon-cancer 62 2,000 1.85.E+00 9.24.E-01 311.329 0.178 (157) 2.56.E+01 4.22.E+01 2.81.E+01

covtype 581,012 54 6.59.E-01 3.29.E-01 0.086 0.016 (107) 8.31.E-01 1.10.E+00 1.07.E+00
diabetes 768 8 6.88.E-01 3.44.E-01 0.061 0.003 (18) 3.70.E-01 3.86.E-01 4.79.E-01

duke 44 7,129 1.98.E+00 9.89.E-01 13459.0 0.660 (291) 1.55.E+02 2.15.E+02 1.97.E+02
epsilon 400,000 2,000 1.16.E+00 5.82.E-01 361.0 1.186 (217) 3.64.E-01 6.07.E-01 4.77.E-01

fourclass 862 2 7.22.E-01 3.61.E-01 0.069 0.003 (12) 4.68.E-01 5.47.E-01 6.04.E-01
german.numer 1,000 24 6.52.E-01 3.26.E-01 0.063 0.005 (33) 2.45.E+00 2.84.E+00 2.89.E+00

gisette 6,000 5,000 8.53.E+00 4.27.E+00 5438.2 56.292 (1640) 9.40.E+01 2.29.E+02 1.14.E+02
heart 270 13 1.10.E+00 5.48.E-01 0.049 0.004 (24) 1.85.E+00 1.98.E+00 2.08.E+00
ijcnn1 35,000 22 9.00.E-01 4.50.E-01 0.068 0.013 (114) 4.06.E-01 6.52.E-01 3.04.E-01

ionosphere 351 34 1.30.E+00 6.48.E-01 0.084 0.016 (110) 3.49.E+00 4.49.E+00 5.15.E+00
leu 38 7,129 2.11.E+00 1.05.E+00 12971.377 0.514 (220) 1.37.E+02 2.68.E+02 1.46.E+02

liver-disorders 345 6 4.09.E-01 2.04.E-01 0.075 0.009 (71) 3.05.E-01 4.08.E-01 3.78.E-01
madelon 2,000 500 6.50.E-01 3.25.E-01 1.964 0.017 (43) 2.81.E-01 3.28.E-01 3.31.E-01

mushrooms 8,124 112 1.53.E+01 7.66.E+00 0.170 0.166 (840) 2.38.E+00 3.63.E+00 2.92.E+00
news20.binary 19,996 1,355,191 ** ** ** ** (**) ** ** **

rcv1-origin 20,242 47,236 ** ** ** ** (**) ** ** **
real-sim 72,309 20,958 ** ** ** ** (**) ** ** **

skin-nonskin 245,057 3 1.63.E+00 8.14.E-01 0.066 0.006 (50) 1.65.E-01 1.98.E-01 2.25.E-01
sonar 208 60 1.29.E+00 6.44.E-01 0.096 0.020 (116) 3.47.E+00 4.60.E+00 5.07.E+00
splice 1,000 60 1.02.E+00 5.09.E-01 0.071 0.009 (39) 2.39.E+00 2.84.E+00 2.92.E+00

svmguide1 3,089 4 1.26.E+00 6.29.E-01 0.070 0.003 (28) 1.06.E-01 1.15.E-01 8.61.E-02
svmguide3 1,243 21 6.24.E-01 3.12.E-01 0.083 0.012 (105) 5.90.E-01 8.91.E-01 5.82.E-01

url 2,396,130 3,231,961 ** ** ** ** (**) ** ** **
w7a 24,692 300 1.41.E+00 7.03.E-01 0.588 0.036 (112) 1.42.E+00 2.21.E+00 1.82.E+00
w8a 49,749 300 1.39.E+00 6.97.E-01 0.592 0.031 (108) 1.45.E+00 2.21.E+00 1.88.E+00

Table 10: Computational Results for MM-MPM with Linear Kernel. The best results are
indicated by boldface. ‘**’ means that the algorithm could not be computed due
to out of memory.

39

Ito, Takeda, and Toh

dataset ν-SVM (ν) Logistic (C) MM-MPM (κ) MM-FDA (κ)

a8a 84.4% (0.37) 84.6% (0.5) 80.7% (0.94) 84.4% (1.32)
a9a 84.7% (0.36) 84.8% (0.1) 80.7% (0.95) 84.7% (1.33)

australian 85.7% (0.83) 87.7% (0.1) 86.1% (0.25) 87.5% (1.39)
breast-cancer 97.1% (0.07) 97.4% (0.5) 97.5% (2.08) 97.4% (0.31)

cod-rna 93.9% (0.28) 93.9% (4.5) 93.5% (0.42) 93.7% (0.40)
colon-cancer 88.8% (0.29) 87.1% (6.0) 87.1% (0.18) 87.1% (1.22)

covtype 76.3% (0.59) 75.6% (1.0) 75.6% (0.65) 75.5% (0.92)
diabetes 77.3% (0.54) 77.3% (3.5) 74.9% (0.61) 76.8% (0.88)

duke 88.5% (0.02) 86.0% (5.5) 88.5% (0.98) 88.5% (1.36)
epsilon – – 89.6% (1.04) 89.7% (1.48)

fourclass 77.7% (0.68) 78.5% (0.1) 72.7% (0.57) 78.6% (0.10)
german.numer 76.7% (0.54) 77.4% (0.1) 71.9% (0.39) 77.3% (0.55)

gisette 97.4% (0.11) 97.4% (1.0) 97.9% (3.41) 97.9% (4.83)
heart 84.1% (0.40) 84.4% (0.1) 84.1% (0.76) 84.1% (0.15)
ijcnn1 74.7% (0.19) 91.8% (20.0) 85.9% (0.89) 91.0% (0.64)

ionosphere 88.3% (0.21) 90.0% (5.0) 86.9% (0.39) 87.8% (0.85)
leu 94.2% (0.02) 94.2% (5.0) 94.2% (2.10) 94.2% (0.21)

liver-disorders 68.1% (0.76) 67.9% (6.0) 63.8% (0.20) 66.4% (0.52)
madelon 59.3% (0.91) 57.7% (0.1) 59.7% (0.13) 60.0% (0.09)

mushrooms 100.0% (0.01) 100.0% (6.0) 100.0% (9.19) 100.0% (6.21)
news20.binary 97.1% (0.21) 96.5% (20.0) ** **

rcv1-origin 97.0% (0.11) 97.1% (20.0) ** **
real-sim 97.5% (0.13) 97.6% (15.0) ** **

skin-nonskin 93.7% (0.32) 92.4% (6.0) 93.5% (1.61) 93.8% (2.10)
sonar 79.8% (0.40) 78.8% (0.5) 79.8% (0.64) 77.9% (0.91)
splice 80.9% (0.50) 80.2% (3.0) 80.6% (0.61) 81.0% (0.20)

svmguide1 95.4% (0.13) 95.4% (20.0) 94.4% (1.12) 91.6% (1.56)
svmguide3 82.5% (0.41) 82.1% (15.0) 74.3% (0.55) 81.9% (0.69)

url – – ** **
w7a 98.5% (0.04) 98.5% (4.0) 96.0% (1.26) 98.2% (1.76)
w8a 98.6% (0.04) 98.7% (17.5) 96.1% (1.25) 98.3% (1.73)

Table 11: Average Performance of Each Classification Model. The best results are indicated
by boldface. ‘–’ means that the cross-validation could not be done within 36000
sec. ‘**’ means that it had run out of memory.

cross-validation over the 10 disjoint sets. We found the best parameter of the each classifi-
cation model using grid search with cross-validation. The results are reported in Table 11.
The model that shows the best performance varies with datasets. This implies the im-
portance of finding a suitable classification model to a dataset in order to achieve a high
prediction performance. Our algorithm is useful for the purpose; it provides a unified and
efficient framework for solving various classification models.

6. Conclusion

In this work, we presented a unified classification model and provided a general algorithm
for the model. We designed a fast accelerated proximal gradient (FAPG) method based
on the original APG method in (Beck and Teboulle, 2009) to the model by devising effi-
cient projection computations and effective heuristic acceleration strategies. Our unified

40

A Unified Formulation and Fast APG Method for Classification

algorithm makes it easy to compare various models, because we can use the same algorith-
mic framework for the models by only changing the computation of projections. Thus, it
provides a practical and useful tool for practitioners who are looking for the best model
for a given dataset. Numerical experiments demonstrate the efficiency of our algorithm for
large datasets. Indeed, our method often run faster than LIBLINEAR (Fan et al., 2008)
especially for large-scale datasets such that n > 2000.

In this paper we showed a convergence property of our method for a general non-strongly
convex function because our examples are mostly non-strongly convex. As a future work,
we would like to see if the linear convergence for FAPG can be established for µ-strongly
convex function and provide an adaptive parameter selection scheme even when µ is pos-
itive but unknown. In addition, we would like to investigate stochastic variants of our
method. Recently, large scale learning has motivated researchers to develop stochastic
gradient descent (SGD) methods. SGD approximates the gradient ∇L(·) of a loss func-
tion by a computationally inexpensive random variable whose expectation coincides with
∇L(·). More precisely, it assumes that the loss function is defined as the sum of loss of each
sample, i.e., L(X̃>w − yb) =

∑m
i=1 `(yi(w

>xi − b)), and approximates the full gradient

∇L(X̃>w − yb) by the gradient ∇`(yi(w>xi − b)) of loss of a randomly chosen sample.
PG and APG methods can be adapted in SGD, e.g., as (Nitanda, 2014; Defazio et al.,
2014) and references there in. In particular, the stochastic dual coordinate ascent (SDCA)
method (Shalev-Shwartz and Zhang, 2013, 2016) is a stochastic APG applied to the dual
formulation, which is closely related to our unified classification model. While its frame-
work would be useful to develop a stochastic variant of our FAPG presented in this paper,
it cannot be directly applied to the unified classification model because ν-SVM, MM-MPM,
and MM-FDA do not satisfy the assumption on L(·): the loss function is defined as the
sum of loss of each sample. It is an important future work to relax the assumption for
stochastic methods and extend our FAPG to stochastic ones in order to solve even larger
scale problems.

Acknowledgments

We would like to express our warm thanks to the reviewers, whose insightful comments
have led to many substantial improvements.

Appendix

Appendix A. Derivation of the Dual Problem (10)

The primal problem (8) can be transformed as follows:

min
w,b
{L(Ã>w − ba) | ‖w‖p ≤ λ}

= min
w,b,z
{L(z) | ‖w‖p ≤ λ, z = Ã>w − ba}

= min
‖w‖p≤λ,b,z

max
α
{L(z) +α>(z − Ã>w + ba)}.

41

Ito, Takeda, and Toh

Its dual problem (10) is derived as follows:

max
α

min
‖w‖p≤λ,b,z

{L(z) +α>(z − Ã>w + ba)}

= −min
α

{
max
z

{
−α>z − L(z)

}
+ max
‖w‖p≤λ

{
α>Ã>w

}
+ max

b

{
α>ab

}}
= −min

α
{L∗(−α) + λ‖Ãα‖∗p | α>a = 0}.

Appendix B. Refined Bisection Algorithm

The computational cost of h(θ̂) in Algorithm 2 can be reduced by dividing the indices set
M more finely as in (Kiwiel, 2008). Here we divide M into the following four disjoint sets
for given θl and θu satisfying θl < θu:

U := {i ∈M | ᾱi − θu ≥ u (i.e., αi(θ) = u, ∀θ ∈ [θl, θu])}
L := {i ∈M | ᾱi − θl ≤ l (i.e., αi(θ) = l, ∀θ ∈ [θl, θu])}
C := {i ∈M | ᾱi − θl < u, ᾱi − θu > l (i.e., αi(θ) = ᾱi − θ, ∀θ ∈ [θl, θu])}
I := M\(U ∪ C ∪ L) ([θl, θu] contains a breakpoint of αi(θ)) .

If I = φ, then solving

θ =
(
|U |u+ |L|l +

∑
i∈C

ᾱi − r
)
/|C|

obtains an exact solution. If I 6= φ, then we also divide I into the following five disjoint
sets for given θ̂ ∈ (θl, θu):

IU = {i ∈ I | ᾱi − θ̂ ≥ u, (i.e., αi(θ) = u ∀θ ∈ [θl, θ̂])}
IL = {i ∈ I | ᾱi − θ̂ ≤ l, (i.e., αi(θ) = l ∀θ ∈ [θ̂, θu])}
ICu = {i ∈ I | ᾱi − θl < u, ᾱi − θ̂ > l, (i.e., αi(θ) = ᾱi − θ ∀θ ∈ [θl, θ̂])}
ICl = {i ∈ I | ᾱi − θ̂ < u, ᾱi − θu > l, (i.e., αi(θ) = ᾱi − θ ∀θ ∈ [θ̂, θu])}
II = I\(IU ∪ ICu ∪ ICl ∪ IL)

Then we have

h(θ̂) =
∑
i∈M

αi(θ̂) = |U |u︸︷︷︸
su

+ |IU |u︸ ︷︷ ︸
∆su

+ |L|l︸︷︷︸
sl

+ |IL|l︸︷︷︸
∆sl

+
∑
i∈IC

αi︸ ︷︷ ︸
sc

+
∑
i∈ICu

αi︸ ︷︷ ︸
∆scu

+
∑
i∈ICl

αi︸ ︷︷ ︸
∆scl

+
∑
i∈II

αi − |C ∪ ICu ∪ ICl ∪ II |θ̂.

By leveraging on the structure of h, the refined bisection method for (18) can be described
as Algorithm 5.

42

A Unified Formulation and Fast APG Method for Classification

Algorithm 5 Refined Bisection Algorithm for (18)

INPUT: ᾱ, r, l, u, ε′ > 0 OUTPUT: α
INITIALIZE: I ←M, su ← sl ← sc ← 0, θu ← ᾱmax − r

m , θ
l ← ᾱmin − r

m # Step 1
while |θu − θl| > ε′ do

θ̂ ← θu+θl

2 # Step 2

û← u+ θ̂, l̂← l + θ̂
IU ← {i ∈ I | ᾱi ≥ û}, IL ← {i ∈ I | ᾱi ≤ l̂} # Step 3
uu ← u+ θu, ll ← l + θl

ICu ← {i ∈ I | ᾱi > ll, ᾱi < û}, ICl ← {i ∈ I | ᾱi < uu, ᾱi > l̂}
II ← I\(IU ∪ ICu ∪ ICl ∪ IL)
∆su ← |IU |u, ∆sl ← |IL|l
∆scu ←

∑
i∈ICu αi, ∆scl ←

∑
i∈ICl αi

val← su + ∆su + sl + ∆sl + sc + ∆scu + ∆scl +
∑

i∈II αi − |C ∪ ICu ∪ ICl ∪ II |θ̂
if val < r then # Step 4
θu ← θ̂, I ← II ∪ ICl ∪ IL
su ← su + ∆su, sc ← sc + ∆scu

else if val > r then
θl ← θ̂, I ← II ∪ ICu ∪ IU
sl ← sl + ∆sl, sc ← sc + ∆scl

else
break

end if
if I == φ then
θ̂ ← (su + sl + sc − r)/|C|
break

end if
end while
αi ← αi(θ̂), ∀i ∈M # Step 5

43

Ito, Takeda, and Toh

Appendix C. Proof of Theorem 7

We show the iteration complexity O
(
(W (k)/k)2

)
of Algorithm 3, where W (z) is the inverse

function of f(x) = x exp(x) and called Lambert’s W function (Corless et al., 1996). W (z)
is single-valued for z ≥ 0, but multi-valued for z < 0. For z ≥ 0, W (z) is monotonically
increasing, but diverges slower than log(z). It is known that W (z) cannot be expressed in
terms of elementary functions.

Here we improve the lower bound (24) of

max{k̄1, k̄2, . . . , k̄j , kj+1}.

Since k̄i ≥ Ki ≥ 2i for all i ∈ {1, 2, . . . , j}, we have

max{k̄1, k̄2, . . . , k̄j , kj+1} ≥ max
{ k

j + 1
, 2j
}
.

k
j+1 is monotonically decreasing and 2j is monotonically increasing with respect to j. Thus

the right-hand side is minimized at j = ĵ such that

k

ĵ + 1
= 2ĵ .

The above equation implies that

2k

ĵ + 1
= exp

(
(ĵ + 1) ln 2

)
⇒ 2k ln 2 = (ĵ + 1) ln 2 exp

(
(ĵ + 1) ln 2

)
⇒W (2k ln 2) = (ĵ + 1) ln 2

⇒ ĵ =
W (2k ln 2)

ln 2
− 1,

which yields

max
{ k

j + 1
, 2j
}
≥ k ln 2

W (2k ln 2)
.

This leads to

F (α(j,kj+1))− F (α∗) ≤ 2ηuLfR
2
(W (2k ln 2)

k ln 2−W (2k ln 2)

)2
, ∀k ≥ 3.

Appendix D. Application of FAPG to `1-regularized models

The `1-regularized logistic regression:

min
w

C
m∑
i=1

log(1 + exp(−yiw>xi)) + ‖w‖1 (27)

and the `1-regularized `2-loss SVM:

min
w

C
m∑
i=1

(
max{0, 1− yiw>xi}

)2
+ ‖w‖1 (28)

44

A Unified Formulation and Fast APG Method for Classification

101 102 103 104

Number of features n

10−1

100

101

102

103
Ti

m
e

(s
ec

.)
m=10000, C=1

LIBLINEAR
FAPG

103 104 105

Number of samples m

10−1

100

101

102

103

104

Ti
m

e
(s

ec
.)

n=1000, C=1

LIBLINEAR
FAPG

0 20 40 60 80 100
C

10−1

100

101

102

Ti
m

e
(s

ec
.)

m=10000, n=100

LIBLINEAR
FAPG

Figure 11: Computation Time for `1-regularized Logistic Regression (27).

101 102 103 104

Number of features n

10−1

100

101

102

103

104

105

Ti
m

e
(s

ec
.)

m=10000, C=1

LIBLINEAR
FAPG

103 104 105

Number of samples m

100

101

102

103

104

105
Ti

m
e

(s
ec

.)
n=1000, C=1

LIBLINEAR
FAPG

0 20 40 60 80 100
C

10−1

100

101

102

Ti
m

e
(s

ec
.)

m=10000, n=100

LIBLINEAR
FAPG

Figure 12: Computation Time for `1-regularized `2-loss SVM (28).

have the form of (2), where C > 0 is a hyperparameter. Letting g(·) = ‖ · ‖1, we have(
proxg,L(w)

)
i

= sign(wi) max{0, |wi| − L} (i = 1, 2, . . . ,m) which is known as the soft-
thresholding operator.

We applied the practical FAPG (Algorithm 4) and LIBLINEAR (Fan et al., 2008) to
(27) and (28) using the artificial datasets which is generated as described in Section 5. We
set the initial point w0 to the origin 0 and the tolerance ε to 10−6. For all datasets, FAPG
found solutions with better objective value than LIBLINEAR does. Figures 11 and 12 show
the computation time of FAPG and LIBLINEAR. FAPG was highly competitive to and nu-
merically more stable than LIBLINEAR with respect to the changes of the hyperparameter
C.

References

U. Alon, N. Barkai, D. A. Notterman, K. Gish, S. Ybarra, D. Mack, and A. J. Levine.
Broad patterns of gene expression revealed by clustering analysis of tumor and normal
colon tissues probed by oligonucleotide arrays. Proceedings of the National Academy of
Sciences, 96(12):6745–6750, 1999.

K. Bache and M. Lichman. UCI machine learning repository, 2013. URL http://archive.

ics.uci.edu/ml. Accessed 6 February 2016.

A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. SIAM Journal on Imaging Sciences, 2(1):183–202, 2009.

45

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

Ito, Takeda, and Toh

C. Bhattacharyya. Second order cone programming formulations for feature selection. Jour-
nal of Machine Learning Research, 5:1417–1433, 2004.

C.-C. Chang and C.-J. Lin. LIBSVM : A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology, 2(3):27:1–27:27, 2011. Software
available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth. On the
Lambert W function. Advances in Computational Mathematics, 5(1):329–359, 1996.

C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3):273–297, 1995.

D. R. Cox. The regression analysis of binary sequences. Journal of the Royal Statistical
Society. Series B (Methodological), 20(2):215–242, 1958.

A. Defazio, F. Bach, and S. Lacoste-Julien. SAGA: A fast incremental gradient method with
support for non-strongly convex composite objectives. In Advances in Neural Information
Processing Systems 27, pages 1646–1654. Curran Associates, Inc., 2014.

J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra. Efficient projections onto the L1-
ball for learning in high dimensions. In Proceedings of the 25th International Conference
on Machine Learning, pages 272–279, Helsinki, Finland, 2008.

R.-E. Fan, K.-W. Chang, C.-J Hsieh, X.-R. Wang, and C.-J. Lin. Liblinear : A library
for large linear classification. Journal of Machine Learning Research, 9:1871–1874, 2008.
Software available at http://www.csie.ntu.edu.tw/~cjlin/liblinear.

T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov, H. Coller,
M. L. Loh, J. R. Downing, M. A. Caligiuri, C. D. Bloomfield, and E. S. Lander. Molecular
classification of cancer: class discovery and class prediction by gene expression monitoring.
science, 286(5439):531–537, 1999.

J. Gotoh and A. Takeda. A linear classification model based on conditional geometric score.
Pacific Journal of Optimization, 1(2):277–296, 2005.

I. Guyon, S. Gunn, A. B. Hur, and G. Dror. Result analysis of the nips 2003 feature
selection challenge. In Advances in Neural Information Processing Systems 17, pages
545–552, 2005.

K. Helgason, J. Kennington, and H. Lall. A polynomially bounded algorithm for a singly
constrained quadratic program. Mathematical Programming, 18:338–343, 1980.

T.-K. Ho and E. M. Kleinberg. Building projectable classifiers of arbitrary complexity. In
Proceedings of the 13th International Conference on Pattern Recognition, volume 2, pages
880–885. IEEE, 1996.

C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. S. Keerthi, and S. Sundararajan. A dual coordinate
descent method for large-scale linear SVM. In Proceedings of the 25th International
Conference on Machine learning, pages 408–415. ACM, 2008.

46

http://www.csie.ntu.edu.tw/~cjlin/libsvm

A Unified Formulation and Fast APG Method for Classification

C.-W. Hsu, C.-C. Chang, and C.-J. Lin. A practical guide to support vector classification.
Technical report, Department of Computer Science, National Taiwan University, 2003.

K. Jiang, D.-F. Sun, and K.-C. Toh. An inexact accelerated proximal gradient method for
large scale linearly constrained convex sdp. SIAM Journal on Optimization, 22:1042–
1064, 2012.

S. S. Keerthi and D. DeCoste. A modified finite Newton method for fast solution of large
scale linear SVMs. Journal of Machine Learning Research, 6:341–361, 2005.

M. Kitamura, A. Takeda, and S. Iwata. Exact SVM training by Wolfe’s minimum norm
point algorithm. In 2014 IEEE International Workshop on Machine Learning for Signal
Processing, pages 1–6, Sept 2014.

K. C. Kiwiel. Breakpoint searching algorithms for the continuous quadratic knapsack prob-
lem. Mathematical Programming, 112:473–491, 2008.

D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. RCV1: A new benchmark collection for text
categorization research. Journal of Machine Learning Research, 5:361–397, 2004.

Q. Lin and L. Xiao. An adaptive accelerated proximal gradient method and its homotopy
continuation for sparse optimization. Computational Optimization and Applications, 60
(3):633–674, April 2015.

J. Ma, L. K. Saul, S. Savage, and G. M. Voelker. Identifying suspicious URLs: an application
of large-scale online learning. In Proceedings of the 26th International Conference on
Machine Learning, pages 681–688. ACM, 2009.

J. S. Marron, M. J. Todd, and J. Ahn. Distance-weighted discrimination. Journal of the
American Statistical Association, 102(480):1267–1271, 2007.

A. McCallum. SRAA: simulated/real/aviation/auto UseNet data. URL http://people.

cs.umass.edu/~mccallum/data.html. Accessed 6 February 2016.

R. D. C. Monteiro, C. Ortiz, and B. F. Svaiter. An adaptive accelerated first-order method
for convex optimization. Computational Optimization and Applications, 64:31–73, 2016.

J. S. Nath and C. Bhattacharyya. Maximum margin classifiers with specified false positive
and false negative error rates. In Proceedings of the 2007 SIAM International Conference
on Data Mining, pages 35–46. SIAM, 2007.

Y. Nesterov. Gradient methods for minimizing composite functions. Mathematical Pro-
gramming, 140(1):125–161, 2013.

Y. E. Nesterov. Smooth minimization of non-smooth functions. Mathematical Programming,
152:127–152, 2005.

A. Nitanda. Stochastic proximal gradient descent with acceleration techniques. In
Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, edi-
tors, Advances in Neural Information Processing Systems 27, pages 1574–1582. Curran
Associates, Inc., 2014.

47

http://people.cs.umass.edu/~mccallum/data.html
http://people.cs.umass.edu/~mccallum/data.html

Ito, Takeda, and Toh

B. O’Donoghue and E. Candès. Adaptive restart for accelerated gradient schemes. Foun-
dations of Computational Mathematics, 15:715–732, 2015.

N. Parikh and S. Boyd. Proximal algorithms. Foundations and Trends in Optimization, 1
(3):127–239, 2014.

J. C. Platt. Fast training of support vector machines using sequential minimal optimization.
In Advances in Kernel Methods - Support Vector Learning. MIT Press, January 1998.

D. Prokhorov. IJCNN 2001 neural network competition. Slide presentation in IJCNN’01,
2001. URL http://www.geocities.com/ijcnn/nnc_ijcnn01.pdf. Accessed 6 February
2016.

R. T. Rockafellar and S. Uryasev. Optimization of conditional value-at-risk. Journal of
Risk, 2(3):21–41, 2000.

K. Scheinberg, D. Goldfarb, and X. Bai. Fast first-order methods for composite convex
optimization with backtracking. Foundations of Computational Mathematics, 14(3):389–
417, Jun 2014.

B. Schölkopf and A. J. Smola. Learning with Kernels. MIT Press, 2002.

B. Schölkopf, A. J. Smola, R. C. Williamson, and P. L. Bartlett. New support vector
algorithms. Neural Computation, 12(5):1207–1245, May 2000.

S. Shalev-Shwartz and T. Zhang. Stochastic dual coordinate ascent methods for regularized
loss. Journal of Machine Learning Research, 14:567–599, 2013.

S. Shalev-Shwartz and T. Zhang. Accelerated proximal stochastic dual coordinate ascent
for regularized loss minimization. Mathematical Programming, 155(1):105–145, 2016.

S. Sonnenburg, V. Franc, E. Yom-Tov, and M. Sebag. Pascal large scale learning challenge,
2008. URL http://largescale.ml.tu-berlin.de. Accessed 6 February 2016.

J.F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones.
Optimization Methods and Software, 11–12:625–653, 1999. Version 1.05 available from
http://fewcal.kub.nl/sturm.

W. Su, S. Boyd, and E. J. Candès. A differential equation for modeling Nesterov’s ac-
celerated gradient method: Theory and insights. In Advances in Neural Information
Processing Systems, pages 2510–2518, Mar 2014.

A. Takeda, H. Mitsugi, and T. Kanamori. A unified classification model based on robust
optimization. Neural computation, 25(3):759–804, 2013.

A. V. Uzilov, J. M. Keegan, and D. H. Mathews. Detection of non-coding RNAs on the basis
of predicted secondary structure formation free energy change. BMC bioinformatics, 7
(1):173, 2006.

48

http://www.geocities.com/ijcnn/nnc_ijcnn01.pdf
http://largescale.ml.tu-berlin.de

A Unified Formulation and Fast APG Method for Classification

M. West, C. Blanchette, H. Dressman, E. Huang, S. Ishida, R. Spang, H. Zuzan, J. A. Olson,
J. R. Marks, and J. R. Nevins. Predicting the clinical status of human breast cancer by
using gene expression profiles. Proceedings of the National Academy of Sciences, 98(20):
11462–11467, 2001.

H.-F. Yu, F.-L. Huang, and C.-J. Lin. Dual coordinate descent methods for logistic regres-
sion and maximum entropy models. Machine Learning, 85(1):41–75, 2011.

T. Zhou, D. Tao, and X. Wu. NESVM: A fast gradient method for support vector machines.
In 2010 IEEE 10th International Conference on Data Mining, pages 679–688, December
2010.

49

	Introduction
	Preliminaries
	Binary Classification Models
	 Accelerated Proximal Gradient Method
	Backtracking Strategy
	Decreasing Strategy for Lk
	Restarting Strategy
	Maintaining Top-Speed Strategy

	New Unified Formulation
	Dual Formulation
	Relation to Existing Binary Classification Models
	C-SVM
	2-SVM
	Logistic regression
	-SVM
	Distance Weighted Discrimination (DWD)
	Extended Fisher's discriminant analysis (MM-FDA)
	Maximum Margin Minimax Probability Machine (MM-MPM)

	A Fast APG method for Unified Binary Classification
	Vector Projection Computation
	Bisection Method for Projection
	Projection for C-SVM, Logistic Regression, 2-SVM, DWD
	Projection for -SVM
	Projection for MM-MPM and MM-FDA

	Convergence Analysis of a Fast APG Method with Speed-up Strategies
	A Fast APG with Stabilization
	Convergence Analysis

	A Practical FAPG
	Heuristic Backtracking Procedure
	Skipping Extra Computations

	Computation of Primal Solution from Dual Solution
	Computation of w
	Computation of b
	Duality Gap

	Numerical Experiment
	Projection Algorithms
	-SVM
	Scalability
	Runtime Breakdown
	Effect of Each Acceleration Strategy
	Benchmark Results

	Logistic Regression
	Sensitivity to
	Scalability
	Runtime Breakdown
	Effect of Each Acceleration Strategy
	Benchmark Results

	MM-MPM
	Scalability
	Runtime Breakdown
	Effect of Each Strategy
	Benchmark Results

	Classification Ability

	Conclusion
	Derivation of the Dual Problem (10)
	Refined Bisection Algorithm
	Proof of Theorem 7
	Application of FAPG to 1-regularized models

