
Journal of Machine Learning Research 18 (2017) 1-50 Submitted 5/16; Revised 10/17; Published 11/17

Generalized SURE for optimal shrinkage of singular values
in low-rank matrix denoising

Jérémie Bigot jeremie.bigot@u-bordeaux.fr
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Abstract

We consider the problem of estimating a low-rank signal matrix from noisy measurements
under the assumption that the distribution of the data matrix belongs to an exponential
family. In this setting, we derive generalized Stein’s unbiased risk estimation (SURE)
formulas that hold for any spectral estimators which shrink or threshold the singular values
of the data matrix. This leads to new data-driven spectral estimators, whose optimality
is discussed using tools from random matrix theory and through numerical experiments.
Under the spiked population model and in the asymptotic setting where the dimensions of
the data matrix are let going to infinity, some theoretical properties of our approach are
compared to recent results on asymptotically optimal shrinking rules for Gaussian noise.
It also leads to new procedures for singular values shrinkage in finite-dimensional matrix
denoising for Gamma-distributed and Poisson-distributed measurements.

Keywords: Matrix denoising, singular value decomposition, low-rank model, Gaussian
spiked population model, spectral estimator, Stein’s unbiased risk estimate, random matrix
theory, exponential family, optimal shrinkage rule, degrees of freedom.

1. Introduction

1.1 Low rank matrix denoising in an exponential family

In various applications, it is of interest to estimate a signal matrix from noisy data. Typical
examples include the case of data that are produced in a matrix form, while others are
concerned with observations from multiple samples that can be organized in a matrix form.
In such setting, a typical inference problem involves the estimation of an unknown (non-
random) signal matrix X ∈ Rn×m from a noisy data matrix Y satisfying the model:

Y = X +W , (1)
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where W is an n × m noise matrix with real entries W ij assumed to be independent
random variables with E[W ij ] = 0 and Var(W ij) = τ2

ij for 1 ≤ i ≤ n and 1 ≤ j ≤ m. In
this paper, we focus on the situation where the signal matrix X is assumed to have a low
rank structure, and we consider the general setting where the distribution of Y belongs to
a continuous exponential family parametrized by the entries of the matrix X = E[Y ]. For
discrete observations (count data), we also consider the specific case of Poisson noise.

The low rank assumption on X is often met in practice when there exists a significant
correlation between the columns of X. This can be the case when the columns of X
represent 2D images at different wavelength of hyperspectral data, since images at nearby
wavelengths are strongly correlated (Candès et al., 2013). Further applications, where low-
rank modeling of X is relevant, can be found in genomics (Wall et al., 2001; Alter et al.,
2000), NMR spectroscopy (Nguyen et al., 2011), collaborative filtering (Candès and Recht,
2009) or medical imaging (Bydder and Du, 2006; Lam et al., 2012), among many others.

Low-rank matrix estimation is classically done in the setting where the additive noise
is Gaussian with homoscedastic variance. The more general case of observations sampled
from an exponential family is less developed, but there exists an increasing research interest
in the study of low rank matrix recovery beyond the Gaussian case. Examples of low-
rank matrix recovering from Poisson distributed observations can be found in applications
with count data such as network traffic analysis (Bazerque et al., 2013) or call center data
(Haipeng and Jianhua, 2005). A theory for low-rank matrix recovery and completion in the
case of Poisson observations has also been recently proposed in Cao and Xie (2016). Matrix
completion under a low rank assumption with additive errors having a sub-exponential
distribution and belonging to an exponential family has also been considered in Lafond
(2015). The recent work in Udell et al. (2016) proposes a novel framework to approximate,
by a low rank matrix, a tabular data set made of numerical, Boolean, categorical or ordinal
observations.

1.2 The class of spectral estimators

A standard approach to estimate a low rank matrix relies on the singular value decompo-
sition (SVD) of the data matrix

Y =

min(n,m)∑
k=1

σ̃kũkṽ
t
k, (2)

where σ̃1 ≥ σ̃2 ≥ . . . ≥ σ̃min(n,m) ≥ 0 denote its singular values, and ũk, ṽk denote the
associated singular vectors. In this paper, we propose to consider the class of spectral

estimators X̂
f

= f(Y ), where f : Rn×m → Rn×m is a (possibly data-dependent) mapping
that acts on the singular values of the data matrix Y while leaving its singular vectors
unchanged. More precisely, these estimators take the form

X̂
f

= f(Y ) =

min(n,m)∑
k=1

fk(Y )ũkṽ
t
k, (3)

where, for each 1 ≤ k ≤ min(n,m), fk(Y ) are real positive values that may depend only on
σ̃k (hence we write fk(σ̃k)) or on the whole matrix Y .
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1.3 Investigated spectral estimators

Typical examples of spectral estimators include the classical principal component analysis
(PCA) applied to matrix denoising defined, for some 1 ≤ r ≤ min(n,m), as

X̂
r

=

r∑
k=1

σ̂kũkṽ
t
k with σ̂k = fk(σ̃k) = σ̃k (4)

for all 1 ≤ k ≤ r and where it is implicitely understood that fk(σ̃k) = 0 for k ≥ r + 1.
Another typical spectral estimator in matrix denoising with Gaussian measurements is the
soft-thresholding (Candès et al., 2013) which corresponds to the choice

X̂soft =

min(m,n)∑
k=1

σ̂kũkṽ
t
k with σ̂k = fk(Y ) =

(
1− λ(Y )

σ̃k

)
+

σ̃k, (5)

for all 1 ≤ k ≤ min(n,m) and where λ(Y ) > 0 is a possibly data-dependent threshold
parameter, and (x)+ = max(x, 0) for any x ∈ R. Finaly, we will consider a more general
class of shrinkage estimators, encompassing the PCA and the soft-thresholding, that perform

X̂w =

min(m,n)∑
k=1

σ̂kũkṽ
t
k with σ̂k = fk(Y ) = wk(Y )σ̃k, (6)

where wk(Y ) ∈ [0, 1] is a possibly data-dependent shrinking weight.

1.4 Main contributions

Under the assumption that the distribution of Y belongs to an exponential family, the goal
of this paper is to derive data-driven choices for the weights wk(Y ) in (3). We construct
estimators via a two-step procedure. First, an active set of non-zero singular values is
defined. Then, in a second step, weights wk(Y ) associated with non-zero singular values
are optimized, and shown to reach desired asymptotical properties in the Gaussian spiked
population model. The main contributions of the paper are then the following ones.

1.4.1 An AIC inspired criterion for rank and singular values locations
estimation

When no a priori is available on the rank of the signal matrix X, optimizing for the weights
wk, for all 1 ≤ k ≤ min(m,n), can lead to estimators with large variance (i.e., overfitting
the noise). We propose an automatic rule to prelocalize the subset of non-zero singular
values. An active set s? ⊆ I = {1, 2, . . . ,min(n,m)} of singular values is defined as the
minimizer of a penalized log-likelihood criterion that is inspired by the Akaike information
criterion (AIC)

s∗ ∈ arg min
s⊆I

− 2 log q(Y ; X̃
s
) + 2|s|pn,m with pn,m =

1

2

(√
m+

√
n
)2
, (7)

where X̃
s

=
∑

k∈s σ̃kũkṽ
t
k, |s| is the cardinal of s, and q(Y ; X̃

s
) is the likelihood of the

data in a given exponential family with estimated parameter X̃
s
. For the case of Gaussian
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measurements with homoscedastic variance τ2, one has that q(Y ; X̃
s
) = ‖Y − X̃s‖2F /2τ2,

where ‖ · ‖F denotes the Frobenius norm of a matrix, and we show that the active set of
singular values boils down to

s? = {k ; σ̃k > cn,m+ }, (8)

where cn,m+ = τ(
√
m+

√
n). For Gamma and Poisson measurements, we resort to a greedy

optimization procedure described in Section 4.

Once the active set has been determined, the subsequent shrinkage estimator is obtained
by optimizing only for the weights within this subset while setting the other ones to zero.

1.4.2 Novel data-driven shrinkage rules minimizing SURE-like formulas

We use the principle of Stein’s unbiased risk estimation (SURE) (Stein, 1981) to derive
unbiased estimation formulas for the mean squared error (MSE) risk and mean Kullback-
Leibler (MKL) risks of spectral estimators. Minimizing such SURE-like formulas over an
appropriate class of spectral estimators is shown to lead to novel data-driven shrinkage rules
of the singular values of the matrix Y . In particular, our approach leads to novel spectral
estimators in situations where the variances τ2

ij of the entries W ij of the noise matrix are
not necessarily equal, and may depend on the signal matrix X.

As an illustrative example, let us consider spectral estimators of the form

X̂
1
w = f(Y ) = w1(Y )σ̃1ũ1ṽ

t
1, (9)

which only act on the first singular value σ̃1 of the data while setting all the other ones to
zero. In this paper, examples of data-driven choices for the weight w1(Y ) are the following
ones:

• for Gaussian measurements with n ≤ m and known homoscedastic variance τ2

w1(Y ) =

(
1− τ2

σ̃2
1

(
1 + |m− n|+ 2

n∑
`=2

σ̃2
1

σ̃2
1 − σ̃2

`

))
+

11{σ̃1>cn,m
+ }, (10)

• for Gamma measurements with τ2
ij = X2

ij/L and L > 2 (see Section 2.1 for a precise
definition),

w1(Y ) = min

1,

L− 1

Lmn

n∑
i=1

m∑
j=1

X̂
1
ij

Y ij
+

1

Lmn

1 + |m− n|+ 2

min(n,m)∑
`=2

σ̃2
1

σ̃2
1 − σ̃2

`

−1 11{1∈s∗},

(11)

• for Poisson measurements with τ2
ij = Xij (see Section 2.1 for a precise definition)

w1(Y ) = min

1,

∑n
i=1

∑m
j=1 Y ij∑n

i=1

∑m
j=1 X̂

1
ij

 11{1∈s∗}. (12)
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Beyond the case of rank one, closed-form solutions for the weights cannot be obtained,
except for the case of Gaussian measurements with homoscedastic variance τ2. In this latter
case, the rule for w1(Y ) in (10) generalizes to other eigenvalues wk(Y ) as

wk(Y ) =

1− τ2

σ̃2
k

1 + |m− n|+ 2

min(n,m)∑
`=1;` 6=k

σ̃2
k

σ̃2
k − σ̃2

`


+

11{σ̃k>cn,m
+ }. (13)

For Gamma or Poisson distributed measurements, we propose fast algorithms to get nu-
merical approximations of the weights wk(Y ) (see Section 5.2 for more details).

1.4.3 Asymptotic properties in the Gaussian spiked population model

Another contribution of the paper is to discuss the optimality of the shrinking weights (13)
for Gaussian noise in the asymptotic setting where the dimensions of the matrix Y are
let going to infinity. These theoretical results are obtained for the so-called spiked popula-
tion model that has been introduced in the literature on random matrix theory and high-
dimensional covariance matrix estimation (see e.g. Baik and Silverstein (2006); Benaych-
Georges and Nadakuditi (2012); Dozier and Silverstein (2007); Shabalin and Nobel (2013)).
All the theoretical and asymptotic results of the paper (other than derivation of proposed
estimators) assume this model.

Definition 1 The Gaussian spiked population model corresponds to the following setting:

• the W ij in (1) are iid Gaussian random variables with zero mean and variance τ2 = 1/m,

• the Xij’s in (1) are the entries of an unknown n × m matrix X that has a low rank

structure, meaning that it admits the SVD X =
∑r∗

k=1 σkukv
t
k, where uk and vk are

the left and right singular vectors associated to the singular value σk > 0, for each
1 ≤ k ≤ r∗, with σ1 > σ2 > . . . > σr∗,

• the rank r∗ of the matrix X is assumed to be fixed,

• the dimensions of the data matrix Y = X+W are let going to infinity in the asymptotic
framework where the sequence m = mn ≥ n is such that limn→+∞

n
m = c with 0 < c ≤

1.

In the Gaussian spiked population model, the asymptotic locations of the empirical
singular values σ̃1 ≥ . . . ≥ σ̃min(n,m) are well understood in the random matrix theory
(further details are given in Section 3.1). Note that the setting where the rank r∗ is not
held fixed but allowed to grow with min(n,m) is very different (see e.g. Ledoit and Wolf
(2012) and references therein).

Under the Gaussian spiked population model, our contributions are then as follows:

• we prove the convergence of the SURE formula when the dimensions of Y tend to infinity,

• it is shown that minimizing the asymptotic value of SURE leads to the same estimator
as the limiting value of the estimator obtained by minimizing the SURE,
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• this model allows to show that the novel data-driven spectral estimators derived in this
paper are asymptotically connected to existing optimal shrinkage rules (Shabalin and
Nobel, 2013; Gavish and Donoho, 2017; Nadakuditi, 2014) for low-rank matrix de-
noising,

• in this setting, we are also able to connect the choice of the penalty function 2|s|pn,m
in (7) with Stein’s notion of degrees of freedom (see e.g. Bradley (2004)) for spectral
estimators.

1.4.4 Numerical experiments and publicly available source code

As the theoretical properties of our estimators are studied in an asymptotic setting, we
report the results of various numerical experiments to analyze the performances of the pro-
posed estimators for finite-dimensional matrices. These experiments allow the comparison
with existing shrinkage rules for Gaussian-distributed measurements and they are also used
to shed some lights on the finite sample properties of the method for Gamma-distributed
or Poisson-distributed measurements. We also exhibit the settings where the signal matrix
X is either easy or more difficult to recover. From these experiments, the main findings are
the following ones:

• the use of an appropriate active set s of singular values is an essential step for the quality
of shrinkage estimators whose weights are data-driven by SURE-like estimators; taking
s = {1, . . . ,min(n,m)} leads to poor results while the choice of s = s∗ minimizing the
AIC criterion (7) appears to yield the best performances,

• for Gaussian noise, the performances of our approach are similar to those obtained by
the asymptotically optimal spectral estimator proposed in Gavish and Donoho (2017)
when the true rank r∗ of the signal matrix X is sufficiently small, but for large to
moderate values of the signal-to-noise ratio our approach may perform better than
existing methods in the literature,

• for Gamma or Poisson distributed measurements, the spectral estimators proposed in this
paper give better results than estimators based on PCA (restricted to the active set
s∗) or soft-thresholding of singular values.

Beyond the case of Gaussian noise, the implementation of the estimators is not straight-
forward, and we thus provide publicly available source code at

https://www.math.u-bordeaux.fr/~cdeledal/gsure_low_rank

to reproduce the figures and the numerical experiments of this paper.

1.5 Related results in the literature

Early work on singular value thresholding began with the work in Eckart and Young (1936)
on the best approximation of fixed rank to the data matrix Y . Spectral estimators with
different amounts of shrinkage for each singular value of the data matrix have then been
proposed in Efron and Morris (1972, 1976). In the case of Gaussian measurements with
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homoscedastic variance, the problem of estimating X under a low-rank assumption has
recently received a lot of attention in the literature on high-dimensional statistics (see
e.g. Candès et al. (2013); Donoho and Gavish (2014); Josse and Sardy (2015); Shabalin and
Nobel (2013)). Recent works (Gavish and Donoho, 2017; Nadakuditi, 2014) also consider the
more general setting where the distribution of the additive noise matrix W is orthogonally
invariant, and such that its entries are iid random variables with zero mean and finite fourth
moment. In all these papers, the authors have focused on spectral estimators which shrink
or threshold the singular values of Y , while its singular vectors are left unchanged. In this
setting, the main issue is to derive optimal shrinkage rules that depends on the class of
spectral estimators that is considered, on the loss function used to measure the risk of an
estimator of X, and on appropriate assumptions for the distribution of the additive noise
matrix W .

1.6 Organization of the paper

Section 2 is devoted to the analysis of a data matrix whose entries are distributed according
to a continuous exponential family. SURE-like formula are first given for the mean squared
error risk, and then for the Kullback-Leibler risk. As an example of discrete exponential
family, we also derive such risk estimators for Poisson distributed measurements. The
computation of data-driven shrinkage rules is then discussed for Gaussian, Gamma and
Poisson noises. In Section 3, we restrict our attention to the Gaussian spiked population
model in order to derive asymptotic properties of our approach. We study the asymptotic
behavior of the SURE formula proposed in Candès et al. (2013); Donoho and Gavish (2014)
for spectral estimators using tools from RMT. This result allows to make a connection
between data-driven spectral estimators minimizing the SURE for Gaussian noise, and the
asymptotically optimal shrinkage rules proposed in Shabalin and Nobel (2013); Nadakuditi
(2014) and Gavish and Donoho (2017). In Section 4, we study the penalized log-likelihood
criterion (7) used to select an active set of singular values. Its connection to the degrees of
freedom of spectral estimators and rank estimation in matrix denoising is discussed. Various
numerical experiments are finally proposed in Section 5 to illustrate the usefulness of the
approach developed in this paper for low-rank denoising and to compare its performances
with existing methods. The proofs of the main results of the paper are gathered in a
technical Appendix A, and numerical implementation details are described in Appendix B.

2. SURE-like formulas in exponential families

For an introduction to exponential families, we refer to Brown (1986). The idea of unbiased
risk estimation in exponential families dates back to Hudson (1978). More recently, gener-
alized SURE formulas have been proposed for the estimation of the MSE risk, for denoising
under various continuous and discrete distributions in Raphan and Simoncelli (2007), and for
inverse problems whithin the continuous exponential families in Eldar (2009). In Deledalle
(2017), SURE-like formula are derived for the estimation of the Kullback-Leibler risk that
applies to both continuous and discrete exponential families. In what follows, we borrow
some ideas and results from these works. We first treat the case of continuous exponential
families, and then we focus on Poisson data in the discrete case.
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2.1 Data sampled from a continuous exponential family

We recall that Y is an n × m matrix with independent and real entries Y ij . For each
1 ≤ i ≤ n and 1 ≤ j ≤ m, we assume that the random variable Y ij is sampled from
a continuous exponential family, in the sense that each Y ij admits a probability density
function (pdf) q(y;Xij) with respect to the Lebesgue measure dy on the real line Y = R.
The pdf q(y;Xij) of Y ij can thus be written in the general form:

q(y;Xij) = h(y) exp (η(Xij)y −A(η(Xij))) , y ∈ Y, (14)

where η (the link function) is a one-to-one and smooth function, A (the log-partition func-
tion) is a twice differentiable mapping, h is a known function, and Xij is an unknown
parameter of interest belonging to some open subset X of R. Throughout the paper, we
will suppose that the following assumption holds:

Assumption 2 The link function η and the log-partition function A are such that

A′(η(x)) = x for all x ∈ X ,

where A′ denotes the first derivative of A.

Since E[Y ij ] = A′(η(Xij)) for exponential families in the general form (14), Assumption
2 implies that E[Y ij ] = Xij , and thus the data matrix satisfies the relation Y = X +W
where W is a centered noise matrix, which is in agreement with model (1). Now, if we let
Θ = η(X ), it will be also convenient to consider the expression of the pdf of Y ij in the
canonical form:

p(y;θij) = h(y) exp (θijy −A(θij)) , y ∈ Y, (15)

where θij = η(Xij) ∈ Θ is usually called the canonical parameter of the exponential family.
Finally, we recall the relation Var(Y ij) = A′′(θij) = A′′(η(Xij)) where A′′ denotes the
second derivative of A. Then, we denote by θ the n×m matrix whose entries are the θij ’s.

Examples of data satisfying model (14) are the following ones:

Gaussian noise with known variance τ2:

q(y;Xij) =
1√
2π

exp

(
−(y −Xij)

2

2τ2

)
, E[Y ij ] = Xij , Var(Y ij) = τ2,

Y = R, X = R, Θ = R, h(y) =
1√
2πτ

exp

(
− y2

2τ2

)
, η(x) =

x

τ2
, A(θ) = τ2 θ

2

2
.

Gamma-distributed measurements with known shape parameter L > 0:

q(y;Xij) =
LLyL−1

Γ(L)XL
ij

exp

(
−L y

Xij

)
11]0,+∞[(y), E[Y ij ] = Xij , Var(Y ij) =

X2
ij

L
,

Y = R, X =]0,+∞[, Θ =]−∞, 0[, h(y) =
LLyL−1

Γ(L)
11]0,+∞[(y), η(x) = −L

x
, A(θ) = −L log

(
− θ
L

)
.
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The matrix θ = η(X) can then be estimated via the n ×m matrix θ̂
f

= θ̂
f
(Y ) whose

entries are given by

θ̂
f

ij(Y ) = η
(
X̂

f
ij

)
, for all 1 ≤ i ≤ n, 1 ≤ j ≤ m, (16)

where X̂
f
ij is a spectral estimator as defined in eq. (3).

In the rest of this section, we follow the arguments in Eldar (2009) and Deledalle (2017)

to derive SURE-like formulas under the exponential family for the estimators θ̂
f

and X̂
f
,

using either the mean-squared error (MSE) risk or the Kullback-Leibler (KL) risk.

2.1.1 Unbiased estimation of the MSE risk

We consider the following MSE risk which provides a measure of discrepancy in the space
Θ of natural parameters, and then indirectly in the space of interest X .

Definition 3 The squared error (SE) risk of θ̂
f

is SE(θ̂
f
,θ) = ‖θ̂f − θ‖2F , and the mean-

squared error (MSE) risk of θ̂
f

is defined as MSE(θ̂
f
,θ) = E

[
SE(θ̂

f
,θ)
]

= E
[
‖θ̂f − θ‖2F

]
.

Using the above MSE risk to compare θ̂
f

and θ implies that the discrepancy between

the estimator X̂
f

and the matrix of interestX is measured by the quantity MSEη(X̂
f
,X) =

MSE(η(X̂
f
), η(X)) which is different from MSE(X̂

f
,X). For Gaussian noise, MSEη(X̂

f
,X) =

1
τ2
E
[
‖X̂f −X‖2F

]
, while for Gamma distributed measurements with known shape param-

eter L > 0, it follows that

MSEη(X̂
f
,X) = L2

n∑
i=1

m∑
j=1

Xij − X̂
f
ij

XijX̂
f
ij

2

.

The following proposition gives a SURE formula for the MSE risk introduced in Definition
3.

Proposition 4 Suppose that the data are sampled from a continuous exponential family.
Assume that the function h, in the definition (15) of the exponential family, is twice con-
tinuously differentiable on Y = R. If the following condition holds

E
[∣∣∣θ̂fij(Y )

∣∣∣] < +∞, for all 1 ≤ i ≤ n, 1 ≤ j ≤ m, (17)

then, the quantity

GSURE(θ̂
f
) = ‖θ̂f (Y )‖2 +

n∑
i=1

m∑
j=1

(
2
h′(Y ij)

h(Y ij)
θ̂
f

ij(Y ) +
h′′(Y ij)

h(Y ij)

)
+ 2 div θ̂

f
(Y ), (18)

where div θ̂
f
(Y ) =

n∑
i=1

m∑
j=1

∂θ̂
f

ij(Y )

∂Y ij
, is an unbiased estimator of MSE(θ̂

f
,θ)

9
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Note that GSURE(θ̂
f
) is an unbiased estimator of MSE(θ̂

f
,θ) and not of MSE(X̂

f
,X).

It is shown in Section 3.3 that the results of Proposition 17 coincide with the approach in
Candès et al. (2013) on the derivation of a SURE formula in the case of Gaussian noise for
smooth spectral estimators. In the case of Gamma noise, assuming L > 2 implies that the
conditions on the function h in Proposition 4 is satisfied, hence assuming that conditions
(17) holds as well, and using that

θ̂
f

ij(Y ) = − L

fij(Y )
and

∂θ̂
f

ij(Y )

∂Y ij
=

L

|fij(Y )|2
∂fij(Y )

∂Y ij
,

it follows that

GSURE(θ̂
f
) =

n∑
i=1

m∑
j=1

L2

|fij(Y )|2 −
2L(L− 1)

Y ijfij(Y )
+

2L

|fij(Y )|2
∂fij (Y )

∂Y ij
− (L− 1)(L− 2)

|Y ij |2
.

(19)

2.1.2 Unbiased estimation of KL risks

Following the terminology in Deledalle (2017), let us now introduce two different notions of
Kullback-Leibler risk, which arise from the non-symmetry of this discrepancy measure.

Definition 5 Let f : Rn×m → Rn×m be a smooth spectral function. Consider the estimator

θ̂
f

defined by (16), where Y is a matrix whose entries Y ij are independent random variables
sampled from the exponential family (15) in canonical form:

• the Kullback-Leibler synthesis (KLS) risk of θ̂
f

is defined as

KLS(θ̂
f
,θ) =

n∑
i=1

m∑
j=1

∫
R

log

p(y; θ̂
f

ij)

p(y;θij)

 p(y; θ̂
f

ij) dy,

and the mean KLS risk of θ̂
f

is defined as MKLS(θ̂
f
,θ) = E

[
KLS(θ̂

f
,θ)
]
,

• the Kullback-Leibler analysis (KLA) risk of θ̂
f

is defined as

KLA(θ̂
f
,θ) =

n∑
i=1

m∑
j=1

∫
R

log

p(y;θij)

p(y; θ̂
f

ij)

 p(y;θij) dy,

and the mean KLA risk of θ̂
f

is defined as MKLA(θ̂
f
,θ) = E

[
KLA(θ̂

f
,θ)
]
.

A key advantage of the Kullback-Leibler risk is that it measures the discrepancy be-

tween the unknown distribution p(y;θij) and its estimate p(y; θ̂
f

ij). It is thus invariant

with respect to the reparametrization θ̂
f

= η(X̂
f
) (unlike the MSE risk), and we may also

write MKLS(θ̂
f
,θ) = MKLS(X̂

f
,X) and MKLA(θ̂

f
,θ) = MKLA(X̂

f
,X). As suggested

10
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in Deledalle (2017), the MKLA risk represents how well the distribution p(y; θ̂
f

ij) explain a
random variable Y ij sampled from the pdf p(y;θij). The MKLA risk is a natural loss func-
tion in many statistical problems since it takes as a reference measure the true distribution
of the data (see e.g. Hall (1987)). The MKLS risk represents how well one may generate an

independent copy of Y ij by sampling a random variable from the pdf p(y; θ̂
f

ij). The MKLS
risk has also been considered in various inference problems in statistics (Hannig and Lee,
2006; Yanagimoto, 1994).

By simple calculation, it follows that

MKLS(θ̂
f
,θ) =

n∑
i=1

m∑
j=1

E
[(
θ̂
f

ij − θij
)
A′(θ̂

f

ij)
]

+A(θij)− E
[
A(θ̂

f

ij)
]
, (20)

and MKLA(θ̂
f
,θ) =

n∑
i=1

m∑
j=1

E
[(
θij − θ̂

f

ij

)
A′(θij)

]
+ E

[
A(θ̂

f

ij)
]
−A(θij). (21)

Hence, in the case of Gaussian measurements with known variance τ2, we easily retrieve

that MKLS(θ̂
f
,θ) = MKLA(θ̂

f
,θ) = τ2

2 MSE(θ̂
f
,θ) = 1

2τ2
E
[
‖X̂f −X‖2F

]
. In the case of

Gamma distributed measurements with known shape parameter L > 0, it follows that

MKLS(θ̂
f
,θ) = L

n∑
i=1

m∑
j=1

E

X̂f
ij

Xij
− log

X̂f
ij

Xij

− 1

 ,
MKLA(θ̂

f
,θ) = L

n∑
i=1

m∑
j=1

E

Xij

X̂
f
ij

− log

Xij

X̂
f
ij

− 1

 .
Below, we use some of the results in Deledalle (2017) whose main contributions are the
derivation of new unbiased estimators of the MKLS and MKLA risks. For continuous
exponential family, the risk estimate derived in Deledalle (2017) is unbiased for the MKLS
risk, while it is only asymptotically unbiased for the MKLA risk with respect to the signal-
to-noise ratio. For data sampled from a continuous exponential family, this makes simpler
the use of the MKLS risk to derive data-driven shinkage in low rank matrix denoising, and
we have therefore chosen to concentrate our study on this risk in this setting. The following
proposition establishes a SURE formula to estimate the MKLS risk in the continuous case.

Proposition 6 Suppose that the data are sampled from a continuous exponential family.
Assume that the function h, in the definition (15) of the exponential family, is continuously
differentiable on Y = R. Suppose that the function A, in the definition (15) of the expo-
nential family, is twice continuously differentiable on Θ. If the following condition holds

E
[∣∣∣A′(θ̂fij(Y ))

∣∣∣] < +∞, for all 1 ≤ i ≤ n, 1 ≤ j ≤ m, (22)

then, the quantity

SUKLS(θ̂
f
) =

n∑
i=1

m∑
j=1

((
θ̂
f

ij(Y ) +
h′(Y ij)

h(Y ij)

)
A′(θ̂

f

ij(Y ))−A(θ̂
f

ij(Y ))

)
+ div f(Y ), (23)

11
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where div f(Y ) =

m∑
i=1

n∑
j=1

∂fij(Y )

∂Y ij
, is an unbiased estimator of MKLS(θ̂

f
,θ)−

n∑
i=1

m∑
j=1

A(θij).

A key difference in the formula of unbiased estimates for the MSE and the KL risks is

the computation of the divergence term in (18) and (23), when X̂
f

=
∑min(n,m)

k=1 fk(σ̃k)ũkṽ
t
k

is a smooth spectral estimator in the sense where each function fk : R+ → R+ is assumed to
be (almost everywhere) differentiable for 1 ≤ k ≤ min(n,m). In this setting, the divergence

term in the expression of GSURE(θ̂
f
) depends upon the matrix θ̂

f
(Y ) = η(X̂

f
). Therefore,

when η is a nonlinear mapping, it is generally not possible to obtain a simpler expression

for div θ̂
f
(Y ). To the contrary, for SUKLS(θ̂

f
), the divergence term is div f(Y ) which has

the following closed-form expression for any smooth spectral estimators

div f(Y ) = |m− n|
min(n,m)∑
k=1

fk(σ̃k)

σ̃k
+

min(n,m)∑
k=1

f ′k(σ̃k) + 2

min(n,m)∑
k=1

fk(σ̃k)

min(n,m)∑
`=1;`6=k

σ̃k
σ̃2
k − σ̃2

`

,

(24)
thanks to the results from Theorem IV.3 in Candès et al. (2013).

Note that SUKLS(X̂
r
w) = τ2

2 SURE(X̂
r
w) for Gaussian measurements, hence, the GSURE

and SUKLS strategies match in this case. In the case of Gamma measurements, assuming
that L > 2 implies that the conditions on the function h in Proposition 6 is satisfied, and
by assuming that condition (22) holds as well, it follows that

SUKLS(θ̂
f
) =

n∑
i=1

m∑
j=1

(
(L− 1)

fij(Y )

Y ij
− L log (fij(Y ))

)
− Lmn+ div f(Y ),

where the expression of div f(Y ) is given by (24).
Note that it is implicitly understood in the definition of div f(Y ) that each mapping

fij : Rn×m → R is differentiable. The differentiability of the spectral function f (and thus of
its components fij) is a consequence of the assumption that the functions f1, . . . , fmin(n,m)

(acting on the singular values) are supposed to be differentiable. For further details, on the
differentiability of f and the fij ’s, we refer to Section IV in Candès et al. (2013). From the
arguments in Candès et al. (2013), it follows that formula (24) for the divergence of f is
also valid under the assumption that each function fk is differentiable on R+ except on a
set of Lebesgue measure zero.

2.2 The case of Poisson data

For Poisson data, the key result to obtain unbiased estimate of a given risk is the following
lemma which dates back to the work in Hudson (1978).

Lemma 7 Let f : Zn×m → Rn×m be a measurable mapping. Let 1 ≤ i ≤ n and 1 ≤ j ≤ m,
and denote by fij : Zn×m → R a measurable function. Let Y ∈ Zn×m be a matrix whose
entries are independently sampled from a Poisson distribution on Z. Then,

E

 n∑
i=1

m∑
j=1

Xijfij(Y )

 = E

 n∑
i=1

m∑
j=1

Y ijfij(Y − eietj)

 ,
12
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where, for each 1 ≤ i ≤ n and 1 ≤ j ≤ m, fij(Y ) denotes the (i, j)-th entry of the matrix
f(Y ), and ei (resp. ej) denotes the vector of Zn (resp. Zm) with the i-th entry (resp. j-th
entry) equals to one and all others equal to zero.

Hudson’s lemma provides a way to estimate (in an unbiased way) the expectation of the
Frobenius inner product between the matrix X and the matrix f(Y ). To see the usefulness
of this result, one may consider the following mean-squared error

MSE(X̂
f
,X) = E

[∥∥∥X̂f −X
∥∥∥2

F

]
= E

∥∥∥X̂f
∥∥∥2

F
− 2

n∑
i=1

m∑
j=1

XijX̂
f
ij(Y ) + ‖X‖2F

 .
Therefore, by Lemma 7, one immediately obtains that

PURE(θ̂
f
) =

∥∥∥X̂f
∥∥∥2

F
− 2

n∑
i=1

m∑
j=1

Y ijfij(Y − eietj), (25)

is an unbiased estimate for the quantity MSE(X̂
f
,X)− ‖X‖2F .

For Poisson data, one may also define the following KL risks

MKLS(θ̂
f
,θ) =

n∑
i=1

m∑
j=1

E

Xij − X̂
f
ij − X̂

f
ij log

Xij

X̂
f
ij

 , (26)

MKLA(θ̂
f
,θ) =

n∑
i=1

m∑
j=1

E

X̂f
ij −Xij −Xij log

X̂f
ij

Xij

 , (27)

which are in agreement with Definition 5 of KL risks for data sampled from a Poisson
distribution. From the arguments in Deledalle (2017), there does not currently exist an
approach to derive a SURE formula for the MKLS risk in the Poisson case since they are

no unbiased formula for X̂
f
ij logXij . Nevertheless, as shown in Deledalle (2017), Hud-

son’s Lemma 7 provides an unbiased estimator for Xij log X̂
f
ij , and then it is possible to

unbiasedly estimate the MKLA risk as follows.

Proposition 8 For data sampled from a Poisson distribution, the quantity

PUKLA(θ̂
f
) =

n∑
i=1

m∑
j=1

X̂
f
ij − Y ij log

(
fij(Y − eietj)

)
, (28)

is an unbiased estimator of MKLA(θ̂
f
,θ) +

n∑
i=1

m∑
j=1

Xij −Xij log (Xij).

2.3 Data-driven shrinkage in low-rank matrix denoising

For a matrix X with entries Xij ∈ X = R, we consider shrinkage estimators of the form

X̂
s
w = f(Y ) =

∑
k∈s

wkσ̃kũkṽ
t
k, (29)

13



Bigot, Deledalle and Féral

with s ⊆ I = {1, 2, . . . ,min(n,m)} and wk ∈ [0, 1], for all k ∈ s.
When the underlying matrix X is constrained to have positive entries, e.g. X =]0,+∞[

in the Gamma and Poisson cases, we consider instead estimators of the form

X̂
s
w = f(Y ) = max

[∑
k∈s

wkσ̃kũkṽ
t
k, ε

]
, (30)

where ε > 0 is an a priori lower bound on the smallest value of Xij , where for any matrix
X, max[X, ε]ij = max[Xij , ε], for all 1 ≤ i ≤ m and 1 ≤ j ≤ n.

The construction of the subset s is postponed to Section 4, and we focus here in selecting
the weights in a data-driven way for a fixed given s. In the following, we denote by sc the

complementary set of s in I, i.e., sc = I \ s, and we let θ̂
s

w = η
(
X̂

s
w

)
. When X =]0,+∞[,

we have found that considering estimators of the form (30) is more appropriate than trying
to find shrinking weights (wk)k∈s such that all the entries of the matrix

∑
k∈swkσ̃kũkṽ

t
k

are positive, for a given subset s.

Gaussian noise with known homoscedastic variance τ2

By applying the GSURE formula (18) for Gaussian distributed measurements and thanks
to the expression (24) for the divergence of smooth spectral estimators, we obtain for X̂

s
w,

as defined in (29), the SURE expression given by

SURE(X̂
s
w) = −mnτ2 +

∑
k∈s

(wk − 1)2σ̃2
k +

∑
k∈sc

σ̃2
k + 2τ2

s∑
k=1

1 + |m− n|+ 2

min(n,m)∑
`=1;` 6=k

σ̃2
k

σ̃2
k − σ̃2

`

wk

which unbiasedly estimate MSE(X̂
s
w,X). Hence, for each k ∈ s, by differentiating the above

expression with respect to wk, it follows that a data-driven weight for the k-th empirical
singular value is given by

wk(Y ) =

1− τ2

σ̃2
k

1 + |m− n|+ 2

min(n,m)∑
`=1;`6=k

σ̃2
k

σ̃2
k − σ̃2

`


+

, (31)

which fullfils the requirement that wk(Y ) ∈ [0, 1]. Note that as SUKLS(X̂
s
w) = τ2

2 SURE(X̂
s
w)

for Gaussian measurements, the exact same data-driven weight would be obtained by min-
imizing an estimate of the MKLS(X̂

s
w,X).

The case of estimators with rank one. Consider the case of estimators with rank 1, i.e.,

let s = {1}. It follows that X̂
1
w = X̂

{1}
w = w1X̂

1
where w1 ∈ [0, 1] is given by

w1(Y ) =

1− τ2

σ̃2
1

1 + |m− n|+ 2

min(n,m)∑
`=1;`6=1

σ̃2
1

σ̃2
1 − σ̃2

`


+

.

14
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Gamma and Poisson distributed measurements

In Gamma and Poisson cases, it is not possible to follow the same strategy as in the
Gaussian case to derive optimal weights for (30) in a closed-form using the established
SURE-like formulas. We shall investigate how data-driven shinkage can be approximated in
Section 5 on numerical experiments using fast algorithms. Nevertheless, when the estimator
is restricted to rank 1, optimizing KL risk estimators lead to closed-form expressions under
the assumption that all the entries of the data matrix Y are strictly positive.

The case of estimators with rank one under Gamma noise. Consider again the case of

estimators with rank 1, i.e., let s = {1}, and let X̂
1

= σ̃1ũ1ṽ
t
1 denote the PCA approx-

imation of rank 1 of X. If all the entries of the matrix Y are strictly positive, by the
Perron-Frobenius theorem, all the entries of the first singular vectors ũ1 and ṽ1 are strictly

positive. Therefore, all the entries of X̂
1

belong to the set X =]0,+∞[, and we can consider

X̂
1
w = X̂

{1}
w = w1σ̃1ũ1ṽ

t
1 as defined in (29) instead of (30). Assuming L > 2 for the SUKLS

formula to hold, it follows by simple calculations that

SUKLS(θ̂
1

w) =
n∑
i=1

m∑
j=1

(L− 1)w1

X̂
1
ij

Y ij
−mnL log (w1)− L log

(
X̂

1
ij

Y ij

)
− Lmn

+ (1 + |m− n|)w1 + 2w1

min(n,m)∑
`=2

σ̃2
1

σ̃2
1 − σ̃2

`

.

Hence, by differentiating the above expression with respect to w1 and as it is monotonic on

both sides of its unique minimum, the optimal value of w1 ∈ [0, 1] minimizing SUKLS(θ̂
1

w)
is given by

w1(Y ) = min

1,

L− 1

Lmn

n∑
i=1

m∑
j=1

X̂
1
ij

Y ij
+

1

Lmn

1 + |m− n|+ 2

min(n,m)∑
`=2

σ̃2
1

σ̃2
1 − σ̃2

`

−1 ,
which yields the shrinking rule (11) stated in the introduction of this paper. Note that it is
not possible to obtain, in a closed-form, the optimal value of the weight w1 that minimizes

the criterion GSURE(θ̂
1

w).

The case of estimators with rank one under Poisson noise. Using again that all the
assumption that the entries of Y are positive, we can consider (by the Perron-Frobenius

theorem) X̂
1
w = X̂

{1}
w = w1σ̃1ũ1ṽ

t
1 as defined in (29) instead of (30). Then, the PURE

formula (25) and Proposition 8 apply to the estimator θ̂
1

w = log
(
X̂

1
w

)
which yield to

PURE(θ̂
1

w) = w2
1σ̃

2
1 − 2

n∑
i=1

m∑
j=1

Y ijw1σ̃
(ij)
1 ũ

(ij)
1,i ṽ

(ij)
1,j ,

and PUKLA(θ̂
1

w) =

n∑
i=1

m∑
j=1

w1X̂
1
ij − Y ij

(
log (w1) + log

(
σ̃

(ij)
1 ũ

(ij)
1,i ṽ

(ij)
1,j

))
,
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where X̂
1
ij = σ̃1ũ1,iṽ1,j , σ̃

(ij)
1 is the largest singular value of the matrix Y − eietj , and ũ

(ij)
1

(resp. ṽ
(ij)
1 ) denotes its left (resp. right) singular vectors. Therefore, by differentiating the

above expression with respect to w1 and as it is monotonic on both sides of its unique

minimum, an optimal value for w1 ∈ [0, 1] which minimizes PURE(θ̂
1

w) is given by

w1(Y ) = min

1,
1

σ̃2
1

n∑
i=1

m∑
j=1

Y ij σ̃
(ij)
1 ũ

(ij)
1,i ṽ

(ij)
1,j

 .
However, this optimal shrinking rule cannot be used in practice since evaluating the values

of σ̃
(ij)
1 , ũ

(ij)
1 , ṽ

(ij)
1 for all 1 ≤ i ≤ n and 1 ≤ j ≤ m is not feasible from a computational

point of view for large values of n and m. Nevertheless, a fast algorithm to find a numerical
approximation of the optimal value w1(Y ) is proposed in Section 5.

To the contrary, using again that all the X̂
1
ij are positive by the Perron-Frobenius

theorem, the value of w1 ∈ [0, 1] minimizing PUKLA(θ̂
1

w) is

w1(Y ) = min

1,

∑n
i=1

∑m
j=1 Y ij∑n

i=1

∑m
j=1 X̂

1
ij

 ,
which is straightforward to compute. This corresponds to the shrinkage rule (12) given in
the introduction.

3. Gaussian spiked population model

In this section, we restrict our analysis to the Gaussian spiked population model and the
asymptotic setting introduced in Definition 1.

3.1 Asymptotic location of empirical singular values

We summarize below the asymptotic behavior of the singular values of the data matrix

Y =
∑min(n,m)

k=1 σ̃kũkṽ
t
k in the Gaussian spiked population model.

In the case where X = 0, it is well known (Anderson et al., 2010; Bai and Silverstein,
2010) that the empirical distribution of the singular values of Y = W (with τ = 1√

m
)

converges, as n → +∞, to the quarter circle distribution if c = 1 and to its generalized
version if c < 1. This distribution is supported on the compact interval [c−, c+] with

c± = 1±√c
where c+ is the so-called bulk (right) edge.

When X 6= 0 has a low rank structure, the asymptotic behavior of the singular values
of Y = X + W is also well understood (Benaych-Georges and Nadakuditi, 2012; Dozier
and Silverstein, 2007; Shabalin and Nobel, 2013), and generalizations to noise matrix W
whose distribution is orthogonally invariant have also been recently considered in Benaych-
Georges and Nadakuditi (2012). Below, we recall some of these results that will be needed
in this paper. To this end, let us introduce the real-valued function ρ defined by

ρ (σ) =

√
(1 + σ2)(c+ σ2)

σ2
for any σ > 0.
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Then, the following result holds (see e.g. Theorem 2.8 in Benaych-Georges and Nadakuditi
(2012) and Proposition 9 in Shabalin and Nobel (2013)).

Proposition 9 Assume that Y = X +W is a random matrix sampled from the Gaussian
spiked population model with τ = 1√

m
and X =

∑r∗

k=1 σkukv
t
k. Then, for any fixed k ≥ 1,

one has that, almost surely,

lim
n→+∞

σ̃k =

{
ρ (σk) if k ≤ r∗ and σk > c1/4,
c+ otherwise.

Moreover,

lim
n→+∞

σ̃min(n,m) = c−.

In what follows, we shall also use the relation

1

σ2
=
ρ2(σ)− (c+ 1)−

√
(ρ2(σ)− (c+ 1))2 − 4c

2c
that holds for any σ > c1/4, (32)

which is a consequence of e.g. the results in Section 3.1 in Benaych-Georges and Nadakuditi
(2012).

3.2 Existing asymptotically optimal shrinkage rules

Below, we briefly summarize some results in Gavish and Donoho (2017) and Nadakuditi
(2014) on the construction of asymptotically optimal spectral estimators. Let

X̂
f

= f(Y ) =

min(n,m)∑
k=1

fk(σ̃k)ũkṽ
t
k (33)

be a given smooth spectral estimator, and consider the standard squared error SE(X̂
f
,X) =

‖X̂f −X‖2F as a measure of risk. The set of spectral functions minimizing SE(X̂
f
,X) is

given by fk(σ̃k) = ũtkXṽk, for 1 ≤ k ≤ min(n,m). However, it cannot be used in practice
since X is obviously unknown. A first alternative suggested in Gavish and Donoho (2017)
and Nadakuditi (2014) is to rather study the asymptotic risk

SE∞(X̂
f
) = lim

n→∞
SE(X̂

f
,X) (in the almost sure sense) (34)

in the Gaussian spiked population model. Then, it is proposed in Gavish and Donoho
(2017) and Nadakuditi (2014) to find an asymptotically optimal choice of f by minimiz-

ing SE∞(X̂
f
) among a given class of smooth spectral functions. The results in Gavish and

Donoho (2017) show that, among spectral estimators of the form X̂
η

=
∑min(n,m)

k=1 η(σ̃k)ũkṽ
t
k,

where η : R+ → R+ is a continuous shrinker such that η(σ) = 0 whenever σ ≤ c+, an
asymptotically optimal shrinkage rule is given by the choice

η∗(σ) =

{
1
σ

√
(σ2 − (c+ 1))2 − 4c if σ > c+,

0 otherwise.
(35)
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In Nadakuditi (2014), it is proposed to consider spectral estimators of the form X̂
δ

=∑r
k=1 δkũkṽ

t
k where δ1, . . . , δr are positive weights. By Theorem 2.1 in Nadakuditi (2014),

it follows that, if σk > c1/4 for all 1 ≤ k ≤ r with r ≤ r∗, then the weights which minimize

SE∞(X̂
δ
) over Rr+ are given by

δ∗k = δk(σk) =
σ4
k − c

σk

√
(1 + σ2

k)(c+ σ2
k)
, for all 1 ≤ k ≤ r. (36)

In what follows, the shrinkage rules (35) and (36) are shown to be equivalent, and they
will serve as a reference of asymptotic optimality. It should be stressed that the estimators
in Gavish and Donoho (2017) and Nadakuditi (2014) are not equivalent. Indeed, the method
in Nadakuditi (2014) requires an estimate of the rank, while the approach in Gavish and
Donoho (2017) applies the same shrinker to all empirical singular values. Nevertheless, the
shrinkage function that is applied to significant singular values (either above the bulk edge
in Gavish and Donoho (2017) or up to a given rank in Nadakuditi (2014)) is the same.

3.3 Asymptotic behavior of data-driven estimators based on SURE

Following the principle of SURE, a second alternative to choose a smooth spectral estimator
of the form (33) is to study the problem of selecting a set of functions (fk)1≤k≤min(n,m) that

minimize an unbiased estimate of MSE(X̂
f
,X) = E

[
‖X̂f −X‖2F

]
. For any 1 ≤ i ≤ m

and 1 ≤ j ≤ n, we recall that fij(Y ) denotes the (i, j)-th entry of the matrix X̂
f

= f(Y ).
Under the condition that

E
[
|Y ijfij(Y )|+

∣∣∣∣∂fij(Y )

∂Y ij

∣∣∣∣] < +∞, for all 1 ≤ i ≤ n, 1 ≤ j ≤ m. (37)

it follows from the results in Candès et al. (2013) (or equivalently from Proposition 4 for
Gaussian noise with τ2 = 1/m) that

SURE
(
X̂

f
)

= −n+ ‖f(Y )− Y ‖2F +
2

m
div f(Y ), (38)

is an unbiased estimate of MSE(X̂
f
,X), where the divergence div f(Y ) admits the closed-

form expression (24). The SURE formula (38) has been used in Candès et al. (2013) to
find a data-driven value for λ = λ(Y ) in the the case of singular values shrinkage by soft-
thresholding which corresponds to the choice

fk(σ̃k) = (σ̃k − λ)+, for all 1 ≤ k ≤ min(n,m).

We study now the asymptotic behavior of the SURE formula (38). To this end, we shall
use Proposition 9, but we will also need the following result (whose proof can be found in
the Appendix) to study some of the terms in expression (24) of the divergence of f(Y ).
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Proposition 10 Assume that Y = X+W is a random matrix sampled from the Gaussian
spiked population model with τ = 1√

m
and X =

∑r∗

k=1 σkukv
t
k. Then, for any fixed 1 ≤ k ≤

r∗ such that σk > c1/4, one has that, almost surely,

lim
n→+∞

1

n

n∑
`=1;`6=k

σ̃k
σ̃2
k − σ̃2

`

=
1

ρ (σk)

(
1 +

1

σ2
k

)
.

In what follows, we restrict our analysis to the following class of spectral estimators (the
terminology in the definition below is borrowed from Gavish and Donoho (2017)).

Definition 11 Let X̂
f

= f(Y ) =
∑min(n,m)

k=1 fk(σ̃k)ũkṽ
t
k be a smooth spectral estimator.

For a given 1 ≤ r ≤ min(n,m), the estimator f is said to be a spectral shrinker of order r
that collapses the bulk to 0 if{

fk(σ) = 0 whenever σ ≤ c+ and 1 ≤ k ≤ r,
fk(σ) = 0 for all σ ≥ 0 and k > r.

The reason for restricting the study to spectral estimators such that fk(σ̃k) = 0 whenever
σ̃k < c+ is linked to the choice of the active set s∗ (8) of singular values in the Gaussian

case, as detailed in Section 4. Now, for a spectral shrinker X̂
f

of order r that collapses
the bulk to 0, we study the asymptotic behavior of the terms in expression (38) that only
depend on f , namely

SURE
(
X̂

f
)

=

r∑
k=1

(fk(σ̃k)− σ̃k)2 + 2
(

1− n

m

) r∑
k=1

fk(σ̃k)

σ̃k
+

2

m

r∑
k=1

f ′k(σ̃k)

+4
n

m

r∑
k=1

fk(σ̃k)

 1

n

n∑
`=1;` 6=k

σ̃k
σ̃2
k − σ̃2

`

 (39)

The reason for studying SURE
(
X̂

f
)

is that finding an optimal shrinkage rule that

minimizes SURE
(
X̂

f
)

is equivalent to minimizing expression (39) over spectral shrinkers

of order r that collapses the bulk to 0, since SURE
(
X̂

f
)
−SURE

(
X̂

f
)

= −n+
∑n

k=r+1 σ̃
2
k

for such X̂
f
.

Then, using Proposition 9, Proposition 10, and the assumption that the fk’s are contin-
uously differentiable functions on R+, we immediately obtain the following result.

Lemma 12 Assume that Y = X + W is a random matrix sampled from the Gaussian

spiked population model with τ = 1√
m

and X =
∑r∗

k=1 σkukv
t
k. Let X̂

f
be a spectral shrinker

of order r ≤ r∗ that collapses the bulk to 0, such that each function fk, for 1 ≤ k ≤ r, is
continuously differentiable on ]c+,+∞[. Moreover, assume that σk > c1/4 for all 1 ≤ k ≤ r.
Then, one has that, almost surely,

lim
n→+∞

SURE
(
X̂

f
)

=
r∑

k=1

(fk(ρ(σk))− ρ(σk))
2 + 2fk(ρ(σk))

(
σ2
k(1 + c) + 2c

σ2
kρ(σk)

)
(40)
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Asymptotically optimal shrinkage of singular values. Thanks to Lemma 12, one may

determine an asymptotic optimal spectral shrinker as the one minimizing limn→+∞ SURE
(
X̂

f
)

.

For this purpose, let us define the class of estimators

X̂
r
w =

r∑
k=1

wkσ̃k11{σ̃k>c+}ũkṽ
t
k, (41)

where 1 ≤ r ≤ r∗ is a given integer, and the wk’s are positive weights. In practice, the
estimator X̂

r
w is computed by replacing the bulk edge c+ by its approximation cn,m+ =

1 +
√

n
m in eq. (41). For moderate to large values of n and m, the quantities c+ and cn,m+

are very close, and this replacement does not change the numerical performances of X̂
r
w.

Then, provided that σk > c1/4 for all 1 ≤ k ≤ r, it follows from Lemma 12 that

lim
n→+∞

SURE
(
X̂

r
w

)
=

r∑
k=1

ρ2(σk)(wk − 1)2 + 2wk

(
σ2
k(1 + c) + 2c

σ2
k

)
.

Differentiating the above expression with respect to each weight wk leads to the following
choice of asymptotically optimal weights

w∗k = 1− σ2
k(1 + c) + 2c

σ2
kρ

2(σk)
for all 1 ≤ k ≤ r. (42)

Therefore, if the singular values of the matrix X to be estimated are sufficiently large
(namely σk > c1/4 for all 1 ≤ k ≤ r), by using Proposition 9 and eq. (42), one has that an
asymptotically optimal spectral shrinker of order r ≤ r∗ is given by the choice of functions

f∗k (ρ(σk)) =

{ (
1− σ2

k(1+c)+2c

σ2
kρ

2(σk)

)
ρ(σk) if ρ(σk) > c+,

0 otherwise,
for all 1 ≤ k ≤ r. (43)

Using, the relation (32) one may also express the asymptotically optimal shrinking rule (43)
either as a function of ρ(σk) only,

f∗k (ρ(σk)) =

{
1

ρ(σk)

√
(ρ2(σk)− (c+ 1))2 − 4c if ρ(σk) > c+,

0 otherwise.
(44)

or as function of σk only (using that ρ(σk) > c+ is equivalent to σk > c1/4),

f∗k (ρ(σk)) =

{
σ4
k−c

σk
√

(1+σ2
k)(c+σ2

k)
if σk > c1/4,

0 otherwise.
(45)

Therefore, for spectral shrinker of order r, we remark that the shrinkage rule (44) coin-
cides with the rule (35) which has been obtained in Gavish and Donoho (2017). Similarly,
when the quantity f∗k (ρ(σk)) is expressed as a function of σk only in (45), then we retrieve
the shrinking rule (36) derived in Nadakuditi (2014). Therefore, it appears that minimizing

either the asymptotic behavior of the SURE, that is limn→+∞ SURE
(
X̂

f
)

, or the limit of
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SE risk (34) leads to the same choice of an asymptotically optimal spectral estimator.

Data-driven shrinkage of empirical singular values. From the results in Section 2.3,
the principle of SURE minimisation leads to the following data-driven choice of spectral
shrinker of order r that collapses the bulk to 0

X̂
r
w =

r∑
k=1

fk(σ̃k)ũkṽ
t
k, (46)

where fk(σ̃k) = wk(Y )σ̃k11{σ̃k>c+}, for all 1 ≤ k ≤ r, with wk(Y ) given by (31). From

Proposition 9 and Proposition 10 it follows that, if σk > c1/4, then, almost surely,

lim
n→+∞

fk(σ̃k) =

(
1− σ2

k(1 + c) + 2c

σ2
kρ

2(σk)

)
ρ(σk), for all 1 ≤ k ≤ r ≤ r∗.

Therefore, the data-driven spectral estimator X̂
r
w (46) asymptotically leads to the optimal

shrinking rule of singular values given by (43) which has been obtained by minimizing the
asymptotic behavior of the SURE.

Note that when τ 6= 1/
√
m, it suffices to replace the condition σ̃k > c+ by σ̃k >

τ(
√
m +

√
n) in the definition of X̂

r
w, which yields the shrinking rule (13) stated in the

introduction of this paper.

4. Estimating active sets of singular values in exponential families

In this section, we propose to formulate a new Akaike information criterion (AIC) to select
an appropriate set of singular values over which a shrinkage procedure might be applied.
To this end, we shall consider the estimator X̃

s
=
∑

k∈s σ̃kũkṽ
t
k defined for a subset s ⊆

I = {1, 2, . . . ,min(n,m)}, and we address the problem of selecting an optimal subset s?

from the data Y .
In the case of Gaussian measurements, the shrinkage estimators that we use in our

numerical experiments are of the form X̂
f

=
∑

k∈s? fk(σ̃k)ũkṽ
t
k where

s? = {k ; σ̃k > cn,m+ } with cn,m+ = 1 +

√
n

m
,

for some (possibly data-dependent) shrinkage functions fk. The set s? is based on the
knowledge of an approximation cn,m+ of the bulk edge c+. Thanks to Proposition 9, the
bulk edge c+ is interpreted as the threshold which allows to distinguish the locations of
significant singular values in the data from those due to the presence of additive noise.
Interestingly, the following result shows that the active set s? may be interpreted through
the prism of model selection using the minimisation of a penalized log-likelihood criterion.

Proposition 13 Assume that Y = X + W where the entries of W are iid Gaussian
variables with zero mean and standard deviation τ = 1/

√
m. Then, we have

s∗ = arg min
s⊆I

m‖Y − X̃s‖2F + 2|s|pn,m with pn,m =

(
1

2

(√
m+

√
n
)2)

, (47)

where X̃
s

=
∑

k∈s σ̃kũkṽ
t
k for s ∈ I = {1, 2, . . . ,min(n,m)}, and |s| is the cardinal of s.
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Proof We remark that Y − X̃s
=
∑

k/∈s σ̃kũkṽ
t
k. It results that

m‖Y − X̃s‖2F + 2|s|pn,m = m
∑
k/∈s

σ̃2
k + 2|s|pn,m =

n∑
k=1

{
mσ̃2

k if k /∈ s
2pn,m otherwise

. (48)

Using that
√

2pn,m/m = cn,m+ , it follows that the set s? = {k ; σ̃k > cn,m+ } is by def-
inition such that k ∈ s? if and only if 2pn,m < mσ̃2

k. Therefore, by (48), the criterion

s 7→ m‖Y − X̃s‖2F + 2|s|pn,m is minimum at s = s? which concludes the proof.

In the model Y = X + W , where the entries of W are iid Gaussian variables with
zero mean and variance τ2, it is well known that the degrees of freedom (DOF) of a given
estimator X̂ is defined as

DOF(X̂) =
1

τ2

n∑
i=1

m∑
j=1

Cov(X̂ij ,Y ij) =
1

τ2

n∑
i=1

m∑
j=1

E[X̂ijW ij ].

The DOF is widely used in statistics to define various criteria for model selection among
a collection of estimators (see e.g. Bradley (2004)). In low rank matrix denoising, the
following proposition shows that it is possible to derive the asymptotic behavior of the
DOF of spectral estimators.

Proposition 14 Assume that Y = X+W is a random matrix sampled from the Gaussian

spiked population model with τ = 1√
m

and X =
∑r∗

k=1 σkukv
t
k. Let X̂

f
be a spectral shrinker

of order r ≤ r∗ that collapses the bulk to 0, such that each function fk, for 1 ≤ k ≤ r, is
continuously differentiable on ]c+,+∞[. Moreover, assume that σk > c1/4 for all 1 ≤ k ≤ r.
Then, one has that, almost surely,

lim
n→+∞

1

m
DOF(X̂

f
) =

r∑
k=1

fk(ρ(σk))

ρ(σk)

(
1 + c+

2c

σ2
k

)
.

Proof Thanks to the derivation of the SURE in Stein (1981) and formula (24) on the
divergence of spectral estimators, one has that

DOF(X̂
f
) = E

[
div X̂

f
]

= E

|m− n| r∑
k=1

fk(σ̃k)

σ̃k
+

r∑
k=1

f ′k(σ̃k) + 2
r∑

k=1

fk(σ̃k)
n∑

`=1;`6=k

σ̃k
σ̃2
k − σ̃2

`

 .
By Proposition 9, Proposition 10, and our assumptions on the fk’s, one has that, almost
surely,

lim
n→+∞

1

m
div X̂

f
=

r∑
k=1

fk(ρ(σk))

ρ(σk)

(
1 + c+

2c

σ2
k

)
.

which completes the proof.
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Hence, in the Gaussian spiked population model, by Proposition 14 and using that σ2
k >
√
c

for all 1 ≤ k ≤ r, it follows that if s ⊆ {1, . . . , r} then

lim
n→+∞

1

m
DOF(X̃

s
) = |s|

(
1 + c+

2c

σ2
k

)
≤ |s|

(
1 +
√
c
)2

= |s|c2
+. (49)

Hence, the quantity 2|s|
(

1
2 (
√
m+

√
n)

2
)

is asymptotically an upper bound of DOF(X̃
s
)

(when normalized by 1/m) for any given set s ⊆ {1, . . . , r}.
Let us now consider the more general case where the entries of Y are sampled from an

exponential family. To the best of our knowledge, extending the notion of the bulk edge to
non-Gaussian data sampled from an exponential family has not been considered so far in
the literature on random matrices and low rank perturbation model. Therefore, except in
the Gaussian case, it is far from being trivial to find an appropriate threshold value c̄ to
define an active set in the form s̄ = {k ; σ̃k > c̄}.

Nevertheless, to select an appropriate active set of singular values, we introduce the
following criterion that is inspired by the previous results on the DOF of the estimator X̃

s

in the Gaussian case and the statistical literature on the well known AIC for model selection
(Akaike, 1974).

Definition 15 The AIC associated to X̃
s

=
∑

k∈s σ̃kũkṽ
t
k is

AIC(X̃
s
) = −2 log q(Y ; X̃

s
) + 2|s|pn,m with pn,m =

1

2

(√
m+

√
n
)2

. (50)

where |s| is the cardinal of s, and q(Y ; X̃
s
) =

∏n
i=1

∏m
j=1 q(Y ij ; X̃

s
ij) is the likelihood of

the data in the general form (14) at the estimated parameters Xij = X̃
s
ij.

In the above definition of AIC(X̃
s
), the quantity 2|s|pn,m is an approximation of the

degree of freedom of X̃
s
, i.e., of the numbers of its free parameters as it is justified by

Proposition 14 in the case of Gaussian measurements. The AIC allows us to define an
optimal subset of active variables as

s∗ = arg min
s⊆I

AIC(X̃
s
).

For Gaussian measurements, Proposition 13 gives the value of the optimal set s∗ in a closed-
form.

Following the arguments in Section 2.3, for Gamma or Poisson measurements and for a
given subset s, we consider the estimator

X̃
s
ε = max

[∑
k∈s

σ̃kũkṽ
t
k, ε

]
, (51)

when ε > 0 is an a priori value to satisfy the positivity constraint on the entries of an
estimator in this setting. However, contrary to the case of Gaussian noise, the search of an
optimal subset s? ⊂ arg min

s⊆I
AIC(X̃

s
ε) becomes a combinatorial problem in this context. In
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our numerical experiments, we thus choose to construct an approximation s̃ of s? with a
greedy search strategy that reads as follows

s̃ = I \
{
k ∈ I ; AIC(X̃

I\{k}
ε ) ≤ AIC(X̃

I
ε )
}
. (52)

For Gaussian measurements, s̃ = s? since the optimisation problem (52) becomes sepa-
rable. In our numerical experiments, we have found that s̃ selects a relevant set of active
singular values which separates well the structural content of X while removing most of the
noise component. Further details are given in Section 5 below.

For Gaussian noise, the computation of the active set s∗ of singular values may also
be interpreted as a way to estimate the unknown rank r∗ of the signal matrix X. In this
setting, one has that s? = {k ; σ̃k > cn,m+ } which suggests the choice

r̂ = max{k ; σ̃k > cn,m+ }, (53)

as an estimator of r∗.
There exists an abundant literature of the problem of estimating the rank of an em-

pirical covariance matrix for the purpose of selecting the appropriate number of significant
components to be kept in PCA or factor analysis. It is much beyond the scope of this paper
to give an overview of this topic. We point to the review in Jolliffe (2002) for a summary
of existing methods to determine the number of components in PCA that are grouped into
three categories: subjective methods, distribution-based test tools, and computational pro-
cedures. For recent contributions in the matrix denoising model (1) with Gaussian noise, we
refer to the works in Choi et al. (2014); Gavish and Donoho (2014) and references therein.
For example for Gaussian data with know variance τ2 = 1/m, Eq. (11) in Gavish and
Donoho (2014) on optimal hard thresholding of singular values suggest to take

r̂ = max{k ; σ̃k > λ(c)}, with λ(c) =

√
2(c+ 1) +

8c

(c+ 1) +
√
c2 + 14c+ 1

, (54)

as a simple method to estimate the rank. It should be remarked that the problem of
estimating the true rank r∗ of X in model (1) is somewhat ill-posed as, in the Gaussian
spiked population model, Proposition 9 implies that one may only expect to estimate the
so-called effective rank reff = max{k ; σk > c1/4} (see e.g. Section II.D in Nadakuditi
(2014)).

In our numerical experiments, we shall compare different choices for the active set of
singular values of the form ŝ = {1, . . . , r̂} where r̂ is either given by (53), (54), or by the
“oracle choices” r̂ = r∗ and r̂ = reff .

Other methods based on hypothesis testing (Choi et al., 2014) could be used for rank
estimation in the Gaussian model (1), but it is beyond the purpose of this paper to give a
detailed comparison.

For Poisson or Gamma noise, it is more difficult to interpret the computation of s∗ as
a way to estimate the rank of X since, in our numerical experiments, we have found that
the cardinality of s∗ is generally not equal to max{k ; k ∈ s∗}. Moreover, to the best of our
knowledge, there is not so much work on the estimation of the true rank of a noisy matrix
beyond the Gaussian case. Therefore, we have not included a numerical comparison with
other methods for the choice of the active set of singular values in these two cases.
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5. Numerical experiments

In this section, we assess of the performance of data-driven srhinkage rules under various
numerical experiments involving Gaussian, Gamma and Poisson measurements.

5.1 The case of a signal matrix of rank one

We consider the simple setting where the rank r∗ of the matrix X is known and equal to
one meaning that

X = σ1u1v
t
1,

where u1 ∈ Rn and v1 ∈ Rm are vectors with unit norm that are fixed in this numerical
experiment, and σ1 is a positive real that we will let varying. We also choose to fix n = m =
100, and so to take c = n

m = 1 and c+ = 2. For the purpose of sampling data from Gamma
and Poisson distribution, we took singular vectors u1 and v1 with positive entries. The i-th
entry (resp. j-th entry) of u1 (resp. v1) is chosen to be proportional to 1 − (i/n − 1/2)2

(resp. 1− (j/m− 1/2)2). Let Y =
∑min(n,m)

k=1 σ̃kũkṽ
t
k be an n×m matrix whose entries are

sampled from model (14) and then satisfying E[Y ] = X.

Gaussian measurements

We first consider the case of Gaussian measurements, where Y = X+W with E[W ij ] = 0,
Var(W ij) = τ2 with τ = 1√

m
. In this context, we compare the following spectral shrinkage

estimators:

• Rank-1 PCA shrinkage

X̂
1

= σ̃1ũ1ṽ
t
1,

• Rank-1 SURE-driven soft-thresholding

X̂
1
soft = σ̂1ũ1ṽ

t
1 with σ̂1 = (σ̃1 − λ(Y ))+,

• Rank-1 asymptotically optimal shrinkage proposed in Nadakuditi (2014) and Gavish and
Donoho (2017)

X̂
1
∗ = σ̂1ũ1ṽ

t
1 with σ̂1 =

√
σ̃2

1 − 4 11{σ̃1>2},

• Rank-1 SURE-driven weighted estimator that we have derived in Section 2.3

X̂
1
w = σ̂1ũ1ṽ

t
1 with σ̂1 =

(
1− 1

σ̃2
1

(
1

m
+

2

m

n∑
`=2

σ̃2
1

σ̃2
1 − σ̃2

`

))
+

σ̃111{σ̃1>2},

where the above formula follows from the results in Section 3.3 using that c = 1 and c+ = 2
in these numerical experiments, and where, for the soft-thresholding, the value λ(Y ) > 0 is
obtained by a numerical solver in order to minimize the SURE. As a benchmark, we will
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also consider the oracle estimator X1
∗ that performs shrinkage by using the knowledge of

the true singular-value σ1 defined as

X1
∗ = σ̂1ũ1ṽ

t
1 with σ̂1 =

√
ρ(σ1)2 − 4 11{ρ(σ1)>2}

which corresponds to the asymptotically optimal shrinking rule (44) as a function of ρ(σk)
in the setting c = 1 and c+ = 2. Note that form the formula above ŵ1 = σ̂1/σ̃1 is necessary
in the range [0, 1] for all considered estimators.

In Figure 1, we compare the estimated singular-values σ̂1 and the estimated weights ŵ1 =
σ̂1/σ̃1 as functions of σ1 for the four aforementionned estimators. Because all estimators
are subject to noise variance, we display, for all estimators, the median values and the 80%
confidence intervals obtained from M = 100 noise realizations. It can be seen that the
median curves for the eigenvelues and the weights of X̂

1
w and X̂

1
∗ coincide (up to variations

that are slightly larger for the former) which is in agreement with the asymptotic analysis
of shrinkage rules that has been carried out in Section 3.3. Spectral estimator obtained by
SURE-driven soft-thresholding also leads to an optimal shrinkage rule.

In Figure 2, for each of the four spectral estimators above, we display for M = 100 noise
realizations, as functions of σ1, the following normalized MSE

NMSE(X̂) =
‖X̂ −X‖2F
‖X‖2F

.

The normalized MSE of the estimators X̂
1
soft, X̂

1
∗ and X̂

1
w are the same for values of σ1

larger than c1/4 = 1, and they only differ for values of σ1 close or below the threshold
c1/4 = 1 (corresponding to values of ρ(σ1) below the bulk edge c+ = 2). More remarkably,
above c1/4 = 1, they offer similar NMSE values to the oracle shrinkage estimator X1

∗,
not only in terms of median but also in terms of variability, as assessed by the confidence

intervals. The performances of the estimator X̂
1

(standard PCA) are clearly poorer. These
numerical experiments also illustrate that, for finite-dimensional low rank matrix denoising
with r∗ = 1, data-driven spectral estimators obtained by minimizing a SURE criterion
achieve performances that are similar to asymptotically optimal shrinkage rules.

Gamma and Poisson distributed measurements

Let us now consider the case where the entries of Y ij ≥ 0 of the data matrix Y are
independently sampled from a Gamma or Poisson distribution with mean Xij > 0. To
satisfy the constraint that the estimators must be matrices with positive entries, we consider
estimators of the form (30). In this context, we compare the following spectral shrinkage
estimators, set for ε = 10−6, as:

• Rank-1 PCA shrinkage

X̂
1

= max
[
σ̃1ũ1ṽ

t
1, ε
]
,

• Rank-1 GSURE/SUKLS/PURE/PUKLA-driven soft-thresholding

X̂
1
soft = max

[
σ̂1ũ1ṽ

t
1, ε
]

with σ̂1 = (σ̃1 − λ(Y ))+,
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Figure 1: The case of Gaussian measurements with m = n = 100. Estimated first singular
value σ̂1 as a function of the true underlying one σ1, for (a) our proposed estimator

X̂
1
w, (b) the soft-thresholding X̂

1
soft and (c) the asymptotical one X̂

1
∗. All of

them are compared to the first singular value σ̃1 of Y 1 and the one of the oracle
asymptotical estimator X1

∗. (c,d,e) Same but for the corresponding weight ŵ1 =
σ̂1/σ̃1. Curves have been computed on M = 100 noise realizations, only the
median and an 80% confidence interval are represented respectively by a stroke
and a shadded area of the same color.

• Rank-1 GSURE/SUKLS/PURE/PUKLA-driven weighted estimator

X̂
1
w = max

[
σ̂1ũ1ṽ

t
1, ε
]

with σ̂1 = w1(Y )σ̃111{1∈s̃},

where s̃ is the approximated active subset as defined in Section 4. For the soft-thresholding,
the value λ(Y ) > 0 is obtained by a numerical solver in order to minimize either the GSURE
or the SUKLS criterion (in the Gamma case) and either the PURE or the PUKLA criterion
(in the Poisson case). The weight w1(Y ) ∈ [0, 1] is obtained by a numerical solver in order
to minimize the GSURE and the PURE, as described in Section B. According to Section 2.3,
the weight w1(Y ) ∈ [0, 1], minimizing the SUKLS criterion, has the following closed-form
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Figure 2: Same as Fig. 1 but for the normalized MSE of the corresponding estimators.

formula

w1(Y ) = min

1,

L− 1

Lmn

n∑
i=1

m∑
j=1

X̂
1
ij

Y ij
+

1

Lmn

(
1 + 2

n∑
`=2

σ̃2
1

σ̃2
1 − σ̃2

`

)−1 ,
and for the PUKLA criterion, we have

w1(Y ) = min

1,

∑n
i=1

∑m
j=1 Y ij∑n

i=1

∑m
j=1 X̂

1
ij

 .
To evaluate the performances of these estimators, we perform again a study involving M =
100 noise realizations.

In the Gamma case with shape parameter L = 3, results are reported in Figure 3 where
σ1 ranges from 0.1 to 5. In the Poisson case, results are reported in Figure 4. To generate
data from a Poisson distribution with mean value X = σ1u1v

t
1, we took σ1 ranging from

25 to 400. In this context, the entries Xi,j are in average ranging from 0.25 to 4. When
σ1 = 25, about 78% of the entries of Y are 0 and 20% are equals to 1 which correspond to
an extreme level of noise, while when σ1 = 400, the entries of Y concentrate around 4 with
a standard deviation of 2 which correspond to a simpler noisy setting.

In these experiments, it can be seen that all the data-dependent spectral estimators
achieve comparable results with really small errors in terms of MSE and MKL risks. Their

performances are similar to X̂
1

= σ̃1ũ1ṽ
t
1 meaning that optimizing either SURE-like criteria

leads to a spectral estimator closed to correspond to matrix denoising by ordinary PCA.
However, unlike the Gamma case, it might be observed in the Poisson case that when
reaching a stronger noise level, i.e, for small value of σ1, the NMSE of all estimator increases

as the denoising problem becomes more challenging. Nevertheless, only the weight of X̂
1
w

driven by PUKLA does not present a drop wich allows reaching a slightly smaller MKLA.
In the Gamma case, the noise level being proportional to the signal level, the NMSE/MKLS
remain constant for all σ1.
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Figure 3: The case of Gamma measurements with m = n = 100. (a) Estimated first eigen-
value σ̂1 as a function of the true underlying one σ1 for our proposed estimator

X̂
1
w and the soft-thresholding X̂

1
soft when both are guided by the GSURE. Both

of them are compared to the first singular value σ̃1 of Y 1. Same but for (b)
the corresponding weights ŵ1 = σ̂1/σ̃1, (c) the NMSE risk and (d) the MKLS
risk. (e-h) Exact same esperiments but when our proposed estimator and the
soft-thresholding are both guided by SUKLS. Curves have been computed on
M = 100 noise realizations, only the median and an 80% confidence interval are
represented respectively by a stroke and a shadded area of the same color.

Finally, as mentionned by Gavish and Donoho (2017), to use the estimator X̂
1
∗ in a

Gaussian model with homoscedastic variance τ2 6= 1
m , one may take the estimator X̂

1
∗ =√

mτf∗1 (σ̃1/(
√
mτ))ũ1ṽ

t
1. Hence, provided the variance of the entries of the data matrix

Y is known, it is always possible to use a scaled version of the shrinkage rule from Gavish
and Donoho (2017) when τ2 6= 1

m . However, in the setting of Gamma or Poisson noise, the
variance of the additive noise varies from one entry to another and depends on the entries
of the unknown signal matrix X to recover. For this reason, it is not possible to use a
scaled version of the shrinkage rule from Gavish and Donoho (2017) as this would require
to use scaling factors depending on the unknown values of the entries of X. Therefore, a
comparison between our approach and the asymptotically optimal shrinkage proposed in
Nadakuditi (2014) and Gavish and Donoho (2017) (for Gaussian noise) is not possible in
the case of Gamma or Poisson measurements. Note that for Gamma measurements one has
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Figure 4: The case of Poisson measurements with m = n = 100. (a) Estimated first eigen-
value σ̂1 as a function of the true underlying one σ1 for our proposed estimator

X̂
1
w and the soft-thresholding X̂

1
soft when both are guided by the PURE. Both

of them are compared to the first singular value σ̃1 of Y 1. Same but for (b)
the corresponding weights ŵ1 = σ̂1/σ̃1, (c) the NMSE risk and (d) the MKLA
risk. (e-h) Exact same esperiments but when our proposed estimator and the
soft-thresholding are both guided by PUKLA. Curves have been computed on
M = 100 noise realizations, only the median and an 80% confidence interval are
represented respectively by a stroke and a shadded area of the same color.

that Var(Y ij) = X2
ij/L, and, in our numerical experiments, it is assumed that the constant

L is known.

A typical example where this assumption is reasonable, is the one of the statistical
models of speckle used in coherent imagery, such as, Synthetic Aperture Radar (SAR)
and SOund Navigation And Ranging (SONAR) imagery. In such imaging systems, the
observed irradiance Y ij of a pixel with indices (i, j) is obtained as the square modulus
of a complex signal modeled as being zero-mean circular complex Gaussian distributed
(consequence of the Central Limit Theorem), see e.g. Goodman (1976). It follows that Y ij

has an exponential distribution1 with mean Xij corresponding to the underlying irradiance
to be estimated. In order to improve the contrast of such images (namely, the signal to noise
ratio), an average of L independent and identically distributed images is often performed,
and the resulting pixel value becomes Gamma distributed with parameter L (Ulaby and

1. The exponential distribution is a particular instance of the Gamma distribution with parameter L = 1
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Dobson, 1989). Because the number L of images to be averaged is chosen by the practitioner,
the parameter L is absolutely known without uncertainties, and for this reason it does not
require to be estimated. Nevertheless the variance Var(Y ij) = X2

ij/L remains unknown.

While all estimators behave similarly in the rank 1 setting, we will see in the next section
that they can significantly differ when the rank is let to be larger than 2.

5.2 The case of a signal matrix of rank larger than two

We now consider the more complex an realistic setting where the rank r∗ of the matrix X
is unknown and potentially larger than two, i.e.,

X =
r∗∑
k=1

σkukv
t
k,

where uk ∈ Rn and vk ∈ Rm are vectors with unit norm that are fixed in this numerical
experiment, and σk are positive real values also fixed in this experiment. We also choose to
fix n = 100 and m = 200, while the true rank is r∗ = 9 as shown by the red curve in Figure

5(i). Again, let Y =
∑min(n,m)

k=1 σ̃kũkṽ
t
k be an n×m matrix whose entries are sampled from

model (14) and then satisfying E[Y ] = X.

Gaussian distributed measurements

We first consider the case of Gaussian measurements, where Y = X+W with E[W ij ] = 0,
Var(W ij) = τ2 with τ = 80. In the following numerical experiments, we study the behavior
of the spectral estimator:

• PCA shrinkage

X̂
r

=

r∑
k=1

σ̃kũkṽ
t
k 11{k ≤ r̂},

• SURE-driven soft-thresholding

X̂soft =

min(m,n)∑
k=1

σ̂kũkṽ
t
k with σ̂k = (σ̃k − λ(Y ))+,

• Asymptotically optimal shrinkage proposed in Nadakuditi (2014) and Gavish and Donoho
(2017)

X̂
r
∗ =

r∑
k=1

σ̂kũkṽ
t
k with σ̂k =

1

σ̃k

√(
σ̃2
k − (c+ 1)

)2 − 4c 11{k ≤ r̂},

• SURE-driven weighted estimator that we have derived in Section 2.3

X̂
r
w =

r∑
k=1

σ̂kũkṽ
t
k with σ̂k =

(
1− 1

σ̃2
k

(
k

m
+

2

m

n∑
`=2

σ̃2
k

σ̃2
k − σ̃2

`

))
+

σ̃k11{k ≤ r̂},
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Figure 5: (a) Zoom on a 100×200 noise-free matrix and (e) a single realization of corrupted
version by Gaussian noise (τ = 80). (b,c) Oracle soft-thresholdingXsoft and data-
driven soft-thresholding X̂soft. (d) PCA full rank X̂

rmax
, i.e., rmax = min(n,m).

(f,g,h) Oracle full rank approximation Xrmax
w , and data-driven full rank estima-

tion X̂
rmax

w and X̂
rmax

∗ . (i) Their corresponding singular values. (j) NMSE of
the various approximations as a function of the rank r. (k) Same but without
knowledge the bulk edge, namely c+ = 0. (l,m,n) Same when the active set of
singular values is of the form ŝ = {1, . . . , r̂} where r̂ is either given by r̂ = r∗

(oracle/true rank), r̂ = reff (effective rank) or by (54). In all the figures, the
solid curves correspond to oracle estimators and the dashed curves correspond to
data-driven estimators, obtained over M = 1, 000 noise realizatrions. The grey
areas represent a 80% confidence interval.
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where r ∈ [1,min(n,m)], and for the soft-thresholding, the value λ(Y ) > 0 is obtained
by a numerical solver in order to minimize the SURE. Otherwise specified, we consider
r̂ = max{k ; σ̃k > cn,m+ }, i.e., an estimator of the rank using knowledge of the bulk edge
c+ ≈ cn,m+ , hence, 11{k ≤ r̂} = 11{σ̃k>cn,m

+ }. As discussed in Section 4, we compare, in these

experiments, the influence of rank estimation by analyzing the performances of the same
estimators when either r̂ = rmax = min(n,m) (i.e. without knowledge the bulk edge, namely
c+ = 0), r̂ = r∗ (oracle/true rank), r̂ = reff (effective rank Nadakuditi (2014)) or by (54)
(from hard-thresholding of singular values in Gavish and Donoho (2014)).

In order to assess the quality of SURE as an estimator of the MSE, we also compare
the aforementioned approach with their oracle counterparts given by

Xsoft =

min(m,n)∑
k=1

σ̂kũkṽ
t
k with σ̂k = (σ̃k − λoracle(Y ))+, and

Xr
w =

r∑
k=1

σ̂kũkṽ
t
k with σ̂k = ṽtkXũk,

where λoracle(Y ) minimizes the squared error SE (non-expected risk) over the sets and soft-
thresholding approximations respectively. Note thatXr

w andXsoft are ideal approximations
of X that cannot be used in practice but serve as benchmarks to evaluate the performances
of the data-driven estimators X̂

r
, X̂soft, X̂

r
∗ and X̂

r
w. In order to shed some light on the

variance of these estimators, and indirectly on the variance of the SURE, we perform this
experiments over M = 1000 independent realizations of Y .

The results are reported on Figure 5. For an estimator of the rank given either by
r̂ = max{k ; σ̃k > cn,m+ } (knowledge of the bulk edege), r̂ = r∗ (oracle/true rank), r̂ = reff

(effective rank) or by (54), it can be observed that X̂
r
w, X̂

r
∗ and Xr

w achieve comparable
performances for all r ∈ [1,min(m,n)] even though the two first do not rely on the unknown
matrix X. Similarly X̂soft and Xsoft achieve also comparable performances showing again
that the SURE accurately estimates the MSE. In terms of error bands for the NMSE, X̂

r
w,

X̂
r
∗ and Xr

w outperform X̂soft and Xsoft provided that r is large enough. Moreover, the
performance of X̂

r
w plateaus to its optimum when the rank r becomes large. This allows

us to choose r = min(n,m) when we do not have a priori on the true or effective rank.

Interestingly, Fig. 5.(k) shows that when the above estimators are used without the
knowledge of the bulk edge (i.e. by taking cn,m+ = 0 in their computation instead of
cn,m+ = 1 +

√
n
m , which corresponds to the choice r̂ = rmax = min(n,m)), the perfor-

mance of X̂
r
w actually decreases when the rank r becomes too large. Indeed, it is clear from

Fig. 5.(k), that the the error band of the NMSE of X̂
r
w becomes much larger as the rank

r increases. This illustrates that the SURE suffers from estimation variance in the case
of over parametrization when r becomes too large, and thus it cannot be used to estimate
jointly a too large number of weights. Therefore, the knowledge of an appropriate estimator
r̂ of the rank (e.g. using the bulk edge) seems to provide a relevant upper bound on the
number of weights that can be jointly and robustly estimated with the SURE.
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Figure 6: (a) A single realization of corrupted version by Gamma noise (L = 80) with
zoom on a 100 × 200 matrix. (b,c,d,e) Oracle soft-thresholding Xsoft and data-
driven soft-thresholding X̂soft respectively for SEη, GSURE, KLS and SUKLS.

(f) PCA X̂
rmax

with full rank approximation i.e. rmax = min(n,m). (g,h,i,j)
Oracle full rank approximationXrmax

w , and data-driven full rank estimation X̂
rmax

w

respectively for SEη, GSURE, KLS and SUKLS. (k) Their corresponding singular
values averaged over M = 100 noise realizations. (l,m) NMSE averaged over
M = 100 noise realizations as a function of the rank r with and without using
the active set. (n,o) Same but with respect to MKLS.
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Figure 7: (a) A single realization of corrupted version by Poisson noise with zoom on a
100 × 200 noise-free matrix (b,c,d,e) Oracle soft-thresholding Xsoft and data-
driven soft-thresholding X̂soft respectively for SE, PURE, KLA and PUKLA.
(f) PCA X̂

rmax
with full rank approximation i.e. rmax = min(n,m). (g,h,i,j)

Oracle full rank approximationXrmax
w , and data-driven full rank estimation X̂

rmax

w

respectively for SE, PURE, KLA and PUKLA. (k) Their corresponding singular
values averaged over 200 noise realizations. (l,m) NMSE averaged over 200 noise
realizations as a function of the rank r with and without using the active set.
(n,o) Same but with respect to MKLA. (Matrix entries are displayed in log-scale
for better visual assessment.)
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Gamma and Poisson measurements

Let us now consider the case where the entries of Y ij > 0 of the data matrix Y are
independently sampled from a Gamma or Poisson distribution with mean Xij > 0. We
again consider estimators of the form (30). In this context, we compare the following
spectral shrinkage estimators, set for ε = 10−6, as:

• PCA shrinkage

X̂
r

=
r∑

k=1

max
[
σ̃kũkṽ

t
k, ε
]

with σ̂k = σ̃k11{k∈s̃},

• GSURE/SUKLS/PURE/SUKLA driven soft-thresholding

X̂soft =

min(m,n)∑
k=1

max
[
σ̂kũkṽ

t
k, ε
]

with σ̂k = (σ̃k − λ(Y ))+,

• GSURE/SUKLS/PURE/SUKLA driven weighted estimator

X̂
r
w =

r∑
k=1

max
[
σ̂kũkṽ

t
k, ε
]

with σ̂k = wk(Y )σ̃k11{k∈s̃},

where r ∈ [1,min(n,m)], and s̃ is the approximated active subset as defined in Section 4.
For the soft-thresholding, the value λ(Y ) > 0 is obtained by a numerical solver in order to
minimize either the GSURE or the SUKLS criterion (in the Gamma case) and either the
PURE or the PUKLA criterion (in the Poisson case). As shown in Section 2.3, in the case
of Gamma (resp. Poisson) measurements, the value of wk(Y ) for k ∈ s̃ which minimizes
the GSURE (resp. PURE) or the SUKLS (resp. PUKLA), cannot be obtained in closed
form. As an alternative, we adopt a greedy one-dimensional optimization strategy starting
from the matrix σ̃1ũ1ṽ

t
1 and next updating the weights w` sequentially by starting ` = 1 to

` = min(n,m), with the constraint that, for all ` /∈ s̃, the weight w` is set to zero.
To this end, we resort to one-dimensional optimization techniques in the interval [0, 1]

using Matlab’s command fminbnd. This strategy is used for GSURE, SUKLS, PURE and
PUKLA by evaluating them as described in Section B. As in the Gaussian setting, we
compare this spectral estimators with their oracle counterparts given by

Xsoft =

min(m,n)∑
k=1

max
[
σ̂kũkṽ

t
k, ε
]

with σ̂k = (σ̃k − λoracle(Y ))+, and

Xr
w =

r∑
k=1

max
[
σ̂kũkṽ

t
k, ε
]

with σ̂k = woracle
k (Y )σ̃k11{k∈s̃}.

where woracle
k (X) and λoracle(Y ) minimizes one of the objective SEη, KLS, SE or KLA (non-

expected risks) over the set of matrices sharing with Y the same r first left and right singular
vectors, and soft-thresholding approximations respectively. Note again that Xr

w and Xsoft
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are ideal approximations of X that cannot be used in practice but serve as benchmarks to
evaluate the performances of the data-driven estimators X̂

r
w and X̂soft.

The results for the Gamma noise are reported on Figure 6. As in the Gaussian setting,
it can be observed that X̂

r
w and Xr

w achieve comparable performances, as well as X̂soft and
Xsoft showing that the GSURE (resp. SUKLS) accurately estimates the MSEη (resp. KLS).
Visual inspection of the restored matrices tends to show that the estimators driven by
MSEη or GSURE produce less relevant results compared to KLS or SUKLS, as confirmed
by the curves of NMSE and MKLS. Performance in terms of NMSE also illustrates that
minimizers of SEη do not coincides with those of SE. As in the Gaussian setting, X̂

r
w

and Xr outperform X̂soft, Xsoft and standard PCA X̂
r

provided that r is large enough.
Moreover, the performance of X̂

r
w obtained with KL objectives plateaus to its optimum

when the rank r becomes large. Again, this allows us to choose r = min(n,m) when we do
not have a priori on the true rank r?.

The results for the Poisson noise are reported on Figure 7. The conclusions are similar to
the Gaussian and Gamma cases. Obviously, the NMSE is smaller for approximations that
minimizes SE (or PURE) than for those minimizing KLA (or PUKLA). However, visual
inspection of the obtained matrices tends to demonstrate that minimizing such objectives
might be less relevant than minimizing KL objectives. In this setting, the performance
of X̂

r
w is on a par with the one of X̂soft based on PUKLA. In fact, for other choices of

matrices X, X̂
r
w based on PUKLA might improve, in terms of MKLS, much more on X̂soft,

and might improve not as much on X̂
r
w based on PURE. Nevertheless, whatever X, we

observed that X̂
r
w driven by PUKLA always reaches at least as good performance in terms

of MKLS as the best of X̂
r
w driven by SE and X̂soft.

Fig. 6.(m), Fig. 6.(o), Fig. 7.(m) and Fig. 7.(o) show that when the above estimators
are used without the active set (i.e., by choosing s̃ = [1,min(n,m]), the performance of
X̂

r
w actually decreases when the rank r becomes too large. As in the Gaussian setting,

this can be explained by the fact that the GSURE, SUKLS, PURE and PUKLA suffer
from estimation variance in the case of over parametrization, hence, they cannot be used
to estimate jointly a too large number of weights. The active set s̃ (in the same manner as
the bulk edge) seems to provide a relevant selection of the weights that can be jointly and
robustly estimated in a data driven way.

5.3 Signal matrix with equal singular values and increasing rank

We propose now to highlight potential limitations of our approach in the situation where
the rank r∗ of the matrix X =

∑r∗

k=1 σkukv
t
k is let growing and all positive singular values

σk of X are equal, namely

Y =

r∗∑
k=1

σkukv
t
k +W with σk = γc1/4n,m for all 1 ≤ k ≤ r∗, (55)

where uk ∈ Rn and vk ∈ Rm are vectors with unit norm that are fixed, cn,m = n
m and W is

centered random matrix whose entries are iid Gaussian variables with variance τ2 = 1/m.
We again choose to fix n = 100 and m = 200, while the true rank is r∗ let growing from 1
to min(n,m) in the following numerical experiments. The constant γ is chosen to be larger
than 1. Hence, eq. (55) corresponds to the Gaussian spiked population model in the setting
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where all positive singular values are equal and larger than the threshold c
1/4
n,m. The choice

σk = γc
1/4
n,m with γ > 1 is motivated by the results from Proposition 9.

For a given value of the true rank r∗, we performed experiments involvingM = 1000 real-
izations from model (55) to compare the NMSE of the estimators by oracle soft-thresholding
Xsoft, data-driven soft-thresholding X̂soft, PCA full rank X̂

rmax
i.e. rmax = min(n,m), ora-

cle full rank approximation Xrmax
w , and data-driven full rank estimation X̂

rmax

w and X̂
rmax

∗ .
All these estimators have been introduced in Section 5.2.

In Figure 8, we report the results of numerical experiments by displaying errors bars of
the NMSE of these estimators as functions of the true rank r∗. For low values of the true
rank (r∗ ≤ 20), the data-driven estimators X̂

rmax

w (our approach) and X̂
rmax

∗ (shrinkage rule
from Gavish and Donoho (2017)) achieve the best performances that are similar in term
of median value of the NMSE. However, our approach has some limitations with respect
to the performances of the estimator from Gavish and Donoho (2017) or data-driven soft-
thresholding (Candès et al., 2013) in the setting where the signal matrix has equal positive
singular values and when its rank is increasing. Moreover, the error bands of the NMSE for
our approach becomes significantly larger than those of the other data-driven estimators
when the true rank r∗ increases. This illustrates that SURE minimization may lead to
estimators with a high variance in the case of over parametrization, that is, when there
exists a large number of significant and close singular values in the signal matrix.

5.4 Influence of the dimension and the signal-to-noise ratio

In Section 5.3, we used simulated data consisting of a signal matrix with equal positive sin-
gular values and an increasing rank. In such a setting , it is likely that the empirical weights

wk(Y ), used in our approach, will have a high variance due to the term
∑min(n,m)

`=1;` 6=k
σ̃2
k

σ̃2
k−σ̃

2
`

in their expression (13). However, the numerical experiments carried out in Section 5.3
correspond to a very specific configuration of the signal matrix (with many equal singular
values and a high rank) which is not likely to be encountered with real data.

To conclude these numerical experiments, we finally analyze the influence of the di-
mension of the data and the signal-to-noise ratio on the performances of our approach and
the estimator from Gavish and Donoho (2017) in a more realistic setting (with Gaussian
noise). These two estimators are the ones giving the best results, and it is thus of interest
to compare them with further experiments.

We use real and square signal matrices X ∈ Rn×n having a relatively fast decay of their
singular values, see Figure 9 and Figure 10. We choose to re-size them to let n varying from
20 to 250, and we define the root of the signal-to-noise ratio (RSNR) as

RSNR =

√
1
n2

∑n
i,j=1(Xij − X̄)2

τ
with X̄ =

1

n2

n∑
i,j=1

Xij .

For each value of n and RSNR (ranging from 5 to 10), we performed experiments involving
M = 400 realizations from model (55) to compare the NMSE of the estimators by data-
driven full rank estimation X̂

rmax

w (our approach) and X̂
rmax

∗ (shrinkage rule from Gavish
and Donoho (2017)) with rmax = n. In Figure 9 and Figure 10, we report the results of
these numerical experiments by displaying errors bars of the NMSE of these estimators as
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(g) γ = 2
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Figure 8: Comparison of NMSE as a function of the true rank r∗ in model (55) for different
values of γ for the estimator by oracle soft-thresholding Xsoft, data-driven soft-
thresholding X̂soft, PCA full rank X̂

rmax
i.e. rmax = min(n,m), oracle full rank

approximation Xrmax
w , and data-driven full rank estimation X̂

rmax

w and X̂
rmax

∗ .
The active set set of singular values is of the form ŝ = {1, . . . , r̂} where r̂ =
max{k ; σ̃k > cn,m+ } is an estimator of the rank using knowledge of the bulk edge
c+ ≈ cn,m+ (a), (d), (g) Median value of the NMSE of the various estimators over
M = 1000 Gaussian noise realizations in model (55) as a function of the true rank
r∗. (b), (c), (e), (f), (h), (i) The grey areas represent error bands of the NMSE
of data-driven and oracle estimators.
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(a) Signal matrix X
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Figure 9: Comparison of NMSE as a function of the dimension n in model (55) with a
square matrix X for different values of RSNR for the estimator X̂

rmax

w and X̂
rmax

∗
with rmax = n. The active set set of singular values is of the form ŝ = {1, . . . , r̂}
where r̂ = max{k ; σ̃k > cn,m+ } is an estimator of the rank using knowledge of
the bulk edge c+ ≈ cn,m+ . (a) Signal matrix of size 250 × 250, (b) Decay of the
singular values of X in log-log scale, (c), (d), (e) Median value of the NMSE of
X̂

rmax

w and X̂
rmax

∗ over M = 400 Gaussian noise realizations in model (55) as a
function of the dimension n. The orange and grey areas represent error bands of
the NMSE of these two estimators.

functions of the dimension n. It can be seen that our approach dominates numerically the
estimator from Gavish and Donoho (2017) (for all values of n and RSNR) in settings that
are more likely to be encountered in practice than the simulated data used in Section 5.3.
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Figure 10: Same as Fig. 9 with another signal matrix X.

Appendix A. Proof of the main results

A.1 Proof of Proposition 10

Let us first introduce some notation and definitions to be used in the proof. For all 1 ≤ ` ≤ n,
let λ̃` be the eigenvalues of Y Y t namely λ̃` = σ̃2

` . For a fixed 1 ≤ k ≤ r∗ such that σk > c1/4,
let us introduce the complex-valued function gk defined by

gk(z) =
1

n

n∑
`=1;` 6=k

1

z − λ̃`
for z ∈ C \ supp(µk),

where supp(µk) =
{
λ̃`; 1 ≤ ` ≤ n, ` 6= k

}
is the support of the random measure µk =

1
n

∑n
`=1; 6̀=k δλ̃` on R+, where δλ denotes the Dirac measure at λ. It is clear that

gk(z) =

∫
1

z − λdµk(λ).

The main difficulty in the proof is to show that, almost surely,

lim
n→+∞

gk(σ̃
2
k) =

1

ρ2 (σk)

(
1 +

1

σ2
k

)
,

which is the purpose of what follows.
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For a matrix A ∈ Rn×m (with n ≤ m), we denote its singular values by σ1(A) ≥ σ2(A) ≥
. . . ≥ σn(A) ≥ 0. Hence, one has that σ̃` = σ`(Y ) for all 1 ≤ ` ≤ n. Now, we recall that
Y = X + W where X is a fixed matrix of rank r∗ and W is a random matrix with iid
entries sampled from a Gaussian distribution with zero mean and variance 1

m . The first
step in the proof is to show that the random measure µk behaves asymptotically as the
almost sure limit of the empirical spectral measure µWW t of the Wishart matrix WW t.
By definition, the eigenvalues of WW t are λ`(W ) = σ2

` (W ) for all 1 ≤ ` ≤ n and µWW t

is thus defined as

µWW t =
1

n

n∑
`=1

δλ`(W ).

It is well know (see e.g. Theorem 3.6 in Bai and Silverstein (2010)) that, once m = mn ≥ n
and limn→+∞

n
m = c with 0 < c ≤ 1, then, almost surely, the empirical spectral measure

µWW t converges weakly to the so-called Marchenko-Pastur distribution µMP which is de-

terministic and has the following density dµMP (λ)
dλ = 1

2πcλ

√
(c2

+ − λ)(λ− c2
−) 1I[c2−,c2+](λ). We

recall that such a convergence can also be characterized through the so-called Cauchy or
Stieltjes transform which is defined for any probability measure µ on R as

∀z ∈ C outside the support of µ, gµ(z) =

∫
1

z − λdµ(λ).

By eq. (3.3.2) in Bai and Silverstein (2010), one obtains that, almost surely,

lim
n→∞

∫
1

z − λdµWW t(λ) = gMP (z) for any z ∈ C \ R, (56)

where gMP is the Cauchy transform of µMP and

gMP (z) =

∫
1

z − λdµMP (λ) =
z − (1− c)−

√
(z − (c+ 1))2 − 4c

2cz
for all z ∈ C \ [c2

−, c
2
+].

Moreover, by Proposition 6 in Pastur and Lejay (2003), the convergence (56) is uniform
over any compact subset of C \ R.

Then, it follows from the so-called Weyl’s interlacing inequalities (see e.g. Theorem 3.1.2
in Horn and Johnson (1991)) that for all 1 ≤ ` ≤ n

σ`+r∗(W ) ≤ σ`(Y ) ≤ σ`−r∗(W ), (57)

with the convention that σk(W ) = −∞ if k > n and σk(W ) = +∞ if k ≤ 0. Thanks to
the results that have been recalled above on the asymptotic properties of µWW t , one may
use inequalities (57) to prove that, almost surely, the random measure µk converges weakly
to the Marchenko-Pastur distribution µMP . Under the assumptions of Proposition 10 and
using Proposition 9, it can be shown that there exists ηk > 0 such that, almost surely and
for all sufficiently large n

λ̃` /∈ Kk := [ρ2(σk)− ηk, ρ2(σk) + ηk]
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for any 1 ≤ ` ≤ n with ` 6= k. Now, recall that the support supp(µk) of the random measure

µk is
{
λ̃`; 1 ≤ ` ≤ n, ` 6= k

}
, and that supp(µMP) = [c2

−, c
2
+]. Hence, for all sufficiently large

n, one has that

supp(µk) ∩Kk = ∅ and supp(µMP) ∩Kk = ∅.

Therefore, thanks to the weak convergence of µk to µMP and using Ascoli’s Theorem, one
may prove that

lim
n→∞

sup
z∈Kk

|gk(z)− gMP (z)| = 0 almost surely. (58)

Thanks to our assumptions, one has that, almost surely, limn→+∞ σ̃
2
k = ρ2 (σk) by Propo-

sition 9. Hence, almost surely and for all sufficiently large n, one has that σ̃2
k ∈ Kk and

so

|gk(σ̃2
k)− gMP (ρ2 (σk))| ≤ sup

z∈Kk

|gk(z)− gMP (z)|+ |gMP (σ̃2
k)− gMP (ρ2 (σk))|.

Therefore, using the uniform convergence (58) of gk to gMP and the continuity of gMP at
z = ρ2 (σk), one obtains that, almost surely,

lim
n→+∞

gk(σ̃
2
k) = gMP (ρ2 (σk)) =

1

ρ2 (σk)
× ρ2 (σk)− 1 + c−

√
(ρ2 (σk)− (c+ 1))2 − 4c

2c
.

Since gk(σ̃
2
k) = 1

n

∑n
`=1;` 6=k

1
σ̃2
k−σ̃

2
`
, using the above equation and relation (32), it follows

immediately that gMP (ρ2 (σk)) = 1
ρ2(σk)

(
1 + 1

σ2
k

)
so that, almost surely,

lim
n→+∞

1

n

n∑
`=1;` 6=k

σ̃k
σ̃2
k − σ̃2

`

= lim
n→+∞

σ̃kgk(σ̃
2
k) = ρ (σk) gMP (ρ2 (σk)) =

1

ρ (σk)

(
1 +

1

σ2
k

)
,

which completes the proof.

A.2 A technical result to prove SURE-like formulas

We recall the key lemma needed to prove the SURE-like formulas in an exponential family
in the continuous case. Similar results have already been formulated in different papers in
the literature, see e.g. the review proposed in Deledalle (2017).

Lemma 16 Let Y ∈ Rn×m be a random matrix whose entries Y ij are independently sam-
pled from the continuous exponential family (15) in canonical form (that is the distribution
of Y ij is absolutely continuous with respect to the Lebesgue measure dy on R). Suppose that
the function h is continuously differentiable on Y = R. Let 1 ≤ i ≤ n and 1 ≤ j ≤ m, and
denote by Fij : Rn×m → R a continuously differentiable function such that

E [|Fij(Y )|] < +∞. (59)

Then, the following relation holds

E [θijFij(Y )] = −E
[
h′(Y ij)

h(Y ij)
Fij(Y ) +

∂Fij(Y )

∂Y ij

]
.
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Proof Using the expression (15) of the pdf of the random varibles Y ij , one has that

E [θijFij(Y )] =

∫
Rn×m

Fij(Y )h(yij)θij exp (θijyij −A(θij)) dyij

n∏
1≤k≤n
1≤`≤m

(k,`) 6=(i,j)

p(yk`;θk`) dyk`.

where Y = (yk`)1≤k≤n,1≤`≤m. Thanks to condition (59), it follows that∫
Rn×m

Fij(Y )h(yij) exp (θijyij −A(θij)) dyij

n∏
1≤k≤n
1≤`≤m

(k,`)6=(i,j)

p(yk`;θk`) dyk` < +∞. (60)

Therefore, given that θij exp (θijyij −A(θij)) =
∂ exp(θijyij−A(θij))

∂yij
, an integration by part

and eq. (60) imply that

E [θijFij(Y )] = −
∫
Rn×m

∂Fij(Y )h(yij)

∂yij
exp (θijyij −A(θij)) dyij

n∏
1≤k≤n
1≤`≤m

(k,`)6=(i,j)

p(yk`;θk`) dyk`.

Now, since
∂Fij(Y )h(yij)

∂yij
= h′(yij)Fij(Y ) +

∂Fij(Y )
∂yij

h(yij), we finally obtain that

E [θijFij(Y )] = −E
[
h′(Y ij)

h(Y ij)
Fij(Y ) +

∂Fij(Y )

∂Y ij

]
,

which completes the proof.

A.3 Proof of Proposition 4

We remark that

MSE(θ̂
f
,θ) =

n∑
i=1

m∑
j=1

(
E
[
|θ̂fij(Y )|2 − 2θij θ̂

f

ij(Y )
]

+ θ2
ij

)
. (61)

Using Lemma 16 with Fij(Y ) = θ̂
f

ij(Y ) and condition (17), it follows that

E
[
θij θ̂

f

ij(Y )
]

= E
[
h′(Y ij)

h(Y ij)
θ̂
f

ij(Y )

]
+ E

∂θ̂fij(Y )

∂Y ij

 . (62)

Then, by definition (15) of the exponential family, we remark that

E
[
h′′(Y ij)

h(Y ij)

]
=

∫
R
h′′(yij) exp (θijyij −A(θij)) dyij .

Hence, using an integration by parts twice, we arrive at

E
[
h′′(Y ij)

h(Y ij)

]
= θ2

ij

∫
R
h(yij) exp (θijyij −A(θij)) dyij = θ2

ij . (63)

To complete the proof, it suffices to insert equalities (62) and (63) into (61).
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A.4 Proof of Proposition 6

Thanks to eq. (21), one has that

MKLS(θ̂
f
,θ) =

n∑
i=1

m∑
j=1

E
[
θ̂
f

ij(Y )A′(θ̂
f

ij(Y ))− θijA′(θ̂
f

ij(Y ))−A(θ̂
f

ij(Y ))
]

+A(θij). (64)

Using Lemma 16 with Fij(Y ) = A′(θ̂
f

ij(Y )) and condition (22), it follows that

E
[
θijA

′(θ̂
f

ij(Y ))
]

= −E
[
h′(Y ij)

h(Y ij)
A′(θ̂

f

ij(Y ))

]
− E

∂θ̂fij(Y )

∂Y ij
A′′(θ̂

f

ij(Y ))

 . (65)

Thus, inserting equality (65) into (64) implies that

SUKLS(θ̂
f
) =

n∑
i=1

m∑
j=1

((
θ̂
f

ij(Y ) +
h′(Y ij)

h(Y ij)

)
A′(θ̂

f

ij(Y ))−A(θ̂
f

ij(Y ))

)
+

n∑
i=1

m∑
j=1

A′′(θ̂
f

ij(Y ))
∂θ̂

f

ij(Y )

∂Y ij

is an unbiased estimator of MKLS(θ̂
f
,θ) −∑n

i=1

∑m
j=1A(θij). Now recall that fij(Y ) =

η−1
(
θ̂
f

ij(Y )
)

and that A′(θ̂
f

ij(Y )) = η−1
(
θ̂
f

ij(Y )
)

by Assumption 2. Therefore,
∂fij(Y )

∂Y ij
=

A′′(θ̂
f

ij(Y ))
∂θ̂

f
ij(Y )

∂Y ij
, and thus

SUKLS(θ̂
f
) =

n∑
i=1

m∑
j=1

((
θ̂
f

ij(Y ) +
h′(Y ij)

h(Y ij)

)
A′(θ̂

f

ij(Y ))−A(θ̂
f

ij(Y ))

)
+

n∑
i=1

m∑
j=1

∂fij(Y )

∂Y ij
,

which completes the proof.

A.5 Proof of Proposition 8

Thanks to the expression (27) of the MKLA risk for data sampled from a Poisson distribu-
tion, it follows that

MKLA(θ̂
f
,θ) +

n∑
i=1

m∑
j=1

Xij −Xij log (Xij) =
n∑
i=1

m∑
j=1

E
[
X̂

f
ij −Xij log

(
X̂

f
ij

)]

In the case of Poisson data, one has that exp (θij) = Xij and
h(Y ij−1)

h(Y ij)
= Y ij . Therefore,

by applying Hudson’s Lemma 7 with Fij(Y ) = log
(
X̂

f
ij

)
, it follows that

E

 n∑
i=1

m∑
j=1

Xij log
(
X̂

f
ij

) = E

 n∑
i=1

m∑
j=1

Y ij log
(
fij(Y − eietj)

) ,
which completes the proof.
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Appendix B. Implementation details

We discuss below an algorithmic approach to find data-driven spectral estimators.
First, we discuss on how to compute data-driven spectral estimators from the expression

of risk estimators. For SUKLS in continuous exponential families, and for SURE in the
Gaussian case only, eq. (38) and (23) provide respectively a closed-form solution that can
be evaluated in linear time O(nm). On the contrary, the computations of GSURE (beyond
the Gaussian case), PURE and PUKLA, given respectively in eq. (19), (25) and (28),
cannot be evaluated in reasonable time. They rely respectively on the computation of the

divergence div θ̂
f
(Y ),

∑∑
Y ijfij(Y − eietj) and

∑∑
Y ij log

(
fij(Y − eietj)

)
. Without

further assumptions, such quantities requires O(n2m2) operations in general. A standard
approach for the computation of the divergence, suggested in Girard (1989); Ramani et al.
(2008), is to unbiasedly estimate it with Monte-Carlo simulations by sampling the following
relation

div θ̂
f
(Y ) = Eδ

[
tr

(
δt
∂θ̂

f
(Y )

∂Y
δ

)]
at random directions δ ∈ Rn×m satisfying E[δ] = 0, E[δiδi] = 1 and E[δiδj ] = 0. Following
Deledalle (2017), a similar first order approximation can be used for the other two quantities
as ∑∑

Y ijfij(Y − eietj) ≈
∑∑

Y ij

[
fij(Y )− δi,j

(
∂f(Y )

∂Y
δ

)
i,j

]
, and

∑∑
Y ij log

(
fij(Y − eietj)

)
≈
∑∑

Y ij log

[
fij(Y )− δi,j

(
∂f(Y )

∂Y
δ

)
i,j

]
where the entries of δ should be chosen Bernoulli distributed with parameter p = 0.5. The
advantage of these three approximations is that they can be computed in linear time O(nm)
by making use of the results of Lewis and Sendov (2001); Sun and Sun (2003); Edelman
(2005); Candès et al. (2013); Deledalle et al. (2012) that provide an expression for the
directional derivative given by

∂f(Y )

∂Y
δ = Ũ(D + S +A)Ṽ

t
(66)

where Ũ and Ṽ are the matrices whose columns are ũk and ṽk, and D, S and A are n×m
matrices defined, for all 1 ≤ i ≤ n and 1 ≤ j ≤ m, as

Di,j = δ̄i,j ×
{
f ′i(σ̃i) if i = j
0 otherwise,

Si,j =
δ̄i,j + δ̄j,i

2
×
{

0 if i = j
fi(σ̃i)−fj(σ̃j)

σ̃i−σ̃j otherwise,

Ai,j =
δ̄i,j − δ̄j,i

2
×
{

0 if i = j
fi(σ̃i)+fj(σ̃j)

σ̃i+σ̃j
otherwise,

where σ̃k and fk(σ̃k) are extended to 0 for k > min(n,m) and δ̄ = Ũ
t
δṼ ∈ Rn×m.
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