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Abstract

We initiate the rigorous study of classification in semimetric spaces, which are point sets
with a distance function that is non-negative and symmetric, but need not satisfy the
triangle inequality. We define the density dimension dens and discover that it plays a
central role in the statistical and algorithmic feasibility of learning in semimetric spaces.
We compute this quantity for several widely used semimetrics and present nearly optimal
sample compression algorithms, which are then used to obtain generalization guarantees,
including fast rates.

Our claim of near-optimality holds in both computational and statistical senses. When
the sample has radius R and margin γ, we show that it can be compressed down to roughly
d = (R/γ)dens points, and further that finding a significantly better compression is algo-
rithmically intractable unless P=NP. This compression implies generalization via standard
Occam-type arguments, to which we provide a nearly matching lower bound.
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1. Introduction

The problem of learning in non-metric spaces has been of significant recent interest, being
the subject of a 2010 COLT workshop and a central topic of all three SIMBAD conferences.
In this paper, we initiate the study of efficient statistical learning in semimetric spaces,
which are point sets endowed with a distance function that is non-negative and symmetric
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but may not satisfy the triangle inequality (Wilson, 1931)1. Without the latter, quite a bit
of structure is lost — for example, semimetric spaces admit convergent sequences without
a Cauchy subsequence (Burke, 1972). We are not aware of any rigorous learning results in
semimetric spaces prior to this work.

Background and motivation. Much of the existing machinery for classification algo-
rithms, as well as generalization bounds, depends strongly on the data residing in a Hilbert
space. For some important applications, this structural constraint severely limits the appli-
cability of existing methods. Indeed, it is often the case that the data is naturally endowed
with some distance function strongly dissimilar to the familiar Euclidean norm.

Consider images, for example. Although these can be naively represented as coordinate-
vectors in Rd, the Euclidean (or even `p) distance between the representative vectors does
not correspond well to the one perceived by human vision. Instead, the earthmover distance
is commonly used in vision applications (Rubner et al., 2000). Yet representing earthmover
distances using any fixed `p norm unavoidably introduces very large interpoint distortion
(Naor and Schechtman, 2007), potentially corrupting the data geometry before the learning
process has even begun. Nor is this issue mitigated by kernelization, as kernels necessarily
embed the data in a Hilbert space, again incurring the aforementioned distortion. A similar
issue arises for strings: These can be naively treated as vectors endowed with different
`p metrics, but a much more natural metric over strings is the edit distance, which is
similarly known to be strongly non-Euclidean (Andoni and Krauthgamer, 2010). Additional
limitations of kernel methods are articulated in Balcan et al. (2008b).

These concerns have led researchers to seek out algorithmic and statistical approaches
that apply in greater generality. A particularly fruitful recent direction has focused on metric
spaces, which are point sets endowed with a distance function that is non-negative and
symmetric, and also satisfies the triangle equality. While metric spaces are significantly more
general than Hilbertian ones, they still do not capture many common distance functions
used by practitioners. These non-metric distances include the Jensen-Shannon divergence,
which appears in statistical applications (Fuglede and Topsøe, 2004; Goodfellow et al., 2014),
the k-median Hausdorff distances, and the `p distances with 0 < p < 1, which appear in
vision applications (M. Dubuisson, A. Jain, 1994; Jacobs et al., 2000) — all of which are
semimetrics. An additional line of work (M. Dubuisson, A. Jain, 1994; Jacobs et al., 2000,
1998; Weinshall et al., 1998) underscored the effectiveness of non-metric distances in various
applications (mainly vision), and among these, semimetrics again play a prominent role
(Basri et al., 1995; Cox et al., 1996; Gdalyahu and Weinshall, 1999; Huttenlocher et al.,
1993; Jain and Zongker, 1997; J. Puzicha, J. Buhmann, Y. Rubner, C. Tomasi, 1999).

Main results. We initiate the rigorous study of classification for semimetric spaces. We
define the density dimension (dens = dens(X )) of a semimetric space X as the logarithm
of the density constant µ = µ(X ), which intuitively is the smallest number such that any
r-radius open ball in X contains at most µ points at mutual interpoint distance at least r/2;
a formal definition is given in Equation (2). We then demonstrate that dens plays a central
role in the statistical and algorithmic feasibility of learning in this setting by showing that it
controls the packing numbers of X . Crucially for learning, this insight implies that there is

1. Some authors use the term “semimetric” to mean pseudometrics. These preserve much of the structure
of metrics, the only difference being that they allow distinct points to have distance 0. Our usage appears
to be more standard.
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one standard technique that survives violations of the triangle inequality — namely, sample
compression. Denoting by R and γ the sample radius and margin, respectively, we can
achieve the latter by extracting a γ-net from the sample (Theorem 2). This compresses the
sample from size n to (R/γ)O(dens), which is nearly optimal unless P=NP (Theorem 4).

On the statistical front, we give a compression-based generalization bound that smoothly
interpolates between the consistent (R/γ)O(dens)/n and agnostic

√
(R/γ)O(dens)/n decay

regimes (Theorem 8). This “fast rate” holds for general compression schemes. Applied
to margin-based semimetric sample-compression schemes, it becomes amenable to efficient
Structural Risk Minimization. The lower bound in Theorem 11 shows that even under
margin assumptions, there exist adversarial distributions forcing the sample complexity to
be exponential in dens.

To demonstrate the applicability of our framework, we compute the density dimension of
the three popular semimetrics enumerated above: Jensen-Shannon divergence, `p distances
with 0 < p < 1, and k-median Hausdorff distances (Theorem 13). Along the way, we
discover that the latter (for k = 1) is in fact universal for all semimetrics; this surprising
fact may be of independent interest (Lemma 12).

Related work. In a series of papers, Balcan et al. (2008c,a,b) developed a theory of learning
with similarity functions, which resemble kernels but relax the requirement of being positive
definite. Learning is accomplished by embedding the data into an appropriate Euclidean
space and performing large-margin separation. Hence, this approach effectively extracts
the implicit Euclidean structure encoded in the similarity function, but does not seem
well-suited for inherently non-Euclidean data. In Wang et al. (2007) this framework was
extended to dissimilarity functions, obtaining analogous results.

For metric spaces, it is known that a sample of size exponential in the doubling dimen-
sion (ddim) suffices to achieve low generalization error (von Luxburg and Bousquet, 2004;
Gottlieb et al., 2014a; Shalev-Shwartz and Ben-David, 2014; Kontorovich and Weiss, 2014),
and that exponential dependence on ddim is in general unavoidable (Shalev-Shwartz and
Ben-David, 2014). As for algorithmic runtimes, the naive nearest-neighbor classifier eval-
uates queries in O(n) time (where n is the sample size); however, an approximate nearest
neighbor can be found in time 2O(ddim) log n. If one desires runtimes depending not on n
but on the geometry (say, margin γ) of the data, one may achieve a sample compression
scheme of size γ−O(ddim), and it is NP-hard to achieve a significantly better compression
(Gottlieb et al., 2014b).

As we show in the Appendix, the above results characterizing learning in metric space
do not carry over to semimetrics. More precisely, the doubling dimension of a semimetric
does not control its packing numbers, as it does in metric spaces. Although we succeed
in showing that the density constant does indeed control the packing numbers even in
semimetrics, this does not necessarily imply portability of learning algorithms for metric
spaces into semimetrics. For example, although the nearest-neighbor classifier is still well-
defined in semimetric spaces, and may naively be evaluated on queries in O(n) time, relaxing
to approximate nearest neighbors no longer provides the exponential speedup in query time
that it does in metric spaces (Lemma 17). Simply put, without the triangle inequality, the
hierarchy-based search methods, such as Beygelzimer et al. (2006); Gottlieb et al. (2014a)
and related approaches, all break down.
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Paper outline. After presenting our basic definitions in Section 2, we give packing bounds
and net-construction algorithms in Section 3. In Section 4 we give upper and lower bounds
on sample complexity for learning in semimetrics. The density dimension of some com-
mon semimetircs is computed in Section 5. The Appendix contains a detailed discussion
demonstrating the inapplicability of existing metric-space techniques to the semimetric case.

2. Preliminaries

Semimetric spaces. Throughout this paper, our instance space X will be endowed with
a semimetric ρ : X × X → [0,∞), which is a non-negative symmetric function verifying
ρ(x, x′) = 0 ⇐⇒ x = x′ for all x, x′ ∈ X . If the semimetric space (X , ρ) additionally
satisfies the triangle inequality, ρ(x, x′) ≤ ρ(x, x′′) + ρ(x′′, x′) for all x, x′, x′′ ∈ X , then
ρ is a metric. The distance between two sets A,B in a semimetric space is defined by
ρ(A,B) = inf

x∈A,x′∈B
ρ(x, x′). For x ∈ X and r > 0, denote by Br(x) = {y ∈ X : ρ(x, y) < r}

the open r-ball about x. The radius of a set is the radius of the smallest ball containing it,
rad(A) = inf {r > 0 : ∃x ∈ A,A ⊆ Br(x)} and diam(A) := supx,x′∈A ρ(x, x′).

Doubling and density dimensions. Let λ = λ(X ) be the smallest number such that
every open ball in X can be covered by λ open balls of half the radius, where all balls are
centered at points of X . Formally,

λ(X ) = min{λ ∈ N : ∀x ∈ X , r > 0 ∃x1, . . . , xλ ∈ X : Br(x) ⊆ ∪λi=1Br/2(xi)}.

Then λ is the doubling constant of X , and the doubling dimension of X is ddim(X ) = log2 λ.

An r-net of a set A ⊆ X is any maximal subset A having mutual interpoint distance at
least r. The r-packing number M(r,A) of A is the maximum size of any r-net of A:

M(r,A) = max{|E| : E ⊆ A, (x, y ∈ E) ∧ (x 6= y) =⇒ ρ(x, y) ≥ r}. (1)

The density constant µ(X ) was defined in Gottlieb and Krauthgamer (2013) as the
smallest number such that any open r-radius ball in X contains at most µ points at mutual
interpoint distance at least r/2:

µ(X ) = min{µ ∈ N : (x ∈ X ) ∧ (r > 0) =⇒ M
(r

2
, Br(x)

)
≤ µ}, (2)

and we define the density dimension of X by dens(X ) = log2 µ(X ). A closely related notion
was introduced by Vol’berg and Konyagin (1987) under the term uniform metric dimension.

An important property of the density dimension is that it is hereditary: for S ⊂ X , we
have µ(S) ≤ µ(X ); the doubling dimension is only approximately hereditary (Gottlieb and
Krauthgamer, 2013).

It will be convenient to define Log (x) := log2 dxe, and we will make frequent use of the
identity

µ(S)Log(α) = dαedens(S) . (3)
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Learning model. We work in the standard agnostic learning model (Mohri et al., 2012;
Shalev-Shwartz and Ben-David, 2014), whereby the learner receives a sample S consisting of
n labeled examples (Xi, Yi), drawn iid from an unknown distribution over X ×{−1, 1}. All
subsequent probabilities and expectations will be with respect to this distribution. Based on
the training sample S, the learner produces a hypothesis h : X → {−1, 1}, whose empirical
error is defined by êrr(h) = n−1

∑n
i=1 1{h(Xi)6=Yi} and whose generalization error is defined

by err(h) = P(h(X) 6= Y ).

Sub-sample, margin, and induced 1-NN. In a slight abuse of notation, we will blur
the distinction between S ⊂ X as a collection of points in a semimetric space and S ∈
(X × {−1, 1})n as a sequence of labeled examples. Thus, the notion of a sub-sample S̃ ⊂ S
partitioned into its positively and negatively labeled subsets as S̃ = S̃+∪ S̃− is well-defined.
The margin of S̃, defined by marg(S̃) = ρ(S̃+, S̃−), is the minimum distance between a pair
of opposite-labeled points (see Fig. 1). In degenerate cases where one of S̃+, S̃− is empty,
marg(S̃) = ∞. (For ease of presentation, we assume that the margin is strictly less than
rad(S), and so rad(S)/marg(S) > 1. In the case of equality, substituting any value less
than the margin will cause the relevant claim to hold.) A sub-sample S̃ naturally induces
the 1-NN classifier hS̃ , via hS̃(x) = sign(ρ(x, S̃−)− ρ(x, S̃+)).

+

−

+

−

+
+

−

−

−

marg(S) marg(S̃)

Figure 1: In this example, the sub-sample S̃ ⊂ S is indicated by double circles. It is always
the case that marg(S̃) ≥ marg(S).

The problem of nearest-neighbor condensing is to produce the minimal subsample S̃ ⊂ S
so that the 1-NN classifier hS̃ is consistent with S, i.e. has zero training error. In the
inconsistent version of this problem, one is given a parameter ε > 0 and tasked with
producing a minimal subsample S̃ ⊂ S whose induced hS̃ has training error at most ε.

3. Packing bounds and algorithms

The central contribution of this section is the following lemma, which demonstrates that for
a semimetric space, a bound on its density dimension implies one on its packing numbers.

Lemma 1 For any point set S in a semimetric space X and r > 0, the size of any r-net
of S is k = drad(S)/redens(S), and furthermore, such an r-net can be computed in time
O(k|S|).

Proof To bound the size of a maximal r-net C ⊂ S, suppose its radius is R. Partition C
into clusters by extracting from C an arbitrary net D with minimum interpoint distance
R/2, and assigning each point p ∈ C to a cluster centered at the nearest neighbor of p in
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D. Then apply the procedure recursively to each cluster, halving the previous radius, until
reaching point sets with minimum interpoint distance at least r. By repeatedly applying
the definition of the density constant, the size of C is bounded by µ(S)Log(rad(S)/r) =

drad(S)/redens(S).
The actual r-net is constructed in a greedy fashion. Initialize set C = ∅, and for every

point in S, add it to C if its closest neighbor in C is at distance r or greater. Since |C| ≤ k,
the total runtime is O(k|S|). See Algorithm 1.

Algorithm 1 Brute-force net construction

Require: sample S, margin r
Ensure: C is an r-net for S

for x ∈ S do
if ρ(x,C) ≥ r then
C = C ∪ {x}

end if
end for

Having demonstrated the existence of a small r-net, we can now consider the problems of
producing both consistent (lossless) and inconsistent (lossy) 1-NN classifiers for the sample
(see Section 2).

Consistent case. For a labeled sample S, recall that the margin of S is the minimum
distance between oppositely labeled points in S, as defined formally in Section 2. The margin
of a given sample can be computed in time Θ(|S|2) by considering all pairs of points. We
begin with a consistent classifier, whose generalization performance with explicit constants
is analyzed in Theorem 7(i). Informally, the latter states that a 1-nearest neighbor classifier

induced by a sub-sample of size k has generalization error O
(
k logn+log 1

δ
n

)
.

Theorem 2 Let S be a sample set equipped with a semimetric distance function, and let the
margin γ = marg(S) be given. In time O(k|S|) we can construct a nearest-neighbor classifier

that achieves zero training error on S, where k = (rad(S)/γ)O(dens(S)) . The evaluation on
a test point requires Θ(k) distance computations, and with probability 1 − δ, the resulting

classifier has generalization error O
(
k logn+log 1

δ
n

)
.

Proof We build a γ-net C for S in time O(k|S|), as in Lemma 1. Since γ is the margin,
by construction every point in S has the same label as its nearest neighbor in C, and so the
nearest neighbor classifier with respect to C has zero sample error.

Given a test point x, we assign it the same label as its nearest neighbor in C. Then
the generalization bounds follow from Theorem 7(i). For the runtime, O(k) operations are
clearly sufficient to find the nearest neighbor (see also Lemmas 16 and 17).

Remark 3 If the margin is not known in advance, then it must be computed, and the
runtime in Theorem 2 grows to O(n2). In this case we can give an alternate construction
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that achieves the runtime of O(k|S|) of the Theorem. Extract sets S+, S− ∈ S of oppositely
labeled points in S, and for each set build a subset in a manner similar to the proof of
Lemma 1: Let R be the maximum among the radii of S+, S−. Partition S+ into clusters by
extracting from S+ an arbitrary net D with minimum interpoint distance R/2, and assigning
each point p ∈ S+ to a cluster centered at the nearest neighbor of p in D. Then apply the
procedure recursively to each cluster in D, halving the previous radius. This construction
is done to S− in parallel, and terminates when the union of the subsets for S+ and S− is
consistent with S. This must occur within O(log(rad(S)/marg(S))) iterations, producing a
consistent set of size k in time O(kn log(rad(S)/marg(S))) = O(kn) (where equality follows
from the log(rad(S)/marg(S)) term being subsumed in the definition of k).

The procedure in Theorem 2 compresses S, producing a consistent sub-sample C. Im-
mediate from the theorem is that the smaller the compressed set C, the better the general-
ization bounds of the classifier. However, as Gottlieb et al. (2014b) recently demonstrated,
even in metric spaces, it is NP-hard to approximate the size of the minimum consistent
subset to within a factor 2O(ddim(S) log(rad(S)/marg(S))1−o(1) = 2O(dens(S) log(rad(S)/marg(S))1−o(1)

(where the equality follows from Lemma 15). This means that choosing the net of Lemma 1
is close to the optimal construction for a consistent subset of S.

Inconsistent case. It is natural to ask whether allowing the classifier nonzero sample
error results in improved generalization bounds. This is indeed generally the case, as the
bound in Theorem 8 indicates. Informally, the latter shows that a 1-nearest neighbor
classifier induced by a sub-sample of size k with sample error ε has generalization error

Q(k, ε) = O

(
ε+ 1

n log nk

δ +
√

ε
n log nk

δ

)
. Optimizing this bound is an instance of Struc-

tural Risk Minimization (SRM). Unfortunately, we can show SRM to be infeasible for this
problem, and that the generalization guarantees of Theorem 2 are nearly the best that can
be obtained by way of Theorem 8:

Theorem 4 Given a set S equipped with a metric or semimetric distance function, let
S∗ ⊂ S be a sub-sample for which the generalization bound Q(k, ε) in Theorem 8 (for a
fixed constant δ) is minimized. Then it is NP-hard to compute any subset of S achieving

a generalization bound within factor 2O((dens(S) log(rad(S)/marg(S)))1−o(1) of the generalization
bound induced by S∗.

Proof The proof is via reduction from the minimum consistent subset problem mentioned
above. Fix the confidence level δ in the bound, let T be an instance of the minimum
consistent subset problem, and put m = |T |. For some large value p, replace each point
ti ∈ T with a (similarly labeled) set of p points si,1, . . . , si,p obeying the line metric, with
ρ(si,a, si,b) = φ|a− b| for an infinitesimally small φ. Put ρ(si,a, sj,b) = ρ(ti, tj). The new set
is S, with n = |S| = pm.

Consider a subset S′ ⊂ S. If the 1-NN rule on S′ misclassifies a point of S, say si,a,
then in fact it must misclassify all p points si,b, b ∈ [1, p]. So an inconsistent subset of S
achieves a value of Q(|S′|, p/n) = Ω(p/n) in the generalization bound.

Now consider the consistent subset of S consisting of m = n/p points si,1 for i ∈ [1,m].

By Theorem 7(i), this classifier achieves a generalization bound of O
(
m logn
n

)
= O

(
logn
p

)
.
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So when p = Ω(
√
n log n), this consistent classifier is better than any inconsistent classifier.

Now a consistent subset of size d ≤ m has generalization bound O
(
d logn
n

)
. As it is NP-hard

to find a subset whose size is within a factor 2O(dens(S) log(rad(S)/marg(S))1−o(1) of the smallest
consistent subset, it is NP-hard to find a consistent subset with generalization bound within
a factor 2O(dens(S) log(rad(S)/marg(S))1−o(1) of the optimal consistent subset, and the theorem
follows.

In light of the hardness result established in Theorem 4, we specialize the goal from
one of seeking a small nearly consistent sub-sample to one where the sub-sample must be
a γ-net. In this case, the relevant generalization bound is provided by Theorem 10. As
before, we wish to perform SRM for this bound. Fortunately, we are able to compute the
latter exactly in polynomial time, and even more efficiently if we are willing to settle for a
solution within a constant factor of the optimal. The proof of the following theorem follows
the lines of Gottlieb et al. (2014a).

Theorem 5 Given a sample set S equipped with a semimetric:

(a) A nearest-neighbor classifier minimizing the generalization bound of Theorem 10 can be
computed in randomized time O(|S|4.373).

(b) A nearest-neighbor classifier whose generalization bound is within factor 2 of optimal
can be computed in deterministic time O(|S|2 log |S|).

Each of these classifiers can be evaluated on test points in time
(
rad(S)
γ

)O(dens(S))
, where γ

is the margin imposed by the SRM procedure.

Proof For each of these solutions, we enumerate and sort in increasing order the distances
between all oppositely labeled point pairs in S, in total time O(|S|2 log |S|). Each distance
constitutes a separate guess for the optimal margin to “impose” on S. That is, for each
distance γ, we will remove from S some points to ensure that all opposite labeled pairs are
more than γ far apart.

To accomplish this, we iteratively build a new graph G. We initialize G with vertices
representing the points of S. At each round we add to G an edge between the next closest
pair of opposite labeled points, as given by the sorted enumeration above. This distance is
the margin of the current round: Points connected by an edge in G represent pairs that are
too close together for the current margin, and we need to compute how many points would
need to be removed from G in order for no edge to remain in the graph. (However, no points
or edges will actually removed from G.) As observed by Gottlieb et al. (2014a), this task is
precisely the problem of bipartite vertex cover. By König’s theorem, the minimum vertex
cover problem in bipartite graphs is equivalent to the maximum matching problem, and
a maximum matching in bipartite graphs can be computed in randomized time O(n2.373)
(Mucha and Sankowski, 2004; Williams, 2012). So for each candidate margin, we can
compute in O(n2.373) time the number of points that must be removed from the current
graph G in order to remove all edges. For O(n2) possible margins, this amounts to O(n4.373)
time. Having computed for each interpoint distance the number of points required to be
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deleted to achieve this distance, we choose the distance-number pair which minimizes the
bound of Theorem 10. We then remove the corresponding points from S, and use the
algorithm of Lemma 1 to construct a net satisfying the margin bound.

The runtime improvement in (b) comes from a faster vertex-cover computation. It is
well known that a 2-approximation to vertex cover can be computed (in arbitrary graphs)
by a greedy algorithm in time linear in the graph size O(|V + ∪ V −| + |E|) = O(n2), see
e.g. Bar-Yehuda and Even (1981). This algorithm simply chooses any edge and removes
both endpoints, until no edges remain. We apply this algorithm to our setting: A new edge
is added to G only if both endpoints survive in the already computed cover, and then both
endpoints are marked as removed in the solution to the new graph. Having computed for
each interpoint distance the number of points required to be deleted to achieve this distance,
we choose the distance-number pair which minimizes the bound of Theorem 10. We then
remove the corresponding points from S, and use the algorithm of Lemma 1 to construct
a net satisfying the margin bound. The runtime is dominated by the time required to sort
the distances.

For both algorithms, a new point is classified by finding its nearest neighbor in the
extracted net.

Remark 6 It is worth asking whether a succesful learner in (semi)metric space must nec-
essarily perform some type of compression. Moran and Yehudayoff (2016) recently demon-
strated that for classifiers of finite VC-dimension, learning and compression are in fact
equivalent. However, no such result is known — or even conjectured — for infinite VC-
dimension classifiers such as 1-NN and its variants.

If a (semi)metric learner does choose to learn by compression, he is not necessarily
restricted to learning via 1-NN, but can make use of any proximity-based function. But even
then, Theorems 10 and 11 below demonstrate that from an information-theoretic standpoint,
roughly (rad(S)/marg(S))dens(X ) examples are both necessary in the worst case and always
sufficient. One could still hope to exhibit a learning problem in a (semi)metric space where
any learner achieving small generalization must solve some hard problem. Results of this
type are known for finite automata under cryptographic assumptions (Kearns and Vazirani,
1997, Section 1.4); could something similar be shown for proximity-based learning?

4. Generalization guarantees

In this section, we provide general sample compression bounds, which then will be spe-
cialized to the nearest-neighbor classifier proposed above. Theorem 8 presents a smooth
interpolation between two classic bounds: the consistent case with rate Õ(1/n), and the
agnostic case with rate Õ(1/

√
n). Applied to margin-based semimetric sample-compression

schemes, this result yields the efficiently computable and optimizable bound in Theorem 10,
which is nearly optimal (as shown in Theorem 4). Finally, the lower bound in Theorem 11
shows that even under margin assumptions, there exist adversarial distributions forcing the
sample complexity to be exponential in dens.
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4.1 Sample compression schemes

We use the notion of a sample compression scheme in the sense of Graepel et al. (2005),
where it is treated in full rigor. Informally, a learning algorithm maps a sample S of size n
to a hypothesis hS . It is a d-sample compression scheme if a sub-sample of size d suffices
to produce a hypothesis that agrees with the labels of all the n points. It is an ε-lossy
d-sample compression scheme if a sub-sample of size d suffices to produce a hypothesis that
disagrees with the labels of at most εn of the n sample points. At this stage, we are not
assuming anything about the computational efficiency of a compression scheme.

The algorithm need not know d and ε in advance. We say that the sample S is (d, ε)-
compressible if the algorithm succeeds in finding an ε-lossy d-sample compression scheme
for this particular sample. In this case:

Theorem 7 (Graepel et al. (2005)) For any distribution over X × {−1, 1}, any n ∈ N
and any 0 < δ < 1, with probability at least 1− δ over the random sample S of size n, the
following holds:

(i) If S is (d, 0)-compressible, then err(hS) ≤ 1

n− d

(
(d+ 1) log n+ log

1

δ

)
.

(ii) If S is (d, ε)-compressible, then err(hS) ≤ εn

n− d
+

√
(d+ 1) log n+ log 1

δ

2(n− d)
.

The generalizing power of sample compression was independently discovered by Littlestone
and Warmuth (1986); Devroye et al. (1996), and later elaborated upon by Graepel et al.
(2005). The bounds above are already quite usable, but they feature an abrupt transition
from the (log n)/n decay in the lossless (ε = 0) regime to the

√
(log n)/n decay in the

lossy regime. We now provide a smooth interpolation between the two (such results are
known in the literature as “fast rates” (Boucheron et al., 2005); see also a related result in
Shalev-Shwartz and Ben-David (2014)):

Theorem 8 Fix a distribution over X ×{−1, 1}, an n ∈ N and 0 < δ < 1. With probability
at least 1− δ over the random sample S of size n, the following holds for all 0 ≤ ε ≤ 1

2 : If
S is (d, ε)-compressible, then, putting ε̃ = εn/(n− d), we have

err(hS) ≤ ε̃+
2

3(n− d)
log

nd+1

δ
+

√
9ε̃(1− ε̃)
2(n− d)

log
nd+1

δ

=: Q(d, ε). (4)

Proof We closely follow the argument in Graepel et al. (2005, Theorem 2), with the twist
that instead of Hoeffding’s inequality, we use Bernstein’s. The particular form of the latter
is due to Dasgupta and Hsu (2008, Lemma 1): if p̂ ∼ Bin(n, p)/n and δ > 0, then the
following holds with probability at least 1− δ:

p ≤ p̂+
2

3n
log

1

δ
+

√
9p̂(1− p̂)

2n
log

1

δ
. (5)

10
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Now suppose that S is (d, k/n)-compressible, as witnessed by some sub-sample S̃ ⊂ S
of size d. In particular, the hypothesis hS̃ induced by the sub-sample S̃ makes k or fewer

mistakes on the n− d points in S \ S̃. Substituting p = err(hS̃) and

p̂ = êrrS\S̃(hS̃) :=
1

|S \ S̃|

∑
x∈S\S̃

1{hS̃ errs on x} ≤
k

n− d
= ε̃

into (5) yields that for fixed S̃ and random S \ S̃, with probability at least 1− δ,

err(hS̃) ≤ êrrS\S̃(hS̃) +
2

3(n− d)
log

1

δ
+

√
9ε̃(1− ε̃)
2(n− d)

log
1

δ
, (6)

where we used the monotonicity of t 7→ t(1− t) on [0, 12 ]. To see that (6) follows from (5),

note that when S̃ of size d is fixed and S \ S̃ is drawn iid ∼ P, we have (n− d)êrrS\S̃(hS̃) ∼
Bin(n − d, err(hS̃)). To make (6) hold simultaneously for all S̃ ⊆ S, divide δ by nd — the

number of ways to choose a (multi)set S̃ of size d. To make the claim hold for all d ∈ [n]
and all 0 ≤ ε < 1, stratify (as in Graepel et al. (2005, Lemma 1)) over the n possible choices
of d, which amounts to dividing δ by an additional factor of n. Unlike in Graepel et al.
(2005), there is no need to stratify over the possible values of ε, since (5) holds for random
(and not just fixed) p̂.

4.2 Margin-based nearest neighbor compression

We now specialize the general sample compression result of Theorem 8 to our setting, where
hS′ induced by a sub-sample S′ ⊂ S is given by the 1-NN classifier defined in Section 2.
Any sample S of size n is trivially (n, 0)-compressible and (0, 12)-compressible — the former
is achieved by not compressing at all, and the latter by a constant predictor. Now d and
ε cannot simultaneously be made arbitrarily small, and for non-degenerate samples S, the
bound Q in Theorem 8 will have a nontrivial minimal value Q∗. Theorem 4 shows that
computing Q∗ is intractable and the algorithm in Theorem 5 solves a tractable modification
of this problem. For k ∈ N and γ > 0, let us say that the sample S is (k, γ)-separable if
it admits a sub-sample S′ ⊂ S such that |S \ S′| ≤ k and marg(S′) > γ, and observe that
separability implies compressibility:

Lemma 9 If S is (k, γ)-separable then it is
(
drad(S)/γedens(S) , k/|S|

)
-compressible.

Proof Suppose S′ ⊂ S is a witness of (k, γ)-separability. Being pessimistic, we will allow
our lossy sample compression scheme to mislabel all of S \ S′, but not any of S′, giving
it a sample error ε ≤ k/|S|. Now by construction, S′ is (0, γ)-separable, and thus a γ-net
S̃ ⊂ S′ suffices to recover the correct labels of S′ via 1-nearest neighbor. Lemma 1 provides
the estimate

|S̃| ≤ µ(S)Log(rad(S)/γ) = drad(S)/γedens(S) ,

whence the compression bound.

11



Gottlieb, Kontorovich, Nisnevitch

These observations culminate in an efficiently optimizable margin-based generalization
bound:

Theorem 10 Fix a distribution over X , an n ∈ N and 0 < δ < 1. With probability at least
1 − δ over the random sample S of size n, the following holds for all 0 ≤ k ≤ n/2: If S is
(k, γ)-separable with witness S′, then

err(hS′) ≤ Q(d, k/n) =: R(k, γ),

where Q is defined in (4) and

d = µ(S′)Log(rad(S
′)/γ) =

⌈
rad(S′)/γ

⌉dens(S)
.

Furthermore, the minimizer (k∗, γ∗) of R(·, ·) is efficiently computable.

4.3 Sample complexity lower bound

The following result shows that even under margin assumptions, a sample of size exponential
in dens will be required for some distributions. (See also the recent agnostic lower bound
for passive 1-NN, Kontorovich et al. (2016, Theorem 5), based on (Berend and Kontorovich,
2015, Equation (25)) an exact PAC lower bound (Kontorovich and Pinelis, 2016, Theorem
2.1).)

Theorem 11 There are universal constants c, δ > 0 such that for every semimetric space
(X , ρ) with dens(X ) > 6 and any learning algorithm mapping samples S of size n to hypothe-
ses hn : X → {−1, 1}, there is a distribution P over X and a target concept f : X → {−1, 1},
such that err(f) = 0 yet

P

(
err(hn) ≥ c drad(S)/marg(S)edens(X )

n

)
≥ δ.

Proof The definition of the density constant implies the existence of an r > 0 and an
M ⊆ X satisfying

(a) m := |M | = µ(X ) = 2dens(X )

(b) M is contained in a ball of radius 2r

(c) ρ(x, x′) ≥ r for x 6= x′ ∈M

The assumption dens(X ) > 6 implies m ≥ 65. Taking 0 < ε < 1
8 , recall the standard VC

lower bound argument (Blumer et al., 1989; A. Ehrenfeucht, D. Haussler, M. Kearns, L.
Valiant, 1989), which constructs a distribution D over M by putting a mass of 1 − 8ε on
x1 ∈M and distributing the remaining mass uniformly over the other m−1 points. Suppose
the target f : M → {−1, 1} is drawn uniformly at random from F = {−1, 1}M , and some
learning algorithm is given a sample S = (X1, . . . , Xn) ∼ Dn, where n = (m− 1)/(32ε).

12
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First, we argue that with probability Ω(1), S will contain exactly 2 distinct points. Let
E1 be the event that S consists of 1 point; then

P(E1) = (1− 8ε)n + (m− 1)

(
8ε

m− 1

)n
. (7)

Since n = (m− 1)/(32ε) and m ≥ 65, the first term in the right-hand side of (7) is at most
e−(m−1)/32 ≤ e−2 < 0.1353354. The second term therein is (i) monotonically decreasing in
m (for m ≥ 65) and (ii) monotonically increasing in ε; at m = 65 and ε = 1/8, we have the
upper bound 65/6416 < 10−27. Thus P(E1) < 0.1353355.

Let E2 be the event that S has more than 2 points. We decompose E2 into two cases:
E′2, where x1 ∈ S and E′′2 , where x1 /∈ S. Clearly, P(E′′2 ) ≤ (8ε/(m − 1))3 < 0.000004. To
analyze E′2, define ξi = 1{Xi 6=x1} and note that under E′2, the random quantity 1 + Z :=∑m

i=1 ξi upper-bounds the number of distinct points in S. Hence, P(E′2) ≤ P(Z ≥ 2). Now
E[Z] = n(8ε/(m− 1)) = 1/4, and by the multiplicative Chernoff’s bound,

P(Z ≥ 2) = P(Z ≥ 4EZ) ≤ e−EZ = e−1/4.

We conclude that P(E2) < 0.0003 + e−1/4 < 0.7789 and hence P(E1 ∪ E2) < 0.91415.
Let E3 be the event that S will consist exacly of 2 distinct points x, x′, and furthermore,

that the randomly drawn f has f(x) 6= f(x′); then P(E3) ≥ 1
2(1 − P(E1 ∪ E2)) > 0.04.

Conditioned on E3, the labels assigned by f to the remaining m − 2 points in M are iid
Bernoulli(1/2) and their total mass under D is at least (m − 2)(8ε/(m − 1)) > 7.875ε,
since m ≥ 65. Since the labels are random, no learning algorithm can do better than
flipping a coin, and the algorithm will be correct on 1

2(m − 2) of the unseen points, in
expectation. The probability of being correct on more than 3

4(m − 2) of the points is

bounded by e−(m−2)/8 < 0.000381. Thus, with probability at least δ := 0.039, any learning
algorithm that observes n labeled examples sampled from D will achieve an error of at least
(7.875/4)ε > 1.95ε.

The above argument proves a sample complexity lower bound of Ω (m/ε). Inverting the
bound for ε = err(hn) implies that with probability at least δ, the following events occur:

(i) err(hn) > 1.95 · m−132n > 0.05m
n

(ii) the sample S contains exactly two distinct points, x, x′

(iii) the randomly chosen f has f(x) 6= f(x′).

To finish the proof, it remains to establish the requisite relationship between the determin-
istic quantity m = |M | and the random quantity

µ(X )Log(rad(S)/marg(S)) = drad(S)/marg(S)edens(X ) ,

where S ∼ Dn. By construction, rad(M) ≤ 2r, and by (ii,iii), r ≤ marg(S) ≤ 2r, whence
Log (rad(S)/marg(S)) = 1 and

m = µ(X )Log(rad(S)/marg(S)).

and the claimed lower bound follows.
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5. Density dimension of some common semimetrics

In this section we demonstrate the utility of the density dimension by calculating its value
under some common semimetric distance functions on d-dimensional vectors. The first of
these functions is the Jensen-Shannon divergence, equivalent (Fuglede and Topsøe, 2004) to
the `2-squared distance function `22(x, y) =

∑d
i=1 |xi−yi|2. We also consider the non-metric

`p-spaces for 0 < p < 1, `p(x, y) = (
∑d

i=1 |xi − yi|p)1/p. Finally, we consider the k-median
Hausdorff distance.

Recall that the usual Hausdorff distance is a metric defined on any two point sets A
and B, and we shall make the simplifying assumption that |A| = |B| = m. Let l(a, b) for
all a ∈ A and b ∈ B be a vector distance function — for simplicity we shall assume the
Euclidean `2 distance — and l(a,B) be the distance from a ∈ A to its nearest neighbor
in B. The Hausdorff distance is the maximum distance between a point in A (or B)
and its nearest neighbor in B (respectively, in A): max {maxa∈A l(a,B),maxb∈B l(b, A)}.
Huttenlocher et al. (1993) define the k-median Hausdorff distance (in the terminology of
Jacobs et al. (2000), but perhaps more aptly termed the k-rank Hausdorff distance) by
setting hk(A,B) to be the k-th smallest value in the vector v = (l(a1, B), . . . , l(ad, B)),
and then the k-rank Hausdorff distance is Hk(A,B) = max {hk(A,B), hk(B,A)}. Note
that Hm(A,B) recovers the classic metric Hausdorff distance (and we require k ≤ m). On
the other hand, we can show that H1(A,B) is sufficiently robust to be universal for all
semimetrics — that is, any semimetric can be realized by the distance function H1(A,B):

Lemma 12 If ρ is a semimetric on a point set X of size n, then ρ can be realized as the
H1 distance (induced by l = `2 as above) over subsets of R of size n.

Proof Put D = diam(X) and replace each point xi ∈ X with a set Ai ⊂ R of size n
as follows. For ai,j ∈ Ai, if j ≥ i, then set ai,j = 2D((i + 1)n + j), and otherwise set
ai,j = aj,i + ρ(xi, xj).

Consider any pair xi, xj ∈ X for i < j. Clearly `2(ai,j−aj,i) = `2(ai,j−ai,j−ρ(xi, xj)) =
ρ(xi, xj), so H1(Ai, Aj) is at most this value. On the other hand, for any k, p we can show
that `2(ai,k − aj,p) ≥ D whenever k 6= j or p 6= i): If i ≤ k, we have ai,k = 2D((i+ 1)n+ k),
and otherwise 2D((k + 1)n+ i) ≤ ai,k ≤ 2D((k + 1)n+ i) +D. Similarly, if j ≤ p we have
aj,p = 2D((j + 1)n + p), and otherwise 2D((p + 1)n + j) ≤ aj,p ≤ 2D((p + 1)n + j) + D.
Since by assumption i 6= j, the two terms differ by at least D unless both j = k and i = p.

We bound the density dimension under these three distance functions.

Theorem 13 A set of m d-dimensional vectors has density dimension: O(d) under `2-
squared, O(d/p2) under `p (0 < p < 1), and O(k(d+ logm)) under Hk.

Proof We begin with a standard proof that a set of d-dimension Euclidean vectors has
density dimension O(d). Take any radius 4 ball, and we bound the size of a 2-net of points
within this ball. By the triangle inequality, 1-radius balls centered at the 2-net points do
not intersect, and so the density constant of the space is bounded by the number of 1-radius
balls whose centers can be packed into the 4-radius ball. Since a piece of a 1-radius ball may
escape the 4-radius ball, by the triangle inequality this term is bounded by the number of
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1-radius balls that can be packed into a 5-radius ball. The ratio of the volume of a 5-radius
ball to that of a 1-radius ball is 5d, which bounds the density constant of d-dimensional
Euclidean space.

For `22, we embed this space into `2 by simply retaining the vectors and changing only
the distance function. In other words, we take the square root of all the distances, which
is known as a snowflake operator. To bound the number of 2-net points within a ball of
radius 4 in `22, consider instead a larger 1-net in the 4-radius ball. After the embedding, it
is a 2-radius Euclidean ball containing a 1-net, and so the density constant of `22 is 2O(d) as
well.

For `p (0 < p < 1), let us consider a snowflake of this function, that is `
p/2
p (x, y) =

(
∑d

i=1 |xi − yi|p)1/2. We can show that the vectors under this distance function can be
embedded into O(d/p2)-dimensional Euclidean space with only constant distortion: Con-
sidering each coordinate separately, the distance operator |xi− yi|p/2 on a single coordinate
has the effect of embedding all points on a line into a helix. It is known that this embedding
can be realized in O(1/p2)-dimensional Euclidean space with arbitrarily small distortion (see
Talagrand (1992) for 1

2 < p < 1, and Gottlieb and Krauthgamer (2011); Bartal et al. (2011)
for 0 < p ≤ 1

2). We create such an embedding for each coordinate and then concatenate the
coordinate embeddings into a single vector. This yields an embedding from d-dimensional

`
p/2
p into O(d/p2)-dimensional Euclidean space with arbitrarily small distortion. Then a 1-

net inside a 22/p-radius ball in the original `p-space is a 1-net inside a (2 + ε)-radius ball in
the target Euclidean space (for arbitrarily small ε), and so its density dimension is O(d/p2).

For the k-rank Hausdorff distance, first note that since hk is non-decreasing under
deletions, we have for all vector sets A,B and subsets A′ ⊂ A and B′ ⊂ B that Hk(A

′, B′) ≥
Hk(A,B). Also, we can show there always exist A′, B′ each of size exactly k that satisfy
Hk(A

′, B′) = Hk(A,B): To see this, assume without loss of generality that hk(A,B) ≥
hk(B,A). Let hk(A,B) be determined by a set A1 ⊂ A of size exactly k, along with a set
B1 ⊂ B of size k1 ≤ k, where the points of B1 are the nearest neighbors of A1. Similarly,
let hk(B,A) be determined by set B2 ⊂ B of size exactly k, along with nearest-neighbor
set A2 ⊂ A of size k2 ≤ k. Now add to B′ the k1 vectors of B1, and for each b ∈ B1,
add to A′ a distinct vector a ∈ A1 for which b is its nearest neighbor. Further add to A′

min{k2, k − k1} vectors of A2, and add to B′ min{k2, k − k1} distinct vectors of B2 that
are the nearest neighbors of the relevant vectors in A2. If the resulting sets A′, B′ are of
size k then we are done, and have Hk(A

′, B′) = Hk(A,B). Otherwise, we add to A′ and B′

additional points of A1 and B2, respectively, until both sets are of size k – as A′, B′ already
contain the respective nearest neighbors of B2, A1, the additional points do not affect the
distance.

Now consider a set A of vector sets all within distance 2 of some center set Ac ∈ A and at
mutual inter-set distance at least 1. We will show that |A| = 2O(kd)mk, from which the item
follows. To prove this, take in turn each subset A′c ⊂ Ac of size k (there are

(
m
k

)
< mk such

subsets), and let A′ contain all sets A′i ⊂ Ai of size k for which Hk(A
′
c, A

′
i) = Hk(Ac, Ai).

A′ has radius 2 and inter-set distance at least 1. To complete the proof, we will show that
n = |A′| ≤ 2O(kd), from which it follows that |A| < |A′|mk = 2O(kd)mk:

Since Hk(A
′
c, A

′
i) ≤ 2 for all A′i ∈ A′, we have that hk(A

′
i, A
′
c) ≤ 2, and so every vector

of A′i is within Euclidean distance 2 of one of the k vectors of A′c. Let each vector of A′c
be the center of a 2-radius Euclidean ball. Clearly, the vectors of each A′i fall into at most
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k different Euclidean balls, and so there are at most 2k different sets of k balls (i.e., ball
configurations) into which A′i may fall. Let C ⊂ A′ (p = |C|) include all vertex sets falling
into some specific ball configuration. For each pair of vertex sets in C, there must be a
pair of vectors at distance at least 2 falling into the same 2-radius Euclidean ball. Then
p = 2O(kd) and n ≤ 2kp = 2O(kd).

We leave it as an open problem to improve on the dependence of k in our bound of the
density dimension of the Hausdorff distance.

We conclude this section with an illustration of how the theory developed in this pa-
per explains the success of the greedy net-based compression algorithm, even in the case
of semimetrics. We present results for the Hausdorff semimetric applied to the Covertype
dataset, found in the UCI Machine Learning Repository.2 This dataset contains 7 differ-
ent label types, which we treated as 21 separate binary classification problems; we report
representative results below.

data set original size % compressed down to

Covertype 2 vs. 5 2000 97
Covertype 1 vs. 4 2000 25
Covertype 4 vs. 7 2000 2

Figure 2: Summary of the performance of semimetric sample compression algorithm.
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Appendix A. Inapplicability of metric techniques to semimetrics

Our proof that the density constant controls the size of a net in semimetric spaces (Lemma 1)
is non-constructive, and as a result the construction times for nets in semimetrics are nec-
essarily inferior to those of metric spaces. Likewise, estimating a margin of a point set
is more challenging for semimetrics and requires a more sophisticated approach than for
metric spaces (see Remark 3).

Unlike in metric spaces, where the covering numbers N (·) and the packing numbers
M(·) are related via M(2ε) ≤ N (ε) ≤ M(ε) (see e.g., Alon et al. (1997)), violating the
triangle inequality breaks this connection between covering and packing. Particularly, for
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semimetrics, a doubling constant (while well-defined) does not imply a packing property
such as that of Lemma 1. As a consequence, the bounds in the host of results constituting
the theory of learning in doubling metric spaces are not applicable to semimetrics. This
fact is captured in the following lemma:

Lemma 14 In semimetric spaces, a bound on the doubling constant does not imply a pack-
ing number. In particular, There exist semimetric spaces X of arbitrary cardinality with a
universally bounded doubling constant λ(X ) = O(1), such that X contains a rad(X )-net C
of size Θ(|X |).

Proof Let X be composed of two sets, A and A′. Put A = {a1, . . . , an}, endowed with the
line metric ρ(ai, aj) = |i−j|, so the maximum distance in A is n−1. Note that λ(A) = O(1).
Define A′ to consist of n points, such that

ρ(a′i, aj) = ρ(ai, aj) + φ1{i=j}, (φ > 0 infinitesimal),

while ρ(a′i, a
′
j) = n− 1. This defines a semimetric on X .

Clearly, A′ forms a rad(X )-net of size |X |/2, and yet we can show that λ(X ) = O(1).
Indeed, consider any ball Br(x) in X . Then all points in Br(x) can be covered by the same
λ(A) = O(1) balls of radius r

2 that cover A ∩Br(x). The claim follows.

In fact, a deeper principle underlies the results above: In metric spaces, the doubling and
density constants are almost the same, while in semimetric spaces there may be a large gap
between them. This is captured in the following lemma, which delineates the relationship
between the doubling constant and density constant. (The first half of the lemma is due to
Gottlieb and Krauthgamer (2013).)

Lemma 15 Let X be point set endowed with a metric distance function. Then

(a) λ(X ) ≤ µ(X ),

(b)
√
µ(X ) ≤ λ(X ).

Let Y be a point set endowed with a semimetric distance function. Then

(c) λ(Y) ≤ µ(Y),

(d) µ(Y) may be as large as Θ(|Y|), even when λ(Y) = O(1).

Proof To prove (a) and (c), that λ ≤ µ: Consider any open ball Br(x) ∈ X . Let C be
a maximal collection of points at mutual interpoint distance at least r

2 , and note that by
definition |C| ≤ µ(X ). By the maximality of C, |C| balls of radius r

2 centered at points
of C cover all of Br(x), so λ(X ) ≤ |C| ≤ µ(X ). For (b): again, consider any open ball
Br(x) ∈ X , and let C be a maximal collection of points at mutual interpoint distance at
least r

2 . Now, by definition X may be covered by λ(X ) balls of radius r
2 , and each of these

smaller balls may be covered by λ(X ) balls of radius r
4 , so there exists a set of λ2(X ) balls

of radius r
4 covering all of X, and in particular C. By the triangle inequality, each ball

of radius r
4 can cover at most one point of C, and so |C| ≤ λ2(X ). Finally, (d) follows
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immediately from Lemma 14.

In metric spaces, the following bounds on exact and approximate nearest neighbor search
are well-known.

Lemma 16 Given a point set S equipped with a metric distance function, and a query point
x:

(a) Locating the exact nearest neighbor of x in S requires Θ(|S|) comparisons in the worst
case.

(b) A (1 + ε)-approximate nearest neighbor of x in S can be found in time 2ddim(S) log |S|+
ε−O(ddim(S)).

Proof To prove (a), let S be a set of points obeying the line metric, i.e. the distance
between si, sj ∈ S is |i− j|. Suppose x is at distance n = |S| from si, and at distance n+ 1
from all other points of S. Then si can be any point of S, and cannot be located without
inspecting each point. The claim in (b) is the result of Krauthgamer and Lee (2004).

For semimetric spaces, we demonstrate that the situation is much worse:

Lemma 17 Given a point set S equipped with a semimetric distance function, discovering
an exact or approximate nearest neighbor requires Θ(|S|) comparisons in the worst case.

Proof For the upper bound, trivially O(|S|) time is sufficient to consider every point in S.
For the lower bound, suppose the query point q is at an infinitesimally small distance

from a single point s0 ∈ S, and at distance rad(S) from all other points of S. Then s0
can be any point in S, and cannot be located without inspecting each point: Without the
triangle inequality, the distance between one pair of points has no bearing on any other
distance.
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