
Journal of Machine Learning Research 18 (2017) 1-36 Submitted 4/16; Revised 8/17; Published 12/17

Stabilized Sparse Online Learning for Sparse Data

Yuting Ma YMA@STAT.COLUMBIA.EDU
Department of Statistics
Columbia University
New York, NY, USA

Tian Zheng TZHENG@STAT.COLUMBIA.EDU

Department of Statistics
Columbia University
New York, NY, USA

Editor: Sathiya Keerthi

Abstract

Stochastic gradient descent (SGD) is commonly used for optimization in large-scale machine
learning problems. Langford et al. (2009) introduce a sparse online learning method to induce
sparsity via truncated gradient. With high-dimensional sparse data, however, this method suffers
from slow convergence and high variance due to heterogeneity in feature sparsity. To mitigate
this issue, we introduce a stabilized truncated stochastic gradient descent algorithm. We employ
a soft-thresholding scheme on the weight vector where the imposed shrinkage is adaptive to the
amount of information available in each feature. The variability in the resulted sparse weight
vector is further controlled by stability selection integrated with the informative truncation. To
facilitate better convergence, we adopt an annealing strategy on the truncation rate, which leads
to a balanced trade-off between exploration and exploitation in learning a sparse weight vector.
Numerical experiments show that our algorithm compares favorably with the original truncated
gradient SGD in terms of prediction accuracy, achieving both better sparsity and stability.

Keywords: sparse online learning, sparse features, truncated gradient, stability selection, adaptive
shrinkage

1. Introduction

Modern data sets pose many challenges for existing learning algorithms due to their unprecedented
large scales in both sample sizes and input dimensions. It demands both efficient processing of
massive data and effective extraction of crucial information from an enormous pool of heteroge-
neous features. In response to these challenges, a promising approach is to exploit online learning
methodologies that performs incremental learning over the training samples in a sequential manner.
In an online learning algorithm, one sample instance is processed at a time to obtain a simple update,
and the process is repeated via multiple passes over the entire training set. In comparison with batch
learning algorithms in which all sample points are scrutinized at every single step, online learning
algorithms have been shown to be more efficient and scalable for data of large size that cannot fit
into the limited memory of a single computer. As a result, online learning algorithms have been
widely adopted for solving large-scale machine learning tasks (e.g., Bottou, 1998).
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In this paper, we focus on first-order subgradient-based online learning algorithms, which have
been studied extensively in the literature for dense data.1 Among these algorithms, popular methods
include the Stochastic Gradient Descent (SGD) algorithm in (Zhang, 2004) and (Bottou, 2010), the
mirror descent algorithm introduced by Beck and Teboulle (2003) and the dual averaging algorithm
by Nesterov (2009). Since these methods only require the computation of a (sub)gradient for each
incoming sample, they can be scaled efficiently to high-dimensional inputs by taking advantage of
the finiteness of the training sample. In particular, the stochastic gradient descent algorithm is the
most commonly used algorithm in the literature of subgradient-based online learning. It enjoys
an exceptionally low computational complexity while attaining steady convergence under mild
conditions as discussed in (Bottou, 1998), even for cases where the loss function is not everywhere
differentiable.

Despite of their computational efficiency, online learning algorithms without further constraint
on the parameter space suffers the “curse of dimensionality” to the same extent as their non-online
counterparts. Embedded in a dense high-dimensional parameter space, not only does the resulted
model lack interpretability, its variance is also inflated. As a solution, sparse online learning was
introduced to induce sparsity in the parameter space under the online learning framework (e.g.,
Langford et al., 2009). It aims at learning a linear classifier with a sparse weight vector, which
has been an active topic in this area. For most efforts in the literature, sparsity is introduced by
applying L1 regularization on a loss function, such as in (Shalev-Shwartz and Tewari, 2011), in
the same fashion as in the classific LASSO method by Tibshirani (1996). For example, Duchi and
Singer (2009) extend the framework of Forward-Backward splitting method introduced by Lions
and Mercier (1979) which alternates between an unconstrained truncation step on the sample gradi-
ent and an optimization step on the loss function with a penalty on the distance from the truncated
weight vector.Langford et al. (2009) and Carpenter (2008) both explore the idea of imposing a
soft-threshold on the weight vector w ∈ Rp updated by the stochastic gradient descent algorithm:

wj = sign(wj) max(|wj | − λ, 0), j = 1, . . . , p.

This class of methods is known as the truncated gradient algorithm. For every K standard SGD
updates, the weight vector is shrunk by a fixed amount to induce sparsity. In (Duchi et al., 2010),
the same strategy has also been combined with a variant of the mirror descent algorithm in (Beck
and Teboulle, 2003). Wang et al. (2015) further extends the truncated gradient framework to adjust
for cost-effectiveness. This simple yet efficient method of truncated gradients particularly motivates
the algorithm proposed in this paper. Strategies different from the truncation-based algorithm have
also been proposed. For example, Xiao (2009) proposed the Regularized Dual-Averaging (RDA)
algorithm which builds upon the primal-dual subgradient method by Nesterov (2009). The RDA
algorithm learns a sparse weight vector by solving an optimization problem using the running
average over all preceding gradients, instead of a single gradient at each iteration.

Closely related to sparse online learning is another area of active research, online feature se-
lection. Instead of enforcing just a shrinkage on the weight vectors via L1 regularization, online
feature selection algorithms explicitly invoke feature selection by imposing a hard L0 constraint on
the weight vector, (e.g., Wang et al., 2014; Wu et al., 2014). In other words, online feature selection
algorithms focus on generating a resulted weight vector that has a high sparsity level by directly

1. Dense data is defined as a data set in which the number of nonzero entries in all columns of its design matrix are in
the order of O(n) while the ones of sparse data are in the order of O(log(n)) or less.
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shrinking a large proportion of the weights directly to zero (also referred to as a hard thresholding).
In practice, L0 regularization is computationally expensive to solve due to its non-differentiability.
The set of selected features also suffers from high variability as the decisions of hard-thresholding
are based on single random samples in an online learning setting. Therefore, important features can
be discarded simply owing to random perturbations.

Most recent subgradient-based online learning algorithms do not consider potential structures or
heterogeneity in the input features. As pointed out by Duchi et al. (2011), current methods largely
follow a predetermined procedural scheme that is oblivious to the characteristics of data being used
at each iteration. In large-scale applications, a common and important structure is heterogeneity
in sparsity levels of the input features, i.e., the variability in the number of nonzero entries among
features. For instance, consider the bag-of-word features in text mining applications.2 For a learning
task, the importance of a feature is not necessarily associated with the frequencies of its values.
In genetics, for example in (Morris and Zeggini, 2010), rare variants (≤ 1% in the population)
have been found to be associated with disease risks. Both dense and sparse features may contain
important information for the learning task. However, in the presence of heterogeneity in sparsity
levels, using a simple L1 regularization in an online setting will predispose rare features to be
truncated more than necessary. The resulted sparse weight vectors usually exhibit high variance
in terms of both weight values and the membership in the set of features with nonzero weights.
As a result, the convergence of the standard truncation-based framework may also be hampered by
this high variability. When the amount of information is scarce due to sparsity at each iteration,
the convergence of the weight vector would understandably take a large number of iterations to
approach the optimum. In two recent papers, Oiwa et al. (2011) and Oiwa et al. (2012) tackle
this problem via L1 penalty weighted by the accumulated norm of subgradients for extending
several basic frameworks in sparse online learning. Their results suggest that, by acknowledging
the sparsity structure in the features, both prediction accuracy and sparsity are improved over the
original algorithms while maintaining the same convergence rate. However, their resulted weight
vectors are unstable as the imposed subgradient-based regularization are excessively noisy due to
the randomness of incoming samples in online learning. The membership in the set of selected
features with nonzero weights is also very sensitive to the orderings of the training samples.

In this paper, we propose a stabilized truncated stochastic gradient descent algorithm for high-
dimensional sparse data. The learning framework is motivated by that of the Truncated Gradient
algorithm proposed by Langford et al. (2009). To deal with the aforementioned issues with sparse
online learning methods applied to high-dimensional sparse data, we introduce three innovative
components to reduce variability in the learned weight vector and stabilize the selected features.
First, when applying the soft-thresholding, instead of a uniform truncation on all features, we
perform only informative truncations, based on actual information from individual features during
the preceding computation window of K updates. By doing so, we reduce the heterogeneous
truncation bias associated with feature sparsity. The key idea here is to ensure that each truncation
for each feature is based on sufficient information, and the amount of shrinkage is adjusted for the
information available on each feature. Second, beyond the soft-thresholding corresponding to the
ordinary L1 regularization, the resulted weight vector is stabilized by staged purges of irrelevant
features permanently from the active set of features. Here, irrelevant features are defined as fea-
tures whose weights have been repeatedly truncated. Motivated by stability selection introduced

2. Here, by sparse features, we refer to features for which most samples assume a constant value (e.g., 0) and a few
samples take on other values. Without loss of generality, we assume the majority constant is 0 throughout this paper.
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by Meinshausen and Bühlmann (2010), these permanent purges prevent irrelevant features from
oscillating between the active and non-active set of features, The “purging” process also resembles
hard-thresholding in online feature selection and results in a stabler sparse solution than other sparse
online learning algorithms. Results on the theoretical regret bound (See Section 4) show that this
stabilization step helps improve over the original truncated gradient algorithm, especially when the
target weight vector is notably sparse. To attune the proposed learning algorithm to the sparsity
of the remaining active features, the third component of our algorithm is adjusting the amount of
shrinkage progressively instead of fixing it at a predetermined value across all stages of the learning
process. A novel hyperparameter, rejection rate, is introduced to balance between exploration
of different sparse combinations of features at the beginning and the exploitation of the selected
features to construct accurate estimate at a later stage. Our method gradually anneal the rejection
rate to acquire the necessary amount of shrinkage on the fly for achieving the desired balance.

The rest of paper is organized as follows. Section 2 reviews the Truncated Gradient algorithm
based on Stochastic Gradient Descent (SGD) framework for sparse learning proposed by Langford
et al. (2009). In Section 3, we introduce, in details, the three novel components of our proposed
algorithm. Theoretical analysis of the expected online regret bound is given in Section 4, along
with the computational complexity. Section 5 gives practical remarks for efficient implementation.
In Section 6, we evaluate the performance of the proposed algorithm on several real-world high-
dimensional data sets with varying sparsity levels. We illustrate that the proposed method leads
to improved stability and prediction performance for both sparse and dense data, with the most
improvement observed in data with the highest average sparsity level. Section 7 concludes with
further discussion on the proposed algorithm.

2. Truncated Stochastic Gradient Descent for Sparse Learning

Assume that we have a set of training data D = {zi = (xi, yi), i = 1, . . . , n}, where the feature
vector xi ∈ Rp and the scalar output yi ∈ R. In the following, we use xi to represent the vector of
the ith sample of length p and x·,j for the jth feature vector of all samples of length n. In this paper,
we are interested in the case that both p and n are large and the feature vectors x·,j’s, j = 1, . . . , p,
are sparse. We consider a loss function l(ŷ, y) that measures the cost of predicting ŷ when the truth
is y. The prediction ŷ is given by function fw(x) from a family F parametrized by a weight vector

w. Denote L(w, z)
def
== l(fw(x), y). The learning goal is to obtain an optimal weight vector ŵ that

minimize the loss function
n∑
i=1

L(w, zi) over the training data, with sparsity in the weight vector

induced by a regularization term Ψ(w). We can then formulate the learning task as a regularized
minimization problem:

ŵ = arg min
w∈Rp

n∑
i=1

L(w, zi) + Ψ(w). (1)

The above optimization problem is often solved using some version of gradient descent. When
both p and n are large, the computation becomes very demanding. To address this computational
complexity, the Stochastic Gradient Descent (SGD) algorithm was proposed as a stochastic approx-
imation of the full gradient algorithm. Instead of computing the gradient over the entire training
set as under the batch setting, the stochastic gradient descent algorithm uses approximate gradients
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based on subsets of the training data. This is particularly attractive to large scale problems as it leads
to a substantial reduction in computing complexity and potentially distributed implementation.

For applications with large data sets or streaming data feeds, SGD has also been used as a
subgradient-based online learning method. Cesa-Bianchi et al. (2004) argue that online learning and
stochastic optimization are closely related and interchangeable most of the time. For simplicity, in
the following, we focus our discussion and algorithmic description under the online learning frame-
work with regret bound models. Nonetheless, our results can be readily generalized to stochastic
optimization as well.

In online learning, the algorithm receives a training sample zt = (xt, yt) at a time from a
continuous feed. Without sparsity regularization, at time t, the weight vector is updated in an online
fashion with a single training sample zt ∈ D drawn randomly

wt = wt−1 − ηL′(wt−1, zt), (2)

where η > 0 is the learning rate and L′(wt, zt) ∈ ∂wtL(wt, zt) is a subgradient of the loss function
L(wt, zt) with respect to wt. The set of subgradients of f at the point x is called the subdifferential
of f at x, and is denoted ∂f(x). A function f is called subdifferentiable if it is subdifferentiable
at all x ∈ dom f . When L(w, ·) is differentiable at w, ∂wL(w, ·) = {∇wL(w, ·)}. At the same
time, a sequence of decisions wt is generated at t = 1, 2, . . . , that encounters a loss L(wt, zt)
respectively.

The goal of online learning algorithm with sparsity regularization is to achieve low regret with
respect to a fixed optimal weight vector w∗ ∈ W ⊂ Rp. Here,W is the parameter space for sparse
weights vectors (see Assumption 3 on page 15 for more details.) The regret is defined as:

RT (w∗) ,
T∑
t=1

(L(wt, zt) + Ψ(wt))−
T∑
t=1

(L(w∗, zt) + Ψ(w∗)) . (3)

In this paper, we focus on the L1 regularization where Ψ(w) = g||w||1 and g is the regularizing
parameter. When adopted in an online learning framework, standard SGD algorithm does not work
well in addressing (1) with L1 penalty. Firstly, a simple online update requires the projection of
the weight vector w onto a L1-ball at each step, which is computationally expensive with a large
number of features. Secondly, with noisy approximate subgradient computed using a single sample,
the weights can easily deviate from zero due to the random fluctuations in zt’s. Such a scheme is
therefore inefficient to maintain a sufficiently sparse weight vector.

To address this issue, Langford et al. (2009) induced sparsity in w by subjecting the stochastic
gradient descent algorithm to soft-thresholding. For every K ∈ N+ iterations at step t, each of
which is as defined in (2), the weight vector is shrunk by a soft-threshold operator T with a gravity
parameter g ∈ G ⊂ Rp with gj ≥ 0 for j = 1, . . . , p. For a vector w = [w1, . . . , wp] ∈ Rp,

ŵt = T (wt,g), (4)

where T (w,g) = [T (w1, g1), . . . , T (wp, gp)] with the operator T defined by

T (wj , gj) ,

{
max(wj − gj , 0), if wj > 0;
min(wj + gj , 0), if wj ≤ 0.

(5)
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Algorithm 1 B0(w0, g0): A burst of K updates with truncation using a universal gravity as in
truncated SGD by Langford et al. (2009).

Input: w0 at initialization and the base gravity g0.
Parameters: K, η.
for t = 1 to K do

Draw zt ∈ D uniformly at random.
wt = wt−1 − ηL′ (wt−1, zt), where L′ (wt−1, zt) ∈ ∂wt−1L (wt−1, zt).

end for
ŵ = T (wK , g0K1p).
Return: ŵ.

As one can see, the sequence of K SGD updates can be treated as a unit computational block,
which will be referred to as a burst hereafter. Here the word burst indicates that it is a sequence of
repetitive actions, e.g., the standard SGD updates as defined in (2), without interruption. Each burst
is followed by a soft-thresholding truncation defined in (4), which puts a shrinkage on the learned
weight vector.

A burst can be viewed as a base feature selection realized on a set of random samples with L1

regularization as in the classical LASSO by Tibshirani (1996). Within a burst, let XK be the set of
K random samples on which the weight vector ŵ is stochastically learned. We define the set of
features with nonzero weights in ŵ as its active (feature) set:

Ŝg(ŵ;XK) = {j : |ŵj | > 0}, (6)

with a corresponding gravity g. The steps within a truncated burst are summarized in Algorithm 1.
In the truncated gradient algorithm, the gravity parameter is a constant across all dimensions as

g = g0K1p, where g0 ∈ R ≥ 0 is a base gravity for each update in a burst and 1p , (1, . . . , 1) ∈
Rp. In general, with greater parameter g0 and smaller burst size K, more sparsity is attained. When
g0 = 0, the update in (4) becomes identical to the standard stochastic gradient descent update in (2).
Langford et al. (2009) showed that this updating process can be regarded as an online counterpart
of L1 regularization in the sense that it approximately solves (1) in the limit as K →∞ and η → 0.

3. Stabilized Truncated SGD for Sparse Learning

Truncated SGD works well for dense data. When it comes to high-dimensional sparse inputs,
however, it suffers from a number of issues. Shalev-Shwartz and Tewari (2011) observe that
the truncated gradient algorithm is incapable of maintaining sparsity of the weight vector as it
iterates. Recall that, under the online learning setting, the weight vector w is updated with a noisy
approximation of the true expected gradient using one sample at a time, from a random ordering of
the data. With sparse inputs, it is highly probable that an important feature does not have a nonzero
entry for many consequent samples, and is meaningfully updated for only a few times out of the
K updates in a burst. As a result, it would be truncated after a few iterations and brought back
to nonzero after another few updates. At the same time, sparsity in inputs will also give rise to
sporadic large nonzero updates for irrelevant features, which cannot be fully resolved by the soft-
threshold operator. The derived weight vector w’s are of high variance, inadequate sparsity and poor
generalizability. As an example, the number of nonzero variables in the weight vector during the last
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Figure 1: An example of the truncated SGD algorithm by Langford et al. (2009) and the proposed
stabilized truncated SGD algorithm applied to a high-dimensional sparse data set. Here
we compare the percentage of nonzero variables in the resulted weight vector at each
iteration during the last 1000 iterations of both algorithms. The underlying data set is
the text mining data set, Dexter, with 10, 000 features and 0.48% of sparsity, which is
described in details in Section 6.

1000 stochastic updates from the truncated gradient algorithm implemented on a high-dimensional
sparse data set are shown in Figure 13. It can be seen that the numbers of nonzero features in the
weight vectors learned by the truncated SGD algorithm (K = 5) remain large and highly unstable
throughout these 1000 iterations, oscillating within 10% of the total number of features. As a
comparison, also in Figure 1, we plot the results from our proposed stabilized truncated SGD applied
to the same data. During these last 1000 updates, the proposed algorithm is using a less frequent
truncation schedule due to our annealed reject rate. It attains both high sparsity in the weight vector
and high stability with high-dimensional sparse data.

In this section, we introduce the stabilized truncated Stochastic Gradient Descent (SGD) al-
gorithm. It attains a truly sparse weight vector that is stable and gives generalizable performance.
Our proposed method attunes to the sparsity of each feature and adopts informative truncation. The
algorithm keeps track of whether individual features have had enough information to be confidently
subject to soft-thresholding. Based on the truncation results, we systematically reduce the active
feature set by permanently discarding features that are truncated to zero with high probability via
stability selection. We further improve the efficiency of our algorithm by adapting gravity to the
sparsity of the current active feature set as the algorithm proceeds.

3. The results are based on the Dexter text mining data set. Please see Section 6 for details.
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3.1 Informative Truncation

In the truncated SGD algorithm, Langford et al. (2009) suggest a general guideline for determining
gravity in the batch mode by scaling a base gravity g0 by K, the number of updates, for a single
truncation after a burst. A direct online adaptation of a L1 regularization would shrinks the weight
vector at every iteration. The above batch mode operation is to delay the shrinkage for K iterations
so that the truncation is executed based on information collected from K random samples instead
of from a single instance. This guideline implicitly assumes that the K SGD updates in a burst are
equally informative, which is in general true for dense features. For sparse features, however, under
the online learning setting, not every update is informative about every feature due to the scarcity
of nonzero entries. The original uniform formula, g = Kg01p, for gravity would then create an
undesirable differential treatment for features with different levels of sparsity. With a relatively
small K, it is very likely that a substantial proportion of features would have no non-zero values
on a size-K subsample used in a particular burst. The weights for these features remain unchanged
after K updates. Consequently, the set of sparse features run the risk of being truncated to zero
based on very few informative updates. The truncation decision is therefore mostly determined by
a feature’s sparsity level, rather than its relevance to the class boundary.

To make the learning be informed of the heterogeneity in sparsity level among features, we
introduce the informative truncation step, extended from the idea of base gradient used in Algo-
rithm 1. Instead of applying a universal gravity proportional to K to all features, the amount of
shrinkage is set proportional to the number of times that a feature is actually updated with nonzero
values in the size-K subsample, i.e., the number of informative updates. Specifically, within each
burst, the algorithm keeps a vector of counters, k̃ ∈ Rp, of the numbers of informative updates for
the features x·,j , j = 1, . . . , p. Let g0 ∈ R ≥ 0 be the base gravity parameter that serves as the
unit amount of shrinkage for each informative update on each feature. At the end of each burst, we
shrink feature x·,j by g0k̃j . In other words, here we set g = g0k̃. The computational steps for a
burst with informative truncation in summarized in Algorithm 2.

Algorithm 2 B1(w0, g0): A burst of K updates with informative truncation.
Input: w0 at initialization and the base gravity g0.
Initialization: k̃ = 0p ∈ Rp.
Parameters: K, η.
for t = 1 to K do

Draw zt = (xt, yt) ∈ D uniformly at random.
wt = wt−1 − ηL′ (wt−1, zt), where L′ (wt−1, zt) ∈ ∂wt−1L (wt−1, zt).
k̃← k̃ + I(|xt| > 0).

end for
ŵ = T (wK , g0k̃).
Return: ŵ, k̃.

The proposed informative truncation scheme ensures that the decision of truncation is made
based on sufficient and equivalent amount of evidence for evaluating each feature. A theoretical
justification of how informative truncation helps improving truncation bias can be found in Lemma 3
(Section 4). This feature-specific gravity attunes to the sparsity structure incurred at each burst with-
out ad-hoc adjustment. It also avoids data pre-processing for locating sparse entries, which can be
computationally expensive and compromises the advantage of online computation. In comparison
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to the truncated gradient algorithm that quickly shrinks many features to zero indiscriminately,
informative truncation keeps sparse features until enough evaluation is conducted. In doing so,
sparse yet important features will be retained. The proposed approach also reduce the variability
in the resulted sparse weight vector during the training process. Duchi et al. (2011) use a similar
strategy that allows the learning algorithm to adaptively adjust its learning rates for different features
based on cumulative update history. They use the L2 norm of accumulated gradients to regulate the
learning rate. By adapting the gravity with the counter k̃ within each burst, our proposed strategy
here can be viewed as applying the L0 norm to the accumulated gradients that is refreshed every K
steps.

3.2 Stability Selection

Despite of its scalability, subgradient-based online learning algorithms commonly suffer from in-
stability. It has been shown both theoretically and empirically that stochastic gradient descent
algorithms are sensitive to random perturbations in training data as well as specifications of learning
rate (e.g., Toulis et al., 2015; Hardt et al., 2015). This instability is particularly pronounced in sparse
online learning with sparse data, as discussed in Section 1. Under an online learning setting, using
random ordering of the training sample as inputs, the algorithm would produce distinct weight
vectors and unstable memberships of the final active feature set. Moreover, there has been a lot of
discussion on the link between the instability of an learning algorithm and its deteriorated general-
izability in the literature (e.g., Bousquet and Elisseeff, 2002; Kutin and Niyogi, 2002; Rakhlin et al.,
2005; Shalev-Shwartz et al., 2010).

To tackle this instability issue, in the proposed algorithm, we exploit the method of stability
selection to improve its robustness to random perturbation in the training data. Stability selection by
Meinshausen and Bühlmann (2010) does not launch a new feature selection method. Rather, its aim
is to enhance and improve a sparse learning method via subsampling. The key idea of stability se-
lection is similar to the generic bootstrap. It feeds the base feature selection procedure with multiple
random subsamples to derive an empirical selection probability. Based on aggregated results from
subsamples, a subset of features is selected with low variability across different subsamples. With
proven consistency in variable selection, stability selection helps remove noisy irrelevant features
and thus reduce the variability in learning a sparse weight vector.

Incorporating stability selection into our proposed framework, each truncated burst with gravity
parameter g is treated as an individual sparse learning engine. It takes K random samples and
carries out a feature selection to obtain a sparse weight vector. In the following, we define first the
notion of selection probability for the stability selection step in our proposed algorithm.

Definition 1 (selection probability) LetXK be a random subsample of {1, . . . , n} of sizeK, drawn
without placement. Parametrized by the gravity parameter g, the probability of the feature x·,j being
in the active set of a truncated burst that returns ŵ is

Πg
j = P ∗

(
j ∈ Ŝg(ŵ;XK)

)
= ED [I(|ŵj | > 0)] ,

where the probability P ∗ is with respect to the random subsampling ofXK . Let Πg = [Πg
1 , . . . ,Π

g
p ].

For simplicity, we drop the superscript g of Πg in later discussions. For the rest of the paper,
the selection probability Π always refers to Πg that corresponds to weight vector ŵ with gravity
parameter g.
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Under unknown data distribution, the selection probabilities cannot be computed explicitly.
Instead, they are estimated empirically. Since each truncation burst performs a screening on all
features, the frequency of each feature being selected by a sequence of bursts can be used to derive
an estimator of the selection probability. We denote a sequence of nK > 0 truncated bursts as a
stage. A preliminary empirical estimate of the selection probability is given by

Π̂j =


∑
τ :k̃j,τ>0 I(|ŵj,τ |>0)

nk∑
τ=1

I(k̃j,τ>0)

, for j s.t.
nK∑
τ=1

k̃j,τ > 0;

1, otherwise,

(7)

where k̃τ are the counters of informative updates for burst τ , τ = 1, . . . , nK .
Different from the conventional stability selection setting, ŵτ ’s are obtained sequentially and

thus are dependent with each other. When nK is small, different subsamples produce selection
probability estimates using (7) exhibit high variability, even when initialized with the same weight
vector at τ = 1. On the other hand, a large value of nK requires a prohibitively large number of
iterations for convergence. To resolve the issues of estimating selection probability using a single
sequence of SGD updates, we introduce a multi-thread framework of updating paths. Multiple
threads of sequential SGD updates are executed in a distributed fashion, which readily utilizes
modern multi-core computer architecture. With M processors, we initialize the algorithm on each
path of SGD updates with a random permutation of the training data,D, denoted asD(1), . . . ,D(m).
Then independently, M stages of bursts run in parallel along M paths, which return with ŵ

(m)
τ ,

τ = 1, . . . , nK , m = 1, . . . ,M . The joint estimate of selection probability with gravity g is
obtained as

Π̂j =


M∑
m=1

∑
τ :k̃

(m)
j,τ

>0
I(|ŵ(m)

j,τ |>0)

M∑
m=1

nk∑
τ=1

I(k̃
(m)
j,τ >0)

, for j s.t.
M∑
m=1

nK∑
τ=1

k̃
(m)
j,τ > 0;

1, otherwise.

(8)

When more processors are available, a smaller nK is required for the algorithm to obtain a stable
estimate of selection probability. The dependence among ŵτ ’s is also attenuated when M random
subsets of samples are used for the estimation. This strategy falls under parallelized stochastic
gradient descent methods, which is discussed in detail by Zinkevich et al. (2010).

Under the framework of stability selection, each stage on every path uses a random subsample.
The estimated selection probability quantifies the chance that a feature is found to have high rele-
vance to class differences given a random subsample. At the end of each stage, stable features are
identified as those that belong to a large fraction of active sets incurred during this stage of bursts.

Definition 2 (Stable Features) For a purging threshold π0 ∈ [0, 1], the set of stable features with
gravity parameter g is defined as

Ω̂g = {j : Πg
j ≥ π0}. (9)

For simplicity, we write the stable set Ω̂g as Ω̂ when there is no ambiguity.
Stability selection retains features that have high selection probabilities and discard those with

low selection probabilities. At the end of a stage of M paths, we purge the features that are not in

10
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Algorithm 3 B2(w0, g0, Ω̂,D(m)): Informative truncated burst with stability selection in thread m.

Input: w0, g0, the input data D(m) and the current set of stable features Ω̂, which is the output
of equation (9) using (8) with predetermined threshold π0.
Parameters: K, η.
Initialize v0 = (w0,j)j∈Ω̂ , k̃ = 0|Ω̂|.
for t = 1 to K do

Draw zt = (xt, yt) sequentially from D(m).
z̃t = (zt,j)j∈Ω̂.
vt = vt−1 − ηL′ (vt−1, z̃t), , where L′ (vt−1, zt) ∈ ∂vt−1L (vt−1, zt).
k̃← k̃ + I(|xt| > 0).

end for
û = T (vK , g0k̃).

ŵj =

{
ûj′ , if j ∈ Ω̂ and Ω̂j′ = j;

0, if j /∈ Ω̂.

Return: ŵ, k̃.

the set of stable features by permanently setting their corresponding weights to zero, and remove
them from subsequent updates. We define the stabilized weight vector as

w̃ = ŵ · IΩ̂. (10)

As discussed above, due to the nature of online learning with sparse data, there are two unde-
sirable learning setbacks in a single truncated burst. The first occurs when an important feature has
its weight stuck at zero due to inadequate information in the subsample used, while the second case
is when a noise feature’s weight gets sporadic large updates by chance. Using informative bursts,
we can avert the first type of setbacks and using selection probability based on multiple bursts, we
can spot noisy features more easily. In the presence of a large number of noisy features, the learned
weights for important features suffer from high variance. Via stability selection, we systematically
remove noisy features permanently from the feature pool. Furthermore, the choice of a proper
regularization parameter is crucial yet known to be difficult for sparse learning, especially due to
the unknown noise level. Applying stability selection renders the algorithm less sensitive to choice
of the base gravity parameter g0 in learning a sparse weight vector via truncated gradient. As we
will show using results from our numerical experiments, this purging by stability selection leads to
a notable reduction in the estimation variance of the weight vector. Here, π0 is a tuning parameter
in practice. We have found that the learning results in the numerical experiments are not sensitive to
different values of π0 within a reasonable range. Under mild assumptions discussed in Section 4, we
derive a lower bound of the expected improvement in convergence by employing stability selection
in the learning process in Lemma 2.

3.3 Adaptive Gravity with Annealed Rejection Rate

The truncated SGD algorithm adopts a universal and fixed base gravity parameter at all truncations.
As pointed out by Langford et al. (2009) , a large value of the base gravity g0 achieves more
sparsity but the accuracy is compromised, while a small value of g0 leads to less sparse weight
vector yet attaining better performance. In other words, different extents of shrinkage serve different

11
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purposes of a learning algorithm. The needs for shrinkage also changes as the weight vector and the
stable set evolves. Intuitively, the truncation is expected to be greedy at the beginning so that the
number of nonzero feature can be quickly reduced for better computational efficiency and learning
performance. As the algorithm proceeds, fewer features remain in the stable set. We should then be
careful not to shrink important features with a truncation that is too harsh.

A large base gravity g0 is effective in inducing sparsity at the beginning of the algorithm when
the weight vector ŵ is dense. As the algorithm proceeds, the same value of gravity is likely to
impose too much shrinkage when the learned weight vector ŵ becomes very sparse, exposing some
truly important features at the risk of being purged. On the other hand, a small fixed gravity is over-
conservative so that the algorithm will not shrink irrelevant features effectively, leading to slow
convergence and a dense weight vector overridden by noise. Tuning a reasonable fixed base gravity
parameter for a particular data set does not only creates additional computational burden, but also
inadequate in addressing different learning needs during different stages of the algorithm.

As the role of gravity in a learning algorithm is to induce sparse estimates, in this paper, we
propose an adaptive gravity scheme that delivers the right amount of shrinkage at each stage of
the algorithm towards a desirable level of sparsity for the learned weight vector. We propose to
control sparsity by a target rejection rate β, that is, the proportion of updates that are expected to
be truncated. Guided by this target rejection rate, we derive the necessary shrinkage amount and
the corresponding gravity. As we discussed in Section 3.1, a base gravity g0 is used in our learning
algorithms to create gravity values for individual features that are attuned to their data sparsity
levels. Therefore our adaptive gravity scheme is carried out by adjusting g0. At the beginning of a
particular stage, we examine the truncations carried out during the previous stage. The base gravity
g0 is then adjusted to project the target rejection rate during the current stage. Specifically, at stage
s, we look at the pooled set of non-truncated weight vectors and informative truncation counters{
w

(m)
τ , k̃

(m)
τ , τ = 1, . . . , nK ,m = 1, . . . ,M

}
from all the bursts conducted in the previous stages

on multiple threads. The adaptive base gravity g0 for a target rejection rate βs ∈ [0, 1] is then
obtained as

g0,s(βs) , sup{g0 ≥ 0 : p̂s(g0) ≤ βs}. (11)

Here p̂s(g0) is the empirical probability, i.e.,

p̂s(g0) ,

M∑
m=1

nk∑
τ=1

∑
{j:j∈Ω̂s,k̃

(m)
j,τ >0} I

(∣∣∣∣∆w(m)
j,τ

k̃
(m)
j,τ

∣∣∣∣ > g0

)
M∑
m=1

nk∑
τ=1

∑
j∈Ω̂s

I
(
k̃

(m)
j,τ > 0

) ,

where ∆w
(m)
j,τ , w

(m)
j,τ − w

(m)
j,τ−1 is the amount of updates on feature x·,j during the τ th burst.

We initialize the algorithm with a high rejection rate so that a large proportion of the weight
vector can be reduced to zero at the end of each burst during the early stage of the algorithm. It
allows the algorithm to explore as many sparse combination of features as possible at the early stage
of the learning process. Along with the stability selection, the set of stable features can be quickly
reduced to a manageable size by removing the majority of noises. When the weight vector becomes
sparse, we decrease the rejection rate proportionally. With a lower rejection rate, and consequently
a lower gravity, the algorithm can better exploit the subsequent standard SGD updates for a more
accurate estimate of the true weight vector. As the rejection rate decreases to 0, the algorithm
converges to the standard stochastic gradient descent algorithm on a small subset of stable features.
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Figure 2: Examples of the rejection rate annealing function with different values of γ as defined
in (12). Here γ = −5, 0, and 5 respectively. A positive annealing rate would reduce
the rejection rate quickly as the proportion of non-zeros weight values, ds, decreases,
whereas a negative annealing rate would maintain it at a relatively high level.

To achieve the balance between exploration and exploitation, we construct an annealing function
for the rejection rate that decreases monotonically as the level of sparsity decreases. Let β0 ∈ [0, 1]
be the maximum rejection rate at initialization and let γ be the annealing rate. The annealing
function φ for the rejection rate at stage s+ 1 is given by

βs+1 = φ(ds;β0, γ)

=

{
β0 [exp (−γds)− dse−γ ] γ ≥ 0;

β0
log(1−γ(1−ds))

log(1−γ) , γ < 0,
(12)

where ds = |Ω̂s|
p is the level of weight vector sparsity at the end of stage s. The greater the value γ

is, the faster the rejection rate is annealed to zero as the number of stable features decreases.
A positive, zero and negative value of γ corresponds to exponential decay, linear decay and

logarithmic decay of the rejection rate, respectively. Figure 2 presents examples of the rejection rate
anneal function with γ = −5, 0, and 5 respectively.

By using adaptive gravity (11) with annealed rejection rate (12), the amount of shrinkage is
adjusted to the current level of sparsity of the weight vector quantified by the size of the stable set
|Ω̂s| or the L0 norm of the purged w̃. Instead of tuning a fixed gravity parameter as in (Langford
et al., 2009), for our proposed algorithm, we tune the annealing rate γ and the maximum rejection
rate β0. Here γ balances the trade-off between exploration and exploitation and β0 determines the
initial intensity of truncation. It enables the tuning process to be tailored to the data at hand as well
as being comparable across different data sets. In Section 6, the tuning results instantiate that a
negative annealing rate is preferred for highly sparse data, such as the RCV1 data set, since the a
high rejection rate needs to be maintained longer allowing sufficient information of sparse features
to be evaluated by the learning process. On the other hand, a positive annealing rate is chosen
for relatively dense data, such as the Arcene data set, where the high frequency of nonzero values
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Algorithm 4 Ψ(D): Stabilized truncated stochastic gradient descent for sparse learning.
Input: the training data D.
Parameters: β0, γ, π0, K, nK , M , η.
Initialization: For each m ∈ {1, . . . ,M}, initialize w̃

(m)
0 = 0p, k̃ = 0p and D(m) is a random

permutation of D; Ω̂0 = {1, . . . , p}.
For s = 1, 2, . . . ,
Set ŵ(m)

0 = w̃
(m)
s−1

repeat
Obtain g0,s(βs) as in (11).
for all m ∈ {1, . . . ,M} parallel do

for τ = 1 to nK do
ŵ

(m)
τ = B2

(
ŵ

(m)
τ−1, g0,s(βs), Ω̂s−1,D(m)

)
.

end for
end for
Compute Π̂s as in (8) and update the set of stable features Ω̂s =

{
j : Π̂s,j ≥ π0

}
.

w̃
(m)
s = ŵ

(m)
nK IΩ̂s

, m = 1, . . . ,M .

βs+1 = φ(ds;β0, γ) where ds = |Ω̂s|
p .

Aggregation: w = 1
M

M∑
m=1

w̃
(m)
s .

until w converges.
Return: w.

permit fast reduction of the active set. The complete algorithm of the stabilized truncated stochastic
gradient descent algorithm is summarized in Algorithm 4. .

4. Properties of the Stabilized Truncated Stochastic Gradient Descent Algorithm

The learning goal of sparse online learning is to achieve a low regret as defined in (3). In this
section, we analyze the online regret bound of the proposed stabilized truncated SGD algorithm in
Algorithm 4 with convex loss. For simplicity, the effect of adaptive gravity with annealed rejection
rate is not considered here. To achieve viable result, we make the following assumptions.

Assumption 1 The absolute values of the weight vector w are bounded above, that is, |wj | ≤ C
for some C ∈ [0,∞), j = 1, . . . , p.

Assumption 2 The loss function L(w, z) is convex in w, and there exist non-negative constants A
and B such that, for all w ∈ Rp and z ∈ Rp+1, ||∇wL(w, z)||2 ≤ AL(w, z) +B.

For linear prediction problems, the class of loss function that satisfies Assumption 2 includes
common loss functions used in machine learning problems, such as the L2 loss, the hinge loss and
the logistic loss, with the condition that supx ||x|| ≤ Cx for some constant Cx > 0.

Assumption 3 Assume that the setW for identifying w∗ has the following properties:

14
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1. W is the parameter space for weight vectors w that is subject to a sparsity constraint

||w||0 = d∗.

For the optimal weight vector w∗, we denote Ω∗ = {j : |w∗j | > 0} and d∗ = |Ω∗|. We
further assume that d∗ is sufficiently small and the gravity parameter g associated with w∗

is reasonably large so that, for τ = 1, 2, . . . , the average number of active selected features
from each truncated bursts, qg, given a gravity g, is greater than or equal to d∗.

2. Assume features x1, . . . ,xp has various sparsity distribution that Pr(|xi,j | > 0) = λj , where
λj ∈ [0, 1], for i = 1, . . . , n, and w∗j = 0 if λj = 0, for j = 1, . . . , p.

Assumption 3 posits that w’s parameter space of interest is substantially sparse, which is the
main focus of sparse learning and of this paper. The theoretical analysis in the following concerns
for an fixed optimal weight vector w∗, if exists, under such a constraint. Nevertheless, this condition
does not confine the applicable scenarios of the proposed method to a fixed subclass of problems.
It suggests a balance between the model sparsity and the value of the gravity parameter that is
implicitly embedded within the parameter tuning process.

Assumption 4 Let Ω = {1, . . . , p} and N = Ω \ Ω∗. Let Ω̂G =
⋃

g∈G Ω̂g∈G . Assume that the
classifier fw is not worse than random guessing. That is,

E(|Ω∗
⋂

Ω̂G |)
E(|N

⋂
Ω̂G |)

≥ |Ω
∗|
|N |

.

Lemma 1 (Error Control in Stability Selection (Meinshausen and Bühlmann, 2010)) Let V be
the set of falsely selected variables. Given that the distribution of

{
I
(
j ∈ Ŝg(ŵ;XK

)
, j ∈ 1, . . . , p

}
is exchangeable for all g ∈ G and if Assumption 4 holds, the expected cardinality of |V | is then
bounded for π0 ∈

(
1
2 , 1
)

by

E(|V |) ≤ 1

2π0 − 1

(qg)2

p
. (13)

Lemma 2 Assume all assumptions above holds. Let ŵ be a non-stabilized dense weight vector,
i.e., an output weight vector from Algorithm 3. Let w̃ be the stabilized weight vector derived
from ŵ, which is purged by the stability selection (10) with a set of stable features Ω̂. Let qg

be the average number of nonzero entries in ŵ’s of the previous truncated bursts, i.e.,the number of
selected features from nk truncated bursts, with gravity g. Then, there exists an ε ∈

(
0, π0C(p−|Ω̂|)

|Ω̂|

)
with Ŝε = {j : E(|ŵj |) > ε} such that the bound on the expected difference between the distance
from the non-stabilized weight vector to w∗ and the distance from the stabilized weight vector to
w∗ is given by

E
(
||ŵ −w∗||2 − ||w̃ −w∗||2

)
≥ ε2(|Ŝε| − |Ω̂|) + 2π0C

2

[(
1− qg

2π0p− p

)
qg − d∗

]
. (14)

When the purging threshold is sufficiently high such that π0 ∈
(

1
2 + (qg)2

2p(qg−d∗) , 1
)

,

E
(
||ŵ −w∗||2 − ||w̃ −w∗||2

)
≥ 0.

15



MA AND ZHENG

Proof : See Appendix A.

Lemma 2 quantifies the gain of using stabilization when w∗ is highly sparse, where stability
selection efficiently shrinks high variable estimates to zero. When the purging threshold π0 is
sufficiently high such that π0 ∈

(
1
2 + (qg)2

2p(qg−d∗) , 1
)

, the lower bound achieved by (14) is guaranteed
to be positive. Furthermore, this result also indicates that the expected difference between distances
from the non-stabilized and stabilized weight vector to the sparse w∗ depends on the differences
between the sizes of the temporary nonzero set of features before purging, |Ŝε|, and the size of the
stable features after purging. In expectation, the stabilized weight vector is closer to the target
sparse weight vector as the operation of purging efficiently reduces the size of stable features.
This suggests a much faster convergence with stabilization. Lemma 2 also provides an insight
on the benefit from using adaptive gravity with annealed rejection rate. At the beginning of the
algorithm, the gap between the size of |Ŝε| and the size of the set of stable features ˆ|Ω| is large
when aiming for extensive exploration of different sparse combination of features. Hence, the
improvement brought by stabilization is more substantial during the early state of learning period.
As the algorithm proceeds and the set of stable features becomes smaller and stabler, it dwindles
the leeway that allows the aforementioned two sets to be different. Consequently, the proposed
algorithm is gradually tuned toward the standard stochastic gradient descent algorithm to facilitate
better convergence at the later period of the learning process.

Lemma 3 Let w0 be the weight vector at initialization. After the first burst, let w̄1 be the truncated
weight vector using universal gravity g0K as in Algorithm 1 and let ŵ1 be the truncated weight
vector with informative truncation as in Algorithm 2. Then, under Assumption 3,

E
(
||w̄1 −w∗||2 − ||ŵ1 −w∗||2

)
≥ 2g0

K∑
t=1

‖ζtw∗‖1 ≥ 0, (15)

where ζt,j = I(|xt,j | = 0) for j = 1, . . . , p and ζt = (ζt,1, . . . , ζt,p)
T .

Proof : See Appendix B.

In Lemma 3, we compare the distances towards w∗ from 1) the weight vector with uniform
gravity and 2) the weight vector with informative truncation that depends on the number of zero
entries occurred in a burst. Such a gap suggests the effectiveness of informative truncation on
sparse data in which feature sparsity is highly heterogeneous. In the scenarios where very few
nonzero entries appear in a burst, the informative truncation imposes gravity that is proportional
to the information presented in a burst. It is a fairer treatment than uniform truncation and leads
to a large improvement in expectation. When features are all considerably dense in a burst, the
informative truncation is equivalent to the uniform truncation.

In short, Lemma 2 demonstrates the improvement in expected squared error due to stabilization
on the weight vector. Lemma 3, on the other hand, quantifies the improvements in reduce truncation
bias when implementing informative truncation on sparse features with heterogeneous sparsity
levels.

Given Lemma 2 and Lemma 3, we have the expected regret bound of the proposed Algorithm 4
in Theorem 1.
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Theorem 1 Assume all assumptions above holds. Consider the updating rules for the weight vector
in Algorithm 3. On an arbitrary path, with w0 = 0 and η > 0, let {wt}

T
t=1 be the resulted weight

vector and
{
g
t

}T
t=1

be the gravity values applied to the weight vectors generated by Algorithm 4,

along with the base gravity parameters
{
g

0,t

}T
t=1

. Set the purging threshold π0 to be sufficiently

large such that π0 ∈
(

1
2 + (qg)2

2p(qg−d∗) , 1
)

. There exists a sequence of εt ∈
(

0, π0C(p−|Ω̂t|)
|Ω̂t|

)
at each

stability selection with the set of stable features Ω̂t such that the expectation of the regret defined in
(3) is bounded above by

E

(
T∑
t=1

[
L(wt, zt) +Kg

t
||wt||1

]
−

T∑
t=1

[
L(w∗, zt) +Kg

t
||w∗||1

])

≤ ηA

2− ηA

(
E

[
T∑
t=1

L(w∗, zt) +Kg
0,t

(||w∗||1 − ||wt||1)

])
+

1

2− ηA

(
ηTB +

1

η
||w∗||2

)

− 1

2η − η2A

T∑
t=1

ε2
t I

(
t

KnK
∈ Z

)
(|Ŝεt,t| − |Ω̂t|), (16)

where Ŝε,t = {j : E(|ŵt,j |) > εt} and ŵt is the weight vector at time t before stabilization.

Proof : See Appendix C.

In the result of Theorem 1, the first two parts of the right-hand-side of the expected regret bound
(16) is similar to the bound obtained in (Langford et al., 2009). It implies the trade-off between
attained sparsity in the resulted weight vector and the regret performance. When the applied gravity
is small under the joint effect of the base gravity g0 and the size of each burst K, the sparsity is
less but the expected regret bound is lower. On the other hand, when the applied gravity is large,
the resulted weight vector is more sparse but at the risk of higher regret. Based on Lemma 2,
the proposed algorithm is guaranteed to achieve lower regret bound in expectation when the target
sparse weight vector is highly sparse. As quantified in the third term of the right-hand-side of (16),
the improvement comes from the reduction of the active set at each purging. By its virtue, noisy
features are removed from the set of stable features and thus are absent in later SGD updates and
truncations.

Theorem 1 is stated with a constant learning rate η. It is possible to obtain a lower regret bound
in expectation with adaptive learning rate ηt decaying with t, such as ηt = 1√

t
, which is commonly

used in the literature of online learning and stochastic optimization. However, the discussion of
using an varying learning rate is not a main focus of this paper and adds extra complexity of
the analysis. Without knowing T in advance, this may lead to a no-regret bound as suggested in
(Langford et al., 2009). Instead, in Corollary 1, we show that the convergence rate of the proposed
algorithm is O(

√
T ) with η = 1√

T
.
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Corollary 1 Assume that all conditions of Theorem 1 are satisfied. Let the learning rate η be 1√
T

.
The upper bound of the expected regret is

E

(
T∑
t=1

[
L(wt, zt) + g

t
||wt||1

]
−

T∑
t=1

[
L(w∗, zt) + g

t
||w∗||1

])
≤ O(

√
T ),

where g
t

= Kg
0,t

.

Proof By plugging in η = 1√
T

to the result from Theorem 1, we get

E

(
T∑
t=1

[
L(wt, zt) + g

t
||wt||1

]
−

T∑
t=1

[
L(w∗, zt) + g

t
||w∗||1

])

≤ A

2
√
T −A

(
E

[
T∑
t=1

L(w∗, zt) + g
t
(||w∗||1 − ||wt||1

])

+
T

2
√
T −A

(
ηTB +

1

η
||w∗||2

)
− T

2
√
T −A

T∑
t=1

ε2
t I(

t

KnK
∈ Z)(|Ŝε,t| − |Ω̂t|).

The result is then straightforward.

Assume that the input features have d nonzero entries on average. With linear prediction
model fw(x) = wTx, the computational complexity at each iteration is O(d). Leveraging the
sparse structure, the informative truncation only requires an additional O(Kd) space for recording
the counters. The purging process of stability selection consumes O(δ), δ = KnKMd, space
for storing the generated intermediate weight vectors and O(δ log(δ)) computational complexity.
Both storage and computational cost decrease when the set of stable features diminishes as the
algorithm proceeds. Since the parameters K, nK , and M is normally set to be small values, the
complexity mostly depends on O(d log(d)). In summary, the proposed algorithm scales with the
number of nonzero entries instead of the total dimensions, making it appealing to high-dimensional
applications.

5. Practical Remarks

When implementing Algorithm 4 in practice, the performance can be further improved in terms
of both accuracy and computational efficiency by employing a couple of practical techniques. It
includes applying informative purging and attenuating the truncation frequency to achieve more
accurate sparse learning and steadier convergence.

The first improvement can be implemented by better addressing the issue of scarcity of incoming
samples. For computing selection probabilities, instead of using only information from the current
stage, we can inherit information from previous stages for features that are too scarce to accumulate
enough updates during one stage. Specifically, we introduce an accumulated counter κs at stage s
as the total number of times that a feature is updated within a burst during this stage:

κj,s =

M∑
m=1

nK∑
τ=1

k̃
(m)
j,τ , j = 1, . . . , p,
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which is essentially the denominator of the selection probability in (8). Similarly, we define an
accumulated truncation indicator bs at stage s as the total number of times that a feature is truncated
to zero given valid update(s):

bj,s =
M∑
m=1

∑
τ :k̃

(m)
j,τ >0

I(|ŵ(m)
j,τ | > 0), j = 1, . . . , p.

A feature is then evaluated in the stability selection only if there are enough updates from the
present stage and from any unused information carried over from previous stages. Given a threshold
δK ≥ 0, let κ̃j,s , κ̃j,s−1I(κ̃j,s−1 < δK) + κj,s and b̃j,s , b̃j,s−1I(κ̃j,s−1 < δK) + bj,s. The
selection probability is modified as

Π̂j,s =

{
b̃j,s
κ̃s
, for j s.t.κ̃s > δK ;

1, otherwise,
for j = 1, . . . , p. (17)

This strategy extends the key idea in Section 3.1 that, with sparse data, each decision need to be
based on sufficient evidence. Using the “carried-over” information allows the algorithm to utilize
information available in a sequence of SGD updates while attuned to the needs of features with
different levels of sparsity. In practice, this modification facilitates faster convergence especially for
ultra-sparse data.

The second practical strategy is that the size of each burst, K, can be adaptively adjusted in a
similar fashion as the rejection rate β in (12). At the end of each stage, the burst size Ks is updated
as

Ks =
⌈
K0 log

(
1

αds−1

)⌉
,

where K0 > 0 is the initial burst size and, as in (12), ds = |Ω̂s|
p . The tuning parameter α > 0

adjusts the annealing rate of the truncation frequency. Although the result in Theorem 1 is based on
a fixed K, it can be easily shown that the same upper bound can also be attained with an increasing
Ks. By increasing K in the later stage of the algorithm, when the majority of irrelevant features
have been removed from the stable set, the chance of erroneous truncation is reduced. Such scheme
further steers the algorithm from the mode of exploring potential sparse combination of features
in the early stage toward the fine tuning of the weight vector by exploiting information from more
samples in a sequence. It also facilitates faster convergence as the size of the stable set approaches
to a sufficiently small number, as the algorithm converges to the standard stochastic gradient descent
approximately.

6. Results

In this section, we present experimental results evaluating the performance of the proposed sta-
bilized truncated SGD algorithm in high-dimensional classification problems with sparsity reg-
ularization. In this paper, we focus on linear prediction model for binary classification where
fw(x) = wTx and ŷ = sign(fw(x)) with the observed class label y ∈ {−1, 1}. We consider two
commonly used convex loss functions in machine learning tasks that both satisfy Assumption 1:

• Hinge loss: l(f, y) = max(1− fy, 0);
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• Logistic loss: l(f, y) = log (1 + exp(−fy)).

Using five data sets from different domains, the performance of our algorithm and other algo-
rithms for comparison are evaluated on classification performance and feature selection stability and
sparsity. We first define measure of feature stability in Section 6.1.

6.1 Feature Selection Stability

The goal of sparse learning is to select a subset of truly informative features with stabilized estima-
tion variance as well as increased classification accuracy and model interpretability. Subgradient-
based online learning methods depend heavily by the random ordering of samples on which they
are fed to the algorithm. Such dependence leads to much deteriorated performance when it comes
to high-dimensional sparse inputs. For a particular feature, the positions of its nonzero occurrences
in a random ordering of samples greatly affect its learning outcome, in terms of learnt weight and
membership in the set of selected features. Therefore, in addition to attaining a low generalization
error, a desirable sparse online learning method should also produce an informative feature subset
that is stable and robust to random permutations of input data. To evaluate feature selection stability
of subgradient-based sparse learning methods, we define in the following a numerical measure of
similarity between selected feature subsets resulted from different random permutations of data.
Given an output weight vector w from a subgradient-based algorithm with input data D, similarly
as in (6), we denote the selected feature subset as

S(w;D) = {j : |wj | > 0,w = Ψ(D}.

Given two random permutations of the training data D, D(1) and D(2), the similarity between
the two sets of selected feature subsets S1 = S(w1;D(1)) and S2 = S(w2;D(2)) is measured by
the Cohen’s kappa coefficient introduced by Cohen (1960),

κ(S1,S2) =
qo − qe
1− qe

,

where qo is the relative observed agreement between S1 and S2:

qo =
p11 + p22

p
,

and qe is the hypothetical probability of change agreement: S1 and S2

qe =
(p11 + p12)(p11 + p21)

p2
+

(p12 + p22)(p21 + p22)

p2
,

with p11 = |S1 ∩ S2|, p12 = |S1 ∩ SC2 |, p21 = |SC1 ∩ S2|, p22 = |SC1 ∩ SC2 |, and p = p11 + p12 +
p21 + p22 is the size of variable pool.

Note that κ(S1,S2) ∈ [−1, 1], where κ(S1,S2) = 1 if S1 and S2 completely overlap with each
other and κ(S1,S2) = −1 when S1 and S2 are in complete disagreement with S1 ∩ S2 = ∅ and
SC1 ∩ SC2 = ∅.

Based on Cohen’s kappa coefficient, we define the measure of feature selection stability of
S(w; ·) returned by a procedure Ψ using randomly ordered data D(1) and D(2) as

s(Ψ) = ED(1),D(2)

[
κ(S(w1;D(1)),S(w2;D(2))

]
,
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which is motivated by (Sun et al., 2013).
In practice, we use the empirical average ŝ(Ψ) over B random permutations of the training data

to measure the stability of the a subgradient-based online learning algorithm Ψ(·):

ŝ(Ψ) =
1

B(B − 1)

D∑
i=1

∑
j 6=i

[
κ(Swi;D(i)),S(wj ;D(j))

]
. (18)

6.2 Experiment Setup

We evaluate the performance of our algorithm on several real-world classification data sets with
up to 100, 000 features. These data sets have different levels of sparsity with various sample sizes.
The information of experiment data sets are summarized in Table 1. The first four data sets were
constructed for NIPS 2003 Feature Selection Challenge4 (see Guyon et al., 2004, for details), which
were preprocessed with added “probes” as random features distributed similarly to the real features.
Thus, a good performance does not only lie in low generalization error rates, but also in sparse
weight vectors that identify the truly important features. Reuters CV1 (RCV1) is a popular text
classification data set with a bag-of-words representation. We use the binary version from the
LIBSVM data set collection5 introduced by Cai and He (2012). We create the training and validation
set using a 70-30 random splits. All datasets are normalized such that each feature has variance 1.

Data Set Domain Dimensions
Data Density

(Sparsity)
Training

Size
Validation

Size
RCV1 Text Mining 47,236 0.16% 14,169 6,073
Dexter Text Mining 20,000 0.48% 300 300

Dorothea Drug Discovery 100,000 0.91% 800 350
Gisette Digits Recognition 5,000 13.00% 6,000 1,000
Arcene Mass-Spectrometry 10,000 50.00% 100 100

Table 1: Datasets used in the numerical experiments. Sparsity is defined as the average feature
sparsity levels, which is the column-wise average percentage of nonzero entries, in the
training data.

We compare the proposed algorithm with the standard stochastic gradient descent algorithm in
(Bottou, 1998) and another three other sparsity-inducing stochastic methods, including the truncated
gradient algorithm in (Langford et al., 2009), the Regularized Dual Averaging (RDA) algorithm in
(Xiao, 2009), and the forward backward splitting (FOBOS) algorithm in (Duchi and Singer, 2009).
The RDA algorithm updates the weight vector at each step based on a running average ḡt of all
subgradients {gτ = L′ (wτ , zτ ) ∈ ∂wτL (wτ , zτ ) , τ = 1, . . . , t} in previous iterations as

ḡt =
t− 1

t
gt−1 +

1

t
gt.

4. The data source can be found on https://archive.ics.uci.edu/ml/index.html.
5. The data source can be found on https://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/
datasets/.
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Given the average subgradient , the next weight vector is computed by solving the minimization
problem

wt+1 = arg min
w

{
1

t

t∑
τ

〈L′(wt, zt),w〉+ Ψ(w) +
βt
t
h(w)

}
, (19)

where Ψ(w) is the regularizer, h(w) is an auxiliary strongly convex function, and {βt}t≥1 is a
nonnegative and nondecreasing input sequence, which determines the convergence properties of the
algorithm.

In the context of L1 regularization, the RDA algorithm is derived by setting Ψ(w) = λ||w||1,
βt = γ

√
t, and replacing h(w) with a parametrized version:

hρ =
1

2
||w||22 + ρ||w||1,

where ρ ≥ 0 is a sparsity-enhancing parameter. Hence, the minimization problem in (19) has a
explicit solution as, for j = 1, . . . , p,

w
(j)
t+1 =

{
0, if |ḡ(j)

t | ≤ λRDA
t ;

−
√
t
γ

(
ḡ

(j)
t − λRDA

t sgn(ḡ
(j)
t )
)
, otherwise,

which is equivalent to
wt+1 = T (ḡt, λ

RDA
t ),

where λRDA
t = λ+ γρ/

√
t.

The FOBOS algorithm alternates between two phases. On each iteration, it first perform an
unconstrained gradient descent step as in the standard SGD algorithm, whose output is denoted
as wt+ 1

2
. Then it cast and solve an instantaneous optimization problems that trades off between

minimization of a regularization term and a close proximity to the result of the first phase:

wt+1 = arg min
w

{
1

2
||w −wt+ 1

2
||2 + ηt+ 1

2
Ψ(w)

}
, (20)

where the regularization function is scaled by an interim step size ηt+ 1
2
.

With L1 regularization where Ψ(w) = λ||w||1, the second-phase update can be computed as

wt+1 = T (wt+ 1
2
, ηt+ 1

2
λ).

To evaluate the stability of resulted weight vectors, we randomly permute the indices of the
training samples for B = 50 times to produce stochastic samples that are fed to the algorithms.
Such randomization helps identify the instability in learning results in terms of both error rate and
the selected features.

For implementing all five stochastic methods, we allow the algorithms to run on the training
data for {5, 10, 20, 30, 40, 50, 60} passes. In the standard stochastic gradient descent algorithm, we
choose the optimal learning rate between 0.1 to 0.5. The base gravity parameter in the truncated
gradient algorithm is chosen from the range [0.001, 0.01]. For RDA, we follow the suggestions in
(Xiao, 2009) which sets γ = 5000 and ρ = 0.005 (effectively γρ = 25). We tune the parameter
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λ from the set of values {5× 10−5, 1× 10−4, 5× 10−4, 1× 10−3, 0.01, 0.05, 0.1, 0.5, 1, 5, 10} for
both RDA and FOBOS. As instructed by Duchi and Singer (2009), ηt is set to be 1√

t
in FOBOS. For

the proposed stabilized truncated SGD algorithm, the size of each burst (the truncation frequency)
is fixed at K = 5 and nK = 5 for all data sets. In the proposed algorithm, we initiate the
rejection rate at β0 = 0.7 with annealing rate chosen from {−7,−5,−3,−1, 0, 1, 3}. The stability
selection threshold π0 is tuned within the range [0.5, 0.6, . . . , 0.9]. For multi-thread implementation
in Algorithm 4, M = 16 is used running in parallel on a high-performance computing cluster.

6.3 Results

6.3.1 CLASSIFICATION PERFORMANCE

As shown in Table 2, the proposed algorithm shows improvement over the truncated gradient
algorithm over all data sets and has better performances than RDA and FOBOS in most of the
experiments. As data density increases, the truncated gradient algorithm performs better with hinge
loss than with logistic loss. With hinge loss, the algorithm updates the weight vector only for
samples within a small margin from the boundary. With logistic loss, the algorithm updates with
continuous increments for all incoming samples and favors dense features in sparse learning. With
highly sparse samples sequentially feed to the algorithm, the truncation in every K iterations is
conducted with insufficient information about the true gradient due to the lack of nonzero entries
in sparse features. Truncation with logistic loss leads to over selection of dense features and
overfitting. The other two sparsity-inducing methods for comparison, RDA and FOBOS, also have
large fluctuations across data sets with different levels of sparsity over these two loss functions,
especially when data is highly sparse. In comparison, the performance of the proposed algorithm is
consistent for various dimensions and sparsity levels. Our algorithm is also shown to be robust to
different choices of loss function. The comparatively lower test errors, especially for highly sparse
data, mainly owes to the proposed algorithm’s fairer treatments of features with heterogeneous
sparsity.

From Table 2 we also observe substantially lower variances in test errors under random per-
mutations of samples. The proposed algorithm has the lowest standard deviations of test errors
across all data sets and under both loss functions. Such an improvement over truncated gradient
algorithm and other comparing methods comes from both informative truncation with adaptive
gravity and stability selection. Based on these selection probabilities we carry out feature purging.
Our selection probability is computed based on multiple bursts whose truncation is guided by fair
amounts of shrinkage. Hence, the removal decisions of features from the set of stable variables are
grounded in reliable information on feature importance, which is more likely to be shared across
different permutations of the data. The accumulations of sufficient information for all features help
the proposed algorithm to be robust to random fluctuations in online setting.

6.3.2 FEATURE SELECTION AND SPARSITY

As far as sparse learning for feature selection goes, the proposed algorithm, as shown in Table 3,
is the only method that delivers sparse weight vectors across five example data sets with various
sparsity levels. It is shown in Table 3 that the resulted weight vectors are far more sparse than
the truncated gradient algorithm in all data sets with both loss functions. When comparing these
two algorithms, the distinction in attained sparsity levels is particularly striking with logistic loss
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Data Set Standard SGD
Truncated

Gradient RDA FOBOS
Stabilized
Truncated

SGD
RCV1 2.86 6.59 4.62 8.44 3.01

.08 .09 .10 .15 .04
Dexter 7.77 8.37 11.42 10.91 6.58

.96 .91 .59 1.21 .57
Hinge Loss Dorothea 6.11 6.83 6.83 8.51 5.14

.60 1.23 .18 1.96 0.43
Gisette 2.71 6.32 2.40 5.50 3.05

.43 3.02 .45 1.20 .30
Arcene 19.26 22.06 22.10 18.72 17.60

3.67 8.08 4.00 3.26 2.62

RCV1 3.68 18.55 5.69 14.18 3.19
.07 .78 .08 .39 .05

Dexter 7.91 10.25 9.41 10.45 6.41
.36 .58 .68 .81 .43

Logistic Loss Dorothea 6.26 7.29 6.87 7.15 5.47
.62 1.28 .31 1.35 .35

Gisette 2.52 6.35 2.21 5.98 2.11
.29 4.08 .20 .85 .26

Arcene 17.38 19.48 21.62 18.44 13.38
2.93 5.01 2.05 3.11 1.26

Table 2: Mean test errors (%) and the corresponding standard deviations with hinge loss and logistic
loss over 50 random ordering of the training samples.

function and when the sparsity level of the input data is low, such as the case of the Arcene data set.
These results also indicate that the truncate gradient algorithm fails to extract significant features and
to obtain sparse solutions, which motivates the development of techniques discussed in this paper.
On the other hand, the variances in the percentage of nonzero features of the proposed algorithm
are reduced by approximately a magnitude of 10. The contribution of stabilization is demonstrated
again in terms of feature selection. Although RDA achieves very low sparsity in Dorothea, such a
behavior is not observed in other data sets. It is shown to result in particularly denser weight vector
with highly sparse data, such as RCV1, indicating its weakness in identifying truly informative
features when information is scarce. FOBOS demonstrates overall poorer performance in terms
of inducing sparse weight vector as compared to RDA and the proposed algorithm. Similar to its
performance in terms of test error, the proposed algorithm delivers highly stable results in feature
selection regardless of the choice of loss function and of random permutations of the data. We
also achieve sufficient sparse result owing to stability selection which prevent noisy features from
adding back to the stable set of variables in the online setting. On the other hand, the high sparsity in
weight vector does not overshadow the generalizability performance as the informative truncation
with unbiased shrinkage underlies a better estimation of the selection probability for the construction
of the set of stable variables.

We further compare the data sparsity levels of the features selected by both sparse online
learning algorithms. In Figure 3, using the Dorothea data set as an example, we show the fraction
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Data Set
Standard

SGD
Truncated

Gradient RDA FOBOS
Stabilized
Truncated

SGD
RCV1 63.68 6.95 11.38 5.01 0.86

.34 .42 .10 .28 .10
Dexter 29.46 14.74 1.61 37.69 1.98

.35 .82 .06 2.43 .15
Hinge Loss Dorothea 39.84 18.62 0.55 14.89 6.68

.62 5.94 .02 3.37 .09
Gisette 90.88 63.8 17.45 61.81 3.84

.21 3.72 .43 3.94 .34
Arcene 98.22 61.08 12.15 54.5 3.67

.07 25.55 .90 13.37 .40

RCV1 82.31 2.75 6.98 2.89 1.44
.00 .35 .05 .29 .12

Dexter 38.76 13.91 4.84 30.21 1.32
.00 .71 .14 1.87 .13

Logistic Loss Dorothea 68.63 19.31 0.43 20.4 1.67
.00 3.00 .01 3.51 .47

Gisette 93.96 66.31 14.99 58.83 3.22
.00 3.31 .34 3.44 .49

Arcene 98.36 88.34 12.71 45.96 5.35
.00 4.38 .27 9.76 .24

Table 3: The average percentages (%) of nonzero features selected in the resulted weight vector and
the corresponding standard deviations with hinge loss and logistic loss over 50 random
permutations of the training samples.

of selected features at different data density levels. It is shown that truncated gradient algorithm
is more likely to select dense features over sparse ones with both loss functions. The majority of
the sparse features are truncated to zero regardless of their importance. Moreover, the fraction of
selected feature exhibits a linear relationship with the level of feature density in truncated gradi-
ent algorithm. This pattern suggests that the amount of shrinkage applied to features should be
approximately proportional to their data density, on the probability of having informative updates.
This provides an independent justification of the informative truncation introduced in Section 3.1.
In contrast, features selected by the proposed algorithm have approximately uniform distribution
of sparsity levels. This improvement over the truncated gradient algorithm mostly owes to the use
of informative truncation. With the crucial treatment on the heterogeneity in feature sparsity, the
proposed algorithm is effective in keeping rare but important features from premature truncations.

Based on the measure of feature selection stability defined in (18), the performance of the orig-
inal truncated gradient algorithm and the proposed algorithm are summarized in Table 4. The pro-
posed algorithm demonstrates its excellent stability as compared to the truncated gradient algorithm.
It shows greater overlap in selected features among different permutations of the training data. This
result also echos with the lower standard deviations in the test error (Table 2) and in the number
of selected features (Table 3). As discussed in Section 3, the insensitivity to data perturbation is
mainly due to the fair shrinkage applied on each feature by using informative truncation and to the
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Figure 3: The fraction of features selection at different sparsity levels by the truncated gradient
algorithm and the proposed algorithm respectively with the Dorothea data set as an
example. The selected features are extracted as the features with nonzero entries in the
resulted weight vector from the algorithms with a single fixed ordering of the training
data. The x-axis represents the sparsity level, which is the proportion of nonzero entries
in a feature in the training sample. The y-axis indicates the fraction of selected features
among features with a discretized sparsity level. The size of each point scales with the
proportion of features that fall in level of sparsity. It can be seen that the truncated
gradient algorithm over-selects denser features. The proposed algorithm does not have
a pre-exposed preference towards any density level.

sufficient accumulations of information in selection probabilities before applying stability selection.
These measures suggest that the proposed algorithm is particularly favorable for high-dimensional
sparse data.

7. Conclusion

In this paper, we address the problem of inducing sparsity in subgradient-based online learning algo-
rithm when applied to high-dimensional sparse data. Based on the truncated gradient framework, we
reduce truncation bias due to heterogeneity in feature sparsity via informative truncation. Integrated
with soft-thresholding truncation, stability selection helps eliminate irrelevant features along the
learning process in order to achieve stable and sufficiently sparse results. The adaptive gravity
method dynamically adjusts the shrinkage at different stages of the learning process to balance
between the exploration of sparse combination of nonzero weights and the exploitation of finite
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Hinge Loss Logistic Loss

Data Set Truncated
Gradient

Stabilized
Truncated

SGD
Truncated
Gradient

Stabilized
Truncated

SGD
RCV1 0.38 0.44 0.29 0.60
Dexter 0.46 0.61 0.23 0.58

Dorothea 0.19 0.52 0.19 0.33
Gisette 0.48 0.60 0.54 0.54
Arcene 0.26 0.55 0.35 0.69

Table 4: Summary of feature selection stability performance of the resulted weight vector measured
by (18) based on Cohen’s kappa coefficient.

updates for better convergence. This strategy also consolidates the tuning needs of the proposed
algorithm into two major parameters, the annealing rate γ and the purging threshold π0. We present
a theoretical analysis of the expected regret bound, which offered a quantification of the potential
improvement attained by the proposed algorithm. At last, we use extensive experimental studies
to evaluate the performance of the proposed algorithm. The results demonstrate that our algorithm
achieve favorable results in terms of both prediction accuracy and feature selection, compared to the
original truncated gradient algorithm.
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Appendices

A. Proof of Lemma 2

Proof Note that w∗ can be written as w∗IΩ∗ . Based on the stability selection in (10), we have
w̃ = ŵIΩ̂. Let Ω = {1, . . . , p}. The full set Ω can be further divided into four disjoint sets:
S1 = Ω \ (Ω∗ ∪ Ω̂), S2 = Ω∗ \ Ω̂, S3 = Ω̂ \ Ω∗, and S4 = Ω∗ ∩ Ω̂, respectively.
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Firstly, we consider the L2 distance from the non-stabilized weight vector ŵ to w∗ under
Assumption 3 and the L2 distance from the stabilized weight vector w̃ to w∗.

||ŵ −w∗||2 = ||ŵ −w∗IΩ∗ ||2

=
∑
j∈Ω∗

(ŵj − w∗j )2 +
∑
j /∈Ω∗

ŵ2
j ,

=
∑

j∈S2∪S4

(ŵj − w∗j )2 +
∑

j∈S1∪S3

ŵ2
j .

Since

(ŵIΩ̂ −w∗IΩ∗)
2
j =


0, if j /∈ Ω∗ and j /∈ Ω̂;

(w∗j )
2, if j ∈ Ω∗ and j /∈ Ω̂;

(ŵj)
2, if j /∈ Ω∗ and j ∈ Ω̂;

(ŵj − w∗j )2, if j ∈ Ω∗ and j ∈ Ω̂,

||w̃ −w∗||2 = ||ŵIΩ̂ −w∗IΩ∗ ||2

=
∑
j∈S2

(w∗j )
2 +

∑
j∈S3

(ŵj)
2 +

∑
j∈S4

(ŵj − w∗j )2.

Then

||ŵ −w∗||2 − ||w̃ −w∗||2 =
∑
j∈S2

(ŵj − w∗j )2 +
∑
j∈S1

ŵ2
j −

∑
j∈S2

(w∗j )
2

=
∑
j∈S2

ŵ2
j +

∑
j∈S2

(w∗j )
2 − 2

∑
j∈S2

w∗j ŵj −
∑
j∈S2

(w∗j )
2 +

∑
j∈S1

ŵ2
j

=
∑

j∈S1∪S2

ŵ2
j − 2

∑
j∈S2

w∗j ŵj

= ||ŵ(1− IΩ̂)||2 − 2
∑
j∈S2

w∗j ŵj . (21)

For the first part in (21), there exists a small ε ∈
(

0, π0C(p−|Ω̂|)
|Ω̂|

)
with Ŝε = {j : E(|ŵj |) > ε}

such that

E
(
||ŵ(1− IΩ̂)||2

)
=E

 p∑
j=1

ŵ2
j I(p̂j ≤ π0)


=E

 p∑
j=1

ŵ2
j I(p̂j ≤ π0)I(|ŵj | ≤ ε)

+ E

 p∑
j=1

ŵ2
j I(p̂j ≤ π0)I(|ŵj | > ε)


≥0 + ε2E

 p∑
j=1

I(p̂j ≤ π0)I(|ŵj | ≥ ε)


≥ε2(|Ŝε| − |Ω̂|) > 0, (22)
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where the last inequality is due to |Ŝε| > |Ω̂| with the specified range of ε.
For the second part in (21), recall that S2 = Ω∗ \ Ω̂ = Ω∗ \ (Ω̂ \ V ). Using (13) from Lemma 1

in (Meinshausen and Bühlmann, 2010), we have

E(|S2|) = E(Ω∗ − (Ω̂− V )) (23)

= d∗ − E(Ω̂)− E(V ))

= d∗ − qg + E(V )

≤ d∗ − qg +
1

2π0 − 1

(qg)2

p

≤
(

qg

2π0p− p
− 1

)
qg + d∗.

And, since, for any j ∈ Ω \ Ω̂, Pr(|ŵj | > 0) ≤ π0,

E(|ŵj |) =

∫ C

0
Pr(|ŵj | ≥ u)du ≤ Pr(|ŵj | > 0)C ≤ π0C.

Then,

E

∑
j∈S2

w∗j ŵj

 ≤ π0C
2E(|S2|) ≤ π0C

2E(|S2|)
[(

qg

2π0p− p
− 1

)
qg + d∗

]
.

Thus we have

E
(
||ŵ −w∗||2 − ||w̃ −w∗||2

)
≥ ε2(|Ŝε| − |Ω̂|) + 2π0C

2

[(
1− qg

2π0p− p

)
qg − d∗

]
. (24)

The first half of (24) is proved to be non-negative by the inequality in (22). With a sufficiently
large π0 ∈

(
1
2 + (qg)2

2p(qg−d∗) , 1
)

, (24) is non-negative by taking π0 into the second half of it with
C ≥ 0 under Assumption 1.

B. Proof of Lemma 3

Proof Based on Algorithm 1 and Algorithm 2, we have the following relationships:

w̄1 =T (h1,Kg0) = sign(h1) max(|h1| − g01pK, 0), (25)

ŵ1 =T (h1, k̃g0) = sign(h1) max(|ht| − g0k̃1, 0), (26)

where

h1 = w0 −
K∑
t=1

ηL′ (wt−1, zt) .
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Without loss of generality, we consider the difference in the squared errors to the optimal weight
vector w∗ betweenw̄1 and ŵ1:

||w̄1 −w∗||2 − ||ŵ1 −w∗||2

=||(w̄1 − h1)− (w∗ − h1)||2 − ||(ŵ1 − h1)− (w∗ − h1)||2

=
(
||w̄1 − h1||2 − ||ŵ1 − h1||2

)
− 2

[
(w̄1 − h1)T (w∗ − h1)− (ŵ1 − h1)T (w∗ − h1)

]
. (27)

In the first part of (27), based on (25) and (26), we have

||w̄1 − h1||2 = pK2g2
0,

||ŵ1 − h1||2 = ||k̃1||2g2
0,

where k̃1 is the counter of informative updates in the first burst with k̃1,j ≤ K for j = 1, . . . , p.
Hence,

||w̄1 − h1||2 − ||ŵ1 − h1||2 ≥ 0. (28)

Based on (25) and (26),

(w̄1 − ht)
Th1 =− g0

p∑
j=1

sign(h1,j)Kh1,j = −g0K||ht||1,

(ŵ1 − ht)
Th1 =− g0

p∑
j=1

sign(h1,j)k̃1,jh1,j = −g0||k̃1ht||1.

Thus in the second part of (27), we have

− 2
[
(w̄1 − h1)T (w∗ − h1)− (ŵ1 − h1)T (w∗ − h1)

]
=
[
(w̄1 − h1)Th1 − (ŵ1 − h1)Th1

]
−
[
(w̄1 − h1)Tw∗ − (ŵ1 − h1)Tw∗

]
=2g0

[(
K‖h1‖1 − ‖k̃1h1‖1

)
− (w̄1 − ŵ1)Tw∗

]
. (29)

Since K ≥ k̃1,j for j = 1, . . . , p, the first part of (29) is guaranteed to be nonnegative. In the
second part of (29) , let ŵ1,j = v̂1,jI(|h1,j | > k̃1,jg0) and w̄1,j = v̄1,jI(|h1,j | > Kg0). Denote
δt = L(wt−1, zt) to be the gradient of the loss function at a certain iteration. Since in this paper we
consider linear prediction model,

δt = L′(wt−1, zt) = G(fwt−1(xt))xt.

Hence, δt,j = δt,jI(|xt,j | > 0).
Again based on relationships in (25) and (26), we consider the following two scenarios:
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• When h1,j > 0:

v̂1,j =
K∑
t=1

[I(|xt,j | > 0)(δt,j − g0)] ,

v̄1,j =
K∑
t=1

[I(|xt,j | > 0)δt,j − g0] .

Thus,

v̄1,j − v̂1,j =−
K∑
t=1

I(|xt,j | = 0)g0,

w̄1,j − ŵ1,j =−
K∑
t=1

I(|xt,j | = 0)g0I(h1,j > Kg0)−
K∑
t=1

(h1,j

− k̃1,jg0)I(k̃1,jg0 < h1,j < Kg0)

≤−
K∑
t=1

I(|xt,j | = 0)g0I(h1,j > Kg0). (30)

• When h1,j < 0, similarly, we get

v̄1,j − v̂1,j =
K∑
t=1

I(|xt,j | = 0)g0,

w̄1,j − ŵ1,j =
K∑
t=1

I(|xt,j | = 0)g0I(h1,j < −Kg0)

+

K∑
t=1

(h1,j + k̃1,jg0)I(−Kg0 < h1,j < −k̃1,jg0)

≥
K∑
t=1

I(|xt,j | = 0)g0I(h1,j < −Kg0). (31)

Hence, based on jointly we have

E
(
(w̄1 − ŵ1)Tw∗

)
=

p∑
j=1

E((w̄1,j − ŵ1,j)w
∗
j |h1,j > 0) Pr(h1,j > 0) + E((w̄1,j − ŵ1,j)w

∗
j |h1,j < 0) Pr(h1,j < 0)

≤− g0

K∑
t=1

p∑
j=1

I(|xt,j | = 0)|w∗j | ≤ 0.

The second inequality is derived from the condition that λj = 0 if w∗j = 0 and the following fact.
Since h1 is the sum of K stochastic gradients descent steps and each one of the stochastic gradient
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which is an unbiased estimator of the true gradient (see Bottou, 1998, for analysis), we have

E(I(h1,j < 0)w∗j ) < 0,

E(I(h1,j > 0)w∗j ) > 0.

Hence, together with (28) and (29), we have

||w̄1 −w∗||2 − ||ŵ1 −w∗||2 ≥ 0.

C. Proof of Theorem 1

Proof At a given time t when truncation is performed, let ht = wt−1 − η∇wt−1L(wt−1, z) and
let ŵt be the truncated but non-stabilized weight vector based on the truncation in (4) that ŵt =
T (ht, g0,tk̃t) with the base gravity g0,t. Let Ω̂ be the current set of stable features and the stabilized
weight vector is obtained as w̃t = ŵtIΩ̂.

Firstly, we have

||ŵt −w∗||2 ≤ ||w∗ − ŵt||2 + ||ŵt − ht||2 (32)

= ||w∗ − ht||2 − 2(w∗ − ŵt)
T (ŵt − ht).

In the first part of (32),

||w∗ − ht||2 =||w∗ −wt−1 + wt−1 − ht||2

=||w∗ −wt−1||2 + ||wt−1 − ht||2 + 2(w∗ −wt−1)T (wt−1 − ht)

=||w∗ −wt−1||2 + ||wt−1 − η∇wt−1L(wt−1, z)−wt−1||2

+ 2(w∗ −wt−1)T (wt−1 −wt−1 + η∇wt−1L(wt−1, z))

=||w∗ −wt−1||2 + η2||∇wt−1L(wt−1, z)||2 + 2η(w∗ −wt−1)T∇wt−1L(wt−1, z).
(33)

Since L(w, z) is convex,

(w∗ −wt−1)T∇wt−1L(wt−1, z) ≤ L(w∗, z)− L(wt−1, z).

And based on Assumption 1,

||∇wt−1L(wt−1, z)||2 ≤ AL(wt−1, z) +B.

Thus (33) has the upper bound

||w∗ − ht||2 ≤ ||w∗ −wt−1||2 + η2(AL(wt−1, z) +B) + 2η [L(w∗, z)− L(wt−1, z)] .

In the second part of (32), since ŵt = T (ht, gt), ŵt = sign(ht) max(|ht| − g0,tk̃t, 0) and thus

(ŵt − ht)
T ŵt = −g0,t

p∑
j=1

sign(ht,j)k̃t,jŵt,j = −g0,t||k̃tŵt||1.
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Then −(w∗ − ŵt)
T (ŵt − ht) = −(w∗)T (ŵt − ht) + ŵT

t (ŵt − ht)

≤ −
p∑
j=1

|w∗j ||ŵt,j − ht,j | − g0,t||k̃tŵt||1

≤ −g0,t

p∑
j=1

|k̃t,jw∗j | − g0,t||k̃tŵt||1

≤ −Kg0,t

p∑
j=1

|w∗j | −Kg0,t||ŵt||1

= −Kg0,t (||w∗||1 − ||ŵt||1) .

The second last inequality is due to k̃j,t ≤ K for all j = 1, . . . , p.
Thus, in total, equation (32) has the upper bound

||ŵt −w∗||2 ≤ ||w∗ −wt−1||2 + η2(AL(wt−1, z) +B) (34)

+ 2η [L(w∗, z)− L(wt−1, z)] + 2Kg0,t (||w∗||1 − ||ŵt||1) .

On the other hand, from Lemma 2 we have

E
(
||ŵt −w∗||2 − ||w̃t −w∗||2

)
≥ ε2(|Ŝε| − |Ω̂|) + 2π0C

2

[(
1− qgt

2π0p− p

)
qgt − d∗

]
, (35)

where gt = g0,tk̃t.

Since π0 ∈
(

1
2 + (qg)2

2p(qg−d∗) , 1
)

and, by Assumption 3, qg > d∗ for t = 1, . . . , T , we have

2π0C
2

[(
1− qgt

2π0p− p

)
qgt − d∗

]
≥ 0, for t = 1, . . . , T.

Thus, we can further write (35) as

E
(
||w̃t −w∗||2

)
≤ E

(
||ŵt −w∗||2

)
− ε2(|Ŝε| − |Ω̂|). (36)

By rearranging (36) and combining it with (34), we get

E
((

1− 1

2
ηA

)
L(wt−1, zt) +

Kg0,t

η
||wt−1||1

)
≤E

(
L(w∗, zt) +

Kg0,t

η
||w∗||1

)
+

1

2η
E
(
||w∗ −wt−1||2 − ||w∗ − w̃t||2

)
+
ηB

2

− ε2

2η
(|Ŝεt | − |Ω̂|). (37)

Based on Algorithm 3, let wt be the output weight vector at the end of time t and let g
t

be the
applied gravity parameter at time t, where

g
0,t

=

{ g0,t
η , if t/K is an integer;

0, otherwise.

g
t

=

{
k̃
g0,t
η , if t/K is an integer;

0, otherwise.
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and,

wt =

{
w̃t, if t/(KnK) is an integer;
ŵt, otherwise.

By initializing the weight vector as a vector of zeros of length p, we sum up (37) over t =
1, . . . , T with telescoping to obtain the following result:(

1− 1

2
ηA

)
E

(
T∑
t=1

[
L(wt, zt) +

Kg
0,t

1− 1/2ηA
||wt||1

])

≤E

(
T∑
t=1

L(w∗, zt) +Kg
0,t
||w∗||1

)
+

1

2η
E
(
||w∗ −w1||2 − ||w∗ −wT ||2

)
+
ηBT

2

− 1

2η

T∑
t=1

ε2
t I(

t

KnK
∈ Z)(|Ŝε,t| − |Ω̂t|)

≤E

(
T∑
t=1

L(w∗, zt) +Kg
0,t
||w∗||1

)
+
||w∗||2

2η
+
ηBT

2
− 1

2η

T∑
t=1

ε2
t I(

t

KnK
∈ Z)(|Ŝε,t| − |Ω̂t|).

(38)

The theorem follows by rearrange terms in (38) and that k̃t,j ≤ K for j = 1, . . . , p and t =
1, . . . , T .
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