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Model selection consistency in the high—dimensional regression setting can be achieved
only if strong assumptions are fulfilled. We therefore suggest to pursue a different goal,
which we call a minimal class of models. The minimal class of models includes models
that are similar in their prediction accuracy but not necessarily in their elements. We
suggest a random search algorithm to reveal candidate models. The algorithm implements
simulated annealing while using a score for each predictor that we suggest to derive using a
combination of the lasso and the elastic net. The utility of using a minimal class of models

is demonstrated in the analysis of two data sets.

Keywords. Model Selection; High—dimensional Data; Lasso; Elastic Net; Simulated An-

nealing

1. Introduction

High—dimensional statistical problems have been arising as a result of the vast amount
of data gathered today. A more specific problem is that estimation of the usual linear
regression coefficients vector cannot be performed when the number of predictors exceeds
the number of observations. Therefore, a sparsity assumption is often added. For example,
the number of regression coefficients that are not equal to zero is assumed to be small. If
it was known in advance which predictors have non zero coefficients, the classical linear
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regression estimator could have been used. Unfortunately, it is not known. Even worse, the
natural relevant discrete optimization problem is usually not computationally feasible.

The lasso estimator (Tibshirani, 1996), which solves the problem of minimizing pre-
diction error together with an £;—norm penalty, is possibly the most popular method to
address this problem, since it results in a sparse estimator. Various algorithms are available
to compute this estimator (e.g., Friedman et al., 2010). The theoretical properties of the
lasso have been thoroughly researched in the past 15 years. For the high-dimensional prob-
lem, prediction rates were established in various manners (Greenshtein and Ritov, 2004;
Bunea et al., 2006; Bickel et al., 2009; Bunea et al., 2007; Meinshausen and Yu, 2009). The
capability of the lasso to choose the correct model depends on the true coefficient vector and
the matrix of the predictors (Meinshausen and Biithlmann, 2006; Zhao and Yu, 2006; Zhang
and Huang, 2008). However, the underlying assumptions are typically rather restrictive,
and cannot be checked in practice.

In the high—dimensional setting, the task of finding the true model might be too am-
bitious, if meaningful at all. Only in certain situations, which could not be identified in
practice, model selection consistency is guaranteed. Even in the classical setup, with more
observations than predictors, there is no model selection consistent estimator unless further
assumptions are fulfilled. This leads us to present a different objective. Instead of searching
for a single “true” model, we aim to present a number of possible models a researcher should
look at. Our goal, therefore, is to find potentially good prediction models. In short, we
suggest to find the best models for each small model size. Then, by looking at these models
one may reach interesting conclusions regarding the underlying problem. Some of these, as
we demonstrate in applications, can be concluded using statistical reasoning, but most of
these should be reasoned by a subject matter expert.

In order to find these models, we implement a search algorithm that uses simulated
annealing (Kirkpatrick et al., 1983). The suggested algorithm is provided with a “score”
for each predictor. We suggest to get these scores using a multi-step procedure that imple-
ments both the lasso and the elastic net (Zou and Hastie, 2005) (and then the lasso again).
Multi—step procedures in the high—dimensional setting have drawn some attention and were
demonstrated to be better than the standard lasso (Zou, 2006; Bickel et al., 2010).

The rest of the paper is organized as follows. Section 2 presents the concept of minimal
class of models and the notations. Section 3 describes a search algorithm for relevant models,
and gives motivation for the sequential use of the lasso and the elastic net when calculating
scores for the predictors. Section 4 investigates the performance of the suggested search
algorithm in simulation studies and then Section 5 illustrates data analysis using a minimal
class of models in two examples. Section 6 suggests a short discussion. Technical proofs
and supplementary data are provided in the appendix.

2. Description of the problem

We start with notations. First, denote |[v||q := (3 ’U?)l/q, q > 0 for the ¢, (pseudo) norm
of any vector v and ||v||o = limg—¢ ||v||q for its cardinality. The data consist of a matrix of
predictors X, xp = (X(l) xX@ . X(p)) and a response vector Y, x1. WLOG, X is centered
and scaled and Y is centered as well. We are mainly interested in the case p > n. The
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underling model is Y = XY + ¢ where €, is a random error, E(e) = 0, V(e) = o021, I is
the identity matrix.

Denote S C {1,...,p} for a set of indices of X. We call S a model. We use s = |5] to
denote the cardinality of the set S. Denote also Sy := {j : 8° # 0} and so = |Sp| for the
true model, and its size, respectively. For any model S, we define Xg to be the submatrix
of X which includes only the columns specified by S. Let /3’55 be the usual least squares
(LS) estimator corresponding to a model S, that is,

B§° = (X5X5) ' X3Y,

provided Xg:X s is non singular.
Now, the straightforward approach to estimate Sy given a model size x is to consider
the following optimization problem:

o1
min—|[Y = XOB, st (|8l = r. (1)

Unfortunately, typically, solving (1) is computationally infeasible. Therefore, other methods
were developed and are commonly used. These methods produce sparse estimators and can
be implemented relatively fast. We first present here the lasso (Tibshirani, 1996), defined
as

A 71
Bt = arg;mn(nHY - X815+ )\HBHI)

where A > 0 is a tuning constant. For some applications, a different amount of regularization
is applied for each predictor. This is done using the weighted lasso, defined by

~

1
i = argmin (1Y = X3 + Al 311 ) (2)

where w is a vector of p weights, w; > 0 for all j, and a-b is the Hadamard (Schur, entrywise)
product of two vectors a and b. Next is the elastic net estimator

~ . 1
BPN — arg;mn(nny — XBI+ Bl + AllBI3) (3)

This estimator is often described as a compromise between the lasso and the well known
Ridge regression (Hoerl and Kennard, 1970) since it could be rewritten as

FEN = axgmin (L1 — X813+ AallBll + (1 - ) 1613)). (4)
8 n

Let Bn be a sequence of estimators for 3° and let S, be the sequence of corresponding
models. Model selection consistency is commonly defined as

A~

lim P(S, = Sp) = 1. (5)

n—o0

If p < n and small, then criteria based methods (e.g., BIC, Schwarz, 1978) are model
selection consistent if p is fixed or if suitable conditions are fulfilled, see Wang et al. (2009)
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and references therein. However, these methods are rarely computationally feasible for large
p. For p > n, it turns out that practically strong and unverifiable conditions are needed to
achieve (5) for popular regularization based estimators (Zhao and Yu, 2006; Meinshausen
and Biithlmann, 2006; Huang et al., 2008; Jia and Yu, 2010; Tropp, 2004; Zhang, 2009).

In light of these established results, we suggest to pursue a different goal. Instead of
finding a single model, we suggest to look for a group of models. Each of these models
should include low number of predictors, but it should also be capable of predicting Y well
enough. Therefore, G = Gi'(k,n) is called a minimal class of models of size x and efficiency
n if

Gy = {5151 = n & BIIY — XsBE |3 < min BIIY X813} +n}-

where % minimizes E||Y — Xgfs||3. Note that G§ depends on n, similarly to the way
the true model has been considered previously (Greenshtein and Ritov, 2004; Meinshausen
and Biithlmann, 2006; Zhao and Yu, 2006). In fact, if p > n then, necessarily, p grows with
n and, at the least, new potential predictors are added; the size of Gj may also change.
Clearly, Gy is unknown. However, at a first sight, it is unclear how to refer to this set. Even
when carrying out model selection, one hardly treats the true model as a parameter, even
though it can be looked as such. In terms of inference, in simple, low dimensional, models,
likelihood ratio tests can be used in some frequentist cases, or posterior probabilities for
the Bayesians. More generally, model selection criteria, such as AIC (Akaike, 1974) or BIC,
are typically used, without assigning formal statistical tools to address uncertainty. In this
sense, the true minimal class of models is some type of a weak equivalence class, with respect
to the true model Sy. Given 7, it answers the following question. Are there additional
models, other than Sy, that can be considered satisfactory? If the answer is yes, which
are these models? Existence of alternative models may help researchers to question the
strength of certain conclusions. Furthermore, when high—dimensional regression is used as
part of a pilot study to determine which predictors should be measured regularly, alternative
models may be compared in terms of cost. On the other hand, if there are multiple models
explaining the data in a satisfactory manner, is there such a thing as the true model? If
not, then conceptual concerns may arise. We further discuss these and related important
issues in Section 6.

From a practical point of view, it would be useful to consider instead a sample version

of G, G"(k,n), defined as
1 . 1 )
G ) = {53181 = & Y — XsBEIE < min (LY - Xo BB} 40} @

One could control how similar the models in G = G" are to each other in terms of prediction,
using the tuning parameter 7. A reasonable choice is 7 = co? with some ¢ > 0. If o2 is
unknown, it could be replaced with an estimate, e.g., using the scaled lasso (Sun and Zhang,
2012). An alternative to G is to generate the set of models by simply choosing for each &
the M models having the lowest sample mean square error (MSE), for some number M.
The LS estimator, BL%S , minimizes the sample prediction error for any model S with size
s < n. Thus, this estimator is used for each of the considered models.

In practice, one may find G for a few values of k, e.g., kK = 1,..., 10, and then examines
the pooled results, U?:l G(j,n). Alternatively, the empirical MSE n~!||Y — XSB§S| 2 in the
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definition of G can be replaced with one of the available model selection criteria, e.g., AIC,
BIC or lasso. Then, models of varying size can be included in the class. Note that we are
interested in situations where there is a fair number of models with a relatively very small
number of variables (predictors) out of the available p.

At this point, a natural question is how can we benefit from using a minimal class
of models. Examining the models in G may allow us to derive conclusions regarding the
importance of different explanatory variables. We demonstrate this kind of analysis in
Section 5 using two real data examples.

A minimal class of models could be also used in conjunction with the available models
aggregation procedures. Aggregation of estimates obtained by different models was sug-
gested both for the frequentist (Hjort and Claeskens, 2003), and for the Bayesian, (Hoeting
et al., 1999). The well-known “Bagging” (Breiman, 1996) is also a technique to combine
results from various models. Averaging across estimates obtained by multiple models is
usually carried out to account for the uncertainty in the model selection process. We, how-
ever, are not interested in improving prediction per se, but in identifying good models. Nor
are we interested in identifying the best model, since this is not possible or even meaningful
in our setup, but in identifying predictors (and models) that are potentially relevant and
important.

2.1 Relation to other work

A similar point of view on the relevance of a predictor was given by Bickel and Cai (2012).
They considered a predictor to be important if its relative contribution to the predictive
power of a set of predictors is high enough. Their next step was to consider only specific
type of sets, such that their prediction error is low, yet they do not contain too many
variables.

Rigollet and Tsybakov (2012) investigated the question of prediction under minimal con-
ditions. They showed that linear aggregation of estimators is beneficial for high—dimensional
regression when assuming sparsity of the number of estimators included in the aggregation.
They also showed that choosing exponential weights for the aggregation corresponds to
minimizing a specific, yet relevant, penalized problem. Their estimator, however, is com-
putationally impossible and they have little interest in predictors and model identification.

As we describe in Section 3, our suggested search algorithm for candidate models travels
through the model space. We choose to use simulated annealing to prevent the algorithm
from getting stuck in a local minimum. Some Bayesian model selection procedures move
along the model space, usually using a relevant posterior distribution, cf. O’Hara and
Sillanp&ad (2009). We, however, do not assume any prior distribution for the coefficient
values. Our use of the algorithm is only as a search mechanism, simply to find as many as
possible models included in G. Convergence properties of the classical simulated annealing
algorithm are not of interest to our use of it. We are interested in the path generated by
the algorithm and not in its final state.

3. A search algorithm

In this section, we suggest an algorithm to find G for a given x and n. The problem is that
[|Y — Xsﬂé’s |13 is unknown for all S, and since p is large, even for a relatively small &,
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the number of possible models is huge (e.g., for p = 200,k = 4 there are almost 65 million
possible models). We therefore suggest to focus our attention on smaller set of models,
denoted by M(k). M is a large set of models, but not too large so we can calculate MSEs
for all the models within M in a reasonable computer running time. Once we have M and
the corresponding MSEs, we can form G by choosing the relevant models out of M.

The remaining question is how to assemble M for a given k. Any greedy algorithm
is bound to find models that are all very similar. Our purpose is to find models that are
similar in their predictive power, but heterogeneous in their structure. For this we propose
a simulated annealing algorithm (Kirkpatrick et al., 1983) which we now describe.

3.1 Simulated annealing algorithm

Our approach therefore is to implement a search algorithm which travels between potentially
attractive models. We use a simulated annealing algorithm (Kirkpatrick et al., 1983), orig-
inally suggested for function optimization. The maximizer of a function f(#) is of interest.
Let T' = (t1, t2, ..., tg) be a decreasing set of positive “temperatures”. For every temperature
level t € T, iterative steps are carried out, before moving to the next, lower, temperature
level. In each step, a random move from the current 6 to another 6’ # 6 is suggested. The
move is then accepted with a probability that depends on exp[( HCAN (0)) / t]. Typically,
although not necessarily, a Metroplis—Hastings criterion (Metropolis et al., 1953; Hastings,
1970) is used to decide whether to accept the suggested move 6" or to stay at 6. After a
predetermined number ,N;, of such iterations, the algorithm moves to the next ¢’ < ¢ in
T, taking the final state in temperature ¢ as the initial state for #. The motivation for
using this algorithm is that for high “temperatures”, moves that do not improve the target
function are possible, so the algorithm does not get stuck in a small area of the parameter
space. However, as we lower the temperature, the decision to move to a suggested point is
based almost solely on the criterion of improvement in the target function value. The name
of the algorithm and its motivation come from annealing in metallurgy (or glass processing),
where a strained piece of metal is heated, so that a reorganization of its atoms is possible,
and then it colds off slowly so the atoms can settle down in low energy position. See Brooks
and Morgan (1995) for a general review of simulated annealing in the context of statistical
problems.
In our case, the parameter of interest is the model S and the objective function is

1 «
f(8) = ——|IY = XsB5°|3.

We now describe the proposed algorithm in more detail. We use simulated annealing with
Metropolis—Hastings acceptance criterion as a search mechanism for good models. That is,
we are not looking for the settling point of the algorithm; instead, we are following its path,
hoping that much of it will be in neighborhood of good models.

We say the algorithm is in step (¢,4) if the current temperature is t € T and the current
iteration in this temperature is i € {1, ..., Ni}. For simplicity, we describe here the algorithm
for Ny = N for all t. Let S and B@ be the model and the corresponding LS estimator in the
beginning of the state (¢,7), respectively. An iteration includes a suggested model SZ+, a
LS estimator for this model, Bf“, and a decision whether to move to SZ+ and 5? or to stay
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at Sf and B§ We now define how SZJF is suggested and what is the probability of accepting
this move.

For each S!, we suggest S’f+ by a minor change, i.e., we take one predictor out and
we add another instead, and then obtain 3? by standard linear regression. Assume that
for every variable j € (1,...,p), we have a score 7;, such that higher value of v; reflects
that the variable j should be included in a model, comparing with other possible variables.
WLOG, assume 0 < v; < 1 for all j. We choose a variable r* € Sti and take it out with the
probability function

—1
out __

Tr
K e
u
u€S}

Vr € Si. (7)

Next, we choose a variable £* ¢ S} and add it to the model with the probability function

in e i
Pie = Z v ’ Ve ¢ St‘ (8)
ugSi

Thus, ‘ '

Syt ={Si\r"ru{e}
and we may calculate the LS solution B? for the model SZ+. The first part of our iteration
is over; a potential candidate was chosen. The second part is the decision whether to move

to the new model or to stay at the current one. Following the scheme of simulated annealing
algorithm with Metropolis—Hastings criterion, we calculate

Pr(Sit — 5%

1 N N
—exp(— (IV = X BB~ IIY = Xge BF13) ) o oo
0 = exp (7 (1Y = Xy Bl — IV — X B 18) ) 5oy

where
)= (Si%SiJr)_ out . in
(ot t = Pir= Diox

, ‘ L
Pr(SiT — Sp) = p{iy pi e

We are now ready for the next iteration ¢ + 1 by setting

i1 aieny_ J (STTLBT) wp  min(l,q)
(St » Mt ) i Q1
(St Bt) w.p max(0,1—q).

Along the run of the algorithm, the suggested models and their corresponding MSEs are
kept. These models are used to form M(k), and G can be then identified for a given value
of n.

We now point out several issues for the practical application of the algorithm. First,
the algorithm was described above for one single value of x. In practice, one may run
the algorithm separately for different values of k. Another consideration is the tuning
parameters of the algorithm that are provided by the user: The temperatures T’; the number
of iterations N; the starting point Stll; and the vector v = (y1,...,7p). Our empirical
experience is that the first three can be managed without too many concerns. In particular,
the algorithm should be started from more than one initial point, and the results from
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each run should be kept and compared; see Sections 4 and 5. Regarding the vector v, a
wise choice of this vector should improve the chance of the algorithm to move in desired
directions. We deal with this question in Section 3.2. However, in what follows we show
that, under suitable conditions, the algorithm can work well even with a general choice of
5.

Define Sy, sop and 9 as before and let = XB°. That is, Y = 1+ . We first introduce
a few simple and common assumptions:

(A1) [l = O(n)

(A2) s¢ is small, i.e., so = O(1).
(A3) p=n*a>1
(A4)

A4) € ~ N,(0,0%1)

Denote A, for the set of positive entries in . That is, A, C {1,.2,...p} is a (potentially)
smaller group of predictors than all the p variables. Denote also h., = |A,| for the cardinality
of Ay and Ypin 1= mji4n v; for the lowest positive entry in ~.

1E Ay

To motivate our next assumption, we note that, informally, the algorithm is expected
to preform reasonably well if:

1. The true model is relatively small (e.g., with 10 active variables).

2. A variable in the true model is adding to the prediction of a set of variables if a very
few (e.g., 2) other variables are in the set.

Our next assumption is more restrictive. Let S be an interesting model of size sq—a
model with not too many predictors and with a low MSE. The models we are looking for
are of this nature. We facilitate the idea of S being an interesting model by assuming that
X SB 5 is close to p (in the asymptotic sense). We virtually assume that for every model of
size |S|, which is not S, if we take out a predictor that is not part of S, and replace it with
a predictor from S, the subspace spanned by the new model is not much further from pu,
comparing with the subspace spanned by the original model. Formally, denote Pg for the
projection matrix onto the subspace spanned by the columns of the submatrix Xg.

(B1) There exist tp > 0 and a constant ¢ > 0, such that for all S, |S| = sg — 1, for all
j€SNSe j' € 85N S¢, and for a large enough n

1
~ [IPs; ll§ = 1Pss, ul8] > tologe, (10)

where S¥ = S U {r}.

We note that since ¢ could be lower than one, the right hand side of (10) can be negative.
The following theorem gives conditions under which the simulated annealing algorithm is
passing through an interesting model S. More accurately, the theorem states that there is
always strictly positive probability to pass through S in the next few moves. This result
covers all models that Assumption (B1) holds for. Note however, that we do not claim that
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the algorithm finds all the models in a minimal class. Proving such a result would probably
require complicated assumptions on models with larger size than sy, and their relation to
S and other interesting models.

Let P/"(S’|S) be the probability of passing through model S’ in the next m iterations
of the algorithm, given the current temperature is ¢, and the current state of the algorithm
is the model S.

Theorem 1 Consider the simulated annealing algorithm with k = sg and with a vector
such that Ymin > ¢y. Let Assumptions (A1)-(A4) hold and let Assumption (B1) hold for
some temperature to and with ¢ = cy. If S C Ay then for all S C A, with s = so, for all
m > sg— |S N S| and for large enough n,

c? %0
m( Q Y
P (S]S) > [50(h7 — 80)] . (11)

A proof is given in the appendix. Theorem 1 states that for any specification of the
vector v, such that the entries in « are positive for all the predictors in S, the probability
that the algorithm would visit S in the next m moves is always positive, provided the
temperature is high enough, and provided it is possible to move from the current model to
S in m moves.

For the classical model selection setting with p < n, a similar method was suggested by
Brooks et al. (2003). Their motivation is as follows. When searching for the most appro-
priate model, likelihood based criteria are often used. However, maximizing the likelihood
to get parameters estimates for each model becomes infeasible as the number of possible
models increases. They therefore suggest to simplify the process by maximizing simultane-
ously over the parameter space and the model space. They suggest a simulated annealing
type algorithm to implement this optimization. This algorithm is essentially an automatic
model selection procedure.

3.2 Choosing v

The simulated annealing algorithm described above is provided with the vector . The
values 71, ..., 7p should represent the knowledge regarding the importance of the predictors,
although we do not assume that any prior knowledge is available. As it can be seen in
equations (7)—(8), predictors with high v values have larger probability to enter the model if
they are not part of the current model, and lower probability to be suggested for replacement
if they are already part of it. Since p is large, we may also benefit if v includes many zeros.

One simple choice of v is to take the absolute values of the univariate correlations of
the different predictors with Y. We could also threshold the correlations in order to keep
only predictors having large enough correlation (in absolute value) with Y. However, using
univariate correlations is clearly problematic since it overlooks the covariance structure of
the predictors in X.

Another possibility is to first use the lasso with a relatively low penalty, and then to set
v = Bf!/ ||B%|]1. The idea behind this suggestion is that predictors with large coefficient
value may be more important for prediction of Y.

However, as discussed in Section 2, the lasso might miss some potentially good predic-
tors. It is well known that the elastic net may add these predictors to the solution, although
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it might also add unnecessary predictors. Moreover, it is not clear how to choose v; us-
ing solely the elastic net. The lasso and the elastic net estimators are not model selection
consistent in many situations. However, for our purpose, combining both methods together
may help us get a reservoir of promising predictors.

Zou and Hastie (2005) provided motivation and results that justify the common knowl-
edge that the elastic net is better to use with correlated predictors. Since we intend to
exploit this property of the elastic net, this paper offers an additional theoretical back-
ground. We present a more general result later on this section, but for now, the following
proposition demonstrates why the elastic net tends to include correlated predictors in its
model.

Proposition 2 Define X and Y as before, and define SEN by (3). Let X and X@ bpe
two columns of X and denote p = n~"(XNTX? . Assume |BEN| > c5 for some cg > 0.

If Ip > 1= X5¢3/|[Y 13 then |55™] > 0.

A proof is given in the appendix. Proposition 2 gives motivation for why BEN has typically
a larger model than BL. It also quantifies how much correlated two predictors need to be
so the elastic net would either include both predictors or none of them.

Going back to our ~ vector, the next question is how to use the lasso and the elastic
net in order to assign a “score” to each predictor. Let S; and Sgy be the models that
correspond to BL and ﬁEN , respectively. Define S; for the group of predictors that were
part of the elastic net model but not part of the lasso model and S,,; for the predictors
that were not included in any of them. Note that SpNS. = Sp N Seut = St N Sput = 0 and
Sp,USL U St is {1, ...,p}. Define

L[Sy _ (1 2  1gjes
ma)—argﬁnun(nuy—mugﬂj;é Uessgl),  ge o],

and let SJLr (0) be the appropriate model. In this procedure, a reduced penalty is given for
predictors that BL might have missed. Thus, these predictors are encouraged to enter the
model, and since they may take the place of others, predictors in Sy, that their explanation
power is not high enough are pushed out of the model. Note that B_I;((S) is a special case of
Aw, as defined in (2), with w; = oHIES T}

We demonstrate how the reduced—penalty procedure works using a toy example. A
data set with n = 30 and p = 50 is simulated. We take the coefficient vector to be
B2 =(050511100..0)7 and 0? is taken to be one. The predictors are independent
normal variables with the exception of 0.8 correlation between X and X @ . Predictor 1
is included in the lasso model, however predictor 2 is not. Figure 1 presents the coefficients’
estimates of X, X2 and X©) when lowering the penalty of X, Note how X® enters
the model for low enough penalty while X (V) leaves the model for low enough penalty (on
X@),

We suggest to measure the importance of a predictor j € S; by the highest § such that
j € Sﬁ(é). On the other hand, the importance of a predictor j° € Sy, can be measured by
the highest § such that j/ ¢ S¥ () (now, smaller § reflects j/ is more important). With this
in our mind, we continue to the derivation of .

10
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Figure 1: Toy example: coefficients’ estimates for predictors XM, X2 and X®) when low-
ering the lasso penalty for X(?) only. The rightmost point corresponds to a lasso
procedure with equal penalties for all predictors

Let A = (0o < 81 < ... < dp) be a grid of [0, 1], with dp = 0 and §, = 1. For each § € A,
we obtain 5%(6). Define

argmax{i : BL,(6;) #0}  j ¢ SL

7] argmax{i: B_Lw(él) =0} je€SL
i
and if the argmax is over an empty set, define z; = 0. We suggest to choose 7; as follows:
0 ] S Sout

(51'#/2 jEe St
v = !

1-— 52';_ /2 j € S,
for all j € {1,...,p}. This choice of v has the following nice properties.
e A predictor j ¢ Sy with z; = 0 is excluded from consideration.

e On the other hand, for a predictor j € Sy, if i = 0 than 7; = 1, which is the maximal
possible value. Even when the penalty for other predictors is dramatically reduced,
leading to their entrance to the model, j remains part of the solution and hence it is
essential for prediction of Y.

e Since predictors in S7, were picked when equal penalties were assigned to all predictors,
they get priority over predictors in 5.

11
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e However, for two identical predictors, X() = X (") (or highly correlated predictors)
such that j € Sg and j' ¢ Sr, we get a desirable result. By Proposition 2, we know
that X € S;. Now, for 51 < 1 it is clear that j' € SE(6p—1) and j ¢ SE(6p_1).
Therefore. % = %, = h—1 hence if d;,_; is taken to be close to one, then ~; ~ v; ~ 0.5

3T
as one might want.

Proposition 2 concerns two correlated predictors. In practice, the covariance structure of X
may be much more complicated. Therefore the question arises: can we say something more
general on the elastic net in the presence of competing models? Apparently we can. Let
My and M5 be two models, that is, two sets of predictors, that possibly intersect. Assume
that the elastic net solution chose all the predictors in M;. What can we say about the
predictors in My? Are there conditions on Xy, Xz, and Y such that all the predictors in
My are also chosen? If the answer is yes (and it is, as Theorem 3 states), it justifies our use
of the elastic net to reveal more relevant predictors. In our case, the relevant predictors are
the building blocks of models in G.

In order to reveal this property of the elastic net, we analyze B’EN , the solution of (3),
when assuming all the predictors in M; have non-zero values. Denote M () for (M; U Ms)®,
the set of predictors that are not included in M or My and X = X M) for the appropriate
submatrix of X. Let ﬁﬁN, Bf/[]v and B be the coordinates of BEN that correspond to

M;i, My and (M7 U Ms)€, respectively. Let Y=Y-X 5J\EJJY be the unexplained residual of
Y, after taking into account X. Finally, we show that both M; and Ms are chosen by the
elastic net if the prediction of Y using M7, namely Xy, Bf}l\f , projected onto the subspace
spanned by the columns of Mj is correlated enough with Y. Formally,

Theorem 3 Define BEN g before. Let My and Mo be two models with the appropriate
submatrices Xy, and Xpg,. Define X and Y as before. Define BAAE/IJIV and Bf/év as before.
Denote Pyr, for the projection matriz onto the subspace spanned by the columns of Xy, .
WLOG, assume |Ms| < |My| and that all the coordinates of Bf}]lv are different than zero.
Finally, if

Y/T'PMQXMlﬁA]]\E/IV > Cl()\l,AQ,XMl,Y,BﬁIIV), (12)

then all the coordinates of Bf/[év are different than zero.

A proof and a discussion on the technical aspects of condition (12) and the constant ¢y
are given in the appendix. Theorem 3 states that under a suitable condition, predictors
belonging to at least one of two competing models are chosen by the elastic net. In our
context, when we have a model M; with a good prediction accuracy, i.e., Xy BEN is
close to Y, then predictors in any another model My which has similar predlctlon that is
Poar, X, BEN a1, 1s also close to Y, would be chosen by the elastic net. Hence, these predictors
are expected to have a positive value in ~, and our simulated annealing algorithm would
pass through these models, provided the conditions in Theorem 1 are met. Therefore, these
models are expected to appear in G.

4. Simulation Studies

In order to examine the performance of the suggested search algorithm, we present in this
section results from two simulation studies. The first investigates whether models similar in

12
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their capability to describe the underlying population can be found by the algorithm. The
second simulation study examines the out—of-sample prediction error of models included in
the minimal class of models.

We present below a scenario in which, other then the model used to create the data, there
are three more models, that are not nested within the underlying model, with population
prediction error close to the underlying model. In practice, all of these four models are of
interest.

We consider Y = XB% 4+ ¢, € ~ N(0, 1) with ﬁ? equals to C for j = 1,2,...,6 and zero
for j > 6. C is a constant chosen to get a desired signal to noise ratio (SNR) || X 3°||2. The
predictors in X are all i.i.d. N (0, ) with the exception of X (M and X®) which are defined
by

2 1
X0 = 2xW+ Xy, &~ N, (0, 91>
X® = %[X“‘”) + X9 + &, &~ N, (o, ;I>

where £; and & are independent. In this scenario, there are 4 models we would like to
find: (I) {1,2,3,4,5,6}; (II) {5,6,7,8}; (III) {3,4,5,6,7}; and (IV) {1,2,5,6,8}. In particular,
each of these models minimizes the population prediction error E||Y — Xg8s||3} for models
with its size. That is, Model (I) minimizes the population prediction error for models of
size k = 6, Model (II) minimizes the prediction error for models of size k = 4, and both
models (IIT) and (IV) minimize the prediction error for models of size k = 5. Furthermore,
it can be shown, for example, that the population prediction error of Model (III) is just
3.7% larger than the error of true model for SNR = 1, 14.8% for SNR = 2, and larger
values for SNR > 4

Note that while models (ITI)~(IV) do not describe the data as well as Model (I), they
contain less predictors. Furthermore, in an hypothetical real-life situation where future
measurements were to be made on the predictors and the outcome, and, for the sake of
the example, XM or X were more expensive to measure, models (IT)~(IV) could have
provided a frugal alternative, while preserving a reasonable prediction error.

As part of this simulation study, for each simulated data set, we do the following;:

1. Obtain v as explained in Section 3.2. The tuning parameter of the lasso is taken to
be the minimizer of the cross—validation MSE. For the elastic net, « in (4) is taken to
be 0.4.

2. Run the simulated annealing algorithm for x = 4,5,6. The tuning parameters of
the algorithm are chosen quite arbitrarily: 7' = (10 x 0.7},10 x 0.72,...,10 x 0.7%0);
A = (0,0.02,0.04,...,0.98,1); N; = N =100 for all t € T.

3. Then, for each model (I)-(IV), we check whether the model is the best model obtained
(as measured by MSE) among models with the same size. For example, we check if
Model (II) is the best model out of all models that were found with x = 4. We also
check whether the model is one of the top five models among models with the same
size.

13
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p =200 p = 500 p = 1000

SNR | Model | Best Top 5 | Best Top 5 | Best Top 5
(1) 0.00 0.01 | 0.00 0.00 | 0.00 0.00
(I1) 0.42 0.62 | 0.28 0.46 | 0.23 0.38

Lolam | 004 008 [ 001 002 | 000 0.00
(IV) | 0.04 0.08 [0.02 0.03 | 0.00 0.01

I |010 0.12 [ 005 0.06 | 0.04 0.05

) (I) | 094 096 | 092 094 | 094 0.95

(III) | 027 034 | 018 024 | 015 0.17
(IV) | 028 037 |018 022 |014 0.17
(I) [ 038 038 |[020 020 |011 0.11

A (I) | 096 096 | 096 096 | 0.96 0.95
(III) | 0.38 046 | 0.31 036 | 0.22 0.24

(IV) | 039 046 | 028 031 | 024 026
(I [072 072 | 046 046 | 032 0.32

< (I) | 097 097 | 097 097 | 096 0.96
(III) | 0.41 048 | 0.36 040 | 0.30 0.31

(IV) | 044 050 | 034 037 | 029 031
(I) | 086 086 | 0.66 0.66 | 0.49 0.49

(I) | 0.98 098 | 097 097 | 096 0.96
(III) | 049 055 | 041 044 | 0.32 0.34
(IV) | 042 048 | 037 040 | 032 0.34

12

Table 1: Proportion that each model is chosen as best model or as one of top five models
for different number of potential predictors (p) and various SNR values.

A 1000 simulated data sets were generated for each different scenario: For n = 100, p =
200, 500, 1000 and for SNR = 1,2,4,8,12,16. Table 1 displays the proportion of times each
model was chosen, either as the best one, or as one of the top five models. The results
are as one might expect. For large SNR, the models are chosen more frequently. However,
models (IIT) and (IV) are competing, in the sense that they both include five predictors.
Even for large SNR, each of the models, (III) and (IV), is chosen in about 50% of the cases.
Therefore, as recommended in Section 3.1, we repeat the simulations while starting the
algorithm from different initial points, that is, different initial models.

Figure 2 presents comparison between running the algorithm from one and three starting
points. When we initiated the algorithm from three different models, the results improved
for all models, and in particular for models (IIT) and (IV). The results described in this
section are quite similar to the results we obtained when forming G(k,n) as defined in (6),
for each kK = 4,5, 6 separately and using arbitrary small values of 7.

We now turn to describe the second simulation study, that concerns out—of-sample
prediction of the models found by the algorithm. Here we consider three scenarios. The
true model consisting 20 predictors for all scenarios. In Scenario 1, X consists p iid normally
distributed predictors with mean zero and variance one. The 20 first entries in 3° are created
from iid normal distribution, and then rescaled to achieve the desired SNR. In Scenario 2,
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Figure 2: Proportion that each model is chosen as one of top five models for different
number of potential predictors (p) and various SNR values. There is an apparent
improvement when running the algorithm from three starting points.

B9 is created in the same as in Scenario 1, but a more complex correlation structure is
considered for X. First, define (™) to be an m x m covariance matrix defined so for
alls =1,...mand 7 = 1,,.,m, Egn) = 0.75/"=91, The subvector containing the first 5
predictors, (X W x@ X (5)) is created with the covariance matrix 2. Then, each of
the next 10 predictors X, 7 = 6,7...,15 is correlated with two predictors that are not
part of the true model. For example, (X(®, X1 X (22)) is simulated from N3(0,%®)) and
(XM, X3 x(Y) is simulated from N3(0,%®)). The remaining predictors are simulated
as iid N(0,1). In Scenario 3, X is created as in Scenario 2, but the coefficients in the true
model are now all equal. That is, ﬁ? =(C,j=1,2,...,20, with C being a constant chosen
to get a desired SNR.

As in the previous study, Var(e) = I,n = 100 and we consider p = 200, 500, 1000. We
report the results for SNR=1,2,4,6,8. For each synthetic data set, the simulated annealing
is used for Kk = 15,20,25. The algorithm is initiated three times per x value, and the
best five models per run are kept, and then combined to have a minimal class of models
containing up to 15 models (per k value). Other tuning parameters are chosen as in the
first simulation study. Figure 3 compares mean (over the synthetic data sets) out—of-sample
prediction error for the best model (in terms of prediction error) within the minimal class
of models, the average of out—of-sample prediction error among the models in the minimal
class, as well as the errors of the lasso, elastic net and adaptive lasso. Results are presented
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Figure 3: Out—of-sample prediction error for different scenarios, different number of poten-
tial predictors (p) and various SNR values. Methods compared are lasso, elastic
net and adaptive lasso, as well as the average (avg) and minimal (min) error in
the minimal class of models, with model size of 15,20 and 25 predictors. The
classes were built by combining 5 best models obtained from three runs of the
simulated annealing search algorithm.

relative to the out—of-sample prediction error of the lasso. For SNR=1, the lasso performs
the best, for all three scenarios considered, although the other methods show comparable
performance. Under Scenarios 1 and 2, when the non—zero parameters are created from a
normal distribution, so some predictors are stronger and others are weaker, the best model
identified by the minimal class, for either k = 20 or k = 25, outperforms other methods
for SNR>1. Under Scenario 3, where all coefficients (in the true model) are equal, the
same pattern is observed for SNR>4. For large SNR values, under Scenario 3, the models
in the minimal class of size 15 are underperforming. While under Scenarios 1 and 2, the
predictors missed by the minimal class with x = 15 are likely to be those with small effect,
under Scenario 3 all predictors have an equal effect. We also considered scenarios with X
simulated from N,(0,%(®)). The results are similar to those observed for Scenario 1 and
hence are omitted.

5. Real data sets

We demonstrate the utility of using a minimal class of models in the analysis of two real
data sets. The tuning parameters of the lasso and the elastic net were taken to be the
same as in Section 4. The tuning parameters of the simulated annealing algorithm were
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Figure 4: Histograms of the values of v for positive entries only in the two data set analysis
examples.

T =10 x (0.74,0.7%,...,0.72%), A = (0,0.01,0.02, ..., 0.98,0.99, 1), and N; = N = 100 for all
teT.

5.1 Riboflavin

We use a high—dimensional data about the production of riboflavin (vitamin B2) in Bacillus
subtilis that were recently published (Bithlmann et al., 2014). The data consist p = 4088
predictors. These are measures of log expression levels of genes in n = 71 observations. The
target variable is the (log) riboflavin production rate.

The lasso model Sy, includes 40 predictors (and intercept), and the elastic net model
Sen includes 59 predictors. In total, we get 61 different predictors (i.e., genes). Panel (a)
of Figure 4 presents the histogram of the positive values in ~.

We run the algorithm from three random starting points for each model size between 1
and 10. We keep the five best models for each size and starting point, to get, after removal
of duplicates, a total of 112 models. See Table 2 for the number of unique models as a
function of the model size. Following a referee comment, we note here that in practice
models with low model size may have unacceptably low R2, and this can be checked in
practice. In our analysis here we keep these models since the R? values are all larger than
0.35 and to ease the exposition, so we would be able to compare the search results to models
obtained by other methods. The models found by other methods, for the riboflavin data,
are of a relatively small size; see Biithlmann et al. (2014)

The following insights are drawn from examining more carefully the models we obtained
(see Table 1 in the online appendix):

e In total, the models include 53 different predictors. Out of these, 35 predictors appear
in less than 10% of the models, meaning they are probably less important as predictors
of riboflavin production rate.

e Gene number 2564 appears in all models of size larger than 3 and in 5 out of 8 models
of size 3. However, this gene is not included in any of the smaller models. This gene
is the only one that appears in more than half of our models. We can infer that while
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Model size 1 2 3 4 5 6 7 8 9 10

Number of models | 5 5 8 6 13 15 15 15 15 15

Table 2: Riboflavin data: Number of unique models for each model size after running the
algorithm from 3 different starting points

this gene does not hold an effect strong enough comparing to other genes in order
to stand out, it has a unique relation with the outcome predictor that could not be
mimicked using other combination of genes.

e At least one gene from the group {4002, 4003,4004,4006} is contained in all models
of size larger than one, although never more than one of these genes. Genes number
4003 and 4004 appear more frequently than genes number 4002 and 4006. Looking
at the correlation matrix of these genes only, we see they are all highly correlated
(pairwise correlations > 0.97). Future research could take this finding into account
by using, e.g., the group lasso (Yuan and Lin, 2006).

e Similarly, either gene number 1278 or gene number 1279 appear in about half of the
models. They are also strongly correlated (0.984). The same statement holds for
genes number 69 and 73 (correlation of 0.945) as well.

e The importance of genes number 792,1131, and possibly others, should be also exam-
ined since each of them appears in a variety of different models.

We now compare our results to models obtained using other methods, as reported in
Bithlmann et al. (2014). The multiple sample splitting method to get p—values (Mein-
shausen et al., 2009) yields only one significant predictor. Indeed, a model that includes
only this predictor is part of our models. If one constructs his model using the stability
selection (Meinshausen and Biihlmann, 2010) as a screening process for the predictors, he
would get a model consisting three genes, which correspond to columns number 625, 2565
and 4004 in our X matrix. However, this model is not included in our top models. In fact,
the highest MSE for a model in our 8 models of size 3 is 0.2047 while the MSE of the model
suggested using the stability selection is 0.2703, more than 30% difference!

5.2 Air pollution

We now demonstrate how the proposed procedure can be used for traditional, purportedly
simpler, problem. The air pollution data set (McDonald and Schwing, 1973) includes 58
Standard Metropolitan Statistical Areas (SMSAs) of the US (after removal of outliers). The
outcome variable is age-adjusted mortality rate. There are 15 potential predictors including
air pollution, environmental, demographic and socioeconomic predictors. Description of the
predictors is given in Table 4 in the appendix.

There is no guarantee that the relationship between the predictors and the outcome
variable has a linear form. We therefore include commonly used transformations of each
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variable, namely natural logarithm, square root and power of two transformations. Consid-
ering also all possible two way interactions, we have a total of 165 predictors.

High—dimensional regression model that includes transformations and interactions has
been dealt with in the literature. For example, by using two step procedures (Bickel et al.,
2010) or by solving a relevant optimization problem (Bien et al., 2013). Our procedure
has a different goal, since we are not looking for the best predictive model, but rather for
meaningful insights about the data.

Following the lasso and elastic net step, we are left with 51 predictors with positive ~;
(6 untransformed predictors, 4 log transformations, 6 square root transformations, 9 power
of two transformations and the rest are interactions). Panel (b) of Figure 4 presents the
histogram of the positive values in .

We modify the search algorithm to make it produce results typical to an analysis in-
volving interaction terms. In particular, we search for models such that an interaction term
is included only if at least one of the corresponding main terms is included in the model.
In order to do so, the definitions in (7) and (8) are modified such that the probability of
proposing an interaction term is zero if none of the corresponding main effects is in this
model (excluding the variable chosen to be taken out). On the other hand, main effects are
“protected” of being suggested to be excluded from the model, if any interaction involving
them is part of the current model. We achieve this by setting to zero the probability of
suggesting a predictor when an interaction term involving this predictor is included.

Following our earlier comment on considering satisfactory models, and since we are
looking for more complex models in this example, considering the option of transformations
and interactions, we run the algorithm for x = 5,6, ..., 15, for each k, from three starting
points, and then we keep the 5 best models. In total, we get 164 unique models. Table 3
summarizes the results for prominent main effect predictors, that is, predictors that appear
in at least third of the models we obtained. The table presents a matrix of the joint
frequency of each two predictors. Each cell in the table is the number of models including
both the predictor listed in the row and the predictor listed in the column. The diagonal is
simply the number of models that a predictor appears in. Considering Table 3, the nitric
oxide pollution is invaluable for prediction of mortality rate. This predictor (in a log shape)
appears in a large majority of the models. The percentage of non—white population also
appears in most models. In almost half of them, it appears untransformed, but the same
could be said about this predictor after square root transformation. However, in less than
10% of the models, this predictor appears in both forms. We conclude that this predictor
should be used for prediction of the mortality rate, but the question of transformation
remains unsolved. Similar comments can be made about hydrocarbon pollution.

We turn to the interactions. Because of the way we searched for interactions, it becomes
“harder” for an interaction term to enter a model, and we therefore analyze them separately.
Out of the 26 interactions considered, none clearly stood out above the rest. Five of the
interaction terms appear in about 15% of the models. Two of those involve the percentage of
non—white population, one with the prevalence of low—income, and the other with percentage
of housing units with all facilities. Another of those five interaction terms is the interaction
between percentage of elderly population and the average temperature in January. The
latter main effect appears in about 50 models, and hence did not make the cutoff for Table
3. The percentage of elderly population was not included in either the lasso or elastic net
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1 2 B @ 6) 6 () B8 ()
(1) prec 57 25 25 52 27 29 18 18 27
(2) nwht 81 33 75 34 15 39 37 39
(3) log(HC) 61 60 21 34 9 29 33
(4) log(NOx) 158 67 85 64 56 80
(5) vjant 71 37 25 23 37
(6) vVnwht 85 33 27 45
(7) VHC 66 29 22
(8) jult? 61 24
(9) educ? 83

Table 3: Frequency that each two predictors together in the 164 models. The diagonal is
simply the number of models that a predictor appears in. For example, in 67
models both log(NOx) and +/jant appear.

preliminary steps. However, the absence of age related effect is not so surprising since the
outcome variable, the mortality rate, is age corrected. Nevertheless, since the interaction
term appeared in about half of the models that included January temperature as a predictor,
it can be considered if the main effect is also considered.

6. Discussion

Model selection consistency is an ambitious goal to achieve when dealing with high—dimensional
data. A “minimal class of models” was defined to be a set of models that should be con-
sidered as candidates for prediction of the outcome variable. A search algorithm to identify
these models was developed using a simulated annealing method. Under suitable conditions,
that are outlined in Theorem 1, the algorithm passes through models of interest.

A score for each predictor is given using the lasso, the elastic net and a reduced—penalty
lasso. These scores are used by the search algorithm. They are not necessarily optimal but
we claim that they are sensible. Other scoring methods may achieve better results. On the
other hand, the scores we use here may be used for other purposes. Theoretical justification
for using the elastic net to unveil predictors the lasso might have missed was also presented.
A simulation study demonstrated the capability of the search algorithm to detect relevant
models.

One possible limitation of the proposed algorithm is the number of tuning parameters
to be chosen. In our simulation studies and data analyses, we have found the algorithm
to be quite robust to the parameters’ specification. For ease of applications, we now list
suggested default values for some of the parameters. The tuning parameter of the lasso A,
can be chosen by cross validation. Since the subsequent use of the elastic net is to bring into
surface potential predictors, relatively low value for a in (4) can be taken, say a € (0.2,0.5).
A possible choice for A is (0,0.01,0.02,...,1). As always when using simulated annealing, T'
and N; may be more complicated to choose. We used for all simulations and data analyses
the sequence 7' = (10 x 0.7%,10 x 0.72,...,10 x 0.7%°) and N; = 100. This leaves us with the
decision of which models sizes k to consider. A preliminary run with, say x = 1,2, ...,10
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and, for example, comparing the MSEs for k = 5 and x = 10, may imply if there is a
substantial benefit when adding variables, before moving to larger models. Similarly to
many algorithms, the proposed simulated annealing algorithm should be initiated from
multiple points.

As illustrated using real data examples, a class of minimal models can be used to derive
conclusions regarding the problem at hand. This is rarely the case that a researcher believes
a one true model exists, especially in the p > n regime. Therefore, we suggest to abandon
the search for this “holy grail”, and to analyze the class of minimal models instead. While
retreating from the choice of a single model, and instead analyzing group of models, offers
advantages, it may complicate standard data analysis in at least two ways, even when
putting computational issues aside. The first is a practical one and concerns the question of
which analyses should be carried out once a minimal class of models, or at least its sample
version, is obtained. Model averaging can be used to estimate association parameters.
Similarly, predictions from multiple models can be averaged. More precise predictions or
estimates may be obtained by coupling the obtained models with weights, possibly using
the empirical MSEs. More robust aggregation can be obtained by using medians instead of
averages, to deal with the fact that each model consists of a different number of predictors.
Another, less formal, data analysis strategy is to combine subject matter knowledge with
wealth of many models. We have demonstrated such exploratory analyses in Section 5, by
comparing the proportion of models each predictor, or multiple predictors, are included.

The second issue is a conceptual one. If we indeed quit from searching for a single model,
i.e., a single group of predictors, what are our assumptions about the underlying mechanism
that the data came from. Do we believe such a mechanism exists? One answer is that we
do not need to think about how the data was created, but how can we describe the data.
This, however, offers only a partial answer because we are focused on exploratory analysis,
while model selection is of interest from inferential perspective as well. If more than one
model describes the data adequately, which one is the true one? Does it matter? While
most data are not created following one’s computer program, disbelieving in the existence
of a true model certainly gives rise to further questions.

It is well known that achieving good prediction and successful model selection simulta-
neously, in a reasonable computation time, is impossible, especially in the high—dimensional
setting. We therefore suggested here to make a compromise. Our approach is not neces-
sarily optimal for prediction, nor for model selection. However, it offers a data analysis
method that takes into account the uncertainty in model selection, but ensures reasonable
prediction accuracy. This method can be used for either prediction, parameter estimation
or model selection.
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Appendix A. Proofs
A.1 Proof of Theorem 1

We start with the following lemma.

Lemma 4 Assume Y = p+ € and assume also (A1)-(A4). Let Sy = {S : |S| = k, s =
(XEXs)"'XTY} be the set of all models with k variables, such that B, the LS estimate,
1s unique. Denote SJ* SU{j}, 7 &S for a model that includes S and additional variable
j not in S. We have

T . .

X * * — X =

max e (Xs; fs; — Xsfis) = op(n)
1<j<p

Let &; be the vector of coefficients obtained by regressing X @) the %" column in X, on Xg

and let P; be the projection operator on the subspace spanned by the part of X (4) which

is orthogonal to the subspace spanned by Xg. That is,

(XU) — Xg&) (XD — Xg8;)T
|1 X0) — X513

P =

Let qu* be the coefficient estimate of X in model S]* and let 55* be the coefficient
J

estimates of the variables in .S but for the model S7. Since (X X0 - x 55 ) is orthogonal to
the subspace spanned by the columns of Xg we have

XS;BS;. = X(j)ﬁg; + Xsﬁg;j
= (XY - Xs¢;) jsj + XS(Bg;j +& Afé;)
= (xU) — Xsfj)Bé; + XsBs
iy + Xsfs.

Therefore, R )
GT(XS;,BS; — Xgﬁg) = ETPjM -+ ETPje.

Now, since ||Pjull3 < [|u|l3 = O(n), we get that for all j, €l P;u = Op(yv/n). Next, let
21, ooy Zphtr be N (0,02) random variables and observe that the approximate size of the set
{8k} x {1,...,p} is pF*1. We have for any a > 0

1 [a 2k + 1)1 1
P | max —e Pe>a SP( max |Z;| > n><0\/(+)ogp+o()'
SeSy n 1<j<ph+1 o2 an

1<5<p

Now, since p = n® and k = o(n/logn) we get that

1
P | max —e'Pje>a | =o(1)
SESE N
1<5<p

and we are done. O
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We can now move to the proof of Theorem 1. For simplicity, the notation of i as the
iteration number for the current temperature ¢ is suppressed. Note that it is enough to
only consider models such that SN S = () and to consider m = sg. Denote Q;(S, g,7) for
the probability of a move in the direction of S in the next iteration, that is, the probability
of choosing a variable j € S N S¢ and replace it with a variable ¢ € S° N S. Denote
S"={S5/{j}}U{g} for this new model. We have

Qt(Sagaj)

= Pr(S — S') min ll,exp (

1Y — XsBs]3 = IV = Xs:Bs|3 ) Pr(s" = 9)| (13)
t Pr(S — 5"

where Pr(S — S’) is the probability of suggesting S, given current model is S. Now, since
Ymin > ¢y and since the maximal value in v equals to one by definition, we have for all

SCA,

C’y(h’y - 50) < Z’Yu < h'y — S0

ugS
1
s> — <2 (14)
veS To &y

Now, by substituting (14) into (7)-(9) we get

1/7; c
Pr(S — §') = —9 i > L
( ) ZU%S qu Z’UES ’Y% So(h’Y - SO)
, ) 1 (15)
PT‘(S — S) _ ’L] Zu¢s’7u ZUGS oo C4
Pr(S—5" 95 Yugs T ves n
Next, we have
1 512 1 A 2
=Y = XsBs|lz — = ||IY — X Bs|[3
n n
1 . . T . R
= [(Y — Xs/Bs) + (Y — Xsﬁs)} (XSIBS/ - Xsﬂs)
1 . R
= ﬁYT (XS/BSI - Xsﬁs)
1 A - 1 A 5
= EIU,T <XS/5$I — XSBS) + EGT (XS’BS’ - XSBS)
1 R R
= HMT <XS’/BS’ - Xsﬂs) +An(S, 5) (16)

where the second equality is due to BS and By being LS estimators. We get that an
estimator in linear model achieves better (lower) sample MSE, if the correlation of the
prediction using this estimator with Y is larger. Now, denote S” = S’ U S. We have

1 . . . .
An(S,8") = —€" | (Xgnfsr = XsBs) = (XonBsr — X5:Bs)
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and if we apply Lemma 4 twice we get that A, (S,S") = 0,(1). Now, regarding the first
term in (16),

1 A A 1
‘*EF<X9ﬁ9-—XbﬁS>::*MT(P&y-—ﬁﬁy)
n n

1 2 2 ! ! (17)
= (IIPs 5 — [Pspll5) + A%L(S, S")

where A/ (S,S') = 2T [Psie — Pse]. The content of the proof of Lemma 4 implies that
AL (S,S8") = op(1). Now, by (16) and (17) and since Assumption (B1) holds for t; we get
that for large enough n

1 N R
= (Y = XsBsl3 — I = Xs:Bs[3) > dtloge,. (18)
Now, by substituting (15) and (18) into (13) we get that for large enough n,

62

S N> 7
Qto( 797.7) = SO(h’y_SO)
forall S #S5,j€SNS°and g € S°NS. (11) follows from this immediately since for any
integer m and for all S # S,

T {S:SnS=0} s0(hy — 50
jESNSe
gesenS

C2 %0
P (S'1S) > min [Qt(S,gvj)]SOZ[”)] :

A.2 Proof of Proposition 2

Recall that the elastic net estimator BEN minimizes

1Y = XBI5 + M[B] + Al16]13 (19)

Now, WLOG assume that BEN is a solution such that B{EN > 0. For convenience, we omit
the “EN” superscript from now on (i.e., 3 = #¥V). Define the subspace

B:={B:Vi#1,2 B = Bh B = 7'31, B2 =(1-— 7)31}. (20)

If the minimum of (19) over B is obtained for 7 # 1, then given that X() is part of the
elastic net model, predictor X is also part of this model.

WLOG, write down X as X = (X(12) X_(12)) where X(15) = (X1} X)) are the
first two columns of X and X_ (o) are the rest of its columns. Similarly, we have pT =
(652) Bz’(m)) where (19 is the first two entries in the vector 8 and _(19) is the rest of
the vector. Define Y =Y — X_(12)B—(12)- We can rewrite (19) as

1Y — X2y 8a)l13 + M (1B_az)| + [Baz]) + A2(|1B_az)13 + [|Baz)3) (21)

If the minimum of (21), on B, is achieved at 0 < 7 < 1 then 32 must be non zero.
Minimizing (21) on B is essentially minimizing

- 237TX(12)/5(12) + |\X(12)5(12)H§ + AQHB(lZ)H% (22)
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on B . Now, by the definition of B in (20) and using simple algebra we get that (22) equals
to

P [BJT (T(X@) —x @y - X(2)) ~ B (1 — 7)1 = p) + Aef? <1 —r(1— 7))] .

This is a quadratic function of 7, and by equating its derivative to zero we get that

. 1 YT(x® — x(W)

2 280 +1-)p)

is the minimizer of (19) (the coefﬁcient of the quadratic term is positive). Note that for
X@ = XM we get the expected 7* =3 L solution. Note also that this reveals no information
regarding the lasso where Ao = 0. Next, we get that 0 < 7* < 1 if

YyT(x® — xM)
Bi(de+1—p)

Since || X — XM||2 = 2(1 — p) we have

<1 (23)

YTX@ - x| < ST WX - X < |[¥]l2v/2(1 - p),

using the triangle inequality and then Cauchy—Schwartz inequality. It is assumed that
B1 > cg > 0 and it is known that ||Y]|a < ||Y||2. Therefore, we may rewrite (23) as

V2|[Y]]2v/T—p
oot 1—p) ©
Now, Denote t = /1 — p,u = HZHQ, we have
5
— \/ﬁut + Xo > 0.

For Ay > u , we get the result we want for all p’s. For Ay < % v’ we have

V1—p> u? — 2)\2), (24)
VI—p< Va2 —2n). (25)

The RHS of (24) is larger than 1 if Ay < v/2u — 1. That is, there is no suitable p for this
case. The RHS of (25) is always positive, and for the same condition Ay < v/2u — 1, it also
meaningful, i.e., (u — vuZ — 2X\3) < v/2 and in terms of p,

1
p>1——(u—vu2—2X\)?

2

E\H&\H

or alternatively,



NEvVO AND RiTov

and by Taylor expansion for 22 /u we get
2

A3
>1_ 22
2u?

A.3 Proof of Theorem 3

The proof is similar to the proof of Proposition 2. Let 5 ﬂEN be the elastic net estimator
and denote ﬁM for the values in ﬁ corresponding to the set of predictors M. We can
partition the set of potential predictors {1, 2, ..., p} to four disjoint subsets: M) My NMS;
M7 N My and M; N My. We replace (20) with

B:={B: By = B Bannats = Banonss, (26)
Bannmg = TBvyrmg, Bugans, = (1 —7)0 By g - (27)

where [y is defined as the values in B corresponding to the set M and ©' is the matrix of
coefficients obtained from regressing X, Mg on X MgnMs- We define © to be an augmented
version of ©’, which we obtain by regressing X, on Xjz,. That is,

Xn1,0 = Par, Xy (28)
Note that on B,
XB=XPy) + X By + (1= 7) X008,
Recalling that Y =Y — X B (-, minimizing (3) on B is equivalent to minimize
1Y = 7 X0 8o, = (1= 7) Xan, OB, B+ [71|Basy [[1 + (1 = )10, 1]
e[ Ban |3 + (L =) 108w 3] (29)
as a function of 7. Using a first—order condition and substituting (28) we find that (29) is

minimized for

T =

_(? - PM2XM1/6)M1)T(I - PMz)XM1BM1 + %(HBJVHHI - ||@BM1”1) - )‘2||®BM1H%

(I = Pas,) Xar, Baa, 112 = Xol|Ban |12 — A2| 1080, ||2

Before we continue, note that if X9 = X; then O is the identity matrix and Pr, Xpr, = X7.
Substituting these facts into (30), we get that 7* = % as one might expect. Same result is
obtained for the case My C M;.

As it can be seen in (26), the coordinates of BMZ are all different than zero if 7% < 1.

Now, since Py, (I — Pur,) = 0 we get that 7% < 1 if

(30)

~ A N A A
YL = Par) Xan Ban, + 12 = Pas) Xar, Ban, |13 — 511080, I

A .
> —jHﬁMlﬂl — X8, |13

which is certainly true if

3 . N N . . 3 .
YTPMzXM1BM1 - ?1||@BM1||1 > _?1||/BM1||1 - )‘2||/8M1||% + YTXM15M1 (31)

which is true if the condition in (12) is fulfilled for the appropriate c¢;. |
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Appendix B. Supplementary table for Section 5.2

Predictor Description

prec Mean annual precipitation in inches

jant Mean January temperature in degrees F

jult Mean July temperature in degrees F

age65 Percentage of population aged 65 or older

pphs Population per household

educ Median school years completed by those over 22

h facl Percentage of housing units which are sound and with all facilities

dens Population per square mile in urbanized areas

nwht Percentage of non—white population in urbanized areas

wtcl Percentage of employed in white collar occupations

linc Percentage of families with income < 3,000 dollars in urbanized
areas

HC Relative pollution potential of hydrocarbon

NOx Relative pollution potential of nitric oxides

SUL Relative pollution potential of sulfur dioxide

hum Annual average percentage of relative humidity at 1pm

Table 4: Potential predictors for mortality rate in Section 5.2
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