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Abstract
We study the usefulness of conditional gradient like methods for determining projections onto con-
vex sets, in particular, projections onto naturally arising convex sets in reproducing kernel Hilbert
spaces. Our work is motivated by the recently introduced kernel herding algorithm which is closely
related to the Conditional Gradient Method (CGM). It is known that the herding algorithm con-
verges with a rate of 1=t , where t counts the number of iterations, when a point in the interior of
a convex set is approximated. We generalize this result and we provide a necessary and sufficient
condition for the algorithm to approximate projections with a rate of 1=t . The CGM, which is in
general vastly superior to the herding algorithm, achieves only an inferior rate of 1=

p
t in this set-

ting. We study the usefulness of such projection algorithms further by exploring ways to use these
for solving concrete machine learning problems. In particular, we derive non-parametric regression
algorithms which use at their core a slightly modified kernel herding algorithm to determine pro-
jections. We derive bounds to control approximation errors of these methods and we demonstrate
via experiments that the developed regressors are en-par with state-of-the-art regression algorithms
for large scale problems.

1. Introduction

Convex sets and projections onto convex sets are omnipresent in Machine Learning and Statistics.
Projections appear already in the most basic approaches like in ordinary least squares regression
where the the estimate can be interpreted as the projection of some target vector onto a linear sub-
space. By adding constraints one arrives naturally at a convex projection problem. Similarly, the
ridge regressor and Gaussian process regressor are closely related to projections onto balls and the
lasso estimator (Tibshirani, 1996) corresponds to a projection onto a simplex (again a convex set).
Regularization approaches with convex constraints are, in general, closely related to the problem of
determining a projection. For example, sparsity constraints are often enforced by optimizing over
the standard simplex and algorithms that determine projections onto the simplex have been studied
extensively (Duchi, Shalev-Shwartz, Singer, and Chandra, 2008).

This paper is about exploring the usefulness of some closely related algorithms for determining
projections onto convex sets in the large data context. Our inspiration for this line of research
dates back to the paper by Welling (2009) in which an algorithm, called the herding algorithm, has
been introduced which computes compact representations of probability measures. By a compact
representation we mean here a representation that is supported on few points of the sample space
and that can be used to calculate efficiently expectations of functions. The algorithm has garnered
attention in recent years and various generalizations of the method have been explored. In one of

c
2018 Steffen Grünewälder.
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these works it has been studied how the algorithm behaves in a non-parametric setting where a kernel
function is defined on the sample space (Chen, Welling, and Smola, 2010). The authors analyzed
the interplay between the algorithm and the reproducing kernel Hilbert space (RKHS, Aronszajn
(1950)) associated with the kernel function. Their main finding has been that the algorithm has a
guaranteed rate of convergence towards the given probability measure (or, more accurately, towards
its representer in the RKHS) of 1=t , where t is the number of iterations for which the algorithm
is run. The rate of 1=t is an improvement over randomly selected support points, which would
guarantee a rate of 1=

p
t , but the rate is slow compared to what many other numerical algorithms

yield. It is worth pointing out that we consider here convergence in k�k, while in the literature
results are often reported for quadratic objectives like k�k2. The virtue of this algorithm is that the
computational costs per iteration are linear in the sample size. These low costs in dependence of the
sample size make this algorithm, and related algorithms, attractive in the large data context where
algorithms with faster rates of convergence are often prohibitively expensive to compute.

The herding algorithm is iterative and uses at its core an inner product between the approxi-
mation error y � pt at iteration t and a set of candidates S that can be chosen to reduce the error.
Here, y lies inside a convex set C , pt is the approximation of y at iteration t and S is a subset of
C . The algorithm selects elements which maximize this inner product hy � pt ; xi over x 2 S . We
asked ourselves somewhat naı̈vely what would happen if y lies outside of C . One would hope that
the algorithm converges in this case to the point in C that is closest to y, or in other words, that it
would converge to the projection Py of y onto C . The first observation we had was that this will,
in fact, be true if y � Py stands orthogonal on the (affine) subspace spanned by C and if Py lies
in the (affine) interior of C , because in this case the algorithm is completely unaffected by y � Py
and it behaves equivalently to the case where we would apply it directly to Py 2 C . In this setting,
the standard guarantees tell us that the algorithm converges with a rate of 1=t to the projection.
Our initial observation was in a way naı̈ve since the literature on herding provides a way to show
that the algorithm with an added line search converges to the projection. The argument to verify
the convergence is based on the observation from Bach, Lacoste-Julien, and Obozinski (2012) that
the herding algorithm with an added line search is equivalent to a well known method called the
conditional gradient method (CGM, Frank and Wolfe (1956)). Basic guarantees on the convergence
of the CGM imply directly that the method converges with a rate of 1=

p
t to the projection (see our

Literature Section below for more details). This convergence result is reaffirming, however, the rate
of convergence the result guarantees is a slow rate of 1=

p
t and not 1=t .

The rate of 1=
p
t is, in fact, the actual rate with which CGM converges in non-trivial projection

problems. The reason for this is that, in interesting cases, projections lie in the boundary of the
convex set and CGM itself achieves only in exceptional cases a rate that is better than 1=

p
t if the

solution of an optimization problem lies in the boundary (Cannon and Cullum, 1968). In recent
years extensions of the basic CGM algorithm have become popular and it was shown that a linear
rate of convergence (a rate significantly better than 1=t ) is achieved by a particular extension, the
CGM with away steps algorithm, even if the solution lies in the boundary (Lacoste-Julien and Jaggi,
2015). This is a significant result, but it comes with a caveat: we gain strong guarantees only
if the convex set has a large pyramidal width. For instance, the d dimensional cube has a large
pyramidal width and the authors provide an upper bound on the reduction of the approximation
error in the order of 1=d2 per step. The convex sets we are mainly interested in are of the form
C D fk.x; �/ W x 2 Xg � H , where k is the reproducing kernel of the RKHS H . Here, the
dimension of the spanned subspace is often equal to the sample size (when using a Gaussian kernel,
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Figure 1: An illustration of the application of the herding algorithm to a projection problem. The
aim is to find the projection of a ray starting at the black dot onto the house. The house
is compact and convex. The herding algorithm finds for such sets approximations of the
projection with an accuracy in the order of 1=t , where t is the number of iterations. The
red dots show the approximation after 0; 2; 5 and 100 steps with an initial estimate that
equals the North-West corner on the bottom of the house.

for example). Furthermore, C is significantly more complicated than a cube and we expect that the
upper bound gives us guarantees on the reduction that are significantly worse than 1=n2 per iteration,
where n is the size of the sample. In the large data context, where n � 105, these reductions per
step are tiny. Another recent approach to improve the convergence behavior of the CGM has been
developed in Garber and Hazan (2013). Standard CGM is in this approach combined with what
the authors call a Local Linear Optimization Oracle (LLOO) and it is shown that a linear rate of
convergence is achieved by their method. Like in the away step approach the geometry of the convex
set factors into the performance. For the method from Garber and Hazan (2013) the geometry
affects the run-time of the LLOO and, hence, the run-time of the CGM with the added LLOO. The
approach works well for simple shaped convex sets like the simplex but becomes difficult when
C has no particular structure as in our RKHS setting. Understanding better the relevant geometric
properties of C with respect to the reproducing kernel is an intriguing problem, but it is beyond the
aims of this paper. We aim here for a deeper understanding of the core algorithms and their interplay
with the projection problem in Hilbert space. The following figure visualizes the relation between
the different CGM like methods. We focus in this paper on the methods in the shaded area.

Herding CGM
CGM with away steps

CGM with LLOO

:::

Figure 2: The relation between various CGM like methods.

CGM is known to converge with a linear rate if there exists a ball around the solution inside
the convex set (this is also known as Slater’s condition, Beck and Teboulle (2004)). Similarly, for
the herding algorithm it has been shown that this very same condition guarantees a rate of 1=t
(Chen et al., 2010). To the best of our knowledge, both convergence results have been derived
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independently of each other and it is telling that in both approaches the same assumption plays a
fundamental role (the existence of a ball around the optimum). The assumption appears naturally
in the analyses since it allows a strong reduction of estimation errors per iteration independently of
the direction in which the errors point. If this assumption does not hold then there are directions
which pose problems, i.e. if an error builds up in such a direction then these errors will only decay
slowly over time. This is why solutions that lie in the boundary pose problems: errors that point
away from the convex set can not be easily reduced. We refine the convergence argument to be
able to deal with such errors. On a high level our approach can be described in the following way:
consider a convex set with finitely many extremes then each point in the boundary is in the relative
interior of a face of the original convex set. For example, in Figure 1 our convex set is the house
and we want to compute the projection of the black dot onto the house. The dotted line visualizes
the process of projecting onto the house and the red dot at the end of the line is the projection that
we want to determine algorithmically. The projection does not lie in the interior of the house but it
lies inside a face of the convex set (the triangle that contains the projection). A face of a convex set
is in turn a convex set and if we would apply the algorithm directly to this face then we could show
fast convergence. In general, we can not identify the face that contains the projection without using
significant computational resources. However, we can treat elements outside of this face, which are
chosen by the algorithm, as perturbations that disturb the behavior of the algorithm. For instance,
we applied the herding algorithm to the problem in Figure 1 and we used an initial approximation
of the projection which corresponds to the North-West corner on the bottom of the house. The
dashed line in red shows how the approximation evolves over multiple steps and how the error that
is introduced by the initialization shrinks over time. Our line of attack in the theoretical part of
this paper is to control such perturbations and to show that the rate of convergence of the herding
algorithm is not negatively affected by these.

We were also interested in understanding how CGM like algorithms to determine projections in
Hilbert spaces can be exploited in statistical problems. A blueprint is given in the paper by Chen
et al. (2010) where the herding algorithm is applied in an RKHS H to approximate elements inside
a compact and convex set C � H . It is natural to consider extensions in which C is modified
in a suitable way to represent a space of solutions of certain statistical problems. We showcase
this approach in the regression problem. In this case, C is the space of regression functions. The
projection approach itself is generic and one can gain with relative ease algorithms that infer kernel
regressors from data. We call these CCP-regressors where the acronym CCP stands for compact
convex projection. The advantage of this approach is that the corresponding algorithms are cheap to
compute and they are applicable in the large data context. We find in experiments that the algorithms
we derive are en-par with established kernel regression algorithms like the Gaussian process or the
fast kernel ridge regressor (FastKRR, Zhang, Duchi, and Wainwright (2013)).

1.1 Literature

We aim in this section for a short overview summarizing key results that put our work in perspective.
We start by stating the herding algorithm for approximating a point x� inside a convex set C that
is induced by the finite set of points S , i.e. C D cchS , where cch denotes the closed convex hull
operator. C is typically a subset of Rd equipped with the Euclidean inner product or some other
Hilbert space. Given the starting value w0 D x� and the initialization t D 1 the herding algorithm
iterates
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1. choose xt 2 arg maxx2S hwt�1; xi,

2. set wt D wt�1 � .xt � x�/,

3. set t  t C 1.

This basic routine is combined with some termination criterion like running the algorithm for T
iterations. The approximation of x� is then .x1 C : : :C xT /=T where T denotes here the number
of iterations the algorithm was run for.

The herding algorithm is a special case of what is called the conditional gradient method (CGM)
or the Frank-Wolfe algorithm (Frank and Wolfe, 1956; Bach et al., 2012). The conditional gradi-
ent method is known since the fifties and various results about its convergence behavior have been
derived throughout the years. The CGM method tries to approximate the minimal value of a differ-
entiable function f W Rd ! R on a set C by iterating two steps after an initialization with some
value x0 2 C :

1. Choose an x? 2 arg minx2C hx � xt�1;rf .xt�1/i,

2. perform a line search over � 2 Œ0; 1�, i.e. choose a

�? 2 arg min
�2Œ0;1�

f .xt�1 C �.x
?
� xt�1//

and update xt D xt�1 C �?.x? � xt�1/.

Standard results for the CGM method hold for continuously differentiable functions on convex
compact subsets C of Rd (Beck and Teboulle, 2004). Let f � D minx2C f .x/ then it is known that
a sequence fxtgt�0 produced by the CGM attains the minimum eventually, i.e. limt!1 f .xt / D

f � and there exists a constant b such that f .xt /�f � � b=t . A differentiable function on a compact
set is Lipschitz continuous and the constant b depends on the Lipschitz constant and on the diameter
of the set C , diam .C / D supx;y2C kx � yk. We can use the CGM to find the projection of z onto
C . Letting f .x/ D kx � zk2, with k�k the Euclidean norm, we can observe that f is continuously
differentiable with derivative 2 hx � z; � i and we are assured that kxt � zk2�minx2C kx � zk

2
�

b=t for some constant b and all t � 0. Observe that this rate is slower then what we aim for since we
gain here a rate of about t�1=2 for the convergence of kxt � zk. The norm itself is not differentiable
and we can not derive the faster rate of 1=t through these results.

It is also known that the rate of convergence can not be improved in general (Cannon and Cul-
lum, 1968)[Thm. 2]. Hence, stronger assumptions are needed to gain faster rates of convergence.
One typical assumption is that Slater’s condition holds. Slater’s condition is in our context the as-
sumption that z 2 intC , where intC denotes the interior ofC . Proposition 3.2 in Beck and Teboulle
(2004) demonstrates that if Slater’s condition is fulfilled then the CGM produces a sequence fxtgt�0
which satisfies

kxt � zk � be
�tq=2

for some positive constants b and q. The rate is significantly faster than what is known for the
herding algorithm but the result is not applicable to the problem of computing projections since
(non-trivial) projections lie in the boundary of C and not in the interior. These convergence results
are nevertheless fundamental and they are a corner stone for various studies. For instance, in Jaggi
(2013) these convergence results for the CGM are combined with a duality argument to give bounds
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on the duality gap between the primal and dual solution of the optimization problem. Another line
of research considers extensions of the CGM which are build to circumvent the sub-linear rate of
convergence. We discussed already the most prominent approaches: the classical approach from
Wolfe (1970) in which away steps are added to the CGM and the approach from Garber and Hazan
(2013) which both guarantee a linear rate of convergence.

Much of the research on the CGM has been done in the general context where an arbitrary con-
tinuously differentiable function on a convex set is optimized. However, the more specialized prob-
lem of determining projections onto convex sets has also garnered attention. Especially, in the con-
text of sparsity. The convex set C that is typically considered in this context is the standard simplex
in Rd which is �d�1 D cch fen W 1 � n � dg; where e1; : : : ; ed is the standard basis in Rd . The
simplex�d�1 is of particular importance because `1-constraints can be naturally expressed through
it: w 2 Rd

C
with kwk`1

D 1 implies that w D
Pd
iD1 hw; ei i ei 2 cch fen W 1 � n � dg D �d�1

(and vice versa). The CGM acting on the simplex can be used to find sparse solutions for a variety of
problems. Most notably the lasso estimator (Tibshirani, 1996) can be found through an application
of the CGM to a simplex (Clarkson, 2010). In Duchi et al. (2008) a similar problem is studied. The
motivation are there algorithms which require projections onto a simplex. The authors develop a
projection algorithm that can be computed in the order of d operations on average (the algorithm
is stochastic) where d is the dimension of the simplex. This resembles the order of run time of the
CGM.

Another set of important results for the CGM rely on strong convexity assumptions about the
function f and the set C , see for exampleGarber and Hazan (2015) and references therein. Under
such assumptions one can obtain a rate of 1=t for finding the projection on C , i.e. the rate of
convergence applies independently of where in C the solution lies. The boundary of a strongly
convex set C bends significantly. In our paper we assume very different properties of C . We are
interested in the convex hull C of a finite set S and faces of such sets C are flat, i.e. they do not
bend.

Closely related to the closed convex hull of a set S is the minimum enclosing ball of S (MEB,
Clarkson (2010)). The difference between the two is that an Euclidean ball bends (the Euclidean
norm is uniformly convex) while the closed convex hull interpolates the boundaries through hyper-
planes. For example, the MEB of S D f˙e1; : : : ;˙ed g is the Euclidean unit ball while cchS is
an `1-ball (a diamond). There exist efficient algorithms for determining the MEB under different
conditions. Furthermore, a variety of machine learning problems can be rephrased as the problem
of finding an MEB (support vector algorithms are approached in this way in Tsang et al. (2005a,b)).

1.2 Contributions

In this paper we study the usefulness of conditional gradient methods to determine projections
onto compact convex sets in Hilbert spaces. The contributions split naturally into theoretical and
applied contributions through which we explore this theme. The theoretical contributions are two
theorems. Our first theorem shows that the herding algorithm retains its rate of convergence of 1=t
if, and only if, the perturbations introduced through points outside the minimal face are coupled
in a certain way. The approach we use (considering the minimal face to which well-known results
can be easily adapted and controlling perturbations which are introduced by elements outside of
the minimal face) is to the best of our knowledge new and we expect that this line of reasoning
can be extended in the future to study more advanced methods like the CGM with away steps.
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Our second theorem analyses why the standard CGM fares worse in this setting than the herding
algorithm. On the applied side we show how projections onto compact convex sets in kernel space
can be exploited to develop novel machine learning algorithms. We demonstrate this by developing
a new and fast kernel regressor that is en-par with state-of-the-art non-parametric regressors. We
provide approximation error bounds for the method by means of a dual approach and we study its
performance in experiments. The approximation error bound is a novel modification of an approach
from Wolfe (1976) which sacrifices tightness in favor of a significantly reduced computation time.

2. Compact Convex Projections

We use the following algorithm to find the projection of y 2 H onto the compact convex set
C � H in terms of a set of support points from the compact set S � C which contains the ex-
tremes of C . In the following we denote the extremes of C with exC , i.e. exC D fx W x 2
C; there exists no y; z 2 C; ˛ 2 .0; 1/ such that x D ˛y C .1 � ˛/zg.

Algorithm 1. Input: y 2 H , T 2 N, and S � H .

1. [Initialize] Set w0 D y; t D 1.

2. [Optimization oracle] Choose xt 2 arg maxx2S hwt�1; xi.

3. [Update weight] Set wt D wt�1 � .xt � y/.

4. [Iterate] If t < T then increment t by 1 and go back to 2.

5. [Terminate] Return the approximation .x1 C : : :C xT /=T .

A maximizer exists in Step 2 because we search for a maximum of a continuous function on a
compact set. If there are multiple maximizer then we can choose an arbitrary one, for instance,
we can enumerate S and choose the maximizer with the lowest index. This is the herding algo-
rithm as stated in Section 1.1 with the only modification being that it is applied to y which can lie
outside of C . The weight at step t is essentially the approximation error scaled up by t because
wt D .tC1/y� .x1C : : :Cxt / � t .y�pt /, where pt D .x1C : : :Cxt /=t is the approximation.
We can also add a line search to the optimization:

Algorithm 1 (ls). Input: y 2 H , T 2 N, and S � H .

1. [Initialize] Set w0 D y; t D 1.

2. [Optimization oracle] Choose xt 2 arg maxx2S hwt�1; xi.

3. [Line search] Calculate Q̨ t D hwt�1; wt�1 C .xt � y/i = kwt�1 C .xt � y/k2.

4. [Line search] If t D 1 set ˛t D 1, otherwise set ˛t D 1 ^ Q̨ t .

5. [Update weight] Set wt D .1 � ˛t /wt�1 � ˛t .xt � y/.

6. [Iterate] If t < T then increment t by 1 and go back to 2.

7. [Terminate] Set ˇi D ˛i
QT
jDiC1.1 � j̨ / for all i � T and return the approximation

ˇ1x1 C : : :C ˇT xT .

We use here the convention that 0=0 D 1 which implies that ˛t D 1 if xt D pt . The weight in the
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line search algorithm is similar to the weight of the herding algorithm scaled down by 1=t , i.e. the
weight in the line search algorithm iswt D y�.ˇt1x1C: : :Cˇ

t
txt /where ˇti D ˛i

Qt
jDiC1.1� j̨ /.

The choice Q̨ t D hwt�1; wt�1 C .xt � y/i = kwt�1 C .xt � y/k2 minimizes kwtk over all choices
of Q̨ t 2 R. We need to be assured that the scaling ˛t lies in the interval Œ0; 1� to guarantee that we
have a convex combination of points of S as the approximation. Q̨ t is always non-negative since for
t � 1

hwt�1; wt�1 C .xt � y/i D hwt�1; xt i�

t�1X
iD1

ˇt�1i hwt�1; xi i � hwt�1; xt i�max
x2S
hwt�1; xi D 0;

where we define a sum from i D 1 to 0 to be 0. The inequality above holds because the ˇ’s are
non-negative and they sum to 1. Q̨ t can, however, be strictly larger than 1. Hence, to guarantee that
our approximation is a convex combination of points from S we need to force the scaling factor
back into the interval Œ0; 1�. We do this in the algorithm by assigning the value 1 to the scaling
factor in this case. This choice minimizes kwtk because the derivative of kwtk2 with respect to ˛
is non-positive for all ˛ � Q̨ , that is

2.˛ kwt�1 C .xt � y/k
2
� hwt�1; wt�1 C .xt � y/i/ � 0; for all ˛ 2 .�1; Q̨ t �:

Note that Algorithm 1 is the herding algorithm applied to a point outside the convex set. This
corresponds to the CGM where the optimization over the step size is replaced by a step size of 1=t .
Algorithm 1 (ls) is the CGM algorithm applied to the problem of finding the projection of y on the
convex set spanned by S .

2.1 Rate of Convergence

We take a closer look at the convergence behavior of the herding algorithm and the standard CGM
when applied to a projection problem. It is known that the herding algorithm converges with a
rate of 1=t to elements in the interior of compact convex sets in Hilbert space (this is shown in
Chen et al. (2010) for what is called the marginal polytope. The same proof works for arbitrary
compact convex sets in a Hilbert space). Hence, if we want to approximate the projection of an
element y onto the convex set C and y is already in the interior of C (in essence a trivial projection
problem) then standard proofs guarantee a rate of 1=t . Obviously, the interesting case is one where
the projection lies in the boundary. We provide a theorem below (with the proof being postponed to
Section 6.1, p. 26) which extends current results to the case where y lies in the boundary or outside
the convex set if an assumption on the perturbations is fulfilled. We also show that this assumption
is both necessary and sufficient for the algorithm to converge with a rate of 1=t . We conclude this
section by presenting a number of settings in which this assumption is fulfilled.

It is instructive to go through the main ideas of our approach. Consider again Figure 1. We
can observe that there is a minimal face of the convex set which contains the projection Py of y
onto the convex set, i.e. there exists a face that contains Py and is a subset of any other face that
contains Py. In the figure, the minimal face is the convex set which contains the projection, i.e.
the red dot. The vector y � Py, with Py 2 C being the projection, stands orthogonal on this
minimal face. Furthermore, this minimal face is either an extreme point or Py lies in the relative
interior of it. In the latter case we have a ball around Py (relative to the affine subspace spanned by
the minimal face) which is contained in the minimal face. This property of the existence of a ball
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(a) (b)

UF

Ub

Uı

(c)
UF ˚ Uı

Figure 3: (a) A visualization of Lemma 1. (b) The figure depicts a triangular prism. The point
of projection Py is marked by the red dot. The minimal face that contains Py is the
top edge of the prism. The red arrows visualize the three subspaces UF ; Ub and Uı .
(c) The figure shows the projection of a set Cc onto the subspace UF ˚Uı (the polytope
enclosed by the thick line). The red dot marks the projection of Py onto the subspace and
the red arrow visualizes the error at some stage t , i.e. wt . The horizontal line represents
fx W hwt ; xi D 0g. The inner product between the black dot and wt might be very
different if evaluated over the whole space, i.e. if the component Pbwt is considered too.
In particular, the polytope might appear to the algorithm like the modified polytope in
which the black dot is replaced by the blue dot. In this modified polytope the best aligned
element is the leftmost point.

around the element that we want to approximate is of crucial importance in all current approaches
that demonstrate a fast reduction of error. We can therefore hope for a fast reduction of error in the
affine subspace spanned by F . In fact, since y � Py stands orthogonal on the minimal face, we
can also observe that the algorithm applied to the minimal face behaves in exactly the same way
as if we run it with Py instead of y and we can conclude that the algorithm converges with a rate
of 1=t if it chooses only elements of F . The obvious problem is that we do not know the minimal
face beforehand and we can not force the algorithm to choose only elements from it. At this point,
a difficult task is to measure how much harm elements outside the minimal face can do when they
are chosen by the algorithm. One important observation here is that for any element x outside the
minimal face there exists no ballB around Py such that afffx; Pyg\B is contained in C (aff refers
to the affine hull operator). Figure 3 (a) is a visualization of this property. The red dot marks Py.
The line going through the bottom left corner and Py leaves the polytope at Py and there exists no
ball in C such that the line segment in this ball lies fully in C . This property is also not difficult to
prove formally. We summarize the result in the following simple lemma.

Lemma 1 Given a compact convex set C � H and a y 2 H there exists a minimal face F that
contains Py and for every x 2 CnF and any ball B centered at Py with radius greater than zero
we have that aff fx; Pyg \ B 6� C .

The existence of the minimal face is shown in Step (ii) of the proof of Theorem 2. If the second
part of the lemma would be false then we would have a point in aff fx; Pyg \ C such that Py is
a convex combination of x and this point. This would imply x 2 F (see eq. 3 on p. 28) with a
contradiction to the assumptions of the lemma.

The lemma implies that any element outside the minimal face which is chosen by the algorithm
will introduce perturbations into the estimate that can not be easily removed: the line from x through
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Py leaves the convex set at Py and there is no element z 2 C that is well aligned with �.x�Py/,
i.e. a component of �.x�Py/ points outward of the convex set and there exists no z in C such that
z�Py has a positive inner product with this component. These perturbations get only smaller over
time because of the down-scaling of the old approximation at steps t by t=.t C 1/ and not because
of future choices of the algorithm which are well aligned with the error. We are able to show that
despite this property the herding algorithm converges with the same rate of 1=t that it would achieve
if Py would lie inside C under an assumption on these perturbations.

Three subspaces. To state our assumption, it is convenient to introduce the centered versions
Cc D fx � Py W x 2 C g of C and Fc D fx � Py W x 2 F g of F . We denote the linear
subspace spanned by Cc with spanCc . We can write spanCc as a direct sum UF ˚ Uı ˚ Ub of
three orthogonal subspaces UF ; Uı ; Ub � spanCc and we denote the orthogonal projections onto
these subspaces and onto spanCc by PF ; Pı ; Pb and PC . Here,

� UF D spanFc (UF D f0g if Fc D f0g) is the (unique) subspace spanned by the minimal
face,

� Uı and Ub are any two orthogonal subspaces of spanCc that are also orthogonal to UF and
which fulfill

1. spanCc D UF ˚ Uı ˚ Ub ,

2. there exists a ball (relative to the subspace Uı ) around 0 in fPıx W x 2 Ccg,

3. there exists an orthonormal basis of Ub , say e1; : : : ; ek , k D dimUb , such that for all
i � k, f0g 6D fhei ; xi W x 2 Ccg � .�1; 0�,

4. PC .y � Py/ 2 Ub .

Ub D f0g and Uı D f0g are possible.

Observe that this representation is not invariant under rotations. In particular, Uı and Ub can change
dimensions when C is rotated (see Figure 4 (a) for an example). The split into these three subspaces
is helpful since it allows us to separate the errors that can be minimized by choosing particular
elements x 2 S from the errors that cannot be reduced by choosing elements in S . Recall that the
errors of our algorithms at step t are wt . The perturbations at step t that cannot be minimized by
suitable choices of elements in S are Pbwt and the remainder Pıwt C PFwt consists of the error
that can be reduced by choosing appropriate elements in S . The split into these subspaces is shown
in Figure 3 (b). UF is here the subspace spanned by the line on top of the triangular prism, Uı is
the subspace orthogonal to it and aligned with the base of the prism. Ub is orthogonal to these two
subspaces and the whole prism lies below Py (the red dot) in Ub .

A perturbed optimization problem. Apart from adding to the overall error, these perturbations
introduce a subtle and more serious problem as follows. For any .PF CPı/wt we have an element
s� that maximizes hs�; .PF C Pı/wt i and by choosing s� we reduce the overall error (the reduction
will be significant if k.PF C Pı/wtk is large). Imagine there is a second element s which has
a very small positive inner product with .PF C Pı/wt , i.e. 0 < �t D hs; .PF C Pı/wt i �

hs�; .PF C Pı/wt i. s will not be chosen if the algorithm optimizes over UF ˚ Uı , however, since
we optimize over all of spanCc , it is possible that hs; wt i > hs�; wt i. In particular, this may happen
if hPbwt ; s�i = hPbwt ; si is large and the perturbations Pbwt are effectively changing the geometry

10
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of the optimization problem in UF ˚ Uı (see Figure 3 (c) for a visualization of this effect). The
rate of convergence can be significantly reduced by this effect. In particular this happens if the
perturbations make the algorithm choose a sequence of elements with inner products �t converging
to 0 since the error in UF ˚ Uı will then not decrease over time. This problem can only occur
if the Pbwt values affect the different elements in S in a very unbalanced way, i.e. there must be
some elements x; x0 2 S such that hPbwt ; xi � hPbwt ; x0i. Our theorem below shows that this
is the central problem that can hinder the rate of convergence. We demonstrate that Algorithm 1
converges with a rate of 1=t if, and only if, the perturbations affect the different elements in S in a
sufficiently balanced way.

The main assumption and the theorems. Assumption 1 below formalizes the concept of a bal-
anced influence of the perturbations on the elements of S . We need the following set of critical
points for a given sequence of elements xt chosen by the algorithm to state this assumption,

D.fxtg/ D fx W x 2 SnF; xt D x for infinitely many tg:

We use here fxtg to abbreviate fxtgt�1. Only elements inD.fxtg/ can lead to a reduction in conver-
gence rates and it suffices to check that none of the elements inD.fxtg/ lead to the above described
effect to demonstrate fast convergence. Our main assumption is now the following:

Assumption 1: Given sequences fxtgt�1; fwtgt�0 we assume that there exists a representation
UF ˚Uı ˚Ub D spanCc as described above, where for all x; x0 2 D.fxtg/ there exists a� <1

and a t 0 <1 such that h�Pbwt ; x � Pyi � �h�Pbwt ; x0 � Pyi for all t � t 0.

We restrict our analysis to the case where there are only finitely many extremes of C . We thus
assume that C is compact, convex and has only finitely many extremes. A set C with these proper-
ties is called a convex polytope. The following theorem demonstrates that for a convex polytope the
above assumption is both necessary and sufficient for the fast rate of convergence of Algorithm 1.

Theorem 2 Given a compact convex set C � H and a finite subset S of C with exC � S there
exists for y 2 H a constant b > 0 such that Algorithm 1 has a worst-case approximation error of
b=t for all t � 1 if, and only if, Assumption 1 is fulfilled for the sequences fxtgt�1 and fwtgt�0
generated by the algorithm.

The reason why the herding algorithm retains its rate of convergence is that elements outside the
minimal face will not be chosen anymore after some time t0 2 N and the decay t=.t C 1/ is high
enough to remove the perturbations introduced in these first t0 many steps fast enough so that they
do not harm the overall rate of convergence, i.e. if we assume Py D 0 then

k.I � PF /wtk D
t � 1

t
k.I � PF /wt�1k D

t � 2

t
k.I � PF /wt�2k D

t0

t
k.I � PF /wt0k

and the error orthogonal to the minimal face decays with a rate of 1=t . The situation is different for
the CGM. While we can show that no elements outside the minimal face is chosen after some t0 2 N
the perturbations introduced in these initial steps dominate the rate of convergence of the algorithm
even for steps t � t0 (in the case of applying the CGM with away-steps it is known that the minimal
face is identified after finite many steps under certain conditions and the algorithms optimizes after
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this step over the minimal face (Wolfe, 1970; Guélat and Marcotte, 1986)). We decompose the error
in the theorem below into two parts, the error in the affine subspace spanned by minimal face F and
the error in the orthogonal complement of that space. This decomposition is natural in the way that
we have a strong reduction of the error in the minimal face per step and only a weak reduction in the
orthogonal complement of the minimal face. The first part of the theorem is standard and follows
from Beck and Teboulle (2004). In the following, pt denotes the approximation at time t . We use
again Assumption 1, but be aware the the weight wt is defined slightly differently for the CGM, i.e.
the weight is scaled down by a factor of 1=t at step t .

Theorem 3 Given a compact convex set C � H , a finite subset S of C with exC � S and an
element y 2 H the following holds:

� If only elements in F \ S , where F � C is the minimal face that contains Py, are chosen
then the method converges linearly to the projection and there exist constants b; ˇ > 0 with

kPy � ptk � be
�ˇt :

� Under Assumption 1 if minx2S kPy � xk > 0 and the approximation does not equal Py in
finite many steps then the sequence fk.I � PF /.Py � pt /kgt�0 converges sub-linearly and
there exists a constant d > 0 such that

kPF .Py � pt /k
2
� .1�ı2F =diam 2.F // kPF .Py � pt�1/k

2
Cd k.I � PF /.Py � pt�1/k

2 :

Furthermore, there exists a time t0 after which only elements in F \ S are chosen.

It is worth noting that the term .1 � ı2F =diam 2.F // kPF .Py � pt�1/k
2 would guarantee a linear

rate of convergence if the extra perturbation part would not be present.

The constant. It is of obvious interest to get insight into the size of the involved constants, in
particular into the size of the constant b in Theorem 2 and its relation to quantities like ıF and
the dimension of spanCc . The baseline is here the constant that we gain in the trivial case where
F D C . Here, b can be taken to be 3r C 2r2=ıF , with r D supx2C kxk, and the constant does
not depend on the affine dimension of C (see the proof of Theorem 2, part (ii.f)). In the case where
F 6D C we can first observe that b depends both on ım, the radius of the largest ball inside the
projection of Cc onto UF ˚ Uı , and on �0 D supx;x02D.fxt g/

�x;x0 , where �x;x0 are the constants
in Assumption 1, i.e. b depends on ım=�0 (see the proof of Theorem 2, part (iv.b)). So the larger
the ball around Py in UF ˚Uı and the closer coupled the perturbations are the smaller the constant
b. Referring these quantities back to geometric properties of C is non-trivial and in all likelihood
providing a general characterization is at least as difficult as providing a general characterization
of when Assumption 1 is fulfilled. However, in concrete settings it is often actually rather easy to
provide bounds on b depending, for instance, on the affine dimension of C . We provide a number of
examples in the next section. In particular, Corollary 6 - 8 contain concrete values for the constant.
The dependence on d is here linear or sub-linear if we ignore the dependence of the dimension on
the size of the set C , i.e. r D supx2C kxk might also depend on the dimension. For instance, for
the standard hypercube in d -dimensions r D

p
d .
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(a) (b)

(1)

(2)

(c)

(1)

(2)

Figure 4: (a) The figure shows two possible splits into Ub ˚ Uı depending on how the square is
rotated. The first one is visualized by solid red arrows. Here Ub D R2 and Uı D f0g.
The second split is visualized through the dashed arrows. The red dashed arrow is a basis
vector of Ub and the blue dashed arrow is a basis vector of Uı . (b) The figure shows two
projection problems. The locations of Py are marked with the red dots and are annotated
with (1) and (2). The red arrows visualize the spaceUb for the two problems. For problem
(1) this is a three dimensional space since UF is here 0-dimensional and for (2) it is a 2
dimensional space. In both cases Uı D f0g. (c) The figure resambles (b). Instead of the
hypercube it shows the simplex in three dimensions. The red arrows depict basis vectors
for Ub . Uı D f0g as for the hypercube.

2.1.1 EXAMPLES

We now take a look at a number of concrete projection problems to demonstrate how Assumption 1
can be used to prove fast convergence of Algorithm 1 in various situations. Our first result does not
rely on assumptions about the shape of the convex polytope, but assumes that its span is a d < 1
dimensional subspace of a Hilbert space and the projection Py lies in a d � 1 dimensional face of
the convex set (Corollary 4 and 5). In the applications we have in mind the point of projection is
related to an estimator and the convex polytope enforces some form of sparsity. Typically, in such
settings, the projection lies in some low dimensional face of the convex polytope.

We provide a rather general condition for this case in Corollary 6 and we use this corollary to
demonstrate that Algorithm 1 converges with the fast rate independent of the location of Py if we
are working, for instance, with the hypercube or the simplex (Corollary 7 and 8). In particular, Py
can lie in a low dimensional face of the simplex or can be an extreme of it. There is certainly more
to be understood here, but these cases demonstrate that the performance of Algorithm 1 is robust
across a variety of settings and they demonstrate the uses of Assumption 1.

The proofs of the corollaries that follow are contained in the appendix on page 39 and onward.
It seems also worth pointing out that we can rotate our coordinate system in an arbitrary way and
translate the convex polytope and y without it affecting the algorithms or the rate of convergence.
This holds because the algorithm uses only inner products and orthogonal operators (rotations) do
not change these. Similarly, a translation does not affect the maximization step or the update. This
allows us, for instance, to prove the fast rate of convergence for the standard hypercube Œ0; 1�d and
to generalize this result to arbitrary hypercubes in Rd .
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One-Dimensional Ub . If the space Ub is one-dimensional then the perturbations affect all ele-
ments in SnF equally (up to a finite multiplier) and Assumption 1 is always fulfilled. This is in
particular the case if the minimal face is .d �1/-dimensional, but can also be fulfilled for lower
dimensional faces if Uı is not 0-dimensional.

Corollary 4 Given a compact convex set C � H and a finite subset S of C with exC � S . If for
y 2 H there exists a decomposition UF ˚ Uı ˚ Ub of spanCc such that Ub is one dimensional
then Assumption 1 is fulfilled. In particular, in this case there exists a constant b > 0 such that
Algorithm 1 has a worst-case approximation error of b=t for all t � 1.

One can relate the assumption that Ub is one-dimensional to a uniqueness assumption about the
projection Py. If PCy 62 C and only elements in A D fz 2 H W z D ˛PC .y �Py/CPCPy; ˛ 2

Œ0;1/g are projected onto Py then Ub is 1-dimensional and Assumption 1 is fulfilled. We summa-
rize this result in another corollary.

Corollary 5 Given a compact convex set C � H and a finite subset S of C with exC � S .
Assumption 1 is fulfilled if PCy 2 HnC and whenever Pz D Py for some z 2 H then PC z 2 A
holds. In particular, in this case there exists a constant b > 0 such that Algorithm 1 has a worst-case
approximation error of b=t for all t � 1.

This last assumption is not fulfilled in Figure 1 if the projection lies in the corners or edges, but it
is fulfilled in all other cases. A quite different application of our theorem allows us to exploit the
geometry of the convex set to derive the fast rate of convergence independent of the location of Py.

Zero-Dimensional Uı . If we can rotate the convex set such that we get a split UF ˚ Uı ˚ Ub
for which Uı D f0g then our Assumption 1 is also fulfilled. The next corollary states this result.
We use here, and in the following two corollaries, d D dimUb and we let e1; : : : ; ed be any basis
of Ub . Furthermore, ˛ D mini�d minfj hei ; x � Pyi j W x 2 SnF; hei ; x � Pyi 6D 0g > 0 and
r D supx2C kxk.

Corollary 6 LetC be a compact convex set in some Hilbert space H , S a finite set with cchS D C ,
and y 2 H such that there exists a split into UF ˚Uı ˚Ub of spanCc with Uı D f0g. Assumption
1 is fulfilled and there exists a constant b > 0 such that Algorithm 1 has a worst-case approximation
error of b=t for all t � 1. The constant b can be chosen as

p
d4r3=.˛ıF /C6r

2.1=ıF C1=˛/C5r .

This condition is somewhat abstract but leads, for example, to results that prove that the algorithm
converges with the fast rate in classical sparsity settings independent of the location of Py (Corol-
lary 7 and 8 below). Also, observe that Corollary 6 together with Corollary 4 imply that if Py lies in
a face of dimension .d�2/ then Algorithm 1 will converge with the fast rate: if Uı is 0-dimensional
then this follows from Cor. 6 and if Uı is 1-dimensional then UF is also 1-dimensional and the
result follows from Cor. 4 (Uı cannot be 2-dimensional due to Lemma 1).

Hypercubes. Here, we consider the compact convex set Œ0; 1�d D cch f0; 1gd � Rd and trans-
formations of it (rotations, translations and changes of its size). The set of extremes of the standard
hypercube is f0; 1gd and the d -dimensional hypercube has 2d�m

�
d
m

�
many m-dimensional faces,

wherem � d . We formulate the following corollary in terms of a rotation matrixQ, a translation by
a vector z and a scaling by a scalar c. In the proof of the corollary we transform the hypercube to the
standard hypercube and we show that Uı D f0g independent of the location of y. This is visualized
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in Figure 4 (b) for a 3-dimensional hypercube. (1) and (2) are here two projection problems and the
red arrows depict two bases of Ub . Constructing such bases for which Uı D f0g is always possible
for the standard hypercube.

Corollary 7 Let y 2 Rd , Q any orthogonal matrix, c > 0 any scaling, z 2 Rd , S D f0; 1gd and
C D Œ0; 1�d , d � 1. Assumption 1 is fulfilled for the set QS D cQŒS C z� and QC D cQŒC C z�

(independently of the dimensionality of the face Py lies in). In particular, there exists a constant
b > 0 such that Algorithm 1 has a worst-case approximation error of b=t for all t � 1. The constant
b can be chosen as

p
d4r3=.cıF /C 6r

2.1=ıF C 1=c/C 5r .

Standard Simplex. Algorithm 1 also attains a fast rate of convergence if the convex set we use is
the standard simplex in Rd independently of the location of y. The standard simplex has

�
d
m

�
many

faces of dimension m � 1, i.e. 1 � m � d and the dimension of the corresponding span of the
centered face is m � 1. The faces of such a simplex are again simplices. In particular, if we denote
the standard simplex with �d�1 D cch fe1; : : : ; ed g, then the set of m � 1 dimensional faces of
�d�1 are fcch fei1 ; : : : ; eimg W i1 < i2 : : : < im; ij � d 8j � mg. As for the hypercube we can
show that Uı D f0g. This is visualized in Figure 4 (c) for the standard simplex in R3. The figure
shows two projection problems (1) and (2) and corresponding bases of Ub .

Corollary 8 Let y 2 Rd , S D fei W i � dg and C D �d�1 D cchS , d � 1. Assumption 1 is
fulfilled and there exists a constant b > 0 such that Algorithm 1 has a worst-case approximation
error of b=t for all t � 1. The constant b can be chosen as 4dr3=ıF C 6r2.1=ıF C

p
d/C 5r .

2.2 The Algorithm for Finite S

We are particularly interested in the case where S D fx1; : : : ; xng is finite. If S is finite we can
change the algorithm to keep track of hwt ; xi i DW ati instead of wt 2 H . This reflects a change
of representation from a basis representation of wt to one based on S . The weight vector can, after
this change of representation, be replaced by at D .at1; : : : ; atn/ in the algorithm.

Algorithm 2. Input: y 2 H , T 2 N, and S � H .

1. [Initialize] Set a0 D .hy; x1i ; : : : ; hy; xni/ and t D 1.

2. [Optimization oracle] Choose it 2 arg maxj�n a.t�1/j .

3. [Update weight] Set at D at�1 � .hxit ; x1i ; : : : ; hxit ; xni/C a0.

4. [Iterate] If t < T then increment t by 1 and go back to 2.

5. [Terminate] Return the approximation .xi1 C : : :C xiT /=T .

The computational costs per iteration are then determined by the number of samples n and the
computational costs of calculating inner products in H (n inner products per iteration).

2.3 Line Search for Finite S

The line search in Algorithm 1 (ls) contains terms of the form kwt�1k2. The philosophy in Algo-
rithm 2 is to avoid measuring objects in their norm and to work solely with relations between objects
in the form of inner products hy; xi i to reduce computational costs. To follow this philosophy we
need a version of the line search that does not need access to kwt�1k or kyk. Achieving this goal is
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easy enough: the line search aims for finding an ˛t such that pt D .1 � ˛t /pt�1 C ˛txit , with pt
being our approximation at step t , achieves minimal distance to y. So we want that

˛t 2 arg min
˛2Œ0;1�

k.1 � ˛/pt�1 C ˛xit � yk
2 :

Setting the derivative of the squared norm to zero with respect to ˛ we gain

Q̨ t D
hy � pt�1; xit � pt�1i

kpt�1 � xitk
2

:

The norm in the denominator can be calculated recursively and calculating its value needs no sig-
nificant computational resources. Because kwtk D kpt � yk we gain the same Q̨ t 2 Œ0;1/ as in
Algorithm 1 (ls). Also, the minimizer over the interval Œ0; 1� is again ˛t D 1 ^ Q̨ t .

2.4 Approximation Error Bounds through Duality

There exists a well established test for the approximation error (Wolfe, 1976). Let S D fx1; : : : ; xng
still be finite. For any p 2 C , p 6D y, we can write hp;Pyi D hp; ˛1x1 C : : : ˛nxni �
mini�n hp; xi i and

kp � yk � kPy � yk �

nX
iD1

˛i
˝
xi � y;

p � y

kp � yk

˛
� min
x2S

˝
x � y;

p � y

kp � yk

˛
:

So
kp � yk � kPy � yk � kp � yk �min

x2S

˝
x � y;

p � y

kp � yk

˛
:

The last term tells us how far we are away from the optimum and it can be used to guarantee a
specific approximation error at termination. In the settings we are interested in kp � yk is, in fact,
too expensive to compute and we need to modify the approach from Wolfe (1976). Observe that

max
x2S

˝
p � x;

p � y

kp � yk

˛
D kp � yk �min

x2S

˝
x � y;

p � y

kp � yk

˛
gives us the easier to compute

max
x2S

˝
p � x; p � y

˛
� kp � yk .kp � yk � kPy � yk/

The right side is directly an upper bound on .kp � yk�kPy � yk/2, because kp � yk � kp � yk�
kPy � yk � 0. However, this bound is overly conservative and we loose an order of magnitude
since we lower bound kp � yk � kPy � yk with a quantity that goes to 0. A better way seems to
be to use linear functionals to approximate p�y. Natural choices are here hx; � i for x 2 S or hp; � i
because we can often compute these functionals efficiently. The former choice can be exploited in
the following way

ky � pk � max
x2S

ˇ̌˝
y � p;

x

kxk

˛ˇ̌
and we can calculate a lower bound on ky � pk in about O.n/ operations (depending on the repre-
sentation of p) by calculating the right hand side inner product for every x 2 S . Using this bound
we get the following upper bound on the approximation error

maxx2S hp � x; p � yi
maxx2S jhy � p; x= kxkij

� kp � yk � kPy � yk :
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The latter choice leads to

ky � pk �
˝
y � p;

p

kpk

˛
D
˝
y;

p

kpk

˛
� kpk :

The inequality also holds when taking the absolute value of the right side and

max
x2S

˝
p � x; p � y

˛
jkpk � hy; p= kpkij

� kp � yk � kPy � yk :

If our convex set is a norm ball then as p ! Py we also have that y�p gets more and more aligned
with p= kpk and we expect this bound to be good.

2.5 Parallelization

Algorithm 2 is easy to parallelize since the bottleneck per iteration is the calculation of n inner
products in the update equation of at . These inner products can be calculated independently of each
other and by having c processes available we can distribute the computation such that each process
has to calculate at most dn=ce many inner products per iteration. Determining the arg max can then
be achieved by a loop over the n entries of at . This operation is typically fast and no parallelization
is needed. Though, it is easy to distribute this operation too to reduce the computation time to
dn=ce C c by first calculating c maxima over sets of size at most dn=ce and by then calculating the
maximum of these c maxima. Finally, the summation of the vector of inner products with at�1�a0
can also be split such that each process has to perform at most dn=ce many of these summations.
This gives us in total a computation time in the order of dn=ce.

3. CCP-Kernel Regression

We now want to apply the algorithm to a challenging statistical problem. That is the problem of
non-parametric regression. For this we use a reproducing kernel Hilbert space (RKHS, Aronszajn
(1950)) which is in a certain sense natural given past herding applications, but it is also computa-
tionally efficient thanks to the reproducing property.

An RKHS H is implicitly defined through a kernel function k.x; x0/. H is the completion of

L WD
n nX
iD1

˛ik.xi ; �/ W n 2 N; xi 2 X; ˛i 2 R
o
;

whereX is the domain of the covariates (or inputs). In statistical applications we like to approximate
H with a nested family of sets of functions that are restricted in a certain way in their size. One
nested family is, for instance, the family of closed balls Br of radius r centered at zero. For these
we know that

S
r�0Br D H . The balls Br are, however, not compact if H is infinite dimensional.

Also, controlling the extremes of Br is not necessarily easy since we usually only have access to the
kernel function k and not a basis fengn�1 of H . So ideally we would like a family of sets that can
approximate H like the balls Br , but in contrast to Br the different sets would be compact, convex
and controllable through the kernel. There is a family of sets with these properties which arises
naturally from the kernel function (cl denotes the closure operator):

C.r/ D cch fk.x; �/ W x 2 Xg D cl
n nX
iD1

˛ik.xi ; �/ W n 2 N; x 2 Xn; ˛ 2 RnC; k˛k`1
� r

o
� H :
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C.r/ is compact and convex and the extremes of C.r/ are contained in the set S D fk.x; �/ W x 2
Xg. There is an obvious similarity to the definition of L and by suitably symmetrizing C.r/ we
gain a family of sets which covers all of L and can approximate any element in H up to arbitrary
precision.

3.1 Symmetric Closed-Convex Hull

The sets C.r/ might not contain 0 or any elements on the negative axes. This is obviously not ideal
for representing functions. We overcome this shortcoming by symmetrising C.r/ by including the
elements �k.x; �/. In this way we get the family of sets

Cs.r/ D cl
n nX
iD1

˛ik.xi ; �/ W n 2 N; x 2 Xn; ˛ 2 Rn; k˛k`1
� r

o
:

This family of sets has some similarity to the closed balls in H . In particular, if the kernel function
is bounded then Cs.r/ is a subset of the closed ball of radius Qr D r supx2X k.x; x/ in H since


 nX

iD1

˛ik.xi ; �/



 � k˛k`1

sup
x2X

k.x; x/ � Qr

and the smallest closed set containing the elements
P
i ˛ik.xi ; �/ can not be larger than a closed

ball of radius Qr .

Denseness and Universal Approximation. More important for us is the following property: the
set

S
r�0 Cs.r/ is dense in H , since for any f 2 H and � > 0 there exists an n 2 N, elements

x1; : : : ; xn 2 X and coefficients ˛1; : : : ; ˛n 2 R such that


f �Pn

iD1 ˛ik.xi ; �/


 � �. ButPn

iD1 ˛ik.xi ; �/ is an element of Cs.r/ if r �
Pn
iD1 j˛i j. In other words, we can approximate

any function in H arbitrary well by making r large enough. Furthermore, if our kernel function
is a universal kernel then we can approximate any continuous function on X arbitrary well in the
supremums norm. This property is sometimes called the universal approximation property.

3.2 Simplifying the Sets

Optimizing over Cs.r/ itself is difficult and from a practical point of view it makes sense to reduce
the sets further to save computation time. In regression we have a number of covariates x1; : : : ; xn
given and we know that we can represent any RKHS function h exactly on these points xi ; i � n,
by functions of the form

Pn
iD1 ˛ik.xi ; �/, where ˛ 2 Rn are suitable weights, if the kernel matrix

K D .k.xi ; xj //i;j�n is of full rank because

K˛ D

0B@h.x1/:::
h.xn/

1CA
has then a (unique) solution. From this point of view it makes sense to use the family of sets

C.r/ WD
n nX
iD1

˛ik.xi ; �/ W ˛ 2 Rn; k˛k`1
� r

o
:
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instead of Cs.r/. C.r/ is fully characterized by S D f˙rk.x1; �/; : : : ;˙rk.xn; �/g in the sense that
C.r/ D cchS and S contains the extremes of C.r/. S itself is of size 2n and we can optimize
efficiently over it.

3.3 Interpolation in H

Before approaching the regression problem we start with a closely related interpolation problem. We
aim for interpolating a function g 2 H at n support points x1; : : : ; xn. Let y1 D g.x1/; : : : ; yn D

g.xn/. The interpolation algorithm is essentially an efficient version of Algorithm 2 applied to the
elements ˙rk.x1; �/; : : : ;˙rk.xn; �/, where r is the scaling factor of C.r/. So at the heart of the
algorithm we have a vector a 2 Rn which keeps track of the approximation error and the entries
ai are just hwt ; k.xi ; �/i, where wt is the weight vector used in Algorithm 1. We formulate the
algorithm in terms of “ ” assignments which denote the operation of overwriting the left hand side
with the value on the right hand side.

Algorithm 3. Input: y 2 Rn, T 2 N, r > 0, a kernel function k and x1; : : : ; xn 2 X .

1. [Initialize] Set a D ry and t D 1.

2. [Optimization oracle] Choose j 0 2 arg mini�n ai , j 00 2 arg maxi�n ai .

3. If �mini�n ai � maxi�n ai then let j D j 0; zt D xj and st D 1

4. else let j D j 00; zt D xj and st D �1.

5. [Update weight] Set ai  ai C ryi � r
2stk.xi ; zt / for all i � n.

6. [Iterate] If t < T then increment t by 1 and go back to 2.

7. [Terminate] Return the regressor f .x/ D r.s1k.z1; x/C : : :C sT k.zT ; x//=T .

The complexity of the algorithm isO.T n/ since we have T iterations and we need to update in each
iteration a 2 Rn. The bottleneck in this algorithm is the evaluation of the k.zi ; x/.

Line search. The line search version of this algorithm is based on Section 2.3. We update re-
cursively the elements �; 
; � , where at step t we have that � D kpt�1k2, 
 D hpt�1; yi and
� D .hpt�1; k.x1; �/i ; : : : ; hpt�1; k.xn; �/i/, to keep the complexity of the algorithm at O.T n/.

Algorithm 3 (ls). Input: y 2 Rn, T 2 N, r > 0, a kernel function k and x1; : : : ; xn 2 X .

1. [Initialize] Set a D ry; t D 1; � D 0; 
 D 0 and � D .0; : : : ; 0/.

2. [Optimization oracle] Choose j 0 2 arg mini�n ai , j 00 2 arg maxi�n ai .

3. If �mini�n ai � maxi�n ai then let j D j 0; zt D xj and st D 1

4. else let j D j 00; zt D xj and st D �1.
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5. [Calculate step size] Let v D r2.k.x1; zt /; : : : ; k.xn; zt // and

Q̨ t D
rstyj � rst�j � 
 C �

� � 2rst�j C vj
; if t D 1 let ˛t D 1 and otherwise let ˛t D 1 ^ Q̨ t :

6. [Update weight] a .1 � ˛t /aC ˛t .ry � stv/.

7. [Update line search variables] � .1�˛t /
2�C2˛t .1�˛t /rst�j C˛

2
t vj , �  .1�˛t /�C

˛t .st=r/v and 
  .1 � ˛t /
 C ˛tstryj .

8. [Iterate] If t < T then increment t by 1 and go back to 2.

9. [Terminate] Return the regressor f .x/ D r.s1ˇ1k.z1; x/ C : : : C sTˇT k.zT ; x//=T , with
ˇi D ˛i

QT
nDiC1.1 � ˛n/.

The expensive calculation is here the calculation of v D .k.x1; zt /; : : : ; k.xn; zt //.

Approximation error stopping rule. We can also use an approximation error of below � as the
stopping criterion by using bounds from Section 2.4. The algorithm below achieves this in O.T n/
for the bound that uses our approximation pt to gauge the approximation error. The algorithm is
very similar to the line search algorithm because we need to store similar quantities for calculating
the bound as for the line search. We update recursively the elements �; 
; � , where at step t (before
the update) we have that � D kpt�1k2, 
 D hpt�1; yi,� D .hpt�1; k.x1; �/i ; : : : ; hpt�1; k.xn; �/i/.
The complexity of the algorithm is again O.T n/. The version shown below is for the line search.
By replacing ˛t with 1=t one can gain a version for the standard algorithm. We state only the
changes to Algorithm 3 (ls).

Algorithm 3 (ls, ae). (replace 8. and 9. in Algorithm 3 (ls)). Input: y 2 Rn, � > 0, r > 0, a
kernel function k and x1; : : : ; xn 2 X .

8. [Upper bound] Calculate the upper bound

b D max
i�n

� � r�i � 
 C ryiˇ̌p
� � 
=

p
�
ˇ̌ _max

i�n

�C r�i � 
 � ryiˇ̌p
� � 
=

p
�
ˇ̌ :

9. [Terminate] If b � � return the regressor f .x/ D r.s1ˇ1k.z1; x/ C : : : C stˇtk.zm; x//

where ˇi D ˛i
Qt
nDiC1.1 � ˛n/. Otherwise, go back to 2.

As for the other two algorithms above the computationally most demanding operation in this algo-
rithm is the calculation of .k.x1; zt /; : : : ; k.xn; zt //.

3.4 Norm Minimizing Regressor

The interpolation algorithms can also be applied to the regression problem. Let the observations
be .x1; y1/; : : : ; .xn; yn/ and let K be the kernel matrix. If the kernel matrix is of full rank then
with ˛ D K�1y, where y D .y1; : : : ; yn/

>, the function h.x/ D
Pn
iD1 ˛ik.xi ; �/ 2 H fulfills

.h.x1/; : : : ; h.xn// D K˛ D y> and the interpolation algorithm applied to h will converge under
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the usual conditions with a rate of 1=t , that is kh � gtk2 � b2=t2 with gt D .1=t/
Pt
iD1 k.zi ; �/.

There are two interesting observations here: first, the algorithm minimizes the distance to h im-
plicitly without knowledge of h itself. In fact, determining h numerically is usually impossible due
to ill-conditioning. Second, the algorithm minimizes the distance in the RKHS norm and not in a
least-squares sense. Both, the RKHS norm and the least-squares criterion can be seen as distance
measures that are in certain ways related. For instance, a norm-distance of zero between two func-
tions implies that they have the same least-square error and, furthermore, the least-squares error of
our approximation is bounded by

1

n

nX
iD1

.yi � gt .xi //
2
D
1

n

nX
iD1

jhh � gt ; k.xi ; �/ij
2
�

 
1

n

nX
iD1

k.xi ; xi /

!
.kh � Phk2 C c=t2/

where Ph denotes the projection of h onto C.r/ the constant c is .b2=n/
Pn
iD1 k.xi ; xi /.

One can also formulate the norm minimization problem as a convex optimization problem

min
˛2Rn

˛>.K˛ � 2y/ s.t.
nX

jD1

ˇ̌
j̨

ˇ̌
D r:

and use convex programs to find the projection. This representation has the drawback that it makes
explicit use of the n�n kernel matrixK and for large scale problems this formulation needs signif-
icant amounts of memory.

4. Experiments

We conducted a set of experiments to gauge the performance of the approach. The first set of
experiments was constructed to demonstrate the behavior of the error bounds and to compare the
optimization routine with some standard optimization procedures. The second set of experiments
compared the regressor with well established regressors in a small scale setting. The advantage
of the small scale setting is that we can compare to methods like the GP regressor. The final set of
experiments focused on a large scale benchmark data set and compared our method to the Fast-KRR,
which is the state-of-the-art regressor for large scale problems.

4.1 Experiment 1: Empirical Rate of Convergence

The first set of experiments were conducted to explore basic properties of the optimization approach:
’how does a typical regression curve look like in comparison to a GP regression curve?’ ’How do
the error bounds relate?’ ’How does the optimization routine behave in comparison to a general
purpose optimizer?’ In our first experiment we generated 1000 data points from a Gaussian process
(Gaussian covariance function) with normal distributed noise (the right plot in Figure 5). We fitted
the maximum a posteriori estimator (MAP, known hyper-parameters) to it (red curve) and then did
split the data into an 800 and 200 batch to run a cross validation loop over the hyper parameters
(we also used a Gaussian covariance but with an unknown width parameter). We ran the CCP
algorithm for 20 (yellow) and 100 (purple) iterations (without line search). The red bars show the
points and weights of the solution when the algorithm is run for 100 iterations. The black bars show
the solution found by the cvx Matlab toolbox for a precision of about 10�16. The next experiment
was about the bounds. We used again 1000 data points generated as above and a fixed hyper-
parameter (no cv loop) to see how the bounds behave as the number of iterations increases. There
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Figure 5: Left: The plot shows three different bounds on the approximation error. Right: The
figure shows data from a Gaussian process with Gaussian likelihood function. The data
is overlaid with three regression curves. MAP is here the optimal regressor. The vertical
bars show the weight that is assigned by the CCP-regressors with 100 iterations (red) and
the cvx matlab optimization toolbox (black) to observations at various locations x.

n 100 500 1000 2000 3000 4000 5000

CCP 0:03.0:03/ 0:1.0:08/ 0:2.0:09/ 0:25.0:29/ 0:3.0:26/ 0:47.0:26/ 0:57.0:61/

cvx 0:64.0:13/ 1:3.0:08/ 2:7.0:13/ 8:16.0:12/ 17:2.0:39/ 31:3.1:68/ 49:8.0:88/

Figure 6: Run time comparison between the CCP projection algorithm and a general purpose solver.

is one difficulty here, which is that we do not have the best fitting function h 2 H and we can not
calculate the exact distance to h. The three curves on the left side of the figure are our two bounds
of the difference kh � gtk � kh � Phk, gt is the regressor after t iterations and Ph the solution
of the optimization problem which we try to find. Conservative refers to the bound where we use
kgt � hk � .kgt � hk�kPh � hk/ and Bound refers to our second bound) and the distance to Ph
(Norm Distance), that is kgt � Phk which is also an upper bound of kh � gtk � kh � Phk (we
determined Ph by using cvx with a precision of about 10�16). The results are shown on the left in
Figure 5. One can observe that all three bounds show similar behavior, however, the conservative
bound is, as expected, very loose.

We were also interested in a run time comparison between the projection algorithm and a general
purpose solver (the cvx toolbox) to see how much can be gained by using the specialized projection
method. The cvx toolbox uses the SDPT3 package to solve semidefinite-quadratic-linear program-
ming problems. The details of the SDPT3 package are described in Toh, Todd, and Tutuncu (1999);
Tutuncu, Toh, and Todd (2003). We used as a stopping rule for both methods an error below 10�4,
that is CCP stopped when our bound guaranteed us that the error is below 10�4 and cvx stopped
when its own error bound signaled an error below this threshold (details about how the precision is
calculated in the SDPT3 package can be found in Toh et al. (1999)[Section 3]). The results of the
run time comparison are shown in Figure 6 (mean(standard deviation) in seconds averaged over 10
runs; same experimental setup as for the bounds plot; n is the number of data points).
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4.2 Experiment 2: Run time vs. Least-Squares Error on a Small Scale Sample

The second set of experiments tested on a small scale how the run time of the CCP-regressor mea-
sures against the statistical performance. We were interested in seeing how the method fares in
comparison to standard Gaussian process/ridge regression and Fast-KRR. We reproduced the ex-
periment from Zhang et al. (2013) which uses the million songs data set (about 450000 data points
and a covariate dimension of 90). We normalized the data as in Zhang et al. (2013) by letting
each covariate dimension have standard deviation 1. We also used the same kernel (Gaussian with
� D 6). Finally, we normalized the response variable (year when a song appeared) to lie in Œ0; 1� by
subtracting the minimal year and dividing by (maximum - minimum). 450000 data points are too
much to run the standard GP regressor/ridge regressor and we downsampled the data set to a small
subset of 5000 training points and 1000 test points. We were interested in how the radius affects the
performance of CCP and how different it is from how � affects the GP. We were also interested in
seeing how the error threshold translates into least-squares performance and run time. The results
are shown in the table in Figure 7. The notation is (run time - least-squares error), r is the radius
for CCP (with line-search), p the number of elements in each partition of Fast-KRR (we used for
Fast-KRR the same regularization schedule as in Zhang et al. (2013)) and �, in CCP-�, refers to the
stopping criterion. We used our upper bound to gauge the current error and we stopped when the
error bound passed �r . The table below shows the results. We also ran the CCP-0:1 setting with
r D 5000 to see how close we can get to the performance of the GP regressor. The estimator took
30:6 seconds to produce an estimate with an error of 0:124.

r.p/=� 50/0.02 100/0.01 250/0.004 500/0.002 1000/0.001

GP 56 - 0.121 55 - 0.121 55 - 0.121 55 - 0.121 65 - 0.121

CCP-0:1 1.03 - 0.53 1.63 - 0.46 2.97 - 0.36 4.77 - 0.22 8.89 - 0.17

CCP-0:01 3.66 - 0.47 6.21 - 0.33 12.8 - 0.19 30.67 - 0.16 93.13 - 0.13

Fast-KRR 9.3 - 0.236 10.6 - 0.203 12.5 - 0.179 16.5 - 0.158

Figure 7: The table shows a comparison between the GP/ridge regressor, the Fast-KRR and the
CCP-regressor. Each entry consists of the run time (seconds) and the least-squares error.

As one expects the GP run time is essentially independent of �. A bit surprising is here that
the regularization parameter seems to have hardly any effect on the least-squares error of the GP
regressor. The run time of the CCP algorithm, however, is strongly affected by r which is consistent
with our bound in which r influences the constant of the convergence rate. For both thresholds the
computation time increases slightly non-linearly in r . The least-squares error depends on both � and
r . Increasing r results in this experiment in a higher reduction in least-squares error in dependence
of the added computation time.

The lowest error is achieved by the GP-regressor (which corresponds to the Fast-KRR with one
partition). A slightly suboptimal solution with a least-squares error of 0.124 is achieved by the
CCP-regressor in about 25 seconds less than what the GP-regressor needs. One can also observe
that Fast-KRR is fast in computing an estimate with a low least-squares errors which is en par with
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the CCP-regressor in this experiment (in 10 seconds the Fast-KRR reaches, for instance, about 0:2
and the CCP-regressor 0:17). The interesting question is here how the performance of Fast-KRR
and the CCP-regressor scale with the amount of data.

4.3 Experiment 3: Run time vs. Least-Squares Error on a Large Scale Sample

In the last experiment we compared Fast-KRR with the CCP-regressor (line search) on the full
million songs data set. We used similar partition sizes as in Zhang et al. (2013) for Fast-KRR and
we ran the CCP-regressor with r D 100000. The bottleneck in the CCP-regressor is the number
of kernel evaluations that need to be performed which are tn for t iterations and n samples. The
Fast-KRR regressor needs for m partitions (for simplicity let m be such that 0 � n mod m) in the
order of n2=mmany kernel evaluations and it needs to calculatemmany inverses of matrices of size
.n=m/ � .n=m/. So if t D n=m then the CCP-regressor needs to perform exactly as many kernel
evaluations as the Fast-KRR algorithm. Especially for large m this will leave us with few iterations
for the CCP-regressor and one expects that if the kernel evaluation is expensive in comparison to
the computational cost of an inverse then Fast-KRR will perform better. On the other hand if we
have either small partitions or cheap to evaluate kernels then the CCP-regressor will excel compared
to Fast-KRR. In terms of memory: the CCP-regressor needs a small multiple of the original data
size while the Fast-KRR needs to store another n=m � n=m matrix. We made 25 GB of memory
available to the Fast-KRR method, which allowed us to go down to 26 partitions on our cluster. The
results of the comparison are shown in Figure 8 (mean over 10 runs with randomly chosen training
and test sets).

Time (min)
0 50 100 150 200 250 300

Le
as

t-
sq

ua
re

s 
er

ro
r

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55
FastKRR
CCP

Figure 8: The plot shows the performance of the Fast-KRR and cpp-regressor in dependence of the
run-time. We used partition sizes 26, 32, 38, 48, 64, 96, 128 and 256 for Fast-KRR. 26
was the limit we could achieve with 25 GB of memory.

We also determined the standard deviations. These were for both regressors marginal and we
did not plot error-bars (maximal standard deviation for Fast-KRR: 0:16 � 10�4; CCP: 0:02).
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The plot shows us that the Fast-KRR achieves already a very good performance if the number of
samples per partition is small. The CCP-regressor is significantly outperformed at that stage. With
more run-time the CCP-regressor catches up and approaches the minimizer in the set C.100000/.
After about three hours of run-time the CCP-regressor overtakes the Fast-KRR and achieves the
lowest least-squares error. Another difference one can observe is that there is, in principle, no limit
of how long we can let the CCP-regressor optimize while we are limited with the Fast-KRR by
the memory that we have available (the memory requirement increases linearly in the number of
elements per partition and quadratically in the sample size).

5. Discussion and Open Problems

Motivated by the recent work on kernel herding we explored the uses of herding and the CGM
algorithm for calculating projections onto convex sets. We derived a theorem that extends current
convergence results for herding to the boundary if the perturbations introduced by our lack of knowl-
edge of the minimal face that contains the projection are in a certain way well behaved. We also
showed that our condition on the perturbations is both necessary and sufficient for the algorithm
to converge with the fast rate. An important open question is if there exist convex sets for which
this assumption can fail to hold. Furthermore, we demonstrated that the herding algorithm and the
CGM will chose no elements outside of the minimal face after some finite time t0 if this condition
is fulfilled. Providing tight bounds on the size of t0 and the number of elements outside the minimal
face that are chosen in these first iterations in future research would help with improving the under-
standing of herding and the CGM further. Such bounds should also be useful to provide a better
understanding of algorithms like the CGM with away steps: away steps are essentially trying to
remove the perturbations introduced through elements outside of the minimal face. It is known that
the CGM with away-steps successfully removes perturbations after finite many steps under certain
conditions (e.g. Wolfe (1970); Guélat and Marcotte (1986)), though, as we discussed in the intro-
duction, there is still much to be gained by refined analyses. Another interesting direction for future
research concerns the geometry of the convex set in Hilbert space. The geometry factors into the
rates of convergence of CGM like algorithms in various ways (Slater’s condition, pyramidal width
etc.). One might also aim for results that hold for convex sets with countably infinite or uncountable
many extremes. We believe that one of the main difficulties will be here that there does not need to
exist a gap between the minimal face and extremes that lie outside of the minimal face. We made
use of such a gap to show that after some finite time only extremes of the minimal face will be
chosen. Without such a gap one expects that there does not exist such a finite window of steps and
perturbations will be continuously injected into the approximation.

On the practical side one can wonder how widely applicable the projection in kernel space
approach, which we used to derive a novel kernel regressor, is. Projections onto the standard simplex
have proven to be very valuable for a variety of statistical problems and the projection onto the set
f
Pn
iD1 ˛ik.xi ; �/ W n 2 N; k˛k`1

� 1; xi 2 X for i � ng is in a way the natural analogue of the
standard simplex. There are some obvious differences. The set is, for example, from a geometrical
point of view far more complicated since in kernel space the natural way to describe objects is
through the kernel function and not through an orthonormal basis. Nevertheless, our results suggest
that this approach has merit and it is worth to explore its uses for other non-parametric problems.
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6. The Proofs of the Two Theorems and the Corollaries

This section contains the proof details of our two theorems and the various corollaries. We start
with a technical lemma that is needed in the proof of the first theorem. Using this we prove that the
basic algorithm without line-search achieves a convergence rate of 1=t .

6.1 The First Theorem

We need a technical lemma that guarantees us that if we have two operators A;B that pull elements
x towards the origin if x gets large (in a certain sense) then compositions of these operators (for
instance C D A2BA4B3) applied to x will be bounded, i.e. kCxk � b for some constant b. In fact,
we need slightly more. We need a result which holds simultaneously for a family of operators A.
We formulate the lemma in the way that some initial value x0 and a particular infinite composition
C of operators in A and B is given. This is necessary since our operators in A are not necessarily
a contraction for arbitrary elements but only for the elements they are applied to. In the following,
we denote with Ct the composition operator that consists of the first t operators in C (in the above
example C3 D A2B) and we use the notation Cs;t for the operator that fulfills Ct D Cs;t ı Cs�1.
We split the proof of the lemma and the following theorems into a number of separate claims and
we use PPP (proof) and QQQ (q.e.d.) brackets for the proofs of the claims.

Lemma 9 Let H be a Hilbert space, K a closed subspace of H , P the projection onto K, B W
H ! H , Bx D .I � P /x C PBPx an operator, A a family of operators A W H ! H , C a finite
composition of operators of A and B , and x0 2 H such that there exist constants a; b; � > 0 with

(i) kAxk ; kBxk � kxk C b for every A 2 A, x 2 H .

(ii) For any element x 2 fCtx0gt�1 and for any t � 1 for which Ct;t 2 A, i.e. an operator in A

is chosen at time t , we have with A D Ct;t 2 A that

kAxk2 � kxk .kxk � �/C b:

(iii) If kPxk � a for an element x 2 H then kBxk � kxk.

Then for all t � 1

kCtx0k
2
� kxk2 _ .c C b/2 C .aC b/2 and kCtx0k � kxk _ .c C b/C aC b;

with the constant c WD ..aC b/2 C b/=� .

Proof (a) For any n � 0, x 2 H , it holds that kBnxk2 � kxk2 C .aC b/2.
PPP Observe that Bx D .I �P /xCBPx. kPxk < a implies kBPxk � aCb and if kPxk � a

then
kBPxk2 D kBxk2 � k.I � P /xk2 � kxk2 � k.I � P /xk2 D kPxk2

and kBPxk � kPxk _ .aC b/. Hence,

kBnPxk �


PBn�1x

 _ .aC b/ D 

Bn�1Px

 _ .aC b/ � kPxk _ .aC b/:

So for any n � 0 and x 2 H we know that

kBnxk
2
D k.I � P /xk2CkBnPxk

2
� k.I � P /xk2CkPxk2_.aCb/2 � kxk2C.aCb/2: QQQ
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(b) For any n � 0, A 2 A, if kxk � c C b, x D Ctx0 and CtC1;tCnC1 D ABn for some t � 0
then kABnxk � kxk and kABnxk � kxk _ .c C b/.

PPP If kx0k � c then (ii) tells us that

Ax0

2 � 

x0

2 � � 

x0

C b � 

x0

2 � .aC b/2:
So, if kBnxk � c then (a) tells us that kABnxk2 � kBnxk2�.aCb/2 � kxk2. And, if kBnxk < c
then kABnxk � c C b. Also, kABnxk � kxk if kxk � c C b. QQQ

(c) For any n � 0;m � 1, A1; : : : ; Am 2 A, if kxk � c C b, x D Ctx0, CtC1;tCnCm D
A1 : : : AmB

n for some t � 1 then kA1 : : : AmBnxk � kxk and it holds that kA1 : : : AmBnxk �
kxk _ .c C b/.

PPP If kzk � b=� for a z 2 H then kAzk � kzk for all A 2 A. If kxk � c C b then (b) tells
us that kABnxk � kxk for all A 2 A. Hence, for any 2 � l � m � 1, kAm�l�1 : : : AmBnxk >
kAm�l : : : AmB

nxk implies kAm�l : : : AmBnxk < b=� � c. The maximal increase of operators
A 2 A is bounded by b due to (i). Since we can only see an increase if kAm�l : : : AmBnxk � c we
gain kAm�l�1 : : : AmBnxk � .c C b/ _ kxk D kxk. A slight modification of the argument yields
the second case. QQQ

(d) It follows that compositions of such sequences, say A1 : : : Am1
Bn1Am1C1 : : : Am1Cm2

Bn2 ,
m1; m2 > 0,A1; : : : ; Am1Cm2

2 A do not increase the bound since with x0 D Am1C1 : : : Am2
Bn2x,

x0

 D kAm1C1 : : : Am2

Bn2xk � kxk _ .c C b/

we have 

A1 : : : Am1
Bn1x0



 � 

x0

 _ .c C b/ � kxk _ .c C b/:
These cases cover all possible compositions with the only exception of sequences that start with
some Bn, n � 1. But, if kx0k � kxk _ .c C b/ then from (a) we know that

kCxk2 D


Bnx0

2 � 

x0

2 C .aC b/2 � kxk2 _ .c C b/2 C .aC b/2:

We need the definitions of the affine hull and the affine dimension. The affine hull of a set
A � H is

affA D
� nX
iD1

˛ixi W n � 1; xi 2 A;

nX
iD1

˛i D 1

�
:

The affine hull can be identified with a vector space by centering it around an arbitrary element
x0 2 affA, i.e. V D fx � x0 W x 2 affAg is a vector space. The dimension of this vector space is
called the affine dimension of A. If A D fxg for some element x 2 H then affA is also just fxg and
we define its affine dimension to be 0.

We recall some basic properties of the projection Py of y onto a compact convex set C .
The projection Py is characterized by ky � Pyk D minx2C ky � xk and the geometric prop-
erty hy � Py; x � Pyi � 0 for every x 2 C . The latter property translates into a sort of orthogonal
decomposition for convex sets, that is

ky � xk2 D ky � Pyk2 � 2 hy � Py; x � Pyi C kPy � xk2 � ky � Pyk2CkPy � xk2 : (1)

We also need the definition of a face of a convex set C . A face F is a set which fulfills that whenever
there are two points a; b 2 C and � 2 .0; 1/ with �aC .1 � �/b 2 F then a; b 2 F .
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Theorem 2 Given a compact convex set C � H and a finite subset S of C with exC � S there
exists for y 2 H a constant b > 0 such that Algorithm 1 has a worst-case approximation error of
b=t for all t � 1 if, and only if, Assumption 1 is fulfilled for the sequences fxtgt�1 and fwtgt�0
generated by the algorithm.

Proof We start with some general observations before proving that the assumption is sufficient for
the fast rate of convergence. That the condition is necessary is shown at the end (see (v)).

(i) The algorithm converges with the right rate to Py if the sequence fwt � y � t .y �Py/gt�1
stays in a bounded norm ball of radius b since then

b � kwt � y � t .y � Py/k D



.t C 1/y � tX

iD1

xi � y � t .y � Py/



 D 


tPy � tX

iD1

xi




 (2)

because wt D .t C 1/y � .x1 C : : : C xt / and hence kPy � .x1 C : : :C xt /=tk � b=t . Also
observe that we can replace for any z 2 H

arg max
x2S

hz; xi with arg max
x2S

hz; x � Pyi

in the maximization step.
(ii) (a) There exists a minimal face F that contains Py which is

F D fPyg [ fx 2 C W 9z 2 C; � 2 .0; 1/ such that �x C .1 � �/z D Pyg: (3)

(b) F is a compact and convex set and the extremes of F are exF D exC \ F .
Let Fc D fz � Py W z 2 F g be the face F centered around Py 2 F . The set affFc D spanFc

is a closed subspace of H with orthogonal complement .affFc/? D F?c . So to any element z 2 H

we have a unique zjj 2 affFc and z? 2 .affFc/? with z D zjj C z?. In the following, denote the
projection onto affFc with PF .

(c) y�Py stands orthogonal on the centered face Fc , i.e. y�Py 2 F?c . So the term t .y�Py/

contained in wt does not influence the maximization over F .
(d) Either Fc D f0g or there exists a ıF > 0 such that B.0; ıF / \ spanFc D B.0; ıF / \ Fc ,

where B.0; ıF / is a the closed ball of radius ıF centered at the origin.
(e) For any wt , t � 0, there exists an x 2 C such that hx � Py;wt i � 0. Furthermore, if

Fc 6D f0g and whenever kPFwtk � 2r2=ıF , r WD supx2C kxk < 1, and an element in S \ F is
chosen by the algorithm then kPFwtC1k � kPFwtk. So, if kPFwtk � 2r2=ıF and an element in
S \ F is chosen then kwtC1 � y � .t C 1/.y � Py/k � kwt � y � t .y � Py/k.

(f) If F D C then b D 2r2=ıF C 3r satisfies eq. 2 and the error of the algorithm is bounded
by .2r2=ıF C 3r/=t for any t � 1.

PPP (a) F is the minimal face. F is certainly a subset of any face that contains Py by the very
definition of a face. It is also a face itself since if for any x 2 F , x 6D Py, there exist two points
a; b 2 C and a � 2 .0; 1/ such that x D �a C .1 � �/b then there exists a � 2 .0; 1/ and a z 2 C
such that Py D �xC .1� �/z D �.�aC .1� �/b/C .1� �/z D ��aC �.1� �/bC .1� �/z D
��aC .1� ��/

�
�.1��/
1���

b C 1��
1���

z
�
: c WD �.1��/=.1� ��/bC .1� �/=.1� ��/z is an element

of C since it is a convex combination of b and z and hence with � WD �� 2 .0; 1/ we see that
Py D �a C .1 � �/c and a 2 F . Applying the same argument to b shows us also that b 2 F and
F is a face.
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(b) F is compact and convex and exF D exC \ F . F is a face and as such also convex.
Furthermore, F D C \ affF where affF is the affine hull of F . The affine hull has finite affine
dimension since C has finite affine dimension. Affine hulls with finite affine dimension are closed.
Hence, F is closed as the intersection of two closed sets. And since closed subsets of compact
sets are compact we see that F is compact. Finally, exF D F \ exC , that is the extremes of F
are just the extremes of C which lie in F . The last property can be verified in the following way:
the extremes of C are by definition not convex combinations of any two points a; b 2 C , a 6D b,
and hence of no two points in F . So F \ exC � exF . On the other hand, if c 2 exF then
there is no point a 2 CnF for which a corresponding point b 2 C and � 2�0; 1Œ exists such that
c D �aC .1� �/b (a would otherwise be in the face F ). However, since c 2 exF there exists also
no point a 2 F with this property and c 2 exC .

(c) y � Py is orthogonal to Fc . If there would be an element u 2 affFc , u D
Pn
iD1 ˛ivi

for some n � 1, vi 2 Fc ,
Pn
iD1 ˛i D 1, such that hu; y � Pyi 6D 0 there would also be an

element v 2 Fc with hv; y � Pyi 6D 0 (otherwise hu; y � Pyi D
Pn
iD1 ˛i hvi ; y � Pyi D 0).

Furthermore, by the characterization of the minimal face in (3) and because vCPy 2 F there exists
an element z 2 Fc such that Py D �.vCPy/C .1� �/.zCPy/ and 0 D �vC .1� �/z. Hence,
0 D hy � Py; �viChy � Py; .1 � �/zi. Because hy � Py; vi 6D 0we know that hy � Py; zi 6D 0
and both have opposing signs. So one of them, say without loss of generality hy � Py; vi, is strictly
greater zero. But this can not be since then Qv D v C Py 2 C would fulfill, in contradiction to the
properties of Py, hy � Py; Qv � Pyi > 0.

(d) Fc D f0g or there exists a B.0; ı/; ı > 0. If the minimal face consists of a single element x
then this element must be Py, since Py 2 F , so in this case Fc D f0g. In the other case it suffices
to consider a set of basis vectors which span the space spanFc , say e1; : : : ; ed , where d <1 is the
affine dimension of F . There exist ˛1; : : : ; ˛d > 0 such that ˙˛iei 2 Fc for all i � d if, and only
if, B.0; ı/ \ spanFc D B.0; ı/ \ Fc for some ı > 0.

Since, ei 2 affFc there exists a n � 1, u1; : : : ; un 2 Fc and
Pn
jD1 ǰ D 1 with ei DPn

jD1 ǰuj . We can also represent ei as a sum with only non-negative coefficients, i.e. there exists
Q̌
j � 0, Quj 2 Fc , j � n, such that ei D

Pn
jD1
Q̌
j Quj . This can be achieved by doing the following

for each j � n: if ǰ � 0, then let Q̌j D ǰ and Quj D uj . If ǰ < 0 and uj D 0 then let Q̌j D � ǰ

and Quj D uj . Finally, if neither case applies ( ǰ < 0, uj 6D 0) take a � 2�0; 1Œ and a Quj 2 Fc
such that 0 D �uj C .1 � �/ Quj . Such a � and Quj exist due to the definition of F . With this choice
ǰuj D �Quj ǰ .1 � �/=� D Q̌j Quj , where Q̌j D � ǰ .1 � �/=� > 0.

So ei D
Pn
jD1
Q̌
j Quj and Q̌j � 0. By normalizing the sum with � D

Pn
jD1
Q̌
j > 0 (some ǰ

must be greater 0) we see that �ei 2 Fc . Furthermore, there exists a � 2�0; 1Œ and a v 2 Fc such
that �ei�.1 � �/=� D v. And our claim is shown to be true by letting ˛i D minf�.1 � �/=�; �g.

(e) Shrinking weight vector. If F consists of more than one element then for any weight vector
wt there exists an element x in F with hx � Py;PFwt i D ıF kPFwtk, since ıFPFwt= kPFwtk
is in B.0; ıF / and h.ıFPFwt= kPFwtk C Py/ � Py;PFwt i D ıF kPFwtk. This implies di-
rectly that we have an element z 2 exF � S \ F with hz � Py;PFwt i � ıF kPFwtk, be-
cause x D

Pn
jD1 ǰuj , for suitable n, ˇ1; : : : ; ˇn > 0,

Pn
jD1 ǰ D 1 and elements uj 2

exF (exC is finite and the convex hull C of exC is in this case closed. That means any el-
ement in C can be represented exactly by a convex combination of finite many extremes), i.e.Pn
jD1 ǰ

˝
uj � Py;PFwt

˛
D ı kPFwtk and at least one term

˝
uj � Py;PFwt

˛
must be as large

as ıF kPFwtk.
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GRÜNEWÄLDER

Now, whenever kPFwtk � 2r2=ıF and an element in S \ F is chosen, then kPFwtC1k �
kPFwtk. This can be verified in the following way: there exists an element x0 2 F \ S such
that hx0 � Py;PFwt i � ıF kPFwtk and, hence, the algorithm will choose an element x with
hx � Py;PFwt i � hx

0 � Py;PFwt i � ıF kPFwtk (as said in (i) the maximization is unaffected
by the translation �Py). So, since x � Py 2 Fc and PF is linear we have that

kPFwtC1k
2
D kPF .wt � .x � Py//k

2
D kPFwt � .x � Py/k

2

D kPFwtk
2
� 2 hx � Py;PFwt i C kx � Pyk

2 :

Furthermore, kx � Pyk � kxk C kPyk is bounded by 2r and

kx � Pyk2 � 2 hx � Py;PFwt i � 4r
2
� 2ıF kPFwtk � 0

by our assumption on kPFwtk.
For x 2 F \ S we can also observe that for any wt

hx � Py;wt i D hPF .x � Py/;wt i D hx � Py;PFwt i

since x � Py 2 affFc and PF is self-adjoint. So there always exists an x 2 C such that
hx � Py;wt i � 0. If Fc D f0g, that is F D fPyg, then x D Py gives us hx � Py;wt i D 0.

(f) If F D fPyg thenwt�y�t .y�Py/ D .x1�Py/C: : :C.xt�Py/ D 0 since all xi D Py.
If F contains more than one element and C D F then (e) tells us that if kPFwtk � 2r2=ıF then

kwtC1 � y � .t C 1/.y � Py/k � kwt � y � t .y � Py/k :

Observe that if F D C then the projection PF is closely related to the projection QP onto the affine
hull of C , that is QPx D PF .x � QP0/ C QP0. Also, QPy D Py because y � Py is orthogonal to
spanFc . We need to show that kPFwtk � 2r2=ıF under the stated condition. We have that

kPFwtk D



.t C 1/PF y � tX

iD1

PF xi




 D 


PF y � tX
iD1

PF .xi � y/



 D 


PF y � tX

iD1

.xi � Py/





because xi � Py lies in spanFc and PF y D PFPy. On the other hand

kwt � y � t .y � Py/k D



 tX
iD1

.xi � Py/



 � kPFwtk C kPFPyk � kPFwtk C r:

Hence, if kwt � y � t .y � Py/k � r C 2r2=ıF then kwtC1 � y � .t C 1/.y � Py/k is smaller
than kwt � y � t .y � Py/k. So we can only see an increase of the sequence fwt � y � t .y �
Py/gt�1 if at any given t it holds that kwt � y � t .y � Py/k < 2r2=ıF C r and since the change
between t and t C 1 is just Py � x we gain for any t � 1 the bound

kwt � y � t .y � Py/k < 2r
2=ıF C r C kPy � xk � 3r C 2r

2=ıF : QQQ

(iii) The case F D C is dealt with in (ii.f) so we may assume in the following that CnF 6D ;.
We assign to the three subspaces UF ; Ub and Uı defined in Section 2.1 orthonormal bases. Take

an arbitrary orthonormal basis of UF and let EF be the set of these basis elements. Similarly, chose
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a basis of Uı and let Eı be the set of these basis elements. Finally, group the basis elements of Ub ,
guaranteed to us in our assumption, in Eb . Furthermore, let ım be the largest radius of an open ball
around 0 in UF ˚ Uı . ım is always strictly larger than 0. For any e 2 Eb and t � 0

hwt ; ei D hPy; ei C h.t C 1/.y � Py/; ei �

tX
nD1

hxn � Py; ei � h.t C 1/.y � Py/; ei C hPy; ei

and for any e 2 Eb and any t � 0 it holds that

hwtC1 � .y � Py/; ei � hwt ; ei D � hxtC1 � Py; ei � 0:

Hence hwtC1 � .y � Py/; ei � hwt ; ei for all e 2 Eb .
Clearly, Fc lies in UF ˚ Uı . More importantly, any element that is not in Fc lies at least partly

in Ub , or in other words, if x 2 CnF then Pb.x � Py/ 6D 0.
PPP For any element x 2 C that is not in F there exists an e 2 Eb such that hx � Py; ei 6D 0.

Otherwise, x � Py would lie in a subspace A for which there is a ı0 > 0 and B.0; ı0/ \ A D
B.0; ı0/ \ A \ Cc . The element �.x � Py/ would then also lie in A and z D �.ı0=2/.x �
Py/= kx � Pyk 2 B.0; ı0/ \ A D B.0; ı0/ \ A \ Cc (x 6D Py, since Py 2 F and the norm
kx � Pyk is strictly positive). So with � D ı0=.2 kx � Pyk/ and � D �=.1C �/ 2�0; 1Œ we would
have that

�.x � Py/C .1 � �/z D .x � Py/�=.1C �/ � .x � Py/�.1 � �=.1C �// D 0

and �x C .1 � �/.z C Py/ D Py. But, because x and z C Py 2 C this implies that x 2 F by the
definition of the minimal face. The conclusion x 2 F is a contradiction to our original assumption
and our claim holds. QQQ

(iv) (a) If the sequence fk.PF C Pı/.wt � y � t .y � Py//kgt�1 is bounded then the sequence
fkPb.wt � y � t .y � Py/kgt�1 is also bounded and elements in SnF are chosen only finitely
often.

(b) Under Assumption 1 the sequence fk.PF C Pı/.wt � y � t .y � Py//kgt�1 is bounded.
Furthermore, under this assumption the sequence fkwt � y � t .y � Py/kgt�1 is bounded and there
exists a constant b such that the approximation error is bounded by b=t .

PPP (a) Let us assume that fkPb.wt � y � t .y � Py/kgt�1 is unbounded. If elements in F are
chosen at any stage t then Pb.wt�y�t .y�Py// D Pb.wtC1�y�.tC1/.y�Py// and there is no
increase of the normed sequence. Hence, there must exist an element x� 2 SnF which is selected
infinitely often. Let e D �Pb.x� � Py/= kPb.x� � Py/k and observe that he; x � Pyi � 0 for
all x 2 C because hPb.x� � Py/; x � Pyi D

P
e02Eb

he0; x� � Pyi he0; x � Pyi � 0. If x� is
selected at any step t then from hx� � Py;wt i � 0 it follows that˝

x� � Py; .PF C Pı/wt
˛
� �

˝
x� � Py;Pbwt

˛
D


Pb.x� � Py/

 he; wt i

and hx� � Py; y � Pyi � 0 implies hx� � Py; .PF C Pı/.y � Py/i � � hx� � Py;Pb.y � Py/i
which in turn implies

hx� � Py; .PF C Pı/.�y � t .y � Py//i � �hx
�
� Py;Pb.�y � t .y � Py//i � hx

�
� Py;Pyi

� �hPb.x
�
� Py/; Pb.�y � t .y � Py//i � 2r:
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Together, these inequalities give us˝
x� � Py; .PF C Pı/.wt � y � t .y � Py//

˛
�


Pb.x� � Py/

 he; Pb.wt � y � t .y � Py/i�2r:

Applying the Cauchy-Schwarz inequality yields then

kx� � Pyk

kPb.x
� � Py/k

k.PF C Pı/.wt � y � t .y � Py//k C
2r

kPb.x
� � Py/k

� he; wt � y � t .y � Py/i

� �

tX
sD1

he; xs � Pyi � �fxs D x
�
g D

tX
sD1



Pb.x� � Py/

 � �fxs D x�g
where � is the characteristic function. Since kPb.x� � Py/k > 0 and x� is selected infinitely often
we conclude that k.PF C Pı/.wt � y � t .y � Py//k diverges in t and the corresponding sequence
fk.PF C Pı/.wt � y � t .y � Py/kgt�1 is unbounded.

(b) If UF D Uı D f0g then .PF C Pı/x D 0 for all x 2 H and (a) gives us

kwt � y � t .y � Py/k D


 tX
iD1

.xi � Py/


 D 

 tX

iD1

Pb.xi � Py/


 D kPb.wt � y � t .y � Py/k

and the sequence is bounded due to (a). Hence, the result follows.
Now let us assume that UF ˚ Uı 6D f0g. We want to apply Lemma 9. Let QH WD UF ˚ Uı . QH

together with the inner product inherited from H is a Hilbert space. Let A be the operator defined
for all w 2 H through

x0 2 arg max
x2SnF

hx � Py;wi and Aw D w C y � x0:

For any w for which there exist multiple maximizer assign to Aw one of these maximizer. Let B
be defined in the same way with the only difference that SnF is replaced by S \ F . We like to
study the interaction between A and B on the subspace UF ˚ Uı . The operator B optimizes over
elements in S \ F . For such elements x 2 S \ F we know that x � Py is orthogonal to Pbw
for all possible weights w and Pbw does not influence the behavior of the operator B . Let QB be
.PF CPı/B restricted to QH and letK WD UF � QH . The operator QB fulfills the assumptions of the
lemma:

� QB leaves the space orthogonal to K in QH unchanged and the maximization over S \ F does
only depend on PFw for any w 2 QH so QBw D .I � PF /w C PF QBPFw. This also holds
(trivially) if Fc D f0g.

� Let b WD 2r then for w 2 QH ,


 QBw

 D k.PF C Pı/.w C .y � Py/ � .x � Py//k �

kwkC kx � Pyk � kwkC b where x 2 S \F and .PF CPı/.y �Py/ D 0 by our choice
of Uı .

� If Fc D f0g then point (iii) in Lemma 9 holds trivially. In all other cases let a WD 2r2=ıF ,
ıF > 0, then an argument as in (ii.e) tells us that if kPFwk � a for some w 2 QH then

 QBw

 � kwk.
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The operator A depends on Pbw and we need to account for this error when studying the behavior
ofA acting on UF ˚Uı . We do so by working with a family of operatorsAwhich are parameterized
by Pbw. Let

A D f QAv W QH ! QH W QAv.w/ D .PF CPı/A.wCv/ for all w 2 QH ; v 2 Ub; hv; ei � 0;8e 2 Ebg:

Observe that there is some time t 00 < 1 such that for all t � t 00 no element in Sn.F [D.fxtg/ is
chosen and each element inD.fxtg/ has been chosen at least once. Write Ub D U ˚U 0 with U 0 D
spanD.fxtg/ and a suitable subspace U . Then PUwt D PUwQt for all t � Qt . Since each element in
D.fxtg/ is chosen infinitely often and h�Pbwt ; x � Pyi is non-decreasing for x 2 C there exists
some element t 000 � t 00 such that for all t � t 000, hPU .x � Py/;�Pbwt i � hx0 � Py;�Pbwt i for
all x 2 SnD.fxtg/ and x0 2 D.fxtg/. Let Qt <1 be the maximum over all t 0 in Assumption 1 and
t 000. The family of operators A fulfills the assumptions of the lemma if Assumption 1 holds and if
we use xQt as the initial value.

� Given any w 2 QH , QA 2 A (with corresponding v 2 Ub; hv; ei � 0 for all e 2 Eb), there
exists a x 2 SnF such that

 QAw

 D k.PF C Pı/A.w C v/k D k.PF C Pı/.w C v C .y � Py/ � .x � Py//k

D kw � .x � Py/k � kwk C b:

� If D.fxtg/ D ; then only elements in F are chosen after Qt and the claim of the theorem
follows by the arguments in (ii.e).

In case that D.fxtg/ 6D ; consider the maximum over all � in Assumption 1 and call this
maximum Q� <1. We claim that there exists a constant�0 <1 such that with � WD 2ım=�0

for all wt , t � Qt , whenever xt 2 SnF , then

hxt � Py; .PF C Pı/wt i � k.PF C Pı/wtk ım=�
0

where xt is the element selected in the argmax step of Av, wt D u C v; u 2 UF ˚

Uı ; v 2 Ub . PPP (˛) Whenever xt 2 SnF; xt 2 D.fxtg/, for some t � Qt we know that
hPbwt ; xt � Pyi 6D 0 because each element x 2 D.fxtg/ has been chosen at least once and
each element outside the minimal face lies partly in Ub . For any x 2 D.fxtg/ we also have
hPbwt ; x � Pyi 6D 0 and at step t � Qt

hxt � Py; .Pı C PF /wt i � hx � Py; .PF C Pı/wt i � h.x � Py/ � .xt � Py/;�Pbwt i

� hx � Py; .PF C Pı/wt i �

�
hx � Py;�Pbwt i

hxt � Py;�Pbwt i
� 1

�
hxt � Py;�Pbwt i

� hx � Py; .PF C Pı/wt i �

�
hx � Py;�Pbwt i

hxt � Py;�Pbwt i
� 1

�
hxt � Py; .PF C Pı/wt i

� hx � Py; .PF C Pı/wt i � . Q� � 1/hxt � Py; .PF C Pı/wt i

and
hxt � Py; .Pı C PF /wt i � hx � Py; .Pı C PF /wt i = Q�:

(ˇ) Consider a set of elements z1; : : : ; z Qd 2 D.fxtg/ such that z1 � Py; : : : z Qd � Py are
linearly independent and with dim U 0 D Qd � 1. Apply the Gram-Schmidt method to trans-
form these into an orthonormal basis Qz1; : : : ; Qz Qd such that Qzi D

Pi
jD1 ˇij .zj �Py/ for some
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scalars ˇij . Since the vectors are linearly independent we know that maxi;j�d
ˇ̌
ˇij
ˇ̌
< 1.

For any x 2 Sn.F [D.fxtg// if Pbx 2 U then, by the choice of Qt , for all t � Qt

h�Pbwt ; x � Pyi � min
x02D.fxt g/

h�Pbwt ; x
0
� Pyi:

IfPbx 62 U then we can writePU 0.x�Py/ D ˛1 Qz1; : : : ; ˛ Qd Qz Qd for suitable scalars ˛1; : : : ; ˛ Qd .
We claim that there exists a �x <1 such that

h�Pbwt ; PU 0.x � Py/i � �x max
i�d
h�Pbwt ; zi � Pyi

for all t � Qt . This holds since

h�Pbwt ; PU 0.x � Py/i � d max
i�d
j˛i jmax

i�d
h�Pbwt ; Qzi i

� d2 max
i�d
j˛i j max

i;j�d

ˇ̌
ˇij
ˇ̌
max
i�d
h�Pbwt ; zi � Pyi

and, using Parseval’s identity, j˛i j � kPU 0.x � Py/k � 2r . Hence, the claim follows with
�x D 2rd

2 maxi;j�d
ˇ̌
ˇij
ˇ̌
<1.

Furthermore, because for all t � Qt , x 2 Sn.F [ D.fxtg//, hPU .x � Py/;�Pbwt i �
mini�d hzi � Py;�Pbwt i by our choice of Qt we can observe that for any x 2 Sn.F [

D.fxtg/ DWM

h�Pbwt ; x � Pyi D h�Pbwt ; PU .x � Py/i C h�Pbwt ; PU 0.x � Py/i

� . sup
x2M

�x C 1/max
i�d
h�Pbwt ; zi � Pyi

� Q�. sup
x2M

�x C 1/h�Pbwt ; xt � Pyi:

Repeating the argument in .˛/ this tells us that

hxt � Py; .Pı C PF /wt i � hx � Py; .Pı C PF /wt i=. Q�. sup
x2M

�x C 1//:

(
 ) The above argument also works for x 2 F without the need to adapt the multiplier
�0 WD Q�.supx2M �x C 1/. Now, we know that there exists an element x� 2 S such that

hx� � Py; .PF C Pı/wt i � k.PF C Pı/wtk ım

and, hence,

hxt � Py; .PF C Pı/wt i � hx
�
� Py; .PF C Pı/wt i=�

0
� k.PF C Pı/wtk ım=�

0

which proves the claim. QQQ
Writing u D w C v, w 2 Ub ˚ Uı , v 2 Ub , this becomes hxt � Py;wi � kwk ım=�0 for
all t � Qt . The usual argument gives us for the operator QA being used at time t that

 QAw

2 D 

.PF C Pı/.w C v C .y � Py/ � .x0 � Py//

2

D kwk2 � 2
˝
x0 � Py;w

˛
C


x0 � Py

2

� kwk2 � 2 kwk ım=�
0
C b D kwk .kwk � 2�/C b:
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Hence, the lemma can be applied and the sequence of weights projected onto UF ˚Uı , i.e. f.PF C
Pı/wtgt�0 is bounded in norm. Together with (a) this implies that the weight sequence stays
bounded and the result follows. QQQ

(v) The condition is also necessary for the fast rate of convergence. Observe that there always
exists a decomposition UF ˚ Uı ˚ Ub of spanCc : let UF D spanFc . Let QU be the orthogonal
complement of UF in spanCc . If this is empty then we are done. Otherwise, chose an orthonormal
basis e1; : : : ; ek of QU , k D dim QU such that e1 D PC .y�Py/= kPC .y � Py/k ifPC .y�Py/ 6D 0.
Consider the set Eb D fei W i � k; Pei

ŒCc� � .�1; 0� or Pei
ŒCc� � Œ0;1/g and let Eı D

fe1; : : : ekgnEb . Then Ub D spanEb; Uı D spanEı fulfill the assumptions. Since Pı ŒCc� is
convex and we have an open interval around 0 in each direction e 2 Eı we have a ball around
0 in Uı . Similarly, the assumption for Ub is fulfilled if we exchange e 2 Eb with �e whenever
PeŒCc� � Œ0;1/.

If Assumption 1 is not fulfilled for this decomposition then there exists an element x 2 SnF
which is selected infinitely often by the algorithm. But, since kPb.wt � y � t .y � Py//k is non-
decreasing in t and because x 2 SnF fulfills kPb.x � Py/k > 0, we have kwt � y � t .y � Py/k �
kPb.x � Py/k

Pt
sD1 �fxs D xg and the right side diverges in t . Therefore, we have an unbounded

sequence fkwt � y � t .y � Py/kgt�1. Observe that the algorithm does not converge with the rate
1=t if fkwt � y � t .y � Py/kgt�1 is unbounded.

6.2 The Second Theorem

Theorem 3 Given a compact convex set C � H , a finite subset S of C with exC � S and an
element y 2 H the following holds:

� If only elements in F \ S , where F � C is the minimal face that contains Py, are chosen
then the method converges linearly to the projection and there exist constants b; ˇ > 0 with

kPy � ptk � be
�ˇt :

� Under Assumption 1 if minx2S kPy � xk > 0 and the approximation does not equal Py in
finite many steps then the sequence fk.I � PF /.Py � pt /kgt�0 converges sub-linearly and
there exists a constant d > 0 such that

kPF .Py � pt /k
2
� .1�ı2F =diam 2.F // kPF .Py � pt�1/k

2
Cd k.I � PF /.Py � pt�1/k

2 :

Furthermore, there exists a time t0 after which only elements in F \ S are chosen.

Proof We aim for a similar argument as in the proof of the first theorem: (1) optimizing the
approximation of Py by using y instead of Py does not hurt the rate of convergence. (2) This
guarantees us that the rate of convergence is what we aim for if we work solely with the minimal face
F that contains Py. Since, we do not know this minimal face we need to deal with perturbations
that are introduced by elements in SnF . These perturbations do slow down the rate of convergence.
We adapt the proof from Beck and Teboulle (2004) to address (1). We make use of parts of the
proof of Theorem 2 and we use Theorem 2 (ii.a) etc. to refer to it. In the following we will use pt to
denote the approximation at step t (with p0 D 0), xt as the element that is chosen by the algorithm
and wt D y � pt .
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(i) Let F be the minimal face which contains Py (Thm. 2 (ii.a)) and assume that either C D F
or only elements in F are chosen by the algorithm. (a) We claim that in this case Q̨ t 2 Œ0; 1� for
all t � 1. PPP In step 1 we have by definition that Q̨ t D 1. If C consists of a single element then
Q̨ t D 0=0, which we define to be 0, for all t � 2. For the case that C consists of more than a single
element and for any step t � 2 we have that

Q̨ t D
hwt�1; wt�1 C .xt � y/i

kwt�1 C xt � yk
2

D
hy � pt�1; xt � pt�1i

kxt � pt�1k
2

D
hPy � pt�1; xt � pt�1i

kxt � pt�1k
2

where the last step holds because xt �pt�1 lies in the span of Cc and y �Py stands orthogonal on
spanCc (Thm. 2 (ii.c)), i.e. hy � Py; xt � pt�1i D 0. We can also observe that

hPy � pt�1; xt � Pyi D max
x2C
hPy � pt�1; x � Pyi � ıF kPy � pt�1k � 0 (4)

holds: y � Py stands orthogonal on spanCc and, hence,

arg max
x2S

hwt�1; xi D arg max
x2S

hPy � pt�1; xi � arg max
x2C

hPy � pt�1; xi :

Furthermore, Py � pt�1 lies in the span of the centered minimal face, i.e. Py � pt�1 2 Fc , and
Thm. 2 (ii.d) tells us that there exists a constant ıF > 0 which makes the above true. Following
Beck and Teboulle (2004) we complete the square

hPy � pt�1; Py � pt�1 � .Py � xt /i � kPy � pt�1k
2
� 2 hPy � pt�1; Py � xt i C kPy � xtk

2

D kpt�1 � xtk
2

and observe that Q̨ t � 1. Hence, ˛t D Q̨ t . QQQ
(b) If F D C or only elements in F are chosen by the algorithm then for any t � 2 either

Py D pt and for all s � t we have Py D ps or kPy � ptk2 � .1 � ı2F =diam 2.C // k Qwt�1k
2.

Furthermore, there exist constants b; ˇ > 0 such that kPy � ptk � be�ˇt . PPP We aim at reproduc-
ing the argument from Beck and Teboulle (2004) by exploiting the orthogonality between y � Py
and spanCc . Let Qwt D Py � pt D Qwt�1 � ˛t .xt � Py C Qwt�1/ and assume that Qwt�1 6D 0. In
short, if C consists of a single element then there is nothing to show and, otherwise, we have for
t � 2 that ˛t D Q̨ t and

k Qwtk
2
D k Qwt�1k

2
� 2˛t h Qwt�1; Qwt�1 C .xt � Py/i C ˛

2
t kxt � pt�1k

2 :

Observe that hwt ; Qwt i D hy � pt ; Py � pt i D k Qwtk2 because of the orthogonality and because
Py � pt 2 spanCc . This, together with the orthogonality between y � Py and xt � Py yields

hwt�1; wt�1 C .xt � y/i D hwt�1; Py � pt�1 C xt � Pyi D h Qwt�1; Qwt�1 C xt � Pyi :

Furthermore, kwt�1 C xt � yk D kxt � pt�1k and, hence,

˛t D
h Qwt�1; Qwt�1 C .xt � Py/i

kxt � pt�1k
2

:
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By filling in this value of ˛t we gain

k Qwtk
2
D k Qwt�1k

2
� 2
jh Qwt�1; Qwt�1 C xt � Pyij

2

kxt � pt�1k
2

C
jh Qwt�1; Qwt�1 C xt � Pyij

2

kxt � pt�1k
2

D
k Qwt�1k

2
kPy � xtk

2
� jh Qwt�1; Py � xt ij

2

kxt � pt�1k
2

:

Since arg maxx2S hwt�1; xi D arg maxx2S h Qwt�1; xi we have that

h Qwt�1; xt � Pyi D max
x2C
h Qwt�1; x � Pyi � ıF k Qwt�1k

and
k Qwt�1k

2
kPy � xtk

2
� jh Qwt�1; Py � xt ij

2
� k Qwt�1k

2 .kPy � xtk
2
� ı2F /:

Eq. 4 tells us now that kxt � Py C .Py � pt�1/k2 � kxt � Pyk2 and

k Qwtk
2
�
k Qwt�1k

2 .kxt � Pyk
2
� ı2F /

kxt � Pyk
2

� .1 � ı2F =diam 2.C // k Qwt�1k
2 :

This is the second part of our claim. The first part follows directly from the particular form that ˛t
attains. With Qwt�1 D 0 we have

˛t D
h Qwt�1; Qwt�1 C .xt � Py/i

kxt � pt�1k
2

D 0

and Qwt D Qwt�1 D 0. Finally, both cases imply the fast rate of convergence: Let 
 D ı2F =diam 2.C / 2

.0; 1/ then in both cases k Qwtk2 � .1 � 
/ k Qwt�1k
2 for all t � 2 and Lemma A.1(ii) from

Beck and Teboulle (2004) tells us that k Qwtk2 � e�
t k Qw1k
2. But then with ˇ D 
=2 we have

kPy � ptk � e
�ˇt k Qw1k and the result follows. QQQ

(ii) We address now F 6D C . First, we can observe that in the general case either Q̨ t � 1 holds
after at most finite many steps or there is one final step where Q̨ t > 1 and the approximation error
becomes zero afterwards, i.e. there exists a time t0 < 1 such that Q̨ t � 1 for all t � t0 or, if
Q̨ t > 1 for some t � t0, then for all s > t we have that ps D Py and Q̨s 2 Œ0; 1�. t0 depends here
on y and S . PPP We expand the argument of (i.a). In the case that S does not contain the element
Py we can argue in the following way: If ky � Pyk > 0 and kpt�1 � Pyk � .kxt � Pyk

2
�

hpt�1 � Py; xt � Pyi/= ky � Pyk then

hy � pt�1; xt � pt�1i D ky � pt�1k
2
C hy � pt�1; xt � yi

D ky � pt�1k
2
C hy � Py; xt � yi C hPy � pt�1; Py � yi C hPy � pt�1; xt � Pyi

D kPy � pt�1k
2
� hpt�1 � Py; xt � Pyi C hy � Py;Py � pt�1i C hy � Py; xt � Pyi

� kPy � pt�1k
2
� hpt�1 � Py; xt � Pyi C ky � Pyk kpt�1 � Pyk

� kxt � pt�1k
2

and Q̨ t � 1. S consists of finite many elements and � WD dist .S; Py/ D minx2S kx � Pyk > 0.
Since xt 2 S we know that kxt � Pyk � �. Furthermore,

hPy � pt�1; xt � Pyi D � hy � Py; xt � Pyi C hy � pt�1; xt � Pyi � 0
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because the first inner product is non-positive and the second term is non-negative (the same argu-
ment as in Theorem 2 (ii.e)). Hence,

kxt � Pyk
2
� hpt�1 � Py; xt � Pyi � �

2 > 0:

Standard results for the CGM tell us that we have a constant c > 0 such that kpt � yk2 �
kPy � yk2 � c=t and hence

kpt � Pyk
2
D kpt � yk

2
C2 hpt � y; y � PyiCky � Pyk

2
� kpt � yk

2
�ky � Pyk2 � c=t

where we used that

hpt � y; y � Pyi D hpt � Py; y � Pyi � ky � Pyk
2
� �ky � Pyk2 :

Hence, for all t 2 N with t � t0, where t0 D c ky � Pyk2 =�4, we know that Q̨ t � 1. If y D Py

then the argument simplifies to

hy � pt�1; xt � pt�1i � kPy � pt�1k
2
� hpt�1 � Py; xt � Pyi � kxt � pt�1k

2 :

The remaining case is the case where Py 2 S . In fact, the only critical case is where xt D Py. We
can argue in the following way:

Q̨ t D
hy � Py;Py � pt�1i C hPy � pt�1; Py � pt�1i

kPy � pt�1k
2

� 1

and ˛t D 1. Hence, pt D Py and xtC1 D arg maxx2S hy � pt ; xi D arg maxx2S hy � Py; x � Pyi.
If xtC1 D Py then ptC1 D Py and Q̨ tC1 D 1. Otherwise, xtC1 is an element of the minimal face.
Hence, if pt D Py and xtC1 6D Py then

Q̨ tC1 D
hy � Py; xtC1 � pt i C hPy � pt ; xtC1 � pt i

kxtC1 � ptk
2

D 0 D ˛tC1

and ptC1 D Py. The same argument yields that ps D Py for all s � t and Q̨s 2 Œ0; 1�. QQQ
(iii) Consider now the split spanCc D UF ˚ Uı ˚ Ub . We will use here the same notation

ım; ıF etc. as in Theorem 2.
(a) If Assumption 1 holds then there exists a s0 < 1 such that for all t � s0 the algorithm

chooses elements xt 2 F . PPP Assumption 1 provides us with a time s0 after which only elements
in D.fxtg/ [ F are chosen. As in Theorem 2 (iv) we can observe that there exists a constant c > 0
such that for all t � s0

hxt � Py; .PF C Pı/wt i � ck.PF C Pı/wtk:

xt 2 S is here the element chosen at step t . Hence, the sequence fkt .PF CPı/wtkgt�0 is bounded.
Furthermore, because 0 � hxt � Py; twt i D hxt � Py; t.PF C Pı/wt i C hxt � Py; tPbwt i we
can infer that

�hxt � Py; tPbwt i � hxt � Py; t.PF C Pı/wt i � kxt � Pyk kt .PF C Pı/wtk

and the sequence f�hxt � Py; tPbwt igt�0 is bounded. But this implies that x D xt is either an
element of F or it is selected only finitely often (and, hence, x 62 D.fxtg/). Therefore, D.fxtg/ is
empty and the result follows. QQQ
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(b) There exists a constant d > 0 and a time u0 after which for all t � u0

kPF Qwtk
2
�

 
1 �

ı2F

diam 2.F /

!
kPF Qwt�1k

2
C d k.I � PF / Qwt�1k

2 :

PPP Let us consider t > t0 _ s0 with s0 from (a) and t0 from (ii). We know that only elements in F
are chosen at t and hence

kxt � pt�1k
2
Q̨ t D hwt�1; Qwt�1 C xt � Pyi D h Qwt�1; Qwt�1 C xt � Pyi C hy � Py; Qwt�1i

D hPF Qwt�1; PF Qwt�1 C xt � Pyi C k.I � PF / Qwt�1k
2
C hy � Py; Qwt�1i :

Also, Q̨ t D ˛t and

kPF Qwtk
2
D kPF Qwt�1k

2
� 2˛t hPF Qwt�1; PF Qwt�1 C xt � Pyi C ˛

2
t kxt � PF pt�1k

2

�

 
1 �

ı2F

diam 2.F /

!
kPF Qwt�1k

2
C
.k.I � PF / Qwt�1k

2
C hy � Py; Qwt�1i/

2

kxt � pt�1k
2

:

Now, since pt converges to Py there exists a time u0 > t0 _ s0 after which kxt � pt�1k �
kxt � Pyk =2 � minx2S kx � Pyk =2 and k.I � PF / Qwt�1k

2
� k.I � PF / Qwt�1k � 1. Hence,

for all t � u0 we have that

kPF Qwtk
2
�

 
1 �

ı2F

diam 2.F /

!
kPF Qwt�1k

2
C

4.1C ky � Pyk/

minx2S kx � Pyk
2
k.I � PF / Qwt�1k

2 :

Choosing d D 4.1C ky � Pyk/=.minx2S kx � Pyk
2/ yields the result. QQQ

(c) If minx2S kx � Pyk > 0 and if k.I � PF / Qwt0_s0k > 0 with s0 from (a) and t0 from (ii)
then the sequence fk.I � PF / Qwtkgt�1 converges sub-linearly. PPP Let us consider t � t0 _ s0. We
know that only elements in F are chosen at t and that ˛t D Q̨ t . Therefore k.I � PF / QwtC1k D
.1 � ˛tC1/ k.I � PF / Qwtk and

k.I � PF / QwtC1k

k.I � PF / Qwtk
D 1 � ˛tC1 D

kxtC1 � Py C Qwtk
2
� hwt ; Qwt C xtC1 � Pyi

kxtC1 � ptk
2

D
kxtC1 � Pyk

2
C hPF Qwt ; xtC1 � Pyi � hy � Py;Pb Qwt i

kxtC1 � Pyk
2
C 2 hxtC1 � Py; Qwt i C k Qwtk

2

which converges to 1 since limt!1 k Qwtk D 0. This means that the sequence converges sub-
linearly. QQQ

6.3 Corollaries

Corollary 4 Given a compact convex set C � H and a finite subset S of C with exC � S . If for
y 2 H there exists a decomposition UF ˚ Uı ˚ Ub of spanCc such that Ub is one dimensional
then Assumption 1 is fulfilled. In particular, in this case there exists a constant b > 0 such that
Algorithm 1 has a worst-case approximation error of b=t for all t � 1.
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Proof Consider elements x; x0 2 SnF . Since kPb.x � Py/k ; kPb.x0 � Py/k > 0 we know that
� D kPb.x � Py/k = kPb.x

0 � Py/k <1 and since Ub is one-dimensional we have for any t

h�Pbwt ; x � Pyi D kPbwtk kPb.x � Py/k � � kPbwtk kPb.x
0
�Py/k D �h�Pbwt ; x

0
�Pyi

and Assumption 1 is fulfilled.

Let for the following corollary A D fz 2 H W z D ˛PC .y � Py/C PCPy; ˛ 2 Œ0;1/g.

Corollary 5 Given a compact convex set C � H and a finite subset S of C with exC � S .
Assumption 1 is fulfilled if PCy 2 HnC and whenever Pz D Py for some z 2 H then PC z 2 A
holds. In particular, in this case there exists a constant b > 0 such that Algorithm 1 has a worst-case
approximation error of b=t for all t � 1.

Proof The assumption guarantees us that Ub is one-dimensional. Assume otherwise. By assump-
tion kPC .y � Py/k > 0 and we can chose Eb such that there exist two elements e1; e2 in Eb
with e1 D PC .y � Py/= kPC .y � Py/k and he1; e2i D 0; ke1k D ke2k D 1. We claim that
z1 D Py C e1 and z2 D Py C e2 are both projected onto Py, i.e. Pz1 D Py D Pz2: We know
that Pe1

ŒCc� � .�1; 0� and he1; x � Pyi � 0 for all x 2 C . Hence, for all x 2 C we know
that hz1 � Py; x � Pyi D he1; x � Pyi � 0. But, this means that Pz1 D Py. The same argu-
ment applies to z2 and Py is the projection of two elements for which hz1 � Py; z2 � Pyi D 0.
Furthermore, PC z1 D PCPy C e1 and PC z2 D PCPy C e2. If PC z2 2 A then there exist
˛; Q̨ > 0,

e2 C PCPy D PC z2 D ˛PC .y � Py/C PCPy D Q̨e1 C PCPy

and e2 D Q̨e1 with a contradiction to orthogonality.

For the next corollaries let d D dimUb , let e1; : : : ; ed be any basis of Ub and let r D supx2C kxk.
Also introduce ˛ D mini�d minfj hei ; x � Pyi j W x 2 SnF; hei ; x � Pyi 6D 0g > 0.

Corollary 6 LetC be a compact convex set in some Hilbert space H , S a finite set with cchS D C ,
and y 2 H such that there exists a split into UF ˚Uı ˚Ub of spanCc with Uı D f0g. Assumption
1 is fulfilled and there exists a constant b > 0 such that Algorithm 1 has a worst-case approximation
error of b=t for all t � 1. The constant b can be chosen as

p
d4r3=.˛ıF /C6r

2.1=ıF C1=˛/C5r .

Proof If Fc D f0g then each element x 2 SnF can only be chosen once since 0 > hwt ; x � Pyi D
hPbwt ; x � Pyi if x has been chosen at least once. This implies that D.fxtg/ is, in fact, the empty
set and Assumption 1 is fulfilled. It is also easy to see that hwt ; ei i � kx � Pyk � 2r for all i � d .
This implies that the constant b can in this case be chosen as 2r

p
d . Also, since ıF and ˛ are upper

bounded by r this implies that b � 2r3
p
d=.˛ıF /.

Assume now that Fc 6D f0g and that there exists a x 2 D.fxtg/. By definition x 2 SnF and x
is chosen infinitely often. Hence, fhPbwt ; x � Pyigt�1 is a non-increasing sequence that diverges
to �1. There exists a ıF > 0 such that for any wt , maxx02S\F hwt ; x

0 � Pyi � ıF kPFwtk.
Also, for any x0 2 S , we have that hwt ; x0 � Pyi D hPFwt ; x0 � Pyi C hPbwt ; x0 � Pyi and,
since the term hPbwt ; x0 � Pyi is always non-positive, we know that if PFwt 6D 0 elements will
be chosen such that hPFwt ; x0 � Pyi � ıF kPFwtk. Hence, whenever kPFwtk � 2r2=ıF for
some t then kPFwtC1k � kPFwtk. This implies that kPFwtk � 2r2=ıF C 3r for all t � 1.
Hence, for x to be chosen infinitely often we need for all time steps t where x is chosen that

0 � hwt ; x � Pyi � hPFwt ; x � PyiChPbwt ; x � Pyi � 2r.2r
2=ıF C3r/ChPbwt ; x � Pyi

40



COMPACT CONVEX PROJECTIONS

since kx�Pyk � 2r . Therefore, � hPbwt ; x � Pyi � r.4r2=ıF C6r/ and fhPbwt ; x � Pyigt�1
cannot diverge to �1. In other words, x cannot be chosen infinitely often with a contradiction to
the initial assumption. We can also control the constant in this case: kPbwtk can only grow if either
PFwt D 0 or there is an x0 2 SnF such that � hPbwt ; x0 � Pyi � r.4r2=ıF C 6r/. Then for wt
if for any i � d

˛ hwt ; ei i > r.4r
2=ıF C 6r/

then no x 2 SnF with hei ; x � Pyi 6D 0 can be played since for such a x

� hPbwt ; x � Pyi � hei ; x � Pyi hei ; wt i > r.4r
2=ıF C 6r/:

Hence, hei ; wt i � r.4r2=ıF C 6r/=˛C 2r since the increment of wt in one step is bounded by 2r .
Since this holds for each i � d we gain the bound kPbwtk �

p
d4r3=.ıF ˛/C 6r

2=˛ C 2r and

kwtk � kPFwtk C kPbwtk �
p
d4r3=.ıF ˛/C 6r

2.1=ıF C 1=˛/C 5r:

Corollary 7 Let y 2 Rd , Q any orthogonal matrix, c > 0 any scaling, z 2 Rd , S D f0; 1gd and
C D Œ0; 1�d , d � 1. Assumption 1 is fulfilled for the set QS D cQŒS C z� and QC D cQŒC C z�

(independently of the dimensionality of the face Py lies in). In particular, there exists a constant
b > 0 such that Algorithm 1 has a worst-case approximation error of b=t for all t � 1. The constant
b can be chosen as

p
d4r3=.cıF /C 6r

2.1=ıF C 1=c/C 5r .

Proof Because the algorithm does not change by translating and rotating S and C we can consider
a hypercube anchored at the origin and aligned with the standard basis of Rd . We therefore assume
without loss of generality that we have to deal with a scaled standard hypercube in Rd . Let us
assume in the following that dimUF D k � d .

Observe that eitherUF D f0g or we can writeUF D span fei1 ; : : : ; eikg, where e1; : : : ; ed is the
standard basis in Rd , ij � d for all j � k, and k D dimUF . This holds because a k-dimensional
face of the hypercube is a translated k-dimensional hypercube in a subspace spanned by some basis
vectors ei1 ; : : : ; eik . Define the following index sets I D fi1; : : : ; ikg, I D ; if UF D f0g, and
J D f1; : : : ; dgnI.

There are signs sj 2 f�1; 1g, j 2 J, such that Eb D fsj ej W j 2 Jg is a basis for Ub , and
the split into UF ˚ Uı ˚ Ub is satisfying the conditions of Assumption 1. In particular, Uı D f0g,
PC .y � Py/ 2 Ub and for all e 2 Eb we have fhx; ei W x 2 Ccg � .�1; 0�. PPP Uı D f0g

because the minimal faces which are orthogonally projected onto a face that contains a ball around
Py (relative to the projection) are translated versions of the minimal face and they induce the same
subspace as the minimal face. That also implies directly thatEb can be chosen to fulfill Assumption
1. PC .y�Py/ stands orthogonal onUF and, hence, lies fully inUb . Therefore, Corollary 6 applies.
Observe that ˛ can here be chosen as the scaling factor c and the corollary provides the stated result
since dimUb � d .

Corollary 8 Let y 2 Rd , S D fei W i � dg and C D �d�1 D cchS , d � 1. Assumption 1 is
fulfilled and there exists a constant b > 0 such that Algorithm 1 has a worst-case approximation
error of b=t for all t � 1. The constant b can be chosen as 4dr3=ıF C 6r2.1=ıF C

p
d/C 5r .
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Proof Due to the rotation invariance it suffices to consider the case where F D cch fe1; : : : ; ekg
for some k � d . Let us consider first the case where F D fe1g and, hence, Fc D f0g. In this case,
Cc D cch f0; e2�e1; : : : ; ed�e1g. Observe that hxCe1; ej i � 0 for any x 2 Cc and all j � d since
x C e1 2 C and, hence, x C e1 D

P
i�d ˛iei for some non-negative ˛i . In particular, for j � 2,

hx; ej i � 0 for all x 2 Cc . Furthermore, hx; e1i � 0 for all x 2 Cc because x C e1 D
P
i�d ˛iei

with non-negative scalars that fulfill
P
i�d ˛i D 1. I.e. hx; e1i D hx C e1; e1i�1 � ke1k2�1 D 0.

Therefore, we have an orthonormal basis f�e1; e2; : : : ; ed g, of Rd such that hx; ei � 0 for all basis
elements e and all x 2 Cc . This implies that there exists no basis element Qe 2 Rd such that
there exists elements x; x0 2 Cc with hx; Qei > 0 > hx0; Qei and, hence, f�e1; e2; : : : ; ed g spans the
d -dimensional space Ub and Uı D f0g. The rate of convergence follows now from Corollary 6.

Let us consider the case F D cch fe1; : : : ; ekg and k � 2. For any ej , j > k, and any
x 2 Cc , hx C Py; ej i � 0 since x C Py D

P
i�d ˛iei for some non-negative ˛i . But this

implies hx; ej i D hx C Py; ej i � 0 because Py is a convex combination of e1; : : : ; ek . Also
ekC1; : : : ; ed 2 F

?
c because spanFc D span fe2 � e1; : : : ; ek � e1g and hei � e1; ej i D 0 for any

i � k; j > k. Finally, consider e D
Pk
jD1 ej =

p
k; kek D 1, and observe that he; ei i D 0 for all

i > k. Also, he; ei � e1i D 0 for i � k. This implies that e stands orthogonal on Fc because for
v 2 spanFc ; v D

Pk
iD2 ˛i .ei � e1/; ˛i 2 R, we have that he; vi D

Pk
iD2 ˛i hei � e1; ei C e1i D 0.

Furthermore, for any x 2 Cc , x D
Pd
iD1 ˛iei � Py;

Pd
iD1 ˛i D 1,

he; xi D

dX
iD1

˛i he; ei � Pyi D

dX
iD1

˛i he; ei � e1i � he; Py � e1i D 0:

Hence, we have dC1�k orthonormal vectors ekC1; : : : ; ed ; e that lie in the orthogonal complement
of Fc and for any x 2 Cc , hx; ei i � 0; hx; ei � 0, for all k C 1 � i � d . Hence, Uı D f0g and the
result on the rate of convergence follows from Corollary 6.

The constant also follows directly from the corollary: in case that Fc D f0g we have that
SnF D fe2; : : : ; ed g, the basis of Ub is f�e1; e2; : : : ; ed g and Py D e1. ˛ can be lower bounded
by 1 : h�e1; x � Pyi D 1 for any x 2 SnF ;

˝
ei ; ej � Py

˛
attains value 1 if i D j � 2 and value 0

if i 6D j , i; j � 2.
Otherwise, SnF D fekC1; : : : ; ed g, the basis of Ub is fekC1; : : : ; ed ;

Pk
iD1 ei=

p
kg and Py DPk

iD1 ˛iei for some ˛i � 0;
Pk
iD1 ˛i D 1. Hence, hei ; ej � Pyi D 0 if i 6D j; i; j > k;

hei ; ei � Pyi D 1 if i > k; h
Pk
iD1 ei=

p
k; ej � Pyi D 1=

p
k, where j � k. Hence, ˛ � 1=

p
d

and the result follows.
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