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Abstract
We aim at recovering the weighted adjacency matrix W of an undirected graph from a per-
turbed version of its eigenspaces. This situation arises for instance when working with sta-
tionary signals on graphs or Markov chains observed at random times. Our approach relies on
minimizing a cost function based on the Frobenius norm of the commutator AB−BA between
symmetric matrices A and B. We describe a particular framework in which we have access to
an estimation of the eigenspaces and provide support selection procedures from theoretical and
practical points of view. In the Erdős-Rényi model on N vertices with no self-loops, we show
that identifiability (i.e., the ability to reconstruct W from the knowledge of its eigenspaces)
follows a sharp phase transition on the expected number of edges with threshold function
N logN/2. Simulated and real life numerical experiments assert our methodology.
Keywords: Support recovery; Identifiability; Stationary signal processing; Graphs; Back-
ward selection algorithm

1. Presentation

Networks have become a natural and popular way to model interactions in applications such as
information technology (Rossi and Latouche, 2013), social life (Jiang et al., 2013; Matias et al.,
2015), genetics (Giraud et al., 2012) or ecology (Thomas et al., 2015; Miele and Matias, 2017).
In this paper, we investigate the reconstruction of an undirected weighted graph of size N from
incomplete information on its set of edges (for instance, one knows that the target graph has
no self-loops) and an estimation of the eigenspaces of its adjacency matrix W. This situation
depicts any model where one knows in advance a linear operator K that commutes with W.

For instance, several authors (Espinasse et al., 2014; Girault, 2015; Perraudin and Van-
dergheynst, 2016; Marques et al., 2016) have introduced a definition of stationarity for signal
processing on graphs. In the Gaussian framework, they have shown that this definition implies
that the covariance operator K is jointly diagonalizable with the Laplacian (Perraudin and Van-
dergheynst, 2016) or some weighted symmetric adjacency matrix W supported on the graph
(Espinasse et al., 2014; Marques et al., 2016).

Another framework adapted to our methodology concerns time-varying Markov processes,
which are used to model numerous phenomena such as chemical reactions (Anderson and Kurtz,
2011) or waiting lines in queuing theory (Gaver Jr, 1959), see also Pittenger (1982); MacRae
(1977); Barsotti et al. (2014). In some cases, one may observe at random times a Markov chain
with transition matrix P. The transition matrix Q of the resulting Markov chain can be shown
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to be a function of P. Thus, the transitions on the original process can be recovered from an
estimation of Q given that P and Q commute. Several models are presented in Section 3 while
the general model is given in Section 2.1.

Section 2.2 is concerned with identifiability issues, i.e., the capacity to solve such problems.
We exhibit sufficient and necessary conditions on the ability to reconstruct an undirected graph
with no self-loops from the knowledge of the eigenspaces of W. These conditions allow us to
derive a sharp phase transition on identifiability in the Erdős-Rényi model.

In Section 4.1, we introduce and theoretically assert new estimation schemes based on the
Frobenius norm of the commutator AB − BA between symmetric matrices A and B. More
precisely, we assume that we have access to an estimation K̂ of K and we consider the empirical
contrast given by the commutator, namely A 7→ ‖K̂A− AK̂‖, where ‖ · ‖ denotes the Frobenius
norm. Using backward-type procedures based on this empirical contrast, we build in Section 4
an estimator of the graph structure, i.e., its set of edges S? referred to as the support. Numerical
experiments on simulated data (Section 5) and actual data (Section 6) assess the performances
of our new estimation method. A discussion and related questions are presented in Section 7.

Related topics encompass spectral, least-squares and moment methods for graph reconstruc-
tion (Verzelen et al., 2015; Guédon and Vershynin, 2015; Klopp et al., 2017; Bubeck et al.,
2016), Graphical Models (Verzelen, 2008; Giraud et al., 2012), or Vectorial AutoRegressive
process (Hyvärinen et al., 2010). In the specific cases of Ornstein-Uhlenbeck processes and
non-linear diffusions, the interesting papers Bento et al. (2010) and Bento and Ibrahimi (2014)
tackle a related problem which is to estimate W along a trajectory, see Section 3.6 for further
details. Note that the framework of the present paper addresses processes observed at random
times—with possibly unknown distribution—which are not covered by Bento et al. (2010) and
Bento and Ibrahimi (2014).

2. Model and Identifiability

2.1 The Model

Consider a symmetric matrix W ∈ RN×N , viewed as the weighted adjacency matrix of an
undirected graph with N vertices. We investigate the eigenspaces of W in a situation where we
have no direct information on the spectrum of the graph. Depicting this situation, we assume
that the information on the targetW stems from an unknown transformation K = f(W) ∈ RN×N

or, in more realistic scenarios, from a perturbed version K̂ of K. Precisely, let f : x 7→
∑∞
n=0 anx

n

be an injective function, analytical on the spectrum of W, the matrix K is given by

K = f(W) :=

∞∑
n=0

anW
n. (1)

In this setting, the transformation K = f(W) preserves the eigenspaces. In particular, W and K
commute, i.e., WK = KW, since they share the same eigenspaces.

Our goal is to reconstruct W from a perturbed observation of its eigenspaces, provided by an
estimator K̂ of K. The key point is then to use extra information given by the location of some
zero entries of W. Hence, we assume that one knows in advance a set F ⊂ [1, N ]2 of “forbidden”
entries such that

∀(i, j) ∈ F, Wij = 0 (HF)

Equivalently, the set F is disjoint from the set of edges of the target graph. Throughout this
paper, a special interest is given to the case F = Fdiag := {(i, i) : 1 ≤ i ≤ N} conveying that
there are no self-loops in W.
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2.2 Identifiability

For S ⊆ [1, N ]2, denote by E(S) the set of symmetric matrices A whose support is included in S,
which we write Supp(A) ⊆ S. Given the set F of forbidden entries defined via (HF), the matrix
of interest W is sought in the set E(F ) with F the complement of F . In some cases, typically
for F sufficiently large, most matrices W ∈ E(F ) are uniquely determined by their eigenspaces.
For those W ∈ E(F ), there is no matrix A ∈ E(F ) non collinear with W that commutes with W.
This property is encapsulated by the notion of F -identifiability as follows.

Definition 1 (F -identifiability) We say that a symmetric matrix W is F -identifiable if, and
only if, the only solutions A with Supp(A) ⊆ F to AW = WA are of the form A = tW for
some t ∈ R. Equivalently,{

A ∈ RN×N : A = A>, AW = WA and Supp(A) ⊆ F
}

=
{
tW : t ∈ R

}
(2)

A matrix W is F -identifiable if the set of symmetric matrices with the same eigenvectors as W
and whose support is included in F is the line spanned by W.

Remark 2 The dimension of the commutant, defined by

Com(W) :=
{
A ∈ RN×N : A = A>, AW = WA

}
,

is entirely determined by the multiplicity of the eigenvalues of W. Indeed, letting λ1, . . . , λs
denote the different eigenvalues of W and `1, . . . , `s their multiplicities, one can show that

N ≤ dim
(
Com(W)

)
=

s∑
j=1

`j(`j + 1)

2
≤ N(N + 1)

2
.

Now, the F -identifiability of W can be stated equivalently as dim
(
Com(W)∩E(F )

)
= 1, observing

that the left hand side of (2) is exactly Com(W) ∩ E(F ). Using a simple inclusion/exclusion
formula, one can check that the condition

|F | ≥ dim
(
Com(W)

)
− 1

is necessary for the F -identifiability, where |F | denotes the cardinality of F . In particular, a
matrix W with repeated eigenvalues requires a large set F of forbidden entries to be F -identifiable.

Proposition 3 (Lemma 2.1 in Barsotti et al. (2014)) Let S ⊆ F , the set of F -identifiable
matrices in E(S) is either empty or a dense open subset of E(S).

This proposition conveys that the F -identifiability of a matrix W is essentially a condition on its
support S. The proof uses the fact that non F -identifiable matrices in E(S) can be expressed as
the zeros of a particular analytic function, we refer to Barsotti et al. (2014) for further details.
By abuse of notation, we say that a support S ⊆ F is F -identifiable if almost every matrix
in E(S) is F -identifiable.

Characterizing the F -identifiability appears to be a challenging issue since it can be viewed as
understanding the eigen-structure of graphs through their common support. The special case of
the diagonal Fdiag as the set of forbidden entries turns out to be particularly interesting. Indeed,
the Fdiag-identifiability, or diagonal identifiability, can be reasonably assumed in many practical
situations since it entails that W lives on a simple graph, with no self-loops. In Theorem 16 (see
Appendix A.1), we introduce necessary and sufficient conditions on the target support Supp(W)
for diagonal identifiability. Defining the kite graph ∇N of size N ≥ 3 as the graph (V,E) with
vertices V = [1, N ] and edges E = {(k, k + 1), 1 ≤ k ≤ N − 1} ∪ {(N − 2, N)} (see Figure 1),
one simple sufficient condition on diagonal identifiability reads as follows—a proof in given in
Section A.2.
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Proposition 4 If the graph G = ([1, N ], S) contains the kite graph ∇N as a subgraph, then S
is diagonally identifiable.

1 2 3 N-3 N-2

N-1

N

.....

Figure 1: The kite graph ∇N on N vertices.

Denote G(N, p) the Erdős-Rényi model on graphs of size N where the edges are drawn inde-
pendently with respect to the Bernoulli law of parameter p. Using Theorem 16, one can prove
that logN/N is a sharp threshold for diagonal identifiability in the Erdős-Rényi model (see
Section A.4). This can be stated as follows.

Theorem 5 Diagonal identifiability in the Erdős-Rényi model occurs with a sharp phase tran-
sition with threshold function logN/N : for any ε > 0, it holds

• If pN ≥ (1 + ε)logN/N and GN ∼ G(N, pN ) then the probability that Supp(GN ) is
diagonally identifiable tends to 1 as N goes to infinity.

• If pN ≤ (1 − ε)logN/N and GN ∼ G(N, pN ) then the probability that Supp(GN ) is
diagonally identifiable tends to 0 as N goes to infinity.

In practice, one may expect that any target graph of size N with no self-loops and degree
bounded from below by logN is diagonally identifiable. In this case, it might be recovered from
its eigenspaces. Conversely, small degree graphs (i.e., graphs with some vertices of degree much
smaller than logN) may not be identifiable. In this case, there is no hope to reconstruct it from
its eigenspaces since there exists another small degree undirected weighted graph with the same
eigenspaces.

3. Some Concrete Models

3.1 Markov chains

We begin with an example treated in the companion papers Barsotti et al. (2014, 2016). Con-
sider a Markov chain (Xn)n∈N with finite state space [1, N ] and transition matrix P ∈ RN×N .
Let (Tk)k≥1 be a sequence of random times such that the time gaps τk := Tk+1 − Tk are i.i.d
random variables independent of (Xn)n∈N. One can show that the sequence Yk = XTk

is also
a Markov chain with transition matrix Q = E[Pτ1 ] =: f(P) where f is the generating function
of τk. Indeed, this follows from noticing that

P[Yk+1 = j|Yk = i] = P[XTk+1
= j|XTk

= i]

=
∑
t≥0

P[XTk+t = j, τk = t|XTk
= i]

=
∑
t≥0

P[Xt = j|X0 = i]P[τk = t]

=
∑
t≥0

P[τ1 = t](Pt)ij .

Under regularity conditions, Q = f(P) can be estimated from the Yk’s and one may recover P
from Q without any information on the distribution of the time gaps τk.
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3.2 Vectorial AutoRegressive process

Consider a stationary Vectorial AutoRegressive process of order one (Xn)n∈Z verifying

Xn+1 = WXn + εn ,

with εi i.i.d. centered random variables. Define as above Yk = XTk
where again Tk are ran-

dom times such that the time gaps τk = Tk+1 − Tk are i.i.d. with generating function f and
independent of (Xn)n∈Z. Then, it holds

E[Yk+1|Yk] = E[E[Yk+1|Yk, τk]|Yk] =

∞∑
j=0

WjYkP(τk = j) = f(W)Yk,

which allows us to estimate K = f(W) and ultimately recover W.

3.3 Ornstein-Uhlenbeck process

The same property holds for the continuous time version of this process, namely a vectorial
Ornstein-Uhlenbeck process observed at random times verifying

dXt = WXtdt+ dBt.

In this case, one can check that the random process Yk := XTk
where the Tk’s are random times

with i.i.d. gaps τk = Tk+1 − Tk satisfies

E[Yk+1|Yk] = f(W)Yk ,

for f the Laplace transform of τ1, that is, f(W) = E[exp(−τ1W)]. Indeed, note that

∀t, u ∈ R, E[Xt+u|Xu] = exp(−tW)Xu

so that

E[Yk+1|Yk] = E[E[XTk+τk |XTk
, τk]|XTk

] = E[exp(−τkW)XTk
|XTk

] = E[exp(−τkW)]Yk ,

by independence of τk and Yk−1.

3.4 Seasonal VAR structure

Consider a seasonal VAR structure: let T be a positive integer, (uk)k∈Z, (vk)k∈Z periodic se-
quences of period T and

∀k ∈ Z , Yk+1 = ukYk + vkWYk + εk ,

where εk are independent and centered random variables. We may observe the model only at
time gap intervals T with some error, i.e., Xt = YtT+k0 + ηt with ηt centered and independent
random variables. This falls into the general frame

E[Xt|Xt−1] = f(W)Xt−1 where f(x) :=

T∏
k=1

(uk − vkx) .

In this case, K = f(W) can be estimated from the observations.
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3.5 Gaussian Graphical models

Our model is related to Gaussian Graphical models for which an overview can be found in
the thesis Verzelen (2008). The reader may also consult the pioneering paper Friedman et al.
(2008). One may consider the target W as the precision matrix, i.e., the inverse of the covariance
matrix K, having some non zero entries described by a graph of dependencies. Using f(x) = x−1,
this falls into our setting, trying to recover the “dependency” graph given by the precision
matrix W from the estimation of the covariance matrix K. Of course, in this case, it is better
to use the knowledge of f , which certainly improves estimation. Nevertheless, our procedure
allows us to estimate the function f and heuristically validate the hypothesis f(x) = x−1.

3.6 Spatial AutoRegressive Gaussian fields

Note that Gaussian AutoRegressive processes on Z verify that the precision operator may be
written as a polynomial of the adjacency operator of Z. One natural way to extend this property
(see for instance Espinasse et al. (2014)) is to define centered Gaussian AutoRegressive fields
on a graph through the same relation between the covariance operator K and the adjacency
operator W (or the discrete Laplacian, depending on the framework) : K−1 = P (W), with P
a polynomial of degree p. In this framework, Graphical models methods will infer the graph
of path of length p, whereas our method aims at recovering W. Note that this framework
extends to ARMA spatial fields where K writes as a rational fraction of W, and the property of
commutativity between W and K still holds.

In the previous cases, we assumed that we can not estimate directly W. For spatio-temporal
processes, this means that we do not have access to a full trajectory. It may be the case when
the sample is drawn at random times, or when we sample with respect to the stationary measure
of the process—for instance when observation times are a lot larger than the typical evolution
time’s scale of the process. If the whole trajectory is available, it is better to use this extra
information, see for instance Bento et al. (2010) for the Ornstein-Uhlenbeck case and Bento and
Ibrahimi (2014) for the non-linear diffusion case.

4. Estimating the Support

4.1 Empirical Contrast: the Commutator

The methodology presented in the paper relies on the fact that the target matrix W commutes
with the matrix K, in view of K := f(W), as defined in Eq. (1). Because W is symmetric, it
has real eigenvalues λ1, ..., λN (here listed with repetitions, if any) and is diagonalizable in an
orthogonal basis. That is, letting Λ denote the diagonal matrix with diagonal entries λk, there
exists an orthogonal matrix U such that W = UΛU>. With this notation, one verifies easily
from Eq. (1) that K = UDU>, where D := f(Λ) is the diagonal matrix with diagonal entries
f(λi), i = 1, . . . , N . Since f is assumed one-to-one on the spectrum of W, the matrices W and K
share the same eigenspaces associated to λk and f(λk) respectively :

{v ∈ RN : Wv = λkv} = {v ∈ RN : Kv = f(λk)v},

for all λk. Moreover, the dimension of each eigenspace is equal to the multiplicity of the cor-
responding eigenvalue λk in the spectrum of W. Additionally, when F -identifiability holds, the
only solutions A with Supp(A) ⊆ F to AK = KA are of the form A = tW for some t ∈ R.

Remark 6 (Matrix perturbation theory) In practice, we do not observe K but an estima-
tion K̂ (which we assume symmetric) with perturbed eigen-decomposition K̂ = ÛD̂Û>. Nev-
ertheless, by continuity of the eigen-decomposition, we know that K̂ being close to K implies
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simultaneously the proximity of their eigenvalues and eigenspaces (see for instance Mirsky’s in-
equality (Stewart and Sun, 1990, Corollary 4.12) and Wedin’s sin(θ) theorem (Stewart and Sun,
1990, P. 260) for the details). Thus, if we consider A such that AK̂ = K̂A, then A has the same
eigenspaces as K̂ which in turns, are expected to be close to the eigenspaces of W.

Given an estimator K̂ of K, remark that W verifies

‖WK̂− K̂W‖
‖W‖

=
‖W(K̂− K)− (K̂− K)W‖

‖W‖
≤ 2‖K̂− K‖ . (3)

Hence, in view of (3) and the discussion above, we aim to estimateW by minimizing the following
cost function

A 7→ ‖AK̂− K̂A‖
‖A‖

, A ∈ E(F ) \ {0}.

This empirical criterion was first used in Barsotti et al. (2014), in a Markov Chain context, to
reflect that W is expected to nearly commute with K̂.

4.2 The `0-approach

Given an estimator K̂ of K build from a sample of size n and a set of forbidden entries F
reflecting (HF), we construct an estimator Ŝ of the target support S? := Supp(W) as a minimizer
of the criterion Q given by

∀S ⊆ F , Q(S) := min
A∈E(S)\{0}

‖AK̂− K̂A‖
‖A‖

+ λn|S|,

for some tuning parameter λn > 0 and defining the minimum of an empty set as ∞. Recall
that E(S) is the set of symmetric matrices A such that Supp(A) ⊆ S. Our estimator of the true
support S? is defined as

Ŝ ∈ arg min
S⊆F

Q(S)

Furthermore, we assume that the estimator K̂ converges toward K in probability with

∀t > 0 , P
{
‖K̂− K‖ ≥ t

}
≤ Rn(t), (H2)

where Rn, n ∈ N is a sequence of non-increasing functions that converge pointwise toward 0 as n
goes to ∞.

Theorem 7 Assume that (H2) and (HF) hold. If W is F -identifiable, then

P
{
Ŝ 6= S?

}
≤ Rn

(c0(S?)− λn|S?|
4

)
+Rn

(λn
2

)
,

where
c0(S?) := min

S 6=S?

|S|≤|S?|

min
A∈E(S)

‖AK− KA‖
‖A‖

> 0 . (4)

A proof of Theorem 7 is given in Section B.1.

Corollary 8 Under the assumptions of Theorem 7, if

λn → 0 and
∑
n∈N

Rn

(λn
2

)
< +∞ ,

then Ŝ → S? almost surely.
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Note that, based on the upper bound in Theorem 7, a good scaling may be λ?n = c0(S?)
|S?|+4 which

interestingly does not depend on n. This leads to the upper bound

P
{
Ŝ 6= S?

}
≤ 2Rn

( c0(S?)

2|S?|+ 8

)
n→∞−−−−→ 0

which is optimal up to a constant less than 2. This oracle choice λ?n is of course irrelevant in
practice since both c0(S?) and |S?| are unknown. Alternatively, we may choose a sequence λn
decreasing slowly to 0 to ensure both conditions of Corollary 8.

4.3 Edge significance based on the commutator criterion

The exponential complexity of the `0-approach making it generally infeasible in practice, a back-
ward methodology provides a computationally feasible alternative to the support reconstruction
problem. Starting from the maximal acceptable support F , the idea of the backward procedure
is to remove the least significant entries one at a time and stop when every entry is signifi-
cant. Using the corresponding small case letter to denote the vectorization of a matrix, e.g.,
a = vec(A) = (A11, ...,AN1, ...,A1N , ...,ANN )>, significancy can be leveraged using the Frobenius
norm of the commutator operator a 7→ ∆(K)a = vec(KA− AK), where

∆(K) = I⊗K− K⊗ I ∈ RN
2×N2

and ⊗ denotes the Kronecker product. Indeed, searching for the target W in the commutant of K
reduces to searching for w = vec(W) in ker(∆(K)), the kernel of ∆(K). Because the Frobenius
norm coincides with the Euclidean norm of the vectorization, the functions A 7→ ‖K̂A − AK̂‖2
and a 7→ ‖∆(K̂)a‖2 can be used indistinctly as cost functions.

Assumptions

Assume the three following hypotheses (HΣ), (H1) and (HId).
◦ Deriving the asymptotic law of least-squares estimators, we may assume that the estimate K̂

is such that √
n(k̂ − k)

d−−−−→
n→∞

N (0,Σ), (HΣ)

where Σ is a N2×N2 covariance matrix (either known or that can be estimated). For instance,
one can think of K̂ as the empirical covariance when observing a sample of vectors of covariance K.
This condition is verified for instance in the framework considered in Barsotti et al. (2014,
2016). Note that asymptotic normality is a standard ground base investigating any least-squares
procedure.
◦ In order to exclude the trivial solution a = 0, the target W is assumed normalized

1>w = 1, (H1)

where 1 has all its entries equal to one. Because the available information on W is of spectral
nature and as such, is scale-invariant, a normalization of some kind is crucial for the reconstruc-
tion. Here, the condition 1>w = 1 achieves two goals: preventing the null matrix form being a
solution and making the problem identifiable.

Remark 9 The main drawback of this normalization concerns the situation where the entries
of W sum up to zero, in which case the normalization is impossible. If the context suggests that
the solution may be such that 1>w = 0, a different affine normalization v>w = 1 (with any
fixed vector v) must be used, without major changes in the methodology. In practice, one may
consider the vector v at random (for instance with isotropic law), so that (H1) is almost surely
fulfilled for any fixed target w. Finally, observe that if W has non-negative entries, then the
normalization (H1) is always feasible.
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◦ For S a support included in F , we aim at a solution in the affine space

AS := {a = vec(A) : Supp(A) ⊆ S, A = A> , 1>a = 1}.

with linear difference space given by

LS := {a = vec(A) : Supp(A) ⊆ S, A = A> , 1>a = 0} .

By abuse of notation, AS may refer both to the space of matrices or their vectorizations. To
find the target support S?, one must exploit the fact that the vector w lies in the intersection of
ker(∆(K)) and AF . Actually, w can be recovered if the intersection is reduced to the singleton
{w}. In this case, the matrix W and its support S? are F -identifiable. Hence, we assume that

ker(∆(K)) ∩ LF = {0}, (HId)

which is implied by F -identifiability, see Definition 1.

Asymptotic normality and significance test

The framework under consideration can be viewed as a heteroscedastic linear regression model
with noisy design for which w = vec(W) is the parameter of interest. Indeed, consider for each
support S ⊆ F a full-ranked matrix ΦS ∈ RN2×dim(AS) whose column vectors form a basis of LS .
Assuming that W is F -identifiable and taking S ⊆ F , the operator ∆(K)ΦS is one-to-one. In
this case, evaluating the commutator a 7→ ∆(K)a over AS reduces to considering the map

b 7→ ∆(K)(a0 − ΦSb) , b ∈ Rdim(AS),

with a0 chosen arbitrarily in AS . When replacing the unknown ∆(K) with its estimate ∆(K̂),
the minimization of the criterion a 7→ ‖∆(K̂)a‖2 over AS can be written similarly as a linear
regression framework where the parameter of interest is estimated by

β̂S ∈ arg min
b∈Rdim(AS)

‖∆(K̂)(a0 − ΦSb)‖2. (5)

We recognize a linear model with response y = ∆(K̂)a0 and noisy design matrix X = ∆(K̂)ΦS .
In this setting, remark that w = a0 − ΦSβ with β the unique solution to ∆(K)(a0 − ΦSβ) = 0.
Denoting by M† the pseudo-inverse of a matrix M, we deduce the following result.

Theorem 10 If S? ⊆ S, the estimator β̂S is asymptotically Gaussian with

√
n(β̂S − β)

d−−−−→
n→∞

N (0,ΩS),

where ΩS :=
(
Φ>S∆(K)

)†
∆(W)Σ∆(W)

(
∆(K)ΦS

)†.
We then have

ŵS = vec(ŴS) = arg min
a∈AS

‖∆(K̂)a‖2 = a0 − ΦS β̂S . (6)

The asymptotic distribution of ŵS follows directly from Theorem 10,

√
n(ŵs − w)

d−−−−→
n→∞

N
(
0,ΦSΩSΦ>S

)
. (7)

The limit covariance matrix is unknown, but plugging the estimates ŴS , K̂ and Σ̂ yields an
estimator ΦSΩ̂SΦ>S , which is consistent under the F -identifiability assumption. In particular,
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the diagonal entry of ΦSΩ̂SΦ>S associated to the (i, j)-entry ofW, which we denote σ̂2
S,ij , provides

a consistent estimator for the asymptotic variance of ŴS,ij . As a result, the statistic

τij(S) :=
√
n
ŴS,ij

σ̂S,ij
(8)

can be used to measure the relative significance of the estimated entry ŴS,ij . The backward
support selection procedure is then implemented by the recursive algorithm as follows.

Algorithm 1: Backward algorithm for support selection

Data: A set of forbidden entries F , a matrix K̂.
Result: A sequence of estimators ŴS1

, ŴS2
, ... with nested supports S1 ⊃ S2 ⊃ ....

1: Start with the maximal acceptable support S1 = F ,
2: At each step k, compute the statistics τij(Sk) for all (i, j) ∈ Sk,
3: Remove the least significant edge (i, j) which minimizes |τij(Sk)| for (i, j) ∈ Sk, and set
Sk+1 = Sk \ {(i, j), (j, i)},

4: Stop when all edges have been removed.

The backward algorithm produces a sequence of nested supports that one can choose to
stop once all the edges are judged significant, that is, when all the statistics τij(Sk), (i, j) ∈ Sk
exceed in absolute value some fixed threshold τ0. Owing to the asymptotic normality of ŴS,ij

shown in Eq. (7), the (1− α
2 )-quantile of the standard Gaussian distribution would appear as a

reasonable choice for the threshold τ0, as it boils down to performing an asymptotic significance
test of level α. However, due to the slow convergence to the limit distribution and the tendency
to overestimate the variance for small sample sizes (see Figure 2), a threshold based on the
Gaussian quantile inevitably leads to an overly large estimated support. Nevertheless, we show
that an adaptive calibration of the threshold can be achieved by considering the overall behavior
of the commutator ∆(K̂)ŵSm computed over the nested sequence of active supports.

−3 −2 −1 0 1 2 3
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Singificance
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0.6
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Singificance
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Singificance

Figure 2: Estimated density of the statistic τij(S) for an edge (i, j) ∈ S \ S? compared to its
theoretical Gaussian limit distribution, for samples of size n = 1000 (left), n = 10000
(center) and n = 100000 (right).
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Calibration of the threshold by cross-validation

By removing the least significant edge at each step, the backward algorithm generates a sequence
of nested active supports S1 ⊃ · · · ⊃ S`, that we refer to as a “trajectory”. Along this trajectory,
we compute the empirical contrast defined by

∀S ⊆ F , S 7→ Crit(ŴS , K̂) :=
‖ŴSK̂− K̂ŴS‖

‖ŴS‖
. (9)

Note that computing this criterion boils down to compute ŴS which is a simple projection
onto AS as shown in (6).

When the true support S? lies in the trajectory, one expects to observe a “gap” in the
sequence j 7→ Crit(ŴSj

, K̂) when Sj goes from S? to a smaller support. Indeed:

• For S? ⊆ S, the target W is consistently estimated by ŴS so that Crit(ŴS , K̂) tends to
zero at rate

√
n,

• For S ( S?, the lower bound ‖AK̂− K̂A‖ ≥ ‖AK− KA‖ − 2‖K̂− K‖‖A‖ yields

Crit(ŴS , K̂) =
‖ŴSK̂− K̂ŴS‖

‖ŴS‖
≥ c(S)− 2‖K̂− K‖ (10)

with c(S) := minA∈AS
‖AK− KA‖/‖A‖ a positive constant. In particular, one has

min
S(S?

c(S) ≥ min
S 6=S?

|S|≤|S?|

c(S) = c0(S?) > 0

where c0(S?) is defined in (4).

In some way, c0(S?) measures the amplitude of the signal: one expects to be able to recover
the target W when the estimation error ‖K̂ − K‖ reaches at least the same order as c0(S?).
The true support S? then corresponds to a transitional gap in the contrast curve that can be
captured by a suitably chosen threshold t > 0. Since K̂ converges toward K in probability, any
threshold 0 < t < c0(S?) will work with probability one asymptotically.

Remark 11 The condition that S? lies in the trajectory of nested supports is crucial to detect the
commutation gap, although seldom verified in practice due to the tremendous amount of testable
supports. This issue is specifically targeted by the bagging version of the backward algorithm
discussed in Section 4.4.

An obstacle to the detection of the commutation gap is the increasing behavior of the com-
mutator over the nested trajectory S1 ⊃ · · · ⊃ S`. This phenomenon, indirectly caused by the
dependence between the trajectory and K̂, can be annihilated when considering the empirical
contrast over a trajectory built from a training sample. In fact, the monotonicity can even be
“reversed” before reaching the true support if the ŴSj

are estimated independently from K̂. This
can be explained as follows. Consider the ideal scenario where estimators W̃S1

, ..., W̃S`
are built

from the backward algorithm using an estimator K̃ independent from K̂. We assume moreover
that the true support S? lies in the trajectory S1 ⊃ ... ⊃ S`. The trick is to write

∆(K̂)w̃sj = ∆(K̃)w + ∆(K)w̃Sj
+ ∆(K̂− K)(w̃Sj

− w),

and to analyze the three terms separately:

• The term ∆(K̂)w has no influence as it is common to all supports in the trajectory.

11
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• The term ∆(K)w̃Sj
approaches zero as w̃Sj

gets closer to w. Heuristically, the variance
of w̃Sj , and incidentally that of ∆(K)w̃Sj , is larger for over-fitting supports S ⊇ S?. This
results in the sequence j 7→ ∆(K)w̃Sj being stochastically decreasing as Sj approaches S?
from above. On the other hand, the bias of order O(1) is expected to dominate once
the trajectory passes through the true value S?, making the remaining of the sequence
∆(K)w̃Sj

increase stochastically.

• The term ∆(K̂ − K)(w̃Sj
− w) is negligible for S ⊇ S?, as both K̂ − K and w̃Sj

− w tend
to zero independently. We emphasize that this argument no longer holds without the
independence of w̃Sj and K̂. This is precisely why we use a training sample.

Thus, the sequence j 7→ Crit(W̃Sj
, K̂) = ‖∆(K̂)w̃Sj

‖/‖w̃Sj
‖ is expected to achieve its minimum

for the best estimator w̃Sj
in the trajectory, that is for Sj = S?. Furthermore, beyond the true

support (for small active supports), w̃Sj
is not a consistent estimator of w so that the criterion no

longer approaches zero, resulting in the so-called commutation gap.
The “reversed” monotonicity provides an easy way to calibrate the threshold in the backward

algorithm. Indeed, since Sj 7→ ∆(K̂)w̃Sj
is expected to decrease when approaching the true

support (coming from larger active supports along a trajectory), the estimated support can be
heuristically chosen as the last time the criterion is below an adaptive threshold, see Figure 3.
In particular, Crit(W̃S1

, K̂) can be used as an adaptive threshold for the backward algorithm
when the estimator K̂ and the trajectory S1 ⊃ · · · ⊃ S` are obtained from independent samples.

Of course, to afford splitting the sample to build the W̃Sj independent from K̂ may be
unrealistic. Nevertheless, the numerical study suggests that the independence is well mimicked
when K̂ is built from the whole dataset but the backward algorithm sequence W̃S1

, ..., W̃S`
is

obtained from a learning sub-sample, as illustrated in Figure 3. Empirically, the optimal size
of training samples could be calibrated in function of the number of observations using the
robustness of the outputs of the algorithm. In this paper, we always draw training samples by
taking each observation with probability 1/2, with no consideration regarding the size of the
whole sample.
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Figure 3: The contrast sequence j 7→ Crit(W̃Sj
, K̂) computed in the example of Section 5.2.

The nested support sequence and estimators W̃Sj are obtained from the backward
algorithm implemented on the whole sample (left) and on a training sample of half size
(right). In both cases, K̂ is constructed from the whole sample. Using a training sample
manages to reverse the monotonicity in the first part of the sequence, thus making the
commutation gap easier to locate. The initial value of the sequence t = Crit(W̃S1

, K̂)
then provides a tractable adaptive choice for the threshold.
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4.4 Improving the backward algorithm by bagging

The main weakness of the backward procedure remains that it requires the true support S? to
lie in the trajectory S1 ⊃ · · · ⊃ S` obtained from removing the least significant edge one at
a time. In practice, this condition is rarely verified, especially with small datasets. A way to
solve this issue is to replicate the backward algorithm over a collection of random sub-samples,
a process commonly known to as Bootstrap Aggregating, or bagging. The description of this
algorithm is given in Algorithm 2.

Algorithm 2: Bagging backward algorithm
Data: A set of forbidden entries F , a sample X.
Result: A collection of estimated supports Ŝm,m = 1, ...,M .

1: Build M bootstrapped samples without replacement.
2: For each sub-sample m = 1, ...,M , build an estimator K̃m of K.
3: For all m, run Algorithm 1 without stopping condition and return M trajectories
S1m ⊃ · · · ⊃ S`m and the corresponding estimators W̃Skm

.
4: Evaluate the empirical contrast Crit(W̃Skm

, K̂) over each trajectory with the estimator K̂
calculated from the whole sample.

5: For each trajectory, return the estimated support Ŝm := Sk̂mm as the last support whose
contrast lies below the initial value:

k̂m := max
{
k = 1, ..., ` : Crit(W̃Skm

, K̂) ≤ Crit(W̃S1m
, K̂)
}
.

The bagging algorithm produces a collection of estimated supports in a way to make the final
decision more robust. At this point, several solutions are possible: select the most represented
support among the Ŝm’s, keep the edges present in the most supports etc... A preliminary
detection of the outliers among the Ŝm’s, e.g. by removing beforehand the supports Ŝm’s that
are either too big or too small, might also considerably improve the method, as we illustrate on
actual examples in Section 5.

5. Numerical study

5.1 Toy example

In the previous section, we have introduced different algorithms. To emphasize the motivation
of the bagging algorithm, we consider a simple example, and implement the different algorithms
for support recovery. To check the performances of the `0 procedure, we need to consider a
graph with a small number of vertices (since the `0 complexity grows with 2N(N−1)/2 where N
denotes the number of vertices). Here, we consider the graph G1 represented in Figure 4, the
kite graph on 5 vertices.

Figure 4: The kite graph G1 = ∇5.

We choose W as the (normalized) adjacency matrix of G1 then draw a sample of size n = 500
of centered Gaussian vectors X1, · · ·Xn of R5 with covariance matrix K = exp(W). We assume
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known that G1 contains no self-loop so that we take F = Fdiag as the set of forbidden values.
In this simple example, the constant c0(S?) (see Eq. (4)) can be calculated explicitly, yielding
c0(S?) ≈ 0.12. In comparison, for n = 500, E‖K̂ − K‖ is evaluated to approximately 0.27 by
Monte-Carlo. We expect to be able to recover the true support when the noise level drops below
the signal amplitude. Based on the bound of Eq. (10), this occurs as soon as ‖K̂−K‖ ≤ c0(S?)/2.
However, because this bound is not sharp, a lesser level of precision is required in practice.

We compare the following algorithms:

1. Contrast penalized `0 minimization with optimal penalization constant. We compute

Ŝ = arg min
S⊆Fdiag

{
min

A∈E(S)\{0}

‖AK̂− K̂A‖
‖A‖

+ λ|S|
}
.

The constant λ is chosen as the best possible value, minimizing the oracle error δ(Ŝ)

measured by the symmetric difference between Ŝ and S?, namely

δ(Ŝ) := |Ŝ ∪ S? \ Ŝ ∩ S?| .

Note that the calibration parameter λ is chosen optimally. Hence, the numerical perfor-
mances of the method can be expected to be overestimated compared to a fully data-driven
procedure.

2. Thresholding contrast minimization with optimal threshold. The target matrix W is esti-
mated over the maximal acceptable support F diag. We then compute

Ŝ = {(i, j) : |Ŵij | > t},

where the threshold t is chosen so as to minimize the oracle error δ(Ŝ). Here again, the
performances are expected to be overestimated compared to a data-driven threshold.

3. Backward algorithm. We generate a training sample by taking each observation with
probability 1/2 independently, from the whole sample. The estimator of K in this sub-
sample is denoted K̃. We implement Algorithm 1 on K̃, yielding a trajectory S1 ⊃ ... ⊃ S` of
nested supports whose sizes vary from |S1| = 20 (the full off-diagonal support) to |S`| = 12
(the minimal size required for diagonal identifiability), along with the associated estimators
W̃Sk

, k = 1, ..., `. Remark that the supports are symmetric, hence two entries are removed
at each step so that ` = 5 in this case. We then compute the threshold t = Crit(W̃S1 , K̂)

corresponding to the initial value of the contrast. The estimated support Ŝ is defined as
the smallest support S in the trajectory such that Crit(ŴS , K̂) ≤ t. Here, the choice of t
is adaptive in a fully data driven manner.

4. Bagging backward algorithm. The previous algorithm is implemented over M = 100 train-
ing samples drawn keeping observations with probability 1/2. For each m = 1, ...,M , we
retain

- the threshold tm = Crit(ŴS1m
, K̂) corresponding to the initial value of the contrast,

- the estimated support, that is, the smallest support Ŝm in the trajectory such that
Crit(ŴŜm

, K̂) ≤ tm.

The estimated support Ŝ is obtained as follows. Only a proportion q of the training
samples m with a small initial contrast tm are kept, they are expected to provide better
results—in the whole paper, we chose q = 2/

√
M empirically. Then, the smallest support

among the remaining candidates is retained, breaking ties arbitrarily.
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Remark 12 Using a `1-penalized contrast

A 7→ ‖K̂A− AK̂‖2 + λ‖A‖1

(subject to a normalizing condition so as to rule out the trivial solution A = 0) tends to over-
estimate the support. In fact, any conservative choice of λ will lead to false positives in the
estimated support (typically, a full support matrix may commute with K̂ while still having a
small `1 norm). Hence, when aiming for support recovery, the typical solution is to vanish the
small entries of the minimizer, making it no more efficient than the thresholded `2 procedure
considered in Algorithm 2. For this reason, the numerical performances of the Lasso procedure
are not included in the study.

The next table compares the performances of the four algorithms. We calculated the Monte-
Carlo estimated mean error E(δ(Ŝ)) and probability of exact recovery P{Ŝ = S?} for 1000
repetitions of the experiment. The average computational time (obtained with the function
timer of Scilab) on a processor Intel Xeon @2.6GHz are shown, using the oracle values of λ
and t for the first two algorithms (the calibration of these parameters is thus not accounted for
in the computation time).

Algorithm `0 `2−thresholding Backward Bagging Backward
Mean Error 0.45 0.37 1.95 0.68

Exact recoverery 68% 75% 23% 61%
CPU time (s) 0.32 0.002 0.009 0.59

In this example, the first two algorithms are the more accurate. The percentage of successful
recoveries for the bagging backward algorithm is nonetheless competitive given that the first two
procedures have been calibrated optimally for each experiment, which would be highly infeasible
in practice. Finally, we observe that although it is much more expensive computationally, the
bagging version of the backward algorithm yields an undeniable improvement.

Upper bounds for the time and space complexity of the algorithms are given in the next
table. The time complexity is calculated as the number of different supports S considered to
lead to the solution in function of the size N of the graph and the number M of training
samples. The spatial complexity measures the memory size needed to compute the solution. In
this setting, it is the main limitation for applying the procedures to large graphs. The N4 comes
from the computation of ∆(K) = K ⊗ I− I⊗K in the solver. Admittedly, the complexity could
be improved by using sparse matrix encoding although this was not implemented.

Algorithm `0 `2−thresholding Backward Bagging Backward
Space Complexity O(N4) O(N4) O(N4) O(N4)

Time Complexity O(2N(N−1)/2) O(1) O(N2) O(N2.M)

On the current version, the bagging backward algorithm contains scalability issues for big
graphs due to its space complexity. Leads to reduce the spatial complexity include using sparse
matrix encoding or the use of cheap approximations of the criterion. These shall be investigated
in future works.

5.2 A diagonally identifiable matrix

The advantages of the bagging backward algorithm are highlighted for larger graphs. In the next
example, we consider the graphG2 onN = 15 vertices represented in Figure 5. The experimental
conditions are similar to that of the previous example, a sample of size n = 10000 is drawn from
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a centered Gaussian vector of variance K = exp(W) where W is the normalized adjacency matrix
of G2, with normalizing constant chosen such that 1>w = 1. The implementation of the different
algorithms follow the description of the previous example.

Figure 5: The graph G2 is diagonally identifiable.

In this case, the number of possible supports is too large for the `0 method to be im-
plementable while the accuracy of the thresholded `2 drops considerably compared to smaller
cases. We summarize the results in the following table.

Algorithm `2−thresholding Backward Bagging Backward
Mean Error 10 25 1

Exact recoverery 22% 26% 69%
CPU time (s) 0.04 2.5 256

A drawback of the bagging backward algorithm is the larger computational time: it takes
around 4 minutes in average to estimate the support. Being essentially M = 100 repetitions of
the backward algorithm, the numerical complexity of the bagging version is roughly M times
that of the simple backward algorithm, although the improvement is, here again, clear.

To illustrate the influence of the unknown function f , we consider f : t 7→ (1 − t)−2 and
reproduce the numerical study for K = f(W). The results for various sample sizes are gathered
in the next table, for M = 100 bagging runs.

n 10000 5000 2000 1000
Exact recovery 97% 87% 83% 13%
Mean error 0.05 0.33 0.9 8.5

The probability of recovering the true support appears to be greater than in the previous
example (97% against 69% previously for n = 10000). This sheds lights on another important
factor in the efficiency of the methods which is the separability of the spectrum of K. Indeed, in
this framework, the information needed to recover W lies in its eigenspaces, which are estimated
via K̂. The accuracy of these estimates depends on the distance between the different eigenvalues
(see e.g. Corollary 4.12 in Stewart and Sun (1990) and Wedin’s sin(θ) theorem in Stewart and
Sun (1990)). Thus, for the spectrum λ1, ..., λN of W, the ability to recover W from K = f(W)
essentially relies on how far the f(λi)’s are from each other. For the sake of comparison, the
spectrum of W which lies in the interval [−0.5, 0.5] is more “spread” by the function t 7→ (1−t)−2

than by the exponential, as we can see in Figure 6.

Remark 13 We also implemented the procedure in a random setting where W is drawn from
an Erdös-Rényi graph with binomial entries. The conclusions obtained in this case are similar
to those already discussed and shall not be presented to avoid redundancy.
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Figure 6: Separability of the spectrum of K = f(W) for f : t 7→ exp(t) (left) and f : t 7→ (1−t)−2

(right). The eigenvalues of K are more separated in the second case, making it easier
to approximate its eigenspaces from the estimator K̂.

6. Real life application

We now implement the bagging backward algorithm on real life data provided by Météorage
and Météo France. The data contain the daily number of lightnings during a 3 year period in 16
regions of France localized on a 4 × 4 grid. We expect to recover the spatial structure of the
graph from the dependence of the lightning occurrences between the regions.

The data are refined as follows. We first eliminate the days without any lighting, leaving 950
vectors Xi of length 16 that contain the number of impacts at day i in each of the 16 regions.
This numbers are highly non Gaussian, contain many zeros, and show a clear south-east/north-
west tendency, with much more lightning in the south east. As a pre-processing, we apply the
transformation x 7→ log(1+x) to the data and subtract the spatial tendency estimated by linear
regression. The process is then normalized in such manner that the conditional variance at
each vertex conditionally to all the others is 1. This way, the precision matrix K−1, with K the
covariance matrix, has diagonal 1.

We model the resulting process as a spatial AutoRegressive process of order p > 1 on a
4× 4 grid, as described in Section 3.6. In this setting, K−1 writes as a degree p polynomial of a
matrix W supported on the 4×4 grid. Using only the information that W has zero diagonal, we
aim to recover this dependency from the empirical estimator K̂ of the covariance, using that K
and W commute. Remark that, because the target graph is bipartite, the model is not diagonally
identifiable—for instance W3 also has zero diagonal. However, we still manage to recover the
support from the fact that W is the sparsest matrix that commute with K. We run our algorithm
100 times and we show in Figure 7 the most frequent edges appearing in the output graph.

To the best of our knowledge, this exact framework has not been tackled in the literature.
For this reason, it is difficult to compare the performances of our algorithm to other existing
methods. For instance, while being a reference in Graphical Models, the package GGMselect
(see Giraud et al. (2012)) fails to uncover the dependence structure in this case, as we see in
Figure 8. The reason is simple: the package GGMselect aims to estimate the precision matrix,
which is a polynomial of W. Thus, while GGM inference may be more stable, faster (0.3s for
GGMselect and 400s for our algorithm) and easily interpretable, it is only adapted to recover
the dependence structure if p = 1, in which case K−1 is an affine function of W.
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Figure 7: Edges that appear 30%, 50%, and 70% of the time when running the bagging backward
algorithm 100 times. The spatial dependency becomes apparent around the 50% mark.

Figure 8: Edges that appear 30%, 50%, and 70% of the time using the GGMselect package with
family CO1 and maximal degree dmax = 5.

7. Discussion

In this paper, we develop a new method to recover hidden graphical structures in different
models. We consider a general framework in which we have access to an approximation of the
eigen-structure of an unknown graph, via an operator that commutes with its weighted adja-
cency matrix W. We are able to recover the support of W from an estimate of K = f(W) with f
an unknown function, under the sole assumption that the location of some zeros of W are known.
We tackle two situations where this condition may arise: Markov processes observed at random
times and stationary signals on graphs. We focus on the particular case of a weighted adjacency
matrix W with zero diagonal, indicating that the underlying graph has no self-loop.

A main limitation of our method lies in the large amount of data necessary to recover the
true support with high probability. Arguably, this limitation is intrinsic to our model and is a
matter of comparison between the estimation error ‖K̂− K‖ and the signal strength, measured
by the constant c0(S?) in (4) and (10). Even under the assumption that the estimation error
has order 1/

√
n, the difficulties stem from the constant c0(S?) being extremely small in some

cases.

For practical issues, there remain three main challenges to be addressed. The first one
concerns the symmetry of W, that once relaxed, would offer a wider range of applications. The
second concerns the generalization and applications to identifiability conditions other than W
having zero diagonal. Finally, our algorithm is greedy when the size of the graph increases. For
large graphs, it remains to find a way to compute more efficiently the criterion and significance
of the variables.
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Appendix A. Asserting the Diagonal Identifiability

A.1 Necessary and sufficient conditions

In this section, we focus on the F -identifiability in the special case where the set of forbidden
entries is the diagonal Fdiag := {(i, i) : i ∈ [1, N ]}. Recall that a support S is Fdiag-identifiable,
or simply diagonally identifiable (DI), if for almost every matrix A ∈ E(S),

BA = AB , diag(B) = 0 , B = B> =⇒ B = λA

for some λ ∈ R. In other words, a support S is diagonally identifiable if almost every symmetric
matrix A with support in S is uniquely determined, up to scaling, by its eigenspaces among
symmetric matrices with zero diagonal. In this section, we provide both sufficient and necessary
conditions on a support S to ensure the Fdiag-identifiability. For this, we consider a simple
undirected graph GS = ([1, N ], S) on N vertices with edge set S.

Definition 14 (Induced subgraph) For V ⊆ [1, N ], the induced subgraph GS(V ) = (V, S(V ))
is the graph on V with edge set S(V ) = S ∩ V 2.

Proposition 15 For all support S ⊆ [1, N ]2, the set of invertible matrices in E(S) is either
empty or a dense open subset of E(S).

The proof is straightforward when writing the determinant of A ∈ E(S) as a polynomial in its
entries. Observe that by this property, finding one invertible matrix A in E(S) guarantees that
almost every matrix in E(S) is invertible. In this case, we say that the graph GS is invertible.
Similarly, we say that GS is diagonally identifiable if S is diagonally identifiable.

Theorem 16 (Conditions for Fdiag-identifiability) Let S ⊆ F diag and GS = ([1, N ], S).

1. Necessary condition: If S is diagonally identifiable then there exists a sequence of
subsets V3, ..., VN−1 ⊂ [1, N ] such that |Vk| = k and GS(Vk) is invertible for all k =
3, ..., N − 1.

2. Sufficient condition: If there exists a nested sequence V3 ⊂ ... ⊂ VN−1 ⊂ [1, N ] with
|Vk| = k such that GS(Vk) is invertible for all k = 3, ..., N − 1, then S is diagonally
identifiable.

The gap between the sufficient and necessary conditions lies in the fact that the sequence
V3, ..., VN−1 need to be nested for the sufficient condition.

Proof We proceed by contradiction. For the necessary condition, let k ≥ 3 be such that GS(Vk)
is not invertible, for all Vk ⊂ [1, N ] of size k. For A ∈ E(S), denote by ψ0(A), ψ1(A), . . . , ψN (A)
the coefficients of the characteristic polynomial

det(z I−A) =

N∑
j=0

ψj(A) zj, z ∈ R.

Consider the matrix Mk(A) :=
∑k
j=0 ψj(A) Aj . By Eq. (14) in Espinasse and Rochet (2016), we

see that the (i, i)-entry of Mk(A) equals the sum of all minors of size k that do not contain the
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vertex i. Since for all subset Vk of size k, GS(Vk) is not invertible, this implies that Mk(A) has
zero diagonal. On the other hand, the non-zero entries of Mk(A) are degree k polynomials in
the variables Aij , (i, j) ∈ Supp(A). Therefore, the equality Mk(A) = λA for some λ ∈ R occurs
for at most a countable number of A ∈ E(S). Since Mk(A) commutes with A, we deduce that S
is not diagonally identifiable.

For the sufficient condition, we will need the following lemma.

Lemma 17 If there exists a subset V ′ ⊂ [1, N ] of size N − 1 such that GS(V ′) is both DI and
invertible, then GS is DI.

Proof Wemay assume that V ′ = [1, N−1] without loss of generality. LetM′ denote a symmetric
(N−1)×(N−1) matrix indexed on V ′ that is both invertible and diagonally identifiable, i.e., for
all non-zero matrix A′ 6= λM′,

M′A′ = A′M′ =⇒ diag(A′) 6= 0.

To prove that GS is DI, it suffices to find a symmetric matrixM with support S that is diagonally
identifiable. Consider M defined by

M =

[
M′ 0
0 0

]
.

Let A be a matrix with zero diagonal that commutes with M and write

A =

[
A′ a
a> 0

]
for some a ∈ RN−1, with diag(A′) = 0. The condition MA = AM can be stated equivalently as{

M′A′ = A′M′

M′a = 0

Since M′ is invertible by assumption, a = 0 and the only matrix A with zero diagonal that
commutes with M is the null matrix. Thus, M is diagonally identifiable.

We now go back to prove the sufficient condition in Theorem 16. Assume that GS is not
diagonally identifiable, then by Lemma 17, neither is GS(VN−1). By iterating the argument,
we conclude that GS(V3) is not diagonally identifiable. However, the only invertible graph on
three vertices is the triangle graph, which is diagonally identifiable, leading to a contradiction.

Remark 18 The proof of Theorem 16 combines the results of Lemma 2.1 in Barsotti et al.
(2014) and Eq. (14) in Espinasse and Rochet (2016). The first one is of topological flavor proving
that the set of identifiable matrices is either dense or empty in the set of matrices with prescribed
support. The second ingredient is Eq. (14) in Espinasse and Rochet (2016) which contains a key
combinatorial computation on the adjugate matrix of weighted graphs. Admittedly, its purpose
was to provide the first step to prove the necessary condition for identifiability in the present
article (precisely, that Mk(A) has zero diagonal). The proof of the sufficient condition does not,
however, involve this result.

A.2 Proof of Proposition 4

From Claim (ii) in Theorem 16 and considering the nested sequence VN−1 ⊃ ... ⊃ V3 obtained
by removing the last vertex on the tail of the kite at each step, we deduce a simple and tractable
sufficient condition for a graph GS to be diagonally identifiable, namely that GS contains the
kite graph as a vertex covering (possibly not induced) subgraph.
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A.3 Existence of kites

The condition on containing the kite graph ∇N as a subgraph is mild in the sense that it is
satisfied in the dense regime log n/n by random graphs, as depicted in the following proposition.

Proposition 19 The existence of kite graphs in the Erdős-Rényi model occurs as follows. For
any ω(N) → ∞ and for GN ∼ G(N, pN ), if pN ≥ (1/N)(logN + log logN + ω(N)) then
P{GN has a kite of length N} tends to 1 as N goes to infinity.

The proof makes use of the existence of a hamiltonian cycle which is a standard result in Random
Graph Theory, see Corollary 8.12 in Bollobás (1998) for instance. This results shows that in the
regime (logN + log logN)/N an Erdős-Rényi graph is diagonally identifiable.

Proof We now present the proof of this fact. Let ω(n)→∞ and set

p1 := (1/n)(log n+ log log n+ ω(n)/2),

p2 := ω(n)/(2n) .

Let G(1) and G(2) be two independent Erdős-Rényi graphs such that

G(1)
n ∼ G(n, p1) |= G(2)

n ∼ G(n, p2) .

As shown in Corollary 8.12 in Bollobás (1998) for instance, P{G(1)
n is hamiltonian} tends to 1

as n goes to infinity. Given a hamiltonian cycle Cn of length n in G(1) one can construct a kite
of length n using edges of G(2) to connect a pair of vertices at distance 2 on the cycle Cn. Invoke
the independence of G(1) and G(2) to get that this latter probability is

P{{k, k + 2} is an edge of G(2) for some k} = P{B(n, p2) > 0} ,

where B(n, p2) denotes the binomial law. Using Poisson approximation one gets that this
probability tends to 1 as n goes to infinity. We deduce that the probability that the graph
G = G

(1)
n +G

(2)
n has at least a kite tends to 1. Observe that G is an Erdős-Rényi graph of size n

and parameter p = p1 + p2 − p1p2 ≤ pn which concludes the proof.

A.4 Proof of Theorem 5

Combining Proposition 19 and Theorem 16, we deduce the first point. From the necessary
condition in Theorem 16, we see that it is sufficient to find two isolated vertices to prove non-
identifiability. Indeed, in this case, the kernel of the adjacency matrix has co-dimension at least
2 showing that all sub-graphs of size N − 1 are not invertible. Furthermore, one knows (see
Theorem 3.1 in Bollobás (1998) for instance) that the event “there is at least two isolated points”
has sharp threshold function log n/n. This proves the second point.

Appendix B. Support reconstruction

B.1 Proof of Theorem 7

Define S1 := {S ∈ S : |S| ≤ |S?|, S 6= S?} and S2 := {S ∈ S : |S| > |S?|}, clearly it holds
S = {S?} ∪ S1 ∪ S2. We want to control the terms P{Ŝ ∈ S1} and P{Ŝ ∈ S2} separately and
conclude in view of

P{Ŝ 6= S?} = P{Ŝ ∈ S1}+ P{Ŝ ∈ S2} .
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Since the Frobenius norm is sub-multiplicative, it holds, for all A ∈ E(F ),

‖A(K̂− K)− (K̂− K)A‖ ≤ ‖A(K̂− K)‖2 + ‖(K̂− K)A‖ ≤ 2‖A‖‖K̂− K‖ .

Thus, the quantity ‖AK̂− K̂A‖ for A ∈ E(F ) can be bounded from below and above by

‖AK− KA‖ − 2‖A‖‖K̂− K‖ ≤ ‖AK̂− K̂A‖ ≤ ‖AK− KA‖+ 2‖A‖‖K̂− K‖. (11)

To bound the term P{Ŝ ∈ S1}, we use (11) to remark that for all S ∈ S1,

Q(S) = min
A∈E(S)\{0}

‖AK̂− K̂A‖
‖A‖

+ λn|S| ≥ min
A∈E(S)\{0}

‖AK− KA‖
‖A‖

− 2‖K̂− K‖ .

It follows

min
S∈S1

Q(S) ≥ min
S∈S1

min
A∈E(S)\{0}

‖AK− KA‖
‖A‖

− 2‖K̂− K‖ = c0(S?)− 2‖K̂− K‖. (12)

The constant c0(S?) is positive by F -identifiability of W. Moreover, observe that

Q(S?) = min
A∈E(S?)\{0}

‖AK̂− K̂A‖
‖A‖

+ λn|S?| ≤
‖WK̂− K̂W‖
‖W‖

+ λn|S?| ≤ 2‖K̂−K‖+ λn|S?|, (13)

where we used both Eq. (11) and the fact that WK−KW = 0. Combining (12) and (13), we get

P{Ŝ ∈ S1} ≤ P
{

min
S∈S1

Q(S) ≤ Q(S?)
}
≤ P

{
‖K̂− K‖ ≥ c0(S?)− λn|S?|

4

}
.

To control the term P(Ŝ ∈ S2), we use that min
S∈S2

Q(S) ≥ λn min
S∈S2

|S| ≥ λn(|S?| + 1). By Eq.

(13), it follows

P
{
Ŝ ∈ S2

}
≤ P

{
min
S∈S2

Q(S) ≤ Q(S?)
}

≤ P
{
λn(|S?|+ 1) ≤ 2‖K̂− K‖+ λn|S?|

}
= P

{
‖K̂− K‖ ≥ λn

2

}
.

The proof of Theorem 7 follows directly by (H2). The corollary is a direct consequence using
Borel-Cantelli’s Lemma.

B.2 Proof of Theorem 10

Since ∆(K)ΦS is of full rank, the value β̂S =
(
∆(K̂)ΦS

)†
∆(K̂)a0 is the unique solution to Eq.

(5) with probability tending to one asymptotically. Since the value of β̂S does not depend on
a0 ∈ AS , one can take a0 = w in view of S? ⊆ S. We obtain

β̂S =
(
∆(K̂)ΦS

)†
∆(K̂)w = −

(
∆(K̂)ΦS

)†
∆(W)k̂.

The result follows from Slutsky’s lemma, using that (∆(K̂)ΦS)† converges in probability towards
(∆(K)ΦS)† and

√
n
(
∆(W)k̂ −∆(W)k

) d−−−−→
n→∞

N
(
0,∆(W)Σ∆(W)>

)
.
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