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Abstract

This paper presents a multiscale approach to efficiently compute approximate optimal
transport plans between point sets. It is particularly well-suited for point sets that are in
high-dimensions, but are close to being intrinsically low-dimensional. The approach is based
on an adaptive multiscale decomposition of the point sets. The multiscale decomposition
yields a sequence of optimal transport problems, that are solved in a top-to-bottom fashion
from the coarsest to the finest scale. We provide numerical evidence that this multiscale
approach scales approximately linearly, in time and memory, in the number of nodes,
instead of quadratically or worse for a direct solution. Empirically, the multiscale approach
results in less than one percent relative error in the objective function. Furthermore, the
multiscale plans constructed are of interest by themselves as they may be used to introduce
novel features and notions of distances between point sets. An analysis of sets of brain
MRI based on optimal transport distances illustrates the effectiveness of the proposed
method on a real world data set. The application demonstrates that multiscale optimal
transport distances have the potential to improve on state-of-the-art metrics currently used
in computational anatomy.

1. Introduction

The study of maps between shapes, manifolds and point clouds is of great interest in a
wide variety of applications. There are many data types, e.g. shapes (modeled as surfaces),
images, sounds, and many more, where a similarity between a pair of data points involves
computing a map between the points, and the similarity is a functional of that map. The
map between a pair of data points however contains much more information than the
similarity measure alone, and the study of networks of such maps have been successfully used
to organize, extract functional information and abstractions, and help regularize estimators
in large collections of shapes (M. Ovsjanikov and Guibas, 2010; Qixing Huang, 2014; Huang
and Guibas, 2013). The family of maps to be considered depends on the type of shape,
manifold or point cloud, as well as on the choice of geometric features to be preserved in a
particular application. These considerations are not restricted to data sets where each point
is naturally a geometric object: high-dimensional data sets of non-geometric nature, from
musical pieces to text documents to trajectories of high-dimensional stochastic dynamical
systems, are often mapped, via feature sets, to geometric objects. The considerations above
therefore apply to a very wide class of data types.
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In this paper we are interested in the problem where each object is a point cloud – a set
of points in RD – and will develop techniques for computing maps from one point cloud to
another, in particular in the situation where D is very large, but the point clouds are close
to being low-dimensional, for example they may be samples from a d-dimensional smooth
manifoldM (d� D). The two point clouds may have a different number of points, and they
may arise from a sample of a low-dimensional manifold M perturbed by high-dimensional
noise (for more general models see the works by Little et al. (2012), Maggioni et al. (2016)
and Liao and Maggioni (2016)). In this setting we have to be particularly careful in both
the choice of maps and in their estimation since sampling and noise have the potential to
cause significant perturbations.

We find optimal transport maps rather well-suited for these purposes. They automati-
cally handle the situation where the two point clouds have different cardinality, they handle
in a robust fashion noise, and even changes in dimensionality, which is typically ill-defined,
for point clouds arising from real-world data (Little et al., 2012). Optimal transport has
a very long history in a variety of disciplines and arises naturally in a wide variety of
contexts, from optimization problems in economics and resource allocation, to mathemat-
ics and physics, to computer science (e.g. network flow algorithms). Thus, applications
of optimal transport range from logistics and economics (Beckmann, 1952; Carlier et al.,
2008), geophysical models (Cullen, 2006), image analysis (Rubner et al., 1998; Haker et al.,
2004) to machine learning (Cuturi and Doucet, 2014; Cuturi and Avis, 2014). Despite
these widespread applications, the efficient computation of optimal transport plans remains
challenging, especially in complex geometries and in high dimensions.

For point sets the optimal transport problem can be solved by a specialized linear pro-
gram, the minimum network flow problem (Ahuja et al., 1993; Tarjan, 1997). The minimum
network flow problem has been extensively studied in the operations research community
and several fast algorithms exist. However, these algorithms, at least on desktop hardware,
do not scale beyond a few thousand source and target points. Our framework extends the
applications of these algorithms to problem instances several orders of magnitude larger,
under suitable assumptions on the geometry of the data. We exploit a multiscale rep-
resentation of the source and target sets to reduce the number of variables in the linear
program and quickly find good initial solutions, as illustrated in Figure 1. The optimal
transport problem is solved (with existing algorithms) at the coarsest scale and the solution
is propagated to the next scale and refined. This process is repeated until the finest scale is
reached. This strategy, discussed in detail in Section 3, is adaptable to memory limitations
and speed versus accuracy trade-offs. For some of the refinement strategies, it is guaranteed
to converge to the optimal solution.

Our approach draws from a varied set of work that is briefly summarized in Section 2.
The proposed approach generalizes and builds on previous and concurrently developed
hierarchical methods (Glimm and Henscheid, 2013; Schmitzer and Schnörr, 2013; Schmitzer,
2015; Oberman and Ruan, 2015). The work in this paper adds the following contributions:

• The description of a general multiscale framework for discrete optimal transport that
can be applied in conjunction with a wide range of optimal transport algorithms.
• A set of propagation and refinement heuristics, including approaches that are similar

and/or refine existing ones (Glimm and Henscheid, 2013; Oberman and Ruan, 2015;
Schmitzer, 2015) as well as novel ones. In particular we propose a novel propagation
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strategy based on capacity restrictions of the network flow problem at each scale.
This new approach proves to be very efficient and accurate in practice. Overall, the
heuristics result empirically in a linear increase in computation time with respect to
data set size.
• An implementation in the R package mop that allows the combination of multiple

heuristics to tailor speed and accuracy to the requirements of particular applications.

Compared to other linear programming based approaches, the multiscale approach results
in a speedup of up to multiple orders of magnitude in large problems and permits to solve
approximately transportation problems of several orders of magnitudes larger than previ-
ously possible. Comparing to PDE based approaches is difficult and PDE based methods
are limited to low-dimensional domains and specific cost metrics. The proposed frame-
work is demonstrated on several numerical examples and compared to the state-of-the-art
approximation algorithm by Cuturi (2013).

Figure 1: Optimal transport between two noisy elliptical shapes in 2-D. We visualize coarse-
to-fine approximations to the source (purple dots) and target (yellow dots) point
clouds, together with the optimal transportation plan at each scale (gray edges).
The intensity of the points is proportional to mass – at coarser scales each point
represents an agglomerate of points at finer scales, and its mass is the sum of
the masses of the points it represents. Similarly the intensity of the lines is
proportional to the amount of mass transported along the line. Notice that the
optimal transport formulation permits multiple lines exiting a source point or
entering a target point.
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2. Background

Optimal transport is the problem of minimizing the cost of moving a source probability
distribution to a target probability distribution given a function that assigns costs to moving
mass from source to target locations. The classical formulation by Monge (1781) considers
the minimization over mass preserving mappings. Later Kantorovitch (1958) considered the
same problem but as a minimization over couplings between the two probability measures,
which permits to split mass from a single source across multiple target locations. More
precisely, for two probability measures µ and ν on probability spaces X and Y respectively,
a coupling of µ and ν is a measure π on X × Y such that the marginals of π are µ and
ν, i.e. π(A × Y) = µ(A) for all (µ-measurable) sets A ⊆ X and π(X × B) = ν(B)
for all (ν-measurable) sets B ⊆ Y. We denote by C(µ, ν) the set of couplings between
µ and ν. Informally, we may think of dπ(x, y) as the amount of infinitesimal mass to
be transported from source x to destination y, with the condition that π is a coupling
guaranteeing that the source mass is distributed according to µ and the destination mass is
distributed according to ν. Such couplings always exist: we always have the trivial coupling
π = µ × ν. The trivial coupling is uninformative, every source mass dµ(x) is transported
to the same target distribution ν. In Monge’s formulation the coupling is restricted to the
special form π(x, y) = δT (x) where δy is the Dirac-δ measure with mass at y ∈ Y, and T is
a function X → Y: in this case the coupling is “maximally informative” in the sense that
there is a function mapping each source x to a single destination y; in particular the mass
dµ(x) at x is not split into multiple portions that are shipped to different target y’s.

To define optimal transport and optimal couplings, we need a cost function c(x, y) on
X×Y representing the work or cost needed to move a unit of mass from x to y. Then for
every coupling π we may define the cost of π to be

E(X,Y )∼π[c(X,Y )] , (1)

with (X,Y ) being a pair of random variables distributed according to π. An optimal
coupling π minimizes this cost over all choices of couplings. When seeking an optimal
transportation plan, the above becomes

EX∼µ[c(X,T (X))] =

∫
X
c(x, T (x))dµ(x) ,

and one minimizes over all (measurable) functions T : X → Y. One often designs the
cost function c in an application-dependent fashion, and the above framework is extremely
general. When X = Y is a metric space with respect to a distance ρ (with suitable technical
conditions relating the metrics and the measures µ, ν that we will not delve into, referring
the reader to Villani (2009)), then distinguished choices for the cost are those that are
related to the metric structure. The natural choice of c(x, y) = ρ(x, y)p, for some p > 0
leads to the definition of the Wasserstein-Kantorovich-Rubinstein metric on the space of
probability measures on X:

Wp(µ, ν) := min
π∈C(µ,ν)

(∫
X

∫
X
ρ(x, y)pdπ(x, y)

) 1
p

. (2)

Computational solutions to optimal transport split roughly in two settings: Approaches
based on the solution of partial differential equations derived from the continuous optimal
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transport formulation, briefly discussed in Section 2.1 and, more relevant to this paper,
combinatorial optimization methods to directly solve for a discrete optimal transport plan
discussed in Section 2.2.

2.1 Continuous Optimal Transport

In case that at least the source distribution admits a density, and when the cost function
is the squared Euclidean distance, the optimal coupling is deterministic, i.e. there exists
a transport map, and the optimal solution is the gradient of a convex function (Brenier,
1991). This has been exploited to solve the optimal transport problem by numerical partial
differential equation approaches (Benamou and Brenier, 2000; Angenent et al., 2003; Haker
et al., 2004; Iollo and Lombardi, 2011; Papadakis et al., 2013; Benamou et al., 2014).

An alternative formulation proposed by Aurenhammer et al. (1998) shows that the opti-
mal transport from a source density to a target distribution of a set of weighted Dirac delta’s
can be solved through a finite dimensional unconstrained convex optimization. Mérigot
(2011) proposes a multiscale approach for the formulation of Aurenhammer et al. (1998).

Both the numerical PDE based approaches as well as the unconstrained convex opti-
mization require a discretization of the full domain which is generally not feasible for higher
dimensional domains. For arbitrary cost functions and distributions the optimal transport
problem does typically not result in a deterministic coupling and can not be solved through
PDE based approaches.

2.2 Discrete Optimal Transport and Linear Programming

For two discrete distributions µ =
∑n

1 w(xi)δ(xi) and ν =
∑m

1 v(yi)δ(yi) with
∑
w(xi) =∑

v(yi) = 1 the optimal transport problem is equivalent to the linear program

min
π

∑
i=1,...,n
j=1,...,m

c(xi, yj)π(xi, yj) s.t.


∑

j π(xi, yj) = µ({xi}) = w(xi)∑
i π(xi, yj) = ν({yj}) = v(yj)

π(xi, yj) ≥ 0

. (3)

The solution is called an optimal coupling π∗, and the minimum value attained at π∗, is
called the cost of π∗, or the optimal cost of the transport problem, and is denoted by
cost(π∗) =

∑
i,j c(xi, yj)π

∗(xi, yj). The constraints enforce that π is a coupling. The
variables π(xi, yj) correspond to the amount of mass transported from source xi to target
yj , at cost c(xi, yj). The linear constraints are of rank n + m − 1: when n + m − 1 of the
constraints are satisfied, either the n constraints of the source density or the m constraints
of the target density are satisfied. Since the sum of outgoing mass is equal to the sum
of incoming mass, i.e. µ(X) = ν(Y), it follows that all constraints must be satisfied.
The optimal solution lies, barring degeneracies, on a corner of the polytope defined by the
constraints, i.e. is a basic feasible solution. This implies that exactly n + m − 1 entries of
the optimal coupling π are non-zero, i.e. π is a sparse matrix. The optimal coupling is a
Monge transport map if and only if all the mass of a source xi is transported to exactly one
target location. A Monge solution does not exist for every optimal transport problem, in
fact a small perturbation of µ will always suffice to make a Monge solution impossible.
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For source and target data sets with the same cardinality and equally weighted δ-
functions, Kantorovich’s optimal transport problem reduces to an assignment problem,
whose solution is a Monge optimal transport map. In this special case, the optimal trans-
port problem can be efficiently solved by the Hungarian algorithm (Kuhn, 1955). The
assignment problem results in a degenerate linear program since only n entries are non-zero
(instead of 2n − 1). We can therefore think of optimal transport as a robust version of
assignments. This can also be seen from the point of view of convexity: in the assignment
problem, π is a permutation matrix deciding to which yj each xi is transported. The convex
hull of permutation matrices is exactly the set of doubly-stochastic matrices, to which a
coupling π belongs as a consequence of the constraints in (3).

For point sets with different cardinalities and/or points with different masses the optimal
transport problem can be solved by a linear program and is a special case of the minimum
cost network flow problem. The minimum cost flow problem is well studied and a number
of algorithms (Ford and Fulkerson, 1956; Klein, 1967; Cunningham, 1976; Goldberg and
Tarjan, 1987; Bertsekas and Tseng, 1988; Orlin, 1997) exist for its solution. This discrete
solution approach is not constrained to specific cost functions and can work with arbitrary
cost functions.

However, the linear programming approach neglects possibly useful geometric properties
of the measures and the cost function. Our work makes assumptions about the underlying
geometry of the measure spaces and the associated cost function, and in this way is a
mixing of the low-dimensional “geometric PDE” approaches with the discrete non-geometric
optimization approaches. It exploits the geometric assumptions to relieve the shortcomings
of either approach, namely it scales to high-dimensional data, provided that the intrinsic
dimension is low in a suitable sense, and does not require a mesh data structure. At the
same time we use the geometry of the data to speed up the linear program, which per–se
does not leverage geometric structures.

The refinement strategies of the proposed multiscale approach add subsets of paths
among all pairwise paths at each subsequent scale to improve the optimal transport plan.
This strategy of adding paths, is akin to column generation approaches (Desrosiers and
Lübbecke, 2005). Column generation, first developed by Dantzig and Wolfe (1960) and Ford
and Fulkerson (1956), reduces the number of variables in a linear program by solving a
smaller linear program on a subset of the original variables and introducing new variables
on demand. However, the proposed approach exploits the geometry of the problem in-
stead of relying on an auxiliary linear program (Dantzig and Wolfe, 1960) or shortest path
computations (Ford and Fulkerson, 1956) to detect the entering variables.

2.3 Approximation Strategies

In the computer vision literature, the Earth Movers distance or equivalently the Wasserstein-
1 distance, which is simply the cost of the optimal coupling, is a successful similarity measure
for image retrieval (Rubner et al., 1998). In this application the transport plan is not of
interest but only the final transport cost. For this purpose Indyk and Thaper (2003), Shird-
honkar and Jacobs (2008) and Andoni et al. (2008) developed algorithms that compute an
approximate cost but do not yield a transport plan. Some of these approaches are based
on the dual formulation of optimal transport, which involves testing against Lipschitz func-
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tions, and observing that Lipschitz functions may be characterized by decay properties of
their wavelet coefficients. In this sense these approaches are multiscale as well.

To speed up computations in machine learning applications Cuturi (2013) proposes
to smooth transport plans by adding a maximum entropy penalty to the optimal transport
formulation. The resulting optimization problem is efficiently solved through matrix scaling
with Sinkhorn fixed-point iterations. Because of the added regularization term, the solution
will in general be different from the optimal transportation. It may however be the case
that these particular (or perhaps other) regularized solutions are better suited for certain
applications.

2.4 Related Work

Very recently a number of approaches have been proposed to solve the optimal transport in
a multiscale fashion (Glimm and Henscheid, 2013; Schmitzer and Schnörr, 2013; Schmitzer,
2015; Oberman and Ruan, 2015). Glimm and Henscheid (2013) design an iterative scheme
to solve a discrete optimal transport problem in reflector design and propose a heuristic for
the iterative refinements based on linear programming duality. This iterative scheme can
be interpreted as a multiscale decomposition of the transport problem based on geometry of
the source and target sets. The proposed potential refinement strategy extends the heuristic
proposed by Glimm and Henscheid (2013) to guarantee optimal solutions and adds a more
efficient computation strategy: Their approach requires to check all possible variables at
the next scale. In Section 3.4.1 we introduce a variation of the approach by Glimm and
Henscheid (2013) by adding a branch and bound strategy to avoid checking all variables,
and an iterative procedure that guarantees optimal solutions.

Schmitzer and Schnörr (2013) propose a multiscale approach on grids that uses a re-
finement strategy based on spatial neighborhoods, akin to the neighborhood refinement
described in Section 3.4.2. Schmitzer (2015) uses a multiscale approach to develop a mod-
ified auction algorithm with guaranteed worst case complexity and optimal solutions. We
use data structures that enable us to quickly construct neighborhoods, even for point clouds
that live in high-dimensions, but have low-intrinsic dimension; we also exploit these struc-
tures to not compute all the pairwise possible costs, as well as the candidate neighborhoods
in our propagation steps. This can result in substantial savings in the scaling of the algo-
rithm, from |X|3 to just |X| log |X|. We are therefore able to scale to larger problem, solving
on a laptop problems an order of magnitude larger than those in Oberman and Ruan (2015)
for example, and showing linear scaling on a large range of scales. Schmitzer (2015) use
the c–cyclical monotonicity property of optimal transport plans (Villani, 2009, Chapter 5)
to construct “shielding neighborhoods” that permit to exclude paths from further consid-
eration. The idea of shielding neighborhoods is combined with a multiscale strategy that
permits to quickly refine initial neighborhood estimates.

Finally, in our work we emphasize that the multiscale construction is not only motivated
by its computational advantage, but also as a way of revealing possibly important features
of the optimal transportation map. As we show in Section 5, features collected from the
multiscale optimal transportation maps leads to improved predictors for brain conditions.
More generally, we expect multiscale properties of optimal transportation maps to be useful
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in a variety of learning tasks; the connections between learning and optimal transportation
are still a very open field, to be explored and exploited.

3. Multiscale Optimal Transport

Solving the optimal transport problem for two point sets X and Y directly requires |X||Y|
variables, or paths to consider. In other words, the number of paths along which mass can
be transported grows quadratically in the number of points and quickly yields exceedingly
large problems. The basic premise of the multiscale strategy is to solve a sequence of
transport problems based on increasingly accurate approximations of the source and target
point set. The multiscale strategy helps to reduce the problem size at each scale by using
the solution from the previous scale to inform which paths to include in the optimization
at the next finer scale. Additionally, the solution at the previous scale helps to find a good
initialization for the current scale which results in fewer iterations to solve the reduced size
linear program.

The multiscale algorithm (see Algorithm 1 and Figure 2 for a visual illustration) com-
prises of three key elements:

(I) A way of coarsening the sets of source points X and measure µ in a multiscale
fashion, yielding a chain

(X, µ) =: (XJ , µJ)→ (XJ−1, µJ−1)→ · · · → (Xj , µj)→ · · · → (X0, µ0) (4)

connecting the scales from fine to coarse, with Xj of decreasing cardinality as the scale
decreases, and the discrete measure µj “representing” a coarsification of µ at scale j,
with supp(µj) = Xj (the support of µj is the set of points with positive measure).
Similarly for Y and ν we obtain the chain

(Y, µ) =: (YJ , νJ)→ (YJ−1, νJ−1)→ · · · → (Yj , νj)→ · · · → (Y0, ν0) (5)

This coarsening step is described in Section 3.1 and the resulting multiscale family of
transport problems is discussed in Section 3.2.

(II) A way of propagating a coupling πj solving the transport problem µj � νj at scale
j to a coupling πj+1 at scale j + 1. This is described in Section 3.3.

(III) A way of refining the propagated solution to the optimal coupling at scale j. This is
described in Section 3.4.

3.1 The Coarsening Step: Multiscale Approximations to X, µ and c

To derive approximation bounds for the error of the multiscale transport problem at each
scale we rely on the notion of a regular family of multiscale partitions formally described
in Section 3.1.1. The multiscale partition is used to define approximations to µ and c at
all scales. An integral part of the definitions is that the constructions can be interpreted
as a tree, with all nodes at a fixed height corresponding to one scale of the multiscale
partitioning.
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Algorithm 1: Multiscale Discrete Optimal Transport

Input: Two discrete measures µ and ν, and a stopping scale J0 ≤ J
Output: Multiscale family of transport plans (πj : µj � νj)

J0
j=0

Construct multiscale structures {{Xj , µj)}Jj=0 and {{Yj , νj)}Jj=0.
Let π̃0 be an arbitrary coupling µ0 � ν0.
for j = 0 . . . J0 − 1 do

Refine initial guess π̃j to the optimal coupling πj : µj � νj .
Propagate πj from scale j to scale j + 1, obtaining a coupling π̃j+1

We start with some notation needed for the definition of the multiscale partitions. Let
(X, ρ, µ) be a measure metric space with metric ρ and finite measure µ. Without loss of
generality assume that µ(X) = 1. The metric ball of center z and radius r is Bz(r) = {x ∈
X : ρ(x, z) < r}. We say that X has doubling dimension d if every ball Bz(r) can be covered
by at most 2d balls of radius r/2 (Assouad, 1983). Furthermore, a space has a doubling
measure if µ(Bz(r)) � rd, i.e. if there exist a constant c1 such that for every z ∈ X and
r > 0 we have c−11 rd ≤ µ(Bz(r)) ≤ c1rd. Here and in what follows, we say that f � g if there
are two constants c1, c2 > 0 such that for every z in the domain of both functions f, g we
have c1f(z) ≤ g(z) ≤ c2f(z) (and therefore a similar set of inequalities holds with the roles
of f and g swapped), and we say that f and g have the same order of magnitude. Having
a doubling measure implies having a doubling metric, and up to changing the metric to an
equivalent one, one may choose the same d in the doubling condition for the metric and in
that for the measure: we assume this has been done from now on. This family of spaces is
rather general, it includes regular domains in RD, as well as smooth compact manifoldsM
endowed with volume measures.

3.1.1 Multiscale Approximations to X and µ

A regular family of multiscale partitions, with scaling parameter θ > 1, is a family of sets

{{Cj,k}
Kj

k=1}
J
j=0, where j denotes the scale and k indexes the sets at scale j, such that:

(i) the sets {Cj,k}
Kj

k=1 form a partition of X, i.e. they are disjoint and ∪Kj

k=1Cj,k = X;

(ii) either Cj+1,k′ does not intersect a Cj,k, or it is completely contained in it;

(iii) there exists a constant A > 0 such that for all j, k we have the diameter diam(Cj,k) ≤
Aθ−j ;

(iv) each Cj,k contains a “center” point cj,k such that Bcj,k(θ−j) ⊆ Cj,k.

To ease the notation we will fix θ = 2 in what follows, but the constructions and results
hold, mutatis mutandis, for general θ > 1. The properties (i) and (ii) above imply that
there exists a tree T , with nodes at scale j (i.e. at distance j from the root) in bijection

with {Cj,k}
Kj

k=1, such that (j + 1, k′) is a child of (j, k) if and only if Cj+1,k′ is contained
in Cj,k. Moreover properties (iii) and (iv), together with the properties of spaces with a
doubling measure, imply that µ(Cj,k) � 2−jd and Kj � 2jd. These partitions are classical
in harmonic analysis, mimicking dyadic cubes in Euclidean space, and they have recently
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been used to construct multiscale decompositions of data sets in high-dimensions (Little
et al., 2012; Allard et al., 2012; Iwen and Maggioni, 2013; Chen et al., 2012). We say that
Cj+1,k′ , or even (j + 1, k′), is a child of Cj,k (respectively, of (j, k)) if Cj+1,k′ ⊆ Cj,k, and
that such Cj,k (respectively (j, k)) is a parent of Cj+1,k′ (resp. (j + 1, k′)).

Given two discrete sets X and Y in a doubling metric space of homogeneous type with

dimension d, we construct the corresponding families of multiscale partitions {{CX
j,k}

KX
j

k=1}
J
j=0

and {{CY
j,k}

KY
j

k=1}
J
j=0 (we assume the same range of scales to keep the notation simple). The

construction of the multiscale approximations is illustrated in Figure 2.

Xj+1

Xj Yj

Yj+1

CX
j+1,k0

CX
j,k

CY
j,k

⇡j+1(xj+1,k0 , yj+1,k00)

CY
j+1,k00

⇡j(xj,k000 , yj,k)

Figure 2: An illustration of the multiscale framework. The coarsening step constructs from
a set of weighted points Xj+1 at scale j + 1 a smaller set of weighted points at
scale j (blue bars). An equivalent coarsening is performed on the target point set
Yj+1 Neighboring points at scale j+1 are combined into a single representative at
scale j with mass equivalent to the weights of the combined points. The optimal
transport plan (green arrows) is solved at the coarser scale j, then propagated to
scale j + 1 and refined.

The space Xj will be the partition at scale j, namely the set {CX
j,k}

KX
j

k=1, of cardinality

KX
j . The measures µ and ν may be coarsened in the natural way, by letting µj be defined
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recursively on Xj by

µj(C
X
j,k) =

∑
(j+1,k′) child of (j,k)

µj+1(C
X
j+1,k′) , (6)

and similarly for νj . These are in fact projections of these measures, and may also be inter-
preted as conditional expectations with respect to the σ-algebra generated by the multiscale
partitions. We can associate a point cXj,k to each CX

j,k in various ways, by “averaging” the

points in CX
j+1,k′ , for (j + 1, k′) a child of (j, k). At the finest scale we may let cXJ,k = cXJ,k

(this being a “center” for CJ,k as in item (iv) in the definition of multiscale partitions), and
then recursively we defined the coarser centers step from scale j + 1 to scale j in one of the
following ways:

(i) If the metric space is also a vector space a natural definition of xj,k := cXj,k is a weighted

average of the cXj+1,k′ corresponding to children:

cXj,k =
∑

(j+1,k′) child of (j,k)

µj+1({cXj+1,k′})cXj+1,k′ .

(ii) In general we can define xj,k := cXj,k as the point

cXj,k = argminc∈X
∑

(j+1,k′) child of (j,k)

ρp(c, cXj+1,k′) ,

for some p ≥ 1, typically p = 1 (median) or p = 2 (Fréchet mean).

Of course similar constructions apply to the space Yj , yielding points yj,k := cYj,k. We
discuss algorithms for these constructions in Section 4.1.1.

3.1.2 Coarsening the cost function c

The multiscale partition provides several ways to coarsen the cost function: for every xj,k
and yj,k′ we consider

(c-i) the pointwise value
cj(c

X
j,k, c

Y
j,k′) := c(xXj,k, y

Y
j,k′) , (7)

where xj,k and yj,k′ are defined in any of the ways above;

(c-ii) the local average

cj(c
X
j,k, c

Y
j,k′) := argmin

α

∑
x∈CX

j,k, y∈C
Y
j,k′

(α− c(x, y))2 =

∑
x∈CX

j,k, y∈C
Y
j,k′

c(x, y)

|CX
j,k||CY

j,k′ |
; (8)

(c-iii) the local weighted average

cj(c
X
j,k, c

Y
j,k′) := argmin

α

∑
x∈CX

j,k, y∈C
Y
j,k′

(α− c(x, y))2 π∗j−1(xj−1,k1 , yj−1,k′1)

=

∑
x∈CX

j,k, y∈C
Y
j,k′

c(x, y)π∗j−1(xj−1,k1 , yj−1,k′1)∑
x∈CX

j,k, y∈C
Y
j,k′

π∗j−1(xj−1,k1 , yj−1,k′1)
,
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where π∗j−1 is the optimal or approximate transportation plan at scale j − 1, defined

in (9); k1 is the unique index for which CX
j,k ⊆ CX

j−1,k1 and k′1 is the unique index for

which CY
j,k ⊆ CY

j−1,k′1
.

3.2 Multiscale Family of Optimal Transport Problems

With the definitions of the multiscale family of coarser spaces Xj and Yj , corresponding
measures µj and νj , and corresponding cost cj , we may consider, for each scale j, the
following optimal transport problem:

π∗j := argmin
π

∑
k=1,...,KX

j

k′=1,...,KY
j

cj(xj,k, yj,k′)π(xj,k, yj,k′) s.t.


∑

k′ π(xj,k, yj,k′) = µj({xj,k}) ∀k ∈ KX
j∑

k π(xj,k, yj,k′) = νj({yj,k′}) ∀k′ ∈ KY
j

π(xj,k, yj,k′) ≥ 0

(9)

The problems in this family are related to each other, and to the optimal transportation
problem in the original spaces. We define the cost of a coupling as

cost(πj) =
∑

k=1,...,KX
j

k′=1,...,KY
j

cj(xj,k, yj,k′)πj(xj,k, yj,k′) . (10)

The cost of the optimal coupling π∗j at scale j is provably an approximation to the cost of
the optimal coupling π∗ (which is equal to π∗J):

Proposition 1 Let π∗ be the optimal coupling, i.e. the solution to (3), and π∗j the optimal
coupling at scale j, i.e. the solution to (9). Define

Ej(π
∗) :=

∑
k=1,...,KX

j

k′=1,...,KY
j

∑
x∈CX

j,k

y∈CY
j,k′

(
cj(xj,k, yj,k′)− c(x, y)

)
π∗(x, y) . (11)

Then

cost(π∗j ) ≤ cost(π∗) + Ej(π
∗) , (12)

and if cj = c and c is Lipschitz with constant ||∇c||∞, we have

cost(π∗j ) ≤ cost(π∗) + 2−jA||∇c||∞ , (13)

where A is such that maxk,k′{diam(CX
j,k),diam(CY

j,k′)} ≤ A · 2−j.

Proof Consider the coupling πj induced at scale j by the optimal coupling π∗, defined by

πj(xj,k, yj,k′) =
∑

x∈CX
j,k ,y∈C

Y
j,k′

π∗(x, y) .

12
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First of all, since {CX
j,k}k and {CY

j,k′}k′ are partitions, it is immediately verified that πj is a
coupling. Secondly, observe that

cost(πj) =
∑

k=1,...,KX
j

k′=1,...,KY
j

cj(xj,k, yj,k′)πj(xj,k, yj,k′) =
∑

k=1,...,KX
j

k′=1,...,KY
j

∑
x∈CX

j,k

y∈CY
j,k′

cj(xj,k, yj,k′)π
∗(x, y)

=
∑
x∈X
y∈Y

c(x, y)π∗(x, y) +
∑

k=1,...,KX
j

k′=1,...,KY
j

∑
x∈CX

j,k

y∈CY
j,k′

(
cj(xj,k, yj,k′)− c(x, y)

)
π∗(x, y)

= cost(π∗) +
∑

k=1,...,KX
j

k′=1,...,KY
j

∑
x∈CX

j,k

y∈CY
j,k′

(
cj(xj,k, yj,k′)− c(x, y)

)
π∗(x, y)

︸ ︷︷ ︸
=:Ej(π∗)

.

Since cost(π∗j ) ≤ cost(πj) (since π∗j is optimal), we obtain (12). When cj = c and c is
Lipschitz with constant ||∇c||∞, we have

Ej(π
∗) ≤

∑
k :x∈CX

j,k

k′ : y∈CY
j,k′

∑
k=1,...,KX

j

k′=1,...,KY
j

||∇c||∞ · ||(xj,k, yj,k′)− (x, y)||π∗(x, y)

≤
∑

k :x∈CX
j,k

k′ : y∈CY
j,k′

∑
k=1,...,KX

j

k′=1,...,KY
j

||∇c||∞2−jAπ∗(x, y)

≤ 2−jA||∇c||∞ ,

with A as in the claim.

In the discrete, finite case that we are considering, µj → µ and νj → ν trivially since
µJ = µ and νJ = ν by construction. If µ and ν were continuous, and at least when
c(x, y) = ρ(x, y)p for some p ≥ 1, then if µ and ν have finite p-moment (i.e.

∫
X ρ(x, x0)

pdµ
and similarly for ν), we would obtain convergence of a subsequence of c(π∗j ) to c(π∗) by
general results (e.g. as a simple consequence of Lemma 4.4. in (Villani, 2009)).

Note that the approximations do not guarantee that the transport plans are close in
any other sense but their cost. Consider the arrangement in Figure 3, the transport plans
are ε-close in cost but the distances between the target locations of the sources are far no
matter how small ε gets.

3.3 Propagation Strategies

The approximation bounds in Section 3.2 show that the optimal solution πj at scale j is
|Ej+1−Ej | close to optimal solution π∗j+1 at scale j + 1. This suggests that the solution at
scale j can provide a reasonably close to optimal initialization for scale j + 1.

As proposed by Glimm and Henscheid (2013) the solution at a given scale can be inter-
polated at the next scale (or finer discretization). The most direct approach to initialize the
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1

Y B

Z
A

1

1

Y B

Z
A

(a) (b)

Figure 3: An example that illustrates that closeness in cost does not indicate closeness of
the transport plan. The transport plans (green arrows) between the sources A
and B (purple) and the targets Y and Z (orange) in (a) and (b) are ε-close but
their respective target locations are very far.

transport problem at scale j + 1 given the solution π∗j at scale j is to distribute the mass
π∗j (xk, yk′) equally to all combinations of paths between children(xk) and children(yk′).

This propagation strategy results in a reduction in the number of iterations required
to find an optimal solution at the subsequent scale. This warm-starting alone is often not
sufficient, however. At the finest scale the problems still requires the solution of a problem
of size O(n2). This quickly reaches memory constraints with Ω(104) points, and a single
iteration of Newton’s method or a pivot step of a linear program becomes prohibitively
slow. Thus, we consider reducing the number of variables, which substantially speeds up
the algorithm, albeit we may lose guarantees on its computational complexity and/or its
ability to achieve arbitrary accuracy, so that only numerical experiments will support our
constructions. These reductions are achieved by considering only a subset Rj+1 of all
possible paths Aj+1 at scale j + 1.

To distinguish the optimal solution on the reduced set of paths at scale j from the
optimal solution over all paths we introduce some notation. Let Aj+1 be the set of all
possible paths between sources and targets at scale j + 1. Let Rj+1 ⊆ Aj+1 be the set of
paths propagated from the previous solution (e.g. children of mass-bearing paths found at
scale j). Let π∗j+1|P be the optimal solution to the transport problem restricted to a set of
paths P ⊂ Aj+1. With this notation, π∗j+1|Aj+1 = π∗j+1. The optimal coupling π∗j+1|Rj+1

on the reduced set of paths problem does not need to match the optimal coupling π∗j+1 on
all paths. However π∗j+1|Rj+1

does provide a starting point for further refinements discussed
in Section 3.4.

3.3.1 Simple Propagation

The most direct approach to reduce the number of paths considered at subsequent scales
is to include only paths at scale j + 1 whose endpoints are children of endpoints of mass-
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bearing paths at scale j. The optimal solution at scale j has exactly KX
j + KY

j − 1 paths

with non-zero weight. Thus, the number of paths at scale j+1 reduces to O(C2(KX
j +KY

j )),

where C is the maximal number of children of any node at scale j. In particular, C � 2d for
a doubling space of dimension d. This reduces the number of variables from “quadratic”,
O(KX

j K
Y
j ), to linear, O(KX

j + KY
j ). This propagation strategy by itself, however, often

leads to a dramatic loss of accuracy in both the cost the transportation plan, and the
transportation plan itself.

3.3.2 Capacity Constraint Propagation

This propagation strategy solves a modified minimum flow problem at scale j in order to
include additional paths at scale j+ 1 that are likely to be included in the optimal solution
π∗j+1. This is achieved by adding a capacity constraint to the mass bearing paths at scale j in
the optimal coupling π∗j |Rj : The amount of mass of a mass bearing path π∗j |Rj (xj,k, yj,k′) is

constrained to λmin
(
µj(xj,k), νj(yj,k′)

)
with λ random uniform on [0.1, 0.9]. The random-

ness is introduced to avoid degenerate constraints. The solution of this modified minimum–
flow problem forces the inclusion of nc additional paths, where nc is the number of con-
straints added. There are various options for adding capacity constraints, we propose to
constrain all mass bearing paths of the optimal solution at scale π∗j |Rj . The capacity con-
strained problem thus results in a solution with twice the number of paths as in the coupling
π∗j |Rj . The solution of the capacity constrained minimum flow problem is propagated as
before to the next scale.

To increase the likelihood of including paths required to find an optimal solution at the
next scale, the capacity constrained procedure can be iterated multiple times. Each time the
mass bearing paths in the modified solution are constrained and a new solution is computed.
Each iteration doubles the number of mass bearing paths and the number of iterations
controls how many paths are propagated to the next scale. Thus, the capacity constraint
propagation strategy bounds the number of paths considered in the linear program. The
optimal transport plan on a source set X and Y results in a linear program with |X|+ |Y|
constraints and |X||Y| variables and the optimal transport plan has |X| + |Y| − 1 mass
bearing paths. It follows that the capacity constraint propagation strategy considers linear
programs with at most O

(
2i(|X|+ |Y|)

)
constraints, where i is the number of iterations

of the capacity propagation scheme. This results in a significant reduction in problem size,
since at each scale we only consider a number of paths scaling as O(|X| + |Y|) instead of
O(|X||Y|).

3.4 Refinement Strategies

Solving the reduced transport problem at scale j+1, propagated from scale j, can not guar-
antee an optimal solution at scale j+1. Propagating a sub-optimal solution further may lead
to an accumulation of errors. This section describes strategies to refine the reduced trans-
port problem to find closer approximations or even optimal transport plans at each scale.
These refinement strategies are essentially batch column generation methods (Desaulniers
et al., 2002), that take advantage of the multiscale structure.
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3.4.1 Potential Refinement

This refinement strategy exploits the potential functions, or dual solution, to determine
additional paths to include given the currently optimal solution on the reduced set of paths
from the propagation. The dual formulation of the optimal transport can be written as:

max
φ,ψ

∑
i=1,...,n

µ({xi})φ(xi)−
∑

j=1,...,m

ν({yj})ψ(yj) s.t. φ(xi)− ψ(yj) ≤ c(xi, yj) . (14)

The functions φ and ψ are called dual variables or potential functions. From the dual formu-
lation it follows that at an optimal solution the reduced cost c(x, y)−φ(x)+ψ(y) is larger or
equal to zero. This also follows from the Kantorovich duality of optimal transport (Villani,
2009, Chapter 5).

The potential refinement strategy uses the potential functions φ and ψ from the solution
of the reduced problem to determine which additional paths to include. If the solution on
the reduced problem is not optimal on all paths, then there exist paths with negative
reduced cost. Thus, we check the reduced cost between all paths and include the ones
negative reduced cost. A direct implementation of this strategy would require to check all
possible paths between the source and target points. To avoid checking all pairwise paths
between source and target point sets at the current scale, we introduce a branch and bound
procedure on the multiscale structure that efficiently determines all paths with negative
reduced cost.

Let φ∗j |P and ψ∗j |P the dual variables, i.e., the potential functions, at the optimal solution
π∗j |P on the set of paths P for the source and target points, respectively. Define Vj(π

∗
j |P)

as the set of paths with non-positive reduced cost with respect to φ∗j |P and ψ∗j |P

Vj(π
∗
j |P) =

{
πj(xk, yk′) ∈ Aj : c(xk, yk′)− φ∗j |P(xk)− ψ∗j |P(yk′) ≤ 0

}
.

The potential refinement strategy now refines the propagated solution π∗j |Rj by including

all negative reduced cost paths Q0
j = Vj(π

∗
j |Rj ). Let π∗j |Q0

j
be the associated optimal

transport. This new solution changes the potential functions which in turn may require
to include additional paths. Thus the potential refinement strategy can be iterated with
Qi
j = Vj(π

∗
j |Qi−1

j
) leading to monotonically decreasing optimal transport plans π∗j |Qi

j
. Since

a solution is optimal if and only if all reduced cost are ≥ 0 this iterative strategy converges
to the optimal solution.

The set of paths with negative reduced cost given φ∗j |P and ψ∗j |P are determined by
descending the tree and excluding nodes that can not contain any negative reduced cost
paths. This requires bounds on the potential functions for any node at scale smaller than
j. The bound is achieved by storing at each target node of the multiscale decomposition
the maximal ψ∗j |P of any of its descendants at scale j. Now for each source node xk the
target multiscale decomposition is descended, but only towards nodes at which a potential
negative reduced cost can exist.

Depending on the properties of φ∗j |P and ψ∗j |P, this refinement strategy may reduce the
number of required cost function evaluations drastically. In empirical experiments the total
number of paths considered in the iterative potential refinement was typically reduced to
O(2d(KX

j +KX
i )), with d being the doubling dimension of the data set.
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The potential refinement strategy is also employed by Glimm and Henscheid (2013) with-
out the branch and bound procedure. The shielding neighborhoods proposed by Schmitzer
(2015) similarly uses the potentials to define which variables are needed to define a sparse
optimal transport problem and also suggests to iterate the neighborhood shields in order
to arrive at an optimal solution.

3.4.2 Neighborhood Refinement

This section presents a refinement strategy that takes advantage of the geometry of the
data. The approach is based on the heuristic that most paths at the next scale are sub-
optimal due to boundary effects when moving from one scale to the next, induced by the
sharp partitioning of the space at scale j. Such artifacts from the multiscale structure are
mitigated by including paths between spatial neighbors in the source and target locations
of the optimal solution on the propagated paths. This refinement strategy is also employed
by Oberman and Ruan (2015).

Let Nj (πj , r) be the set of paths such that the source and target of any path are
within radius r of the source and target of a path with non-zero mass transfer in πj . The
neighborhood refinement strategy is to expand the reduced set of paths using the union of
paths in the current reduced set and its neighbors:

Ej = Rj ∪Nj

(
π∗j |Rj , r

)
When moving from one scale to the next the cost of any path can change at most two times
the radius r of the parent node which suggests to set the radius of the neighborhood in
consideration as two times the node radius.

This heuristics does not guarantee an optimal solution, but does reduce the number of
paths to consider at scale j to O(q2r (K

X
j + KY

j )) with qr being the number of neighbors

within radius 2−jr, for a doubling space with dimension d, qr � rd.
The neighborhood strategy requires to efficiently compute the set of points within a ball

of a given radius and location. Depending on the multiscale structure there are different
ways to compute the set of neighbors. A generic approach that does not depend on any
specific multiscale structure is to use a branch and bound strategy. For this approach, each
node requires an upper bound u(ci) on the maximal distance from the representative of
node ci to any of its descendants. Using these upper bounds the tree is searched, starting
from the root node, while excluding any child nodes for which c(x, ci) − u(ci) > r from
further consideration. For multiscale structures such as regular grids more efficient direct
computations are possible. For this paper we implemented the generic branch and bound
strategy that works with any multiscale structure.

3.5 Remark on Errors

The error induced by this multiscale framework stems from two sources. First, if J0 < J ,
i.e., the optimal transport problem is only solved up to scale J0, the solution at scale J0
has a bounded approximation error, as detailed in Section 3.2. By solving the transport
problem only up to a certain scale permits to trade-off computation time versus precision
with guaranteed approximation bounds. However, to speed up computation we rely on
heuristics that, depending on the refinement strategy, yield solutions at each scale that
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might not be optimal. This second type error is difficult to quantify; however, for the
potential refinement strategy that we introduce Section 3.4.1, an optimal solution can be
guaranteed. The propagation and refinement strategies introduced in Sections 3.3 and 3.4
permit trade-offs between accuracy and computational cost.

4. Numerical Results and Comparisons

We tested the performance of the proposed multiscale transport framework with respect to
computational speed as well as accuracy for different propagation and refinement strategies
on various source and target point sets with different properties.

The multiscale approach is implemented in C++ with an R front end in the package
mop1. For comparisons, we also implemented the Sinkhorn distance approach (Cuturi,
2013) in C++ with an R front end in the package sinkhorn1. Our C++ implementation
uses the Eigen linear algebra library (Guennebaud et al., 2010), which resulted in faster
runtimes than the MATLAB implementation by Cuturi (2013).

4.1 Implementation Details

The R package mop provides a flexible implementation of the multiscale framework and is
adaptable to any multiscale decomposition that can be represented by a tree. The package
permits to use different optimization algorithms to solve the individual transport prob-
lem. Currently the multiscale framework implementation supports the open source library
GLPK (Makhorin, 2013) and the commercial packages MOSEK (Andersen and Andersen,
2013) and CPLEX (IBM, 2013) (both free for academic use). MOSEK and CPLEX support
a specialized network simplex implementation that runs 10-100 times faster than a typical
primal simplex implementation. Both the MOSEK and CPLEX network simplex run at
comparable times, with CPLEX slightly faster in our experiments. Furthermore CPLEX
supports starting from an advanced initial basis for the network simplex algorithm which
improves the multiscale run-times significantly. Thus, the numerical test are all run using
the CPLEX network simplex algorithm.

4.1.1 Algorithms for Constructing Multiscale Point Set Representations

Various approaches exist to build the multiscale structures described in Section 3.1, such as
hierarchical clustering type algorithms (Ward Jr, 1963), or in low dimensions constructions
such as quad and oct-trees (Finkel and Bentley, 1974; Jackins and Tanimoto, 1980) or
kd-trees (Bentley, 1975) are feasible. Data structures developed for fast nearest neighbor
queries, such as navigating nets (Krauthgamer and Lee, 2004) and cover trees (Beygelzimer
et al., 2006) induce a hierarchical structure on the data sets with guarantees on partition size
and geometric regularity of the elements of the partition at each scale, under rather general
assumptions on the distribution of the points. The complexity of cover trees (Beygelzimer
et al., 2006) is O(CdDn log n), for some constant C, where n = |X|, d is the doubling
dimension of X, and D is the cost of computing a distance between a pair of points.
Therefore the algorithm is practical only when the intrinsic dimension is small, in which
case they are provably adaptive to such intrinsic dimension. The optimal transport approach

1. available on https://bitbucket.org/suppechasper/optimaltransport
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does not rest on a specific multiscale structure and can be adapted to application-dependent
considerations. However, the properties of the multiscale structure, i.e., depth and partition
sizes, do affect run-time and approximation bounds.

In our experiments we use an iterative K-means strategy to recursively split the data
into subsets. The tree is initialized using the mean of the complete data set as the root
node. Then K-means is run resulting in K children. This procedure is recursively applied
for each leaf node, in a breadth first fashion, until a desired number of of leaf nodes, a
maximal leaf radius or the leaf node contains only a single point. For the examples shown
we select K = 2d with d the dimensionality of the data set. For high-dimensional data
K could be set to an estimate of the intrinsic dimensionality. Since in all experiments we
are equipped with a metric structure we use the pointwise coarsening of the cost function
as in Equation (7). The reported results include the computation time for building the
hierarchical decomposition, which is, however, negligible compared to solving the transport
problem at all scales.

4.1.2 Multiscale Transport Implementation for Point Sets

Algorithm 2 details the steps for computing multiscale optimal transport plans using the
newtork simplex for solving the optimization problems at each scale and iterated K–means
to construct the multiscale structures.

Algorithm 2: Point Set based Multiscale Optimal Transport Implementation

Input: Source point set X = {x}Ni=0.
Target point set Y = {y}Mi=0.
A propagation strategy p.
A refinement strategy r.
Output: Multiscale family of transport plans (πj : Xj � Yj)

J
j=0

Construct multiscale point sets {Xj}Nj=0 and {Yj}Mj=0 using iterated K–means.

if N < M then
Add scales {Xj}Jj=N+1 by repeating the last scale.

if N > M then
Add scales {Yj}Jj=M+1 by repeating the last scale.

Set J = max(N,M)
Form the measures µj and νj as in equation (6).
Compute optimal transport π0 at coarsest scale with the network simplex.
for j = 1 . . . J do

Propagate the πj−1 from scale j − 1 to scale j using the propagation strategy p,
obtaining a set of paths Sj = p(πj−1 at scale j

Use the network simplex algorithm to solve for optimal transport on the set of
paths Sj yielding a coupling π̃j

Create the refined set of paths Rj = r(π̃j) using the refinement strategy r.
Use the network simplex algorithm to solve for optimal transport on the set of
paths Rj yielding the optimal coupling πj on the paths Rj .
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4.2 Propagation and Refinement Strategy Performance

Figure 5 illustrates the behaviour of the different propagation and refinement strategies on
two examples: The ellipses example in Figure 1 and Caffarelli’s smoothness counter example
described in Villani (2009, Chapter 12) and illustrated in Figure 4. The ellipse example
consists of two uniform samples (source and target data set) of size n from the unit circle
with normal distributed noise added with zero mean and standard deviation 0.1. The source
data sample is then scaled in the x-Axis by 1.3 and in the y-Axis by 0.9, while the target
data set is scaled in the x-Axis by 0.9 and in the y-Axis by 1.1. Caffarelli’s example consists
of two uniform samples on [−1, 1]2 of size n. Any points outside the unit circle are then
discarded. Additionally, the target data sample is split along the x-Axis at 0 and shifted by
+2 and −2 for points with positive and negative x-Axis values, respectively. We tested 7

(a) (b)

Figure 4: Optimal transport plans on the (a) ellipse and (b) Caffarelli data sets with 5000
points for the source and target point set each. The optimal transport plans are
indicated by black lines with transparency indicating the amount of mass being
transported from source to target.

different strategies of different combinations of propagation strategies from Section 3.3 with
refinement strategies from Section 3.4:

1. (ICP) Iterated capacity propagation (Section 3.3.2) with 0 to 5 iterations with no re-
finements. Note iterated capacity with 0 iterations is equivalent to simple propagation
(Section 3.3.1).

2. (NR) Simple propagation (Section 3.3.1) with neighborhood refinement (Section 3.4.2)
with radius factor ranging from 0.5 to 2.5 in 0.5 increments.

3. (ICP + NR) Iterated capacity propagation with 1 to 5 iterations combined with
neighborhood refinement with radius factor fixed to 1.

4. (CP + NR) A single iteration of capacity propagation combined with neighborhood
refinement with radius factor from 0.5 to 2.5 with 0.5 increments.

5. (IPR) Simple propagation with iterated potential refinement (Section 3.4.1) with 1 to
5 iterations.

6. (ICP + PR) Iterated capacity propagation with 1 to 5 iterations combined with a
single potential refinement step.

7. (CP + IPR) A single iteration of capacity propagation combined with 1 to 5 iterations
of potential refinement.
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Figure 5 shows that almost all strategies have less than one percent relative error. The
exception is the simple propagation with no refinements applied (i.e. iterated capacity prop-
agation with no iterations). The randomness of the iterated capacity constrained algorithm
can results in worse results despite a larger number of iterations. However, it will always
perform better than using the simple propagation strategy. The neighborhood refinement
strategy improves the results significantly, but after a radius factor of one the improvements
start to level out. The potential refinement strategy finds the optimal solution when iter-
ated a few times. Combining the refinement strategy with capacity propagation reduces
relative error and computation time. The computation time is reduced because the capac-
ity propagation yields a closer initialization to the optimal solution. The combination of
potential refinement strategy and capacity propagation has the additional benefit that the
branch and bound strategy is more efficient since fewer comparisons need to be made when
checking for paths and smaller linear programs have to be solved in each refinement step.

For very small relative error (< 10−11) the optimal solution is sometimes not achieved.

(a) (b)

Figure 5: A comparison of different multiscale propagation and refinement strategies on the
(a) ellipse and (b) Caffarelli data sets with 5000 points for the source and target
point set each. For a description of the different strategies see text, the lines in
the relative error graphs indicate increasing number of iterations or radius factor
for the different strategies. Both the time and accuracy axes are in logarithmic
scale. All strategies, except capacity propagation with 0 iterations (ICP) and
neighborhood refinement (NR) with radius factor 0.5, find solution with relative
error less than one percent. The capacity propagation strategies can find optimal
solutions up to numerical precision.

This is due to tolerance settings in the network simplex algorithm which are on the order
of 10−11. Thus, depending how the network simplex approaches the optimum it might stop
at different basic feasible solutions.

Figure 5 shows that the computation time and relative error for problem of equal sizes
depends on the type of problem. An important aspect of the problem type is the ratio of

21



Gerber and Maggioni

the transport distance to the diameters of the source and target point sets. To illustrate
this effect we computed optimal transport plans for two data sets with source and target
distributions uniform on [0, 1]2. In the first case the distributions are perfectly overlapping
and in the second case the target distributions shifted by 2 units in the x direction. Figure 6
shows that for large ratios the relative error is typically much smaller. This is expected since
variations in the transport plan only change the cost marginally. For small ratios, i.e. source
and target distributions that are almost identical, a small variation in the transport plan
leads to a large relative error. Another observation is the following: the potential strategy

(a) (b)

Figure 6: The effect of distance to support size ratio on computation time and relative
error for the different multiscale propagation and refinement strategies source
and target point sets of 5000 points each sampled uniformly from a square of side
length one and ground truth transport distance (a) 0 and (b) 2. Both the time
and accuracy axes are in logarithmic scale.

is less effective for transport problems where most mass is transported very far, relative
to the distances within source and target point set. This is because a small change in the
length of a path can include many possible source and target locations and the transport
polytope has many suboptimal solutions with similar cost. If on the other hand most mass
is transported on the order of the nearest neighbor distances within the source and target
point set, there are many fewer possible paths within a small change in path length and the
transport polytope is “steep” in the direction of the cost function.

4.3 Comparison to Network Simplex and Sinkhorn Transport

In this section we compare the CPLEX network simplex algorithm (IBM, 2013) and the
Sinkhorn approach (Cuturi, 2013) to three different multiscale strategies:

1. (CP) Capacity propagation strategy using a single iteration with no further refine-
ments.
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2. (CP + NR) Capacity propagation combined with neighborhood refinement with radius
factor fixed to one and a single capacity constraint iteration.

3. (CP + PR) Capacity propagation combined with potential refinement with a single
iteration each.

(a) (b)

Figure 7: (a) A comparison of computation time (solid) and relative error ( dashed ) with
respect to the network simplex solution for the CPLEX network simplex, Sinkhorn
distance and the proposed multiscale strategy with increasing number of points.
(b) The number of total paths considered is roughly constant with four times the
number of points in the problem, i.e., the multiscale approach results in only a
linear increase in problem size instead of quadratic for a direct approach. The
number of points on the x-axis denotes the number of source points |X| which is
approximately equal to the number of target points |Y|. The Sinkhorn approach
is competitive in computation time for smaller problems. For larger problems
only the multiscale strategies outperform the Sinkhorn approach quickly, and are
the only algorithms that remain viable.

Figure 7 shows computation time, relative error and problem size for increasing sample
size on the ellipse data set. The Sinkhorn transport employs a regularization term and
is thus not expected to converge to the actual transport distance. The comparison of the
relative error provides an indication of how far the regularization strays from the true
transport distance. For small size problems the Sinkhorn transport is as comparable in
speed to the multiscale approach.. The multiscale approach outperforms both competitors
for moderate data sizes of a few thousand source and target points. The multiscale approach
scales roughly linear in the problem size while both the Sinkhorn and network simplex scale
approximately quadratically. The capacity propagation without refinement runs an order
of magnitude faster than including refinements and results in relative errors less than one
percent for more than a few hundred points. The network simplex and Sinkhorn approach
run out of memory on a 16GB computer for problems larger than around 2 · 104 constraints
and about 108 variables. The proposed multiscale framework results in a linear increase in
problem size for the propagation and refinement strategies tested and, on the same 16GB
computer, can solve instances with 2 · 106 constraints (source and target points) in a few
hours, which would result in about 1012 variables (paths) for the full optimal transport
problem. The computation times are comparable to the results reported by Oberman and
Ruan (2015); Schmitzer (2015) on examples on regular grids that result in similar sized
problems.
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The relative error and computation time depend again on the type of problem. Fig-
ure 8(a) shows computation time and relative error on transport problems on source and
target data sets sampled uniformly from [0, 1]2 with different shifts in the target distribu-
tion. If required, the relative error can be reduced using multiple capacity propagation and
potential refinement iterations as illustrated in Figure 6. In these experiments we set the
tolerance parameter for Sinkhorn to 1e−5, and tried also 1e−2 to see if this would result
in significant speed ups, with minimal accuracy loss, but it resulted in only approximately
a 10% speedup, and no fundamental change in the behavior for large problem sizes. The
tolerance parameter for CPLEX is set to 1e−8. The approach by Schmitzer (2015) is similar
to the refinement property strategy, we expect that computation time grows similarly as for
the potential strategy for problems with large transport distances compared to the source
and target support size.

The final experiment tests the performance with respect to the dimensionality of the
source and target distributions. We used two uniform distributions [0, 1]d with d varying
from 2 to 5 and the target shifted such that the actual transport distance is 0 and 2.

(a) (b) (c)

Figure 8: Computation time (solid) and relative error (dashed) with respect to (a) changes
transport distance to support size ratio in two dimensions and (b,c) dimensionality
with ground truth transport distance (b) 0 and (c) 2. The source and target
distributions are uniform on a square of side length 1 with approximately 5000
points each. The potential refinement increases proportional to the transport
distance to support ratio. The neighborhood strategy is less effective in higher
dimensions, due to the curse of dimensionality, but performs better than the
Sinkhorn approach. The capacity propagation strategy is less affected by the
dimensionality of the problem.

5. Application to Brain MR Images

An important building block for the analysis of brain MRI populations is the definition of
a metric that measures how different two brain MRI are. A mathematically well motivated
and popular approach for distance computations between brain images is based on large de-
formation diffeomorphic metric mappings (LDDMM (Miller et al., 2002)). Here we explore
optimal transport distance as an alternative metric for comparing brain images.
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To solve for the optimal transport map between two 3D brain images we extract for each
image a point cloud from the intensity volumes. Each point represents a voxel as a point in
3-dimensional space, the location of the voxel. The mass of the point is equal to the intensity
value of the voxel, normalized to sum to one over all points. For illustration, Figure 9 shows
a single slice extracted from the original volumes and optimal transport maps between the
two slices. This 2D problem resulted in point set of approximately 20, 000 points.

(a) (b)

(c) (d)

Figure 9: Slice of (a) source and (b) target brain image and optimal transport map for (c)
Euclidean and (d) squared Euclidean cost function. For the squared Euclidean
cost the optimal transport solutions typically prefer to move many locations small
distances, i.e. shift mass among nearest neighbors. For images the neighborhoods
are on regular grids resulting in a staircase appearance of the transport plan.

To compare the optimal transport distance to the LDDMM distance we compare how
well the distances can be used to predict clinical parameters. Using the pairwise distances,
we employ classical multidimensional scaling (MDS) to embed the pairwise distances into
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Model Residual R2 F–statistic p–value

age = a0 +
∑5

i=1 aili 10.5 0.82 404.9 < ε

age = a0 +
∑3

i=1 aixi 10.87 0.82 639.5 < ε

age = a0 +
∑5

i=1 aizi 12.04 0.78 297 < ε
age = a0 + a1z

1
1 + a2z

1
2 + a3z

2
1 + a4z

2
2 + a5z

3
1 + a6z

4
2 + a7z

4
5 + a8z

5
1 10.9 0.82 239 < ε

MMSE = a0 + a1age 3.59 0.06 15.82 9.3e-05
MMSE = a0 + a1l1 3.40 0.16 43.13 3.3e-10
MMSE = a0 + a1x1 3.36 0.18 50.30 1.6e-11
MMSE = a0 + a1z1 + a2z3 + a3z5 3.38 0.17 16.31 1.2e-09
MMSE = a0 + a1z

2
2 + a2z

3
2 + a3z

3
4 + a4z

4
5 + a5z

5
1 + a6z

5
3 + a7z

6
3 3.14 0.30 14.03 4.3e-15

CDR = a0 + a1age 0.27 0.25 144.5 < ε
CDR = a0 + a1l1 0.26 0.34 223.9 < ε
CDR = a0 + a1x1 0.25 0.36 248.5 < ε
CDR = a0 + a1z1 + a2z3 + a3z5 0.26 0.35 77.5 < ε
CDR = a0 + a1z

3
4 + a2z

5
1 + a3z

5
3 + a4z

5
5 + a5a

6
3 0.25 0.38 53.1 < ε

Table 1: Optimal linear regression models from the OASIS data set, for age, mini mental
state examination (MMSE) and clinical dementia rating (CDR). The PCA coordi-
nates from the Euclidean distances are denoted with li, the diffeomorphic manifold
coordinates with xi, the transport coordinates by zi and the multiscale transport
coordinates with zji from coarsest j = 1 to finest j = 6 scale. An entry with “< ε”
denotes quantities smaller than machine precision. The best results are indicated
in bold.

Euclidean space. In this embedding each point corresponds to a 3D brain image and thus
provides a coordinate system for the relative locations between the brain MRI’s. The
Euclidean structure of the embedding permits to use standard statistical tools to form
prediction models, in our case linear regression.

Within this framework we compare Euclidean, LDDMM and optimal transport distances
as the input to the multidimensional scaling step. Note, for the Euclidean distance, i.e.
treating each brain MRI as a point in Euclidean space, classical multidimensional scaling is
equivalent to a principal component analysis. For the comparisons we used the OASIS brain
database (HHMI et al.). The OASIS database consists of T1 weighted MRI of 416 subjects
aged 18 to 96. One hundred of the subjects over the age of 60 are diagnosed with mild to
moderate dementia. The images in the OASIS data set are already skull-stripped, gain-field
corrected and registered to the atlas space of Talairach and Tournoux (1988) with a 12-
parameter affine transform. Associated with the data are several clinical parameters. For
the linear regression from the MDS embeddings we restrict our attention to the prediction
of age, mini mental state examination (MMSE) and clinical dementia rating (CDR).

The MDS computation requires pairwise distances. To speed up computations we reduce
the number of points by downsampling the volumes to size 44 × 52 × 44. This results,
discarding zero intensity voxels, in point clouds of approximately 40, 000 points for each
brain MRI. A single distance computation with capacity propagation takes on the order of
10 seconds resulting in a total computation time of around 2 weeks for all pairwise distances.
For embedding the optimal transport distance we consider two approaches:

1. A five dimensional MDS embedding based on the transport cost at the finest scale.
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2. A multiscale embedding using multiple five dimensional MDS embeddings, one for the
transport cost at each scale.

From the embeddings we build linear regression models, using the embedding coordi-
nates as independent variables and the clinical variables as dependent variables. As in Ger-
ber et al. (2010) we use the Bayesian information criterion (BIC) on all regression subsets to
extract a models that trade-off complexity, i.e. number of independent variables, with the
quality of fit. Table 1 shows the results of the optimal transport, with squared Euclidean
cost, distances compared to the results reported in Gerber et al. (2010). The transport
based approach shows some interesting behaviours. The single scale model performs worse
on age while performing similar on MMSE and CDR. The multiscale transport models
perform similar to the LDDMM approach except for MMSE where it almost doubles the
explained variance R2. This suggests that the multiscale approach captures information
about MMSE not contained in a single scale and prompts further research of multiscale
based models to predict clinical parameters.

6. Conclusion

The multiscale framework extends the size of transport problems that can be solved by
linear programming by one to two orders of magnitude in the size of the point sets.

The framework is flexible, the linear program at each scale can be solved by any method.
Depending on the refinement strategy a dual solution would need to be constructed as well.
The method can also be applied to solve the linear assignment problem. The solution at
the finest scale will be binary if n = m, however, at intermediate steps a binary solution
is not guaranteed unless at each scale the source and target sets have the same number
of points. This could be enforced during the construction of the multiscale structures. As
currently defined the method requires point set inputs for the multiscale constructing of the
transport problems. However, one could design methods that construct such a multiscale
structure from a cost matrix only. However, for large problems pairwise computations of
all costs is typically prohibitively expensive.

The multiscale transport framework provides several options for further research. The
framework can be combined with various regularizations, e.g. depending on scale and
location and induces a natural multiscale decomposition of the transport map. This de-
composition can be used to extract information about relevant scales in a wide variety of
application domains. We are currently investigating the use of such multiscale decomposi-
tions for representation and analysis of sets of brain MRI.

The capacity constraint propagation approach suggests a different venue for further
exploration. The capacity propagation strategy does not hinge on a geometrical notion
of neighborhoods and is a suitable candidate to extend the multiscale framework to non-
geometric problems. Studying the interdependency between the cost function, hierarchical
decomposition of the transport problem (or possibly more generic linear programs) and the
efficiency of the capacity constraint propagation is a challenging but interesting problem.

Acknowledgments

27



Gerber and Maggioni

We thank the referees for their constructive feedback. This work was supported, in part,
by NIH/NIBIB and NIH/NIGMS via 1R01EB021396-01A1: Slicer+PLUS: Point-of-Care
Ultrasound.

References

Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows: Theory,
Algorithms, and Applications. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1993.
ISBN 0-13-617549-X.

William K Allard, Guangliang Chen, and Mauro Maggioni. Multi-scale geometric meth-
ods for data sets ii: Geometric multi-resolution analysis. Applied and Computational
Harmonic Analysis, 32(3):435–462, 2012.

Erling D. Andersen and Knud D. Andersen. The MOSEK optimization software.
http://www.mosek.com/, 2013.

Alexandr Andoni, Piotr Indyk, and Robert Krauthgamer. Earth mover distance over high-
dimensional spaces. In Proceedings of the nineteenth annual ACM-SIAM symposium
on Discrete algorithms, pages 343–352. Society for Industrial and Applied Mathematics,
2008.

Sigurd Angenent, Steven Haker, and Allen Tannenbaum. Minimizing flows for the monge–
kantorovich problem. SIAM journal on mathematical analysis, 35(1):61–97, 2003.

Patrice Assouad. Plongements lipschitziens dans Rp. Bulletin de la Société Mathématique
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Quentin Mérigot. A multiscale approach to optimal transport. In Computer Graphics
Forum, volume 30, pages 1583–1592. Wiley Online Library, 2011.
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