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Abstract

Dictionaries are collections of vectors used for the representation of a class of vectors in
Euclidean spaces. Recent research on optimal dictionaries is focused on constructing dictio-
naries that offer sparse representations, i.e., `0-optimal representations. Here we consider
the problem of finding optimal dictionaries with which representations of a given class of
vectors is optimal in an `2-sense: optimality of representation is defined as attaining the
minimal average `2-norm of the coefficients used to represent the vectors in the given class.
With the help of recent results on rank-1 decompositions of symmetric positive semidefi-
nite matrices, we provide an explicit description of `2-optimal dictionaries as well as their
algorithmic constructions in polynomial time.

Keywords: `2-optimal dictionary, rank-1 decomposition, finite tight frames

1. Introduction

A dictionary is a collection of vectors in a finite-dimensional vector space over R, with which
other vectors of the vector space are represented. A dictionary is a generalization of a basis:
While the number of vectors in a basis is exactly equal to the dimension of the vector space,
a dictionary may contain more elements. In this article we consider a problem of finding an
optimal dictionary, where optimality is interpreted as the minimum expected average size
of the coefficients required to represent a certain collection of vectors drawn from a given
probability distribution.

We begin with a toy example to motivate the problems treated in this article. Let V be
a random vector that attains values ‘close’ to

`

0 2
˘J with high probability; the situation

is demonstrated below:
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Figure 1: Comparison of two dictionaries.

Suppose that our dictionary consists of the vectors d1 “
`

1 ´ε
˘J and d2 “

`

1 ε
˘J

in R2, with a small positive value of ε. Since we must represent V using d1 and d2, the
corresponding coefficients α1 and α2 must be such that α1

`

1 ε
˘J
` α2

`

1 ´ε
˘J
“ V «

`

0 2
˘J. A quick calculation shows that the magnitudes of the coefficients α1 and α2 should

then be approximately equal to 1{pεq with high probability. To wit, the magnitudes of these
coefficients are large for small values of ε. It is therefore more appropriate in this situation
to consider a dictionary consisting of vectors d˚1 “

`

ε 1
˘J and d˚2 “

`

´ε 1
˘J to represent

the samples of V , in which case, the magnitudes of the coefficients of the representations are
closer to 1 with high probability. The latter values are comparatively far smaller compared
to the values close to 1{pεq obtained with the preceding dictionary. This simple example
shows that given some statistical information about the random vectors to be represented,
the question of designing a dictionary that minimizes the average cost of representation can
be better addressed.

Let us now turn to a situation in which considering the average cost of representations is
natural. Our motivation comes from a control theoretic ideas perspective. Consider a linear
time-invariant control system modeled by the recursion

xpt` 1q “ Axptq `Buptq, t “ 0, 1, . . . , (1)

where the ‘system matrix’ A P Rnˆn and the ‘control matrix’ B P Rnˆm are given, with the
initial boundary condition xp0q “ x̄ P Rn fixed. For an arbitrarily selected x̂ P Rn, consider
the standard reachability problem for (1), that is:

If possible, find a sequence puptqqt Ă Rm of control vectors
that steer the system states to x̂.

(2)

A necessary and sufficient condition for such a sequence to exist for every pair px̄, x̂q is that
the rank of the matrix RKpA,Bq :“

`

B AB ¨ ¨ ¨ An´1B
˘

is equal to n, which we impose
for the moment. Letting K :“ min

 

k ě 0
ˇ

ˇ rank pRKpA,Bqq “ n
(

denote the ‘reachability
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index’ of (1), we see at once that the control vectors puptqqK´1
t“0 needed to execute the transfer

of the states of (1) from x̄ to x̂ must be a solution to the linear equation

x̂´AK x̄ “
K´1
ÿ

t“0

AtBuptq “ RKpA,Bq

¨

˚

˚

˚

˝

upK ´ 1q
...

up1q
up0q

˛

‹

‹

‹

‚

.

It is now natural to consider the ‘control cost’ of transferring x̄ to x̂, for which, a natural
candidate is the associated `2 performance index

řK´1
i“0 ‖uptq‖2. Since in practice, the `2

performance index is analogous to the amount of energy spent to control the system, its
practical importance can hardly be overstated in the context of control. Let us list three
examples:
˝ In attitude control/orientation problems of space vehicles, one must execute most of the

rapid manoeuvre using the energy from the limited amount of fuel on board, or with the
energy available from on-board batteries; minimizing the energy expenditure, therefore,
is crucial.

˝ In controlled automated mobile robots (e.g., automated cars) designed to reach a given
location within a certain time, reduction of energy consumption leads directly to reduction
in fuel consumed.

˝ In control of electronic systems such as power electronic drives, the associated `2 perfor-
mance index involves information of the amount of power drawn from the electricity grid
to control the system, leading directly to minimization of power consumption and thereby
heating.

Minimization of control effort has been an integral part of control theory, and is generally
studied under the class of Linear Quadratic problems; see, e.g., (Bertsekas, 1995), (Anderson
and Moore, 2007), (Clarke, 2013), (Liberzon, 2012), or any standard book on optimal control.
It is evident that the task of designing control systems that require minimum control energy
for their typical manoeuvres is of great importance.

It is a standard practice to study the reachability problem (2), for x̄ “ 0 and x̂ on
the unit sphere; due to linearity of (1), this special case provides sufficient insight into the
general case. Let us consider the following optimal control problem:

minimize
puptqqt

E

„K´1
ÿ

t“0

‖uptq‖2



subject to

$

’

&

’

%

xpt` 1q “ Axptq `Buptq for all t “ 0, . . . ,K ´ 1,

xp0q “ 0,

xpKq “ x̂ distributed according to µ,

(3)

where µ is a probability distribution on Rd. It is known that if x̂ is uniformly distributed
over the unit sphere, then the optimal control problem (3) admits an unique optimal solution
and the optimum value is proportional to tr

`

W´1
A,B

˘

, where WA,B :“ RKpA,BqRKpA,Bq
J

is the controllability grammian of the system; for details see, e.g., (Müller and Weber, 1972)
and (Pasqualetti et al., 2014). It can be readily shown that if Σ :“ Erx̂x̂Js is well defined,
then the optimum value of (3) is equal to tr

`

ΣW´1
A,B

˘

. Evidently, for a given distribution of
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x̂, different linear systems (1) — described completely by the pair pA,Bq — incur different
optimum values tr

`

ΣW´1
A,B

˘

of (3).
Against the above backdrop, consider the question of designing the linear control system

(1) such that the value of (3) is as low as possible. Since most control problems involve
designing control sequences to execute a class of desired manoeuvres, for a given distribution
of x̂ it is then natural to design the linear systems in order to minimize the optimum value
tr
`

ΣW´1
A,B

˘

of the optimal control problem (3). In this case, the system design problem is
similar to the one of finding an `2-optimal dictionary as described above: here the matrices A
and B are to be designed, within a feasible region, such that the column vectors constituting
the matrix RKpA,Bq lead to minimal expected average cost of reachability, i.e., minimal
value of (3). Such problems routinely arise in networked control, where the pair pA,Bq is a
function of the constituent systems and the connectivity of the network. From an operational
standpoint, it is good for a networked system to have its components connected in a way such
that the resulting system incurs small expected average state transfer costs. Indeed, control
systems are typically designed (Müller and Weber, 1972) by optimizing a figure of merit
/ measure of quality / measure of controllability ; in particular, networked control systems
are designed in (Pasqualetti et al., 2014) using a measure of quality defined there. Based
on this work on `2-optimal dictionaries, we have proposed a novel measure of quality in
(Sheriff and Chatterjee, 2017), and further developments for algorithmic synthesis of large-
scale control systems will be reported elsewhere. Besides these applications in control theory
and practice, one of the key objective of our work here is to investigate and understand the
physical nature of the `2-optimal dictionaries independent of their connection with control
theory. Such a study will shed light on other control theoretic properties of observability
and estimation.

There has been significant recent research into finding optimal dictionaries, briefly out-
lined in (Tošić and Frossard, 2011); current research centers around the development of
learning algorithms for finding optimal dictionaries. Much of the thrust is on arriving at
dictionaries that offer sparse representations of sample vectors. One of the first learning
algorithms to develop a dictionary that offers sparse representation of images was given in
(Olshausen and Field, 1997). Since then many learning algorithms have been developed
to obtain dictionaries that offer sparse representation along with other special properties
such as online computation capability (Mairal et al., 2009a), better classification property
(Mairal et al., 2009b; Yang et al., 2011), better adaptive properties (Skretting and Engan,
2010); several other algorithms are given in (K. Delgado et al., 2003; Yaghoobi et al., 2009;
Mallat and Zhang, 1993).

The problem addressed in this article differs from the mainstream research of finding
dictionaries offering sparse (`0-optimal) representations in the sense that our objective is
to find dictionaries that give minimum average `2-norm of the coefficient vector used for
representation. Intuitively, optimization of the `2-norm of the representation vector tends
to ‘distribute’ the information of the data being represented among all components of the
representation vector; this makes the representation robust to accidental changes in the
coefficients.
˝ An advantage of considering the `2-cost is that it involves a norm arising from an inner

product; consequently, it comes with a rich set of properties associated with it. These
properties are crucially employed in this article to modify the intrinsically non-convex
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problem of finding an `2-optimal dictionary into an equivalent convex optimization prob-
lem,1 allowing us to compute an optimal dictionary in polynomial time and arrive at
analytical expressions of the optimal costs. We provide these algorithms in Sections 4.1
and 4.3.

˝ One more advantage of considering optimization in the `2-sense is related to the fact that
the `2-cost involves the natural notion of energy which is extremely important in practice,
especially in control theoretic applications.

˝ The results presented here also add to the recent developments in the advantages of
representing signals/vectors using tight frames for finite-dimensional Hilbert spaces.
This article unveils as follows: In Section 2 we formally introduce our problem of finding

an optimal dictionary which offers least square representation. Section 2 is the heart of
this article, where we solve the problem of finding an `2-optimal dictionary, and arrive at
an explicit solution. Algorithms to construct `2-optimal dictionaries are given in Section 4,
where we present the proofs of our main results. The case of representing random vectors
distributed uniformly on the unit sphere is treated in Subsection 2.4; we demonstrate that
the `2-optimal dictionaries in this case are finite tight frames. The intermediate Section
3 contains results related to rank-1 decomposition of positive semidefinite matrices; these
constitute essential tools for the solutions of our main results. We conclude in Section 5
with a summary of this work and future directions.

Notations

We employ standard notations in this article. As usual, ‖¨‖ is the standard Euclidean norm.
The n ˆ n identity and m ˆ n zero matrices are denoted by In and Omˆn, respectively.
For a matrix M we let trpMq and M` denote its trace and Moore-Penrose pseudo-inverse,
respectively. The set of n ˆ n symmetric and positive (semi-)definite matrices with real
entries is denoted by Snˆn`` (Snˆn` ), and the set of n ˆ n symmetric matrices with real
entries is denoted by Snˆn. For a Borel probability measure µ defined on Rn, we let Eµr¨s
denote the corresponding mathematical expectation. The image of a map f is written as
imagepfq. The gradient of a continuously differentiable function f is denoted by ∇f . For
finite ordered sets A and B, we let AZB denote the ordered set consisting of the elements
(in their order) of A followed by the elements (in their order) of B; for instance, if A “ p1, 2q
and B “ p´5,´7q, then A Z B “ p1, 2,´5,´7q. Suppose that A and B are two ordered
sets such that B Ă A as sets, then AzB is the ordered sub-collection in A after deleting
the elements of the set B. Finally, given an ordered collection of vectors pxiqni“1 in Rν with
ν ě n and equipped with the standard inner product, Ortho

`

pxiq
n
i“1

˘

gives the result of
Gram-Schmidt orthonormalization of the collection pxiqni“1 considered in the order in which
they appear i.e., x1, x2, . . . , xn.

2. The `2-optimal dictionary problem and its solution

Let V denote an Rn-valued random vector defined on some probability space, and having
distribution (i.e., Borel probability measure,) µ. We assume that V has finite variance. Let

1. By equivalence of two optimization problems we mean that an optimal solution to either of the problems
can be obtained from an optimal solution to the other problem.
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RV denote the support of µ,2 and let XV be the smallest subspace of Rn containing RV .
Our goal is to represent the instances/samples of V with the help of a dictionary of vectors:

DK :“
 

di P Rn
ˇ

ˇ ‖di‖ “ 1 for i “ 1, . . . ,K
(

with a given K ě n,

in an optimal fashion. A representation of an instance v of the random vector V is given by
the coefficient vector α “ pα1 . . . αKq

J, such that

v “
K
ÿ

i“1

αidi. (4)

A reconstruction of the sample v from the representation α is carried out by taking the
linear combination

řK
i“1 αidi. We define the cost associated with representing v in terms

of the coefficient vector α as
řK
i“1 α

2
i . Since the dictionary vectors tdiuKi“1 must be able to

represent any sample of V , the property that spantdiu
K
i“1 Ą RV is essential. A dictionary

DK “ tdiu
K
i“1 Ă Rn is said to be feasible if spantdiu

K
i“1 Ą RV . We denote by DK the set of

all feasible dictionaries.
For a feasible dictionaryDK “ tdiu

K
i“1, withm :“ dim

`

spantdiu
K
i“1

˘

, and for any v P RV ,
the linear equation (4) is satisfied by infinitely many values of α whenever K ą m. In fact,
the solution set of (4) constitutes a pK´mq-dimensional affine subspace of RK . Therefore, in
order to represent a given v uniquely, one must define a mechanism of selecting a particular
point from this affine subspace, thus making the coefficient vector α “ pα1 . . . αKq

J a
function of v. Let f denote such a function; to wit, fpvq :“ α is the coefficient vector
used to represent the sample v. We call such a map RV Q v ÞÝÑ fpvq P RK a scheme
of representation. Representation of samples of the random vector V using a dictionary
DK and a scheme f is said to be proper if any vector v P RV can be uniquely represented
and then exactly reconstructed back. It is clear that for proper representation of V with a
dictionary DK consisting of vectors tdiuKi“1, the mapping RV Q v ÞÝÑ fpvq P RK should be
an injection that satisfies

V “
`

d1 d2 ¨ ¨ ¨ dK
˘

fpV q µ-almost surely. (5)

A scheme f of representation is said to be feasible if for some feasible dictionary DK :“
tdiu

K
i“1 P DK the equality

`

d1 d2 ¨ ¨ ¨ dK
˘

fpV q “ V is satisfied almost surely. We
denote by F the set of all feasible schemes of representation.

Given a scheme f of representation, the (random) cost associated with representing V
is given by ‖fpV q‖2. The problem of finding an `2-optimal dictionary can now be posed as:

Find a pair consisting of a dictionary D˚K P DK and a feasible scheme f˚ of repre-
sentation such that the average cost Eµ

“

‖f˚pV q‖2‰ of representation is minimal.

Here the subscript µ indicates the distribution of random vector V with respect to which
the expectation is evaluated. In other words, we have the following optimization problem:

minimize
DK ,f

Eµ
“

‖fpV q‖2‰

subject to

#

DK P DK ,

f P F .

(6)

2. Recall (Parthasarathy, 2005, Theorem 2.1, Definition 2.1, pp. 27-28) that the support of µ is the set of
points z P Rn such that the µ-measure of every open neighbourhood of z is positive.
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The problem given in (6) will be referred to as the `2-optimal dictionary problem. It
should be noted that the `2-optimal dictionary problem is non-convex due to the constraint
that the dictionary vectors tdiuKi“1 of a feasible dictionary must be of unit length. Even if
we change this constraint to t‖di‖ ď 1u from t‖di‖ “ 1u, which makes the feasible region of
dictionary vectors convex, the set of feasible schemes of representation is not known to be a
convex set a priori.

In this article we solve the `2-optimal dictionary problem given in (6) in two steps:
(Step I) We let XV “ Rn.
(Step II) We let XV be any proper nontrivial subspace of Rn.3
The remainder of this section is devoted to describing Steps I and II by exposing our main
results, followed by discussions, a numerical example, and a treatment of the important case
of the uniform distribution on the unit sphere of Rn.

2.1 Step I: XV “ Rn

If XV “ Rn, a dictionary of vectors DK “ tdiu
K
i“1 Ă Rn is feasible if and only if ‖di‖ “ 1

for all i “ 1, . . . ,K, and spantdiu
K
i“1 “ Rn. Thus, the `2-optimization problem (6) reduces

to:
minimize
tdiuKi“1,f

Eµ
“

‖fpV q‖2‰

subject to

$

’

’

&

’

’

%

‖di‖ “ 1 for all i “ 1, . . . ,K,

spantdiu
K
i“1 “ Rn,

´

d1 d2 ¨ ¨ ¨ dK

¯

fpV q “ V µ-almost surely.

(7)

Let ΣV :“ EµrV V
Js. We claim that ΣV is positive definite. Indeed, if not, then there

exists a nonzero vector x P Rn such that xJV “ 0 almost surely, which contradicts the
assumption that XV “ Rn.

Existence and characterization of the optimal solutions to (7) is done by the following:

Theorem 1. Consider the optimization problem (7), and let ΣV :“ Eµ
“

V V J
‰

.
˝ (7) admits an optimal solution.

˝ The optimal value corresponding to (7) is
`

trpΣ
1{2
V q

˘2

K
.

˝ Optimal solutions of (7) are characterized by:
Ź a dictionary D˚K “ td

˚
i u
K
i“1 that is feasible for (7) and that satisfies

K
ÿ

i“1

d˚i d
˚
i
J
“M˚ :“

K

tr
`

Σ
1{2
V

˘

Σ
1{2
V , (8)

and
Ź a scheme f˚

D˚K
pvq :“

`

d˚1 d˚2 ¨ ¨ ¨ d˚K
˘`
v.

Moreover, all optimal dictionary-scheme pairs can be obtained via the procedure described in
Algorithm 2 on p. 22.

3. The trivial case of XV “ t0u is discarded because then there is nothing to prove; we therefore limit
ourselves to ‘nontrivial’ subspaces of Rn.

7



Mohammed Rayyan Sheriff and Debasish Chatterjee

2.2 Step II: XV is a strict nontrivial subspace of Rn

Let XV be any proper nontrivial subspace of Rn. In this situation it is reasonable to expect
that no optimal dictionary that solves (6) contains elements that do not belong to XV .
That this indeed happens is the assertion of the following Lemma, whose proof is provided
in Section 4:

Lemma 2. Optimal solutions, if any exists, of problem (6) are such that the optimal dic-
tionary vectors td˚i u

K
i“1 satisfy d˚i P XV for all i “ 1, . . . ,K.

Lemma 2 guarantees that if the problem (6) admits a solution, then the corresponding
optimal dictionary vectors must be elements of XV . This means that it is enough to optimize
over dictionaries with their elements in XV instead of the whole of Rn. Therefore, the
constraint spantdiu

K
i“1 Ą RV can be equivalently stated as spantdiu

K
i“1 “ XV .

Let the dimension of XV be m with m ă n, and let B “ tbiumi“1 be a basis for XV . It
should be noted that XV “ imagepΣV q, and therefore, a basis of XV can be obtained by
computing a basis of the subspace imagepΣV q. An example of such a basis of XV is the
collection of unit eigenvectors of ΣV corresponding to its non-zero eigenvalues.

Fix a basis B “ tbiumi“1 of XV . Let B be a matrix containing the vectors tbiumi“1 as its
columns:

B :“
`

b1 b2 ¨ ¨ ¨ bm
˘

.

If δi is the representation of the dictionary vector di in the basis B, i.e., di “ Bδi, then the
constraints on the family tdiuKi“1 get transformed to the following ones on tδiuKi“1:
˝ ‖di‖2

“ 1 ñ δJi
`

BJB
˘

δi “ 1, and
˝ spantdiu

K
i“1 Ą RV ñ spantdiu

K
i“1 “ XV ñ spantδiu

K
i“1 “ Rm.

We define the random vector

VX :“
`

pBJBq´1BJ
˘

V.

Then VX is an Rm valued random vector which is the representation of random vector V in
the basis B. For every scheme f that is feasible for (6), let us define an associated scheme
for representing samples of the random vector VX by

Rm Q v ÞÝÑ fXpvq :“ fpBvq P RK .

The conditions on feasibility of f in (6) imply that the scheme fX is feasible if for a feasible
dictionary of vectors tδiuKi“1,

`

δ1 δ2 ¨ ¨ ¨ δK
˘

fXpVXq “ VX µ-almost surely.

In other words, in contrast to the problem (6), where the optimization is carried out over
vectors in Rn, we can equivalently consider the same problem in Rm, but with the following
modified constraints:

minimize
tδiuKi“1,fX

Eµ
“

‖fXpVXq‖2‰

subject to

$

’

’

&

’

’

%

δJi
`

BJB
˘

δi “ 1 for all i “ 1, . . . ,K,

spantδiu
K
i“1 “ Rm,

´

δ1 δ2 ¨ ¨ ¨ δK

¯

fXpVXq “ VX µ-almost surely.

(9)
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In relation to the problem (9) let us define the following quantities
$

’

’

’

&

’

’

’

%

ΣV :“ EµrV V
Js

Σ :“ pBJBq´1{2
`

BJΣVB
˘

pBJBq´1{2

H˚ :“
K

tr
`

Σ1{2
˘

`

pBJBq´1{2Σ1{2pBJBq´1{2
˘

.

(10)

Since the support of VX ism-dimensional, we conclude from previous discussion that ΣVX :“
Eµ

“

VXV
J
X

‰

is positive definite. Since Σ “ pBJBq1{2ΣVX pB
JBq1{2, it follows that Σ is

positive definite, which in turn implies that H˚ is positive definite.
To summarize, an `2-optimal dictionary-scheme pair that solves the optimization problem

(6) is equivalently obtained from an optimal solution of the problem (9), and is characterized
by the following:

Theorem 3. Consider the optimization problem (9).
˝ (9) admits an optimal solution.

˝ The optimal value corresponding to (9) is
`

trpΣ1{2q
˘2

K
.

˝ Optimal solutions of (9) are characterized by:
Ź a dictionary D˚K “ tδ

˚
i u
K
i“1 that is feasible for (9) and that satisfies

K
ÿ

i“1

δ˚i δ
˚
i
J
“ H˚, (11)

and
Ź a scheme f˚Xpuq :“

`

δ˚1 δ˚2 ¨ ¨ ¨ δ˚K
˘`
u.

Consequently, an optimal solution of the `2-optimal dictionary problem (6) consisting of an
`2-optimal dictionary-scheme pair is given by
˝ A collection of vectors td˚i u

K
i“1 defined as d˚i :“ Bδ˚i for i “ 1, 2, . . . ,K, and

˝ the scheme f˚pvq :“
`

d˚1 d˚2 ¨ ¨ ¨ d˚K
˘`
v.

Moreover, all optimal dictionary-scheme pairs can be obtained via the procedure given in
Algorithm 3 on p. 26.

2.3 Discussion and a numerical example

Remark 4. The problem (6) does not a priori hypothesize an affine/linear structure of
candidate schemes. The fact that linear schemes are optimal in (6) is one of the crucial
assertions of both Theorem 1 and Theorem 3.

Remark 5. Algorithmic computation of an `2-optimal dictionary relies on the second mo-
ment ΣV of the random vector V . Complete knowledge of the distribution µ is, therefore,
unnecessary. This is an advantage since in practical situations, learning/estimating ΣV from
data is comparatively less demanding than getting a description of the distribution µ itself.

Remark 6. Let M P Snˆn` be such that imagepMq “ XV , let B “ tbiumi“1 be a basis for XV

evaluated as a basis for imagepMq. Let

B :“
`

b1 b2 ¨ ¨ ¨ bm
˘

9
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ΣpMq :“ pBJBq´1{2
`

BJMB
˘

pBJBq´1{2

HpMq :“
K

tr
´

`

ΣpMq
˘1{2

¯

`

pBJBq´1{2
`

ΣpMq
˘1{2

pBJBq´1{2
˘

.

Suppose that tdiuKi“1 and fp¨q are the dictionary and the scheme obtained using the pro-
cedure given in Algorithm 3 using M and K as inputs. By simplifying the pseudo-inverse
`

d1 d2 ¨ ¨ ¨ dK
˘` in fp¨q, the average cost JpMq of representing V using the scheme fp¨q

turns out to be

JpMq “ Eµ

”

V JBpBJBq´1
`

HpMq
˘´1
pBJBq´1BJV

ı

“ tr
´

`

HpMq
˘´1
pBJBq´1BJΣVBpB

JBq´1
¯

“ tr
´

`

HpMq
˘´1
pBJBq´1{2 Σ pBJBq´1{2

¯

“ tr
´

pBJBq´1{2
`

HpMq
˘´1
pBJBq´1{2 Σ

¯

“
1

K
tr
´

`

ΣpMq
˘1{2

¯

tr
´

`

ΣpMq
˘´1{2

Σ
¯

.

(12)

Let S :“
 

T P Snˆn`

ˇ

ˇ imagepT q “ XV

(

. Since the sequence of maps

S Q T ÞÝÑ ΣpT q P Smˆm`` ,

Smˆm`` Q T ÞÝÑ T 1{2 P Smˆm`` ,

Smˆm`` Q T ÞÝÑ T´1Σ P Smˆm`` ,

Smˆm` Q T ÞÝÑ trpT q P R,

are, evidently, continuous, it follows at once that the map S Q M ÞÝÑ JpMq P R is also
continuous. If pΣV denotes the estimated second moment of V , and the estimation is carried
out with a large enough number of samples of V , with probability one we have imageppΣV q “

XV . Therefore, by continuity of M ÞÝÑ JpMq, we see at once that

JppΣV q ÝÝÝÝÝÝÑ
pΣV ÝÑΣV

JpΣV q “

`

trpΣ1{2q
˘2

K
.

Remark 7. The optimal average cost of representation of a random vector V is inversely
proportional to the size K of the optimal dictionary, as is evident from the optimal costs in
Theorems 1 and 3. To wit, the optimal average cost of representation decreases monotoni-
cally with K, which is expected.

Remark 8. `2-optimal dictionaries for representing a random vector V are also optimal for
representing any scalar multiple αV of V for any 0 ‰ α P R. Indeed, it is clear that H˚

defined in (10) is invariant under nonzero scalar multiplications of V . Therefore, `2-optimal
dictionaries are also invariant under nonzero scalar multiplications of the random vector V .
This fact also follows from the observation made in Remark 4.

Remark 9. An `2-optimal dictionary as characterized by Theorem 3 appears there in the
form of what is known as a rank-1 decomposition of the positive definite matrixH˚. Elements

10
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of the theory of rank-1 decompositions of positive definite matrices is discussed below in
Section 3. This particular decomposition plays a crucial rôle in transforming the search
space of the `2-optimal dictionary problem (7) from the set of dictionaries to the set of
symmetric positive definite matrices with real entries, and translating the non-convex `2-
optimal dictionary problem into a tractable convex one.

Remark 10. All `2-optimal dictionaries are unique upto rank-1 decompositions of a unique
positive definite matrix that is obtained from the second moment ErV V Js of the random
vector V . That is, for a given random vector whose samples are to be optimally represented,
every `2-optimal dictionary is obtained from a rank-1 decomposition of a unique positive
definite matrix.

Remark 11. Looking ahead at Algorithm 3, it becomes evident that non-uniqueness of
optimal dictionaries can be attributed to the non-uniqueness in the selection of C in Step 5
of Algorithm 3, and the element of choice associated to the selection of pj and pk in Step 2 of
Algorithm 1. The number of optimal solutions may be infinite depending on the distribution
of the random vector V . For instance, if V is uniformly distributed over the unit sphere of
Rn and K “ n, then the elements in an `2-optimal dictionary form an orthonormal basis of
Rn. (The special case of uniform distribution of V over spheres is discussed in Section 2.4.)
Of course, there are infinitely many orthonormal bases of Rn for n ě 2.

Remark 12. From Algorithm 3 on p. 26 we can infer that by calculating the matrix B
there, consisting of the eigenvectors of ΣV corresponding to its non-zero eigenvalues, the
computations of pBJBq´1{2, Σ1{2, and C in the decomposition given in Step 5 become
straightforward. Therefore, the chief computational load in Algorithm 3 consists of eigen-
decomposition of ΣV and that in Algorithm 1 (in Step 6), both of which can be performed
in polynomial time.

Example 1. Let V “
ˆ

V1

V2

˙

be a random vector taking values in R2, with V1 and V2 being

independent random variables. Let the density functions of V1 and V2 be

ρV1pvq “ 2pv ´ 1q1r1,2spvq and ρV2pvq “ 2p2´ vq1r1,2spvq,

respectively. The support of V is, therefore, the square r1, 2s ˆ r1, 2s. Elementary calcu-

lations lead to ΣV :“ EρrV V
Js “

ˆ

17{6 20{9
20{9 11{6

˙

. We employed the procedure described

in Algorithm 2 for the given matrix ΣV and K “ 3 in matlab. An optimal dictionary
ty˚1 , y

˚
2 , y

˚
3 u was obtained, with

y˚1 “

ˆ

0.9789
0.2045

˙

, y˚2 “

ˆ

0.6792
0.7339

˙

, y˚3 “

ˆ

0.5870
0.8096

˙

;

the optimum value of the objective function was reported to be 1.8930. This collection
ty˚i u

3
i“1 of optimal vectors are marked with crosses on the circumference of the unit cir-

cle shown in Figure 2. A second optimal dictionary tz˚1 , z˚2 , z˚3 u was obtained, also using
Algorithm 2, with dictionary vectors

z˚1 “

ˆ

0.4214
0.9069

˙

, z˚2 “

ˆ

0.9284
0.3717

˙

, z˚3 “

ˆ

0.8513
0.5247

˙

,

11
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with an identical optimal value as in the former case. The vectors tz˚i u
3
i“1 are marked with

dark circles on the circumference of the unit circle in Figure 2.

x1

x2

Figure 2: The two optimal dictionaries in Example 1.

It is expected that the optimal dictionary vectors are concentrated towards the bottom
right corner of the support r1, 2s ˆ r1, 2s (the region with strong shading in figure 2). In the
optimal solution tz˚i u

3
i“1, two vectors z˚2 and z˚3 point to the region where density of V is

concentrated the most. Also, for the solution ty˚i u
3
i“1, two vectors y˚2 and y˚3 are oriented

towards the center of the square r1, 2s ˆ r1, 2s, with the remaining vector pointing towards
the region of higher density. These results correlate positively with what may be expected
out of `2-optimal dictionaries.

2.4 Uniform distribution over the unit sphere

We shall test our results on the important case of µ being the uniform distribution on the
unit sphere. Note that due to (rigid) rotational symmetry of the distribution, it follows that
rigid rotations of optimal dictionaries in this case are also optimal.

Let us consider a dictionary consisting of (unit) vectors that are ‘close’ to each other,
i.e., the inner product between any two elements of the dictionary is close to 1. It is quite
evident that such a dictionary is not optimal for representing uniformly distributed samples
due to the fact that samples of V that are almost orthogonal to the dictionary vectors carry
equal priority as any other vector but require large coefficients for their representation. It
is, therefore, more natural to search for dictionaries in which the constituent vectors are
‘maximally spaced out’.

Several examples of collections of vectors that are ‘maximally spaced out’ may be found
in (Benedetto and Fickus, 2003, Section 4). Collections of vectors that are maximally far
apart from each other are known to attain ‘equilibria’ under the actions of different kinds
of forces defined and explained in (Benedetto and Fickus, 2003, Section 4) and (Saff and
Kuijlaars, 1997, p. 6). Such collections of vectors are generalized by the ideas of tight frames
as explained in (Benedetto and Fickus, 2003); see also (Christensen, 2016; Daubechies et al.,
1986; Benedetto and Fickus, 2003; Zimmermann, 2001) for related information.

12
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We recall here some standard definitions for completeness and to provide the necessary
substratum for our next result. Let n,K be positive integers such that K ě n. We say that
a collection of vectors txiuKi“1 is a frame for Rn if there exist some constants c, C ą 0 such
that

c ‖x‖2
ď

K
ÿ

i“1

xxi, xy
2
ď C ‖x‖2 for all x P Rn.

We say that a frame txiuKi“1 Ă Rn is tight if c “ C. In addition, if txiuKi“1 Ă Rn is a tight
frame and ‖xi‖ “ 1 for all i “ 1, 2, . . . ,K, we say that the collection txiuKi“1 is a c-unit norm
tight frame (a c-UNTF).

We have the following connection between `2-optimal dictionaries and UNTFs:

Proposition 13. A dictionary DK “ tdiu
K
i“1 is optimal for representing samples of a ran-

dom vector V that is uniformly distributed over the surface of the unit sphere of Rn if and
only if the collection tdiuKi“1 of vectors constitute a K

n -UNTF.

Proof If V is uniformly distributed over the unit sphere, we have ΣV “ ErV V Js “ 1
nIn.

According to Theorem 1 the collection tdiuKi“1 is an optimal dictionary if and only if

K
ÿ

i“1

did
J
i “

K

tr
`

1?
n
In
˘

´ 1
?
n
In

¯

“
K

n
In. (13)

Since the family tdiuKi“1 must span Rn by definition, it is a frame. The frame operator for
the frame tdiuKi“1 is given by (Benedetto and Fickus, 2003, Section 2)

Rn Q y ÞÝÑ Spyq :“
K
ÿ

i“1

xdi, yy di “

ˆ K
ÿ

i“1

did
J
i

˙

y P Rn,

where xv, wy “ vJw is the standard inner product in Rn. (Benedetto and Fickus, 2003,
Theorem 3.1) asserts that a collection of unit norm vectors tdiuKi“1 forms a tight frame in
Rn if and only if the collection is a K

n -UNTF. From (Benedetto and Fickus, 2003, Theorem
2.1) it follows that a collection of vectors tdiuKi“1 is a K

n -UNTF if and only if

S “
K
ÿ

i“1

did
J
i “

K

n
In. (14)

The assertion follows from (13) and (14).

3. A particular class of rank-1 decompositions of matrices

We collect and establish here some results on the theory of rank-1 decompositions of matrices.
While these facts will be needed for our main results, they are also of independent interest.

A standard result in matrix theory (Bhatia, 2009, p. 2) states that a symmetric positive
semidefinite matrix with real entries M P Snˆn` , can be decomposed as Y Y J for some

13
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Y P Rnˆr, where r :“ rankpMq. Let yi indicate the i th column of the matrix Y . Then the
equality M “ Y Y J is equivalent to

M “

r
ÿ

i“1

yiy
J
i .

More generally for K ě r, let

M :“

ˆ

M OnˆpK´rq
OpK´rqˆn IK´r

˙

,

where O is a zero matrix of order n ˆ pK ´ rq. If we consider the decomposition of M as
M “ Y Y

J with Y P Rpn`K´rqˆK , and indicate by Y the upper nˆK matrix block of Y ,
we get M “ Y Y J. In other words

M “

K
ÿ

i“1

yiy
J
i . (15)

There are numerous ways of decomposing positive semidefinite matrices; some of them are
discussed in (Zhang, 2011, Theorem 7.3). The speciality of a particular decomposition lies
in the characteristics exhibited by the vectors yi’s. A particular rank-1 decomposition which
we will use to solve the `2-optimal dictionary problem is the one where for every M P Snˆn`

and K ě r :“ rankpMq there exists a collection of vectors tyiuKi“1 Ă Rn that satisfy

M “

K
ÿ

i“1

yiy
J
i and yJi yi “

trpMq

K
for all i “ 1, . . . ,K. (16)

We are now in a position to present Algorithm 1 and its associated Theorem 14, whose
corollaries will give us the needed rank-1 decomposition of (16). We mention that Algorithm
1 is, in principle, similar to Procedure 1 of (Sturm and Zhang, 2003), and in particular, the
assertions of Theorem 14 and its corollaries can be obtained by applying (Sturm and Zhang,
2003, Proposition 3 and Corollary 4) via some straightforward modifications. However, we
provide the complete proofs here for the sake of completeness.

Theorem 14. For any matrix Λ P Rnˆn there exists an orthonormal collection pxiqni“1 Ă Rn
of vectors satisfying

xJi Λxi “
trpΛq

n
for all i “ 1, . . . , n,

Moreover, such a collection can be obtained from Algorithm 1.

Proof First we establish that the collection of vectors pxiqn´1
i“1 contained in Sn´1 (recall

that Sn´1 is generated in the for loop in the Algorithm 1,) are orthonormal, and satisfy
xJi Λxi “

trpΛq
n for i “ 1, . . . , n´ 1. We shall prove this by induction on i.

The induction base: For i “ 1, we have P1 “ pe1, e2, . . . , enq. Since
řn
m“1 e

J
mΛem “ trpΛq,

vectors pj , pk P P1 exist such that pJj Λpj ď
trpΛq
n ď pJk Λpk. We solve for θ in the equation

gpj ;pkpθq :“

`

p1´ θqpj ` θpkq
JΛpp1´ θqpj ` θpk

˘

pp1´ θq2 ` θ2q
“

trpΛq

n
. (17)
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Algorithm 1: Calculation of orthonormal bases à la Theorem 14
Input: A matrix Λ P Rnˆn.
Output: An orthonormal collection of vectors pxiqni“1 Ă Rn such that xJi Λxi “

trpΛq
n

for all i “ 1, . . . , n.
1 Initialize quantities by S0 “ H, i “ 1.
2 for i from 1 to pn´ 1q
3 do

S1i “ Si´1 Z pe1, e2, . . . , enq.
Pi “ OrthopS1iqzSi´1.
Find pj , pk P Pi such that pJj Λpj ď

trpΛq
n ď pJk Λpk.

Let Θ P r0, 1s be a solution of the equation (in θ)

`

p1´ θqpj ` θpk
˘J

Λ
`

p1´ θqpj ` θpk
˘

“
trpΛq

n

`

p1´ θq2 ` θ2
˘

Define xi :“
p1´Θqpj`Θpk

pp1´Θq2`Θ2q
1{2 .

Define Si :“ Si´1 Z pxiq.
4 end for loop
5 S1n “ Sn´1 Z pe1, e2, . . . , enq.
6 Output Sn :“ OrthopS1nq.

We know that a solution exists in r0, 1s because for θ “ 0 we have

gpj ;pkp0q “

„

pp1´ θqpj ` θpkq
JΛpp1´ θqpj ` θpkq

pp1´ θq2 ` θ2q



θ“0

“ pJj Λpj ď
trpΛq

n
,

for θ “ 1 we have

gpj ;pkp1q “

„

pp1´ θqpj ` θpkq
JΛpp1´ θqpj ` θpkq

pp1´ θq2 ` θ2q



θ“1

“ pJk Λpk ě
trpΛq

n
,

and gpj ;pkp¨q is a continuous function of θ. Let Θ be such a solution. Then, following the
notation in Algorithm 1, we have

x1 :“
p1´Θqpj `Θpk
a

p1´Θq2 `Θ2
.

Since pj , pk are elements of P1, they are orthonormal; therefore,

‖x1‖ “

b

p1´Θq2 ‖pj‖2
`Θ2 ‖pk‖2

a

p1´Θq2 `Θ2
“ 1,

and since Θ is a solution of equation (17) we have

xJ1 Λx1 “
trpΛq

n
.
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Induction hypothesis: Assume that for some i between 1 and n ´ 1 the collection Si “
px`q

i
`“1 is orthonormal, and satisfies

xJ` Λx` “
trpΛq

n
for all ` “ 1, . . . , i.

Induction step: In view of the induction hypothesis, we define

S1i`1 :“ Si Z pe1, e2, . . . , enq “ px1, x2, . . . xi, e1, e2, . . . , enq,

and compute

OrthopS1i`1q “ px1, x2, . . . , xi, p1, p2, . . . , pn´iq,

Pi`1 “ pp1, p2, . . . , pn´iq

as in Algorithm 1. Since the collection px`qi`“1 Z pp`q
n´i
`“1 is an orthonormal basis for Rn, we

have
i
ÿ

`“1

xJ` Λx` `
n´i
ÿ

`“1

pJ` Λp` “ trpΛq,

leading to
n´i
ÿ

`“1

pJ` Λp` “
pn´ iq

n
trpΛq.

Thus, there exist vectors pj , pk P Pi`1 such that pJj Λpj ď
trpΛq
n ď pJk Λpk. Let us consider

the equation

gpj ,pkpθq :“
pp1´ θqpj ` θpkq

JΛpp1´ θqpj ` θpkq

pp1´ θq2 ` θ2q
“

trpΛq

n
(18)

in θ. From arguments given in the case of i “ 1, we know that a solution Θ of (18) exists
on r0, 1s. We define

xi`1 :“
p1´Θqpj `Θpk
a

p1´Θq2 `Θ2
.

Since pj , pk are orthogonal to the vectors px`qi`“1, so is any linear combination of pj , pk.
Therefore, xi`1 is orthogonal to the vectors px`qi`“1, which, along with the fact that

‖xi`1‖ “

b

p1´Θq2 ‖pj‖2
`Θ2 ‖pk‖2

a

p1´Θq2 `Θ2
“ 1,

makes the collection px`qi`1
`“1 orthonormal. Also, since Θ is a solution of (18), we get

xJi`1Λxi`1 “
trpΛq

n
.

Therefore, by mathematical induction, we conclude that the collection pxiqn´1
i“1 contained in

Sn´1 has the required properties.
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Finally, in the 4th and 5th steps of Algorithm 1, we get

S1n “ px1, x2, . . . , xn´1, e1, e2, . . . , enq,

and
OrthopS1nq “ px1, x2, . . . , xn´1, xnq.

By construction, px`qn`“1 is an orthonormal collection, implying that
řn
i“1 x

J
i Λxi “ trpΛq.

In turn, this leads to

xJnΛxn “
n
ÿ

i“1

xJi Λxi ´
n´1
ÿ

i“1

xJi Λxi

“ trpΛq ´
´n´ 1

n

¯

trpΛq

“
trpΛq

n
.

Thus, Algorithm 1 yields a collection of orthonormal vectors pxiqni“1 such that

xJi Λxi “
trpΛq

n
for all i “ 1, 2, . . . , n,

thereby completing the proof.

Corollary 15 (Rank-1 decomposition). Let X P Snˆn` , define r :“ rankpXq, and let T P
Snˆn. There exists a collection of vectors txiuri“1 Ă Rn such that

X “

r
ÿ

j“1

xjx
J
j , and xJi Txi “

1

r
trpXT q for all i “ 1, . . . , r.

Proof We know (Bhatia, 2009, p. 2) that any symmetric positive semidefinite matrix X
with real entries and of rank r can be decomposed as CCJ where C P Rnˆr. Let us define
Λ P Rrˆr as Λ :“ CJTC. According to Theorem 14 a collection of orthonormal vectors
tyiu

r
i“1 Ă Rr can be obtained such that

yJi C
JT Cyi “ yJi Λyi “

trpΛq

r
.

We define a collection txiuri“1 Ă Rr by xi :“ Cyi for i “ 1, . . . , r. Then
r
ÿ

i“1

xix
J
i “ C

ˆ r
ÿ

i“1

yiy
J
i

˙

CJ “ CIrC
J “ X.

Moreover, for every i “ 1, . . . , r,

xJi Txi “ yJi C
JTCyi “

trpΛq

r
“

1

r
trpCJTCq “

1

r
trpXT q.

The assertion follows.

Corollary 15 is generalized slightly by the following one; we shall employ this particular
form to solve the `2-optimal dictionary problem in Theorem 1.
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Corollary 16. Let M P Snˆn` and define r :“ rankpMq. Let A P Snˆn and K ě r be given.
There exists a collection of vectors tyiuKi“1 Ă Rn such that

M “

K
ÿ

j“1

yjy
J
j , and yJi Ayi “

1

K
trpMAq for all i “ 1, . . . ,K. (19)

Proof Let us consider the square matrices X,T of order K ` n´ r in Corollary 15 to be

X :“

ˆ

M OnˆpK´rq
OpK´rqˆn IK´r

˙

and T :“

ˆ

A OnˆpK´rq
OpK´rqˆn OpK´rqˆpK´rq

˙

.

Then rankpXq “ K by construction. Therefore, vectors txiuKi“1 Ă Rn`K´r exist satisfying
the properties in Corollary 15. Let us denote Rn Q yi :“

`

xi1 . . . xin
˘J for i “ 1, . . . ,K;

in other words, yi is the vector formed by the first n components of xi. Then

K
ÿ

i“1

yiy
J
i “M,

and for any i “ 1, . . . ,K,

yJi Ayi “ xJi Txi “
1

K
trpXT q “

1

K
trpMAq.

The assertion follows at once.

4. Proofs of Theorem 1, Lemma 2, and Theorem 3

4.1 Proof of Theorem 1

Proof For a given dictionary DK P DK of vectors tdiuKi“1 that is feasible for (7), let us
define a scheme of representation

Rn Q v ÞÝÑ f˚DK
pvq :“

`

d1 d2 ¨ ¨ ¨ dK
˘`
v P RK .

Quite clearly,
`

d1 d2 ¨ ¨ ¨ dK
˘

f˚DK
pvq “ v for any v P Rn by the definition of the

pseudo-inverse because if spantdiu
K
i“1 “ Rn, then

`

d1 d2 ¨ ¨ ¨ dK
˘`
v solves the equa-

tion
`

d1 d2 ¨ ¨ ¨ dK
˘

x “ v. Therefore,
`

d1 d2 ¨ ¨ ¨ dK
˘

f˚DK
pV q “ V µ-almost surely.

We know that f˚DK
pvq “

`

d1 d2 ¨ ¨ ¨ dK
˘`
v is the solution of the least squares problem

minimize
xPRK

‖x‖2

subject to
`

d1 d2 ¨ ¨ ¨ dK
˘

x “ v.

18
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Therefore, for an arbitrary f P F such that
`

d1 d2 ¨ ¨ ¨ dK
˘

fpvq “ v for all v P Rn, we
must have ∥∥f˚DK

pvq
∥∥2
ď ‖fpvq‖2 for all v P Rn.

Therefore, ∥∥f˚DK
pV q

∥∥2
ď ‖fpV q‖2 µ-almost surely,

and hence,
Eµ

“
∥∥f˚DK

pV q
∥∥2‰

ď Eµ
“

‖fpV q‖2‰.

Minimizing over all feasible dictionaries and schemes, we get

inf
DKPDK

Eµ
“∥∥f˚DK

pV q
∥∥2‰

ď inf
DKPDK ,
fPF

Eµ
“

‖fpV q‖2‰ (20)

The problem on the left-hand side of the inequality (20) is

minimize
tdiuKi“1

Eµ
“
∥∥f˚DK

pV q
∥∥2‰

subject to

#

‖di‖ “ 1 for all i “ 1, . . . ,K,
spantdiu

K
i“1 “ Rn.

(21)

From (20) we can conclude that the optimal value, if it exists, of problem (7) is bounded be-
low by the optimal value, if it exists, of the one given in (21). Our strategy is to demonstrate
that optimization problem (21) admits a solution, and we shall furnish a feasible solution of
(7) that achieves a value of the objective function that is equal to the optimal value of the
problem (21). This will solve (7).

Let D :“
`

d1 d2 ¨ ¨ ¨ dK
˘

. The objective function in (21) can be computed as

Eµ
“∥∥f˚DK

pV q
∥∥2‰

“ Eµ
“∥∥D`V ∥∥2‰

“ Eµ
“

V JpD`qJD`V
‰

“ Eµ
“

V J
`

DJpDDJq´1
˘J`

DJpDDJq´1
˘

V
‰

“ Eµ
“

V JpDDJq´1DDJpDDJq´1V
‰

“ Eµ
“

V JpDDJq´1V
‰

“ Eµ
“

trpV JpDDJq´1V q
‰

“ Eµ
“

trpV V JpDDJq´1q
‰

“ tr
`

Eµ
“

V V J
‰

pDDJq´1
˘

.

Letting ΣV :“ Eµ
“

V V J
‰

and writing DDJ “
řK
i“1 did

J
i the optimization problem (21) is

rephrased as

minimize
tdiuKi“1

tr

ˆ

ΣV

ˆ K
ÿ

i“1

did
J
i

˙´1˙

subject to

#

‖di‖ “ 1 for all i “ 1, . . . ,K,
spantdiu

K
i“1 “ Rn.

(22)
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Let S be the feasible set for the problem in (22). At first (22) appears to be non-convex.
Let us demonstrate that the objective function of (22) is convex in DDJ. We know that
whenever ΣV is a positive definite matrix,

trpΣVM
´1q “ tr

´

Σ
1{2
V M´1Σ

1{2
V

¯

“ tr
´

`

Σ
´1{2
V MΣ

´1{2
V

˘´1
¯

.

From (Bhatia, 1997, p. 113 and Exercise V.1.15, p. 117) we know that inversion of a matrix
is a matrix convex map on the set of positive definite matrices. Therefore, for any θ P r0, 1s
and M1,M2 P Snˆn`` we have

´

Σ
´1{2
V

`

p1´ θqM1 ` θM2

˘

Σ
´1{2
V

¯´1

“

´

p1´ θq
´

Σ
´1{2
V M1Σ

´1{2
V

¯

` θ
´

Σ
´1{2
V M2Σ

´1{2
V

¯¯´1

ĺ p1´ θq
´

Σ
´1{2
V M1Σ

´1{2
V

¯´1
` θ

´

Σ
´1{2
V M2Σ

´1{2
V

¯´1
, (23)

where A ĺ B implies that B ´ A is positive semidefinite. Since trp¨q is a linear functional
over the set of nˆ n matrices we have

tr
´

ΣV

`

p1´ θqM1 ` θM2

˘´1
¯

“ tr
´´

Σ
´1{2
V

`

p1´ θqM1 ` θM2

˘

Σ
´1{2
V

¯´1¯

ď p1´ θq tr
´´

Σ
´1{2
V M1Σ

´1{2
V

¯´1¯

` θ tr
´´

Σ
´1{2
V M2Σ

´1{2
V

¯´1¯

ď p1´ θq trpΣVM
´1
1 q ` θ trpΣVM

´1
2 q.

In other words, the functionM ÞÝÑ trpΣVM
´1q is a convex function on the set of symmetric

and positive definite matrices. Moreover, we know that for a collection tdiuKi“1 that is feasible
for (22),

DK Q tdiu
K
i“1 ÞÝÑ hpd1, . . . , dKq :“

K
ÿ

i“1

did
J
i

maps into the set of positive definite matrices. Therefore, the objective function in (22) is a
convex function on imagephq. This allows us to translate the feasible set of the optimization
problem (22) to the set of matrices M formed by all feasible collections tdiuKi“1, i.e., on
hpDKq.

Let R :“
 

M P Snˆn``

ˇ

ˇ trpMq “ K
(

. On the one hand, from Corollary 16 with A “ In,
we know that any symmetric and positive definite matrix M P R can be decomposed as

M “

K
ÿ

i“1

did
J
i with ‖di‖ “

c

trpMq

K
“ 1 for all i “ 1, . . . ,K.

The fact that M is positive definite implies that spantdiu
K
i“1 “ Rn. Therefore, tdiuKi“1 P DK

and M “ hpd1, . . . , dKq, which implies that

R Ă hpSq. (24)
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On the other hand, for any collection of vectors tdiuKi“1 P DK , we have hpd1, . . . , dKq “
řK
i“1 did

J
i P S

nˆn
`` and tr

`

hpd1, . . . , dKq
˘

“
řK
i“1 d

J
i di “ K. Therefore, by definition of R,

hpSq Ă R. (25)

From (24) and (25) we conclude that hpDKq “ R. The optimization problem (22) is,
therefore, equivalent to the one where the feasible set is the set of positive definite matrices
with trace K, i.e., from (22),

minimize
MPSnˆn

``

tr
`

ΣVM
´1
˘

subject to trpMq ´K “ 0.
(26)

The optimization problem in (26) is convex since its objective function is convex (as a
function ofM) and the feasible region is the intersection of a convex cone Snˆn`` and the affine
space

 

M P Rnˆn
ˇ

ˇ trpMq´K “ 0
(

. In the light of (Boyd and Vandenberghe, 2004, p. 244)
it follows that (26) can be solved by considering just the first order optimality conditions.
These first order optimality conditions are expressed in terms of a Lagrangian

LpM,γq :“ trpM´1ΣV q ` γ
`

trpMq ´K
˘

,

containing a KKT multiplier γ at an optimal point M˚ as

0 “ ∇MLpM
˚, γq “ ∇M

´

trpM´1ΣV q ` γ
`

trpMq ´K
˘

¯

ˇ

ˇ

ˇ

ˇ

M“M˚

“ ´
`

pM˚q´1ΣV pM
˚q´1

˘J
` γIn.

(27)

But sinceM˚,ΣV P Snˆn`` , by symmetry it follows that pM˚q´1ΣV pM
˚q´1 “ γIn, leading to

ΣV “ γpM˚q2. (28)

Since ΣV ‰ Onˆn, we get γ ‰ 0, and write M˚ as

M˚ “
1
?
γ

Σ
1{2
V .

To evaluate γ we use the fact that by construction K “ trpM˚q “ 1?
γ tr

`

Σ
1{2
V

˘

, which gives

γ “

ˆ

tr
`

Σ
1{2
V

˘

K

˙2

.

In other words, the final expression of the optimizer M˚ in the problem (26) is

M˚ “
K

tr
`

Σ
1{2
V

˘

Σ
1{2
V . (29)

It follows that the optimal value of the problem (26) (and therefore of (22)) is
`

trpΣ
1{2
V q

˘2

K
.

Therefore, this value must be a lower bound of the optimal value, if it exists, for the problem
(7).
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Employing Corollary 16 with A “ In, we decompose M˚ as

M˚ “

K
ÿ

i“1

d˚i d
˚
i
J with ‖d˚i ‖ “ 1 for each i “ 1, . . . ,K. (30)

Let us consider the dictionary D˚K consisting of the vectors td˚i u
K
i“1 obtained above. Since

XV “ Rn, the matrices ΣV ,Σ
1{2
V , and M˚ are of rank n, and therefore, spantd˚i u

K
i“1 “ Rn.

Along with the fact that ‖d˚i ‖ “ 1, we see that the dictionary D˚K of vectors td˚i u
K
i“1 is

feasible for the problem (7).
Let us define the scheme

Rn Q v ÞÝÑ f˚D˚K
pvq :“

`

d˚1 d˚2 ¨ ¨ ¨ d˚K
˘`
v P RK .

It is evident that this scheme f˚
D˚K

is feasible for (7). But then the objective function in (7)

evaluated at DK “ D˚K and f “ f˚
D˚K

must be equal to
`

trpΣ
1{2
V q

˘2

K
. Since this particular

value is also a lower bound for the optimal value of (7), the problem (7) is solvable. An
optimal dictionary-scheme pair is given by

$

&

%

D˚K “ td
˚
i u
K
i“1 obtained from the decomposition (30), and

Rn Q v ÞÝÑ f˚pvq :“
´

d˚1 d˚2 ¨ ¨ ¨ d˚K

¯`

v P RK .
(31)

The proof is now complete.

We provide the Algorithm 2 that computes optimal dictionary-scheme pairs for the case
XV “ Rn. The inputs to the algorithm are the matrix ΣV and the size K of a dictionary:
Algorithm 2: `2-optimal dictionary for the case XV “ Rn.
Input: A matrix ΣV P Snˆn`` and a number K ě n.
Output: An `2-optimal dictionary-scheme pair

`

td˚i u
K
i“1, f

˚
˘

.
1 Define M1 :“ K

tr
`

Σ
1{2
V

˘ Σ
1{2
V .

2 Define M2 :“

ˆ

M1 OnˆpK´nq
OpK´nqˆn IK´n

˙

, A :“

ˆ

In OnˆpK´nq
OpK´nqˆn OpK´nqˆpK´nq

˙

3 Compute C P RKˆK such that M2 “ CCJ.
4 Define Λ P RKˆK by Λ :“ CJAC, and apply Algorithm 1 to get a collection of

vectors txiuKi“1 Ă RK .
5 Define the collection tviuKi“1 Ă RK by vi :“ Cxi for i “ 1, . . . ,K.
6 Define the `2-optimal dictionary td˚i u

K
i“1 Ă Rn such that the jth component of d˚i is

given by d˚i pjq :“ vipjq for j “ 1, . . . , n and for every i “ 1, . . . ,K.
7 Define the optimal scheme Rn Q v ÞÝÑ f˚pvq :“

`

d˚1 d˚2 ¨ ¨ ¨ d˚K
˘`
v.

4.2 Proof of Lemma 2

Proof We argue by contradiction. Suppose that the assertion of the Lemma is false. If we
denote by xi the orthogonal projection of di on XV and by yi the orthogonal projection of
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di on the orthogonal complement of XV , we must have ‖xi‖ ă 1 for at least one value of i.
If f is an optimal scheme of representation, feasibility of f gives, for any v P RV ,

v “
K
ÿ

i“1

difipvq “

ˆ K
ÿ

i“1

xifipvq

˙

`

ˆ K
ÿ

i“1

yifipvq

˙

“

K
ÿ

i“1,
‖xi‖‰0

xifipvq ` 0.
(32)

Fix a unit vector x P XV , and define a dictionary td˚i u
K
k“1 by

d˚i :“

$

&

%

xi
‖xi‖

if ‖xi‖ ‰ 0,

x otherwise.

Then clearly

spantd˚i u
K
i“1 Ą spantxiu

K
i“1 Ą RV and ‖d˚i ‖ “ 1 for all i “ 1, . . . ,K.

In other words, the dictionary of vectors td˚i u
K
i“1 is feasible for the problem (6). Let us now

define a scheme f˚ by

Rn Q v ÞÝÑ f˚pvq :“ diagt‖x1‖ , ‖x2‖ , . . . , ‖xK‖ufpvq P RK .

For any v P RV , using the dictionary consisting of vectors td˚i u
K
i“1 we get

K
ÿ

i“1

d˚i f
˚
i pvq “

K
ÿ

i“1

d˚i ‖xi‖ fipvq “
K
ÿ

i“1,
‖xi‖‰0

xi
‖xi‖

‖xi‖ fipvq “ v, (33)

where the last equality follows from (32). Thus, f˚p¨q along with the dictionary of vectors
td˚i u

K
i“1 is feasible for problem (6). But for any v P RV we have

‖f˚pvq‖2
“

K
ÿ

i“1

`

f˚i pvq
˘2
“

K
ÿ

i“1

‖xi‖2 `fipvq
˘2
ă

K
ÿ

i“1

`

fipvq
˘2
“ ‖fpvq‖2 ,

where the inequality is due to the fact that ‖xi‖ ă 1 for at least one i. This contradicts the
assumption that the pair tdiuKi“1 along with the scheme f is optimal for (6).

4.3 Proof of Theorem 3

Proof The problem (9) is similar to problem (7) except for the first constraint. In (7)
we optimize over vectors taking values on the surface of the unit sphere, whereas in (9) we
optimize over vectors taking values on the surface of the ellipsoid

 

x P Rm
ˇ

ˇ xJpBJBqx “ 1
(

.
Following the arguments in the proof of Theorem 1 till (22), one can conclude that the
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optimal value, if it exists, of problem (9) is bounded below by the optimal value, if it exists,
of the problem

minimize
tδiuKi“1

tr

ˆ

ΣVX

ˆ K
ÿ

i“1

δiδ
J
i

˙´1˙

subject to

#

δJi pB
JBqδi “ 1 for all i “ 1, 2, . . . ,K,

spantδiu
K
i“1 “ Rm,

(34)

where ΣVX :“ Eµ
“

VXV
J
X

‰

“
`

pBJBq´1BJ
˘

Eµ
“

V V J
‰`

pBJBq´1BJ
˘J.

Let us define:
˝ S to be the feasible region of the problem (34),
˝ R :“

 

H P Smˆm``

ˇ

ˇ tr
`

HpBJBq
˘

q “ K
(

, and
˝ the map

`

Rm
˘K
Q pδ1, δ2, . . . , δKq ÞÝÑ hpδ1, δ2, . . . , δKq :“

řK
i“1 δiδ

J
i P S

mˆm
` .

From Corollary 16 we see that for every H P R there exists a collection of vectors tδiuKi“1

such that
K
ÿ

i“1

δiδ
J
i “ H and δJi pB

JBqδi “
tr
`

HpBJBq
˘

K
“ 1,

which, along with the fact that rankpHq “ mñ spantδiu
K
i“1 “ Rm, imply that

R Ă hpSq. (35)

Moreover, for any collection tδiuKi“1 P S, we have

tr
`

hpδ1, δ2, . . . , δKqpB
JBq

˘

“

K
ÿ

i“1

δJi pB
JBqδi “ K and hpδ1, δ2, . . . , δKq P Smˆm`` ,

which implies that
hpSq Ă R. (36)

From (35) and (36) we conclude that R “ hpSq. In other words, instead of optimizing over
the feasible collection of vectors in S in (34), one can equivalently optimize over the set of
symmetric positive definite matrices in R. This consideration leads us to the problem:

minimize
H P Smˆm

``

tr
`

ΣVXH
´1
˘

subject to tr
`

HpBJBq
˘

´K “ 0.

(37)

Letting M :“ pBJBq1{2HpBJBq1{2, we write the optimization problem (37) with M as
the variable instead of H. Due to this change of variables, the constraint and the objective
function become

tr
`

HpBJBq
˘

“ tr
`

pBJBq1{2HpBJBq1{2
˘

“ trpMq,

and
tr
`

ΣVXH
´1
˘

“ tr
`

ΣVX pB
JBq1{2M´1pBJBq1{2

˘

“ tr
`

pBJBq1{2ΣVX pB
JBq1{2M´1

˘

“ tr
`

ΣM´1
˘

,

(38)
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where
Σ :“ pBJBq1{2ΣVX pB

JBq1{2

“ pBJBq1{2
`

pBJBq´1BJ
˘

Eµ
“

V V J
‰`

pBJBq´1BJ
˘J
pBJBq1{2

“ pBJBq´1{2
`

BJΣVB
˘

pBJBq´1{2.

(39)

Using (38) we write the problem (37) equivalently as:

minimize
MPSnˆn

``

tr
`

ΣM´1
˘

subject to trpMq ´K “ 0.
(40)

The problem (40) is identical to (26), which implies that the problem (40) is solvable, and
an optimizer is

M˚ :“
K

tr
`

Σ1{2
˘Σ1{2.

Therefore, the problem (37) is solvable, and an optimizer is

H˚ :“ pBJBq´1{2M˚pBJBq´1{2

“
K

tr
`

Σ1{2
˘

`

pBJBq´1{2Σ1{2pBJBq´1{2
˘

.
(41)

From Corollary 16 it follows that there exists a collection tδ˚i u
K
i“1 of vectors such that

K
ÿ

i“1

δ˚i δ
˚
i
J
“ H˚ and δ˚i

J
`

BJB
˘

δ˚i “
tr
`

H˚pBJBq
˘

K
“ 1.

Employing arguments similar to those given in the proof of Theorem 1, we now conclude
that the pair
˝ the collection of vectors tδ˚i u

K
i“1, and

˝ the scheme f˚Xpuq “
`

δ˚1 δ˚2 ¨ ¨ ¨ δ˚K
˘`
u,

is optimal for the problem (9). Using the optimal solution of (9), we define a dictionary-
scheme pair as:
$

&

%

d˚i :“ Bδ˚i for i “ 1, . . . ,K,

Rn Q v ÞÝÑ f˚pvq :“ f˚X

´

`

pBJBq´1BJ
˘

v
¯

“

´

δ˚1 δ˚2 ¨ ¨ ¨ δ˚K

¯`
`

pBJBq´1BJ
˘

v.

(42)
It is clear that the pair in (42) is feasible for the problem (6), and that the corresponding
objective function evaluates to the optimal value of the problem (34). Therefore, along with
the assertion of Lemma 2 we can conclude that the problem (6) is solvable, and in fact an

optimal solution is given by (42) with the optimal value of
`

trpΣ1{2q
˘2

K
. This completes the

proof.

As in the caseXV “ Rn, we now provide the Algorithm 3 to obtain an optimal dictionary-
scheme pair for the general `2-optimal dictionary problem (6). The algorithm takes the
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matrix ΣV and the size of the dictionary K as its inputs. From ΣV we extract a matrix
B P Rnˆm containing a set of basis vectors for imagepΣV q in its columns, these vectors form
a basis for XV .

Algorithm 3: A procedure to obtain `2-optimal dictionary.
Input: A matrix ΣV P Snˆn` and a number K ě m :“ dimpXV q “ rankpΣV q.
Output: An `2-optimal dictionary-scheme pair

`

ty˚i u
K
i“1, f

˚
˘

.
1 Compute a basis tbiumi“1 for imagepΣV q and define B :“

`

b1 b2 ¨ ¨ ¨ bm
˘

.
2 Define Σ :“ pBJBq´1{2

`

BJΣVB
˘

pBJBq´1{2.
3 Compute H :“ K

tr
`

Σ1{2
˘

`

pBJBq´1{2Σ1{2pBJBq´1{2
˘

.

4 Define M :“

ˆ

H OmˆpK´mq
OpK´mqˆm IK´m

˙

, A :“

ˆ

BJB OmˆpK´mq
OpK´mqˆm OpK´mqˆpK´mq

˙

5 Compute C P RKˆK such that M “ CCJ.
6 Define Λ P RKˆK by Λ :“ CJAC, and apply Algorithm 1 to get a collection of

vectors txiuKi“1 Ă RK .
7 Define the collection tviuKi“1 Ă RK as vi :“ Cxi for i “ 1, . . . ,K.
8 Define the collection tδ˚i u

K
i“1 Ă Rm such that the jth component of δ˚i is given by

δ˚i pjq :“ vipjq for j “ 1, . . . ,m and for every i “ 1, . . . ,K.
9 Define the `2-optimal dictionary td˚i u

K
i“1 Ă Rn as d˚i :“ Bδ˚i for i “ 1, . . . ,K.

10 Define the optimal scheme Rn Q v ÞÝÑ f˚pvq :“
`

d˚1 d˚2 ¨ ¨ ¨ d˚K
˘`
v P RK .

5. Conclusion and future directions

In this article we have provided an explicit solution of the `2-optimal dictionary problem in
the form of a rank-1 decomposition of a specific positive definite matrix derived from given
data, together with algorithms to compute the corresponding `2-optimal dictionaries.

The analysis in this article assumes that the second moment of the random vector whose
samples are to be represented is known. An online algorithm which estimates the second
moment of the random vector and computes the dictionary vectors in parallel is being
developed, and will be reported in subsequent articles.
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