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Abstract

We devise a communication-efficient approach to distributed sparse regression in the high-
dimensional setting. The key idea is to average “debiased” or “desparsified” lasso esti-
mators. We show the approach converges at the same rate as the lasso as long as the
dataset is not split across too many machines, and consistently estimates the support un-
der weaker conditions than the lasso. On the computational side, we propose a new parallel
and computationally-efficient algorithm to compute the approximate inverse covariance re-
quired in the debiasing approach, when the dataset is split across samples. We further
extend the approach to generalized linear models.

Keywords: Distributed Sparse Regression, Averaging, Debiasing, lasso, high-dimensional
statistics

1. Introduction

Explosive growth in the size of modern datasets has fueled interest in distributed statistical
learning. For examples, we refer to Boyd et al. (2011); Dekel et al. (2012); Duchi et al.
(2012); Zhang et al. (2013) and the references therein. The problem arises, for example,
when working with datasets that are too large to fit on a single machine and must be
distributed across multiple machines. The main bottleneck in the distributed setting is
usually communication between machines/processors, so the overarching goal of algorithm
design is to minimize communication costs.
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In distributed statistical learning, the simplest and most popular approach is averaging :
each machine forms a local estimator θ̂k with the portion of the data stored locally, and a
“master” averages the local estimators to produce an aggregate estimator: θ̄ = 1

m

∑m
k=1 θ̂k.

Averaging was first studied by Mcdonald et al. (2009) for multinomial regression. They
derive non-asymptotic error bounds on the estimation error that show averaging reduces the
variance of the local estimators, but has no effect on the bias (from the centralized solution).
In follow-up work, Zinkevich et al. (2010) studied a variant of averaging where each machine
computes a local estimator with stochastic gradient descent (SGD) on a random subset of the
dataset. They show, among other things, that their estimator converges to the centralized
estimator.

More recently, Zhang et al. (2013) studied averaged empirical risk minimization (ERM).

They show that the mean squared error (MSE) of the averaged ERM decays like O
(
N−

1
2 +

m
N

)
, where m is the number of machines and N is the total number of samples. Thus, so

long as m .
√
N, the averaged ERM matches the N−

1
2 convergence rate of the centralized

ERM. Even more recently, Rosenblatt and Nadler (2014) studied the optimality of averaged
ERM in two asymptotic settings: N →∞, m, p fixed and p, n→∞, p

n → µl ∈ (0, 1), where
n = N

m is the number of samples per machine. They show that in the n → ∞, p fixed
setting, the averaged ERM is first-order equivalent to the centralized ERM. However, when
p, n→∞, the averaged ERM is suboptimal (versus the centralized ERM).

We develop a divide and conquer approach to statistical learning. In the high-dimensional
setting, regularization is essential. The key idea is to average debiased or desparsified reg-
ularized M-estimators. Under suitable conditions, it is possible to show that the local
debiased estimators are asymptotically normal. thus the averaged estimator delivers the
same statistical performance as the computationally infeasible centralized M-estimator.

Formally, we show that the error of the averaged estimator decomposes into a ÕP
(

1√
N

)
asymptotically normal term and a remainder term. As long as m .

√
N

s log p , where s is the
sparsity of the unknown regression coefficients, the reminder term is asymptotically negli-
gible. Thus the averaged estimator converges at the same rate as a centralized estimator.
Further, the averaged estimator is model selection consistent under a weak minimum signal
strength condition. In the following section, we review the theoretical properties of the lasso
and debiased lasso and describe our contributions more formally.

2. A divide-and-conquer approach to sparse regression

To keep things simple, we focus on sparse linear regression. Consider the sparse linear
model

y = Xβ∗ + ε,

where the rows ofX ∈ Rn×p are predictors, and the components of y ∈ Rn are the responses.
To keep things simple, we assume

(A1) the predictors x ∈ Rp are independent σx-subgaussian random vectors with whose
covariance Σ has smallest eigenvalue σp(Σ) > λmin and largest eigenvalue σ1(Σ) <
λmax;
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(A2) the regression coefficients β∗ ∈ Rp are s-sparse, i.e. all but s components of β∗ are
zero;

(A3) the components of the noise ε are independent, mean zero σy-subgaussian random
variables.

Given the predictors and responses, the lasso estimates β∗ by

β̂ := arg min
β∈Rp

1

2n
‖y −Xβ‖22 + λ‖β‖1.

There is a well-developed theory of the lasso that says, under suitable assumptions on X,
the lasso estimator β̂ is nearly minimax optimal(e.g. see Hastie et al. (2015), Chapter 11
for an overview). More precisely, under some conditions on 1

nX
TX, the MSE of the lasso

estimator is roughly s log p
n , which is the minimax rate.

2.1 Background on the lasso and debiasing

However, the lasso estimator is also biased1. Since averaging only reduces variance, not bias,
we gain (almost) nothing by averaging the biased lasso estimators. That is, it is possible
to show if we naively averaged local lasso estimators, the MSE of the averaged estimator
is of the same order as that of the local estimators. The key to overcoming the bias of the
averaged lasso estimator is to “debias” the lasso estimators before averaging.

The debiased lasso estimator by Javanmard and Montanari (2013a) is

β̂d := β̂ +
1

n
Θ̂XT (y −Xβ̂), (1)

where β̂ is the lasso estimator and Θ̂ ∈ Rp×p is an approximate inverse to Σ̂ = 1
nX

TX.
Intuitively, the debiased lasso estimator trades bias for variance. The trade-off is obvious
when Σ̂ is non-singular: setting Θ̂ = Σ̂−1 gives the ordinary least squares (OLS) estimator
(XTX)−1XT y.

Another way to interpret the debiased lasso estimator is a corrected estimator that com-
pensates for the bias incurred by shrinkage. By the optimality conditions of the lasso, the
correction term 1

nX
T (y − Xβ̂) is a subgradient of λ ‖·‖1 at β̂. By adding a term propor-

tional to the subgradient of the regularizer, the debiased lasso estimator compensates for
the bias incurred by regularization. The debiased lasso estimator has previously been used
to perform inference on the regression coefficients in high-dimensional regression models.
We refer to the papers by Javanmard and Montanari (2013a); van de Geer et al. (2013);
Zhang and Zhang (2014); Belloni et al. (2011) for details.

The choice of Θ̂ in the correction term is crucial to the performance of the debiased
estimator. Javanmard and Montanari (2013a) suggest forming Θ̂ row by row: the j-th row
of Θ̂ is the optimum of

minimize
θ∈Rp

θT Σ̂θ

subject to ‖Σ̂θ − ej‖∞ ≤ δ.
(2)

1. We refer to Section 2.2 in Javanmard and Montanari (2013a) for a more formal discussion of the bias of
the lasso estimator.
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The parameter δ should large enough to keep the problem feasible, but as small as possible
to keep the bias (of the debiased lasso estimator) small. As we shall see, when the rows of

X are subgaussian, setting δ ∼
( log p

n

) 1
2 is usually large enough to keep (2) feasible.

Definition 1 (Generalized coherence) Given X ∈ Rn×p, let Σ̂ = 1
nX

TX. The general-

ized coherence between Σ̂ and Θ ∈ Rp×p is

GC(Σ̂,Θ) = maxj∈[p] ‖Σ̂ΘT
j − ej‖∞.

The preceding definition is a generalization of the usual notion of coherence as it appears
in the compressed sensing literature. Assume the columns of X are normalized so that
‖xj‖2 = 1, and Θ = I. The diagonal entries of Σ̂Θ − I vanish. Thus GC(Σ̂,Θ) is the
largest off diagonal entry of Σ̂, which is the largest inner product between columns of X:
1
n maxi 6=j

∣∣eTi XTXej
∣∣. We recognize the preceding quantity as the coherence of X.

Lemma 2 (Javanmard and Montanari (2013a)) Under (A1), when 16κσ4
xn > log p,

the event

EGC(Σ̂) :=
{

GC(Σ̂,Σ−1) ≤ 8
√
c1

√
κσ2

x

( log p

n

) 1
2
}

occurs with probability at least 1−2p−2 for some c1 > 0, where κ := λmax(Σ)
λmin(Σ) is the condition

number of Σ.

As we shall see, the bias of the debiased lasso estimate is of higher order than its
variance under suitable conditions on Σ̂. In particular, we require Σ̂ to satisfy the restricted
eigenvalue (RE) condition.

Definition 3 (RE condition) For any S ⊂ [p], let

C(S) := {∆ ∈ Rp | ‖∆Sc‖1 ≤ 3 ‖∆S‖1}.

We say Σ̂ satisfies the RE condition on the cone C(S) when

∆T Σ̂∆ ≥ µl‖∆S‖22

for some µl > 0 and any ∆ ∈ C(S).

The RE condition requires Σ̂ to be positive definite on C(S). When the rows of X ∈
Rn×p are i.i.d. Gaussian random vectors, Raskutti et al. (2010) show there are constants
µ1, µ2 > 0 such that

1

n
‖X∆‖22 ≥ µ1 ‖∆‖22 − µ2

log p

n
‖∆‖21 for any ∆ ∈ Rp

with probability at least 1− c2 exp (−c2n) . Their result implies the RE condition holds on
C(S) (for any S ⊂ [p]) as long as n & |S| log p, even when there are dependencies among the
predictors. Their result was extended to subgaussian designs by Rudelson and Zhou (2013),
also allowing for dependencies among the covariates. We state their result verbatim.
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Lemma 4 (Rudelson and Zhou (2013)) Under (A1), if n > 4000s̃σ2
x log

(Cp
s̃

)
and p >

s̃, where s̃ := s+ 25920κs = C ′s, the event

ERE(X) =
{

∆T Σ̂∆ ≥ 1

2
λmin(Σ)‖∆S‖22 for any ∆ ∈ C(S)

}
occurs with probability at least 1− 2e

− n

4000σ4
x , where C and C ′ are universal constants.

Proof The lemma is a consequence of Rudelson and Zhou (2013), Theorem 6. In their

notation, we set δ = 1√
2
, k0 = 3 and bound maxj∈[p] ‖Aej‖22 and K(s0, k0,Σ

1
2 ) by λmax(Σ)

and λmin(Σ)−
1
2 .

When the RE condition holds, the lasso and debiased lasso estimators are consistent for a
suitable choice of the regularization parameter λ. The parameter λ should be large enough to
dominate the “empirical process” part of the problem: 1

n

∥∥XT y
∥∥
∞ , but as small as possible

to reduce the bias incurred by regularization. As we shall see, setting λ ∼ σy
( log p

n

) 1
2 is a

good choice.

Lemma 5 Under (A3),

1

n
‖XT ε‖∞ ≤ maxj∈[p](Σ̂j,j)

1
2σy

(3 log p

c2n

) 1
2

with probability at least 1− ep−2 for any (non-random) X ∈ Rn×p.

When Σ̂ satisfies the RE condition and λ is large enough, Negahban et al. (2012) show
that the lasso is consistent.

Lemma 6 (Negahban et al. (2012)) If in addition to (A2) and (A3),

1. Σ̂ satisfies the RE condition on C(supp(β∗)) with constant µl

2. 1
n‖X

T ε‖∞ ≤ λ,

‖β̂ − β∗‖1 ≤
3

µl
sλ and ‖β̂ − β∗‖2 ≤

3

µl

√
sλ.

When the lasso estimator is consistent, the debiased lasso estimator is also consistent.
Further, it is possible to show that the bias of the debiased estimator is of higher order
than its variance. Similar results by Javanmard and Montanari (2013a); van de Geer et al.
(2013); Zhang and Zhang (2014); Belloni et al. (2011) are the key step in showing the
asymptotic normality of the (components of) the debiased lasso estimator. The result we
state is essentially Javanmard and Montanari (2013a), Theorem 2.3.

Lemma 7 If in addition to (A2) and (A3),

1. Σ̂ satisfies the RE condition on C(supp(β∗)) with constant µl

2. 1
n‖X

T ε‖∞ ≤ λ,
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3. (Σ̂, Θ̂) has generalized incoherence δ,

the debiased lasso estimator has the form

β̂d = β∗ +
1

n
Θ̂XT ε+ ∆̂,

where ‖∆̂‖∞ ≤ 3δ
µl
sλ.

Lemma 7, together with Lemmas 5 and 2, shows that the bias of the debiased lasso
estimator is of higher order than its variance. In particular, setting λ and δ to be the order
of the upper bounds on infΘ∈Rp×p GC(Σ̂,Θ) and 1

n‖X
T ε‖∞ given by Lemmas 5 and 2 gives

a bias term ‖∆̂‖∞ that is OP
( s log p

n

)
. By comparison, the variance term 1

n‖Θ̂X
T ε‖∞ is the

maximum of p subgaussian random variables with mean zero and variances of O(1), which

is O
(( log p

n

) 1
2
)
. Thus the bias term is of higher order than the variance term as long as

n & s2 log p.

Corollary 8 If in addition to the conditions of Lemma 6,

1. (Σ̂, Θ̂) has generalized incoherence δ′
( log p

n

) 1
2 ,

2. λ = maxj∈[p](Σ̂j,j)
1
2σy
(3 log p
c2n

) 1
2 ,

‖∆̂‖∞ ≤
3
√

3
√
c2

δ′maxj∈[p](Σ̂j,j)
1
2

µl
σy
s log p

n
.

The rest of the paper is organized as follows. In the subsequent section, we describe a
divide-and-conquer approach to sparse regression and derive its theoretical properties. We
show that

1. the averaged estimator converges at the same rate as the communication-intensive
centralized lasso estimator. In particular, a thresholded version of the averaged esti-
mator attains the same estimation rate as the centralized lasso estimator ‖β̄ht−β∗‖2 .( s log p

N

) 1
2 , and only requires one round of communication.

2. a thresholded version of the averaged estimator is model selection consistent as long as

the minimum signal strength is at least
( log p
N

) 1
2 . We remark that the model selection

consistency result does not require X to obey an irrepresentability condition, which
the centralized lasso does require.

Although the divide-and-conquer approach is communication efficient, it is costly in
terms of floating point operations. The parallel runtime of debiasing is roughly equivalent
to the cost of evaluating p lasso estimators, due to computation of Θ̂. In the rest of this
section, we describe a more sophisticated approach to debiasing: each machine debiases p

m ,
instead of all p, regression coefficients. Thus the parallel runtime of the more sophisticated
approach is roughly m times smaller than that of a naive approach.

In Section 4, we further refine the approach to reduce the sample complexity from
n & ms2 log p to n & ms log p. In Section 6, we show via simulation experiments that
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the averaged debiased estimator outperforms averaging local lasso estimates, and performs
as well as the centralized lasso. Section 5 generalizes our approach from least-squares to
generalized linear models such as logistic regression.

Finally in Section 7, we show the optimality of our estimator in terms of the amount of
communication, and rounds of communication using recent work on communication lower
bounds. We also provide a comparison of the average debiased estimator and the centralized
lasso estimator. The parallel runtime of the averaging debiased estimator is only larger than
the centralized lasso by a constant multiplicative factor.

2.2 Averaging debiased lassos

Recall the problem setup: we are given N samples of the form (xi, yi) distributed across m
machines:

X =

X1
...
Xm

 , y =

 y1
...
ym

 .
The k-th machine has local predictors Xk ∈ Rnk×p and responses yk ∈ Rnk . To keep things
simple, we assume the data is evenly distributed, i.e. n1 = · · · = nk = n = N

m . The averaged
debiased lasso estimator (for lack of a better name) is

β̄ =
1

m

m∑
k=1

β̂dk =
1

m

m∑
k=1

(
β̂k + Θ̂kX

T
k (yk −Xkβ̂k)

)
, (3)

We begin by studying the error of the β̄ in the `∞ norm.

Lemma 9 Suppose the local sparse regression problem on each machine satisfies the con-
ditions of Corollary 8, that is when m ≤ p,

1. {Σ̂k}k∈[m] satisfy the RE condition on C(supp(β∗)) with constant µl,

2. {(Σ̂k, Θ̂k)}k∈[m] have generalized incoherence cGC

( log p
n

) 1
2 ,

3. λ1 = · · · = λm = cΣσy
(3 log p
c2n

) 1
2 .

Then

‖β̄ − β∗‖∞ ≤ cσy
((cΩ log p

N

) 1
2

+
cGCcΣ

µl
σy
s log p

n

)
with probability at least 1−ep−1, where c > 0 is a universal constant, cΩ := maxj∈[p], k∈[m]((Θ̂kΣ̂kΘ̂

T
k )j,j)

and cΣ := maxj∈[p],k∈[m]((Σ̂k)j,j)
1
2 .

Lemma 10 hints at the performance of the averaged debiased lasso. In particular, we

note the first term is O
(( log p

N

) 1
2
)
, which matches the convergence rate of the centralized

estimator. When n is large enough, s log p
n is negligible compared to

( log p
N

) 1
2 , and the error

is O
(( log p

N

) 1
2
)
.

Next, we show the conditions of Lemma 10 occur with high probability when the rows
of X are independent subgaussian random vectors.
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Lemma 10 Under (A1), (A2), and (A3), when m < p, p > s̃,

1. n > max
{

4000s̃σ2
x log(Cps̃ ), 8000σ4

x log p, 3
c1

max{σ2
x, σx} log p

}
,

2. λ1 = · · · = λm = maxj∈[p],k∈[m]((Σ̂k

)
j,j

)
1
2σy
(3 log p
c2n

) 1
2 ,

3. δ1 = · · · = δm = 8√
c1

√
κσ2

x

( log p
n

) 1
2 and form {Θ̂k}k∈[m] by (2),

‖β̄ − β∗‖∞ ≤ c
(
σy

(
maxj∈[p] Σ−1

j,j log p

N

) 1
2

+

√
κmaxj∈[p](Σj,j)

1
2

λmin(Σ)
σ2
xσy

s log p

n

)
with probability at least 1− (8 + e)p−1 for some universal constant c > 0.

The averaged debiased lasso has one serious drawback versus the lasso: β̄ is usually
dense. The density of β̄ detracts from the intrepretability of the coefficients and makes the
estimation error large in the `2 and `1 norms. To remedy both problems, we threshold the
averaged debiased lasso:

HTt(β̄)← β̄j · 1{|β̄j|≥t},

STt(β̄)← sign(β̄j) ·max{|β̄j | − t, 0}.

As we shall see, both hard and soft-thresholding give sparse aggregates that are close
to β∗ in `2 norm.

Lemma 11 As long as t > ‖β̄ − β∗‖∞, β̄ht := HTt(β̄) satisfies

1. ‖β̄ht − β∗‖∞ ≤ 2t,

2. ‖β̄ht − β∗‖2 ≤ 2
√

2st,

3. ‖β̄ht − β∗‖1 ≤ 2
√

2st.

The analogous result also holds for β̄st := STt(β̄).

Proof By the triangle inequality,

‖β̄ht − β∗‖∞ ≤ ‖β̄ht − β̄‖∞ + ‖β̄ − β∗‖∞
≤ t+

∥∥β̄ − β∗∥∥∞
≤ 2t.

Since t >
∥∥β̄ − β∗∥∥∞ , β̄htj = 0 whenever β∗j = 0. Thus β̄ht is s-sparse and β̄ht − β∗ is

2s-sparse. By the equivalence between the `∞ and `2, `1 norms,

‖β̄ht − β∗‖2 ≤ 2
√

2st,

‖β̄ht − β∗‖1 ≤ 2
√

2st.

The argument for β̄st is similar.

By combining Lemma 11 with Lemma 10, we show that β̄ht converges at the same rates
as the centralized lasso.
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Theorem 12 Under the conditions of Lemma 10, hard-thresholding β̄ at σy

(
4 maxj∈[p] Σ−1

j,j log p

c2N

) 1
2
+

48
√

6√
c1c2

√
κmaxj∈[p](Σj,j)

1
2

λmin(Σ) σ2
xσy

s log p
n gives

1. ‖β̄ht − β∗‖∞ .P σy

(
maxj∈[p] Σ−1

j,j log p

N

) 1
2

+
√
κmaxj∈[p](Σj,j)

1
2

λmin(Σ) σ2
xσy

s log p
n ,

2. ‖β̄ht − β∗‖2 .P σy

(
maxj∈[p] Σ−1

j,j s log p

N

) 1
2

+
√
κmaxj∈[p](Σj,j)

1
2

λmin(Σ) σ2
xσy

s
3
2 log p
n ,

3. ‖β̄ht − β∗‖1 .P σy

(
maxj∈[p] Σ−1

j,j s
2 log p

N

) 1
2

+
√
κmaxj∈[p](Σj,j)

1
2

λmin(Σ) σ2
xσy

s2 log p
n .

Remark 13 By Theorem 12, when m . n
s2 log p

, the variance term is dominant and the
convergence rates given by the theorem simplify:

1. ‖β̄ht − β∗‖∞ .P

( log p
N

) 1
2 ,

2. ‖β̄ht − β∗‖2 .P

( s log p
N

) 1
2 ,

3. ‖β̄ht − β∗‖1 .P

( s2 log p
N

) 1
2 .

The convergence rates for the centralized lasso estimator β̂ are identical (modulo constants):

1. ‖β̂ − β∗‖∞ .P

( log p
N

) 1
2 ,

2. ‖β̂ − β∗‖2 .P

( s log p
N

) 1
2 ,

3. ‖β̂ − β∗‖1 .P

( s2 log p
N

) 1
2 .

The estimator β̄ht matches the convergence rates of the centralized lasso in `1, `2, and
`∞ norms. Furthermore, β̄ht can be evaluated in a communication-efficient manner by a
one-shot averaging approach.

Corollary 14 Under the conditions of Lemma 10, further assume

1. m . n
s2 log p

,

2. β-min: |β∗j | &
( log p
N

) 1
2 for any j ∈ supp(β∗).

Then supp(β̄ht) = supp(β∗).

Proof As long as we threshold at t > ‖β̄ht− β∗‖∞, supp(β̄ht) ⊂ supp(β∗). That is, all the
zero components of β∗ are correctly estimated. Further, as long as the non-zero components
of β∗ have magnitude at least 2t, they are not set to zero by thresholding at t. By Theorem

12, there is such a t ∼
( log p
N

) 1
2 .
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3. A distributed approach to debiasing

The averaged estimator we studied has the form

β̄ =
1

m

m∑
k=1

β̂k + Θ̂kX
T
k (y −Xkβ̂k).

The estimator requires each machine to form Θ̂k by the solution of (2). Since the dual of
(2) is an `1-regularized quadratic program:

minimize
γ∈Rp

1

2
γT Σ̂kγ − Σ̂kγ + δ ‖γ‖1 , (4)

forming Θ̂k is (roughly speaking) p times as expensive as solving the local lasso problem,
making it the most expensive step (in terms of floating point operations) of evaluating the
averaged estimator. To trim the cost of the debiasing step, we consider an estimator that
forms only a single Θ̂ :

β̃ =
1

m

m∑
k=1

β̂k +
1

N
Θ̂

m∑
k=1

XT
k (y −Xkβ̂k). (5)

To evaluate (5),

1. each machine sends β̂k and 1
nX

T
k (y −Xkβ̂k) to a central server,

2. the central server forms 1
m

∑m
k=1 β̂k and 1

N

∑m
k=1X

T
k (y−Xkβ̂k) and sends the averages

to all the machines,

3. each machine, given the averages, forms p
m rows of Θ̂ and debiases p

m coefficients:

β̃j =
1

m

m∑
k=1

β̂j + Θ̂j,·

( 1

N

m∑
k=1

XT
k (y −Xkβ̂k)

)
,

where Θ̂j,· ∈ Rp is a row vector.

As we shall see, each machine can perform debiasing with only the data stored locally.
Thus, forming the estimator (5) requires two rounds of communication.

The question that remains is how to form Θ̂j,·. We consider an estimator proposed by
van de Geer et al. (2013): nodewise regression on the predictors. For some j ∈ [p] that
machine k is debiasing, the machine solves

γ̂j := arg min
γ∈Rp−1

1

2n
‖Xk,j −Xk,−jγ‖22 + λj‖γ‖1, j ∈ [p],

where Xk,−j ∈ Rn×(p−1) is Xk less its j-th column Xk,j . Implicitly, we are forming

Ĉ :=


1 −γ̂1,2 . . . −γ̂1,p

−γ̂2,1 1 . . . −γ̂2,p
...

...
. . .

...
−γ̂p,1 −γ̂p,2 . . . −γ̂p,p

 ,

10
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where the components of γ̂j are indexed by k ∈ {1, . . . , j − 1, j + 1, . . . , p}. We scale the

rows of Ĉ by diag
([
τ̂1, . . . , τ̂p

])
, where

τ̂j =
( 1

n
‖Xj −X−j γ̂j‖22 + λj‖γ̂j‖1

) 1
2 ,

to form Θ̂ = T̂−2Ĉ. Each row of Θ̂ is given by

Θ̂j,· = −
1

τ̂2
j

[
γ̂j,1 . . . γ̂j,j−1 1 γ̂j,j+1 . . . γ̂j,p

]
. (6)

Since γ̂j and τ̂j only depend on Xk, they can be formed without any communication.

Before we justify the choice of Θ̂ theoretically, we mention that it is an approximate
“inverse” of Σ̂ (in a component-wise sense). By the optimality conditions of nodewise
regression,

τ̂2
j =

1

n
‖Xj −X−j γ̂j‖22 + λj‖γ̂j‖1

=
1

n
‖Xj −X−j γ̂j‖22 +

1

n
(Xj −X−j γ̂j)TXT

−j γ̂j

=
1

n
Xj(Xj −X−j γ̂).

Recalling the defintition of Θ̂, we have

1

n
Θ̂j,·X

TXj =
1

τ̂2
j

1

n
(Xj − γ̂Tj X−j)TXj = λj and

1

n
‖Θ̂j,·X

TX−j‖∞ =
1

τ̂2
j

∥∥∥ 1

n
(Xj − γ̂Tj X−j)TX−j

∥∥∥
∞
≤ λj
τ̂2
j

for any j ∈ [ p ]. Thus

max
j∈[ p ]

‖Θ̂j,·Σ̂− ej‖∞ ≤
λj
τ̂2
j

. (7)

van de Geer et al. (2013) show that when the rows of X are i.i.d. subgaussian ran-
dom vectors and the precision matrix Σ−1 is sparse, Θ̂j,· converges to Σ−1

j at the usual
convergence rate of the lasso. For completeness, we restate their result.

We consider a sequence of regression problems indexed by the sample size N , dimension
p, sparsity s0 that satisfies (A1), (A2), and (A3). As N grows to infinity, both p = p(N)
and s = s(N) may also grow as a function of N. To keep notation manageable, we drop the
index N. We further assume

(A4) the covariance of the predictors (rows of X) has smallest eigenvalue λmin(Σ) ∼ Ω(1)
and largest diagonal entry maxj∈[p] Σj,j ∼ O(1),

(A5) the rows of Σ−1 are sparse: maxj∈[p]
s2j log p

n ∼ o(1), where sj is the sparsity of Σ−1
j .

11
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Lemma 15 (van de Geer et al. (2013), Theorem 2.4) Under (A1)–(A5), (6) with suit-

able parameters λj ∼
( log p

n

) 1
2 satisfies

‖Θ̂j,· − Σ−1
j ‖1 .P

(
s2
j log p

n

) 1
2

for any j ∈ [p].

We show that the averaged estimator (5) matches the convergence rate of the centralized
lasso.

Theorem 16 Under (A1)–(A5), (5), where Θ̂ is given by (6), with suitable parameters

λj , λk ∼
( log p

n

) 1
2 , j ∈ [p], k ∈ [m] satisfies

‖β̄ − β∗‖∞ .P

( log p

N

) 1
2

+
smax log p

n
,

where smax := max{s0, s1, . . . , sp}.

Proof See the appendix.

By combining the Lemma 11 with Theorem 16, we can show that β̃ht := HT(β̃, t) for
an appropriate threshold t converges to β∗ at the same rates as the centralized lasso.

Theorem 17 Under the conditions of Theorem 16, hard-thresholding β̃ at t ∼
( log p
N

) 1
2 +

smax log p
n gives

1. ‖β̃ht − β∗‖∞ .P

( log p
N

) 1
2 + smax log p

n ,

2. ‖β̃ht − β∗‖2 .P

( s0 log p
N

) 1
2 +

√
s0smax log p

n ,

3. ‖β̃ht − β∗‖1 .P

( s20 log p
N

) 1
2 + s0smax log p

n .

Theorem 17 shows that for m . n
s2max log p

, the variance term is dominant, so the conver-

gence rates simplify:

1. ‖β̃ht − β∗‖∞ .P

( log p
N

) 1
2 ,

2. ‖β̃ht − β∗‖2 .P

( smax log p
N

) 1
2 ,

3. ‖β̃ht − β∗‖1 .P

( s2max log p
N

) 1
2 .

Thus, estimator β̃ht shares the advantages of β̄ht over the centralized lasso (cf. Remark 13).
It also achieves computational gains over β̄ht by amortizing the cost of debiasing across m
machines.

12
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4. A sharper estimation result

It is possible to obtain a sharper estimation result by forgoing the `∞ norm convergence rate.
By sharper, we mean the sample complexity of the averaged estimator from m . n

s20 log p
to

m . n
s0 log p .

The sharper estimation result depends on a result by Javanmard and Montanari (2013b),
which we combine with Lemma 15 and restate for completeness. Before stating the results,
we define the (∞, l) norm of a point x ∈ Rp as

‖x‖(∞,l) := maxA⊂[p],|A|≥l
‖xA‖2√

l
.

When l = 1, the (∞, l) norm of x is its `∞ norm. When l = p, the (∞, l) norm is the `2
norm (rescaled by 1√

p). Thus the (∞, l) norm interpolates between the `2 and `∞ norms.

Javanmard and Montanari (2013b), Theorem 2.3 shows that the bias of the debiased lasso

is of order
√
s0 log p
n .

Lemma 18 Under the conditions of Theorem 16,

‖∆̂k‖(∞,c′s0) .P
c
√
s0 log p

n
for any k ∈ [m] for any c′ > 0,

where c is a constant that depends only on c′ and Σ.

By Lemma 18, the estimator (5) is consistent in the (∞, s0) norm. The argument is
similar to the proof of Theorem 16.

Theorem 19 Under the conditions of Theorem 16,

‖β̄ − β∗‖(∞,c′s0) ∼ OP
(( log p

N

) 1
2

+

√
s0 log p

n

)
.

Theorem 20 Under the conditions of Theorem 16, hard-thresholding β̃ at t = |β̃|(ŝ0) for
some ŝ0 ∼ s0, i.e. setting all but the largest ŝ0 debiased coefficients to zero, gives

1. ‖β̃ht − β∗‖2 .P

( s0 log p
N

) 1
2 + s0 log p

n ,

2. ‖β̄ht − β∗‖1 .P

( s20 log p
N

) 1
2 +

s
3/2
0 log p
n .

By Theorem 20, when m . N
s0 log p , the variance term is dominant and the convergence rates

given by the theorem simplify to the convergence rates of the (centralized) lasso estimator:

1. ‖β̄ht − β∗‖2 .P

( s0 log p
N

) 1
2 ,

2. ‖β̄ht − β∗‖1 .P

( s20 log p
N

) 1
2 .

Thus, by forgoing estimation error in the `∞ norm, it is possible to reduce the sample
complexity of the averaged estimator to m . s0 log p

N . When m = 1, we recover the sample
complexity of the centralized lasso estimator.

13
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5. Averaging debiased `1 regularized M-estimators

The distributed approach to debiasing extends readily to `1 regularized M-estimators. As
before, we are given N pairs (xi, yi) stored on m machines. Let ρ(yi, a) be a loss function
function, which is convex in a, and ρ̇, ρ̈ be its derivatives with respect to a. That is

ρ̇(y, a) =
d

da
ρ(y, a), ρ̈(y, a) =

d2

da2
ρ(y, a).

We define `k(β) = 1
n

∑n
i=1 ρ(yi, x

T
i β), where the sum is only over the pairs on machine k.

The averaged estimator is

β̄ :=
1

m

m∑
k=1

β̂k + Θ̂
( 1

m

m∑
k=1

∇`k(β̂k)
)
, (8)

where β̂k is the local `1 regularized M-estimator: β̂k := arg minβ∈Rp `k(β) + λk‖β‖1. As

before, we form Θ̂ by nodewise regression on the weighted design matrix Xβ̂k
:= Wβ̂k

Xk,
where Wβ̂k

is diagonal and its diagonal entries are(
Wβ̂k

)
i,i

:= ρ̈(yi, x
T
i β̂k)

1
2 .

That is, for some j ∈ [p] that machine k is debiasing, the machine solves

γ̂j := arg min
γ∈Rp−1

1

2n
‖Xβ̂k,j

−Xβ̂k,−jγ‖
2
2 + λj‖γ‖1, j ∈ [p],

and forms

Θ̂j,· = −
1

τ̂2
j

[
γ̂j,1 . . . γ̂j,j−1 1 γ̂j,j+1 . . . γ̂j,p

]
,

where

τ̂j =
( 1

n
‖Xβ̂k,j

−Xβ̂k,−j γ̂j‖
2
2 + λj‖γ̂j‖1

) 1
2 .

We assume

(B1) the pairs {(xi, yi)}i∈[N ] are i.i.d.; the predictors are bounded:

maxi∈[N ] ‖xi‖∞ . 1;

the projection of Xβ∗,j on R(Xβ∗,−j) in the E
[
∇2`k(β

∗)
]

inner product is bounded:
‖Xβ∗,−jγβ∗,j‖∞ . 1 for any j ∈ [ p ], where

γβ∗,j := arg min
γ∈Rp−1

E
[
‖Xβ∗,j −Xβ∗,−jγ‖22

]
.

(B2) the rows of E
[
∇2`k(β

∗)
]−1

are sparse: maxj∈[p]
s2j log p

n ∼ o(1), where sj is the sparsity

of
(
E
[
∇2`k(β

∗)
]−1)

j,·.

(B3) the smallest eigenvalue of E
[
∇2`k(β

∗)
]

is bounded away from zero and its entries are
bounded.

14



Communication-efficient Sparse Regression

(B4) for any β such that ‖β − β∗‖1 ≤ δ for some δ > 0, the diagonal entries of Wβ stays
away from zero, and

|ρ̈(y, xTβ)− ρ̈(y, xTβ∗)| ≤ |xT (β − β∗)|.

(B5) we have 1
n‖Xk(β̂k − β∗)‖22 .P s0λ

2
k and ‖β̂k − β∗‖1 .P s0λk.

(B6) the derivatives ρ̇(y, a), ρ̈(y, a) is locally Lipschitz:

maxi∈[N ] sup|a,a′−xTi β∗|≤δ
supy

|ρ̈(y,a)−ρ̈(y,a′)|
|a−a′| ≤ K for some δ > 0.

Further,

maxi∈[N ] supy |ρ̇(y, xTi β)| ∼ O(1),

maxi∈[N ] sup|a−xTi β∗|≤δ
supy |ρ̈(y, a)| ∼ O(1).

(B7) the diagonal entries of

E
[
∇2`k(β

∗)
]−1

E
[
∇`k(β∗)∇`k(β∗)T

]
E
[
∇2`k(β

∗)
]−1

are bounded.

The preceding assumptions deserve elaboration. Assumptions (B1), (B4), (B6), and
(B7) are standard in the literature on high-dimensional regression. They ensure the various
intermediate quantities, such as ρ(y, xTβ) and its derivaties, remain bounded. Assumption
(B2) is perhaps the most restrictive. The assumption serves to ensure that the debiasing step
is effective in reducing the bias of the regularized estimator. It may be relaxed (at the cost of

additional technicalities) to the rows of E
[
∇2`k(β

∗)
]−1

admit a sj-sparse approximation.
We refer to Bühlmann and Van De Geer (2011) for the details. Assumption (B3) is a
quantitative version of the usual rank condition in regression. It ensures the regression
coefficients are identifiable in the limit. Assumption (B5) is not necessary; it is implied by
the other assumptions. We refer to Bühlmann and Van De Geer (2011), Chapter 6 for the
details. Here we state it as an assumption to simplify the exposition.

We are ready to state our main results concerning the averaged estimator(8). It shows
the averaged estimator achieves the convergence rate of the centralized `1-regularized M-
estimator.

Theorem 21 Under (B1)–(B7), (8) with suitable parameters

λj , λk ∼
( log p

n

) 1
2 , j ∈ [p], k ∈ [m] satisfies

‖β̄ − β∗‖∞ .P

( log p

N

) 1
2

+
smax log p

n
, (9)

where smax := max{s0, s1, . . . , sp}.
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Proof The averaged estimator is given by

β̄ − β∗ =
1

m

m∑
k=1

β̂k − Θ̂∇`k(β̂k)(β̂k − β∗)− β∗.

By the smoothness of ρ,

ρ̇(yi, x
T
i β̂k) = ρ̇(yi, x

T
i β
∗) + ρ̈(yi, ãi)x

T
i (β̂k − β∗),

where ãi is a point between xTi β̂k and xTi β
∗. Thus

β̄ − β∗ =
1

m

m∑
k=1

β̂k − Θ̂(∇`k(β∗) +Qk(β̂k − β∗))− β∗

= −Θ̂
(

1
m

∑m
k=1∇`k(β∗)

)
+

1

m

m∑
k=1

(
I − Θ̂Qk

)
(β̂k − β∗).

where Qk = 1
n

∑n
i=1 ρ̈(yi, ãi)xix

T
i , where the sum is over the data points on machine k.

Taking norms, we obtain

‖β̄ − β∗‖∞ ≤
∥∥Θ̂
(

1
m

∑m
k=1∇`k(β∗)

)∥∥
∞ +

1

m

m∑
k=1

∥∥(I − Θ̂Qk
)
(β̂k − β∗)

∥∥
∞.

It is possible to show that
∥∥Θ̂
(

1
m

∑m
k=1∇`k(β∗)

)∥∥
∞ .P

( log p
N

) 1
2 , which corresponds to

the first term in (9). We refer to Bühlmann and Van De Geer (2011), Chapter 6 for the
details.

We turn our attention to the second term. By the triangle inequality,

‖(I − Θ̂Qk)(β̂k − β∗)‖∞
≤
∥∥(I − Θ̂∇2`k(β̂k)

)
(β̂k − β∗)

∥∥
∞ +

∥∥Θ̂(∇2`k(β̂k)−Qk)(β̂k − β∗)
∥∥
∞

≤ maxj∈[p]

∥∥eTj − Θ̂j,·∇2`k(β̂k)
∥∥
∞‖β̂k − β

∗‖1

+
1

n

n∑
i=1

‖Θ̂xi‖∞
∣∣ρ̈(yi, x

T
i β̂k)− ρ̈(yi, ãi)x

T
i (β̂k − β∗)

∣∣.
We proceed term by term. By (7),

maxj∈[p]

∥∥eTj − Θ̂j,·∇2`k(β̂k)
∥∥
∞ ≤

λj
τ̂2
j

.
1

τ̂2
j

( log p

n

) 1
2
.

By van de Geer et al. (2013), Theorem 3.2,

|τ̂2
j − τ2

j | .P

(max{s0, sj} log p

n

) 1
2

Thus maxj∈[p]

∥∥eTj − Θ̂j,·∇2`k(β̂k)
∥∥
∞ .P

( log p
n

) 1
2 and, by (B5),

maxj∈[p]

∥∥eTj − Θ̂j,·∇2`k(β̂k)
∥∥
∞‖β̂k − β

∗‖1 .P
smax log p

n
.
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We turn our attention to the second term. We have ‖Θ̂xi‖∞ .P 1 because

‖Θ̂xi‖∞ ≤ maxj∈[p] ‖Θ̂j,·X
T
k ‖∞ . maxj∈[p] ‖Θ̂j,·X

T
k,β∗‖∞

≤ maxj∈[p]
1

τ̂2
j

‖(Xk,β∗)j − (Xk,β∗)−j γ̂j‖∞.

Again, by van de Geer et al. (2013), Theorem 3.2,

.P maxj∈[p]
1

τ2
j

‖(Xk,β∗)j − (Xk,β∗)−j γ̂j‖∞

.P maxj∈[p]
1

τ2
j

‖(Xk,β∗)j − (Xk,β∗)−jγj‖∞

+
1

τ2
j

‖(Xk,β∗)j‖∞‖(γ̂j − γj)‖1.

which, by (B1) and van de Geer et al. (2013), Theorem 3.2,

.P 1 +
sj log p

n
.

Thus

1

n

n∑
i=1

‖Θ̂xi‖∞
∣∣ρ̈(yi, x

T
i β̂k)− ρ̈(yi, ãi)x

T
i (β̂k − β∗)

∣∣
.P

1

n

n∑
i=1

∣∣ρ̈(yi, x
T
i β̂k)− ρ̈(yi, ãi)x

T
i (β̂k − β∗)

∣∣,
which, by (B5) and (B6), is at most

.
1

n
‖Xk(β̂k − β∗)‖22 .P

s0 log p

n
.

We put the pieces together to deduce 1
m

∑m
k=1

∥∥(I − Θ̂Qk
)
(β̂k − β∗)

∥∥
∞ .P

smax log p
n .

By combining the Lemma 11 with Theorem 16, we can show that β̃ht := HT(β̃, t) for an
appropriate threshold t converges to β∗ at the same rates as the centralized `1-regularized
M-estimator.

Theorem 22 Under the conditions of Theorem 21, hard-thresholding β̃ at t ∼
( log p
N

) 1
2 +

maxj∈[p] sj log p

n gives

1. ‖β̃ht − β∗‖∞ .P

( log p
N

) 1
2 + smax log p

n ,

2. ‖β̃ht − β∗‖2 .P

( s0 log p
N

) 1
2 +

√
s0smax log p

n ,
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Figure 1: The estimation error (in `∞ norm) of the averaged debiased lasso estimator versus
that of the centralized lasso when the predictors are Gaussian. In both settings,
the estimation error of the averaged debiased estimator is comparable to that of
the centralized lasso, while that of the naive averaged lasso is much worse.

3. ‖β̃ht − β∗‖1 .P

( s20 log p
N

) 1
2 +

s0 maxj∈[p] sj log p

n .

Assuming s0 ∼ smax, Theorem 22 shows when m . n
s20 log p

, the variance term is domi-

nant, so the convergence rates simplify to

1. ‖β̃ht − β∗‖∞ .P

( log p
N

) 1
2 ,

2. ‖β̃ht − β∗‖2 .P

( s0 log p
N

) 1
2 ,

3. ‖β̃ht − β∗‖1 .P

( s20 log p
N

) 1
2 .

6. Simulations

We validate our theoretical results with simulations. First, we study the estimation error
of the averaged debiased lasso in `∞ norm. To focus on the effect of averaging, we grow
the number of machines m linearly with the (total) sample size N. In other words, we
fix the sample size per machine n and grow the total sample size N by adding machines.
The tuning parameters were set to their oracle values stated in the Theorem 12. Figure 1
compares the estimation error (in `∞ norm) of the averaged debiased lasso estimator with
that of the centralized lasso. We see the estimation error of the averaged debiased lasso
estimator is comparable to that of the centralized lasso, while that of the naive averaged
lasso is much worse.

We conduct a second set of simulations to study the effect of the number of machines
on the estimation effort of the averaged estimator. To focus on the effect of the number of
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Figure 2: The estimation error (in `∞ norm) of the averaged estimator as the number of
machines k vary. When the number of machines is small, the error is comparable
to that of the centralized lasso. However, when the number of machines exceeds
a certain threshold, the bias term (which grows linearly in k) is dominant, and
the performance of the averaged estimator degrades.

machines k, we fix the (total) sample size N and vary the number of machines the samples
are distributed across. The tuning parameters were again set to the oracle values stated in
the Theorem 12. Figure 2 shows how the estimation error (in `∞ norm) of the averaged
estimator grows as the number of machines grows. When the number of machines is small,
the estimation error of the averaged estimator is comparable to that of the centralized
lasso. However, when the number of machines exceeds a certain threshold, the estimation

error grows with the number of machines. This transition occurs when s log p
n &

( log p
N

) 1
2 ,

or equivalently, when k &
(

N
s2 log p

) 1
2 . The preceding observation is consistent with the

prediction of Lemma 10: when the number of machines exceeds a certain threshold, the
bias term of order s log p

n becomes dominant. Since s log p
n ∝ k, we expect the error to grow

linearly with k, which agrees with the trends in Figure 2.

We conduct a third set of simulations to study the effect of thresholding on the estimation
error in `2 norm. The tuning parameters were set to the oracle values stated in the Theorem
12. Figure 3 compares the estimation error incurred by the averaged estimator with and
without thresholding versus that of the centralized lasso. Since the averaged estimator is
usually dense, its estimation error (in `2 norm) is large compared to that of the centralized
lasso. However, after thresholding, the averaged estimator performs comparably versus the
centralized lasso. This demonstrates the importance of the thresholding step to achieve low
`2 error.

In practice, it is possible to set the tuning parameter δ by the bisection method in the
accompanying code to Javanmard and Montanari (2013a); via bisection, they search for the
smallest δ such that the optimization program in (2) is feasible. The lasso tuning parameter
λ is set by first estimating the noise variance using the residuals and then using the formula
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Figure 3: The estimation error (in `2 norm) of the averaged estimator with and without
thresholding versus that of the centralized lasso when the predictors are Gaus-
sian. In both settings, thresholding reduces the estimation error by order(s) of
magnitude. Although the estimation error of the averaged estimator is large
compared to that of the centralized lasso, the thresholded averaged estimator
performs comparably, or even better than, the centralized lasso.

λ = σ
√

2 log p. The parameter λ can be chosen independently of σ, if we replace the lasso
with the sqrt-lasso Belloni et al. (2011); all of the same theoretical guarantees still apply,
since the sqrt-lasso has the same consistency guarantees. For generalized linear models, the
oracle choice of λ depends on known quantities Negahban et al. (2012).

7. Summary and discussion

We devised a communication-efficient approach to distributed sparse regression in the high-
dimensional setting. The key idea is first “debiasing” local lasso estimators, and then
averaging the debiased estimators. We show that as long as the data is not split across
too many machines, the averaged estimator achieves the convergence rate of the centralized
lasso estimator. In the appendix, we show that by foregoing consistency in the `∞ norm,
it is possible to further reduce the sample complexity of the averaged estimator to that
of the centralized lasso estimator. Further, the distributed approach to debiasing extends
readily to other `1 regularized M-estimators. In concurrent work, the approach of averaging
debiased M-estimators was proposed by Battey et al. (2015) for high-dimensional inference.

7.1 Communication and Computational complexity

In recent years, there has a been a flurry of work on establishing communication lower
bounds for mean estimation in the Gaussian distribution. In other words, they establish
the minimum communication C needed to obtain `22 risk R , where ‖β̂ − β∗‖22 ≤ R (Duchi
et al., 2014; Garg et al., 2014). These results are not directly applicable to sparse linear
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regression, since they do not impose sparsity on the mean. In Braverman et al. (2015),

the authors established that to obtain risk R ≤ s log p
N at least Ω

(mmin(n,p)
log p

)
bits of com-

munication is required. Our approach communicates Õ(mp) bits to achieve risk of s log p
N ,

so is communication-optimal when p . n. To our knowledge, lowest known communica-

tion complexity for solving the lasso is at least mpσmax(Σ)
σmin(Σ) log 1

ε , for any desired accuracy

ε &
√

s log p
n (Agarwal et al., 2012). This communication cost is larger than our algorithm

by a multiplicative factor of σmax(Σ)
σmin(Σ) log 1

ε , which is substantially larger when the problem is
poorly conditioned.

In light of the fact that our approach is essentially optimal in terms of communication
cost, we turn to the computational complexity of our method. The most intensive step
of our approach is the computation of Θ̂. To compute one row of Θ̂ requires solving an
optimization problem whose cost is equivalent to a lasso in dimension p with n samples.
For the purpose of comparison, let us assume that the lasso solver performs T iterations.
Thus the complexity of solving a lasso in dimension p with n samples is O(npT ). In the
simple approach of Section 2 where each machine computes its own Θ̂, the parallel runtime
is O(np2T ). However using the approach of Section 3, each machine is only computing p/m

rows of Θ̂. This brings down the parallel runtime to O(np
2T
m ). In comparison, the cost of

solving the lasso using a state-of-art optimization method such as Agarwal et al. (2012)
has parallel runtime O(npT ), so our computational cost is larger by a factor of O( pm). It
is reasonable to think of p

m as a constant, since as the number of variables p increases the
dataset sizes increases and we will be forced to use a larger cluster size m due to memory
constraints on a single machine. Although our computational complexity is larger in the
distributed setting, the dominant factor is often bottlenecked by the communication and
latency limitations, rather than local computation.

Appendix A. Proofs of Lemmas

Proof [Proof of Lemma 2] Let zi = Σ−
1
2xi. The generalized coherence between X and Σ−1

is given by

|||Σ−1Σ̂− I|||∞ = ||| 1
n

n∑
i=1

(Σ−
1
2 zi)(Σ

1
2 zi)

T − I|||∞,

where |||X|||∞ is the maximum entry of a X. Each entry of 1
n

∑n
i=1(Σ−

1
2 zi)(Σ

1
2 zi)

T − I is
a sum of independent subexponential random variables. Their subexponential norms are
bounded by

‖(Σ−
1
2 zi)j(Σ

1
2 zi)k − 1{j = k}‖ψ1 ≤ 2‖(Σ−

1
2 zi)j(Σ

1
2 zi)k‖ψ1 ,

where ‖X‖ψ1
and ‖Y ‖ψ2

are the sub-exponential and sub-Gaussian norms of the random
variables X and Y . Recall for any two subgaussian random variables X,Y, we have

‖XY ‖ψ1
≤ 2 ‖X‖ψ2

‖Y ‖ψ2
.

Thus

‖(Σ−
1
2 zi)j(Σ

1
2 zi)k − δj,k‖ψ1 ≤ 4‖(Σ−

1
2 zi)j‖ψ2‖(Σ

1
2 zi)k‖ψ2 ≤ 4

√
κσ2

x,
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where σx = ‖zi‖ψ2 . By a Bernstein-type inequality,

Pr
( 1

n

n∑
i=1

(Σ−
1
2 zi)j(Σ

1
2 zi)k − δj,k ≥ t

)
≤ 2e

−c1 min{nt
2

σ̃4
x
, nt
σ̃2
x
}
,

where c1 > 0 is a universal constant and σ̃2
x := 4

√
κσ2

x. Since σ̃4
xn > log p, we set t =

2σ̃2
x√
c1

( log p
n

) 1
2 to obtain

Pr
( 1

n

n∑
i=1

(Σ−
1
2 zi)j(Σ

1
2 zi)k − δj,k ≥

2σ̃2
x√
c1

( log p

n

) 1
2
)
≤ 2p−4.

We obtain the stated result by taking a union bound over the p2 entries of 1
n

∑n
i=1(Σ−

1
2 zi)(Σ

1
2 zi)

T−
I.

Proof [Proof of Lemma 5] By Vershynin (2010), Proposition 5.10,

Pr
( 1

n
|xTj ε| > t

)
≤ e exp

(
− c2n

2t2

σ2
y‖xTj ‖22

)
≤ e exp

(
− c2n

2t2

σ2
y maxj∈[p] Σ̂j,j

)
.

We take a union bound over the p components of 1
nX

T ε to obtain

Pr
( 1

n
‖XT ε‖∞ > t

)
≤ e exp

(
− c2n

2t2

σ2
y maxj∈[p] Σ̂j,j

+ log p
)
.

We set t = maxj∈[p] Σ̂
1
2
j,jσy

(3 log p
c2n

) 1
2 to obtain the desired conclusion.

Proof [Proof of Lemma 7] We start by substituting the linear model into (1):

β̂d = β̂ +
1

n
Θ̂XT (y −Xβ̂) = β∗ + Θ̂Σ̂(β∗ − β̂) +

1

n
Θ̂XT ε.

By adding and subtracting ∆̂ = β∗ − β̂, we obtain

β̂d = β∗ +
1

n
Θ̂XT (y −Xβ̂) = β∗ + (Θ̂Σ̂− I)(β∗ − β̂) +

1

n
Θ̂XT ε.

We obtain the expression of β̂d by setting ∆̂.
To show ‖∆̂‖∞ ≤ 3δ

µ sλ, we apply Hölder’s inequality to each component of ∆̂ to obtain

|(Θ̂Σ̂− I)(β∗ − β̂)| ≤ maxj ‖Σ̂mT
j − ej‖∞‖β̂ − β∗‖1 ≤ δ‖β̂ − β∗‖1, (10)

where δ is the generalized incoherence between X and Θ̂. By Lemma 6, ‖β̂ − β∗‖1 ≤ 3
µsλ.

We combine the bound on ‖β̂ − β∗‖1 with (10) to obtain the stated bound on ‖∆̂‖∞.
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Proof [Proof of Lemma 10] By Lemma 7,

β̄ − β∗ =
1

N

m∑
k=1

Θ̂kX
T
k εk +

1

m

m∑
k=1

∆̂k.

We take norms to obtain

‖β̄ − β∗‖∞ ≤
∥∥∥ 1

N

m∑
k=1

Θ̂kX
T
k εk

∥∥∥
∞

+
1

m

m∑
k=1

‖∆̂k‖∞.

We focus on bounding the first term. Let aTj := eTj
[
Θ̂1X

T
1 . . . Θ̂mX

T
m

]
. By Vershynin

(2010), Proposition 5.10,

Pr
(∣∣ 1

N
aTj ε
∣∣ > t

)
≤ e exp

(
− c2N

2t2

‖aj‖22σ2
y

)
for some universal constant c2 > 0. Further,

‖aj‖22 =

m∑
k=1

‖XkΘ̂
T
k ej‖22 = n

m∑
k=1

(
Θ̂kΣ̂kΘ̂

T
k

)
j,j
≤ cΩN,

where cΩ := maxj∈[p],k∈[m]

(
Θ̂kΣ̂kΘ̂

T
k

)
j,j
. By a union bound over j ∈ [p],

Pr
(

maxj∈[p]

∣∣ 1

N
aTj ε
∣∣ > t

)
≤ e exp

(
−c2Nt

2

cΩσ2
y

+ log p
)
.

We set t = σy
(2cΩ log p

c2N

) 1
2 to deduce

Pr
(

maxj∈[p]

∣∣ 1
N a

T
j ε
∣∣ ≥ σy(2cΩ log p

c2N

) 1
2

)
≤ ep−1.

We turn our attention to bounding the second term. By Lemma 5 and a union bound
over j ∈ [p], when we set

λ1 = · · · = λm = λ := maxj∈[p],k∈[m]((Σ̂k

)
j,j

)
1
2σy

(3 log p

c2n

) 1
2
,

we have 1
n‖X

T
k ε‖∞ ≤ λ for any k ∈ [m] with probability at least 1 − em

p2 ≥ 1 − ep−1. By
Lemma 7, when

1. {Σ̂k}k∈[m] satisfy the RE condition on C(supp(β∗)) with constant µl,

2. {(Σ̂k, Θ̂k)}k∈[m] have generalized incoherence cGC

( log p
n

) 1
2 ,

the second term is at most 3
√

3√
c2
cGCcΣ
µl

σy
s log p
n . We put the pieces together to obtain

‖β̄ − β∗‖∞ ≤ σy
(2cΩ log p

c2N

) 1
2

+
3
√

3
√
c2

cGCcΣ

µl
σy
s log p

n
,
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Proof [Proof of Lemma 10] We start with the conclusion of Lemma 10:

‖β̄ − β∗‖∞ ≤ σy
(2cΩ log p

c2N

) 1
2

+
3
√

3
√
c2

cGCcΣ

µl
σy
s log p

n
.

First, we show that the two constants cΩ = maxj∈[p], k∈[m](Θ̂kΣ̂kΘ̂
T
k )j,j and cΣ := maxj∈[p],k∈[m]((Σ̂k)j,j)

1
2

are bounded with high probability.

Lemma 23 Under (A1),

Pr
(
maxj∈[p] Σ−1

j Σ̂Σ−1
j > 2 maxj∈[p] Σ−1

j,j

)
≤ 2pe

−c1 min{ n
σ2
x
, n
σx
}

for some universal constant c1 > 0.

Proof [Proof of Lemma 23] We express

Σ−1
j,· Σ̂Σ−1

j,· = Σ−1
j,· Σ̂Σ−1

j,· − Σ−1
j,j + Σ−1

j,j =
1

n

n∑
i=1

(xTi Σ−1
·,j )2 − Σ−1

j,j + Σ−1
j,j .

Since the subgaussian norm of zi = Σ−
1
2xi is σx, x

T
i Σ−1
·,j is also subgaussian with subgaussian

norm bounded by

‖xTi Σ−1
·,j ‖ψ2 ≤ ‖zi‖ψ2‖Σ

− 1
2
·,j ‖2 ≤ σx(Σ−1

j,j )
1
2 .

We recognize 1
n

∑n
i=1(xTi Σ−1

·,j )2 − Σ−1
j,j as a sum of i.i.d. subexponential random variables

with subexponential norm bounded by

‖(xTi Σ−1
·,j )2 − Σ−1

j,j ‖ψ1 ≤ 2‖(xTi Σ−1
·,j )2‖ψ1 ≤ 4‖xTi Σ−1

·,j ‖
2
ψ2
≤ 4σ2

xΣ−1
j,j .

By Vershynin (2010), Proposition 5.16, we have

Pr
( 1

n

n∑
i=1

(xTi Σ−1
·,j )2 − Σ−1

j,j > t
)
≤ 2e

−c1 min{ nt2

16σ2
x(Σ−1

j,j
)2
, nt

4σxΣ−1
j,j

}

for some absolute constant c1 > 0. For t = Σ−1
j,j , the bound simplifies to

Pr
( 1

n

n∑
i=1

(xTi Σ−1
·,j )2 − Σ−1

j,j > Σ−1
j,j

)
≤ 2e

−c1 min{ n

16σ2
x
, n
4σx
}
.

We take a union bound over j ∈ [p] to obtain the stated result.

Since we form {Θ̂k}k∈[m] by (2),

(Θ̂kΣ̂kΘ̂
T
k )j,j ≤ maxj∈[p](Σ

−1Σ̂kΣ
−1))j,j .

Lemma 23 implies

maxj∈[p](Σ
−1Σ̂kΣ

−1))j,j ≤ 2 maxj∈[p] Σ−1
j,j for each k ∈ [m]

with probability at least 1− 2pe
−c1 min{ n

σ2
x
, n
σx
}
.
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Lemma 24 Under (A1),

Pr(maxj∈[p](Σ̂j,j)
1
2 >
√

2 maxj∈[p](Σj,j)
1
2 ) ≤ 2pe

−c1 min{ n

16σ2
x
, n
4σx
}

for some universal constant c1 > 0.

We put the pieces together to obtain the stated result:

1. By Lemma 23 (and a union bound over k ∈ [m]),

Pr(cΩ ≥ 2 maxj Σ−1
j,j ) ≤ 2mpe

−c1 min{ n
σ2
x
, n
σx
}
.

Since m ≤ p, when n > 3
c1

max{σ2
x, σx} log p,

Pr
(
cΩ < 2 max

j
Σ−1
j,j

)
≥ 1− 2p−1.

2. By Lemma 24 (and a union bound over k ∈ [m]),

Pr(cΣ <
√

2 maxj∈[p](Σj,j)
1
2 ) ≥ 1− 2mpe

−c1 min{ n

16σ2
x
, n
4σx
}
.

When n > 3
c1

max{σ2
x, σx} log p, the right side is again at most 2p−1.

3. By Lemma 4, as long as

n > max{4000s̃σ2
x log(Cps̃ ), 8000σ4

x log p},

Σ̂1, . . . , Σ̂m all satisfy the RE condition with probability at least

1− 2me
− n

4000σ4
x ≥ 1− 2p−1.

4. By Lemma 2,
Pr
(
∩k∈[m]EGC(Σ̂k)

)
≥ 1− 2p−2.

Since m < p, the probability is at least 1− 2p−1.

We apply the bounds cΩ ≤ 2 maxj∈[p] Σ−1
j,j , cΣ ≤

√
2 maxj∈[p](Σj,j)

1
2 , cGC = 8√

c1

√
κσ2

x, and

µl = 1
2λmin(Σ) to obtain

‖β̄ − β∗‖∞ ≤ σy
(

4 maxj∈[p] Σ−1
j,j log p

c2N

) 1
2

+
48
√

6
√
c1c2

√
κmaxj∈[p](Σj,j)

1
2

λmin(Σ)
σ2
xσy

s log p

n
.

Proof [Proof of Lemma 24] We follow a similar argument as the proof of Lemma 23:

Σ̂k;j,j = Σ̂j,j = Σ̂j,j − Σj,j + Σj,j =
1

n

n∑
i=1

x2
i,j − Σj,j + Σj,j .
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Since the zi = Σ−
1
2xi is subgaussian with subgaussian norm σx, xi,j is also subgaussian

with subgaussian norm bounded by

‖xi,j‖ψ2 ≤ ‖Σ
1
2
j,·zi‖ψ2 ≤ σx(Σj,j)

1
2 .

We recognize Σ̂j,j − Σj,j = 1
n

∑n
i=1 x

2
i,j − Σj,j as a sum of i.i.d. subexponential random

variables with subexponential norm bounded by

‖Σ̂j,j − Σj,j‖ψ1 ≤ 2‖x2
i,j‖ψ1 ≤ 4‖xi,j‖2ψ2

≤ 4σ2
xΣj,j .

By Vershynin (2010), Proposition 5.16, we have

Pr(|Σ̂j,j − Σj,j | > t) ≤ 2e
−c1 min{ nt2

16σ2
xΣ2

j,j

, nt
σxΣj,j

}

for some absolute constant c1 > 0. For t = Σj,j , the bound simplifies to

Pr(|Σ̂j,j − Σj,j | > Σj,j) ≤ 2e
−c1 min{ n

16σ2
x
, n
4σx
}
.

We take a union bound over j ∈ [p] to obtain the stated result.

Proof [Proof of Theorem 16] We start by substituting the linear model into (5):

β̃ =
1

m

m∑
k=1

β̂k − Θ̂Σ̂k(β̂k − β∗) +
1

n
Θ̂XT

k εk

=
1

m

m∑
k=1

β̂k − Θ̂Σ̂k(β̂k − β∗) +
1

N
Θ̂XT ε.

Subtracting β∗ and taking norms, we obtain

‖β̃ − β∗‖∞ ≤
1

m

m∑
k=1

‖(I − Θ̂Σ̂k)(β̂k − β∗)‖∞ +
∥∥ 1

N
Θ̂XT ε

∥∥
∞. (11)

By Vershynin (2010), Proposition 5.16, and Lemma (23), it is possible to show that

∥∥ 1

N
Θ̂XT ε

∥∥
∞ .P

( log p

N

) 1
2
.

We turn our attention to the first term in (11). It’s straightforward to see each term in the
sum is bounded by

‖(I − Θ̂Σ̂k)(β̂k − β∗)‖∞
≤ ‖(I − Σ−1Σ̂k)(β̂k − β∗)‖∞ + ‖(Σ−1 − Θ̂)Σ̂k(β̂k − β∗)‖∞
≤ maxj∈[p] ‖eTj − Σ−1

j Σ̂k‖∞‖β̂k − β∗‖1 + ‖Σ−1
j − Θ̂j,·‖1‖Σ̂k(β̂k − β∗)‖∞.

We put the pieces together to deduce each term is O
( smax log p

n

)
:
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1. By Lemmas 4, 6, 24, ‖β̂k − β∗‖1 .P
√
s0λk.

2. By Lemma 15, ‖Σ−1
j − Θ̂j,·‖1 .P sj

( log p
n

) 1
2 .

3. By the triangle inequality,

‖Σ̂k(β̂k − β∗)‖∞ ≤
∥∥∥ 1

n
XT
k (yk −Xkβ̂k)

∥∥∥
∞

+
∥∥∥ 1

n
XT
k εk

∥∥∥
∞
.

By the optimality conditions of the (local) lasso estimators, the first term is λk, and
it is possible to show, by Lemma 23 and Vershynin (2010), Proposition 5.16, that the

second term is OP
(( log p

n

) 1
2
)
.

Since λk �
( log p

n

) 1
2 , by a union bound over k ∈ [m], we obtain

‖β̄ − β∗‖∞ ∼ OP
(( log p

N

) 1
2

+
smax log p

n

)
,

where smax := max{s0, s1, . . . , sp}.

Proof [Proof of Lemma 18] The result is essentially Javanmard and Montanari (2013b),
Theorem 2.3 with Ω̂ = Θ̂ given by (6). Lemma 15 shows that

maxj∈[p] ‖Θ̂j,· − Σ−1
j ‖1 .P sj

( log p
n

) 1
2 ,

Since
maxj∈[p] s

2
j log p

n ∼ o(1), Θ̂ satisfies the conditions of Javanmard and Montanari (2013b),
Theorem 2.3:

‖∆̂k‖(∞,c′s0) .P
c
√
s0 log p

n
for any k ∈ [m],

The bound is uniform in k ∈ [m] by a union bound for suitable parameters λk ∼
( log p

n

) 1
2 .

Proof [Proof of Theorem 19] We start by substituting the linear model into (5):

β̃ =
1

m

m∑
k=1

∆̂k +
1

N
Θ̂XT ε.

Subtracting β∗ and taking norms, we obtain

‖β̃ − β∗‖(∞,c′s0) ≤
1

m

m∑
k=1

‖∆̂k‖(∞,c′s0) +
∥∥ 1

N
Θ̂XT ε

∥∥
(∞,c′s0)

. (12)

By Lemma 18, the first (bias) term is of order
c
√
s0 log p
n . We focus on showing the second

(variance) term is of order
( log p
N

) 1
2 . Since the (∞, l) norm is non-increasing in l,∥∥ 1

N
Θ̂XT ε

∥∥
(∞,c′s0)

≤
∥∥ 1

N
Θ̂XT ε

∥∥
∞.
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By Vershynin (2010), Proposition 5.16 and Lemma 23, it is possible to show that∥∥ 1

N
Θ̂XT ε

∥∥
∞ ∼ OP

(( log p

N

) 1
2
)
.

Thus the second term in (12) is of order
( log p
N

) 1
2 . We put all the pieces together to obtain

the stated conclusion.

Proof [Proof of Theorem 20] Since β̃ht − β∗ is 2s0-sparse,

‖β̃ht − β∗‖22 . s0‖β̃ht − β∗‖2(∞,c′s0)

or, equivalently,
‖β̃ht − β∗‖2 .

√
s0‖β̃ht − β∗‖(∞,c′s0).

By the triangle inequality,

‖β̃ht − β∗‖(∞,c′s0) ≤ ‖β̃ht − β̃‖(∞,c′s0) + ‖β̃ − β∗‖(∞,c′s0)

≤ 2‖β̃ − β∗‖(∞,c′s0),

where the second inequality is by the fact that thresholding at t = |β̃|(c′s0) minimizes
‖β − β∗‖(∞,c′s0) over c′s0-sparse points β. Thus

‖β̃ht − β∗‖2 = OP

((s0 log p

N

) 1
2

+
s0 log p

n

)
.

To complete the proof, we observe that the estimation error bound of β̃ht in the `1 norm
follows by the fact that β̃ht − β∗ is 2s0-sparse.
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