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Abstract

In this paper, we focus on parameters estimation of probabilistic models in discrete space. A
naive calculation of the normalization constant of the probabilistic model on discrete space
is often infeasible and statistical inference based on such probabilistic models has difficulty.
In this paper, we propose a novel estimator for probabilistic models on discrete space, which
is derived from an empirically localized homogeneous divergence. The idea of the empirical
localization makes it possible to ignore an unobserved domain on sample space, and the
homogeneous divergence is a discrepancy measure between two positive measures and has
a weak coincidence axiom. The proposed estimator can be constructed without calculating
the normalization constant and is asymptotically consistent and Fisher efficient. We in-
vestigate statistical properties of the proposed estimator and reveal a relationship between
the empirically localized homogeneous divergence and a mixture of the α-divergence. The
α-divergence is a non-homogeneous discrepancy measure that is frequently discussed in the
context of information geometry. Using the relationship, we also propose an asymptotically
consistent estimator of the normalization constant. Experiments showed that the proposed
estimator comparably performs to the maximum likelihood estimator but with drastically
lower computational cost.

Keywords: unnormalized model, homogeneous divergence, empirical localization, discrete
model

1. Introduction

In the fields of machine learning and pattern recognition, probabilistic models on discrete
space are useful for classification tasks or modeling discrete phenomena, so estimating pa-
rameters of probabilistic models on discrete space is a widely studied and important chal-
lenge. For example, the Boltzmann machine (with hidden variables) (Hinton and Sejnowski,
1986; Ackley et al., 1985; Amari et al., 1992) is a widely used probabilistic model to represent
binary variables, and the restricted Boltzmann machine (RBM) is especially attracting in-
creasing attention in the context of deep learning (Hinton, 2010; Hinton and Salakhutdinov,
2012). Training of probabilistic models on discrete space, i.e., estimation of parameters, is
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usually done by using the maximum likelihood estimation (MLE). An explicit expression of
the MLE cannot generally be obtained, so the gradient-based optimization is usually used.
A difficulty of the gradient-based optimization for such models comes from the calculation
of the normalization constant. The calculation of the gradient requires calculation of the
normalization constant in each step of the optimization and its computational cost some-
times increases exponentially. To tackle the problem of computational cost, various kinds
of approximation methods have been proposed. One approach tries to approximate the
probabilistic model (or expectation with the model) by using a tractable model or sampling
techniques. The mean-field approximation is a popular method to approximate the model
by assuming independence among variables (Opper and Saad, 2001). The contrastive di-
vergence (Hinton, 2002) avoids the exponential order calculation using the Markov Chain
Monte Carlo (MCMC) sampling: the method approximates the expectation using samples
obtained by the MCMC that runs few steps from the empirical distribution with a tran-
sition matrix defined with a current model. Another approach is estimation based on an
unnormalized model, which does not include the normalization constant and so is not nec-
essarily a probability. In the literature of parameters estimation of probabilistic models
for continuous variables, Hyvärinen (2005) used a score function which is a gradient of
log-density with respect to the data vector rather than parameters. This approach makes
it possible to estimate parameters without calculating the normalization term by focusing
on the shape of the density function. Hyvärinen (2007) extended the method to discrete
variables. This method uses information of a “neighbor” by contrasting its probability with
that of a flipped variable. Gutmann and Hirayama (2012) extended the above framework
and developed an approximated estimator on the basis of the Bregman divergence. Dawid
et al. (2012) proposed a generalized local scoring rules on discrete sample spaces and the-
oretically discussed a class of scoring rules for appropriate estimation. Takenouchi (2015)
focused on a specific class of models on discrete space and constructed an asymptotically
consistent estimator using the Itakura-Saito distance.

In this paper, we propose a novel method of parameter estimation for probabilistic
models on discrete space. The proposed estimator can be constructed without calculation of
the normalization constant by utilizing the unnormalized model and has suitable statistical
properties such as consistency and efficiency.1 The proposed estimator is derived from
minimization of a risk function defined by a combination of two ideas: the homogeneous
divergence and an empirical localization. The conventional divergence measure that has a
coincidence axiom ensures that the divergence is zero if and only if two positive measures
are equal. On the other hand, the homogeneous divergence follows a weak coincidence
axiom and is zero if and only if two positive measures have a proportional relationship. By
virtue of the property, the homogeneous divergence that has the weak coincidence axiom can
ignore the normalization constant, and the proposed estimator does not need to calculate
the normalization constant. The empirical localization is a method of transformation of
the unnormalized model and is an extension of the geometric mean of the model and the

1. A short version of this article was published as a conference paper (Takenouchi and Kanamori, 2015).
In this paper, we show the possibility of generalization of the basic framework shown in (Takenouchi
and Kanamori, 2015) and add some new theoretical results, including estimator for the normalization
constant. Also we add experiments with various kinds of models and settings to assess the validity of
the proposed method.
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empirical distribution of a given dataset. By using the empirical localization, we can restrict
the domain of the estimation problem to that of observed examples and omit calculations
associated with the domain of unobserved examples. This restriction of the domain can
drastically reduce computational cost. The derived risk function is convex for various kinds
of models including the higher order Boltzmann machine and so is easy to optimize. Also,
we investigate statistical properties of the proposed estimator and reveal that the proposed
estimator has the same asymptotic efficiency as the MLE. The proposed risk function is
closely related with the α-divergence (Amari and Nagaoka, 2000), which induces a Fisher
efficient estimator for discrete probabilistic models. The α-divergence is not homogeneous
divergence, and by utilizing the relationship, we also developed a feasible estimator of the
normalization constant.

Basic settings are described in Section 2, and we introduce the homogeneous divergence
and the idea of empirical localization of the unnormalized model in Section 3. We describe
a novel estimator for probabilistic models on discrete spaces and investigate its statistical
properties of the proposed estimator in Section 4. In Section 5, we discuss a characterization
of the risk function of the proposed estimator with the α-divergence and construct a feasible
estimator of the normalization constant. We numerically verify performance of the proposed
estimator by using synthetic datasets in Section 6.

2. Settings

Let X be a discrete space such as {+1,−1}d or the set of natural numbers. The bracket 〈f〉
for a real-valued function f on X denotes the sum of f(x) over X i.e., 〈f〉 =

∑
x∈X f(x).

We define M and P as the set of all non-negative functions and that of all probability
functions on X ,

M = {f : X → R≥0 |〈f〉 <∞} , P = {f ∈M|〈f〉 = 1}

where R≥0 is the set of all non-negative real numbers.

In this paper, we focus on parameter estimation of a probabilistic model q̄θ(x) on X
that is written as

q̄θ(x) =
qθ(x)

Zθ
(1)

where θ is an m-dimensional vector of parameters, qθ(x) is an unnormalized model in M
and Zθ = 〈qθ〉 is the normalization constant. The equality 〈qθ〉 =

∑
x∈X qθ(x) = 1 does

not necessarily hold for unnormalized models, and the normalization constant Zθ typically
requires a high computational cost. We thus need a device to circumvent the computation
of Zθ in statistical inferences. Throughout the paper, we assume without loss of generality
that the unnormalized model qθ(x) can be written as

qθ(x) = exp(ψθ(x)), (2)

where ψθ(x) is a function on X with the parameter θ.

Remark 1 By setting ψθ(x) as ψθ(x) − logZθ, the normalized model (1) can be written
as (2).
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Example 1 The Bernoulli distribution on X = {+1,−1} is the simplest example of the
probabilistic model (1) using the function ψθ(x) = θx for x ∈ X and θ ∈ R.

Example 2 For the parameter θ ∈ R, the function ψθ(x) = xθ − log x! leads to an unnor-
malized model for the Poisson distribution on X = {0, 1, 2, . . .} with mean eθ.

Example 3 Using a function ψθ,k(x) = (x1, . . . , xd, x1x2, . . . , xd−1xd, x1x2x3, . . .)θ in which
monomials of degree up to k appear, we can define a k-th order Boltzmann machine (Hinton
and Sejnowski, 1986; Sejnowski, 1986).

Example 4 Let xo ∈ {+1,−1}d1 and xh ∈ {+1,−1}d2 be an observed vector and hid-
den vector, respectively, and x =

(
xTo ,x

T
h

)
∈ {+1,−1}d1+d2 where T indicates the trans-

pose, be a concatenated vector. The Boltzmann machine with hidden variables is defined as
qh,θ(xo) = exp(ψh,θ(xo)) where the function ψh,θ(xo) is

ψh,θ(xo) = log
∑

xh

exp(ψθ,2(x)) (3)

and
∑
xh

denotes the summation with respect to the hidden variable xh.

Example 5 Let xo ∈ {+1,−1}d1 and xh ∈ {+1,−1}d2 be the observed vector and hidden
vector, respectively. The restricted Boltzmann machine is written as

qθ(xo) =
∑

xh

exp
(
θTo xo + θThxh + xThθh,oxo

)
(4)

= exp{θTo xo}
d2∏

k=1

{
e(θh+θh,oxo)k + e−(θh+θh,oxo)k

}
,

where θo ∈ Rd1 ,θh ∈ Rd2 are vectors of parameters, and θh,o ∈ Rd2×d1 is a matrix of
parameters. The index k in the above equation denotes the k-th element of the vector. Note
that some parameters in the Boltzmann machine with hidden variables (3) are restricted
to 0.

Suppose that a dataset D = {xi}ni=1 generated from an underlying distribution p(x) is
observed. Let Z be a set of all patterns in the dataset D. An empirical distribution p̃(x)
associated with the dataset D is defined as

p̃(x) =

{
nx
n x ∈ Z,

0 otherwise,

where nx is the number of patterns x in the dataset D. To estimate the parameter θ of the
probabilistic model q̄θ, the MLE defined by

θ̂mle = argmax
θ

L(θ)
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is frequently used, where

L(θ) =

n∑

i=1

log q̄θ(xi)

is the log-likelihood of the parameter θ using the normalized model q̄θ. The MLE is asymp-
totically consistent and efficient. However, the optimization of the log-likelihood function
can be computationally demanding for normalized models on huge discrete sample spaces.
Indeed, the gradient of L(θ) includes 〈p̃ψ′θ〉 − 〈q̄θψ′θ〉, where ψ′θ = ∂ψθ

∂θ . While the first
term 〈p̃ψ′θ〉 is the empirical mean that is easily calculated, the second term 〈q̄θψ′θ〉 requires
2d times summation for X = {+1,−1}d. Therefore, the gradient-based optimization is
computationally infeasible when d is large. To resolve this problem, we propose a novel
estimator using ideas of a homogeneous divergence and an empirical localization in the
following section.

3. Homogeneous Divergences for Statistical Inference

A divergence is an extension of the squared distance and is often used in statistical inference.
The formal definition of the divergence D(f, g) is a non-negative valued function onM×M
or P × P such that D(f, f) = 0 holds for arbitrary f . Many popular divergences such as
the Kullback-Leilber (KL) divergence defined on P × P enjoy the coincidence axiom, i.e.,
D(f, g) = 0 leads to f = g. The parameter in the statistical model q̄θ is estimated by
minimizing the divergence D(p̃, q̄θ) with respect to θ.

In statistical inference using unnormalized models, the coincidence axiom of the diver-
gence is not suitable since the probability and the unnormalized model generally do not
exactly match. Our purpose is to estimate the underlying distribution up to a constant
factor using unnormalized models. Hence, a divergence that has the property of the weak
coincidence axiom, i.e., D(f, g) = 0 if and only if g = cf for some c > 0, is a good candidate.
For a class of divergences having the weak coincidence axiom, we focus on homogeneous
divergences that satisfy the equality D(f, g) = D(f, cg) for any f, g ∈M and any c > 0.

A representative of homogeneous divergences is the pseudo-spherical (PS) divergence (Good,
1971), or in other words, γ–divergence (Fujisawa and Eguchi, 2008), that is defined from
the (reverse) Hölder inequality. For a positive constant γ and all non-negative functions
f, g in M, the Hölder inequality

〈
f1+γ

〉 1
1+γ
〈
g1+γ

〉 γ
1+γ ≥ 〈fgγ〉 (γ > 0)

holds. Also for a negative constant γ( 6= −1), the reverse Hölder inequality

〈
f1+γ

〉 1
1+γ
〈
g1+γ

〉 γ
1+γ ≤ 〈fgγ〉 (γ < 0, γ 6= −1)

holds. The above inequalities become an equality if and only if f and g are linearly depen-
dent. From the standard and reverse Hölder inequalities, the PS-divergence Dγ(f, g) for
f, g ∈M is defined as

Dγ(f, g) = sgn(γ)

{
1

1 + γ
log
〈
f1+γ

〉
+

γ

1 + γ
log
〈
g1+γ

〉
− log 〈fgγ〉

}
(γ 6= 0,−1), (5)
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where the sign function sgn(γ) takes 1 for γ > 0 and −1 for γ < 0. The PS divergence
is homogeneous, and the Hölder inequalities ensure the non-negativity and the weak co-
incidence axiom of the PS-divergence. A scaled PS-divergence converges to the extended
KL-divergence defined on M×M, as γ → 0. Fujisawa and Eguchi (2008) used the PS-
divergence with γ > 0 to obtain a robust estimator in parametric statistical inference.

The PS-divergence Dγ(f, g) from the empirical distribution f = p̃ to the unnormalized
model g = qθ is written as

Dγ(p̃, qθ) = Const+ sgn(γ)
γ

1 + γ
log
∑

x∈X
qθ(x)1+γ − sgn(γ) log

∑

x∈Z

nx
n
qθ(x)γ (6)

and computation of the second term is infeasible in our setup. To avoid such expensive com-
putation, some approximation techniques have been proposed such as the MCMC. Here,
we employ a new trick called “empirical localization.” The empirical localization is a way
to transform the model qθ, and its idea is to localize the domain X of qθ to Z by consid-
ering an extension of the geometric mean with the empirical distribution p̃. The empirical
localization of qθ with p̃ is defined by

p̃(x)αqθ(x)1−α =

{(
nx
n

)α
qθ(x)1−α x ∈ Z

0 otherwise,
(7)

where α is a non-negative real number. The empirical localization forces the transformed
function to be zero on a domain X \ Z of unobserved points, satisfying p̃(x) = 0. By
using the localization trick, the total sum 〈qγ+1

θ 〉 is replaced with a quantity similar to the
empirical mean,

〈
p̃αq1−α

θ

〉
=
∑

x∈Z

(nx
n

)α
qθ(x)1−α. (8)

The above quantity is easy to compute unless the sample size is extremely large. If the
sample size is large, a sub-sampling technique for obtaining an approximate of the empirical
mean can be used. Note that the empirical localization (7) is not defined when the value of
α is negative and the empirical distribution p̃(x) is zero at some points. However, we can
formally employ the trick of empirical localization (8) in such cases by ignoring a domain
of unobserved points. Thus, in the following, we assume that α is a non-zero real number.

Remark 2 The summation in (8) is defined on Z and is then computable even when α < 0.
Also the summation includes only Z(≤ n) terms, and its computational cost is O(n).

In addition, for convenience of notations, we define an e-mixture model rα,θ (r̃α,θ) of
the unnormalized model (2) and p (p̃) with ratio α ∈ R, as follows (Amari and Nagaoka,
2000).

rα,θ(x) =
p(x)αqθ(x)1−α
〈
pαq1−α

θ

〉 , r̃α,θ(x) =
p̃(x)αqθ(x)1−α
〈
p̃αq1−α

θ

〉 .

Note that r̃α,θ is a normalized version of the empirical localization (7). If p or q takes zero,
the parameter α is properly restricted.
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Remark 3 We observe that r0,θ(x) = r̃0,θ(x) = q̄θ(x), r1,θ(x) = p(x), r̃1,θ(x) = p̃(x).
Also, if p(x) = q̄θ0(x), rα,θ0(x) = q̄θ0(x) holds for an arbitrary α.

To use the trick of empirical localization, we define the localized PS-divergence Sα,α′,γ(p, q)
for the probability distribution p ∈ P and the unnormalized model q ∈ M by considering

the homogeneous divergence between f = (pαq1−α)
1

1+γ and g = (pα
′
q1−α′)

1
1+γ where α, α′

are two distinct real numbers:

Sα,α′,γ(p, q) = Dγ((pαq1−α)1/(1+γ), (pα
′
q1−α′)1/(1+γ))

= sgn(γ)

{
1

1 + γ
log
〈
pαq1−α〉+

γ

1 + γ
log〈pα′q1−α′〉 − log

〈
pᾱq1−ᾱ〉

}
, (9)

where ᾱ = (α + γα′)/(1 + γ). Note that the localized PS-divergence vanishes if and only
if pαq1−α ∝ pα

′
q1−α′ , i.e., q ∝ p. Substituting the empirical distribution p̃ into p, the total

sum over X is replaced with a variant of the empirical mean (8) on Z.
Since Sα,α′,γ(p, q) = Sα′,α,1/γ(p, q) holds, we can assume α > α′. Also we observe that

for γ < −1

Sα,α′,γ(p, q) =
γ

1 + γ
S
α,α+γα′

1+γ
,−1−γ(p, q),

and for −1 < γ < 0

Sα,α′,γ(p, q) =
1

1 + γ
S
α′,α+γα′

1+γ
,−γ(p, q),

respectively. Hence, we can assume γ > 0 without loss of generality. In summary, the
conditions of the real parameters α, α′, γ in Sα,α′,γ are given by

0 < γ, α > α′, α 6= 0, α′ 6= 0, α+ γα′ 6= 0,

where the last condition implies ᾱ 6= 0.
Let us consider another aspect of the computational issue of the localized PS-divergence

(9). For the probability distribution p and the unnormalized exponential model qθ, we show
that the localized PS-divergence Sα,α′,γ(p, qθ) is convex in θ when the parameters α, α′ and
γ are properly chosen.

Theorem 4 Let p ∈ P be any probability distribution and qθ be the unnormalized expo-
nential model qθ(x) = exp

(
θTφ(x)

)
, where φ(x) is a vector-valued function corresponding

to the sufficient statistic in the (normalized) exponential model q̄θ. When α, α′ and γ sat-
isfy ᾱ = (α + γα′)/(1 + γ) = 1, the localized PS-divergence Sα,α′,γ(p, qθ) is convex in θ.
Otherwise, there exist p and φ(x) such that Sα,α′,γ(p, qθ) is not convex in θ.

The proof of Theorem 4 is found in Appendix A.
When the value of α is negative and the probability p vanishes at some points, the total

sum
〈
pαq1−α〉 is not formally defined. We can avoid such a situation by setting both α

and α′ to positive values and observe the following proposition indicating that the result in
Theorem 4 holds even if both α and α′ are assumed to be positive.

Proposition 5 Even though α and α′ in Theorem 4 are both restricted to positive numbers,
we need ᾱ = 1 to guarantee the convexity of the localized PS-divergence Sα,α′,γ(p, qθ) in θ
for any p and any φ(x).
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The proof is found in Appendix B.

The localized PS-divergence with ᾱ = 1 characterized by Theorem 4 is denoted as
Sα,α′(p, q) where

Sα,α′(p, q) =
1− α′
α− α′ log

〈
pαq1−α〉+

α− 1

α− α′ log〈pα′q1−α′〉. (10)

for α > 1 > α′ 6= 0. The parameter α′ can be negative if the probability function p does
not take zero on X . Clearly, Sα,α′(p, q) satisfies the homogeneity and the weak coincidence
axiom as well as Sα,α′,γ(p, q).

The generalized Hölder’s inequality admits an extension of the localized PS-divergence.
For f1, . . . , fL ∈M, the generalized Hölder’s inequality

〈
L∏

`=1

f δ``

〉
≤

L∏

`=1

〈f`〉δ` (11)

holds, where δ1, . . . , δL satisfy 0 < δ` and
∑

` δ` = 1. The inequality becomes an equality if
and only if all f1, . . . , fL are proportional to a non-negative function g ∈ M. For the sake
of completeness, the proof of the generalized Hölder’s inequality is shown in Appendix C.

Substituting pα`q1−α` into f` of the generalized Hölder’s inequality, we obtain an exten-
sion of the localized PS-divergence defined as

Sα,δ(p, q) =

L∑

`=1

δ` log
〈
pα`q1−α`

〉
− log

〈
pᾱq1−ᾱ〉 (12)

with ᾱ =
∑

` α`δ`. Theorem 4 can be extended for Sα,δ(p, q). We omit the proof since it is
straightforward.

4. Estimation with Localized Pseudo-Spherical Divergences

Given the empirical distribution p̃ and the unnormalized model qθ, we define a novel esti-
mator θ̂ with the localized PS-divergence Sα,α′,γ or Sα,α′ :

θ̂ = argmin
θ

Sα,α′,γ(p̃, qθ) (13)

= argmin
θ

{ 1

1 + γ
log
∑

x∈Z

(nx
n

)α
qθ(x)1−α +

γ

1 + γ
log
∑

x∈Z

(nx
n

)α′
qθ(x)1−α′

− log
∑

x∈Z

(nx
n

)ᾱ
qθ(x)1−ᾱ

}
.

Though the localized PS-divergence plugged-in the empirical distribution is not well-defined
when α′ < 0 and p̃(x) = 0, we can formally define the estimator by restricting the domain
X to the observed set of examples Z, even for such the case, as shown in Remark 2.

Proposition 6 For the unnormalized model (2), the estimator (13) is Fisher consistent.
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Proof We observe

∂

∂θ
Sα,α′,γ(q̄θ0 , qθ)

∣∣∣∣
θ=θ0

=

(
ᾱ− α+ γα′

1 + γ

)〈
q̄θ0ψ

′
θ0

〉
= 0

implying the Fisher consistency of θ̂.

Example 6 For the Bernoulli distribution on X = {+1,−1}, the estimator (13) is equiv-
alent to the MLE, i.e., 1

2 log n+1

n−1
.

Theorem 7 Let qθ(x) be the unnormalized model (2), and θ0 be the true parameter of the
underlying distribution p(x) = q̄θ0(x). Then, the asymptotic distribution of the estimator
(13) is the normal distribution given as

√
n(θ̂ − θ0) ∼ N (0, I(θ0)−1),

where I(θ0) is the Fisher information matrix of the normalized model q̄θ0(x).

The proof is shown in Appendix D. The estimator defined from the general localized PS-
divergence Sα,δ(p̃, qθ) defined by (12) has the same asymptotic property.

Remark 8 The asymptotic distribution of (13) is equal to that of the MLE, and its variance
does not depend on α, α′, γ.

Remark 9 As shown in Remark 1, the normalized model (1) is a special case of the un-
normalized model (2) and then Theorem 7 holds for the normalized model.

5. Characterization of Sα,α′

Let us consider theoretical properties of the localized PS-divergence. In the following sub-
sections, we discuss an influence of selection of α, α′ and a characterization of Sα,α′ defined
by (10).

5.1 Influence of Selection of α, α′

We investigate influence of selection of α, α′ for the localized PS-divergence Sα,α′ with a

view of the estimating equation. The estimator θ̂ derived from Sα,α′ satisfies

∂Sα,α′(p̃, qθ)

∂θ

∣∣∣∣
θ=θ̂

∝
〈
r̃α′,θ̂ψ

′
θ̂

〉
−
〈
r̃α,θ̂ψ

′
θ̂

〉
= 0. (14)

which is a moment matching with respect to two distributions r̃α,θ and r̃α′,θ (α, α′ 6= 0, 1).
On the other hand, the estimating equation of the MLE is written as

∂L(θ)

∂θ

∣∣∣∣
θ=θmle

∝
〈
p̃ψ′θmle

〉
− 〈q̄θmleψθmle〉 =

〈
r̃1,θmleψ

′
θmle

〉
−
〈
r̃0,θmleψ

′
θmle

〉
= 0, (15)

which is a moment matching with respect to the empirical distribution p̃ = r̃1,θmle and
the normalized model q̄θ = r̃0,θmle . While the localized PS-divergence Sα,α′ is not defined

for (α, α′) = (0, 1), comparison of (14) with (15) implies that behavior the estimator θ̂ is
expected to be similar to that of the MLE in the limit of α→ 1 and α′ → 0.
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5.2 Relationship with α-Divergence

The α-divergence between two positive measures f, g ∈M is defined as

Dα(f, g) =
1

α(1− α)

〈
αf + (1− α)g − fαg1−α〉 .

Note that Dα(f, g) ≥ 0 and 0 if and only if f = g, and the α-divergence reduces to KL(f, g)
and KL(g, f) in the limit of α→ 1 and 0, respectively. See Amari and Nagaoka (2000) for
details of the α-divergences.

Remark 10 The estimator defined by minimizing α-divergence Dα(p̃, q̄θ) between the em-
pirical distribution p̃ and normalized model q̄ satisfies

∂Dα(p̃, q̄θ)

∂θ
∝
〈
p̃αq1−α

θ

(
ψ′θ −

〈
q̄θψ

′
θ

〉)〉
= 0,

which requires the computation of the normalizing constant. The same holds when unnor-
malized models are used. Hence, naive application of the α-divergences does not resolve the
computational issue.

Here, we assume that α, α′ 6= 0, 1 and consider a trick to cancel out the term 〈g〉 by
mixing two α-divergences as follows.

Dα,α′(f, g) =Dα(f, g) +

(−α′
α

)
Dα′(f, g)

=

〈(
1

1− α −
α′

α(1− α′)

)
f − 1

α(1− α)
fαg1−α +

1

α(1− α′)f
α′g1−α′

〉
.

Note that Dα,α′(f, g) ≥ 0 is divergence when αα′ < 0 holds, i.e., Dα,α′(f, g) ≥ 0 and
Dα,α′(f, g) = 0 if and only if f = g. Without loss of generality, we assume that α′ < 0 <
α 6= 1 holds for the parameter of Dα,α′ .

Firstly, let us consider the estimator obtained by the minimizer of Dα,α′(p̃, qθ),

θ̂ = argmin
θ

Dα,α′(p̃, qθ)

= argmin
θ

∑

x∈Z

1

α

{
1

1− α′
(nx
n

)α′
qθ(x)1−α′ − 1

1− α
(nx
n

)α
qθ(x)1−α

}
. (16)

Note that the summation in (16) includes only Z(≤ n) terms. Let q̄θ0(x) be the underlying
distribution and qθ(x) be the unnormalized model (2). Then the above estimator is not
Fisher consistent, i.e.,

∂Dα,α′(q̄θ0 , qθ)

∂θ

∣∣∣∣
θ=θ0

∝
〈
q̄α
′
θ0
q1−α′
θ0

ψ′θ0
− q̄αθ0

q1−α
θ0

ψ′θ0

〉
=
(
〈qθ0〉−α

′ − 〈qθ0〉−α
) 〈
qθ0ψ

′
θ0

〉
6= 0.

Hence, the estimator associated with Dα,α′(p̃, qθ) does not have suitable properties such
as (asymptotic) unbiasedness and consistency, while computational cost is drastically re-
duced. Intuitively, this is because the divergence Dα,α′ satisfies the coincidence axiom, i.e.,
Dα,α′(f, g) = 0 leads to f = g.

10
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The statistical consistency is recovered by employing a homogeneous divergence derived
from Dα,α′ . Let us consider the estimator defined by

(θ̂, ẑ) = argmin
θ, z>0

Dα,α′(p̃, qθ/z), (17)

where ẑ is an estimator of the normalization term Zθ = 〈qθ〉.

Proposition 11 Let qθ(x) be the unnormalized model (2). Then, the minimum solution
of

min
θ

min
z>0

Dα,α′(p̃, qθ/z)

with respect to θ is equal to that of

sgn(α− 1)Sα,α′(p̃, qθ),

where Sα,α′ is formally defined for (α, α′) such that α′ < 0 < α 6= 1.

Proof For a given θ, we observe that

ẑ = argmin
z>0

Dα,α′(p̃, qθ/z) =




〈
p̃α
′
q1−α′
θ

〉

〈
p̃αq1−α

θ

〉




1
α−α′

. (18)

Note that computation of (18) requires only sample order O(n) calculation. Then, we have

min
z>0

Dα,α′(p̃, qθ/z) =
α− α′

α(1− α′)(α− 1)

(〈
p̃αq1−α

θ

〉 1−α′
α−α′

〈
p̃α
′
q1−α′
θ

〉 α−1
α−α′ − 1

)

=
α− α′

α(1− α′)(α− 1)

(
eSα,α′ (p̃,qθ) − 1

)
. (19)

for α′ < 0 < α 6= 1.

If α′ < 0 and 1 < α hold, the estimator using a homogeneous variant of Dα,α′ is
equivalent to the estimator associated with the localized PS-divergence Sα,α′ . For α and
α′ such that α′ < 0 < α < 1, one can verify that sgn(α − 1)Sα,α′(p̃, qθ) is not convex in
the parameter θ of the unnormalized exponential model qθ(x) = exp{θTφ(x)}, though
sgn(α−1)Sα,α′ is still a homogeneous divergence. In any case, the mixture of α-divergences
is expressed by Sα,α′ .

From a viewpoint of the information geometry (Amari and Nagaoka, 2000), α-divergences
induce the Fisher metric that is an information geometrical structure on statistical mani-
folds. In other word, the Hessian matrix of the α-divergences is nothing but the Fisher infor-
mation matrix. This implies that the estimation based on the (mixture of) α-divergences is
Fisher efficient and is an intuitive explanation of Theorem 7. The localized PS divergences,
Sα,α′,γ and Sα,α′ , and its extension Sα,δ in (12) can be interpreted as an extension of the
α-divergences while keeping the Fisher efficiency.

We can estimate the normalization constant Zθ̂ by the optimal solution ẑ of (18).

11
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Theorem 12 The asymptotic distribution of the estimator (17) is given as a degenerated
multivariate normal distribution,

√
n (θ̂ − θ0, log ẑ − logZθ0) ∼ N(0, V ),

where V is written as

V =

(
I−1
θ0

I−1
θ0

(logZθ0)′

(logZθ0)
′T I−1

θ0
(logZθ0)

′T I−1
θ0

(logZθ0)′

)
.

Proof is shown in Appendix E.

6. Experiments

We especially focus on a setting of ᾱ = 1, i.e., convexity of the risk function with the
unnormalized model exp(θTφ(x)) holds (Theorem 4), and examined the performance of
the proposed estimator.

6.1 Fisher Efficiency

We investigate the Fisher efficiency of the estimator using the localized PS-divergence.
In numerical experiments, training samples were generated from the Poisson distribution
having the probability function

pθ(x) =
exθ−e

θ

x!
, θ ∈ R

for x = 0, 1, 2, . . ., where θ is the natural parameter. The usual parameter λ of the Poisson
distribution is written as λ = eθ that is equal to the expectation of x. Given the i.i.d.
data x1, . . . , xn, the MLE the parameter θ is given as log x̄ using the empirical mean x̄ =
1
n

∑n
i=1 xi.

We used the unnormalized model defined as

qθ(x) =
exθ

x!
.

Theorem 4 ensures that the localized PS-divergence with ᾱ = 1 from the empirical distri-
bution p̃ to the above unnormalized model, i.e., Sα,α′(p̃, qθ), is convex in θ. In numerical
experiments, the parameters of Sα,α′ was set to α = 1.1, α′ = 0.1. In addition, the estimator
using a pair scoring rule (Dawid et al., 2012),

θ̂κ =

∑
x≥0 p̃(x+ 1)(x+ 1)1+κ

∑
x≥0 p̃(x)(x+ 1)κ

,

was compared to the MLE and proposed method. Note that the above estimator with κ = 0
is nothing but the MLE. The estimator with κ = 1 was used.

Numerical results are presented in Figure 1. The horizontal axis is the number of
sample size n and the vertical axis is the averaged mean square errors of the estimated
parameter from the true parameter θ0 multiplied by n, i.e., n ·E[(θ̂−θ0)2]. Numerically, the

12
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Figure 1: Mean square errors of the estimator using localized PS-divergence, MLE, and
pair scoring rule are shown. Horizontal axis is the sample size and vertical axis is
mean square errors multiplied by the sample size. Left panel: θ0 = log(2). Right
panel: θ0 = log(10).

averaged mean square errors over 1000 repetitions were computed. The horizontal solid line
denotes the Cramér-Rao bound. All the estimators are consistent, since the averaged mean
square errors seems to be of the order O(1/n). Numerically, we showed that the localized
PS-divergence produces a Fisher efficient estimator, while the pair scoring rule does not
achieve the Cramér-Rao bound.

When the variance of the data, i.e., eθ0 , was large, the MSE of the proposed estimator
for the small sample size became large. This result indicates that the regularization will be
needed when a large-scale unnormalized model is used.

In addition to the parameter estimation, the normalization constant, Zθ = ee
θ
, was also

estimated using the equation (18). The results are presented in Fig. 2, which shows the av-
eraged relative error of the estimator of the normalization constant, |ẑ−Zθ0 |/Zθ0 , over 1000
repetitions. Numerically, the convergence speed of the estimator (18) was approximately of
the order O(1/

√
n).

6.2 Fully Visible Boltzmann Machine

In this subsection, we compared the proposed estimator with parameter settings (α, α′) =
(1.01, 0.01), (1.01,−0.01), (2,−1), with the MLE and the ratio matching method (Hyvärinen,
2007). Note that the ratio matching method also does not require calculation of the nor-
malization constant. In this experiment, we do not compare the proposed estimator with
the pseudo-likelihood method and the contrastive divergence which also do not require the
calculation of the normalization constant, because in (Hyvärinen, 2007), the ratio matching
method has been numerically compared with the pseudo-likelihood method and the con-
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Figure 2: Averaged relative errors of the estimator (18) for the normalization constant are
shown. Horizontal axis is the sample size. Left panel: θ0 = log(2). Right panel:
θ0 = log(10).

trastive divergence using the fully visible Boltzmann machine, and its result showed that
all methods have almost equal performance. In addition, some theoretical properties of
the pseudo-likelihood (and its extension, the composite likelihood) have been investigated
in (Mardia et al., 2009; Kanamori, 2016), showing that the pseudo-likelihood is not Fisher
efficient in general.

All methods were optimized with the optim function in R language (R Core Team, 2015).
The dimension d of input was set to 10 and the synthetic dataset was randomly generated
from the second order Boltzmann machine (Example 3) with a parameter θ∗ ∼ N (0, I/d).
We repeated comparison 50 times and observed averaged performance. Figure 3 (a) shows
median of the root mean square errors (RMSEs) between θ∗ and θ̂ of each method over
50 trials, against the number n of examples. We observe that the proposed estimator is
comparable with the MLE as predicted by the Theorem 7, and the ratio matching is also
comparable to the MLE under the setting. Figure 3 (b) shows a number of observed patterns
in a dataset consists of n examples. Figure 3 (c) shows median of computational time of each
method against n. The computational time of the MLE does not vary against n because the
computational cost is dominated by the calculation of the normalization constant. Both the
proposed estimator and the ratio matching method are significantly faster than the MLE.

We investigated performance of methods under an another situation, in which the true
parameter distributes as θ∗ ∼ N (0, I). Figure 4 (a) shows median of the root mean square
errors (RMSEs) between θ∗ and θ̂ of each method over 50 trials, against the number n of
examples. We observe that the proposed estimator works well, but the MLE outperforms
the proposed method contrary to the prediction of Theorem 7. This is because observed
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Figure 3: Results for datasets generated with a parameter θ∗ ∼ N (0, I/d). (a) Median of
RMSEs of each method against n, in log scale. (b) Box-whisker plot of number
|Z| of unique patterns in the dataset D against n. (c) Median of computational
time of each method against n, in log scale.

patterns were only a small portion of all possible patterns, as shown in Figure 4 (b). Even
in such a case, the MLE can take all possible patterns (210 = 1024) into account through
the normalization term Zθ because the Taylor expansion of logZθ around θ = 0 which is
approximated as

logZθ ' d log 2 +
1

2
||θ||2

term behaves like a regularizer. On the other hand, the proposed method genuinely uses
only the observed examples, and focuses on the restricted domain Z rather than the original
domain X , in which the asymptotic analysis would not be relevant in this case. Figure 4
(c) shows median of computational time of each method against n. Both the proposed
estimator and the ratio matching method are significantly faster than the MLE. While the
ratio matching method is faster than the proposed estimator, the RMSE of the proposed
estimator is less than that of the ratio matching.

To overcome the degrade of performance of the proposed estimator caused by lack of
example patterns, we consider a regularized version of the proposed estimator as,

argmin
θ

{
Sα,α′(p̃, qθ) +

λ

2n
||θ||2

}
. (20)

Note that we can employ the l1 regularizer to obtain a sparse estimator, rather than the
l2 regularizer. Ravikumar et al. (2010) theoretically investigated conditions for correctly
selecting edges of the Boltzmann machine using the l1-regularized logistic regression.

We investigated performance of the regularized estimator with the same dataset (θ∗ ∼
N (0, I)). Figure 5 shows median of RMSEs and computational time of the MLE, the ratio
matching, and the regularized estimator (α = 1.01, α′ = 0.01, λ = 0, 10−2, 10−4). The
Figure shows that performance of the proposed estimator is improved by the regularization
term ||θ||2, which can be interpreted as an approximation of the normalization constant
logZθ. Note that the computational time of the regularized estimator is drastically reduced
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Figure 4: Results for datasets generated with a parameter θ∗ ∼ N (0, I). (a) Median of
RMSEs of each method against n, in log scale. (b) Box-whisker plot of number
|Z| of unique patterns in the dataset D against n. (c) Median of computational
time of each method against n, in log scale.

Figure 5: (a) Median of RMSE of the MLE, the ratio matching and the regularized esti-
mator with α = 1.01, α′ = 0.01, and λ = 0, 10−2, 10−4 against n, in log scale. (b)
Median of computational time of each method against n, in log scale.

compared with that of estimator without regularization. This is because the cost function
(20) becomes similar to a quadratic function and the condition number associated with the
cost function is improved by the regularization, which influences required number of steps
of the quasi-Newton method.

Also we investigated performance of the estimator (18) for the normalization constant Zθ
and results for above two situations are shown in Figure 6. In the Figure 6, the averaged rela-
tive errors |ẑ − Zθ0 | /Zθ0 of the proposed estimator ((α, α′) = (1.01, 0.01), (1.01,−0.01), (2,−1))
are shown. We observe that the proposed estimator appropriately works.
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Figure 6: Median of relative errors of normalization constant estimates for two experiment
scenarios: (a) θ∗ ∼ N (0, I/d). (b) θ∗ ∼ N (0, I).

6.3 Sample Complexity

We numerically investigated the sample complexity of the proposed estimator (α1 = 1.01, α′ =
0.01, without the regularization term), i.e., a number N(ε, δ, d) of examples to attain

Pr(KL(q̄θ0 , q̄θ̂) ≥ ε) < δ

where ε and δ are arbitrary positive constants. For each dimension d = 2, 3, . . . , 21, we
generated a dataset containing n = 50 × 2k(k = 1, . . . , 9) examples from the fully visible
Boltzmann machine and calculated the KL divergences KL(q̄θ0 , q̄θ̂). For two kinds of pa-
rameter settings, i.e., θ0 ∼ N (0, I/d) and θ0 ∼ N (0, I), we repeated these procedures 50
times and observed 50 values of KL divergence. Each panel in Figure 7 shows median of
values of the KL divergence (δ = 0.5) for each setting of the parameter, respectively. Both
panels show that the proposed estimator requires approximately 2 ∼ 3 times as many exam-
ples examples against an increase of the dimensionality d at the same level ε of estimation
error KL(q̄θ0 , q̄θ̂).

6.4 Boltzmann Machine with Hidden Variables

In this subsection, we applied the proposed estimator for the Boltzmann machine with
hidden variables whose associated function is written as (3). The proposed estimator with
parameter settings (α, α′) = (1.01, 0.01), (1.01,−0.01), (2,−1) was compared with the MLE.
The dimension d1 of observed variables was fixed to 10 and d2 of hidden variables was set to
2, and the parameter θ∗ was generated as θ∗ ∼ N (0, I) including parameters correspond-
ing to hidden variables. Note that the Boltzmann machine with hidden variables is not
identifiable and different values of the parameter do not necessarily generate different prob-
ability distributions, implying that estimators are influenced by local minimums. Then we
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Figure 7: Median of KL divergences KL(q̄θ0 , q̄θ̂). Horizontal axis is dimension d, and ver-
tical axis is median of KL divergences, in log-scale. Number k (k = 1, . . . , 9) on
a line corresponds to number n = 50 × 2k of examples. (a) θ0 ∼ N (0, I/d). (b)
θ0 ∼ N (0, I),

measured performance of each estimator by the averaged log-likelihood 1
n

∑n
i=1 log q̄θ̂(xi)

rather than the RMSE of parameters. An initial value of the parameter was set by N (0, I)
and commonly used by all methods. We repeated the comparison 50 times and observed
the averaged performance. Figure 8 (a) shows median of averaged log-likelihoods of each
method for the training dataset over 50 trials, against the number n of example. We observe
that the proposed estimator is comparable with the MLE when the number n of examples
becomes large. Note that the averaged log-likelihood of MLE once decreases when n is
small, and this is due to overfitting of the model. Figure 8 (b) shows median of averaged
log-likelihoods of each method for test dataset consists of 10000 examples, over 50 trials.
Figure 8 (c) shows median of computational time of each method against n, and we observe
that the proposed estimator is significantly faster than the MLE.

In addition, we investigated performance of the regularized version (20) ( α = 1.01, α′ = 0.01
and λ = 0, 10−2, 10−4) and compared with the MLE. Figures 9 (a) and (b) show medians
of averaged log-likelihoods of the MLE and the regularized estimator over 50 trials, for
the training dataset and the test dataset, respectively. Figures imply that an appropriate
regularization can improve performance of the estimator and also as the experiment in
previous subsection, computational time of the regularized estimator is drastically reduced,
in comparison with that of the estimator without regularization.
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Figure 8: (a) Median of averaged log-likelihoods of each method against n. (b) Median of
averaged log-likelihoods of each method calculated for test dataset against n. (c)
Median of computational time of each method against n, in log scale.

Figure 9: (a) Median of averaged log-likelihoods of the MLE and regularized estimator
with λ = 0, 10−2, 10−4 against n. (b) Median of averaged log-likelihoods of each
method calculated for test dataset against n. (c) Median of computational time
of each method against n, in log scale.

7. Conclusions

We proposed a novel estimator for probabilistic models on discrete space, for which the
normalization constant is infeasible to calculate. The proposed estimator is based on un-
normalized models and an empirically localized PS-divergence having the homogeneous
property and can be constructed without calculation of the normalization constant. We
showed that homogeneous divergences with empirical localization allow the computation of
the normalization constant to be avoided because of a weak coincidence axiom. The idea of
empirical localization permits ignoring an unobserved domain on sample space, which can
drastically reduce computational cost. We investigated statistical properties of the proposed
estimator and revealed that the proposed estimator is asymptotically efficient and that its
asymptotic distribution is equal to that of the maximum likelihood estimator (MLE). In
addition, we showed a relationship between the empirically localized PS-divergence and a
mixture of α-divergences. The Hessian matrix of the α-divergence is known to be equal
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to the Fisher information matrix, which implies the Fisher efficiency of the proposed esti-
mator. A difference between two divergences is that the mixture of α-divergence does not
have homogeneous property. By utilizing this difference, we proposed an estimator for the
normalization constant that requires only sample order O(n) calculation and is asymptot-
ically consistent. We investigated the performance of the proposed estimator with various
kinds of models on discrete sample space and showed that the proposed estimator performs
comparably to the MLE, while required computational cost is drastically reduced.

A possible future direction for this work is application of the proposed framework for
models on continuous space. While employment of the framework for continuous space is
an interesting challenge, the empirical localization technique is difficult to apply to models
on continuous space because of the power of the empirical distribution described by the
delta function. Another direction is making the proposed estimator more robust. The PS-
divergence used in this paper is well known to be robust against outlier noise (Kanamori
and Fujisawa, 2015). The robustness of the PS-divergence can be controlled by the tuning
parameter γ, which was fixed to a value ensuring convexity of the risk function in this paper.
The robustification of the proposed estimator and its theoretical justification are important
issues for data analysis application.
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Appendix A. Proof of Theorem 4

Some calculation yields

∂2 log
〈
pαq1−α

θ

〉

∂θ∂θT
= (1− α)2Vrα,θ [φ],

where Vrα,θ [φ] is the covariance matrix of φ(x) under the probability rα,θ(x). Thus, the
Hessian matrix of Sα,α′,γ(p, qθ) is written as

∂2

∂θ∂θT
Sα,α′,γ(p, qθ) =

(1− α)2

1 + γ
Vrα,θ [φ] +

γ(1− α′)2

1 + γ
Vrα′,θ [φ]− (1− ᾱ)2Vrᾱ,θ [φ].

The Hessian matrix is positive semidefinite if ᾱ = 1.

To prove the second part, we prove that there exists a distribution p, a model qθ and
parameters α, α′, γ such that the Hessian is not positive semidefinite, for a given ᾱ 6= 1.
Suppose that X = {+1,−1}d and the function φ(x) = (φ1(x), . . . , φd(x)) ∈ Rd is defined
by φk(x) = xk, k = 1, . . . , d for x = (x1, . . . , xd) ∈ X . Let p be the uniform distribution on
X . The covariance matrix of φ is the diagonal matrix given by

Vrα,θ [φ] = 4 · diag

(
1

(e(1−α)θ1 + e−(1−α)θ1)2
, . . . ,

1

(e(1−α)θd + e−(1−α)θd)2

)
.
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Let δ be δ = 1/(1 + γ), then δ ∈ (0, 1) holds for γ > 0. We define

f(z; θ) =
(1− z)2

(e(1−z)θ + e−(1−z)θ)2
, z, θ ∈ R.

Then, the i-th diagonal element of the Hessian matrix is expressed by

∆ = δ · f(α; θi) + (1− δ) · f(α′; θi)− f(δα+ (1− δ)α′; θi)

up to a positive constant. Our task is to find the parameter α, α′, δ such that ᾱ = δα+ (1−
δ)α′ and ∆ < 0 hold. The function f satisfies the following properties.

(a) f(z; θ) ≥ 0 and f(z; θ) = 0⇔ z = 1.

(b) f(1 + ε; θ) = f(1− ε; θ) = f(1 + ε;−θ) for ε ≥ 0, θ ∈ R.

(c) limz→±∞ f(z; θ) = 0 holds for θ 6= 0.

Let θ be a fixed non-zero real number. Since ᾱ 6= 1, f(ᾱ; θ) > 0 holds. Due to the properties
(b) and (c), any sufficiently large ε > 0 satisfies f(1− ε; θ) = f(1 + ε; θ) < f(ᾱ; θ). Define
α = 1 + ε and α′ = 1 − ε. By choosing δ ∈ (0, 1) such that ᾱ = δα + (1 − δ)α′, we have
∆ < 0.

Appendix B. Proof of Proposition 5

Suppose that ᾱ > 1. Due to (a), (c) in Appendix A and the continuity of f(z, θ) at z = 1,
there exists α and α′ satisfying 1 < α′ < ᾱ < α such that both f(α′; θ) and f(α; θ) are less
than f(ᾱ; θ), where θ is a non-zero constant. Then, ∆ < 0 holds for δ ∈ (0, 1) such that
ᾱ = δα+ (1− δ)α′. We prove the case of 0 < ᾱ < 1. For a sufficiently large θ, we have

f(0; θ)

f(ᾱ; θ)
= O

(
e−2ᾱθ

(1− ᾱ)2

)
→ 0 (θ →∞).

Hence, the continuity of f ensures that there exist a sufficiently large θ and a small positive
α′ such that 0 < α′ < ᾱ and f(α′; θ) < f(ᾱ; θ) hold. The property (c) in the Appendix
A ensures that there exists a sufficiently large α > 1 satisfying f(α; θ) < f(ᾱ; θ). Again,
∆ < 0 holds for δ such that ᾱ = δα+ (1− δ)α′.

Appendix C. Generalized Hölder’s inequality

This section includes the proof and the equality condition of the generalized Hölder’s in-
equality. The inequality (11) of L = 2 is nothing but the standard Hölder’s inequality. The
inequality (11) of L = 3 is proved by using the standard one as follows:

〈
f δ11 f δ22 f δ33

〉
=

〈
(f

δ1
1−δ3

1 f
δ2

1−δ3
2 )1−δ3f δ33

〉
≤
〈
f

δ1
1−δ3

1 f
δ2

1−δ3
2

〉1−δ3
〈f3〉δ3 ≤ 〈f1〉δ1 〈f2〉δ2 〈f3〉δ3 ,

where δ1 + δ2 + δ3 = 1 and δi > 0 for i = 1, 2, 3 are assumed. The third inequality becomes
equality if and only if f1 and f2 are linearly dependent, and the second inequality becomes
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equality if and only if f
δ1

1−δ3
1 f

δ2
1−δ3

2 and f3 are linearly dependent. As a result, (11) of L = 3
becomes an equality if and only if there exists a function g ∈M such that all f1, f2, f3 are
proportional to g. In the same way, we can prove the generalized Hölder’s inequality of any
natural number L.

Appendix D. Proof of Theorem 7

We show the asymptotic distribution of the estimator defined from the localized PS-divergence
Sα,α′,γ . Along the same line, one can prove the asymptotic property of the estimator defined
from the general localized PS-divergence Sα,δ.

Let us assume that the empirical distribution is written as

p̃(x) = q̄θ0(x) + ε·s(x),

where ε is a small positive number and s(x) satisfies 〈s〉 = 0. Note that rα,θ0(x) = q̄θ0(x).
By expanding an equilibrium condition of the estimator (13) around θ = θ0, we obtain

0 =
∂

∂θ
Sα,α′,γ(p̃, qθ)

∣∣∣∣
θ=θ̂

=
∂

∂θ
Sα,α′,γ(p̃, qθ)

∣∣∣∣
θ=θ0

+
∂2

∂θ∂θT
Sα,α′,γ(p̃, qθ)

∣∣∣∣
θ=θ0

(θ̂ − θ0) +O(||θ̂ − θ0||2)

=

{
1− α
1 + γ

〈
r̃α,θ0ψ

′
θ0

〉
+
γ(1− α′)

1 + γ

〈
r̃α′,θ0ψ

′
θ0

〉
− (1− ᾱ)

〈
r̃ᾱ,θ0ψ

′
θ0

〉}

+

{
(1− α)2

1 + γ
Vr̃α,θ0

[ψ′θ0
] +

γ(1− α′)2

1 + γ
Vr̃α′,θ0

[ψ′θ0
]− (1− ᾱ)2Vr̃ᾱ,θ0

[ψ′θ0
]

+
1− α
1 + γ

〈
r̃α,θ0ψ

′′
θ0

〉
+
γ(1− α′)

1 + γ

〈
r̃α′,θ0ψ

′′
θ0

〉
− (1− ᾱ)

〈
r̃ᾱ,θ0ψ

′′
θ0

〉}
(θ̂ − θ0) +O(||θ̂ − θ0||2),

where ψ′θ0 and ψ′′θ0 are the gradient vector and the Hessian matrix of ψθ0(x) with respect
to the parameter θ. By the delta method (Van der Vaart, 1998), we observe that

(
〈
r̃α,θ0ψ

′
θ0

〉
−
〈
rα,θ0ψ

′
θ0

〉
)

= αε

〈
q̄α−1
θ0

q1−α
θ0

ψ′θ0
s
〉〈

q̄αθ0
q1−α
θ0

〉
−
〈
q̄αθ0

q1−α
θ0

ψ′θ0

〉〈
q̄α−1
θ0

q1−α
θ0

s
〉

〈
q̄αθ0

q1−α
θ0

〉2 +O(ε2)

= αε
(〈
ψ′θ0

s
〉
−
〈
q̄θ0ψ

′
θ0

〉
〈s〉
)

+O(ε2)

= αε
〈
ψ′θ0

s
〉

+O(ε2).
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Then we have

∂

∂θ
Sα,α′,γ(p̃, qθ)

∣∣∣∣
θ=θ0

− ∂

∂θ
Sα,α′,γ(p, qθ)

∣∣∣∣
θ=θ0

=
1− α
1 + γ

(〈
r̃α,θ0ψ

′
θ0

〉
−
〈
rα,θ0ψ

′
θ0

〉)
+
γ(1− α′)

1 + γ

(〈
r̃α′,θ0ψ

′
θ0

〉
−
〈
rα′,θ0ψ

′
θ0

〉)

− (1− ᾱ)
(〈
r̃ᾱ,θ0ψ

′
θ0

〉
−
〈
rᾱ,θ0ψ

′
θ0

〉)

=

{
1− α
1 + γ

〈
r̃α,θ0ψ

′
θ0

〉
+
γ(1− α′)

1 + γ

〈
r̃α′,θ0ψ

′
θ0

〉
− (1− ᾱ)

〈
r̃ᾱ,θ0ψ

′
θ0

〉}

−
{

1− α+ γα′

1 + γ
− (1− ᾱ)

}〈
q̄θ0ψ

′
θ0

〉

=

(
α

1− α
1 + γ

+ α′
γ(1− α′)

1 + γ
− (1− ᾱ)ᾱ

)〈
ψ′θ0

εs
〉

+O(ε2)

= − γ

(1 + γ)2
(α− α′)2

〈
ψ′θ0

(p̃− q̄θ0)
〉

+O(ε2).

From the central limit theorem,

√
n
〈
ψ′θ0

(p̃− q̄θ0)
〉

=
1√
n

n∑

i=1

(
ψ′θ0

(xi)−
〈
q̄θ0ψ

′
θ0

〉)

asymptotically follows the normal distribution with mean 0 and variance Vq̄θ0
[ψ′θ0

] = Iθ0 .
Also from the law of large numbers, we have

(1− α)2

1 + γ
Vr̃α [ψ′θ0

] +
γ(1− α′)2

1 + γ
Vr̃α′ [ψ

′
θ0

]− (1− ᾱ)2Vr̃ᾱ [ψ′θ0
]→ γ

(1 + γ)2
(α− α′)2Iθ0 ,

1− α
1 + γ

〈
r̃α,θ0ψ

′′
θ0

〉
+
γ(1− α′)

1 + γ

〈
r̃α′,θ0ψ

′′
θ0

〉
− (1− ᾱ)

〈
r̃ᾱ,θ0ψ

′′
θ0

〉

→
(

1− α+ γα′

1 + γ
− (1− ᾱ)

)〈
q̄θ0ψ

′′
θ0

〉
= 0

in the limit of n → ∞. Taking the probabilistic error in the law of large numbers into
account, we obtain the equality

√
n
(
θ̂ − θ0

)
= I−1

θ0

{
1√
n

n∑

i=1

(
ψ′θ0

(xi)−
〈
q̄θ0ψ

′
θ0

〉)
}

+ op(1)

Consequently, the asymptotic distribution of the estimator is given as

√
n
(
θ̂ − θ0

)
∼ N (0, I−1

θ0
).

Appendix E. Proof of Theorem 12

Let us consider the asymptotic property of ẑ. The logarithm of the estimator ẑ is expressed
as

log ẑ =
1

α− α′ log
〈
p̃α
′
q1−α′
θ̂

〉
− 1

α− α′ log
〈
p̃αq1−α

θ̂

〉
.
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In the same way as the calculation in Appendix D, we have

log
〈
pαq1−α

θ̂

〉
= (1− α) logZθ0 + (1− α)(logZθ0)′(θ̂ − θ0) + op(‖θ̂ − θ0‖).

From the above equation, we have

√
n(log ẑ − logZθ0) =

√
n(logZθ0)

′T (θ̂ − θ0) + op(1).

Therefore, the asymptotic variance of of log(ẑ) is given by

n · V [log(ẑ)] −→ (logZθ0)
′T I−1

θ0
(logZθ0)′.

We show the correlation between θ̂ and log ẑ. The asymptotic expansion above yields

n · (log ẑ − (logZθ0))(θ̂ − θ0) = (
√
n(θ̂ − θ0))(

√
n(θ̂ − θ0))T (logZθ0)

′
+ op(1)

and we have

n · E[(log ẑ − logZθ0)(θ̂ − θ0)] −→ I−1
θ0

(logZθ0)′.

Therefore, the asymptotic distribution of
√
n(θ̂ − θ0, log ẑ − logZθ0) is given as the multi-

variate normal distribution with mean zero and the following asymptotic variance

n · V [(θ̂, log ẑ)] −→
(

I−1
θ0

I−1
θ0

(logZθ0)′

(logZθ0)
′T I−1

θ0
(logZθ0)

′T I−1
θ0

(logZθ0)′

)

=

(
E

(logZθ0)
′T

)
I−1
θ0

(
E (logZθ0)′

)
,

where E is the identity matrix. Note that the distribution of the estimator (θ̂, ẑ) is asymp-
totically degenerated.
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