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Abstract

We present a novel analysis of the dynamics of tensor power iterations in the overcomplete
regime where the tensor CP rank is larger than the input dimension. Finding the CP
decomposition of an overcomplete tensor is NP-hard in general. We consider the case where
the tensor components are randomly drawn, and show that the simple power iteration
recovers the components with bounded error under mild initialization conditions. We
apply our analysis to unsupervised learning of latent variable models, such as multi-view
mixture models and spherical Gaussian mixtures. Given the third order moment tensor,
we learn the parameters using tensor power iterations. We prove it can correctly learn the
model parameters when the number of hidden components k is much larger than the data
dimension d, up to k = o(d1.5). We initialize the power iterations with data samples and
prove its success under mild conditions on the signal-to-noise ratio of the samples. Our
analysis significantly expands the class of latent variable models where spectral methods
are applicable. Our analysis also deals with noise in the input tensor leading to sample
complexity result in the application to learning latent variable models.
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1. Introduction

CANDECOMP/PARAFAC (CP) decomposition of a symmetric tensor T ∈ Rd×d×d is the
process of decomposing it into a succinct sum of rank-one tensors, given by

T =
∑
j∈[k]

λjaj ⊗ aj ⊗ aj , λj ∈ R, aj ∈ Rd, (1)

where⊗ denotes the outer product. The minimum k for which the tensor can be decomposed
in the above form is called the (symmetric) tensor rank. Tensor power iteration is a simple,
popular and efficient method for recovering the tensor rank-one components aj ’s. The tensor
power iteration is given by

x← T (I, x, x)

‖T (I, x, x)‖
, (2)

where

T (I, x, x) :=
∑
j,l∈[d]

xjxlT (:, j, l) ∈ Rd

is a multilinear combination of tensor fibers, and ‖·‖ is the `2 norm operator. See Section 1.3
for an overview of tensor notations and preliminaries.

The tensor power iteration is a generalization of matrix power iteration: for matrix
M ∈ Rd×d, the power iteration is given by x ← Mx/‖Mx‖. Dynamics and convergence
properties of matrix power iterations are well understood (Horn and Johnson, 2012). On
the other hand, a theoretical understanding of tensor power iterations is much more limited.
Tensor power iteration can be viewed as a gradient descent step (with infinite step size),
corresponding to the problem of finding the best rank-1 approximation of the input tensor
T (Anandkumar et al., 2014c). This optimization problem is non-convex. Unlike the matrix
case, where the number of isolated stationary points of power iteration is at most the
dimension (given by eigenvectors corresponding to unique eigenvalues), in the tensor case,
the number of stationary points is, in fact, exponential in the input dimension (Cartwright
and Sturmfels, 2013). This makes the analysis of tensor power iteration far more challenging.

Despite the above challenges, many advances have been made in understanding the
tensor power iterations in specific regimes. When the components aj ’s are orthogonal to
one another, it is known that there are no spurious local optima for tensor power itera-
tions, and the only stable fixed points correspond to the true aj ’s (Zhang and Golub, 2001;
Anandkumar et al., 2014c). Any tensor with linearly independent components aj ’s can
be orthogonalized, via an invertible transformation (whitening) and thus, its components
can be recovered efficiently. A careful perturbation analysis in this setting was carried out
in Anandkumar et al. (2014c).

The framework in Anandkumar et al. (2014c) is however not applicable in the overcom-
plete setting, where the tensor rank k exceeds the dimension d. Such overcomplete tensors
cannot be orthogonalized and finding guaranteed decomposition is a challenging open prob-
lem. It is known that finding CP tensor decomposition is NP-hard (Hillar and Lim, 2013).
In this paper, we make significant headway in showing that the simple power iterations can
recover the components in the overcomplete regime under a set of mild conditions on the
components aj ’s.
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Overcomplete tensors also arise in many machine learning applications such as moments
of many latent variable models, e.g., multiview mixtures, independent component Analysis
(ICA), and sparse coding models, where the number of hidden variables exceeds the input
dimensions (Anandkumar et al., 2015). Overcomplete models often have impressive em-
pirical performance (Coates et al., 2011), and can provide greater flexibility in modeling,
and are more robust to noise (Lewicki and Sejnowski, 2000). By studying algorithms for
overcomplete tensor decomposition, we expand the class of models that can be learnt effi-
ciently using simple spectral methods such as tensor power iterations. Note there are other
algorithms for decomposing overcomplete tensors (De Lathauwer et al., 2007; Goyal et al.,
2013; Bhaskara et al., 2013), but they all require tensors of at least 4-th order and require
large computational complexity. Ge and Ma (2015) works for 3rd order tensor but requires
quasi-polynomial time. The main contribution of this paper is an analysis for the practical
power method in the overcomplete regime.

1.1 Summary of Results

We analyze the dynamics of third order tensor power iterations in the overcomplete regime.
We assume that the tensor components aj ’s are randomly drawn from the unit sphere. Since
general tensor decomposition is challenging in the overcomplete regime, we argue that this
is a natural first step to consider for tractable recovery.

We characterize the basin of attraction for the local optima near the rank-one compo-
nents aj ’s. We show that under mild initialization condition, there is fast convergence to
these local optima in O(log log d) iterations. This result is the core technical analysis of this
paper stated in the following theorem.

Theorem 1 (Dynamics of tensor power iteration) Consider tensor T̂ = T + E such
that exact tensor T has rank-k decomposition in (1) with rank-one components aj ∈ Rd, j ∈
[k] being uniformly i.i.d. drawn from the unit d-dimensional sphere, and the ratio of max-
imum and minimum (in absolute value) weights λj’s being constant. In addition, suppose
the perturbation tensor E has bounded spectral norm as

‖E‖ ≤ ε
√
k

d
, where ε < o

(√
k

d

)
. (3)

Let tensor rank k = o(d1.5), and the unit-norm initial vector x(1) satisfy the correlation
bound

|〈x(1), aj〉| ≥ dβ
√
k

d
, (4)

w.r.t. some true component aj , j ∈ [k], for some β > (log d)−c for some universal constant
c > 0. After N = Θ (log log d) iterations, the tensor power iteration in (2) outputs a vector
having w.h.p. a constant correlation with the true component aj as |〈x(N+1), aj〉| ≥ 1 − γ,
for any fixed constant γ > 0.

As a corollary, this result can be used for learning latent variable models such as multi-
view mixtures. We show that the above initialization condition is satisfied using a sample
with mild signal-to-noise ratio; see Section 2 for more details on this.
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The above result is a significant improvement over the recent analysis by Anandkumar
et al. (2015, 2014a,b) for overcomplete tensor decomposition. In these works, it is required
for the initialization vectors to have a constant amount of correlation with the true aj ’s.
However, obtaining such strong initializations is usually not realistic in practice. On the
other hand, the initialization condition in (4) is mild, and decaying even when the rank k is
significantly larger than dimension d; up to k = o(d1.5). In learning the mixture model, such
initialization vectors can be obtained as samples from the mixture model, even when there
is a large amount of noise. Given this improvement, we combine our analysis in Theorem 1,
and the guarantees in Anandkumar et al. (2015, 2014a), proving that the model parameters
can be recovered consistently.

A detailed proof outline for Theorem 1 is provided in Section 3.1. Under the random
assumption, it is not hard to show that the first iteration of tensor power update makes
progress. However, after the first iteration, the input vector and the tensor components
are no longer independent of each other. Therefore, we cannot directly repeat the same
argument for the second step.

How do we analyze the second step even though the vector and tensor components are
correlated? The main intuition is to characterize the dependency between the vector and the
tensor components, and show that there is still enough randomness left for us to repeat the
argument. This idea was inspired by the analysis of Approximate Message Passing (AMP)
algorithms (Bayati and Montanari, 2010). However, our analysis here is very different in
several key aspects: 1) In approximate message passing, typically the analysis works in the
large system limit, where the number of iterations is fixed and the dimension goes to infinity.
Here we can handle a superconstant number of iterations O(log log d), even for finite d; 2)
Usually k is assumed to be a constant factor times d in the AMP-like analysis, while here
we allow them to be polynomially related.

1.2 Related Work

Tensor decomposition for learning latent variable models: In the introduction, some related
works are mentioned which study the theoretical and practical aspects of spectral techniques
for learning latent variable models. Among them, Anandkumar et al. (2014c) provide
the analysis of tensor power iteration for learning several latent variable models in the
undercomplete regime. Anandkumar et al. (2014a) provide the analysis in the overcomplete
regime and Anandkumar et al. (2014b) provide tensor concentration bounds and apply the
analysis in (Anandkumar et al., 2014a) to learning LVMs proposing tight sample complexity
guarantees.

Learning mixture of Gaussians: Here, we provide a subset of related works studying
learning mixture of Gaussians which are more comparable with our result. For a more
detailed list of these works, see Anandkumar et al. (2014c); Hsu and Kakade (2013). The
problem of learning mixture of Gaussians dates back to the work by Pearson (1895). They
propose a moment-based technique that involves solving systems of multivariate polynomials
which is in general challenging in both computational and statistical sense. Recently, lots of
studies on learning Gaussian mixture models have been done improving both aspects which
can be divided to two main classes: distance-based and spectral methods.
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Distance-based methods impose separation condition on the mean vectors showing that
under enough separation the parameters can be estimated. Among such approaches, we
can mention Dasgupta (1999); Vempala and Wang (2002); Arora and Kannan (2005). As
discussed in the summary of results, these results work even if k > d1.5 as long as the
separation condition between means is satisfied, but our work can tolerate higher level
of noise in the regime of k = o(d1.5) with polynomial computational complexity. The
guarantees in (Vempala and Wang, 2002) also work in the high noise regime but need
higher computational complexity as polynomial in kO(k) and d.

In the spectral approaches, the observed moments are constructed and the spectral de-
composition of the observed moments are performed to recover the parameters (Kalai et al.,
2010; Anandkumar et al., 2012, 2014b). Kalai et al. (2010) analyze the problem of learning
mixture of two general Gaussians and provide algorithm with high order polynomial sample
and computational complexity. Note that in general, the complexity of such methods grows
exponentially with the number of components without further assumptions (Moitra and
Valiant, 2010). Hsu and Kakade (2013) provide a spectral algorithm under non-degeneracy
conditions on the mean vectors and propose guarantees with polynomial sample complexity
depending on the condition number of the moment matrices. Anandkumar et al. (2014b)
perform tensor power iteration on the third order moment tensor to recover the mean vectors
in the overcomplete regime as long as k = o(d1.5), but need very good initialization vector
having constant correlation with the true mean vector. Here, we improve the correlation
level required for convergence.

1.3 Notation and Tensor Preliminaries

Let [k] := {1, 2, . . . , k}, and ‖v‖ denote the `2 norm of vector v. We use Õ and Ω̃ to hide
polylog factors in asymptotic notations O and Ω, respectively.

Tensor preliminaries: A real p-th order tensor T ∈
⊗pRd is a member of the outer

product of Euclidean spaces Rd. The different dimensions of the tensor are referred to as
modes. For instance, for a matrix, the first mode refers to columns and the second mode
refers to rows. In addition, fibers are higher order analogues of matrix rows and columns.
A fiber is obtained by fixing all but one of the indices of the tensor (and is arranged as a
column vector). For example, for a third order tensor T ∈ Rd×d×d, the mode-1 fiber is given
by T (:, j, l). Similarly, slices are obtained by fixing all but two of the indices of the tensor.
For example, for the third order tensor T , the slices along 3rd mode are given by T (:, :, l).

We view a tensor T ∈ Rd×d×d as a multilinear form. In particular, for vectors u, v, w ∈
Rd, we have 1

T (I, v, w) :=
∑
j,l∈[d]

vjwlT (:, j, l) ∈ Rd, (5)

which is a multilinear combination of the tensor mode-1 fibers. Similarly T (u, v, w) ∈ R is a
multilinear combination of the tensor entries, and T (I, I, w) ∈ Rd×d is a linear combination
of the tensor slices.

A 3rd order tensor T ∈ Rd×d×d is said to be rank-1 if it can be written in the form

T = λ · a⊗ b⊗ c⇔ T (i, j, l) = λ · a(i) · b(j) · c(l), (6)

1. Compare with the matrix case where for M ∈ Rd×d, we have M(I, u) = Mu :=
∑

j∈[d] ujM(:, j).
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h

z1 z2 zp· · ·

Figure 1: Multiview mixture model.

where notation ⊗ represents the outer product and a, b, c ∈ Rd are unit vectors. A tensor
T ∈ Rd×d×d is said to have a CP rank at most k if it can be written as the sum of k rank-1
tensors as

T =
∑
i∈[k]

λiai ⊗ bi ⊗ ci, λi ∈ R, ai, bi, ci ∈ Rd. (7)

For third order tensor T ∈ Rd×d×d, the spectral (operator) norm is defined as

‖T‖ := sup
‖u‖=‖v‖=‖w‖=1

|T (u, v, w)|.

In the rest of the paper, Section 2 describes how to apply our tensor results to learning
multiview mixture models. Section 3 illustrates the proof ideas, with more details in the
Appendix. Finally we conclude in Section 4.

2. Learning Multiview Mixture Model through Tensor Methods

We proposed our main technical result in Section 1.1 providing convergence guarantees for
the tensor power iterations given mild initialization conditions in the overcomplete regime;
see Theorem 1. Along this result we provide the application to learning multiview mixtures
model in Theorem 2. In this section, we briefly introduce the tensor decomposition frame-
work as the learning algorithm and then state the learning guarantees with more details
and remarks.

2.1 Multiview Mixture Model

Consider an exchangeable multiview mixture model with k components and p ≥ 3 views; see
Figure 1. Suppose that hidden variable h is a discrete categorical random variable taking
one of the k states. It is convenient to represent it by basis vectors such that

h = ej ∈ Rk if and only if it takes the j-th state.

Note that ej ∈ Rk denotes the j-the basis vector in the k-dimensional space. The prior
probability for each hidden state is Pr[h = ej ] = λj , j ∈ [k]. For simplicity, in this paper we
assume all the λi’s are the same. However, similar argument works even when the ratio of
maximum and minimum prior probabilities λmax/λmin is bounded by some constant.

The variables (views) zl ∈ Rd are related to the hidden state through factor matrix
A ∈ Rd×k such that

zl = Ah+ ηl, l ∈ [p],
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Algorithm 1 Learning multiview mixture model via tensor power iterations

Require: 1) Third order moment tensor T ∈ Rd×d×d in (8), 2) n samples of z1 in multiview

mixture model as z
(τ)
1 , τ ∈ [n], and 3) number of iterations N .

1: for τ = 1 to n do
2: Initialize unit vectors x

(1)
τ ← z

(τ)
1 /

∥∥z(τ)
1

∥∥.
3: for t = 1 to N do
4: Tensor power updates (see (5) for the definition of the multilinear form):

x(t+1)
τ =

T
(
I, x

(t)
τ , x

(t)
τ

)
∥∥∥T (I, x(t)

τ , x
(t)
τ

)∥∥∥ , (9)

5: end for
6: end for
7: return the output of Procedure 2 with input

{
x

(N+1)
τ : τ ∈ [n]

}
as estimates xj .

where zero-mean noise vectors ηl ∈ Rd are independent of each other and the hidden state
h. Given this, the variables (views) zl ∈ Rd are conditionally independent given the latent
variable h, and the conditional means are E[zl|h = ej ] = aj , where aj ∈ Rd denotes the j-th
column of factor matrix A = [a1 · · · ak] ∈ Rd×k. In addition, the above properties imply
that the order of observations zl do not matter and the model is exchangeable. The goal
of the learning problem is to recover the parameters of the model (factor matrix) A given
observations.

For this model, the third order2 observed moment has the form (Anandkumar et al.,
2014c)

E[z1 ⊗ z2 ⊗ z3] =
∑
j∈[k]

λjaj ⊗ aj ⊗ aj . (8)

Hence, given third order observed moment, the unsupervised learning problem (recovering
factor matrix A) reduces to computing a tensor decomposition as in (8).

2.2 Tensor Decomposition Algorithm

The algorithm for unsupervised learning of multiview mixture model is based on tensor
decomposition techniques provided in Algorithm 1. The main step in (9) performs tensor
power iteration;3 see (5) for the multilinear form definition. After running the algorithm
for all different initialization vectors, the clustering process from Anandkumar et al. (2015)
ensures that the best converged vectors are returned as the estimation of true components
aj .

2. It is enough to form the third order moment for our learning purpose.
3. This is the generalization of matrix power iteration to 3rd order tensors.
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Procedure 2 Clustering process (Anandkumar et al., 2015)

Require: Tensor T ∈ Rd×d×d, set S :=
{
x

(N+1)
τ : τ ∈ [n]

}
, parameter ν.

1: while S is not empty do
2: Choose x ∈ S which maximizes |T (x, x, x)|.
3: Do N more iterations of (9) starting from x.
4: Output the result of iterations denoted by x̂.
5: Remove all the x ∈ S with |〈x, x̂〉| > ν/2.
6: end while

2.3 Learning Guarantees

We assume a Gaussian prior on the mean vectors, i.e., the vectors aj ∼ N (0, Id/d), j ∈ [k]
are i.i.d. drawn from a standard multivariate Gaussian distribution with unit expected
square norm. Note that in the high dimension (growing d), this assumption is the same as
uniformly drawing from unit sphere since the norm of vector concentrates in the high dimen-
sion and there is no need for normalization. Even though we impose a prior distribution,
we do not use a MAP estimator, since the corresponding optimization is NP-hard. Instead,
we learn the model parameters through decomposition of the third order moments through
tensor power iterations. The assumption of a Gaussian prior is standard in machine learning
applications. We impose it here for tractable analysis of power iteration dynamics. Such
Gaussian assumptions have been used before for analysis of other iterative methods such as
approximate message passing algorithms, and there are evidences that similar results hold
for more general distributions; see (Bayati and Montanari, 2010) and references there.

As explained in the previous sections, we use tensor power method to learn the compo-
nents aj ’s, and the method is initialized with observed samples zi. Intuitively, this initializa-
tion is useful since zi = Ah+ηi is a perturbed version of desired parameter aj (when h = ej).
Thus, we present the result in terms of the signal-to-noise (SNR) ratio which is the expected
norm of signal aj (which is one here) divided by the expected norm of noise ηi, i.e., the
SNR in the i-th sample zi = aj + ηi (assumed h = ej) is defined as SNR := E[‖aj‖]/E[‖ηi‖].
This specifies how much noise the initialization vector zi can tolerate in order to ensure
the convergence of tensor power iteration to a desired local optimum. We now propose the
conditions required for recovery guarantees, and state a brief explanation of them.

Conditions for Theorems 2 and 3:

• Rank condition: k ≤ o(d1.5).

• The columns of A are uniformly i.i.d. drawn from unit d-dimensional sphere.

• The noise vectors ηl, l ∈ [3], are independent of matrix A and each other. In addition,
the signal-to-noise ratio (SNR) is w.h.p. bounded as

SNR ≥ Ω

(√
max{k, d}
d1−β

)
,

for some β ≥ (log d)−c for universal constant c > 0.

8



Tensor Power Method Dynamics in Overcomplete Regime

The rank condition bounds the level of overcompleteness for which the recovery guar-
antees are satisfied. The random assumption on the columns of A are crucial for analyzing
the dynamics of tensor power iteration. We use it to argue there exists enough random-
ness left in the components after conditioning on the previous iterations; see Section 3.1
for the details. The bound on the SNR is required to make sure the given sample used
for initialization is close enough to the corresponding mean vector. This ensures that the
initial vector is inside the basin-of-attraction of the corresponding component, and hence,
the convergence to the mean vector can be guaranteed. Under these assumptions we have
the following theorem.

Theorem 2 (Learning multiview mixture model: closeness to single columuns)
Consider a multiview mixture model (or a spherical Gaussian mixture) in the above settings
with k components in d dimensions. If the above conditions hold, then the tensor power
iteration converges to a vector close to one of the true mean vectors aj’s (having constant
correlation).

In particular, for mildly overcomplete models, where k = αd for some constant α > 1,
the signal-to-noise ratio (SNR) is as low as Ω(d−1/2+ε), for any ε > 0. Thus, we can learn
mixture models with a high level of noise. In general, we establish how the required noise
level scales with the number of hidden components k, as long as k = o(d1.5).

The above theorem states convergence to desired local optima which are close to true
components aj ’s. In Theorem 3, we show that we can sharpen the above result, by jointly
iterating over the recovered vectors, and consistently recover the components aj ’s. This
result also uses the analysis from Anandkumar et al. (2015).

Theorem 3 (Learning multiview mixture model: recovering the factor matrix)
Assume the above conditions hold. The initialization of power iteration is performed by
samples of z1 in multiview mixture model. Suppose the tensor power iterations are at least
initialized once for each aj , j ∈ [k] such that z1 = aj+η1.4 Then by using the exact 3rd order
moment tensor in (8) as input, the tensor decomposition algorithm outputs an estimate Â
(up to permutation of its columns) satisfying w.h.p. (over the randomness of the components
aj’s) ∥∥∥Â−A∥∥∥

F
≤ ε,

where the number of iterations of the algorithm is N = Θ
(
log
(

1
ε

)
+ log log d

)
.

See Section 3 for the proof.
The above theorems assume the exact third order tensor is given to the algorithm. We

provide the results given empirical tensor in Section 2.3.1.
Learning spherical Gaussian mixtures: Consider a mixture of k different Gaussian vec-

tors with spherical covariance. Let aj ∈ Rd, j ∈ [k] denote the mean vectors and the
covariance matrices are σ2I. Assuming the parameter σ is known, the modified third order
observed moment

M3 := E[z ⊗ z ⊗ z]− σ2
∑
i∈[d]

(E[z]⊗ ei ⊗ ei + ei ⊗ E[z]⊗ ei + ei ⊗ ei ⊗ E[z])

4. Note that this happens for component j with high probability when the number of initializations is
proportional to inverse prior probability corresponding to that mixture.

9



Anandkumar, Ge, and Janzamin

has the tensor decomposition form (Hsu and Kakade, 2012)

M3 =
∑
j∈[k]

λjaj ⊗ aj ⊗ aj ,

where λj is the probability of drawing j-th Gaussian mixture. The above guarantees can
be applied to learning mean vectors aj in this model with the additional property that the
noise is spherical Gaussian.

Learning multiview mixture model with distinct factor matrices: Consider the multiview
mixture model with different factor matrices where the first three views are related to the
hidden state as

z1 = Ah+ η1, z2 = Bh+ η2, z3 = Ch+ η3.

Then, the guarantees in the above theorem can be extended to recovering the columns of
all three factor matrices A, B, and C with appropriate modifications in the power iteration
algorithm as follows. First the update formula (9) is changed as

x
(t+1)
1,τ =

T
(
I, x

(t)
2,τ , x

(t)
3,τ

)
∥∥∥T (I, x(t)

2,τ , x
(t)
3,τ

)∥∥∥ , x
(t+1)
2,τ =

T
(
x

(t)
1,τ , I, x

(t)
3,τ

)
∥∥∥T (x(t)

1,τ , I, x
(t)
3,τ

)∥∥∥ , x
(t+1)
3,τ =

T
(
x

(t)
1,τ , x

(t)
2,τ , I

)
∥∥∥T (x(t)

1,τ , x
(t)
2,τ , I

)∥∥∥ ,
which is the alternating asymmetric version of symmetric power iteration in (9). Here,
we alternate among different modes of the tensor. In addition, the initialization for each
mode of the tensor is appropriately performed with the samples corresponding to that
mode. Note that the analysis still works in the asymmetric version since there exists even
more independence relationships through the iterations of the power update because of
introducing new random matrices B and C.

2.3.1 Sample Complexity Analysis

In the previous section, we assumed the exact third order tensor in (8) is given to the tensor

decomposition Algorithm 1. We now estimate the tensor given n samples z
(i)
1 , z

(i)
2 , z

(i)
3 , i ∈

[n], as

T̂ =
1

n

∑
i∈[n]

z
(i)
1 ⊗ z

(i)
2 ⊗ z

(i)
3 . (10)

For the multiview mixture model introduced in Section 2.1, let the noise vector ηl be
spherical, and ζ2 denote the variance of each entry of noise vector. We now provide the
following recovery guarantees.

Additional conditions for Theorem 4:

• Let E1 := [η
(1)
1 , η

(2)
1 , . . . , η

(n)
1 ] ∈ Rd×n, where η

(i)
1 ∈ Rd is the i-th sample of noise

vector η1. These noise matrices satisfy the following RIP property which is adapted
from Candes and Tao (2006). Matrix E1 ∈ Rd×n satisfies a weak RIP condition such

that for any subset of O
(

d
log2 d

)
number of columns, the spectral norm of E1 restricted

to those columns is bounded by 2. The same condition is satisfied for similarly defined
noise matrices E2 and E3.
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• The number of samples n satisfies lower bound such that

ζ

(√
d

n
+

√
λmax

d

n

)
+ ζ2

(
d

n
+

√
λmax

d1.5

n

)

+ ζ3

(
d1.5

n
+

√
d

n

)
≤ min

{
ε

√
k

d
, Õ(λmin)

}
, (11)

where ε < o
(√

k/d
)

.

Theorem 4 (Learning multiview mixture model) Consider the empirical tensor in
(10) as the input to tensor decomposition Algorithm 1. Suppose the above additional condi-
tions are also satisfied. Then, the same guarantees as in Theorem 2 hold. In addition, the
same guarantees as in Theorem 3 also hold with the recovery bound (up to permutation of
columns of Â) changed as ∥∥∥Â−A∥∥∥

F
≤ Õ

(√
k · ‖E‖
λmin

)
,

where E denotes the perturbation tensor originated from empirical estimation in (10), and
its spectral norm ‖E‖ is bounded by the LHS of (11).

See Section 3 for the proof.

3. Proof Outline

Our main technical result is the analysis of third order tensor power iteration provided in
Theorem 1 which also allows to tolerate some amount of noise in the input tensor. We
analyze the noiseless and noisy settings in different ways. We basically first prove the result
for the noiseless setting where the input tensor has an exact rank-k decomposition in (1).
When the noise is also considered, we show that the contribution of noise in the analysis
is dominated by the main signal, and thus, the same result still holds. For the rest of this
section we focus on the noiseless setting, while we discuss the proof ideas for the noisy case
in Section 3.2.

We first discuss the proof of Theorem 3 which involves two phases. In the first phase,
we show that under certain small amount of correlation (see (13)) between the initial vector
and the true component, the power iteration in (2) converges to some vector which has
constant correlation with the true component. This result is the core technical analysis of
this paper which is provided in Lemma 5. In the second phase, we incorporate the result
of Anandkumar et al. (2015, 2014a) which guarantees the convergence of power iteration
(followed by a coordinate descent iteration) given initial vectors having constant correlation
with the true components. This is stated in Lemma 6.

To simplify the notation, we consider the tensor5

T =
∑
j∈[k]

aj ⊗ aj ⊗ aj , aj ∼ N (0,
1

d
Id). (12)

5. In the analysis, we assume that all the weights are equal to one which can be generalized to the case
when the ratio of maximum and minimum weights (in absolute value) are constant.

11
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Notice that this is exactly proportional to the 3rd order moment tensor of the multiview
mixture model in (8).

The following lemma is restatement of Theorem 1 in the noiseless setting.

Lemma 5 (Dynamics of tensor power iteration, phase 1) Consider the rank-k ten-
sor T of the form in (12). Let tensor rank k = o(d1.5), and the unit-norm initial vector x(1)

satisfies the correlation bound

|〈x(1), aj〉| ≥ dβ
√
k

d
, (13)

w.r.t. some true component aj , j ∈ [k], for some β > (log d)−c for some universal constant
c > 0. After N = Θ (log log d) iterations, the tensor power iteration in (2) outputs a vector
having w.h.p. a constant correlation with the true component aj as

|〈x(N+1), aj〉| ≥ 1− γ,

for any fixed constant γ > 0.

The proof outline of above lemma is provided in Section 3.1. Next, we provide the
following lemma from Anandkumar et al. (2015) which provides the dynamics of tensor
power iteration when the initialization satisfies the constant correlation bound stated below.

Lemma 6 (Dynamics of tensor power iteration, phase 2) Consider the rank-k ten-

sor T of the form in (12) with rank condition k ≤ o(d1.5). Let the initial vectors x
(1)
j satisfy

the constant correlation bound
|〈x(1)

j , aj〉| ≥ 1− γj ,

w.r.t. true components aj , j ∈ [k], for some constants γj > 0. Let the output of the tensor
power updates6 in (2) applied to all these different initialization vectors after N = Θ

(
log 1

ε

)
iterations be stacked as columns of matrix Â. Then, we have w.h.p.7∥∥∥Â−A∥∥∥

F
≤ ε,

where the recovery error is up to permutation of columns of Â.

See Anandkumar et al. (2015) for the proof of above lemma. Given the above two
lemmas, the learning result in Theorem 3 is directly proved.
Proof of Theorem 3 The result is proved by combining Lemma 5 and Lemma 6. Note
that the initialization condition in (4) is w.h.p. satisfied given the SNR bound assumed.

Proof of Theorem 4 In Theorem 3, we provided the result given exact tensor by combin-
ing Lemmas 5 and 6. The only difference here is we are given an empirical estimate of the
tensor and we need to incorporate the effect of noise in the empirical input. We now use

6. This result also needs an additional step of coordinate descent iterations since the true components are
not the fixed points of power iteration; see Anandkumar et al. (2015, 2014a) for the details.

7. Anandkumar et al. (2015, 2014a) recover the vector up to sign since they work in the asymmetric case.
In symmetric case it is easy to resolve sign ambiguity issue.

12



Tensor Power Method Dynamics in Overcomplete Regime

Theorem 1 that characterizes the effect of noise in first step (adapting Lemma 5 to noisy
setting), and Anandkumar et al. (2015) that provide the result of Lemma 6 in noisy setting.
In addition, the tensor concentration bound for multiview mixture model is analyzed in
Theorem 1 of Anandkumar et al. (2014b) (Lemma 56 in Anandkumar et al. (2015)) that
shows the error between empirical and exact tensors is bounded as

‖T̂ − T‖ ≤ ζ

(√
d

n
+

√
λmax

d

n

)
+ ζ2

(
d

n
+

√
λmax

d1.5

n

)
+ ζ3

(
d1.5

n
+

√
d

n

)
.

The sample complexity requirement in (11) is then derived by imposing the error require-
ments in our noisy analysis of tensor power dynamics in Theorem 1 (see Equation (3)) and
the noisy analysis of Lemma 6 (see Theorem 1 of Anandkumar et al. (2015) where the
perturbation tensor E needs to be bounded as ‖E‖ ≤ Õ(λmin)). The final recovery error

on
∥∥∥Â−A∥∥∥

F
is also from Theorem 1 of Anandkumar et al. (2015).

3.1 Proof Outline of Lemma 5 (Noiseless Case of Theorem 1)

First step: We first intuitively show the first step of the algorithm makes progress. Suppose

the tensor is T =
∑

j∈[k] aj⊗aj⊗aj , and the initial vector x has correlation |〈x, a1〉| ≥ dβ
√
k
d

with the first component. The result of the first iteration is the normalized version of the
following vector:

x̃ =
∑
j∈[k]

〈aj , x〉2aj .

Intuitively, this vector should have roughly 〈a1, x̃〉 = d2β k
d2

correlation with a1 (as the other
terms are random they don’t contribute much). On the other hand, the norm of this vector
is roughly O(

√
k/d): this is because 〈aj , x〉2 for j 6= 1 is roughly8 1/d, and the sum of k

random vectors with length 1/d will have length roughly O(
√
k/d). These arguments can be

made precise showing the normalized version x̃/‖x̃‖ has correlation d2β
√
k
d with a1 ensuring

progress in the first step.

Going forward: As we explained, the basic idea behind proving Lemma 5 is to character-
ize the conditional distribution of random Gaussian tensor components aj ’s given previous
iterations. In particular, we show that the residual independent randomness left in these
conditional distributions is large enough and we can exploit it to obtain tighter concentra-
tion bounds throughout the analysis of the iterations. The Gaussian assumption on the
components, and small enough number of iterations are crucial in this argument.

Notations: For two vectors u, v ∈ Rk, the Hadamard product denoted by ∗ is defined
as the entry-wise multiplication of vectors, i.e., (u ∗ v)j := ujvj for j ∈ [k]. For a matrix
A, let P⊥A

denote the projection operator to the subspace orthogonal to column span of
A. For a subspace R, let R⊥ denote the space orthogonal to it. Therefore, for a subspace
R, the projection operator on the subspace orthogonal to R is equivalently denoted by PR⊥
or P⊥R

. For a random matrix D, let D|{u = Dv} denote the conditional distribution of D

8. The correlation between two unit Gaussian vectors in d dimensions is roughly 1/
√
d.

13
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given linear constraints u = Dv. We also use equality notation
(d)
= to denote the equivalence

in distribution.

Lemma 5 involves analyzing the dynamics of power iteration in (2) for 3rd order rank-k

tensors. For the rank-k tensor in (12), the power iterative form x← T (I,x,x)
‖T (I,x,x)‖ can be written

as

x(t+1) =
A
(
A>x(t)

)∗2∥∥∥A (A>x(t)
)∗2∥∥∥ , (14)

where the multilinear form in (5) is used. Here, A = [a1 · · · ak] ∈ Rd×k denotes the factor
matrix, and for vector y ∈ Rk, y∗2 := y ∗ y ∈ Rk represents the element-wise square of
entries of y.

We consider the case where ai ∼ N (0, 1
dI) are i.i.d. drawn and we analyze the evolution

of the dynamics of the power update. As explained earlier, for a given initialization x(1),
the update in the first step can be analyzed easily since A is independent of x(1). However,
in subsequent steps, the updates x(t) are dependent on A, and it is no longer clear how to
provide a tight bound on the evolution of x(t). In this work, we provide a careful analysis
by controlling the amount of “correlation build-up” by exploiting the structure of Gaussian
matrices under linear constraints. This enables us to provide better guarantees for matrix
A with Gaussian entries compared to general matrices A.

Intermediate update steps and variables:Before we proceed, we need to break down power
update in (2) and introduce some intermediate update steps and variables as follows. Recall
that x(1) ∈ Rd denotes the initialization vector. Without loss of generality, let us analyze
the convergence of power update to first component of rank-k tensor T denoted by a1.

Hence, let the first entry of x(1) denoted by x
(1)
1 be the maximum entry (in absolute value)

of x(1), i.e., x
(1)
1 = ‖x(1)‖∞. Let B := [a2 a3 · · · ak] ∈ Rd×(k−1), and therefore A = [a1|B].

We break the power update formula in (2) into a few steps by introducing intermediate
variables y(t) ∈ Rk and x̃(t+1) ∈ Rd as

y(t) := A>x(t), x̃(t+1) := A(y(t))∗2.

Note that x̃(t+1) is the unnormalized version of x(t+1) := x̃(t+1)/‖x̃(t+1)‖, i.e., x̃(t+1) :=
T (I, x(t), x(t)). Thus, we need to jointly analyze the dynamics of all variables x(t), y(t) and
(y(t))∗2. Define

X [t] :=
[
x(1)| . . . |x(t)

]
, Y [t] :=

[
y(1)| . . . |y(t)

]
.

Matrix B is randomly drawn with i.i.d. Gaussian entries Bij ∼ N (0, 1
d). As the iterations

proceed, we consider the following conditional distributions

B(t,1) := B|{X [t], Y [t]}, B(t,2) := B|{X [t+1], Y [t]}. (15)

Thus, B(t,1) is the conditional distribution of B at the middle of tth iteration (before update
step x̃(t+1) = A(y(t))∗2) and B(t,2) is the conditional distribution at the end of tth iteration
(after update step x̃(t+1) = A(y(t))∗2). By analyzing the above conditional distributions, we
can characterize the left independent randomness in B.

14
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3.1.1 Conditional Distributions

In order to characterize the conditional distribution of B under evolution of x(t) and y(t) in
(15), we exploit the following basic fact (see (Bayati and Montanari, 2010) for proof).

Lemma 7 (Conditional distribution of Normal matrices under linear condition)
Consider random matrix D with i.i.d. Gaussian entries Dij ∼ N (0, σ2). Conditioned on
u = Dv with known vectors u and v, the matrix D is distributed as

D|{u = Dv} (d)
=

1

‖v‖2
uv> + D̃P⊥v ,

where random matrix D̃ is an independent copy of D with i.i.d. Gaussian entries D̃ij ∼
N (0, σ2), and P⊥v is the projection operator on to the subspace orthogonal to v.

We refer to D̃P⊥v as the residual random matrix since it represents the remaining
randomness left after conditioning. It is a random matrix whose rows are independent
random vectors that are orthogonal to v, and the variance in each direction orthogonal to
v is equal to σ2.

The above Lemma can be exploited to characterize the conditional distribution of B
introduced in (15). However, a naive direct application using the constraint Y [t] = A>X [t]

is not transparent for analysis. The reason is the evolution of x(t) and y(t) are themselves
governed by the conditional distribution of B given previous iterations. Therefore, we need
the following recursive version of Lemma 7 which can be immediately argued by induction.

Corollary 8 (Iterative conditioning) Consider random matrix D with i.i.d. Gaussian

entries Dij ∼ N (0, σ2), and let F
(d)
= P⊥C

DP⊥R
be the random Gaussian matrix whose

columns are orthogonal to space C and rows are orthogonal to space R. Conditioned on the
linear constraint u = Dv, where9 u ∈ C⊥, the matrix F is distributed as

F |{u = Dv} (d)
=

1

‖(P⊥R
v)‖2

u(P⊥R
v)> + P⊥C

D̃P⊥{R,v} ,

where random matrix D̃ is an independent copy of D with i.i.d. Gaussian entries D̃ij ∼
N (0, σ2).

Thus, the residual random matrix P⊥C
D̃P⊥{R,v} is a random Gaussian matrix whose

columns are orthogonal to C and rows are orthogonal to span{R, v}. The variance in any
remaining dimension is equal to σ2.

3.1.2 Form of Iterative Updates

Now we exploit the conditional distribution arguments proposed in the previous section to
characterize the conditional distribution of B given the update variables x and y up to the
current iteration; recall (15) where B(t,1) is the conditional distribution of B at the middle
of tth iteration and B(t,2) at the end of tth iteration. Before that, we need to introduce some
more intermediate variables.

9. We need that u ∈ C⊥, otherwise the event u = Dv is impossible.
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Intermediate variables: We separate the first entry of y and (y)∗2 from the rest, i.e., we
have

y
(t)
1 = a>1 x

(t), y
(t)
−1 = B>x(t) ∼ (B(t−1,2))>x(t),

where y
(t)
−1 ∈ Rk−1 denotes y(t) ∈ Rk with the first entry removed. The update formula for

x̃(t+1) can be also decomposed as

x̃(t+1) = (y
(t)
1 )2a1 +Bw(t) ∼ (y

(t)
1 )2a1 +B(t,1)w(t),

where

w(t) := (y
(t)
−1)∗2 ∈ Rk−1,

is the new intermediate variable in the power iterations. Let B
(t,1)
res. and B

(t,2)
res. denote the

residual random matrices corresponding to B(t,1) and B(t,2) respectively, and

u(t+1) := B(t,1)
res. w

(t), v(t) := (B(t−1,2)
res. )>x(t),

where u(t) ∈ Rd and v(t) ∈ Rk−1 are respectively the part of x(t) and y
(t)
−1 representing

the residual randomness after conditioning on the previous iterations. We also summarize
all variables and notations in Table 1 in the Appendix which can be used as a reference
throughout the paper.

Finally we make the following observations.

Lemma 9 (Form of iterative updates) The conditional distribution of B at the middle
of tth iteration denoted by B(t,1) satisfies

B(t,1) (d)
=

∑
i∈[t−1]

u(i+1)(P⊥
W [i−1]

w(i))>

‖P⊥
W [i−1]

w(i)‖2
+
∑
i∈[t]

P⊥
X[i−1]

x(i)(v(i))>

‖P⊥
X[i−1]

x(i)‖2
+B(t,1)

res. , (16)

B(t,1)
res.

(d)
= P⊥

X[t]
B̃P⊥

W [t−1]
, (17)

where random matrix B̃ is an independent copy of B with i.i.d. Gaussian entries B̃ij ∼
N (0, 1

d). Similarly, the conditional distribution of B at the end of tth iteration denoted by

B(t,2) satisfies

B(t,2) (d)
=
∑
i∈[t]

(
u(i+1)(P⊥

W [i−1]
w(i))>

‖P⊥
W [i−1]

w(i)‖2
+
P⊥

X[i−1]
x(i)(v(i))>

‖P⊥
X[i−1]

x(i)‖2

)
+B(t,2)

res. , (18)

B(t,2)
res.

(d)
= P⊥

X[t]
B′P⊥

W [t]
, (19)

where random matrix B′ is an independent copy of B with i.i.d. Gaussian entries B′ij ∼
N (0, 1

d).

The lemma can be directly proved by applying the iterative conditioning argument in
Corollary 8. See the detailed proof in the appendix.

16



Tensor Power Method Dynamics in Overcomplete Regime

· · · → x(t) −→ y(t) −→ w(t) −→ x(t+1) −→ y(t+1) → · · ·

update steps at iteration t

Figure 2: Flow of the power update algorithm stating intermediate steps. Iteration t for
which the inductive step should be argued is also indicated.

3.1.3 Analysis of Iterative Updates

Lemma 9 characterizes the conditional distribution of B given the update variables x and
y up to the current iteration; see (15) for the definition of conditional forms of B denoted
by B(t,1) and B(t,2). Intuitively, when the number of iterations t � d, then the resid-

ual independent randomness left in B(t,1) and B(t,2) (respectively denoted by B
(t,1)
res. and

B
(t,2)
res. ) characterized in Lemma 9 is large enough and we can exploit it to obtain tighter

concentration bounds throughout the analysis of the iterations.

Note that the goal is to show that under t � d, the iterations x(t) converge to the
true component with constant error, i.e., |〈x(t), a1〉| ≥ 1 − γ for some constant γ > 0. If
this already holds before iteration t we are done, and if it does not hold, next iteration is
analyzed to finally achieve the goal. This analysis is done via induction argument. During
the iterations, we maintain several invariants to analyze the dynamics of power update.
The goal is to ensure progress in each iteration as in (20).

Induction hypothesis: The following are assumed at the beginning of the iteration t as
induction hypothesis; see Figure 2 for the scope of inductive step.

1. Length of Projection on x:

δt ≤ ‖P⊥
X[t−1]

x(t)‖ ≤ 1,

where δt is of order 1/ polylog d, and the value of δt only depends on t and log d.

2. Length of Projection on w:

δ′t−1

√
k

d
≤ ‖P⊥

W [t−2]
w(t−1)‖ ≤ ∆′t−1

√
k

d
,

‖P⊥
W [t−2]

w(t−1)‖∞ ≤ ∆′t−1

1

d
,

where δ′t is of order 1/ polylog d and ∆′t is of order polylog d. Both δ′t and ∆′t only
depend on t and log d.
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3. Progress:10

|〈a1, x
(t)〉| ∈ [δ∗t ,∆

∗
t ]d

β2t−1

√
k

d
, (20)

|〈a1, P⊥
X[t−1]

x(t)〉| ≤ ∆∗td
β2t−1

√
k

d
.

4. Norm of u,v:

δt−1

2

√
k

d
≤ ‖v(t−1)‖ ≤ 2

√
k

d
,

δ′t−1

2

√
k

d
≤ ‖u(t)‖ ≤ 2∆′t−1

√
k

d
.

The analysis for basis of induction and inductive step are provided in Appendix B.

3.2 Effect of Noise in Theorem 1

Given rank-k random tensor T in (12), and a starting point x(1), our analysis in the noiseless
setting shows that the tensor power iteration in (2) outputs a vector which will be close to
aj if x(1) has a large enough correlation with aj .

Now suppose we are given noisy tensor T̂ = T + E where E has some small norm. In
this case where the noise is also present, we get a sequence x̂(t) = x(t) + ξ(t) where x(t) is the
component not incorporating any noise (as in previous section11), while ξ(t) represents the
contribution of noise tensor E in the power iteration; see (21) below. We prove that ξ(t) is
a very small noise that does not change our calculations stated in the following lemma.

Lemma 10 (Bounding norm of error) Suppose the spectral norm of the error tensor E
is bounded as

‖E‖ ≤ ε
√
k/d, where ε < o(

√
k/d).

Then the noise vector ξ(t) at iteration t satisfies the `2 norm bound

‖ξ(t)‖ ≤ Õ(dβ2t−1
ε).

Note that when t is the first number such that dβ2t−1 ≥ d/
√
k, we have ‖ξ(t)‖ = o(1).

Notice that since when dβ2t−1 ≥ d/
√
k, the main induction is already over and we know

x(t) is constant close to the true component, and thus, the noise is always small.

Proof idea: We now provide an overview of ideas for proving the above lemma; see
Appendix D for the complete proof which is based on an induction argument. We first

10. Note that although the bounds on y
(t)
−1 are argued at iteration t, the bound on the first entry of y(t)

denoted by y
(t)
1 = 〈a1, x(t)〉 is assumed here in the induction hypothesis at the end of iteration t− 1.

11. Note that there is a subtle difference between notation x(t) in the noiseless and noisy settings. In the
noiseless setting, this vector is normalized, while in the noisy setting the whole vector x̂(t) = x(t) + ξ(t)

is normalized.
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write the following recursion expanding the contribution of main signal and noise terms in
the tensor power iteration as

x(t+1) + ξ(t+1) = Norm
(
T̂ (x(t) + ξ(t), x(t) + ξ(t), I)

)
= Norm

(
T (x(t), x(t), I) + 2T (x(t), ξ(t), I) + T (ξ(t), ξ(t), I) + E(x̂(t), x̂(t), I)

)
,

(21)

where for vector v, we have Norm(v) := v/‖v‖, i.e., it normalizes the vector. The first term
is the desired main signal and should have the largest norm, and the rest of the terms are
the noise terms. The third term is of order ‖ξ(t)‖2, and hence, it should be fine whenever we
choose ‖E‖ to be small enough. The last term is O(‖E‖) and is the same for all iterations so
that is also fine. The problematic term is the second term, whose norm if we bound naively
is 2‖ξ(t)‖. However the normalization factor also contributes a factor of roughly d/

√
k,

and thus, this term grows exponentially; it is still fine if we just do a constant number of
iterations, but the exponent will depend on the number of iterations.

In order to solve this problem, and make sure that the amount of noise we can tolerate is
independent of the number of iterations, we need a better way to bound the noise term ξ(t).
The main problem here is we bound the norm of ‖T (x(t), ξ(t), I)‖ by ‖T‖‖ξ(t)‖ ≤ O(ξ(t)), by
doing this we ignored the fact that x(t) is uncorrelated with the components in T . In order
to get a tighter bound, we introduce another norm ‖·‖∗; see Definition 21 for the exact form.
Intuitively, the norm ‖ · ‖∗ captures the fact that x does not have a high correlation with
the components (except for the first component that x will converge to), and gives a better

bound. In particular we have ‖T (x(t), ξ(t), I)‖ ≈
√
k
d ‖ξ

(t)‖2. Therefore, the normalization

factor is compensated by the additional term
√
k
d .

4. Conclusion

In this paper, we provide a novel analysis for the dynamics of third order tensor power
iteration showing convergence guarantees to vectors having constant correlation with the
tensor component. This enables us to prove unsupervised learning of latent variable models
in the challenging overcomplete regime where the hidden dimensionality is larger than the
observed dimension. The main technical observation is that under random Gaussian tensor
components and small number of iterations, the residual randomness in the components
(which are involved in the iterative steps) are sufficiently large. This enables us to show
progress in the next iteration of the update step. As future work, it is very interesting to
generalize this analysis to higher order tensor power iteration, and more generally to other
kinds of iterative updates.
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Variable Space Description Recursion formula

A Rd×k mapping matrix in (14) n.a.

x(t) Rd update variable in (14) x(t+1) := A(y(t))∗2

‖A(y(t))∗2‖

y(t) Rk intermediate variable in (14) y(t) := A>x(t)

x̃(t) Rd unnormalized version of x(t) x̃(t+1) := A(y(t))∗2

x̂(t) Rd noisy version of x(t) x̂(t) = x(t) + ξ(t); see (21)

ξ(t) Rd Contribution of noise in tensor power
update given noisy tensor T̂ = T + E

x̂(t) = x(t) + ξ(t); see (21)

B Rd×(k−1)

matrix A := [a1 a2 · · · ak] with first
column removed, i.e.,
B := [a2 a3 · · · ak]. Note that the
first column a1 is the desired one to
recover.

n.a.

B(t,1) Rd×(k−1)

conditional distribution of B given
previous iterations at the middle of
tth iteration (before update step
x̃(t+1) = A(y(t))∗2)

B(t,1) (d)
= B|{X [t], Y [t]}

B(t,2) Rd×(k−1)

conditional distribution of B given
previous iterations at the end of tth

iteration (after update step
x̃(t+1) = A(y(t))∗2)

B(t,2) (d)
= B|{X [t+1], Y [t]}

B
(t,1)
res. Rd×(k−1) residual independent randomness left

in B(t,1); see Lemma 9.
see equation (17)

B
(t,2)
res. Rd×(k−1) residual independent randomness left

in B(t,2); see Lemma 9.
see equation (19)

w(t) Rk−1 intermediate variable in update
formula (14)

w(t) := (y
(t)
−1)∗2

u(t) Rd part of x(t) representing the left
independent randomness

u(t+1) := B
(t,1)
res. w(t)

v(t) Rk−1 part of y
(t)
−1 representing the left

independent randomness
v(t) := (B

(t−1,2)
res. )>x(t)

Table 1: Table of parameters and variables. Superscript (t) denotes the variable at t-th
iteration.
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Appendix A. Proof of Lemma 9

Proof of Lemma 9 Recall that we have updates of the form

x̃(t+1) = A(y(t))∗2, w(t) := (y
(t)
−1)∗2, y(t) = A>x(t).

Let

X [t]\1 :=
[
x(2)| . . . |x(t)

]
,

and let the rows of Y [t] are partitioned as the first and the rest of rows as

Y [t] =

[
Y

[t]
1

>∣∣∣Y [t]
−1

>
]>

.

We now make the following simple observations

B(t,1) (d)
= B|{Y [t] = A>X [t], X̃ [t]\1 = A(Y [t−1])∗2}
(d)
= B|{Y [t]

−1 = B>X [t], X̃ [t]\1 = a1(Y
[t−1]

1 )∗2 +BW [t−1]}
(d)
= B|{v(1) = B>x(1), . . . , v(t) = (B(t−1,2)

res. )>x(t),

u(2) = B(1,1)
res. w

(1), . . . , u(t) = B(t−1,1)
res. w(t−1)},

where the second equivalence comes from the fact that B is matrix A with first column
removed. Now applying Corollary 8, we have the result. The distribution of B(t,2) follow
similarly.

Appendix B. Analysis of Induction Argument

In this section, we analyze the basis of induction and inductive step for the induction
argument proposed in Section 3.1.3 for the proof of Lemma 5.

B.1 Basis of Induction

We first show that the hypothesis holds for initialization vector x(1) as the basis of induction.

Claim 1 (Basis of induction) The induction hypothesis is true for t = 1.

Proof Notice that induction hypothesis for t = 1 only involves the bounds on ‖x(1)‖ and
〈a1, x

(1)〉 as in Hypotheses 1 and 3, respectively. These bounds are directly argued by the
correlation assumption on the initial vector x(1) stated in (13) where δ1 = δ∗1 = ∆∗1 = 1.
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B.2 Inductive Step

Assuming the induction hypothesis holds for all the values till the end of iteration t − 1
(stated in Section 3.1.3), we analyze the t-th iteration of the algorithm, and prove that
induction hypothesis also holds for the values at the end of iteration t. See Figure 2 where
the scope of iteration t and the flow of the algorithm is shown. In the rest of this section,
we pursue the flow of the algorithm at iteration t starting from computing y(t) and ending
up with computing x(t+1) to prove the desired induction hypothesis at iteration t.

B.2.1 Hypothesis 4

We start by showing that the induction Hypothesis 4 holds at iteration t using the induction
Hypotheses 1 and 2 in the previous iteration.

Claim 2 We have

δt
2

√
k

d
≤ ‖v(t)‖ ≤ 2

√
k

d
,

δ′t
2

√
k

d
≤ ‖u(t+1)‖ ≤ 2∆′t

√
k

d
.

Proof Recall that v(t) := (B
(t−1,2)
res. )>x(t), and by applying the form of B

(t−1,2)
res. in (19), we

have

v(t) (d)
= P⊥

W [t−1]
B′>P⊥

X[t−1]
x(t). (22)

Since random matrix B′ ∈ Rd×(k−1) is an independent copy of B with i.i.d. Gaussian entries
B′ij ∼ N (0, 1

d), we know v(t) is a random Gaussian vector in the subspace orthogonal to

W [t−1]. On the other hand, for any vector z ∈ Rd, we have

E
[
‖B′>z‖2

]
= z>E

[
B′B′>

]
z =

k − 1

d
‖z‖2,

where E
[
B′B′>

]
= k−1

d I is exploited. Let z = P⊥
X[t−1]

x(t). Then, by applying the above

equality to the expansion of v(t) in (22), we have

E
[
‖v(t)‖2

]
=
k − t
k − 1

· k − 1

d
· ‖P⊥

X[t−1]
x(t)‖2 =

k − t
d
· ‖P⊥

X[t−1]
x(t)‖2 ∈

[
δ2
t

k

d

(
1− t

k

)
,
k

d

]
,

where dim(W [t−1]) = t− 1 is also used in the first step, and the last step is concluded from
Hypothesis 1. Finally, by concentration property of random Gaussian vectors, when t� d
we have with high probability

‖v(t)‖ ∈

[
δt
2

√
k

d
, 2

√
k

d

]
.

Similarly, for u(t+1) := B
(t,1)
res. w(t), and by applying the form of B

(t,1)
res. in (17), we have

u(t+1) (d)
= P⊥

X[t]
B̃P⊥

W [t−1]
w(t). (23)

22



Tensor Power Method Dynamics in Overcomplete Regime

Since random matrix B̃ ∈ Rd×(k−1) is an independent copy of B with i.i.d. Gaussian entries
B̃ij ∼ N (0, 1

d), we know u(t+1) is a random Gaussian vector in the subspace orthogonal to

X [t]. On the other hand, for any vector z ∈ Rk−1, we have

E
[
‖B̃z‖2

]
= z>E

[
B̃>B̃

]
z = ‖z‖2,

where E
[
B̃>B̃

]
= I is exploited. Let z = P⊥

W [t−1]
w(t). Then, by applying the above

equality to the expansion of u(t+1) in (23), we have

E
[
‖u(t+1)‖2

]
=
d− t
d
· ‖P⊥

W [t−1]
w(t)‖2 ∈

[
(δ′t)

2 k

d2

(
1− t

d

)
, (∆′t)

2 k

d2

]
,

where dim(X [t]) = t is also used in the first step, and the last step is concluded from
Hypothesis 2. Finally, by concentration property of random Gaussian vectors, when t� d
we have with high probability

‖u(t+1)‖ ∈

[
δ′t
2

√
k

d
, 2∆′t

√
k

d

]
.

B.2.2 Hypothesis 2

Computing y(t): In the first step of iteration t, the algorithm computes y(t). By induction

Hypothesis 3, we know |y(t)
1 | = Θ̃(dβ2t−1√

k/d). The other coordinates of y(t) := A>x(t) are

y
(t)
−1 = B>x(t) which conditioning on the previous iterations are equivalent (in distribution)

to

y
(t)
−1

(d)
=
(
B(t−1,2)

)>
x(t)

=

 ∑
i∈[t−1]

(
u(i+1)(P⊥

W [i−1]
w(i))>

‖P⊥
W [i−1]

w(i)‖2
+
P⊥

X[i−1]
x(i)(v(i))>

‖P⊥
X[i−1]

x(i)‖2

)
+B(t−1,2)

res.

> x(t)

=
∑

i∈[t−1]

(
Θ̃

(
d2

k

)
P⊥

W [i−1]
w(i)〈u(i+1), x(t)〉+ Θ̃(1)v(i)〈P⊥

X[i−1]
x(i), x(t)〉

)
+ v(t), (24)

where form of B(t−1,2) in (18) is used in the second equality. The bounds on the norms

come from Hypotheses 1 and 2. The last term is by definition v(t) := (B
(t−1,2)
res. )>x(t). Note

that differences in polylog factors in the (upper and lower) bounds in Hypotheses 1 and 2
are represented by notation Θ̃(·).

We will establish subsequently that if k > d, the terms involving v(i)’s in the above
expansion dominate, and the terms involving P⊥

W [i−1]
w(i)’s have norm of a smaller order;

see Claim 3.
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Computing w(t): In the next step of the algorithm at iteration t, w(t) is computed for
which we now argue if the induction hypothesis holds up to iteration t, both lower and

upper bounds at iteration t as ‖P⊥
W [t−1]

w(t)‖ ∈ [δ′t,∆
′
t]
√
k
d (see induction Hypothesis 2) also

hold.

Lower bound: For the lower bound, intuitively the fresh random vector v(t) should bring
enough randomness into w(t). We formulate that in the following lemma.

Lemma 11 Suppose R and R′ are two subspaces in Rk with dimension at most t ≤ k
16(log k)2

.

Let p ∈ Rk be an arbitrary vector, z ∈ Rk be a uniformly random Gaussian vector in the
space orthogonal to R, and finally w = (p+ z)∗ (p+ z). Then with high probability, we have

‖P⊥R′w‖ ≥
E[‖z‖2]

40
√
k
.

Recall that w(t) := y
(t)
−1 ∗ y

(t)
−1, and y

(t)
−1 is expanded in (24) as sum of an arbitrary vector

and a random Gaussian vector. Applying above lemma with R = R′ = span(W [t−1]), we
have with high probability

‖P⊥
W [t−1]

w(t)‖ ≥ E[‖v(t)‖2]

40
√
k
≥ δ2

t

160

√
k/d,

where Hypothesis 4 gives lower bound ‖v(t)‖ ≥ δt/2
√
k/d (used in the second inequality).

By choosing δ′t = δ2
t /160 the lower bound in Hypothesis 2 is proved.

Upper bound: In order to prove the upper bounds in Hypothesis 2, we follow the sequence
of arguments below:

Claim 3: ‖y(t)
−1‖∞

(·)2
==⇒ ‖w(t)‖∞

Lemma 12
======⇒ ‖P⊥

W [t−1]
w(t)‖∞ ⇒ ‖P⊥

W [t−1]
w(t)‖

First we prove a bound on the infinity norm of y
(t)
−1:

Claim 3 (Upper bound on ‖y(t)
−1‖∞) We have

‖y(t)
−1‖∞ ≤

t

δt

log d√
d

+ (t− 1)

(
∆′t−1

δ′t−1

)2
1√
k

= Õ

(
1√
d

)
.

Proof We exploit the induction hypothesis to bound the `∞ norm of all the terms in the

expansion of y
(t)
−1 in (24).

For the terms involving v(i), since they are random Gaussian vectors with expected
square norm at most k/d, by Lemma 19 we know ‖v(i)‖∞ ≤ log d√

d
with high probability. In

addition, for v(i), i < t, the coefficient is bounded as

〈P⊥
X[i−1]

x(i), x(t)〉
‖P⊥

X[i−1]
x(i)‖2

≤ 1

‖P⊥
X[i−1]

x(i)‖
≤ 1

δi
, (25)
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where the last step uses Hypothesis 1. Therefore, the total contribution from terms involving

v(i) in ‖y(t)
−1‖∞ is bounded by t

δt
log d√
d

.

For the terms involving P⊥
W [i−1]

w(i), i ∈ [t− 1], we have from Hypothesis 2 that the `∞

norm is bounded as ‖P⊥
W [i−1]

w(i)‖∞ ≤ ∆′i
1
d . In addition, the corresponding coefficient is

bounded by
〈u(i+1), x(t)〉
‖P⊥

W [i−1]
w(i)‖2

≤ ‖u
(i+1)‖ · ‖x(t)‖

‖P⊥
W [i−1]

w(i)‖2
≤ 2∆′i

δ′i
2

d√
k
. (26)

Again bounds in Hypotheses 2 and 4 are exploited in the last inequality. Hence, the total

contribution from terms involving P⊥
W [i−1]

w(i), i ∈ [t − 1] in ‖y(t)
−1‖∞ is bounded by (t −

1)
(

∆′t−1

δ′t−1

)2
1√
k
.

Combining the above bounds finishes the proof.

Since w(t) := y
(t)
−1 ∗ y

(t)
−1, the above claim immediately implies that

‖w(t)‖∞ ≤ Õ
(

1

d

)
. (27)

Now we have the `∞ norm on w, however we need to bound the `∞ norm of the projected
vector P⊥

W [t−1]
w(t). Intuitively this is clear as the vectors in the space W [t−1] all have small

`∞ as guaranteed by induction hypothesis. We formalize this intuition using the following
lemma.

Lemma 12 Suppose R is a subspace in Rk of dimension t′, such that there is a basis
{r1, . . . , rt′} with ‖ri‖∞ ≤ ∆√

k
and ‖ri‖ = 1. Let p ∈ Rk be an arbitrary vector, then

‖P⊥R
p‖∞ ≤ ‖p‖∞ + ‖p‖∆

√
t′√
k
.

Let R = span(W [t−1]). Then the vectors P⊥
W [i−1]

w(i)/‖P⊥
W [i−1]

w(i)‖, i ∈ [t− 1] form a
basis for subspace R, and we know from Hypothesis 2 that the `∞ norm of each of these

basis vectors is bounded by ∆√
k

for ∆ :=
∆′t−1

δ′t−1
which is of order polylog d. Applying above

lemma, we have

‖P⊥
W [t−1]

w(t)‖∞ ≤ ‖w(t)‖∞(1 + ∆
√
t− 1) ≤ ∆′t

d
,

where the last inequality uses bound (27), and appropriate choosing for ∆′t which is of order
polylog d and only depends on t and log d. This concludes the upper bound on the `∞ norm
in Hypothesis 2. The upper bound on the `2 norm is also immediately argued using this
`∞ norm bound where an additional

√
k factor shows up.

B.2.3 Hypothesis 1

Computing x(t+1):
In the next step of iteration t, the algorithm computes x(t+1). Conditioning on the

previous iterations, the unnormalized version x̃(t+1) is equivalent (in distribution) to
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x̃(t+1) (d)
= B(t,1)w(t) + (y

(t)
1 )2a1

=
∑

i∈[t−1]

u(i+1)(P⊥
W [i−1]

w(i))>

‖P⊥
W [i−1]

w(i)‖2
w(t) +

∑
i∈[t]

P⊥
X[i−1]

x(i)(v(i))>

‖P⊥
X[i−1]

x(i)‖2
w(t)

+B(t,1)
res. w

(t) + (y
(t)
1 )2a1

=
∑

i∈[t−1]

Θ̃

(
d2

k

)
u(i+1)〈P⊥

W [i−1]
w(i), w(t)〉+

∑
i∈[t]

Θ̃(1)P⊥
X[i−1]

x(i)〈v(i), w(t)〉

+ u(t+1) + (y
(t)
1 )2a1, (28)

where form of B(t,1) in (16) is used in the second equality. The bounds on the norms come

from Hypotheses 1 and 2. The last term is the definition of u(t+1) := B
(t,1)
res. w(t). Note that

differences in polylog factors in the (upper and lower) bounds in Hypotheses 1 and 2 are
represented by notation Θ̃(·).

The goal is to prove Hypothesis 1 holds at t-th iteration (which is to show the desired
lower and upper bounds on ‖P⊥

X[t]
x(t+1)‖) assuming induction hypothesis holds for earlier

iterations. Given the normalization x(t+1) := x̃(t+1)/‖x̃(t+1)‖ in each iteration, we have

‖P⊥
X[t]

x(t+1)‖ =
1

‖x̃(t+1)‖
‖P⊥

X[t]
x̃(t+1)‖. (29)

Therefore, we first bound the norm of x̃(t+1) which turns out to be ‖x̃(t+1)‖ = Θ̃
(√

k
d

)
as

argued in the following.

Lower bound: The lower bound on ‖x̃(t+1)‖ simply follows from the term u(t+1), which
is an independent random Gaussian.

Claim 4 If t ≤ d
10 , then we have whp

‖x̃(t+1)‖ ≥ δ′t
4

√
k

d
.

Proof We have

‖x̃(t+1)‖ ≥ ‖Pspan(X[t],U [t],a1)⊥ x̃
(t+1)‖ = ‖Pspan(X[t],U [t],a1)⊥u

(t+1)‖.

Note that the equality is concluded from expansion of x̃(t+1) in (28) where all the com-
ponents of x̃(t+1) in the subspace span(X [t], U [t], a1)⊥ is represented by u(t+1). The vector
Pspan(X[t],U [t],a1)⊥u

(t+1) is the projection of a random Gaussian vector u(t+1) in to a subspace
of dimention d−o(d). Hence it is still a random Gaussian vector with expected square norm

larger than
δ′t

2

2
k
d2

. By Lemma 18, with high probability the desired bound holds.

Upper bound: The upper bound is argued in the following claim.
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Claim 5 We have either
〈x(t+1), a1〉 ≥ 1− γ,

for some constant γ > 0 or

‖x̃(t+1)‖ ≤ Õ

(√
k

d

)
.

Proof Let x̃(t+1) in (28) be written as x̃(t+1) = z+(y
(t)
1 )2a1 where vector z ∈ Rd represents

all the other terms in the expansion. The analysis is done under two cases 1) (y
(t)
1 )2 ≥ 2

γ ‖z‖
and 2) (y

(t)
1 )2 < 2

γ ‖z‖ for some constant γ > 0. Note that the left hand side is the norm of

(y
(t)
1 )2a1 since ‖a1‖ = 1, and in addition (y

(t)
1 )2 = 〈x(t), a1〉2.

Case 1
(

(y
(t)
1 )2 ≥ 2

γ ‖z‖
)

: For the x(t+1) := x̃(t+1)/‖x̃(t+1)‖, we have

〈x(t+1), a1〉 =
1

‖z + (y
(t)
1 )2a1‖

〈z + (y
(t)
1 )2a1, a1〉

≥ 1

‖z‖+ (y
(t)
1 )2

[
(y

(t)
1 )2 − ‖z‖

]
≥

1− γ
2

1 + γ
2

≥ 1− γ,

where triangle and Cauchy-Schwartz inequality are used in the first bound, and the second

inequality is concluded from assumption (y
(t)
1 )2 ≥ 2

γ ‖z‖.

Case 2
(

(y
(t)
1 )2 < 2

γ ‖z‖
)

: We exploit the induction hypothesis to bound the norm of all

the terms in the expansion of x̃(t+1) in (28).

For the terms involving u(i+1), i ∈ [t], we have ‖u(i+1)‖ ≤ 2∆′i

√
k
d from Hypothesis 4 and

the argument for ‖u(t+1)‖. In addition, for u(i+1), i ∈ [t− 1], the coefficient is bounded as

〈P⊥
W [i−1]

w(i), w(t)〉
‖P⊥

W [i−1]
w(i)‖2

≤ ‖w(t)‖
‖P⊥

W [i−1]
w(i)‖

≤ ∆′t
δ′i
, (30)

where Cauchy-Schwartz inequality is used in the first bound, and the bound in Hypothesis 2
and (27) are exploited in the last inequality. Therefore, the total contribution from terms

involving u(i+1) in ‖x̃(t+1)‖ is bounded by
2(t−1)∆′t

2

δ′t

√
k
d .

For the terms involving P⊥
X[i−1]

x(i), i ∈ [t], we have ‖P⊥
X[i−1]

x(i)‖ ≤ 1, but the coef-

ficient 〈v(i), w(t)〉 needs further analysis to be bounded which is done in Lemma 13 say-

ing |〈v(i), w(t)〉| ≤ Õ
(√

k
d

)
. This implies that the total contribution from terms involving

P⊥
X[i−1]

x(i) in ‖x̃(t+1)‖ is bounded by Õ
(√

k
d

)
.

Combining the above bounds and considering the assumption that the norm of (y
(t)
1 )2a1

in the expansion of x̃(t+1) is dominated by the norm of other terms argued above, the proof

is complete concluding that ‖x̃(t+1)‖ ≤ Õ
(√

k
d

)
.
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Lemma 13 Under the induction hypothesis (up to update step x̃(t+1) := A(y(t))∗2 at itera-
tion t), we have for i ∈ [t],

|〈v(i), w(t)〉| ≤ O

(
t3

(∆′t−1)4

(δ′t−1)4δ2
t

(log d)

√
k

d

)
= Õ

(√
k

d

)
.

Using (29) and the fact that ‖x̃(t+1)‖ = Θ̃
(√

k
d

)
, we have

‖P⊥
X[t]

x(t+1)‖ ≥ Θ̃

(
d√
k

)
‖Pspan(X[t],U [t],a1)⊥u

(t+1)‖ ≥ δ′t
4
,

where the bound ‖Pspan(X[t],U [t],a1)⊥u
(t+1)‖ ≥ δ′t

4

√
k
d is also used. This finishes the proof that

Hypothesis 1 holds.

B.2.4 Hypothesis 3

Finally we prove Hypothesis 3 at iteration t given earlier induction hypothesis. The first
part of the hypothesis is proved in the following claim.

Claim 6 We have

|〈a1, x
(t+1)〉| ∈ [δ∗t+1,∆

∗
t+1]dβ2t

√
k

d
.

Proof We first show the correlation bound on the unnormalized version as 〈a1, x̃
(t+1)〉.

Looking at the expansion of x̃(t+1) in (28), the correlation 〈a1, x̃
(t+1)〉 involves three types

of terms emerging from (y
(t)
1 )2a1, u(i+1) and P⊥

X(i−1)
x(i). In the following, we argue the

correlation from each of these terms where we observe that the correlation is dominated by

the term (y
(t)
1 )2a1, and the rest of terms contribute much smaller amount.

For the term (y
(t)
1 )2a1, we have

〈a1, (y
(t)
1 )2a1〉 = (y

(t)
1 )2 ∈ [(δ∗t )

2, (∆∗t )
2]dβ2t k

d2
,

where the last part exploits induction Hypothesis 3 in the previous iteration.

For the terms involving u(i+1), these vectors are random Gaussian vectors in a subspace
(with dimension Ω(d)), and therefore, we have with high probability

〈a1, u
(i+1)〉 ≤ E[‖u(i+1)‖] ·O

(
log d√
d

)
≤ Õ

( √
k

d
√
d

)
≤ Õ

(
k

d2

)
,

where the correlation bound between two independent random Gaussian vectors in Ω(d)-
dimension is used in the first inequality,12 Hypothesis 4 is exploited in the second inequality,
and finally last inequality is from assumption k > d. In addition, the coefficient associated

12. For two independent random Gaussian vectors p, q ∈ Rd, we have with high probability 〈p, q〉 ≤ E[‖p‖] ·
E[‖q‖] ·O

(
log d√

d

)
.
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with u(i+1) is bounded by ∆′t/δ
′
i argued in (30). Hence, the total contribution from terms

involving u(i+1) in 〈x̃(t+1), a1〉 is bounded by Õ
(
k
d2

)
.

For the terms involving P⊥
X[i−1]

x(i), by Hypothesis 3 we have

〈a1, P⊥
X[i−1]

x(i)〉 ≤ ∆∗i d
β2i−1

√
k

d
.

In addition, the associated coefficient is bounded by Õ
(√

k
d

)
from Lemma 13. Hence, the to-

tal contribution from terms involving P⊥
X[i−1]

x(i) in 〈x̃(t+1), a1〉 is bounded by Õ
(
dβ2t−1 k

d2

)
.

Combining the above bounds implies

|〈a1, x̃
(t+1)〉| ≤ Õ

(
dβ2t k

d2

)
.

Finally, using the bound on the norm of x̃(t+1) argued as ‖x̃(t+1)‖ = Θ̃
(√

k
d

)
finishes the

proof.

To prove the last part of Hypothesis 3, we use the following lemma which is very similar
to Lemma 12.

Lemma 14 Suppose R is a subspace in Rd of dimension t′, such that there is a basis
{r1, . . . , rt′} with |〈ri, a1〉| ≤ ∆ and ‖ri‖ = 1. Let p ∈ Rd be an arbitrary vector, then

|〈P⊥R
p, a1〉| ≤ |〈p, a1〉|+ ‖p‖∆

√
t′.

We apply this lemma with R = span(X [t]), and the basis is P⊥X[i−1]X(i)/‖P⊥X[i−1]X(i)‖.
By induction hypothesis ∆ in the lemma is at most ∆t

∗d
β2t
√
k/d, let v = x(t+1) then this

gives the desired bound.
Let R = span(X [t]). Then the vectors P⊥

X[i−1]
x(i)/‖P⊥

X[i−1]
x(i)‖, i ∈ [t] form a basis

for subspace R, and we know from Hypotheses 1 and 3 that the correlation between these

basis vectors and a1 is bounded by ∆ := ∆∗td
β2t−1

√
k
d . Applying above lemma, we have

|〈P⊥
X[t]

x(t+1), a1〉| ≤ |〈x(t+1), a1〉|+ ∆
√
t ≤ ∆∗t+1d

β2t
√
k

d
,

where the last inequality uses the first part of Hypothesis 3 proved earlier in this section.
Note that ∆∗t+1 is a new polylog factor here.

B.3 Growth Rate of δt, δ
′
t, ∆′t, δ

∗
t , ∆∗t

We know that if the number of iterations t is a constant, then the δ and ∆ parameters (i.e.,
δt, δ

′
t, ∆′t, δ

∗
t , ∆∗t ) in the induction hypothesis are bounded by polylog factors of d. Here, we

show that these parameters can be still bounded even when the number of steps is slightly
larger than a constant. Let

Rt := max{1/δt,∆′t−1/δ
′
t−1,∆

∗
t /δ
∗
t }.

We know R1 = 1, and by the inductive step analysis we have the following polynomial
recursion property.
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Claim 7 Rt+1 = poly(Rt, t, log d).

This claim follows from the proof of inductive step, where in every step the δ and ∆
parameters are bounded by polynomial functions of previous δ’s (∆’s), t, and log d.

We now solve this recursion as follows.

Lemma 15 Suppose Rt+1 ≤ c0R
c1
t t

c2(log d)c3 where c0, c1, c2, c3 are positive constants, and
we know R1 = 1. Then

Rt ≤ (log d)2c4t ,

for some constant c4 > 0 depending on c0, c1, c2, c3.

Proof Without loss of generality assume c0 ≥ 1, c2 ≥ 1, c3 ≥ 1, andR1 ≥ log d. Given these
assumptions, we have Rt ≥ max{c0, t, log d}, for t ≥ 1. Applying this to the assumption
Rt+1 ≤ c0R

c1
t t

c2(log d)c3 , we have

Rt+1 ≤ R1+c1+c2+c3
t . (31)

Pick some q > 0 such that R1 ≤ (log d)2q , and pick some

c4 ≥ max{q, log2(1 + c1 + c2 + c3)}.

Now we prove the result by the induction argument. Since c4 ≥ q, the basis of induction
holds for R1. As the inductive step, suppose Rt ≤ (log d)2c4t . Applying this to (31), we
have

Rt+1 ≤ (log d)(1+c1+c2+c3)2c4t ≤ (log d)2c4(t+1)
,

where 2c4 ≥ (1 + c1 + c2 + c3) is used in the last inequality. This finishes the inductive step
and the result is proved.

Using the above bound, we show in the following corollary that the δ and ∆ parameters
in the induction hypothesis are bounded by polylog factors of d even if the number of steps t
goes up to c log log d for small enough constant c. In addition, we show that if β ≥ (log d)−c5

for some constant c5 > 0, then the power method converges to a point x(t) which is constant
close to the true component.

Corollary 16 There exists a universal constant c5 > 0 such that if

β ≥ (log d)−c5 ,

and the initial correlation is lower bounded by dβ
√
k
d (see (13)), then with high probability

the power method gets to a point that is constant close to the true component in Θ(log log d)
number of steps.

Proof Pick the number of steps to be t = (log log d)/2c4, where c4 is the constant in
Lemma 15. Then, from Lemma 15 we have

Rt ≤ (log d)
√

log d ≤ o(d),

30



Tensor Power Method Dynamics in Overcomplete Regime

where the last inequality can be shown by taking the log of both sides. This says that the
analysis of inductive step still holds after such number of iterations.

Finally, by progress bound in (20), we can see that if β ≥ (log d)−c5 , then the power
method converges to a point x(t) which is constant close to the true component.

Appendix C. Auxiliary Lemmas for Induction Argument

In this section we prove the lemmas used in arguing inductive step in Appendix B.2.

We first introduce the following lemma proposing a lower bound on the singular value
of product of matrices.

Lemma 17 (Merikoski and Kumar 2004) Let C and D be k×k matrices. If 1 ≤ i ≤ k
and 1 ≤ l ≤ k − i+ 1, then

σi(CD) ≥ σi+l−1(C) · σk−l+1(D),

where σj(C) denotes the j-th singular value (in decreasing order) of matrix C.

C.1 Properties of Random Gaussian Vectors

We start with some basic properties of random Gaussian vectors. First as a simple fact,
the norm of a random Gaussian vector is concentrated as follows which is proved via simple
concentration inequalities.

Lemma 18 Let z ∈ Rd be a random Gaussian vector with E[zz>] = 1
dI. Then we have

with high probability 1
2 ≤ ‖z‖ ≤ 2.

Next we show the `∞ norm of a Gaussian vector is small, even if it is projected on some
subspace.

Lemma 19 Let R be any linear subspace in Rd and z ∈ Rd be a random Gaussian vector
with E[zzT ] = 1

dI. Then we have with high probability ‖P⊥R
z‖∞ ≤ log d√

d
.

Proof Since P⊥R
is a projection matrix, in particular the norm of its columns is bounded

by 1. Hence, each entry of P⊥R
z is a Gaussian random variable with variance bounded by

1
d implying that with high probability the absolute value of each coordinate is smaller than
log d√
d

. Finally, the desired `∞ norm bound is argued by applying union bound.

We can also show that most of the entries are of size at least 1√
d
.

Lemma 20 Let R be any linear subspace in Rd with dimension t ≤ d
16(log d)2

and z ∈ Rd be

a random Gaussian vector with E[zzT ] = 1
dI. Then we have with high probability at least

1/2 of the entries i ∈ [d] satisfy |(P⊥R
z)i| ≥ 1

4
√
d
.
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Proof Since the entries of z are independent Gaussian random variables with standard
deviation 1√

d
, we know with high probability at least 1/2 of the entries have absolute value

larger than 1
2
√
d
. On the other hand, PRz is also a random Gaussian vector with expected

square norm bounded by

E[‖PRz‖2] ≤ E[‖z‖2]

16(log d)2
=

1

16(log d)2
,

where the assumption on the dimension of subspace R is used in the inequality. By
Lemma 19 we know with high probability entries of PRz are bounded by 1/4

√
d. Now

P⊥R
z = z − PRz must have at least 1/2 of the entries with absolute value larger than

1/4
√
d.

Using the above lemmas, we can prove Lemma 11.
Proof of Lemma 11 Let z, z′ be two independent samples of z, and w,w′ be the corre-
sponding w vectors. We have

w − w′ = (p+ z) ∗ (p+ z)− (p+ z′) ∗ (p+ z′) = (2p+ z + z′) ∗ (z − z′). (32)

By properties of Gaussian vectors, z + z′, z − z′ are two independent random Gaussian
vectors in the subspace orthogonal to R each with expected square norm 2E[‖z‖2]. We use
z1 := z + z′ and z2 := z − z′ to denote these two random Gaussian vectors.

Next, we show that with high probability

‖P⊥R′ (w − w
′)‖ ≥ E[‖z‖2]

20
√
k
.

Note that this implies the result of lemma as follows. Suppose ‖P⊥R′w‖ <
1
40E[‖z‖2]/

√
k

with probability δ. Since w′ is an independent sample, with probability δ2 this bound holds
for both w and w′. When this happens, we have ‖P⊥R′ (w−w

′)‖ < 1
20E[‖z‖2]/

√
k by triangle

inequality. Since we showed δ2 is negligible, δ is also negligible.
First we sample z2. Let R′′ = span(R′, p ∗ z2). Then by expansion of w−w′ in (32), we

have

‖P⊥R′ (w−w
′)‖ = ‖P⊥R′

(
2(p ∗ z2) + (z1 ∗ z2)

)
‖ ≥ ‖P⊥R′′ (z1 ∗ z2)‖ = ‖P⊥R′′Diag(z2)P⊥R

z1‖,
(33)

where the inequality is concluded by ignoring the component along p ∗ z2 direction. The
last equality is from13 u ∗ v = Diag(u) · v (for two vectors u and v), and the assumption
that z1 = z + z′ is in the subspace orthogonal to R. For the matrix P⊥R′′Diag(z2)P⊥R

, we
have14

σk/4
(
P⊥R′′Diag(z2)P⊥R

)
≥ σk/2 (Diag(z2)) · σ7k/8 (P⊥R

) · σ7k/8

(
P⊥R′′

)
≥
√

E[‖z‖2]

4
√
k

,

where the first inequality is from Lemma 17, and the last step is argued as follows. By
Lemma 18, with high probability z2 has square norm at least E[‖z2‖2]/2 = E[‖z‖2], and

13. For vector u, Diag(u) denotes the diagonal matrix with u as its main diagonal.
14. Recall that σl(A) denotes the l-th singular value (in decreasing order) of matrix A.
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therefore, by Lemma 20 at least k/2 of its entries have absolute value larger than

√
E[‖z‖2]

4
√
k

.

Therefore, we can restrict attention to the space spanned by the k/4 top singular vectors.
In addition, within this subspace we have with high probability ‖z1‖2 ≥ E[‖z‖2]/8, and
hence,

‖P⊥R′′Diag(z2)P⊥R
z1‖ ≥

E[‖z‖2]

20
√
k
,

which finishes the proof by applying (33).

C.2 Properties of Projections

In this part we prove some basic properties of projections. Intuitively, if the whole subspace
has small inner-product with some vector, then the projection of an arbitrary vector to the
orthogonal subspace should not change the inner-product with that particular vector by too
much. This is what we stated in Lemma 14 and prove it here.

Proof of Lemma 14 We have P⊥R
p = p−

∑t′

i=1〈p, ri〉ri, and therefore

|〈P⊥R
p, a1〉| ≤ |〈p, a1〉|+

t′∑
i=1

|〈p, ri〉〈a1, ri〉|

≤ |〈p, a1〉|+ ∆
t′∑
i=1

|〈p, ri〉|

≤ |〈p, a1〉|+ ∆

√√√√t′
t′∑
i=1

〈p, ri〉2

≤ |〈p, a1〉|+ ∆‖p‖
√
t′.

The first step is triangle inequality and the third is Cauchy-Schwartz.

Lemma 12 is very similar.

Proof of Lemma 12 This lemma essentially follows from Lemma 14, because `∞ norm
is just the maximum inner-product to a basis vector. More specifically, the above lemma is
applied for all a1 = ej , j ∈ [k], where ej denotes the j-th basis vector in Rk.

C.3 Bounding Correlation Between v and w

We are only left with Lemma 13. The main difficulty in proving this lemma is that the
later steps are dependent on the previous steps. In the proof we show the dependency is
bounded and in fact we can treat them as independent.

Proof of Lemma 13 Recall w(t) = y
(t)
−1 ∗y

(t)
−1, and y

(t)
−1 is specified in (24). We now expand

the Hadamard product in w(t) and bound all the resulting O(t2) terms.
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The first type of terms has the form 〈v(i), P⊥
W [i1−1]

w(i1) ∗ P⊥
W [i2−1]

w(i2)〉, which can be
bounded as

〈v(i), P⊥
W [i1−1]

w(i1) ∗ P⊥
W [i2−1]

w(i2)〉 ≤ k · ‖v(i)‖∞ · ‖P⊥
W [i1−1]

w(i1) ∗ P⊥
W [i2−1]

w(i2)‖∞

≤ 2k
log d√
d

(∆′t−1)2

d2
,

where ‖v(i)‖∞ is bounded by Lemma 19, and `∞ norm of other vector is bounded by
induction Hypothesis 2. In addition, the corresponding coefficient is bounded by (see (26),
and note that both i1, i2 < t)

4(∆′t−1)2

(δ′t−1)4

d2

k
.

Hence, the total contribution from such terms is bounded by

8t2
(∆′t−1)4

(δ′t−1)4

log d√
d
. (34a)

The second type of terms has the form

〈v(i), P⊥
W [i1−1]

w(i1) ∗ v(i2)〉 = 〈v(i) ∗ v(i2), P⊥
W [i1−1]

w(i1)〉,

which can be bounded as

‖P⊥
W [i1−1]

w(i1)‖∞ · ‖v(i) ∗ v(i2)‖1 ≤ ‖P⊥
W [i1−1]

w(i1)‖∞ ·
‖v(i)‖2 + ‖v(i2)‖2

2
≤ 4∆′t−1

k

d2
,

where the last inequality is concluded from Hypotheses 2 and 4. In addition, the corre-
sponding coefficient is bounded by (see (25) and (26), and note that both i1, i2 < t)

2∆′t−1

(δ′t−1)2δt−1

d√
k
.

Hence, the total contribution from such terms is bounded by

8t2
(∆′t−1)2

δt−1(δ′t−1)2

√
k

d
. (34b)

The third type of terms has the form 〈v(i), v(i1) ∗ v(i2)〉, with coefficient bounded by
1/δ2

t−1 (see (25)). For bounding these inner products, we need to use the fact that they are
random Gaussian vectors, however the main difficulty is that they are correlated (if i > j,
then the subspace that v(i) is in that depends on v(j)). To resolve this difficulty, we treat
v(i) ∈ Rk−1 as projection of n(i) ∈ Rk−1 into subspace orthogonal to W [t−1], where n(i)’s
are independent Gaussian vectors in the full k − 1 dimensional space. Independent of the
ordering of i, i1, i2, we have with high probability

〈n(i), n(i1) ∗ n(i2)〉 ≤ O

( √
k

d
√
d

)
,
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since it is a sum of k − 1 independent mean-0 entries each with variance 1
d3

. On the other

hand, from Hypothesis 4, we have E[‖v(i)‖2] ≤ 4kd , and since vector n(i) − v(i) is in the

subspace W [t−1] with dimension t, we have

E[‖n(i) − v(i)‖2] ≤ O
(
t

k

)
· 4k

d
= O

(
t

d

)
,

and therefore, we have with high probability ‖n(i) − v(i)‖ ≤ O(
√
t/d) for all i ∈ [t − 1].

Using this, the difference between 〈n(i), n(i1) ∗ n(i2)〉 and 〈v(i), v(i1) ∗ v(i2)〉 can be bounded
as

|〈n(i), n(i1) ∗ n(i2)〉 − 〈v(i), v(i1) ∗ v(i2)〉| ≤ O

(
(log k)t

√
k

d
√
d

)
,

where the right hand side is the bound on the dominant term in the expansion of difference
as

|〈n(i), (n(i1) − v(i1)) ∗ (n(i2) − v(i2))〉| ≤ ‖n(i)‖ · ‖(n(i1) − v(i1)) ∗ (n(i2) − v(i2))‖

≤ O

(
(log k)

√
k

d

)
·O
(
t

d

)

= O

(
(log k)t

√
k

d
√
d

)
.

Here, the first inequality is the Cauchy-Schwartz, and the second inequality is from bound
on the norm of random Gaussian vector n(i), and the bound on the norm of difference
vectors n(i1)−v(i1) stated earlier. Hence, the total contribution from such terms is bounded
by

O

(
t3

log k

δ2
t−1

√
k

d
√
d

)
. (34c)

Taking the sum of all the terms in (34a)-(34c) gives the desired bound.

Appendix D. Additional Arguments for Noise Analysis

We first formally define norm ‖ · ‖∗ which was discussed in proof outline in Section 3.2.

Definition 21 (Norm ‖ · ‖∗) Given a matrix A = [a1 a2 · · · ak] ∈ Rd×k, for any vector
u ∈ Rd, the norm ‖u‖A∗ is defined as

‖u‖A∗ = max
i∈[k]
|〈ai, u〉|.

This norm satisfies a property shown in Lemma 22 which enables us to argue that ξ(t) is
small enough as stated in Lemma 10.

We now provide the proof of main lemma for noise analysis.
Proof of Lemma 10 We prove this by an induction argument.
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Basis of induction: For t = 1, x(1) is the initialization vector and thus, ξ(1) = 0. Hence,
the proposed bound holds for the basis of induction t = 1.

Inductive step: Assuming the inductive hypothesis holds for step t, we prove it also
holds for step t+ 1. We have

x(t+1) + ξ(t+1) = Norm
(
T̂ (x(t) + ξ(t), x(t) + ξ(t), I)

)
= Norm

(
T (x(t), x(t), I) + 2T (x(t), ξ(t), I) + T (ξ(t), ξ(t), I) + E(x̂(t), x̂(t), I)

)
.

(35)

The first term T (x(t), x(t), I) corresponds to main signal; recall that x(t+1) = Norm(T (x(t),
x(t), I)) in the noiseless setting, where the unnormalized version x̃(t+1) := T (x(t), x(t), I) has
norm at least Ω̃(

√
k/d) which is argued in the induction argument for Hypothesis 1. We

now bound the desired property of noise terms in the above expansion.
For the second term, we break it into two terms as

2T (x(t), ξ(t), I) = 2〈x(t), a1〉〈ξ(t), a1〉a1 + 2T ′(x(t), ξ(t), I) =: p+ q,

where T ′ :=
∑

j>1 aj⊗aj⊗aj . Here p := 2〈x(t), a1〉〈ξ(t), a1〉a1 corresponds to the multilinear

form from first component of T , and q := 2T ′(x(t), ξ(t), I) corresponds to the multilinear
form from the rest of components.

For q, we apply Lemma 22. Note that since ‖x(t)‖B∗ ≤ Õ(1/
√
d), we get an extra 1/

√
d

factor in the bound provided by Lemma 22, and therefore we have

‖q‖2 ≤ Õ(εdβ2t−1√
k/d),

where we also used the induction hypothesis ‖ξ(t)‖ ≤ Õ(εdβ2t−1
).

For p, we have

‖p‖ = 2|〈x(t), a1〉| · |〈ξ(t), a1〉| ≤ Õ
(
εdβ2t

√
k/d
)
,

where the inequality is from the signal and noise induction hypotheses; see Equation (20)
for the signal induction hypothesis.

The third term T (ξ(t), ξ(t), I) has `2 norm bounded as

‖T (ξ(t), ξ(t), I)‖ ≤ ‖T‖‖ξ(t)‖2 ≤ Õ(dβ2tε2) ≤ Õ(εdβ2t
√
k/d),

where the first inequality uses the sub-multiplicative property, and the second inequality
exploits the bounded norm of random tensor T as ‖T‖ ≤ O(1), and the induction hypothesis
in t-th step. The final inequality uses the assumption ε < o(

√
k/d) in the lemma.

The fourth term E(x̂(t), x̂(t), I) has `2 norm bounded by

‖E(x̂(t), x̂(t), I)‖ ≤ ‖E‖‖x̂(t)‖2 ≤ ε
√
k/d,

where we use the sub-multiplicative property in the first inequality, and the assumption on
the norm of error tensor E in the lemma, and the fact that ‖x̂(t)‖ = 1 are exploited in the
second inequality.
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Summarizing the above calculations on different terms of the update in (35), the signal
plus noise vector before normalization is

T (x(t), x(t), I) + 2T (x(t), ξ(t), I) + T (ξ(t), ξ(t), I) + E(x̂(t), x̂(t), I) =: αx(t+1) + z,

where α is a coefficient which is lower bounded as α ≥ Ω̃(
√
k/d). The vector z also satisfies

‖z‖ ≤ Õ(εdβ2t
√
k/d), (36)

which is derived by combining the bounds we argued on the second, third and fourth terms.
Note that until the very last step we always have dβ2t ≤ o(d/

√
k) (otherwise we are

constantly close to the true component, and we are done). In this case the norm of z is
negligible compared to α since ‖z‖ ≤ o(α), and thus, the normalization factor is equal to
‖αx(t+1) + z‖ = α(1 ± o(1)). Therefore, after the normalization, we have the noise vector
ξ(t+1) = α′x(t+1) + βz, where |α′| ≤ ‖z‖/α ≤ o(1) and |β| ≤ 2/α ≤ Õ(d/

√
k), hence we

know ‖ξ(t+1)‖ ≤ Õ(εdβ2t).
For the last step of the induction, the norm of T (x(t), x(t), I) is also larger (it has norm

dβ2tk/d2, which is larger than
√
k/d for the last step). Since ε < o(

√
k/d) we still know the

noise is negligible.

Lemma on the property of ‖ · ‖∗ norm defined in Definition 21:

Lemma 22 Consider a random tensor T =
∑

j∈[k] aj ⊗ aj ⊗ aj where aj’s are zero-

mean random Gaussian with expected unit norm. Let T ′ =
∑

j>1 aj ⊗ aj ⊗ aj and B :=

[a2, a3, . . . , ak] ∈ Rd×(k−1). Then with high probability, for any vectors u, v such that
‖u‖B∗ ≤ 1 and ‖v‖2 ≤ 1, we have

‖T ′(u, v, I)‖2 ≤ Õ
(√

k/d
)
.

Proof We prove this lemma along similar ideas provided in the proof of Anandkumar et al.
(2015, Claim 5) (Anandkumar et al. (2014b, Claim 1)). Let A := [a1, . . . , ak] ∈ Rd×k, and
ηj ’s be independent random ±1 variables with Pr[ηj = 1] = 1/2. We rewrite tensor T ′ as

T ′ =
∑
j>1

ηjaj ⊗ aj ⊗ aj . (37)

Since aj ’s are zero-mean random Gaussian vectors, we have ηjaj ∼ aj , and thus, the new
T ′ has the same distribution as the original one. We now first sample vectors aj ’s, and this
already makes the norm ‖·‖B∗ well-defined. In addition, the value of ηj ’s does not change the
singular values of A or B. Also note that since aj ’s are zero-mean random Gaussian vectors
with expected norm 1, they also satisfy with high probability the incoherence condition
such that |〈ai, aj〉| ≤ Õ(1/

√
d) for all i 6= j. Thus, we condition on all these fixed events,

and the only remaining random variables are just the ηj ’s.
The proposed statement in the lemma is equivalent to bounding

sup
‖u‖B∗=1,‖v‖=‖w‖=1

∣∣T ′(u, v, w)
∣∣ .
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In order to bound it, we provide an ε-net argument. We construct an ε-net such that
for any vector u ∈ Rd with unit ‖ · ‖B∗ norm, there is a vector u′ in the net such that
‖B>(u− u′)‖ ≤ 1/k2. We also construct standard ε-net for vectors u,w ∈ Rd with unit `2
norm. By standard construction, this ε-net has size exp(O(d log d)). We now show that for
all u in ε-net with unit ‖ · ‖B∗ norm, and all v, w in ε-net with unit `2 norm, the desired

bound |T ′(u, v, w)| ≤ Õ
(√

k/d
)

holds with high probability. Then for the other vectors

(u, v, w) not in the ε-net, the result follows from their closest points in the net.

Now for a fixed triple (u, v, w) in the ε-net, we have

T ′(u, v, w) =
∑
j>1

ηj〈u, aj〉〈v, aj〉〈w, aj〉,

which is a sum of independent random variables; recall that the randomness is from ηj ’s,
and aj ’s are already sampled and thus they are fixed here. We partition the above sum into
large and small terms as T ′(u, v, w) = SL + SLc such that the summation SL is the sum of
large terms including terms in set

L :=
{
j ∈ {2, 3, . . . , k} : |〈v, aj〉| ≥ log d/

√
d ∨ |〈w, aj〉| ≥ log d/

√
d
}
,

and the rest are the small terms forming SLc . Note that |〈u, aj〉| ≤ 1 since ‖u‖B∗ = 1.

Bounding |SLc |: Since the variables are bounded in this summation corresponding to
small terms, we use Bernstein’s inequality, and thus with probability at least 1 − δ, we

have |SLc | ≤
√
k log 1/δ·polylog d

d for the fixed point in the ε-net. By choosing small enough
δ = exp(−Cd log d) (where C is large enough constant), we can apply the union bound on
the ε-net, and conclude that for all the vectors in the net, |SLc | is smaller than Õ(

√
k/d)

with high probability.

Bounding |SL|: Since the columns of matrix B are random Gaussian vectors, it satisfies
the RIP property with high probability (see Remark 3 in Anandkumar et al. (2014b) for the
precise definition of RIP), and thus by the definition of RIP and Lemma 3 in Anandkumar
et al. (2014b), we have ‖BL‖ ≤ 2 where BL is the sub-columns of matrix B specified by set
L.

We now have

|SL| ≤
∑
j∈L
|〈u, aj〉| · |〈v, aj〉| · |〈w, aj〉| ≤

∑
j∈L
|〈v, aj〉| · |〈w, aj〉| ≤

∥∥∥B>L v∥∥∥ · ∥∥∥B>Lw∥∥∥ ≤ 4,

where the second step uses the fact that |〈u, aj〉| ≤ 1, the third step exploits Cauchy-
Schwartz inequality, and the last step uses bound ‖BL‖ ≤ 2. Notice that matrix B is
already sampled before we do the ε-net argument, and therefore, we do not need to do
union bound over all u, v, w for this event.

Since we assume the overcomplete regime k ≥ d, the bound on |SLc | is dominant which
finishes the proof.
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