
Journal of Machine Learning Research 18 (2017) 1-39 Submitted 9/15; Revised 3/17; Published 4/17

A Spectral Algorithm for Inference in Hidden semi-Markov Models

Igor Melnyk IGOR.MELNYK@IBM.COM

IBM T. J. Watson Research Center
Yorktown Heights, NY 10598, USA

Arindam Banerjee BANERJEE@CS.UMN.EDU

Department of Computer Science and Engineering
University of Minnesota
Minneapolis, MN 55414, USA

Editor: Le Song

Abstract
Hidden semi-Markov models (HSMMs) are latent variable models which allow latent state persis-
tence and can be viewed as a generalization of the popular hidden Markov models (HMMs). In
this paper, we introduce a novel spectral algorithm to perform inference in HSMMs. Unlike expec-
tation maximization (EM), our approach correctly estimates the probability of given observation
sequence based on a set of training sequences. Our approach is based on estimating moments from
the sample, whose number of dimensions depends only logarithmically on the maximum length of
the hidden state persistence. Moreover, the algorithm requires only a few matrix inversions and is
therefore computationally efficient. Empirical evaluations on synthetic and real data demonstrate
the advantage of the algorithm over EM in terms of speed and accuracy, especially for large data
sets.
Keywords: Graphical models, hidden semi-Markov model, spectral algorithm, tensor analysis,
aviation safety

1. Introduction

Hidden semi-Markov models (HSMMs) are discrete latent variable models which allow temporal
persistence of latent states, and can be viewed as a generalization of the popular hidden Markov
models (HMMs) (Chiappa, 2014; Murphy, 2002; Yu, 2010). In HSMMs, the stochastic model for
the unobservable process is defined by a semi-Markov chain: latent state at the next time step is
determined by the current latent state as well as time elapsed since the entry into the current state.
The ability to flexibly model such latent state persistence turns out to be useful in many application
areas, including anomaly detection (Tan and Xi, 2008; Xie and Yu, 2009), activity recognition (van
Kasteren et al., 2010), and speech synthesis (Zen et al., 2007). Such state persistence is in contrast to
HMMs, which use a Markov chain over latent state transitions and hence have an implicit geometric
distribution for the state duration (Rabiner, 1989).

Given a set of training sequences, one can formulate two distinct but related problems: learn-
ing, i.e., estimating model parameters and inference, i.e., computing the probability of an observed
and/or latent variable sequence. The methods proposed for learning HSMMs usually follow the ini-
tial idea due to Rabiner (Rabiner, 1989) based on the modifications of the Baum-Welch algorithm
(Baum and Petrie, 1966), which are all variants of the expectation maximization (EM) framework,

c©2017 Igor Melnyk and Arindam Banerjee.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided at
http://jmlr.org/papers/v18/15-468.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v18/15-468.html

MELNYK AND BANERJEE

presented in (Dempster et al., 1977). Once the parameters are estimated, we can then perform in-
ference using, e.g., the forward-backward algorithm of (Yu and Kobayashi, 2003). However, since
EM, in general, has no global guarantees in estimating the parameters correctly and can suffer from
slow convergence, such methods can be inefficient and/or inconsistent.

Bayesian nonparametric approaches based on hierarchical Dirichlet processes have also been
proposed for HMMs (Fox et al., 2008) and HSMMs (Johnson and Willsky, 2013). Such models
avoid the need to specify the number of latent states and can, in principle, learn it from data. How-
ever, in practice, inference algorithms for such models are often sensitive to initialization and may
suffer from slow convergence.

In recent years, there has been an increased interest in spectral algorithms, which provide com-
putationally efficient, local-minimum-free, provably consistent inference and/or parameter estima-
tion algorithms for latent variable models. For example, (Anandkumar et al., 2013a, 2014b, 2013c)
have proposed spectral methods for learning the parameters of a wide class of tree-structured latent
graphical models, including Gaussian mixture models, topic models, and latent Dirichlet alloca-
tion. The main idea is based on a tensor decomposition of certain low order moments, computable
directly from data, in order to extract the model parameters.

In many problems, however, the end goal is not the recovery of model parameters but statistical
inference, i.e., computing the probability of a given test sequence, which may be doable without
estimating the canonical model parameters. In this regard, (Hsu et al., 2012) have proposed an effi-
cient spectral algorithm for inference in HMMs. It is based on the idea of expressing the probability
of the observed sequence in a representation which does not depend on the model parameters and
uses easily computable second and third order sample moments to perform inference. Although
their work has been used in models on sequences and trees used in Natural Language Processing
(NLP) and Reinforcement Learning (RL) (Boots and Gordon, 2010; Dhillon et al., 2011; Balle et al.,
2011; Cohen et al., 2014), their approach is not easily extendable to general latent variable models.
The work of (Parikh et al., 2011), on the other hand, introduced a spectral algorithm to perform
inference in latent tree graphical models with arbitrary topology, and later in (Parikh et al., 2012) a
general spectral inference framework for latent junction trees.

In this paper, we utilize the framework of (Parikh et al., 2012) and introduce a novel spectral
algorithm for inference in HSMMs. Since we address a more specific problem than (Parikh et al.,
2012), our results shed more light into the details of the spectral framework for HSMMs, allow for
a sharper analysis, and yield a significantly more efficient algorithm than the general framework in
(Parikh et al., 2012). There are two main technical contributions in this work:

• By exploiting the homogeneity of HSMMs we make our proposed algorithm more efficient
and accurate than the algorithm which directly follows from the recipe in (Parikh et al., 2012)
for general graphs. In particular, our approach ensures that during the training phase the
number of matrix multiplications and inverses is fixed and independent of the sequence length
of the observations.

• Through careful analysis we show that the number of dimensions in the sample moments
(represented as a multidimensional matrix or a tensor) in estimated observable representation
depends only logarithmically on the maximum length of latent state persistence (this is in
contrast to a standard implementation, which would have a linear dependence).

2

A SPECTRAL ALGORITHM FOR INFERENCE IN HSMM

In experiments, comparing our method with EM on both synthetic and real data sets, two obser-
vations stand out: (i) the spectral method gets similar or better performance than EM as the number
of samples increases, and (ii) the spectral method is orders of magnitude faster than EM for the
datasets we consider.

Few remarks are in order about the proposed algorithm. Note that our method does not estimate
model parameters explicitly but rather learns alternative representation to perform inference on ob-
servable variables. The idea of the observable representations was first introduced with the name
‘observable operators models’ by (Jaeger, 2000) in the context of constructing learning algorithm
for the identification of linearly dependent processes. Our formulation cannot be directly used to
infer hidden states, although methods such as in (Mossel and Roch, 2005) can be potentially uti-
lized to recover original HSMM parameters from the learned representation. Finally, we note that
the similar ideas of using homogeneity of HMMs to improve algorithm’s efficiency has also been
utilized in other related works, e.g., (Siddiqi et al., 2010; Hsu et al., 2012).

The rest of the paper is organized as follows: We introduce notation in Section 2. In Sec-
tion 3, we present HSMM inference from a tensor product perspective and in Section 4 introduce
the spectral algorithm for inference. In Section 5, we present a careful technical analysis to establish
logarithmic dependence of the number of modes in the tensor on maximum latent state persistence.
We present experimental results in Section 6 and conclude in Section 7.

2. Notation and Preliminaries

In this section, we cover basic facts about tensor algebra. Detailed tutorials on tensors can be found
in (Kiers, 2000) or (Kolda and Bader, 2009). A tensor is defined as a multidimensional array of
data, which will be denoted by boldface Euler script letters, e.g., X

m1,...,mN

∈ RIm1×···×ImN , which

is N -mode tensor of dimensions Im1 × · · · × ImN . A specific mode is denoted by the subscript
variable mi, whose dimension is Imi .

Any tensor can be matrisized (or flattened) into a matrix. This mapping can be done in multiple
ways, the only requirement is that the number of elements is preserved and the mapping is one-
to-one. If we split the modes into two disjoint sets, one corresponding to rows and the other to
columns, e.g., {m1, . . . ,mN} = {p1, . . . , pK}∪ {q1, . . . , qL}, then a matrisization of X is denoted
by a corresponding capital boldface letter, e.g., X

p1,...,pKq1,...,qL
∈ RIp1 ···IpK×Iq1 ···IqL .

Tensor Multiplication. Multiplication of two tensors is performed along specific modes. For
this, we flatten each tensor to a matrix, perform the usual matrix multiplication and transform the
result back to a tensor. The multiplication is denoted by a symbol × with an optional subscript
representing the modes along which the operation is performed, e.g.,:

Z
p1,...,pK ,r1,...,rM

= X
p1,...,pK ,q1,...,qL

×q1,...,qL Y
q1,...,qL,r1,...,rM

,

where Y
q1,...,qL,r1,...,rM

∈ RIq1×···×IqL×Ir1×···×IrM and the resulting tensor on the left hand side is

of the form Z
p1,...,pK ,r1,...,rM

∈ RIp1×···×IpK×Ir1×···×IrM . Observe that in the above, we can flatten

the tensors X and Y in multiple different ways as long as the matrix multiplication remains valid.
For example, we could assign the multiplication modes in both tensors to columns, in this case
the matrix product becomes Z = XYT . Alternatively, the tensor Y could be matrisized with the
multiplication modes corresponding to rows, resulting in the product Z = XY.

3

MELNYK AND BANERJEE

X
p,q,r
∈ RIp×Iq×Ir N -mode tensor of dimensions Ip × Iq × Ir

X
p,q,r
∈ RIpIq×Ir Matricization of tensor X

p,q,r
with IpIq rows and Ir columns

X
p,q,r
×r Y

r,s,t
Multiplication of tensor X

p,q,r
and tensor Y

r,s,t
along mode r

X
p,q,r
×q,r X

p,q,r

−1 = I
p,p

= I
p

Inversion of tensor X
p,q,r

with respect to modes q and r

Xt Representation of a clique in a Junction tree
ot ∈ {1, . . . , no} Observation variable in HSMM
xt ∈ {1, . . . , nx} Latent state variable in HSMM
dt ∈ {1, . . . , nd} Latent duration variable in HSMM

ORt := {ot+1, ot+2, . . .} Set of observations to the right of time step t
OLt := {. . . , ot−2, ot−1} Set of observations to the left of time step t

Table 1: Summary of some of the key notations used throughout the paper.

An important fact about tensor multiplication is that in a series of tensor multiplications the
order is irrelevant (i.e., it is an associative operation) as long as the multiplication is performed
along the matching modes, e.g,

X
sp
×s
(
Y
tr
×r Z

rs

)
=

(
X
sp
×s Z

rs

)
×r Y

tr
.

If we let the matrisized tensors to be X ∈ RIp×Is , Y ∈ RIt×Ir and Z ∈ RIr×Is , then the above can
be verified to be true since

X (YZ)T =
(
XZT

)
YT .

To reduce clutter, in many places we will drop the multiplication subscripts. The implied modes
of multiplication can then be inferred from the subscripts of the tensors. Specifically, when two
tensors are multiplied, we first check their modes and then multiply along the modes which are
common to both of them. For example, in the product X

pqr
× Y

qsr
, the implied multiplication is

performed along the common modes, i.e., q and r.
Tensor Inversion. We also discuss the operation of tensor inversion. Tensor inverse X−1 is

always defined with respect to a certain subset of modes and can be written as follows:

X
p1,...,pK ,q1,...,qL

×q1,...,qL X−1

p1,...,pK ,q1,...,qL
= I
p1,...,pK ,p1,...,pK

,

where the inversion is performed along the modes q1, . . . , qL, and I
p1,...,pK ,p1,...,pK

denotes an iden-

tity tensor, whose elements are everywhere zero, except I(i1, . . . , iK , i1, . . . , iK) = 1. To perform
inversion, we first convert tensor to a matrix, i.e., matrisized tensor. If the modes to be inverted
along are associated with columns of the matrix, we compute the right matrix inverse, so that these
modes get eliminated after the product. Otherwise, if those modes associated with rows, we com-
pute left matrix inverse. Obviously, for the full rank square matrices both choices would produce
the same result. For example, in the above equation the matrisized tensor might be of the form

X
p1,...,pKq1,...,qL

∈ RIp1 ···IpK×Iq1 ···IqL , therefore, we would compute the right matrix inverse so that

4

A SPECTRAL ALGORITHM FOR INFERENCE IN HSMM

the modes q1, . . . , qL are eliminated. If the matrisized X has full row rank, then the inverse can be
computed, otherwise we could only compute its pseudo-inverse. Tensorizing the matrix X−1 gives
us the desired tensor inverse.

Mode Duplication. Observe that in the above, the tensor I
p1,...,pK ,p1,...,pK

has duplicate modes.

In general, if a tensor has duplicate modes, the corresponding sub-tensor can be interpreted as a
hyper-diagonal. For example, if for a tensor X

pq
we construct a tensor X

pppq
, which has its mode

p duplicated three times, then for a fixed index i, the sub-tensor X(:, :, :, i) is a hypercube with
elements X(:, i) on the diagonal.

Mode duplication enables us to multiply several tensors along the same mode. For example, if
we need to multiply tensors X

sp
, Y
pr

and Z
tp

along the mode p, then a simple product of the form

X
sp
×p Y

pr
×p Z

tp

cannot be done since any product of two tensors along the mode p would eliminate it, preventing
any further multiplications. In general, if there are N multiplications along the specific mode, then
there are must be cumulatively 2N number of times such a mode is encountered in the participating
tensors. In our example, we might duplicate the mode p in, say, tensor Z to have

X
sp
×p
(
Y
pr
×p Z

tpp

)
= X

sp
×p W

prt
= V

srt
,

so that there are two multiplications over mode p and cumulatively there are four times such a
mode is encountered in the participating tensors. To reduce clutter, we sometimes do not explicitly
show the duplicated variables in the subscripts; the implied mode repetition will be evident from the
context or explicitly stated in cases when there is a confusion. For example, the identity tensor will
often be written as I

p1,...,pK
.

Tensor rank Finally, we discuss the meaning of a tensor rank. A tensor can have multiple ranks
and each of them is defined based on the rank of a particular matricization. For example, consider
a tensor X

pqs
. If we flatten it to a matrix X ∈ RIp×IqIs then it can have a rank r1. On the other hand,

a matricization of the form X ∈ RIpIq×Is can have a rank r2, and so on. In our derivations, the
particular rank we are referring to will be evident from the context.
In Table 2 we summarized some of the key notations used throughout the paper.

3. Problem Formulation

In this paper, we consider the problem of inference in HSMM1 (see Figure 1). Unlike the popular
HMM, which has a geometric probability for state persistence, i.e., the probability of persisting in
the same state over t time steps decreases as πt, where π is the probability of persistence for one
time step, HSMM explicitly models state persistence. From a graphical model perspective, HSMM
has three sets of variables: the observations ot ∈ {1, . . . , no}, the latent states xt ∈ {1, . . . , nx}, and
another latent variable dt ∈ {1, . . . , nd} which determines the length of state persistence. HSMM

1. To reduce clutter, in the main paper we only consider the model for a general time stamp t and ignore the initial
(t = 0) and final (t = T) steps of the model, whose representation differs slightly from what is shown in Figure 1.
The details for these parts are presented separately in Appendix B.

5

MELNYK AND BANERJEE

xt

ot

dtdt−1

xt−1

ot−1ot−2

xt−2

dt−2

Figure 1: Hidden Semi-Markov Model (HSMM) depicted as a dynamic Bayesian network. Here
ot ∈ {1, . . . , no} denotes an observation at time step t, xt ∈ {1, . . . , nx} is a latent state
and dt ∈ {1, . . . , nd} is the length of state persistence at time step t.

is specified by three conditional probability tables (CPTs): the observation/emission probability
p(ot|xt) and the state transition and the duration probabilities given by

p(dt|xt, dt−1) =

{
p(dt|xt) if dt−1 = 1

δ(dt, dt−1 − 1) if dt−1 > 1 ,
(1)

p(xt|xt−1, dt−1) =

{
p(xt|xt−1) if dt−1 = 1

δ(xt, xt−1) if dt−1 > 1 ,
(2)

where δ(a, b) denotes the Dirac delta function: δ(a, b) = 1 if a = b and 0 otherwise. In addition, one
can consider suitable prior probabilities p(x0) and p(d0). In essence, dt works as a down counter
for state persistence. When dt−1 > 1, the model remains in the same state xt = xt−1, while when
dt−1 = 1, one samples a new state xt and the new duration in that state dt|xt. For our analysis,
we assume p(dt|xt, dt−1 = 1) to be a discrete distribution over {1, . . . , nd} where nd denotes the
largest duration of state persistence.

The considered inference problem can be posed as follows: given a set of discrete sequences
{S1, . . . ,SN} drawn independently from the HSMM model, where each sequence is defined as
Si = {oi1, . . . , oiTi}, i = 1, . . . , N , our goal is to compute the probability p(Stest) of any given test
sequence Stest = (otest1 , . . . , otestT). A traditional approach would be to estimate the CPTs using
the EM algorithm, and use the estimates to compute p(Stest). However, the EM algorithm is not
guaranteed to estimate the parameters optimally, and hence the computation of p(Stest) may be
incorrect. The focus of our work is to develop a provably correct spectral algorithm for computing
the probability p(Stest).

3.1 HSMM in Tensor Notations

We start by considering the matrix forms of the HSMM parameters and writing the computations
in tensor notation, as introduced in Section 2. Specifically, p(dt|xt, dt−1 = 1) is denoted as
D ∈ Rnd×nx , p(xt|xt−1, dt−1 = 1) is denoted as X ∈ Rnx×nx , and p(ot|xt) as O ∈ Rno×nx .
We make the following assumptions on the HSMM parameters:

6

A SPECTRAL ALGORITHM FOR INFERENCE IN HSMM

otxt

xt

dtxtdt−1xtxt−1dt−1dt−1xt−1dt−2 xtdt−1xt−1dt−2xt−1xt−2dt−2

xt−1

ot−1xt−1 Ot

XtDt

Ot−1

Xt−1

xt−1dt−1

Dt+1

Figure 2: Junction Tree for Hidden Semi-Markov Model. The ovals represent cliques, which are
denoted by capital blackboard bold variables; the rectangles denote separators. Symbols
within the shapes represent the variables on which the corresponding potentials depend.

Assumptions
A1. X is full rank and has non-zero probability of visiting any state from any other state.
A2. D has a non-zero probability of any duration in any state.
A3. O is full column rank and, as a consequence, nx ≤ no.

We provide some comments on the above assumptions. We note that the assumption A1 can be
relaxed to allow zero entries (while still ensuring full rank structure) and thus prevent certain states
to be directly reachable from other states; however, this would require more involved analysis based
on the mixing time of the corresponding Markov chain (Levin et al., 2009), and is not pursued in
this work. Also, observe that the assumption of nx ≤ no is needed in order to ensure that hidden
states are identifiable, although recent work is showing that such an assumption can be relaxed in
some cases (Bailly et al., 2009; Anandkumar et al., 2013b). Intuitively, it means that the number
of different observations coming from each state is large enough, so that one hidden state can be
differentiated from the other.

To express the joint probability p(o1, . . . , oT) for any possible observation sequence in tensor
form, we utilize the junction tree algorithm (Barber, 2012). The resulting tree is shown in Figure 2
and it corresponds to the graphical model of HSMM in Figure 1. Recall, that the junction tree is a
tree-structured representation of an arbitrary graph enabling efficient inference. It can be constructed
by forming a maximal spanning tree from the cliques of the graph. The cliques then represent
vertices in the junction tree and the edges connecting the vertices are labeled with variables common
to two cliques it connects. The set of variables on the edges are referred to as separators. For
example, in Figure 2 the cliques Xt and Dt have two variables in common, xt−1 and dt−1, and
which define the sepatator between Xt and Dt.

We proceed by representing the clique CPTs of the junction tree as tensors. For example, the
clique Xt, containing the CPT of p(xt|xt−1, dt−1) is represented as tensor X

xt|xt−1dt−1

. For ease of

exposition, the tensor’s modes are named based on the variables on which the tensor depends. We
also keep the conditioning symbol | for clarity. Similarly, we represent the clique Dt with its CPT
p(dt|xt, dt−1) as tensor D

dt|xtdt−1

, and Ot containing p(ot|xt) as tensor O
ot|xt

.

If we denote the joint probability of the observed sequence p(o1, . . . , oT) as P
o1,...,oT

then the

message passing for the junction tree algorithm in Figure 2 can be represented as tensor multiplica-
tions:

7

MELNYK AND BANERJEE

P
o1,...,oT

=
∏

t

D
dt−1|xt−1xt−1dt−2

×xt−1dt−1

(
X

xtxt|xt−1dt−1dt−1

×xt O
ot|xt

)
, (3)

where, for simplicity, we denoted by
∏
t the tensor product over multiple time steps.

Note that in (3) the neighboring tensors are multiplied along the modes which are the separator
variables between two corresponding neighboring cliques in Figure 2. Therefore, as we discussed in
Section 2, if a certain mode of a tensor is to participate multiple times in products with other tensor,
the mode must be duplicated for the expression to remain correct. It can easily be seen from the
junction tree that the number of times the mode is duplicated depends on the number of times such
a variable appears in separators adjacent to the clique. For example, the tensor X

xtxt|xt−1dt−1dt−1

has

a mode xt−1 appearing once in the separator connecting Xt and Dt in Figure 2, while xt appears a
total of two times, once in the separator connecting Xt and Ot, and once in the separator connecting
Xt and Dt+1. Finally, dt−1 appears in the separator between Dt and Xt, and between Dt+1 and Xt.
Applying the same reasoning to tensors D and O results in the expression (3).

3.2 Summary of Technical Results

In this work, we represent expression (3), which is defined in terms of unknown model parameters,
in a different observable form, where all the factors can be estimated directly from data using certain
sample moments without knowledge of model parameters. Such an observable form is derived in
Sections 4.1 and 4.2. Based on the observable form, in Section 4.3 we propose a simple spectral
algorithm which requires estimating X, D and O for all the time stamps t. This estimation process is
expensive as it involves costly tensor operations to be performed at each time index t. Moreover, the
accurate estimation of these tensors requires large number of training sequences which might not be
available, leading to inaccurate and unstable computations. However, exploiting the homogeneity
property of HSMMs, i.e., the probability distributions represented by the above tensors are the same
across all time t, we derive a computationally efficient and accurate spectral algorithm in Section
4.4 which requires the estimation of only three tensors for all the time stamps t. Although the
computational complexity of the inference, i.e., the evaluation of expression (3), is not affected by
the introduced modifications, the overall algorithm becomes faster and more accurate.

In Section 5 we return to the results of Sections 4.1 and establish the conditions under which
the derived observable form can be computed from data. In particular, our analysis shows that
the number of dimensions of the required sample moments (in the form of tensors, estimated from
data and representing the co-occurrence frequency of certain observable variables), has logarithmic
dependence on the longest state persistence nd. Such conclusion is in contrast to the analysis,
which would follow from the work of (Parikh et al., 2012), in which case the required number
of dimensions in the estimated sample moments would have had linear dependence on nd. The
exponential reduction in the size of the estimated tensors represents significant improvement in
algorithm’s efficiency and accuracy since the multidimensional matrices are of smaller size and
consequently more data is available to estimate each of its entry.

8

A SPECTRAL ALGORITHM FOR INFERENCE IN HSMM

4. Spectral Algorithm for Inference in HSMM

In this Section we present the details of the spectral inference approach. In particular, in Sections
4.1 and 4.2 we derive observable tensor representation and show how to estimate each of its factors
directly from data. Practical algorithms implementing these ideas are then derived in Sections 4.3
and 4.4.

4.1 Observable Tensor Representation

Observe that the computation of the joint probability in (3) requires knowledge of the unknown
model parameters. Our goal is to change the tensor representation such that P

o1,...,oT
can be written

in terms of the quantities directly computable from data. To that end, we follow (Parikh et al., 2012)
and between every two factors in (3) introduce an identity tensor with the modes corresponding to
the modes along which the multiplication is performed. For example, consider a part of (3) after
introducing identity tensors:

× I
xt−1dt−2

×xt−1dt−2 D
dt−1|xt−1xt−1dt−2

×xt−1dt−1 I
xt−1dt−1

×xt−1dt−1
(

X
xtxt|xt−1dt−1dt−1

×xt Ixt×xt O
otxt

)
×xtdt−1 I

xtdt−1
×, (4)

where all the identity tensors have duplicated modes which are not shown.
Now rewrite each of the identity tensors in (4) as a multiplication of some factor times its

inverse. For example,

I
xt

= F
ωxtxt

×ωxt
F−1

ωxtxt
,

for some invertible factor F
ωxtxt

, whose modes are xt and ωxt . Note that the choice of mode xt is

fixed and is determined by the modes of the identity tensor I
xt

, while the mode ωxt is not fixed and

we have freedom in selecting it as convenient. Moreover, observe that since the tensor inversion
is done along the mode ωxt and the matrix F has its rows associated with mode ωxt , we need to
ensure such a matrix has full column rank for the inverse to exist and for the product F−1F to be the
identity matrix (see Section 2 for more details on tensor inversion). Based on the above discussion,
we choose tensor F such that (i) ωxt are the observed variables, (ii) F

ωxtxt
is invertible, i.e., matrix

F, whose columns correspond to xt, has full column rank, and (iii) we interpret the factor F
ωxtxt

as

corresponding to a conditional probability distribution, i.e., p(ωxt |xt) and therefore write F
ωxt |xt

.

After expanding each of the identity tensors, regrouping the factors and recalling that in a series
of tensor multiplication the order is irrelevant, we can identify three modified tensors:

D̃
ωxt−1dt−2ωxt−1dt−1

= F−1

ωxt−1dt−2 |xt−1dt−2
×xt−1dt−2 D

dt−1|xt−1xt−1dt−2
×xt−1dt−1 F

ωxt−1dt−1 |xt−1dt−1

X̃
ωxt−1dt−1ωxtωxtdt−1

= F−1

ωxt−1dt−1 |xt−1dt−1
×xt−1dt−1

(
X

xtxt|xt−1dt−1dt−1
×xt F

ωxt |xt

)
×xtdt−1 F

ωxtdt−1 |xtdt−1

Õ
ωxtot

= F−1

ωxt |xt
×xt O

ot|xt
.

Note that although each of the above tensors depends only on certain observed variables ω, for a
concrete algorithm one has to decide what these ω are, and also how to estimate the associated

9

MELNYK AND BANERJEE

tensors from data. The right hand side in the above expressions depend on the unknown model
parameters, whereas the tensors on the left do not correspond to valid probability distributions (due
to the presence of inverses F−1), and so cannot be estimated from data using sample moments. For
example, D̃

ωxt−1dt−2ωxt−1dt−1
is not a tensor form of p(ωxt−1dt−2 , ωxt−1dt−1).

Next, we discuss the choice of the observable set ω in the factors F. From Figure 2 we can
see that there are three types of separators which depend on xt−1dt−1, xtdt−1 and xt, consequently,
there are three types of identity tensors which we introduced in (4), i.e., I

xt−1dt−1

, I
xtdt−1

and I
xt

.

Therefore, we need to define three types of observable sets ωxt−1dt−1 , ωxtdt−1 and ωxt . There are
multiple choices for these sets, one of them is ωxt−1dt−1 = ωxtdt−1 = {ot+1, ot+2, . . .} for all
t (see Figure 3 for an illustration). Ideally, we want these sets to be of minimal size, since they
need to be estimated from observations. The detailed description of how many and which of these
observations to select to get a minimal set is deferred until Section 5, where we also show that we
can set ωxt = ot.

In what follows, we define ORt := {ot+1, ot+2, . . . , ot+τ} (see Figure 3) to emphasize that this
is a fixed set of observations whose length τ is yet to be determined, starting after time stamp t and
going to the right (or forward in time) in the graphical model in Figure 1. With these definitions,
setting ωxt−1dt−1 = ORt , ωxtdt−1 = ORt , ωxt−1dt−2 = ORt−1 and ωxt = ot, we can now rewrite
(3) in the form:

P
o1,...,oT

=
∏

t

D̃
ORt−1

ORt

×ORt

(
X̃

ORtotORt

×ot Õ
otot

)
. (5)

Comparing (3) and (5) we see that the above equation expresses the joint probability distribution
in the observable form. As noted above, we cannot yet use this formula in practice since we do
not know how to compute the transformed tensors. In what follows, we show how to estimate such
tensors directly from data, without the need for the model parameters.

4.2 Estimation of Observable Tensors

In this Section we express each of the tensors in (5) in forms which can be directly estimated from
the observed sequences.

4.2.1 COMPUTATION OF TENSOR D̃
ORt−1ORt

Consider the tensor from Section 4.1

D̃
ORt−1ORt

= F−1

ORt−1 |xt−1dt−2
×xt−1dt−2 D

dt−1|xt−1xt−1dt−2
×xt−1dt−1 F

ORt |xt−1dt−1
, (6)

whose modes are the observable variables ORt−1 and ORt . To estimate this tensor from data, con-
sider OLt−1 , a set of the observed variables such that OLt−1 and ORt−1 are independent, conditioned
on xt−1dt−2 (see Figure 3):

p(OLt−1 ,ORt−1) =
∑

xt−1dt−2

p(OLt−1 |xt−1dt−2)p(ORt−1 |xt−1dt−2)p(xt−1dt−2). (7)

10

A SPECTRAL ALGORITHM FOR INFERENCE IN HSMM

xtxt−1xt−2 xt+1

dt−2 dt−1 dt dt+1

ot−2 ot−1 ot ot+1

ORt

ORt−1
OLt−1

OLt

Figure 3: Conditional independence in HSMM. The figure depicts two sets of relationships: OLt

and ORt are independent conditioned on xt−1dt−1, similarly, OLt−1 and ORt−1 are
conditionally independent given xt−1dt−2. We defined OLt = {. . . , ot−2, ot−1} and
ORt = {ot+1, ot+2, . . .}.

The above conditional independence relationship can be written in tensor form:

M
OLt−1ORt−1

= F
OLt−1 |xt−1dt−2

×xt−1dt−2 F
ORt−1 |xt−1dt−2

×xt−1dt−2 K
xt−1dt−2

, (8)

where tensor K represents the marginal p(xt−1, dt−2). Note that, though not shown, the modes
xt−1 and dt−2 need to appear twice in K, since it interacts with both other terms (see the discussion
on mode duplication in Section 2). The set OLt−1 is defined in a way similar to ORt but with the
set of observations starting at time stamp t − 2 and going to the left (or backward in time), i.e.,
OLt−1 := {. . . , ot−3, ot−2} (see Figure 3).

Next, we express the inverse of the tensor F
ORt−1

|xt−1dt−2

from (8) and substitute back to (6). For

this, we observe that in (6) the tensor F−1 is inverted with respect to mode ORt−1 , therefore, we do
the following:

M
OLt−1ORt−1

×ORt−1
F−1

ORt−1 |xt−1dt−2
= F

OLt−1 |xt−1dt−2
×xt−1dt−2 I

xt−1dt−2
×xt−1dt−2 K

xt−1dt−2

F−1

ORt−1 |xt−1dt−2
= M−1

OLt−1ORt−1

×OLt−1
F

OLt−1 |xt−1dt−2
×xt−1dt−2 K

xt−1dt−2
, (9)

where M−1

OLt−1ORt−1

is inverted with respect to mode OLt−1 . Next, substituting (9) back to (6), we get

D̃
ORt−1ORt

= M−1

OLt−1ORt−1

×OLt−1
F

OLt−1 |xt−1dt−2
×xt−1dt−2 K

xt−1dt−2
×xt−1dt−2 D

dt−1|xt−1xt−1dt−2
×xt−1dt−1 F

ORt |xt−1dt−1

= M−1

OLt−1ORt−1

×OLt−1
M

OLt−1ORt

, (10)

where we have eliminated all the latent variables by multiplying the last four terms on the first line.
Observe that the tensors M

OLt−1ORt−1

and M
OLt−1ORt

represent valid joint probability distributions

over a subset of observations p(OLt−1 ,ORt−1) and p(OLt−1 ,ORt), respectively, and though they are

11

MELNYK AND BANERJEE

Õ
otot

Õ
ot−1ot−1

otot−1

�
M

ot−1ot

−1 × M
ot−1ot

� �
M

otot+1

−1 × M
otot+1

�

�
M

OLtORt

−1 × M
OLtORt ot

��
M

OLt−1
ORt−1

−1 × M
OLt−1

ORt

� �
M

OLtORt

−1 × M
OLtORt+1

��
M

OLt−1
ORt−1

−1 × M
OLt−1

ORt−1
ot−1

�

X̃
ORt−1

ot−1ORt−1
ORt−1

X̃
ORt otORt

ORt
D̃

ORt−1
ORt

D̃
ORtORt+1

ORt

Figure 4: Graphical representation of the HSMM spectral algorithm for inference in Algorithm 1.
As compared to junction tree in Figure 2, the cliques and separators are now defined in
terms of the tensors, which are defined with respect to the observed data. The expressions
in the parenthesis show the observable representation of the corresponding tensors.

defined with respect to unknown model parameters (as, for example, in (7)), we can readily estimate
them from data. For example, M

OLt−1ORt

is a tensor, where each entry is computed from the frequency

of co-occurrence of tuples of the observations {. . . , ot−3, ot−2, ot+1, ot+2, . . .}. Ideally, we want a
small number of observations since we need to estimate their co-occurrence frequency from the
training data. A precise characterization of how many and which of these observations suffices for
the analysis will be done in Section 5.

4.2.2 COMPUTATION OF TENSOR X̃
ORtotORt

The form of this tensor was established at the beginning of Section 4.2 to be:

X̃
ORtotORt

= F−1

ORt |xt−1dt−1
×xt−1dt−1

(
X

xtxt|xt−1dt−1dt−1
×xt F

ot|xt

)
×xtdt−1 F

ORt |xtdt−1

. (11)

Consider the following conditional independence relationship (see Figure 3):

M
OLtORt

= F
OLt |xt−1dt−1

×xt−1dt−1 F
ORt |xt−1dt−1

×xt−1dt−1 K
xt−1dt−1

, (12)

where K
xt−1dt−1

= K
xt−1dt−1xt−1dt−1

and we omitted the duplicated modes.

We express the inverse of tensor F
ORt |xt−1dt−1

from the above equation

F−1

ORt |xt−1dt−1
= M−1

OLtORt

×OLt
F

OLt |xt−1dt−1
×xt−1dt−1 K

xt−1dt−1
,

where tensor F
ORt |xt−1dt−1

is inverted with respect to mode ORt , while M
OLtORt

is inverted with respect

to mode OLt . Substituting back to (11), we get

X̃
ORtotORt

= M−1

OLtORt

×OLt
F

OLt |xt−1dt−1
×xt−1dt−1 K

xt−1dt−1
×xt−1dt−1

(
X

xtxt|xt−1dt−1dt−1
×xt F

ot|xt

)
×xtdt−1 F

ORt |xtdt−1

.

12

A SPECTRAL ALGORITHM FOR INFERENCE IN HSMM

Considering the last five factors and multiplying them together, we obtain

M
OLtORtot

= F
OLt |xt−1dt−1

×xt−1dt−1 K
xt−1dt−1

×xt−1dt−1

(
X

xtxt|xt−1dt−1dt−1
×xt F

ot|xt

)
×xtdt−1 F

ORt |xtdt−1

.

Finally, (11) can now be written as

X̃
ORtotORt

= M−1

OLtORt

×OLt
M

OLtORtot
, (13)

where the right hand side can now be estimated directly from data, without the need for the model
parameters.

4.2.3 COMPUTATION OF TENSOR Õ
otot

Finally, we consider the tensor

Õ
otot

= F−1

ot|xt
×xt O

ot|xt
. (14)

The conditional independence relationship can take the form

M
otot+1

= F
ot|xt
×xt F

ot+1|xt
×xt Kxt .

Expressing the inverse of F
ot|xt

F−1

ot|xt
= M−1

otot+1

×ot+1 F
ot+1|xt

×xt Kxt ,

and substituting in (14), we get

Õ
otot

= M−1

otot+1

×ot+1 F
ot+1|xt

×xt Kxt ×xt O
ot|xt

= M−1

otot+1

×ot+1 M
otot+1

. (15)

4.3 Basic Version of Spectral Algorithm

The basic version of the spectral HSMM algorithm to compute P
o1,...,oT

entirely using the observed

variables can be described as a two step process: in the learning step, compute tensors D̃
ORt−1

ORt

,

X̃
ORt−1

otORt

, and Õ
otot

for each t using (10), (13) and (15) from the training data. In the inference step,

use (5) to compute p(Stest). Algorithm 1 shows its basic version and Figure 4 shows the graphical
representation of this algorithm in terms of the transformed junction tree of Figure 2.

As an example, consider the learning step of the algorithm and the computation of tensor in
(10), i.e.,

D̃
ORt−1ORt

= M−1

OLt−1ORt−1

×OLt−1
M

OLt−1ORt

.

13

MELNYK AND BANERJEE

Algorithm 1 Basic Spectral Algorithm for HSMM inference
Input: Training sequences: Si = {oi1, . . . , oiTi}, i = 1, . . . , N .
Testing sequence: Stest = {otest1 , . . . , otestT }.
Output: p(Stest)

Learning phase:
for all t do

Estimate D̃
ORt−1ORt

, X̃
ORtotORt

and Õ
otot

from data {S1, . . . ,SN} using equations (10), (13) and

(15).
end for

Inference phase:
p(Stest) = 1
for t = T down to t = 1 do
p(Stest) = p(Stest)× D̃

ORt−1ORt

×ORt

(
X̃

ORtotORt

×ot Õ
otot

∣∣∣
ot=otestt

)

end for

For a fixed t, we estimate each entry of M
OLt−1ORt−1

from the frequency of co-occurrence of tuples

of the observed symbols {. . . , ot−3, ot−2, ot+1, ot+2, . . .} in the given data set (the sets OLt−1 and
ORt−1 were defined at the beginning of Section 4.2). Next, following our discussion after (9),
we invert M−1

OLt−1ORt−1

along the modes OLt−1 . For this, we matrisize the tensor so that the modes

OLt−1 are associated with columns and ORt−1 with rows in matrix M
ORt−1OLt−1

(see Section 2 for

the discussion on tensor matrisization and inversion). Finally, we compute the right inverse of the
matrix to obtain M−1

ORt−1OLt−1

, so that M
ORt−1OLt−1

· M−1

ORt−1OLt−1

= I

Similarly, we estimate the tensor M
OLt−1ORt

using the corresponding co-occurrences of the ob-

served symbols. Matrisizing the result, so that the rows correspond to the modes OLt−1 and the
columns to ORt , we get the matrix M

OLt−1ORt

. The multiplication M−1

ORt−1OLt−1

· M
OLt−1ORt

= D̃
ORt−1ORt

produces a matrix, which is then converted to a tensor to get the final result in (10).
In the inference step we perform tensor multiplications for each t running along the length of

the testing sequence. The only nuance here is that before multiplying the tensor Õ
otot

with others,

the second mode ot, whose dimension is no is collapsed into a scalar. This operation is denoted as
Õ
otot

∣∣∣
ot=otestt

, which means that based on the value of the tth symbol in testing sequence, we select

the column corresponding to the element otestt . For example, if Õ
otot
∈ R10×10 and otestt = 3 then

Õ
otot

∣∣∣
ot=otestt

∈ R10×1, a third column in the original matrix.

Analyzing (10), (13) and (15), we see that the computational complexity of the learning phase of
the algorithm is determined by the tensor inverses and multiplications. For example, if in (10) we de-
note |OR| = |OL| = ` (in Section 5 we will show that ` = d1 + lognd

lognx
e), then M

OLt−1ORt−1

∈ Rn`
o×n`

o

14

A SPECTRAL ALGORITHM FOR INFERENCE IN HSMM

and M
OLt−1ORt

∈ Rn`
o×n`

o . The computational complexity of the multiplications and inversions would

then be O(n3`
o). Performing this computations for all t and assuming that the length of the se-

quences is T , would result inO
(
n3`
o T
)
. Additionally, withN training examples there will be a cost

of O (`NT) to estimate the sample moments M, which is based on counting the co-occurrences of
certain observable symbols. In the inference phase of the algorithm, we perform a series of tensor
multiplications with the cost of O(n3`

o T).

4.4 Efficient Version of Spectral Algorithm

Note that for large ` the accurate estimation of tensors M for each t will require large number of
training sequences which might not be available, leading to inaccurate and unstable computations.
Observe, however, that for example the estimated sample-based tensors M

OLt−1ORt

in (10) for each t

estimate the same population quantity due to homogeneity of HSMM. Thus, a novel aspect of our
work is the improvement of the accuracy and efficiency of the basic Algorithm 1 by exploiting the
homogeneity property of HSMM and estimating the tensors X̃, D̃ and Õ using all time steps, i.e.,
by pooling samples across different t and averaging the estimates. Thus, we compute only three
tensors across all t, as opposed to computing these tensors separately for each t.

We show the details for computing the tensors D̃ in the batch form. The derivations for other
tensors X̃ and Õ can be computed in a similar manner. Recall from (10) the form of D̃

ORt−1ORt

, and

consider the following alternative expression, based on the sum over all t:

D̃ =

(∑

t

M
OLt−1

ORt−1

)−1

×OL

(∑

t

M
OLt−1

ORt

)
, (16)

where OL denotes a generic mode of the averaged tensor M, corresponding to OLt−1 for all t. Note
that in practice, instead of summation, we use averaging to avoid numerical overflow problems, and
the average is equivalent to the expression in (16) since the term 1

T cancels out. Since

M
OLt−1ORt−1

= F
OLt−1 |xt−1dt−2

×xt−1dt−2 F
ORt−1 |xt−1dt−2

×xt−1dt−2 K
xt−1dt−2

, (17)

the first term inside brackets can be rewritten as:
∑

t

F
OLt−1

|xt−1dt−2

×xt−1dt−2
F

ORt−1
|xt−1dt−2

×xt−1dt−2
K

xt−1dt−2

(a)
=
∑

t

F
ORt−1

|xt−1dt−2

×xt−1dt−2
F

OLt−1
xt−1dt−2

(b)
= F

OR2
|x2d1

×
(∑

t

F
OLt−1

xt−1dt−2

)
, (18)

where in (a) we combined the two factors, i.e., F
OLt−1

xt−1dt−2

= F
OLt−1 |xt−1dt−2

×xt−1dt−2 K
xt−1dt−2xt−1dt−2

and in (b) we used the homogeneity property of HSMM, i.e., the fact that F
ORt−1

|xt−1dt−2

does not

depend on time stamp t, and extracted one of the common factors, in fact, the first factor. Note
that the term F

OLt−1
xt−1dt−2

, on the other hand, does depend on t since the factor K
xt−1dt−2

, which

represents the probability p(xt−1, dt−2), changes as the time stamp t changes.

15

MELNYK AND BANERJEE

Similarly, since

M
OLt−1ORt

= F
OLt−1 |xt−1dt−2

×xt−1dt−2 K
xt−1dt−2

×xt−1dt−2 D
dt−1|xt−1xt−1dt−2

×xt−1dt−1 F
ORt |xt−1dt−1

,

(19)

rewrite the second term in (16) as

∑

t

F
OLt−1 |xt−1dt−2

×xt−1dt−2 K
xt−1dt−2

×xt−1dt−2 D
dt−1|xt−1xt−1dt−2

×xt−1dt−1 F
ORt |xt−1dt−1

=
∑

t

F
OLt−1

xt−1dt−2

×xt−1dt−2 D
dt−1|xt−1xt−1dt−2

×xt−1dt−1 F
ORt |xt−1dt−1

=

(∑

t

F
OLt−1

xt−1dt−2

)
× D
d2|x2x2d1

×x2d2 F
OR3
|x2d2

, (20)

where we used the transformations similar as in (18), i.e., the fact that the factors D
dt−1|xt−1xt−1dt−2

and F
ORt |xt−1dt−1

are homogeneous, independent of t. Now if we multiply the inverse of (18) with

(20), we get

F−1

OR2
|x2d1

×
(∑

t

F
OLt−1

xt−1dt−2

)−1

×
(∑

t

F
OLt−1

xt−1dt−2

)
× D
d2|x2x2d1

× F
OR3
|x2d2

(21)

= F−1

OR2
|x2d1

×x2d1 D
d2|x2x2d1

×x2d2 F
OR3
|x2d2

= D̃
OR2

OR3

= D̃
ORt−1ORt

, (22)

where in (21) we used the fact that the order in which tensors are multiplied is irrelevant and also
the fact that the terms in parenthesis are invertible. This is due to the fact that the set of observations
OLt−1 for all t is selected so as to make each of the summand invertible (see Section 5 for the details
about the choice of OLt−1). Moreover, in (22) we used the definition of D̃

ORt−1
ORt

D̃
ORt−1ORt

= F−1

ORt−1 |xt−1dt−2
× D
dt−1|xt−1dt−2

× F
ORt |xt−1dt−1

,

together with the homogeneity property of HSMM. We note that although the above derivations rely
on the assumption of the existence of the matrix summation inverse in equation (21), the idea of ag-
gregating observations from multiple time steps has also been utilized by other works, e.g., (Siddiqi
et al., 2010; Anandkumar et al., 2014a) and shown to be very effective in practice, significantly
improving the accuracy of corresponding algorithms.
We can conclude that the batch form of the tensor takes the form:

D̃ =

(∑

t

M
OLt−1

ORt−1

)−1

×OL

(∑

t

M
OLt−1

ORt

)
. (23)

16

A SPECTRAL ALGORITHM FOR INFERENCE IN HSMM

Algorithm 2 Efficient Spectral Algorithm for HSMM inference
Input: Training sequences: Si = {oi1, . . . , oiTi}, i = 1, . . . , N .
Testing sequence: Stest = {otest1 , . . . , otestT }.
Output: p(Stest)

Learning phase:
Estimate D̃, X̃ and Õ from data {S1, . . . ,SN} using equations (23), (24) and (25).

Inference phase:
p(Stest) = 1
for i = T down to i = 1 do
p(Stest) = p(Stest)× D̃×

(
X̃× Õ|o=otesti

)

end for

Similar derivations can be carried out to obtain the rest of the tensors in the batch form:

X̃ =

(∑

t

M
OLtORt

)−1

×OL

(∑

t

M
OLtORtot

)
, (24)

Õ =

(∑

t

M
otot+1

)−1

×o
(∑

t

M
otot+1

)
. (25)

where in the last expression the mode o corresponds to the mode ott+1 after averaging of tensor
M

otot+1

for all t.

Analyzing (23), (24) and (25), we see that the computational complexity of the learning phase
of the Algorithm 2 is now O

(
(n2`
o + `N)T

)
, mainly determined by the tensor additions and the

estimation of the sample moments M. The number of inverses and multiplications is now fixed and
independent of sequence length T . Specifically, there will be only three tensor multiplications and
inversions for a total cost of O(n3`

o) (as opposed to T tensor multiplications and inversions as in
Algorithm 1). The computational complexity of the inference phase is O(n3`

o T), which is the same
as for Algorithm 1.

Note that such a batch tensor computation significantly improves the accuracy of the resulting
spectral algorithm. In part, this is due to the fact that we now use more data to estimate the tensors as
compared to the original form (5). The estimates obtained in this form have lower variance, which
in turn ensures that the inverses we compute in (23), (24) and (25) are more stable and accurate.

5. Rank Analysis of Observable Tensors

In Section 4.2.1, when we derived the equations (10), (13) and (15), we glossed over the question of
the existence of tensor inverses M−1

OLt−1ORt−1

, M−1

OLtORt

and M−1

otot+1

. In this section, our task is to analyze

the rank structure of these tensors and impose restrictions on the sets OL and OR to ensure that the
rank conditions are satisfied. For example, consider equation (10) and expand all its terms using (8)

17

MELNYK AND BANERJEE

to get

D̃
ORt−1ORt

= F−1

ORt−1 |xt−1dt−2
× F−1

OLt−1 |xt−1dt−2
× K−1

xt−1dt−2
× K
xt−1dt−2

× F
OLt−1 |xt−1dt−2

× D
dt−1|xt−1xt−1dt−2

× F
ORt |xt−1dt−1

,

where we dropped the multiplication subscripts and some of the duplicated modes, which can be
inferred from the context. Observe that in order for the above equation to produce (6), the terms in
the middle must multiply out into identity tensor

I
xt−1dt−2

= K−1

xt−1dt−2
×xt−1dt−2 K

xt−1dt−2

I
xt−1dt−2

= F−1

OLt−1 |xt−1dt−2
×OLt−1

F
OLt−1 |xt−1dt−2

. (26)

Moreover, recall that F
ORt−1 |xt−1dt−2

was originally introduced as part of the identity tensor

I
xt−1dt−2

= F−1

ORt−1 |xt−1dt−2
×ORt−1

F
ORt−1 |xt−1dt−2

, (27)

therefore, we can conclude that for (10) to exist, the identity statements in (26) and (27) must be sat-
isfied. These statements have implications for the ranks of K

xt−1dt−2
, F
OLt−1 |xt−1dt−2

and F
ORt−1 |xt−1dt−2

,

which in turn determine the length of the observation sequences OLt−1 and ORt−1 .
Since K

xt−1dt−2
represents a distribution p(xt−1dt−2), its matrisized version is a diagonal matrix

with p(xt−1dt−2) on the diagonal. Using assumptions A1 and A2, it can be concluded that the
diagonal elements in this matrix are non-zero and it has rank nxnd, it is thus invertible and so the
first equation in (26) is satisfied.

Next, consider the second equation in (26) and recall from Section 2 that if we matrisize the

tensor as F
OLt−1 |xt−1dt−2

∈ Rn
|OLt−1 |
o ×nxnd then F must have full column rank nxnd for the proper

inverse to exist, implying n
|OLt−1 |
o ≥ nxnd. Similarly, F

ORt−1 |xt−1dt−2
in (27) must have rank nxnd.

As a consequence of the above, the tensor

M
OLt−1ORt−1

= F
OLt−1 |xt−1dt−2

× F
ORt−1 |xt−1dt−2

× K
xt−1dt−2

(28)

will have rank nxnd and, in general, is rank-deficient.
The argument above can also be used to show that M

OLtORt

has rank nxnd since in (12) the

tensors K
xt−1dt−1

, F
OLt |xt−1dt−1

and F
ORt |xt−1dt−1

all have rank nxnd. Similarly, M
otot+1

will have rank nx

because in (15) the rank of the participating tensors K
xt

, F
ot+1|xt

and F
ot|xt

is nx. In particular, note that

the tensor F
ot|xt

is the observation matrix O ∈ Rno×nx of the model and it has rank nx according to

assumption A3. This conclusion also justifies our choice for ωxt = ot at the end of Section 4.1.
The key unknowns now are the sets of the observed variables OR and OL that must be ap-

propriately selected for the corresponding tensors to have rank nxnd. Recall that we defined
ORt−1 = {ot, ot+1, . . .}. As one of the new key results of our work, we established that if we
select the observations ot non-sequentially with gaps that grow exponentially with the state size nx
then the following result holds for all t:

18

A SPECTRAL ALGORITHM FOR INFERENCE IN HSMM

ot

nd nd

ORt−1OLt−1

ot+19ot+17ot+11ot−2ot−13ot−21 ot−19

Figure 5: Observations required to estimate M
OLt−1

ORt−1

from data for HSMM with nx = 3 and

nd = 20.

Theorem 1 Let the number of observations be |ORt−1 | = ` and define the set of indices
S =

{
max

{
t, t+(nd−1)− (nix−1)

}
| i = 0, . . . , `− 1

}
, such that ORt−1 = {ok|k ∈ S} then

the rank of tensor F
ORt−1

|xt−1dt−2

is min[n`x, nxnd].

As a consequence of this result, to achieve the rank nxnd we will require ` = d1 + lognd
lognx

e
observations, since we need to ensure n`x ≥ nxnd and we want the minimal ` which satisfies this.
The span of the selected observations is nd, while their number is only logarithmic in nd. For
example, consider the estimation of tensor M

OLt−1
ORt−1

for an HSMM with nx = 3 and nd = 20.

In this case ` = 4 and ORt−1 = {ot, ot+11, ot+17, ot+19} and OLt−1 = {ot−21, ot−19, ot−13, ot−2},
where the set OLt−1 is defined similar to ORt−1 in Theorem 1 but for the indices to the left of
time stamp t − 1. Figure 5 illustrates this example. We note that the requirement for the span of
the selected observations to be nd, which is a maximum state persistence, is to ensure that for a
given time stamp t, we select the observations far enough to the right and left of it so that those
observations are likely to be sampled from different hidden states.

In order to prove the above Theorem, we will focus our analysis on the tensor F
ORt+1

|xtdt
instead

of F
ORt−1

|xt−1dt−2

. This specific choice was only done to ensure the compactness in our notations,

however the HSMM homogeneity property enables us to transfer this result for tensors for any t.
Note that

F
ORt+1

|xtdt
= F

ORt−1
|xt−2dt−2

= F
ORt−1

|xt−1dt−2
×xt−1dt−2 X

xt−1dt−2|xt−2dt−2
,

where the first equality is due to the homogeneity property of the model and in the second equality
we embedded the HSMM transition matrix into tensor X

xt−1dt−2|xt−2dt−2
with mode dt−2 duplicated.

It can be shown that the matricized tensor X
xt−1dt−2|xt−2dt−2

∈ Rnxnd×nxnd has rank nxnd, i.e., it is

full rank. Therefore, the rank structure of F
ORt+1

|xtdt
determines the rank structure of F

ORt−1
|xt−1dt−2

.

The rest of Section 5 is devoted to the proof of Theorem 1. We first establish the rank structure
of tensor F

ORt+1
|xtdt

for sequential set of observations ORt+1 and then analyze the rank structure for

the observations which were selected non-sequentially.

19

MELNYK AND BANERJEE

5.1 Rank Structure of Tensor F
ORt+1

|xtdt

Define by XRt+1 = {xt+2, xt+3, . . .}, the sequence of hidden states corresponding to observations
ORt+1 = {ot+2, ot+3, . . .}. Then using conditional independence property of the graphical model
in Figure 1, namely, that the variables ORt+1 and xtdt are independent given XRt+1 , we can write:

F
ORt+1

|xtdt
= Q

ORt+1
|XRt+1

× T
XRt+1

|xtdt
, (29)

for some tensors Q and T, representing the appropriate probability distributions.
Denoting ` = |ORt+1 | = |XRt+1 |, it can be verified, that the matrisized form of Q in (29) can be

written as Q = ⊗`O ∈ Rn`
o×n`

x , i.e., a Kronecker product of the observation matrix O with itself `
times. According to the assumption A3, rank(O) = nx and nx ≤ no, and using the rank property
of the Kronecker product, we infer that rank(Q) = n`x.

Combining the above conclusion with the fact that the matrisized form of the other two tensors
in (29) is F ∈ Rn`

o×nxnd and T ∈ Rn`
x×nxnd , to ensure invertibility of F, we need to select a set of

variables XRt+1 so that rank
(

T
XRt+1

|xtdt

)
= nxnd with the condition that n`x ≥ nxnd. Thus, the

problem of the analysis of the rank structure of tensor F
ORt+1

|xtdt
translates to the problem of rank

structure of matrix T
XRt+1

|xtdt
. In what follows, we assume that XRt+1 = {xt+2, . . . , xt+`+1} are

sequential and so we would be interested in determining ` which makes rank
(

T
XRt+1

|xtdt

)
= nxnd.

Later, the sequential assumption will be removed and we show how to select such variables in a
more efficient way.

5.1.1 COMPUTATION OF FACTOR T

In order to study the rank structure of T
XRt+1

|xtdt
we will have to understand the mechanism how

this matrix is constructed and how the rank changes as the size of XRt+1 increases. We start by
considering the following conditional independence relationships from the model in Figure 1:

p(xt+3, xt+2|xt+1, dt+1) =
∑

dt+2

p(xt+3|xt+2, dt+2) p(dt+2|xt+2, dt+1)p(xt+2|xt+1, dt+1) (30)

p(xt+3, xt+2, xt+1|xt, dt) =
∑

dt+1

p(xt+3, xt+2|xt+1, dt+1) p(dt+1|xt+1, dt)p(xt+1|xt, dt) . (31)

Using the model’s homogeneity property, we see that the quantity underlined in expression (30)
is the same as the one in (31). Moreover, equation (30) can then be thought of as transforming
p(xt+1|xt, dt) into p(xt+2, xt+1|xt, dt), while the expression in (31), in effect, transforms proba-
bility p(xt+2, xt+1|xt, dt) into p(xt+3, xt+2, xt+1|xt, dt). Thus (30) and (31) encode the following
chain of transformations:

p(xt+1|xt, dt)→ p(xt+2, xt+1|xt, dt)→ p(xt+3, xt+2, xt+1|xt, dt).

20

A SPECTRAL ALGORITHM FOR INFERENCE IN HSMM

Based on the above considerations, we can rewrite (30) and (31) in the tensor form as follows:

T
xt+3,xt+2|xt+1,dt+1

= T
xt+3,xt+2|xt+2,dt+2

×xt+2dt+2 V
xt+2,dt+2|xt+1dt+1

(32)

T
xt+3,xt+2,xt+1|xt,dt

= T
xt+3,xt+2,xt+1|xt+1,dt+1

×xt+1dd+1
V

xt+1,dt+1|xtdt
, (33)

where V
xt+2,dt+2|xt+1,dt+1

= V
xt+1,dt+1|xt,dt

= D
xt+1,dt+1|xt+1,dt

×xt+1dt X
xt+1,dt|xt,dt

. The homogeneity

property allows us to rewrite the above as

T
xt+2,xt+1|xt,dt

= T
xt+1,xt|xt,dt

×V (34)

T
xt+3,xt+2,xt+1,xt+1|xt,dt

= T
xt+2,xt+1|xt,dt

×V. (35)

Our next step is to represent the above tensor equations in the matrix form. First, consider tensor
V, its matricized form can be written as:

V = D
xt+1,dt+1|xt+1,dt

X
xt+1,dt|xt,dt

(36)

where D
xt+1,dt+1|xt+1,dt

∈ Rnxnd×nxnd and X
xt+1,dt|xt,dt

∈ Rnxnd×nxnd . Next, consider the equations

(34) and (35), its matrix version is of the form:

T
xt+2,xt+1|xt,dt

= T
xt+1,xt|xt,dt

V (37)

T
xt+3,xt+2,xt+1|xt,dt

= T
xt+2,xt+1,xt|xt,dt

V, (38)

here the sizes of the matrices are T
xt+1,xt|xt,dt

∈ Rn2
x×nxnd , T

xt+2,xt+1|xt,dt
∈ Rn2

x×nxnd , and similarly

T
xt+2,xt+1,xt|xt,dt

∈ Rn3
x×nxnd , and matrix T

xt+3,xt+2,xt|xt,dt
∈ Rn3

x×nxnd .

Summarizing the above derivations, we can describe the following algorithmic approach for
analyzing T

XRt+1
|xtdt

as XRt+1 increases. We begin with T
xt+1|xt,dt

= [X I · · · I] ∈ Rnx×nxnd ,

where the first block X ∈ Rnx×nx corresponds to dt = 1, and the subsequent (nd − 1) blocks of
I ∈ Rnx×nx correspond to dt > 1 for which xt+1 = xt. We then use (37) to get T

xt+2,xt+1|xt,dt
.

However, notice that in (37) the matrix T
xt+1,xt|xt,dt

has a duplicated mode xt, therefore, we need to

restructure T
xt+1|xt,dt

, which can be accomplished with:

T′
xt+1,xt|xt,dt

= T
xt+1|xt,dt

� E,

where E = [I · · · I] ∈ Rnx×nxnd and � denotes a Khatri-Rao product (row-wise Kronecker
product)2. Then, we use (38) to transform T

xt+2,xt+1|xt,dt
into T

xt+3,xt+2,xt+1|xt,dt
where, again a

2. Let P =


p1

p2

...
pn

 ∈ Rm×n and Q ∈ Rk×n then P�Q =


p1 ⊗Q
p2 ⊗Q

...
pn ⊗Q

 ∈ Rmk×n, where ⊗ is a Kronecker product.

21

MELNYK AND BANERJEE

Algorithm 3 Computation of T
XRt+1

|xtdt

Input: p(dt|xt, dt−1) and p(xt|xt−1, dt−1) - duration and transition distributions, ` - the number
of sequential hidden states represented by XRt+1 .
Initialization:

p(xt+1|xt, dt)→ T
xt+1|xt,dt

p(dt+1|xt+1, dt)→ D
xt+1,dt+1|xt+1,dt

p(xt+1|xt, dt)→ X
xt+1,dt|xt,dt

V = D
xt+1,dt+1|xt+1,dt

X
xt+1,dt|xt,dt

, E = [I · · · I]

for i = 1 to `− 1 do

T′
xt+i, ... ,xt+1,xt|xt,dt

= T
xt+i, ... ,xt+1|xt,dt

� E (39)

T
xt+i+1, ... ,xt+2,xt+1|xt,dt

= T′
xt+i, ... ,xt+1,xt|xt,dt

V (40)

end for

preliminary step is to restructure the matrix as follows:

T′
xt+2,xt+1,xt|xt,dt

= T
xt+2,xt+1|xt,dt

� E.

Algorithm 3 summarizes the above constructions for a general case.
The following Theorem characterizes the rank structure of matrix T

XRt+1
|xtdt

in the output of the

Algorithm 3. The proof can be found in Appendix A.1.

Theorem 2 The rank of the output matrix T
XRt+1

|xtdt
in Algorithm 3 is min(`nx, nxnd).

Applying now Theorem 2 to equation (29) in matrix form

F
ORt+1

|xtdt
= Q

ORt+1
|XRt+1

× T
XRt+1

|xtdt
,

where rank(Q) = n`x we can now conclude the following result:

Corollary 3 To achieve the full column rank for F
ORt+1

|xtdt
∈ Rn`

o×nxnd , i.e. to ensure that the rank

of tensor F
ORt+1

|xtdt
is nxnd, the number of observations ` in ORt+1 = {ot+2, ot+3, . . . , ot+`+1}

must be equal to the maximum state persistence i.e., ` = nd.

22

A SPECTRAL ALGORITHM FOR INFERENCE IN HSMM

Algorithm 4 Efficient computation of T
XRt+1

|xtdt

Input: p(dt|xt, dt−1) and p(xt|xt−1, dt−1) - duration and transition distributions, ` - the number
of sequential hidden states represented by XRt+1

Initialization:

p(xt+1|xt, dt)→ T
xt+1|xt,dt

p(dt+1|xt+1, dt)→ D
xt+1,dt+1|xt+1,dt

p(xt+1|xt, dt)→ X
xt+1,dt|xt,dt

V = D
xt+1,dt+1|xt+1,dt

X
xt+1,dt|xt,dt

, E = [I · · · I]

c = 1
for i = 1 to `− 1 do

T = T V (41)

if i == (nx)c − 1 or i == `− 1 do

T = T� E (42)

end if
c = c+ 1

end for

5.1.2 EFFICIENT COMPUTATION OF FACTOR T

In Corollary 3 we established that the number of observations in ORt+1 = {ot+2, ot+3, . . . , ot+`+1}
is ` = nd. Therefore, the sizes of the estimated quantities D̃ ∈ Rn

nd
o ×n

nd
o and X̃ ∈ Rn

nd
o ×n

nd
o ×no

in Algorithm 3 will have exponential dependency on nd. When maximum state persistence is large,
the estimation of such quantity becomes impractical. Fortunately, we can modify Algorithm 3 to
significantly reduce the number of observations. The idea is to apply the step (40) multiple times
in-between the applications of step (39). Recall that in the previous construction we established that
` = nd consecutive observations are sufficient, e.g., ORt+1 = {ot+2, . . . , ot+`+1}. In contrast, in
the proposed approach, every time we add an observation, say ot+τ , we skip certain number δ of
time steps before adding another observation ot+τ+δ, so that the observations are non-consecutive.
As we illustrate next, the span of these non-consecutive observations is still nd but the number
of them is only logarithmic in nd. The proposed approach still achieves the full rank structure of

F
ORt+1

|xtdt
but with smaller number of data points. Algorithm 4, which is a simple modification of

Algorithm 3, summarizes the above procedure.

23

MELNYK AND BANERJEE

The following result establishes the rank structure of the matrix T
XRt+1

|xtdt
in the output of the

Algorithm 4. The proof can be found in Appendix A.2.

Theorem 4 The rank of the output matrix T
XRt+1

|xtdt
in Algorithm 4 is min(n`x, nxnd).

Note that based on the above theorem, Algorithm 4 increases the rank at every step exponentially
rather than linearly. In order for T

XRt+1
|xtdt

to achieve the rank nxnd we will now require ` =

d1 + lognd
lognx

e observations, since we need to ensure n`x = nxnd. Observe that the span of the
selected observations is still nd, while the number of the observations is only logarithmic in nd. The
following Corollary summarizes the above conclusions.

Corollary 5 To achieve the full column rank for F
ORt+1

|xtdt
∈ Rn`

o×nxnd , i.e. to ensure that the rank

of tensor F
ORt+1

|xtdt
is nxnd, the number of observations ` in ORt+1 must be equal to ` = d1+ lognd

lognx
e,

since we need to ensure n`x = nxnd.

Theorem 4 together with Corollary 5 now proves the Theorem 1 stated earlier.

6. Experiments

In this section we evaluated the performance of the proposed algorithm both on synthetic as well as
real data sets and compared its performance to a standard EM algorithm.

6.1 Synthetic Data

Using synthetic data, we compared the estimation accuracy and the runtime of the proposed spec-
tral algorithm with EM. For this, we defined two HSMMs, one with no = 3, nx = 2, nd = 2
and another with no = 5, nx = 4, nd = 6. For each model, we generated a set of Ntrain =
{500, 1000, 5000, 104, 105} training and Ntest ==1000 testing sequences, each of length T = 100.
The accuracy of estimating likelihood for each testing sequence was measured using the relative
deviation from the true likelihood, i.e., εi =

|p̂(Stest
i)−p(Stest

i)|
p(Stest

i)
for i = 1, . . . , 1000. Given 1000 such

values, we then computed the final score, which is the root-mean-square error (RMSE) across all

the testing sequences, RMSE =
√

1
Ntest

∑Ntest
i=1 ε2i .

Figure 6 shows results, where the top row of graphs corresponds to the model with no = 3, nx =
2, nd = 2 and the bottom row is for model with no = 5, nx = 4, nd = 6. The left column of graphs
shows the progression of RMSE across EM iterations for both models; the middle column shows
the dependence of testing error on the number of training samples and the right column shows the
running times. It can be observed from plots (b) and (e) in Figure 6 that with the small training set,
EM achieves smaller errors, while as the number of training samples increases, the spectral method
becomes more accurate, outperforming EM. Also, comparing the plots (a), (b) with (d) and (e),
we can conclude that for larger models, i.e., whose no, nx and nd are larger, the spectral method
requires more data in order to achieve same or better accuracy than EM. This is expected since the
sizes of estimated tensors grow with the model size. Moreover, the plots (c) and (f) in Figure 6 show
that spectral method is several orders of magnitude faster than EM.

24

A SPECTRAL ALGORITHM FOR INFERENCE IN HSMM

103 104 105

100

101

102

103

104

105

106

Log (Num. train. samples)

Lo
g

(R
un

tim
e)

, s
ec

Spectral
EM

10 20 30 40 50 60 70
0.33

 0.5

0.67

0.83

 1

 1.2

 1.3

 1.5

EM iterations

R
M

SE

N=500
N=1000
N=5000
N=104

N=105

103 104 1050.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

Log (Num. train. samples)
R

M
SE

Spectral
EM

103 104 105

100

101

102

103

104

105

106

Log (Num. train. samples)

Lo
g

(R
un

tim
e)

, s
ec

Spectral
EM

10 20 30 40 50 60 70
0.33

 0.5

0.67

0.83

 1

 1.2

 1.3

 1.5

EM iterations

R
M

SE

N=500
N=1000
N=5000
N=104

N=105

103 104 1050.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

Log (Num. train. samples)

R
M

SE

Spectral
EM

103 104 105

100

101

102

103

104

105

106

Log (Num. train. samples)

Lo
g

(R
un

tim
e)

, s
ec

Spectral
EM

10 20 30 40 50 60 70
0.33

 0.5

0.67

0.83

 1

 1.2

 1.3

 1.5

EM iterations

R
M

SE

N=500
N=1000
N=5000
N=104

N=105

103 104 1050.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

Log (Num. train. samples)
R

M
SE

Spectral
EM

10 20 30 40 50 60 70
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

EM iterations

R
M

SE

N=500
N=1000
N=5000
N=104

N=105

103 104 1050
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

Log (Num. train. samples)

R
M

SE

Spectral
EM

103 104 105

10−1
100
101
102
103
104
105
106

Log (Num. train. samples)

Lo
g

(R
un

tim
e)

, s
ec

Spectral
EM

!"#$!%#$!&#$

!'#$!(#$!)#$

Figure 6: Performance of the spectral algorithm and EM on synthetic data generated from HSMM
with no = 3, nx = 2, nd = 2 (top row) and no = 5, nx = 4, nd = 6 (bottom row). (a),
(d): Error for EM across different iterations for various training data sets. The straight
lines show the performance for spectral method. (b), (e): Average error and one standard
deviation over 100 runs for EM after convergence and spectral algorithm across different
number of training data. (c), (f): Runtime, in seconds, for both methods.

Given the above results, we can conclude that (i) for small data sets EM is a preferable algorithm,
(ii) for large data, the spectral algorithm is a better choice, since it achieves higher accuracy and (iii)
across all data sets the spectral algorithm requires significantly less computations as compared to
EM.

6.2 Application to Aviation Safety Data

We also compared the performance of the spectral algorithm and EM on real NASA flight data
set (NASA), containing over 180, 000 flights of 35 aircrafts from a defunct mid-western airline
company. For each flight, the data has a record of 186 parameters, sampled at 1 Hz, including
sensor readings and pilot actions. We considered a problem of anomaly detection in aviation systems
(Budalakoti et al., 2009; Gorinevsky et al., 2012; Matthews et al., 2013) and used HSMM to detect
abnormal flights based on pilot actions. Our idea is based on the observation that a flight can be
partitioned into a number of phases, e.g., initial descent, touch down, or braking on the runway,
and where within each phase the pilot performs certain actions. For example, during the initial
descent, the pilot reduces throttle, lowers the flaps, and uses the ailerons and elevator to stabilize
the aircraft. On the other hand, in the braking stage, the pilot uses brakes as well as rudder to keep
the aircraft in the middle of the runway. Using HSMM as a model, we represented the flight phases
as hidden states and the pilot actions as the observations from these states (see Melnyk et al. (2013)
and Melnyk et al. (2016) for more details).

In our experiments, we focused on a part of flight related to the landing phase, which typically
lasts 15-60 minutes in duration from when the flight crosses 10,000 ft while approaching an airport

25

MELNYK AND BANERJEE

0 50 100 150 200

−0.2

−0.1

0

0.1

0.2

Sequence ID

N
or

m
al

iz
ed

 L
og

Li
ke

lih
oo

d
Spectral

0 50 100 150 200
−1.5

−1

−0.5

0

Sequence ID

N
or

m
al

iz
ed

 L
og

Li
ke

lih
oo

d

EM

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

Tr
ue

 P
os

itiv
e

Ra
te

ROC

Spectral
EM
Random guess

!"#$%&'

%!"$%&"()'

!"#$%&'

%!"$%&"()'

*%+' *,+' *-+'

Figure 7: Evaluation of the spectral algorithm and EM on aviation safety data. (a) and (b): Nor-
malized joint loglikelihood computed by spectral algorithm (a) and EM (b) for a set of
200 test flights, with 100 normal and 100 anomalous. HSMM parameters: no = 9, nx =
8, nd = 40 (c): The Receiver Operating Characteristic (ROC) curve, illustrating classi-
fication accuracy of the algorithms. Area Under Curve (AUC) for spectral algorithm is
0.91 and for EM is 0.89.

to the touch down on the runway. Our experiments are run on a subset of flights landing at the
same airport. We chose 9 pilot commands, which include “selected altitude”, “selected heading”,
“selected throttle level”, etc. A simple data filter, based on the histogram of the pilot actions, was
applied to select 10, 020 normal flights for training. The test set contained 200 flights, with 100 of
them being similar to the training set and the rest were selected from the flights rejected by the filter.
Most of anomalous flights contained low occurrence or rare events, such as fast descent, unusual
usage of air brakes, etc., and few significant anomalies, e.g., aborted descent in order to delay the
flight when the runway is not available. The length of the considered flight sequences varied from
500 to 4000 seconds.

For each flight in the testing set, we applied EM and spectral algorithm to compute the normal-
ized joint log-likelihood

1

Ti
log p(o1, o2, . . . , oTi),

where oi are the observed pilot actions for test flight i, and Ti is the length of the test flight i,
with i = 1, . . . , 200. Figure 7 shows the results. The high-likelihood sequences were considered
normal and low-likelihood ones classified as anomalous (see plots (a) and (b) in Figure 7). Both
algorithms achieved similar detection accuracy, with the spectral algorithm having the Area Under
Curve (AUC) score of 0.91 and the EM had AUC = 0.89 (see plot (c) on Figure 7). On the other
hand, the computational time of the spectral algorithm was orders of magnitude smaller as compared
to EM. We also compared performance of both algorithm on the same flight data while varying the
dimensionality of the HSMM parameters (see Figure 8 and Table 2). We can see that although the
performance of EM and spectral algorithm is similar across many models, the latter offers significant
computational savings.

26

A SPECTRAL ALGORITHM FOR INFERENCE IN HSMM

no = 9
nx = 8
nd = 40 nd = 30

nx = 7 nx = 6
nd = 20 nd = 10

nx = 5
no = 9 no = 9 no = 9

0

0.2

0.4

0.6

0.8

1

AU
C

AA

Spectral
EM

Figure 8: Comparison of AUC scores for EM and spectral algorithm for various model parameters
when evaluated on aviation safety data. Both algorithms achieve similar high accuracy
across different models.

Parameters

no = 9

nx = 8

nd = 40

no = 9

nx = 7

nd = 30

no = 9

nx = 6

nd = 20

no = 9

nx = 5

nd = 10

Running Time
Spectral 6.8 hours 6.4 hours 6.4 hours 6.3 hours

EM > 2 days > 2 days > 2 days > 2 days

Table 2: Comparison of running time for EM and spectral algorithm for multiple model parameters
on the flight data. Spectral algorithm is several orders of magnitude faster as compared to
EM, offering significant computational savings.

7. Conclusion

In this paper, we presented a novel spectral algorithm to perform inference in HSMM. We derived
an observable representation of the model which can be computed from the data sample moments of
size logarithmic in the maximum length of latent state persistence. Based on the representation and
exploiting the homogeneity of the model, we presented an efficient approach to inference, which
ensures that during the training phase the number of matrix multiplications and inverses is fixed
and independent of the sequence length of the observations. Empirical evaluation on synthetic and
real flight data sets were presented to illustrate the promise of the proposed spectral algorithm. In
particular, the spectral method gets similar or better performance than EM as the size of the training
data set increases, and at the same time the spectral method is orders of magnitude faster than EM
providing significant computational savings. Going forward, we plan to explore if similar spectral
methods can be developed for inference in more general dynamic Bayesian networks.

Acknowledgments

We thank Nikunj Oza and Bryan Matthews at NASA for their helpful comments and suggestions at
several stages of the work. We thank the editor and reviewers for helpful comments and suggestions
which led to improvements in the paper. We also thank the Minnesota Supercomputing Institute

27

MELNYK AND BANERJEE

(MSI) for the computing support. This work was supported by NASA grant NNX12AQ39A, and by
NSF grants IIS-1563950, IIS-1447566, IIS-1447574, IIS-1422557, CCF-1451986, CNS- 1314560,
IIS-0953274, IIS-1029711, and gifts from Adobe, IBM, and Yahoo.

28

A SPECTRAL ALGORITHM FOR INFERENCE IN HSMM

Appendix A. Analysis of Tensor Rank Structure

A.1 Analysis of Algorithm 3

In this Section, we provide analysis of the Algorithm 3 and study the rank structure of matrix T in
order to prove Theorem 2. To understand the analysis, it is important to know how the structure of
matrix T

XRt+1
|xtdt

evolves across iterations. For this, we present in Figure 9 a schematic description

of a few steps of the algorithm. For the analysis we will need to establish certain auxiliary results.

Lemma 6 Let A ∈ Rm×n be a matrix which has no all-zero columns, then the rank (I�A) =
rank (A� I) = n, where � denotes Khatri-Rao product and I ∈ Rn×n.

Proof Let K = (I�A) ∈ Rmn×n. By definition of Khatri-Rao product, K(:, j) = ej ⊗A(:, j),
for j = 1, . . . , n, which consists of zeros, except for rows (j−1)m+1, . . . , (j−1)m+m, contain-
ing the column A(:, j). Here ⊗ denotes Kronecker product and ej is everywhere zero except for

=	
 *	

=	
 *	

itera)on	
 1	

itera)on	
 2	

eq.	
 (39)	

eq.	
 (40)	

eq.	
 (39)	

eq.	
 (40)	

T
xt+1|xt,dt

T
xt+2,xt+1|xt,dt

=	

=	

¤

¤

E

V

T
xt+2,xt+1|xt,dt

T
xt+3,xt+2,xt+1|xt,dt

V

E

T�
xt+1,xt|xt,dt

T�
xt+1,xt|xt,dt

T�
xt+2,xt+1,xt|xt,dt

T�
xt+2,xt+1,xt|xt,dt

0 10 20 30 40 50

0

5

nz = 50
0 10 20 30 40 50

0

5

nz = 70

0 10 20 30 40 50

0

5

nz = 50

0 10 20 30 40 50

0

5

10

15

20

25

30

35

40

45

50

nz = 295

0 10 20 30 40 50

0

5

10

15

20

25

nz = 70

0 10 20 30 40 50

0

5

10

15

20

25

nz = 700 10 20 30 40 50

0

5

10

15

20

25

nz = 190

0 10 20 30 40 50

0

5

10

15

20

25

nz = 190

0 10 20 30 40 50

0

5

10

15

20

25

30

35

40

45

50

nz = 295

0 50

0

20

40

60

80

100

120

nz = 190

0 50

0

20

40

60

80

100

120

nz = 190

0 50

0

20

40

60

80

100

120

nz = 810

Figure 9: Schematic representation of Algorithm 3. This example illustrates the HSMM with nx =
5 and nd = 10. The non-zero matrix elements are displayed as dots.

29

MELNYK AND BANERJEE

position j which is 1. As long as there is no all-zero columns in A, each column of K is indepen-
dent of each other and therefore the rank is n. Moreover, since the matrix A� I is a row-permuted
version of A� I, their ranks are the same.

Lemma 7 Define a block-row matrix M = [A1 A2 · · · Ak] ∈ Rm×kn, where each Ai ∈ Rm×n.
Define by rj , j = 1, . . . , n the rank of matrix [A1(:, j) · · · Ak(:, j)] composed of jth columns of
A’s, and let E = [I I · · · I] ∈ Rn×kn, where I ∈ Rn×n. Then the rank of matrix W = M� E ∈
Rmn×kn, obtained using a Khatri-Rao product, is min(mn,

∑
j rj).

Proof First note that M � E and E �M are row permuted version of each other, so they have
the same rank. Therefore, consider W′ = E � M = [I�A1 · · · I�Ak]. Also, note that
ej ⊗ [A1(:, j) · · · Ak(:, j)], j = 1, . . . , n is a matrix which consists of zeros except for rows
(j − 1)m + 1, . . . , (j − 1)m + m where it contains the columns [A1(:, j) · · · Ak(:, j)]. The
rank of these columns is rj and all other columns in W are independent of them due to the struc-
ture of the Khatri-Rao product. Therefore, each set of such columns adds rj to the total rank.
Since the overall rank of W cannot exceed either the number of rows or columns, we conclude that
rank(W) = min(mn,

∑
j rj).

Lemma 8 Let V = {v1, . . . ,vn} be a set of linearly independent vectors. Define u =
∑n

i=1 civi,
where coefficients ci 6= 0, i = 1, . . . , n. Define U to be a strict subset of V , i.e., U ⊂ V , then a set
of vectors u ∪ U is independent.

Proof Define {1, . . . , n} = α ∪ ᾱ, where α denotes a subset of indices for vectors corresponding
to U . Then we can write u =

∑
i:i∈α civi +

∑
j:j∈ᾱ cjvj .

Assuming the opposite, i.e., u ∪ U are dependent, we can write k0u +
∑

i:i∈α kivi = 0 where
k0 6= 0 and some of ki, i ∈ α are also must be non-zero. Substituting the definition of u and
rearranging the terms, we get:

k0

∑

i:i∈α
(ci + ki)vi + k0

∑

j:j∈ᾱ
cjvj = 0.

Since cj 6= 0, j ∈ ᾱ, the above equation claims the linear dependence of vectors in V , which is a
contradiction of our assumption and so u ∪ U are independent.

We are now ready to analyze Algorithm 3. It can be verified that (36) is of the form:

V =


Ψ

I
. . .

I

0 · · · 0


 ∈ Rnxnd × nxnd where Ψ =




diag [D(1, :)]X
diag [D(2, :)]X

...
diag [D(nd, :)]X


 ∈ Rnxnd × nx ,

(43)

where diag [D(i, :)] is the diagonal matrix with ith row from D on the diagonal. Note that we can
also write Ψ = (D � I)X . Observe that the rank of V is nxnd because the nx(nd−1)×nx(nd−1)

30

A SPECTRAL ALGORITHM FOR INFERENCE IN HSMM

block diagonal matrix delineated in (43) and the last nx × nx block matrix diag [D(nd, :)]X in Ψ
together comprising nxnd independent columns of V. Note that diag [D(nd, :)]X has rank nx
because X is full rank and D(nd, :) is non-zero, which follows from assumptions A1 and A2. As
a side note observe that the requirement to have D(nd, :) non-zero implies that there is a non-zero
probability of maximum state persistence.

In analyzing the Algorithm 3, it would be useful to denote the matrices at iteration i in (39) and
(40) as

T
xt+i, ... ,xt+1|xt,dt

= [A
(i)
1 · · · A(i)

nd
]

T′
xt+i, ... ,xt+1,xt|xt,dt

= [B
(i)
1 · · · B(i)

nd
]

T
xt+i+1,...,xt+2,xt+1|xt,dt

= [C
(i)
1 · · · C(i)

nd
].

Moreover, utilizing the structure of matrix V from (43), the operations involved in step (40) are as
follows:

[
C

(i)
1 C

(i)
2 C

(i)
3 · · · C(i)

nd

]
=
[
[B

(i)
1 · · · B(i)

nd
]Ψ B

(i)
1 B

(i)
2 · · · B

(i)
nd−1

]
. (44)

With the above information we can now present the proof of Theorem 2:
Proof of Theorem 2 At the start of the algorithm T

xt+1|xt,dt
= [X I · · · I] = [A

(1)
1 · · ·A

(1)
nd], which

has rank nx. The rank of matrix
[
A

(1)
1 (:, l) · · ·A(1)

nd (:, l)
]

for l = 1, . . . , nx is rl = 2 since among
all the columns only two of them are independent. Therefore, according to Lemma 7, the result of
operations in (39), has rank

∑
l rl = 2nx. Moreover, we note that since [B

(1)
1 B

(1)
2 · · · B(1)

nd] =
[X�I I�I · · · I�I], it can be seen that its 2nx independent vectors can be formed by the columns
[B

(1)
1 B

(1)
2], so that the rank of

[
B

(1)
1 (:, l) · · ·B(1)

nd (:, l)
]

for l = 1, . . . , nx is 2.

Next, since the rank of V is nxnd, the operations in (40) produce matrix [C
(1)
1 C

(1)
2 · · · C(1)

nd]

with the rank still being 2nx. Moreover, the columns of C(1)
1 are linearly dependent on the rest of

the columns, [C
(1)
2 · · · C(1)

nd], due to (44). However, the rank of
[
C

(1)
1 (:, l) · · ·C(1)

nd (:, l)
]

is now
rl = 3 for l = 1, . . . , nx. To understand this, note that

[B
(1)
1 B

(1)
2 · · · B1

nd
] = [X�I I�I · · · I�I]

[C
(1)
1 C

(1)
2 C

(1)
3 · · · C(1)

nd
] = [C

(1)
1 X�I I�I · · · I�I],

where, according to (44), C(1)
1 = [B

(1)
1 · · ·B

(1)
nd]Ψ. As we established before, the rank of the

matrix
[
C

(1)
2 (:, l) · · ·C(1)

nd (:, l)
]

=
[
B

(1)
1 (:, l) · · ·B(1)

nd−1(:, l)
]

is rl = 2. Moreover, it can also be

checked that C(1)
1 (:, l) is independent of

[
C

(1)
2 (:, l) · · ·C(1)

nd (:, l)
]

due to Lemma 8. Clearly, then

the cumulative rank of
[
C

(1)
1 (:, l) · · ·C(1)

nd (:, l)
]

is 3 for l = 1, . . . , nx.

To generalize the above, if at the iteration i the rank of matrix
[
A

(i)
1 · · ·A

(i)
nd

]
is inx while the

rank of
[
A

(i)
1 (:, l) · · ·A(i)

nd(:, l)
]

is (i + 1), then the operations in step (39) produce
[
B

(i)
1 · · ·B

(i)
nd

]

31

MELNYK AND BANERJEE

having rank (i + 1)nx due to Lemma 7. The step in (40) keeps the rank of
[
C

(i)
1 · · ·C

(i)
nd

]
at

(i + 1)nx due to the full rank structure of V. At the same time, this step increases the rank of
matrix

[
C

(i)
1 (:, l) · · ·C(i)

nd(:, l)
]

to (i + 2) due to Lemma 8, i.e., independence of C(i)
1 (:, l) from

[
C

(i)
2 (:, l) · · ·C(i)

nd(:, l)
]

with the latter having the rank (i + 1). Therefore, each iteration increases
the rank of matrix T by nx and so after 2 ≤ ` ≤ nd steps the rank of the resulting matrix T

XRt+1
|xtdt

is `nx.
Note that if ` = 1 then the Algorithm 3 is not executed and returns the trivial T

xt+1|xt,dt
with rank

nx. On the other hand, if ` > nd then the rank of T
XRt+1

|xtdt
is nxnd since this is the number of

columns in that matrix and so is the maximum achievable rank.

A.2 Analysis of Algorithm 4

In this Section we analysis of the Algorithm 4 in order to prove Theorem 4. Similarly as in Sec-
tion A.1, it is instructive to visualize the progress of Algorithm 4. Figure 10 shows a schematic
description of a few steps of the algorithm.
We are now ready to present the proof of Theorem 4.
Proof of Theorem 4 For the proof, we refer back to Algorithm 3 and the proof of Theorem 2.
Recall, that at iteration i = 1, the result of step (39) is a matrix [B

(1)
1 · · ·B

(1)
nd] ∈ Rn2

x×nxnd , whose

rank is 2nx, since
[
A

(1)
1 (:, l) · · ·A(1)

nd (:, l)
]

= [X I · · · I] ∈ Rnx×nxnd for l = 1, . . . , nx had two

independent columns. Then, the transformations in step (40) produced
[
C

(1)
1 (:, l) · · ·C(1)

nd (:, l)
]

for
l = 1, . . . , nx with rank 3nx.

Note that if nx > 2 then
[
A

(1)
1 (:, l) · · ·A(1)

nd (:, l)
]

potentially can have a rank up to nx, while in
Algorithm 3 we only have it equal to 2. It turns out that if we apply step (40) multiple times and use
Lemma 8, we can increase the rank of

[
C

(1)
1 (:, l) · · ·C(1)

nd (:, l)
]

for l = 1, . . . , nx to nx.

Specifically, consider step (41). At iteration i = 1 we have [A
(1)
1 · · ·A

(1)
nd] = [B

(1)
1 · · ·B

(1)
nd] and

for l = 1, . . . , nx the two independent columns are
[
B

(1)
1 (:, l) B

(1)
2 (:, l)

]
= [X (:, l) I(:, l)]. The

result of step (41) gives us then three independent columns
[
C

(1)
1 (:, l) C

(1)
2 (:, l) C

(1)
3 (:, l)

]
=
[
C

(1)
1 (:, l) X (:, l) I(:, l)

]
,

where C
(1)
1 = [X I · · · I]Ψ. The independence follows from Lemma 8. The repeated application

of step (41) one more time gives four independent columns
[
C

(2)
1 (:, l) C

(2)
2 (:, l) C

(2)
3 (:, l) C

(2)
4 (:, l)

]
=
[
C

(2)
1 (:, l) C

(1)
1 (:, l) X (:, l) I(:, l)

]
,

where C
(2)
1 = [C

(1)
1 · · ·C

(1)
nd]Ψ. Observe that since the number of rows is nx, we can increase the

rank at most up to nx. Therefore, if in the beginning we had two independent columns and we want
to get nx independent columns, we would need to apply the step (41) nx − 2 times, so as to have
the matrix [C

(nx−2)
1 (:, l) · · · C(nx−2)

nd (:, l)] with rank nx.

32

A SPECTRAL ALGORITHM FOR INFERENCE IN HSMM

Figure 10: Schematic representation of Algorithm 4. This example illustrates the HSMM with
nx = 5 and nd = 10. The non-zero matrix elements are displayed as dots.

33

MELNYK AND BANERJEE

If we now apply step (42) it will give us [A
(1)
1 · · · A(1)

nd] ∈ Rn2
x×nxnd with rank n2

x due to
Lemma 7. Continuing in this manner, we can again repeatedly apply the step (41) to create a matrix
with a rank at most n2

x, since there are n2
x rows and assuming that nxnd ≥ n2

x. The number of times
we need to apply (41) is now n2

x − nx since we need to go from nx to n2
x independent columns.

In general, the step (41) needs to be applied ncx − nc−1
x , in order to obtain ncx independent

columns. The application of step (42) then creates T with rank nc+1
x . Note, that since T has nxnd

columns, the maximum achievable rank is nxnd.

Observe that the above proof also provided the method for selecting the non-sequential observa-
tions XRt+1 . Specifically, since the set of observations XRt+1 = {ot+2, . . .} must start from obser-
vation ot+2 and |XRt+1 | = `, we denote s = t+ 2. Then, ith added observation is os+(nd−1)−(ni

x−1)

for i = 0, . . . , `−2 and the `th observation is os = ot+2. For tensor F
ORt+1

|xtdt
to achieve rank nxnd

we need to add ` = d1 + lognd
lognx

e observations.

Appendix B. Initial and Final Parts of HSMM

In this Section we present the derivations for the initial and final steps of HSMM, which were
omitted from the main text. Specifically, this amounts to computing the factor X for two parts of
the model, corresponding to Xroot and XT in Figures 11 and 12. The derivations for all other parts
of HSMM were presented in the main text and this supplement.

o1 o2

x1

d1 d2

x2

o3

x3

d3

x1o1

x2o2

d1x1x2

x1

x2

d1x2 d1d2x2 d2x2 d2x2x3

x3

x3o3

Xroot X3

O3

D3

O2

O1

Figure 11: Part of HSMM corresponding to the initial time stamps and the related part of junction
tree.

oToT−1oT−2

xTxT−1xT−2

dT−1dT−2

xT oT

dT−1xT−1xT

xT

dT−2dT−1xT−1dT−2xT−2xT−1

xT−1

xT−1oT−1

dT−1xT−1dT−2xT−1

oToT−1oT−2

xTxT−1xT−2

dT−1dT−2

xT oT

dT−1xT−1xT

xT

dT−2dT−1xT−1dT−2xT−2xT−1

xT−1

xT−1oT−1

dT−1xT−1dT−2xT−1

XT−1 XT

OTOT−1

DT

Figure 12: Part of HSMM corresponding to the final time stamps and the related part of junction
tree.

34

A SPECTRAL ALGORITHM FOR INFERENCE IN HSMM

To begin, recall the expression for the joint likelihood of the observed sequence:

P
o1,...,oT

=
∏

t

D
dt−1|xt−1dt−2

×xt−1dt−1

(
X

xt|xt−1dt−1

×xt O
ot|xt

)

and rewrite the above expression by keeping only the initial and final factors:

P
o1,...,oT

=

(
O
o1|x1

×x1
(

X
x2x2|x1d1

×x2 O
o2|x2

))
×x2d1 D

d2|x2x2d1
× · · ·

· · · × D
dT−1|xT−1xT−1dT−2

×xT−1dT−1

(
X

xT |xT−1dT−1

×xT O
oT |xT

)
. (45)

Introduce the identity tensors into (45), regroup the terms and extract the factors X:

X̃
ωx1ωx2ωx2d1

= F
ωx1 |x1

×x1
(

X
x2x2|x1d1

×x2 F
ωx2 |x2

)
×x2d1 F

ωx2d1
|x2d1

(46)

X̃
ωxT−1dT−1

ωxT

= F−1

ωxT−1dT−1
|xT−1dT−1

×xT−1dT−1

(
X

xT |xT−1dT−1

×xT F
ωxT
|xT

)
. (47)

Defining the observable sets ωx1 = o1, ωx2 = o2 and ωx2d1 = OR3 we can rewrite (46) as follows:

X̃
o1o2OR3

= F
o1|x1

×x1
(

X
x2x2|x1d1

×x2 F
o2|x2

)
×x2d1 F

OR3
|x2d1

. (48)

Note that since all the factors participating in (48) are valid probability distributions, the result-
ing factor, i.e., X̃

o1o2OR3

is also a valid probability distribution, so it can be estimated directly from

data. This is in contrast to the derivations we made for other parts of the model, where we had to
perform additional transformations such as, for example in (10), in order to bring to the form, which
could be estimated from the data samples.

In order to estimate (47), we compare it to the similar factor we considered in the main paper:

X̃
ωxt−1dt−1ωxtωxtdt−1

= F−1

ωxt−1dt−1 |xt−1dt−1
×xt−1dt−1

(
X

xtxt|xt−1xt−1dt−1
×xt F

ωxt |xt

)
×xtdt−1 F

ωxtdt−1 |xtdt−1

,

(49)

and observe that the last factor F
ωxtdt−1 |xtdt−1

in (49) is a conditional probability distribution, which

has the following marginalization property

F
ωxtdt−1 |xtdt−1

×ωxtdt−1
1

ωxtdt−1
= 1

xtdt−1

, (50)

where 1 is the tensor, which has all elements equal to 1. The above can also be written in the scalar
notations,

∑
ωxtdt−1

p(ωxtdt−1 |xtdt−1) = 1 for each value of xtdt−1. Therefore, if we apply (50) to

(49), we get X̃
ωxt−1dt−1ωxt

, which is the time-shifted version of X̃
ωxT−1dT−1

ωxT

. Therefore, to compute

(47), we estimate the tensor in (13), i.e.,

X̃
ORtotORt

= M−1

OLtORt

×OLt
M

OLtORtot
,

35

MELNYK AND BANERJEE

and marginalize out the right set of modes, corresponding to ORt . Alternatively, we can use the
batch estimate

X̃ =

(∑

t

M
OLtORt

)−1

×OL

(∑

t

M
OLtORtot

)
,

and similarly perform the marginalization. This concludes our derivations.

36

A SPECTRAL ALGORITHM FOR INFERENCE IN HSMM

References

A. Anandkumar, R. Ge, D. Hsu, and S. M. Kakade. A tensor spectral approach to learning mixed
membership community models. In Conference on Learning Theory, 2013a.

A. Anandkumar, D. Hsu, M. Janzamin, and S. M. Kakade. When are overcomplete topic models
identifiable? Uniqueness of tensor Tucker decompositions with structured sparsity. In Advances
in Neural Information Processing Systems, pages 1986–1994, 2013b.

A. Anandkumar, A. Javanmard, D. Hsu, and S. M. Kakade. Learning linear Bayesian networks
with latent variables. In Proceedings of the International Conference on Machine Learning,
volume 28, pages 249–257, 2013c.

A. Anandkumar, R. Ge, D. Hsu, and S. M. Kakade. A tensor approach to learning mixed member-
ship community models. Journal of Machine Learning Research, 15:2239–2312, 2014a.

A. Anandkumar, R. Ge, D. Hsu, S. M. Kakade, and M. Telgarsky. Tensor decompositions for learn-
ing latent variable models. Journal of Machine Learning Research, 15(1):2773–2832, 2014b.

R. Bailly, F. Denis, and L. Ralaivola. Grammatical inference as a principal component analysis
problem. In Proceedings of the International Conference on Machine Learning, pages 33–40,
2009.

B. Balle, A. Quattoni, and X. Carreras. A spectral learning algorithm for finite state transducers. In
Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pages
156–171, 2011.

D. Barber. Bayesian Reasoning and Machine Learning. Cambridge University Press, 2012.

L. E. Baum and T. Petrie. Statistical inference for probabilistic functions of finite state Markov
chains. The Annals of Mathematical Statistics, 37(6):1554–1563, 1966.

B. Boots and G. J. Gordon. Predictive state temporal difference learning. In Advances in Neural
Information Processing Systems, pages 271–279. 2010.

S. Budalakoti, A. N. Srivastava, and M. E. Otey. Anomaly detection and diagnosis algorithms for
discrete symbol sequences with applications to airline safety. IEEE Transactions on Systems,
Man, and Cybernetics, Part C: Applications and Reviews, 39(1):101–113, 2009.

S. Chiappa. Explicit-duration Markov switching models. Foundations and Trends in Machine
Learning, 7(6):803–886, 2014.

S. B. Cohen, K. Stratos, M. Collins, D. P. Foster, and L. Ungar. Spectral learning of latent-variable
PCFGs: Algorithms and sample complexity. Journal of Machine Learning Research, 15:2399–
2449, 2014.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the
EM algorithm. Journal of the Royal Statistical Society, pages 1–38, 1977.

P. Dhillon, D. P. Foster, and L. H. Ungar. Multi-view learning of word embeddings via CCA. In
Advances in Neural Information Processing Systems, pages 199–207, 2011.

37

MELNYK AND BANERJEE

E. B. Fox, E. B. Sudderth, M. I. Jordan, and A. S. Willsky. An HDP-HMM for systems with
state persistence. In Proceedings of the International Conference on Machine Learning, pages
312–319, 2008.

D. Gorinevsky, B. Matthews, and R. Martin. Aircraft anomaly detection using performance models
trained on fleet data. In Proceedings of the Conference on Intelligent Data Understanding, pages
17–23, 2012.

D. Hsu, S. M. Kakade, and T. Zhang. A spectral algorithm for learning hidden Markov models.
Journal of Computer and System Sciences, 78(5):1460 – 1480, 2012.

H. Jaeger. Observable operator models for discrete stochastic time series. Neural Computation, 12
(6):1371–1398, 2000.

M. J. Johnson and A. S. Willsky. Bayesian nonparametric hidden semi-Markov models. Journal of
Machine Learning Research, 14:673–701, 2013.

H. A. Kiers. Towards a standardized notation and terminology in multiway analysis. Journal of
chemometrics, 14(3):105–122, 2000.

T. G. Kolda and B. W. Bader. Tensor decompositions and applications. SIAM Review, 51(3):455–
500, 2009.

D. A. Levin, Y. Peres, and E. Wilmer. Markov chains and mixing times. American Mathematical
Society, 2009.

B. Matthews, S. Das, K. Bhaduri, K. Das, R. Martin, and N. Oza. Discovering anomalous aviation
safety events using scalable data mining algorithms. Journal of Aerospace Information Systems,
10(10):467–475, 2013.

I. Melnyk, P. Yadav, M. Steinbach, J. Srivastava, V. Kumar, and A. Banerjee. Detection of precursors
to aviation safety incidents due to human factors. In Workshop on Domain Driven Data Mining
(in conjunction with ICDM 2013), pages 407–412, 2013.

I. Melnyk, B. Matthews, H. Valizadegan, A. Banerjee, and N. Oza. Vector autoregressive model-
based anomaly detection in aviation systems. Journal of Aerospace Information Systems, pages
161–173, 2016.

E. Mossel and S. Roch. Learning nonsingular phylogenies and hidden Markov models. In Proceed-
ings of the Annual ACM Symposium on Theory of Computing, pages 366–375, 2005.

K. P. Murphy. Hidden semi-Markov models. Available at http://www.cs.ubc.ca/ mur-
phyk/Papers/segment.pdf. 2002.

NASA. Flight data set. Available at https://c3.nasa.gov/dashlink/projects/85/.

A. Parikh, L. Song, and E. Xing. A spectral algorithm for latent tree graphical models. In Proceed-
ings of the 28th International Conference on Machine Learning, pages 1065–1072, 2011.

38

A SPECTRAL ALGORITHM FOR INFERENCE IN HSMM

A. Parikh, L. Song, M. Ishteva, G. Teodoru, and E. Xing. A spectral algorithm for latent junction
trees. In Proceedings of the Conference on Uncertainty in Artificial Intelligence, pages 675–684,
2012.

L. R. Rabiner. A tutorial on hidden Markov models and selected applications in speech recognition.
Proceedings of the IEEE, 77(2):257–286, 1989.

S. M. Siddiqi, B. Boots, and G. J. Gordon. Reduced-rank hidden Markov models. In Proceedings
of the Artificial Intelligence and Statistics Conference, pages 741–748, 2010.

X. Tan and H. Xi. Hidden semi-Markov model for anomaly detection. Applied Mathematics and
Computation, 205(2):562 – 567, 2008.

T. L. M. van Kasteren, G. Englebienne, and B. J. A. Krose. Activity recognition using semi-Markov
models on real world smart home datasets. Journal of Ambient Intelligence and Smart Environ-
ments, 2(3):311–325, 2010.

Y. Xie and S.-Z. Yu. A large-scale hidden semi-Markov model for anomaly detection on user
browsing behaviors. IEEE/ACM Transactions on Networking, 17(1):54–65, 2009.

S.-Z. Yu. Hidden semi-Markov models. Artificial Intelligence, 174(2):215 – 243, 2010.

S.-Z. Yu and H. Kobayashi. An efficient forward-backward algorithm for an explicit-duration hidden
Markov model. IEEE Signal Processing Letters, 10(1):11–14, 2003.

H. Zen, K. Tokuda, T. Masuko, T. Kobayashi, and T. Kitamura. A hidden semi-Markov model-based
speech synthesis system. Transactions on Information Systems, E90-D(5):825–834, 2007.

39

	Introduction
	Notation and Preliminaries
	Problem Formulation
	HSMM in Tensor Notations
	Summary of Technical Results

	Spectral Algorithm for Inference in HSMM
	Observable Tensor Representation
	Estimation of Observable Tensors
	Computation of Tensor tau2
	Computation of Tensor tau2
	Computation of Tensor tau2

	Basic Version of Spectral Algorithm
	Efficient Version of Spectral Algorithm

	Rank Analysis of Observable Tensors
	Rank Structure of Tensor req
	Computation of Factor T
	Efficient Computation of Factor T

	Experiments
	Synthetic Data
	Application to Aviation Safety Data

	Conclusion
	Analysis of Tensor Rank Structure
	Analysis of Algorithm 3
	Analysis of Algorithm 4

	Initial and Final Parts of HSMM

