
Journal of Machine Learning Research 18 (2017) 1-43 Submitted 8/15; Revised 9/16; Published 3/17

Using Conceptors to Manage Neural Long-Term Memories
for Temporal Patterns

Herbert Jaeger h.jaeger@jacobs-university.de

Dpt. of Computer Science and Electrical Engineering

Jacobs University Bremen

28759 Bremen, Germany

Editor: Nando de Freitas

Abstract

Biological brains can learn, recognize, organize, and re-generate large repertoires of tempo-
ral patterns. Here I propose a mechanism of neurodynamical pattern learning and represen-
tation, called conceptors, which offers an integrated account of a number of such phenomena
and functionalities. It becomes possible to store a large number of temporal patterns in
a single recurrent neural network. In the recall process, stored patterns can be morphed
and ”focussed”. Parametric families of patterns can be learnt from a very small number of
examples. Stored temporal patterns can be content-addressed in ways that are analog to
recalling static patterns in Hopfield networks.

Keywords: Recurrent neural network, temporal pattern learning, neural long-term mem-
ory, neural dynamics

1. Introduction

In the cognitive and neurosciences as well as in neural computation it is customary to
distinguish between various sorts of short-term memory and long-term memory (Fusi and
Wang, 2016). This article is concerned with neural long-term memory (LTM) in the sense
that some information becomes permanently coded in synaptic weights at learning time, to
be somehow recalled at exploitation time without changing those weights.

The paradigmatic model of a neural LTM is the associative memory pioneered, among
others, by Willshaw et al. (1969), Cooper (1973), Kohonen (1974), Palm (1980) and Hopfield
(1982). This classical family of models explains how a number of different patterns can
be stored in a neural network by an explicit calculation of the network weight matrix or
by iterative learning processes. A rich mathematical theory affords insights into capacity
bounds and noise robustness. But, these classical associative memories are mainly devised
for storing static patterns, for instance bit vectors or images. Biological neural systems
obviously can learn and recall rich repertoires of temporal patterns, for instance gestures,
melodies, words. It would be desirable to have a neural network model which extends the
capabilities of associative networks to the domain of temporal patterns. This challenge is
still largely open. I am aware of only a few proposals for neural memories of temporal
patterns:

1. The classical associative memory model for static patterns has been extended on sev-
eral occasions to learn sequences of patterns. The key mechanism is to replace the

c©2017 Herbert Jaeger.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v18/15-449.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v18/15-449.html

Jaeger

learning of auto-associations of stored patterns (which results in fixed-point attrac-
tors representing these) by a learning of hetero-associations of a temporal pattern
frame with its successor frame. This leads to recall episodes which step through
a discrete sequence of patterns (Amari, 1972). The basic discrete hetero-associative
memory mechanism has been elaborated in various ways to accomodate analog values,
smoother temporal development, or identical patterns at different time slices (exam-
ples: Sompolinsky and Kanter (1986); Rinkus (1996); Billard and Hayes (1999); Huang
and Hagiwara (2002)). A recent extension of hetero-associative symbol sequence cod-
ing networks (Jiang et al., 2016) integrates methods from graph-based coding theory,
which leads to improved memory capacities and temporal pattern completion robust-
ness, and enables an incremental storing of patterns.

2. In the field of reservoir computing, a temporal pattern is trained into a recurrent
neural network (RNN) by adapting only the weights from the (“reservoir”) network
to the output neuron. Thus an arbitrary number of temporal patterns can be learnt
on the basis of a single reservoir network if individual patterns are represented by
separate output neurons, as for example in Hinaut and Dominey (2011).

3. Since the advent of RNN models in cognitive modeling it has been recognized that
RNNs can be trained to generate several temporal patterns when they are paired in
training with individual pattern-addressing input signals (Kolen and Pollack, 1991;
Jordan, 1997; Krause et al., 2010).

4. Another possibility to train and select several temporal patterns in a single RNN is to
associate different patterns with different initial network states. An example is Paine
and Tani (2005) where an RNN-based mobile robot controller was trained to steer the
robot into different action sequences depending on the state initialization.

5. In machine learning, RNNs trained on sequence prediction/generation tasks are typ-
ically considered as models of a stochastic process, for instance the process whose
realizations are Wikepedia texts, as in Sutskever et al. (2011), rather than as cases
of neural memory. But it also makes good sense to view them as neural memories.
One may say that such a network after training has memorized typical continuations
of initial cue sequences. Even more generally, any neural system trained on some
training data set D for whatever purpose (classification, control, ...) could be re-
garded as having “stored” the probabilistic structure of D. In this general sense, any
network-internal, trained representation can be interpreted as a LTM.

The diversity of these examples shows that there is no unique definition of what makes
a neural LTM. Here is a list of system properties that are variously attributed (or not) to
a neural memory system:

Multiplicity. An neural memory system typically can store more than only one memory
pattern. The number of storable pattern is a standard performance criterion for
memory systems.

Addressability. When several patterns have been stored, they should be efficiently address-
able at use-time, whether by content-addressing or pointer-addressing.

2

Managing neural memory

Generativity. Stored patterns can be re-generated at retrieval time with some degree of
accuracy.

Organization and searchability. Stored items are organized in a way that brings relation-
ships between them to the fore, for instance, abstraction or part-of relationships (as
in semantic network models in AI). This organization enables a systematic naviga-
tion and search in memory space. None of the above examples of dynamical pat-
tern memories has this characteristic, but a diversity of neural learning systems for
static patterns have been proposed that have an exploitable internal organization of
some sort, for instance self-organizing semantic maps (Ritter and Kohonen, 1989),
connectionist-localist networks for semantic concept modeling (Shastri, 1999), or re-
cursive auto-associative memories (Pollack, 1990).

Incremental extensibility. New memory items can be stored incrementally on top of already
stored ones. Such an incremental extensibility is difficult or impossible for networks
trained with backpropagation due to the “catastrophic forgetting” problem (appre-
ciation in Douglas and Sejnowski (2008), partial solutions and further references in
French (2003); Grossberg (2005); Goodrich and Arel (2014)) and for most associative
memories (exception: Jiang et al. (2016)).

Differential extension. When adding a new item, store only that information about the new
item that is not already present in the memory system. None of the examples has
this property but arguably human LTM has it.

Forgetting. Allow the memory system to fade out memory items that are not retrieved for
a long time. This characteristic is typical for biological neural networks but is absent
in all examples above.

Erasibility. Selectively delete arbitrary items from the memory, freeing storage space. This
is typical for digital computer memories but is not usually considered in neural network
models.

In this article I describe a neuro-computational mechanism, conceptors, by which the
dynamics of an RNN can be governed in a variety of ways. Conceptors are a general-purpose
mechanism that can be used in a diversity of neural information processing tasks. In a
very long techreport (Jaeger, 2014) I present elementary demonstrations of conceptors used
for temporal pattern classification, one-shot learning, human motion pattern generation,
de-noising and signal separation. The present article focusses on exploits of conceptors for
neural LTM management. From the above list of typical LTM properties, conceptors enable
or facilitate all except the last two, forgetting and erasability. To keep the length of this
article within reasonable bounds, I have omitted a sizable portion of LTM-relevant material
from Jaeger (2014), namely the topic of Boolean operations on conceptors and the options
that such Boolean operations grant for incremental and differential memory extensibility
without catastrophic forgetting.

Most of the technical content is adopted from Jaeger (2014), but assembled in a more
compact and intuitive exposition, and backed up by improved simulations. For space econ-
omy I omit proofs and some mathematical detail and refer the reader to the full treatment

3

Jaeger

given in Jaeger (2014). The Matlab code for all simulations is available at the JMLR online
paper repository.

The article is organized in three main sections. Section 2 introduces the basic model in a
detailed step-by-step fashion. Basic pattern morphing and pattern generalization demos, a
“focussing” mechanism and a real-world data demo (learn from human motion capture data
to animate a body model with 61 degrees of freedom) illustrate the basic functionalities of
conceptors for storing, re-generating and modulating temporal patterns in an RNN. Section
3 introduces a conceptor-based model of content-addressable RNN memories for dynamical
patterns. The stored patterns can be recovered from short and possibly distorted cues by a
process of conceptor auto-adaptation. In several respects this provides a temporal analog
of Hopfield networks.

2. Storing a Multitude of Temporal Patterns in an RNN

This section gives a concise introduction to the basic ideas and formalism of conceptors,
starting from a toy example (Subsection 2.1) and then moving on to phenomena of pattern
morphing, generalization, and “focussing” in the remaining subsections.

2.1 Basic Idea and Formalism

In this subsection I explain the basic ideas of conceptors by stepping through an elementary
demonstration. The task is to store two dissimilar periodic temporal patterns in a tiny RNN
and subsequently retrieve them.

2.1.1 Preparations

Before patterns can be stored and recalled, an experimental set-up is installed as follows.

Procuring training patterns. In this article a “pattern” means a discrete-time signal
p(n), where p(n) ∈ RM and n ≥ 0. For this elementary demo I use two discrete-time
scalar patterns p1(n) and p2(n). The first is a sinewave signal with an irrational period
length sampled at integer time points. The irrational period length makes the sampled
version quasi-periodic. The second is a periodic signal with integer period 2. Figure 1 (left)
depicts the two patterns. I remark that later I will also be considering non-periodic and
non-stationary patterns.

Network creation. An RNN with N neurons is installed by randomly creating an N ×N
matrix W ∗ of internal connection weights, an N×M input weight vector W in, and a random
N × 1 bias vector b. Here I use an unrealistically small network with only N = 3 neurons,
which allows me to illustrate relevant effects in 3-D graphics.

This network can be driven by a scalar pattern p(n) by the following state update
equation:

x(n+ 1) = tanh(W ∗ x(n) +W in p(n) + b). (1)

All parameters of W ∗,W and b are sampled from a normal distribution and scaled such
that an overall system dynamics is obtained that works well for this didactic demonstration.
Details of the scaling procedure are not important here, but I remark that the internal
weights W ∗ must be scaled small enough to ensure that the RNN has the echo state property
with respect to the input signals that are fed to it. In intuitive terms, an RNN has the echo

4

Managing neural memory

state property with respect to an input signal p(n) if any initial network state is “forgotten”
(washed out) when the network is driven by p(n) for a long enough time. The echo state
property is a core concept in the field of reservoir computing (Jaeger, 2001; Lukosevicius,
2012; Manjunath and Jaeger, 2013). Because the conceptor approach borrows some ideas
from reservoir computing, I refer to the RNN as the reservoir.

Training a readout. The conceptor-based procedures explained below lead to a memory
functionality in the following sense:

• At storing time, the reservoir is driven by a to-be-stored pattern pj(n) through (1).
This results in a pattern-driven network dynamics xj(n) (I use upper indices to refer
to patterns).

• At recall time, the reservoir is run without input (under the control of a conceptor
Cj , to be explained below), resulting in a free-running network dynamics x̃j(n).

• The network has successfully “memorized” pj(n) to the degree that the free-running
dynamics x̃j(n) is approximately the same as the original pattern-driven dynamics
xj(n).

Thus, the network does not in fact memorize the original pattern pj(n), but instead its own,
high-dimensional dynamical response to the pattern input. I will refer to such input-driven
reservoir state dynamics as state patterns. But for practical exploits one wishes to recall
the original input pattern, not the induced neural state pattern. In order to transform state
patterns x̃j(n) back to the original input patterns pj(n), a network state observer y(n) is
trained. This is a linear output neuron which reads from the network state through output
weights W out. It should display the following behavior

if x(n+ 1) = tanh(W ∗ x(n) +W in p(n) + b)

then y(n) := W out x(n) ≈ p(n) (2)

for any driving pattern p(n). That is, the output signal read through W out should simply
re-generate any driving input from the excited reservoir state.

The output weights W out for such a generic input-redisplayer neuron can be trained by
first driving the reservoir with an M -dimensional white-noise input signal ν(n) via xν(n+
1) = tanh(W ∗ xν(n) +W in ν(n) + b), then compute W out by linear regression to minimize
the quadratic loss

∑
n(W out xν(n)− ν(n))2, following the rationale of reservoir computing.

Since this readout neuron is trained on white-noise input ν(n), it will also be able to re-
generate other input signals p(n) in agreement with (2).

I point out that this pattern-generic output neuron is trained prior to, and independent
of, the subsequent memory learning. It is also possible to train the output weights W out

on network states induced by the to-be-stored input patterns, not by a generic white-noise
input. That procedure gives more accurate results at recall time and therefore will usually
be the preferred method. However, it obscures the essential independence of the storing
procedure from the observer training. Therefore in this didactic demo I used white noise
input to train W out.

5

Jaeger

1

0

1
p and y

1

0

1
state pattern

0

1

singular values

0 5 10 15
1

0

1

0 5 10 15
1

0

1

1 2 3
0

1

Figure 1: Left: the original patterns p1(n), p2(n) (red/blue thin lines, 15 time steps are
shown) and their recalled versions (gray thick lines; original and recalled pat-
terns were phase-aligned for plotting). The patterns are discrete-time signals;
connecting lines are drawn for better visual appearance. Center: traces of the
three neurons’ activations when the reservoir is driven with the respective pattern
input. Right: singular value spectra of C1 and C2.

2.1.2 Storing Patterns

Loading the reservoir with the training patterns. I proceed to describe how the two patterns
p1(n), p2(n) of our demo are stored in the reservoir. In intuitive terms, storing patterns pj

amounts to re-compute the initial random reservoir weights W ∗, giving a new set of network
weights W , such that the new reservoir can mimic the impact of drivers pj in the absence
of them. I refer to the new weights W as “input internalization weights” on the grounds
that they incorporate the impact of an external input into the autonomous network update
dynamics.

W is computed as follows. In two separate runs, the two patterns are fed into the initial
reservoir via

xj(n+ 1) = tanh(W ∗ xj(n) +W in pj(n) + b), j = 1, 2; n = 0, . . . , L. (3)

Figure 1 (middle panels) shows the activation traces of the three neurons when the reservoir
is driven with either pattern.

Then W is computed to minimize the quadratic loss∑
j=1,2

∑
n=n0+1,...,L

‖W ∗ xj(n) +W in pj(n)−W xj(n)‖2, (4)

where only network states for times after n0 are used (in order to allow for washing out
the arbitrary intial state x(0) according to the echo state property). This again amounts

6

Managing neural memory

to a linear regression. If this is achieved with a small training error, one will obtain similar
network updates from states x1(n) or x2(n) with either the original input-driven update
rule, or with an input-free update rule that employs W instead of W ∗:

tanh(W ∗ xj(n) +W in pj(n) + b) ≈ tanh(W xj(n) + b). (5)

I call this procedure to transform the initial random weights W ∗ to W loading the patterns
into the reservoir.

Linear regressions can be computed with various algorithms. In all simulations reported
below I use ridge regression. Given a collection of L argument-target vector pairs (ai, ti) ∈
Rν × Rµ, ridge regression computes a transformation matrix M ∈ Rµ×ν which minimizes
the regularized mean square error 1/L

∑
i ‖ti −M ai‖2 + ‖%M‖2fro, where ‖ · ‖2fro is the

squared Frobenius matrix norm and % the Tychonov regularization coefficient.

In the case of (4), ν = µ = N and the arguments are all xj(n) and the targets are the
corresponding W ∗ xj(n) +W in pj(n).

The re-computation of initial weights of a RNN to obtain what I called here input in-
ternalization weights is a procedure that has been independently proposed several times in
recent years under different names and for different purposes: as self-predicting networks for
augmenting the performance of reservoir computing techniques (Mayer and Browne, 2004),
as equilibration for enabling external controllability of RNN dynamics (Jaeger, 2010), as
reservoir regularization for improved stability of neural motor controllers (Reinhart and
Steil, 2011), as self-sensing networks for making RNN training methods more flexible (Sus-
sillo and Abbott, 2012), and as innate training for reliable, noise-resistant reproducible
chaotic patterns in short-term memory RNNs (Laje and Buonomano, 2013).

Lower cost variants of the loading procedure. In a variant of the loading procedure, only
the input term W in pj(n) is replaced, leaving W ∗ unchanged. That is, the input-driven
network state tanh(W ∗ xj(n)+W in pj(n)+b) becomes emulated by the autonomous states
tanh(W ∗ xj(n) + D xj(n) + b), where D is computed by linear regression to minimize the
following variant of the quadratic loss (4):∑

j=1,...,K

∑
n=n0+1,...,L

‖W in pj(n)−D xj(n)‖2. (6)

I call the N × N matrix D input simulation weights. Another variant of the loading
procedure is even more minimalistic and aims at replacing only the very input pj(n), by
finding input replacing weights R (size N ×M) that minimize∑

j=1,...,K

∑
n=n0,...,L

‖pj(n)−Rxj(n)‖2,

leading to autonomous states tanh(W ∗ xj(n) +W inRxj(n) + b).

Computing conceptors. Considering (5), the loaded reservoir should be able to generate
approximate versions of the two original state patterns. However, if the network were run
just by iterating x(n+ 1) = tanh(W x(n) + b), the resulting input-free reservoir dynamics
is entirely unpredictable because the reservoir can’t “decide” which of the loaded pattern
dynamics it should engage in.

7

Jaeger

Here conceptors enter the stage. Each loaded pattern pj is associated with an N × N
sized conceptor matrix Cj which at recall time is inserted into the state update loop via

x(n+ 1) = Cj tanh(W x(n) + b).

The matrix Cj acts as a filter that leaves states xj(n) from the state pattern associated
with pattern pj essentially unchanged, but suppresses state components of states xj

′
(n)

associated with other patterns pj
′
. Stated differently, Cj should act like the identity matrix

for states xj(n), but like the null matrix for state components that are not typical for states
xj(n).

This consideration leads to a quadratic loss function

L(Cj) = E[‖Cj xj(n)− xj(n)‖2] + (αj)−2 ‖Cj‖2fro, (7)

where the expectation E is taken over all states xj(n) that arise in pj-driven runs according
to (3). Explanations:

• The first component E[‖Cj xj(n)−xj(n)‖2] of this loss function is minimal when Cj is
the identity. This component reflects the objective that Cj should leave states xj(n)
unchanged.

• The second component ‖Cj‖2fro becomes minimial for Cj = 0. This takes care of
the objective that Cj should suppress state components which are untypical of states
xj(n), i.e. such state components which do not enter the expectation of the first
component.

• The machine learning view on the loss (7) is to consider it as the loss for a regular-
ized identity function. It is mathematically closely related to computing a denoising
autoencoder for state patterns corrupted by Gaussian noise with variance (αj)−2.

• The parameter αj ≥ 0, called aperture for reasons that will soon become clear, ne-
gotiates between the two objectives. When the aperture is large, Cj will be close to
the identity matrix I. Conversely, for small apertures Cj will shrink toward the null
matrix 0. In our example I use α1 = 12 and α2 = 20.

Minimizing the loss L(Cj) leads to the solution

Cj = Rj (Rj + (αj)−2 I)−1, (8)

where Rj = E[xj(n)xj(n)′] is the N ×N correlation matrix of states xj(n) obtained in the
state dynamics driven by pattern pj . Cj has the following properties:

• Cj is positive semi-definite, with eigenvalues (= singular values) 0 ≤ σji ≤ 1 (i =
1, . . . , N).

• The N eigenvectors uji of Cj are the same as the eigenvectors of Rj , and can be

arranged column-wise in an orthonormal matrix U j = (uj1 · · ·u
j
N). These eigenvectors

are the same as the principal component vectors obtained from a principal component
analysis of state sets xj(n).

8

Managing neural memory

Figure 2: Conceptor geometry. Left: 3-dimensional state pattern x1(n) (red dots) and
x2(n) (blue dots). Ellipsoids corresponding to conceptors C1 and C2 are rendered
in red and blue respectively, with principal axes shown. They lie inside the unit
sphere, shown in light gray. Right: effects of halving (top) and doubling (bottom)
apertures.

I will often use the singular value decomposition (SVD) of Cj = U j Sj U j
′
, where Sj

is the diagonal matrix containing the singular values σji on its diagonal, by convention
arranged in descending order.

The derivation of (8) and the properties of Cj is elementary and can be found in Jaeger
(2014). In practice, the correlation matrices Rj are estimated from states collected in
training runs.

It is easily verified that R (R+α−2I)−1 = α2R (α2R+I)−1. Because α2R = E[αx (αx)′],
the aperture α can also be understood as a virtual scaling factor of reservoir states.

2.1.3 Geometry of Conceptors

It is instructive to contemplate the geometry of conceptors Cj and how it relates to the state
dynamics xj(n). The main panel in Figure 2 shows 100 instances of x1(n) (red dots), which
densely fill a cyclic path because of the irrational ratio between the driving sinewave period
and the sampling interval. The resulting conceptor C1 can be visualized by an ellipsoid
centered at the origin. Its principal axes are the eigenvectors of C1 scaled by their singular
values (they are indicated in Figure 1, right panels). Since the singular values of conceptor
matrices range in [0, 1], such ellipsoids lie inside the unit sphere. The singular values of
C1 are all nonzero, hence the ellipsoid is non-degenerate and extends in three directions.
The state pattern x2(n) induced by the 2-periodic driver p2 alternates between two states

9

Jaeger

(blue dots). These two states span a 2-dimensional subspace of R3: only two of the singular
values of C2 are nonzero, and the resulting ellipsoid is a degenerate (2-dimensional only).

The two small panels illustrate the geometrical effects of adjusting aperture. Increasing
the aperture “widens” conceptors, while decreasing aperture lets conceptors contract.

2.1.4 Pattern Re-generation

The loaded reservoir will behave unpredictably when run via x(n+ 1) = tanh(W x(n) + b),
but it will engage in the j-th state pattern xj(n) when run with the corresponding conceptor
in the loop via x(n + 1) = Cj tanh(W x(n) + b). The conceptor Cj acts as a state filter
which leaves states belonging to pattern j mostly unaffected, while other states that would
belong to other patterns are projected into the ellipsoidal state volume typical for pattern
j.

The original input pattern can be read from this dynamics by W out x(n) ≈ pj(n). Figure
1 (left panels) shows the re-generated patterns under conceptor control overlaid with the
original drivers.

2.1.5 Intuitive Summary, and Relationship to Reservoir Computing

Three kinds of matrices are trained in the conceptor-based pattern learning setup: the
readout weights, the recurrent reservoir weights, and the conceptor matrices. How can the
respective functional roles of these three components be intuitively understood?

In the loading process, when the random initial reservoir weights W ∗ are recomputed
into W , information about the detailed dynamics of each training pattern is imprinted on
the reservoir. A helpful metaphor is to liken the loading process to driving a vehicle over
Sahara sands. Each pattern digs its individual track into the surface of the native sandscape.
The original reservoir with weights W ∗ is like a virgin sandscape. After loading K patterns,
K tracks have been engraved into the surface. These tracks are coded in the weight matrix
W .

Still following that metaphor, the pattern tracks imprinted on the sand will have cross-
ings. Sending a vehicle on a track-following mission, it wouldn’t know where to turn at those
crossings. If one would just run a network simulation with loaded weights W without further
ado, the resulting network dynamics is unpredictable: the network doesn’t know where to
turn at the crossings; typically one observes a trajectory that appears like high-dimensional
chaos or a trajectory that gets stuck in a point attractor.

This is where conceptors come into play. If conceptor Cj is inserted into the network
update loop, it informs the network how to follow track number j. Figuratively speaking, the
conceptor flattens out competing tracks but leaves track j mostly as it is. More technically
speaking, this “flattening out” is effected by the large number of zero or close-to-zero singular
values of Cj . In memory terminology, the conceptor acts as a selector for one of the loaded
patterns. As we will see later on, as a side effect this “flattening out” endows the network
dynamics with strong noise-suppression and dynamical stabilization characteristics.

Finally, the readout weights are not a crucial component in the conceptor approach to
RNNs. This is different from the usual perspective of reservoir computing where the training
of readout weights is the defining part of the entire paradigm. The focus of conceptor theory
is representation learning, not output generation. It is all about creating representations

10

Managing neural memory

25 50 75 100
1

0

1

4

6

8

10

p1 p2
Figure 3: Morphing from an integer-5-periodic pattern p1 to an irrational-period sine p2

from time n = 25 to n = 75. Top: delay-embedding plots of signals y(n) obtained
with fixed conceptor mixes (indicated by triangle markers in center panel). Bot-
tom: Output signal y(n).

of dynamical patterns inside an RNN, where these representations (the tracks in the sand)
become serviceable through conceptors. The readout weights merely provide an externally
interpretable observer for the learnt representations, and a means to quantify the quality
of the internal representations by measuring the mismatch between original patterns and
re-generated output patterns.

2.2 Morphing and Generalization

When K “prototype” patterns p1, . . . , pK have been loaded, they can be morphed in recall
by using linear blends of their conceptors via

x(n+ 1) = (
∑

j=1,...,K

aj Cj) tanh(W x(n) + b), y(n) = W out x(n), (9)

where
∑

j=1,...,K a
j = 1. For an elementary demonstration, an integer-5-periodic pattern

p1 and a sine pattern p2 with an irrational period length of about 8.8 (sampled at integer
time points) were loaded into a 100-neuron reservoir. Figure 3 (bottom) displays the output
y(n) of a recall run where for the first 25 steps, the pure conceptor C1 was used, then for a
morphing time of 50 steps C1 was linearly blended into C2, concluding the run with another
25 steps under the control of the pure C2. The output signal exhibits a gradual blending
from p1 to p2 during the morphing period from step 25 to step 75. In order to get more
insight into the morphing dynamics, for eight mixing ratios (marked by triangle markers
in the bottom panel), the system (9) was run separately with mixing coefficients frozen at
these ratios. The panels in the top row show “fingerprints” of the resulting output signals
yi(n), by plotting delay embedding state points (yi(n + 1), yi(n)). Each panel shows 20
successive points as thick dots, and further 100 successive points as thin dots. The first
panel, which corresponds to the pure 5-periodic pattern p1, shows 5 cyclically repeated
points, and the last panel a quasi-periodic oscillation, as expected. Intermediate dynamics
are mostly quasi-periodic, but there are also mixture settings where there is a 6-, 7-, and

11

Jaeger

8-periodic behavior (of which only the 7-periodic instance happens to be captured by one
of the displayed plots).

In a slightly more involved demonstration three representative patterns p1, p2, p3 are
loaded, which are taken from a two-parametric family of modulated sinewave patterns. One
parameter changes the frequency, the other modulates the shape from “pointed upwards”
to “pointed downwards” (details in the appendix). Figure 4 shows a close-up of the three
loaded patterns in the separate top panels (red: slightly pointed downwards, high frequency;
green: slightly pointed downwards, low frequency; blue: slightly pointed upwards, interme-
diate frequency). Note that three is the minimal number of patterns required to span a
2-parametric pattern space. To visualize the morphs, pattern samples generated with mor-
phed conceptors a1C1 + a2C2 + a3C3 are arranged in a tesselated drawing plane. The
“pure” recalled patterns (corresponding to mixtures (a1, a2, a3) = (1, 0, 0); (0, 1, 0); (0, 0, 1)
respectively) are placed at the corners of an equilateral triangle (saturated red/green/blue
tiles in the main figure panel). Tiles within the triangle spanned by the three loaded pat-
terns correspond to interpolated conceptors, whereas patterns outside the triangle were
obtained by extrapolating conceptor mixtures with coefficents outside [0 1].

By visual inspection of the signals shown in Figure 4 one finds that the system has
acquired command over a sizeable portion of the parametrized pattern space by generalizing
from three training instances. This generalization is effective not only in the “convex hull”
of the three training examples (interpolation area within the central pattern triangle in
the figure), but extends far into the extrapolation range. Going right/left from the three
training patterns one sees that the mild frequency modulation indicated by the three training
patterns reaches out into a wider frequency span; and going up/down one finds the “pointed
up/down” characteristics, which is only feebly present in the training patterns, becomes fully
expressed.

But one should not expect miracles. Upon closer inspection one will find that many re-
generated patterns are not precise members of the family. Deviations grow as the mixture
coefficients extend further away from the interpolation region. Also, there is no linear
relationship between variations in mixing coefficients and geometric pattern characteristics.
Far outside the interpolation region similiarities with correct patterns from the target family
dissolve. If one wishes to obtain a wider-range faithful re-generation of patterns from the
family, a larger number of reference patterns must be loaded. In Section 3.2 we will meet
an altogether different way to employ conceptors to learn a pattern family from a small
number of training examples.

2.3 A Real-World Data Example

In order to illustrate that the approach scales to more complex patterns, fifteen diverse
human motion patterns were loaded: slow walk ; fast walk ; walk with exaggerated stride;
jog ; sit ; get up from stool ; sit down on stool ; kneel down; crawl ; get up from crawl ; waltz ;
cartwheeling ; and three boxing punches. These patterns are 61-dimensional signals (body
pose and joint angles). Some are periodic (like jog), others are transient (like get up from
crawl), yet others are irregular-stochastic (the boxing patterns); some patterns have multiple
timescales. Training data consisted of short sequences clipped from publicly available human
motion capture traces (CMU Graphics Lab)), one such clip per motion type. The length

12

Managing neural memory

5 10 15 20
1

0

1

5 10 15 20
1

0

1

5 10 15 20
1

0

1

Figure 4: Morphing between and beyond three patterns from a 2-parametric family. For
explanation see text.

of training patterns varied from 150 to 900 sampling points (sampling rate 120 / second).
Data preprocessing and visualization was done with the help of a public Matlab motion
capture toolbox (Burger and Toiviainen, 2013). Figure 5 gives an impression of the training
data after preprocessing.

A 600-unit reservoir made from leaky-integrator neurons was loaded with the 15 training
samples (details in the appendix). In a recall run, the 15 patterns were re-generated in a
shuffled sequence according to a hand-designed choreography. In this sequence, a pattern pj

is reproduced by inserting the corresponding conceptor Cj into the reservoir update loop for
some period of time. In order to achieve a smooth transition into the next motion pj

′
, Cj was

morphed into the following conceptor Cj
′

for one simulated second before Cj
′

takes over full

13

Jaeger

1

0

1 jog

1

0

1

cartwheel

1

0

1 waltz

1

0

1 kneel down

0 500 1000
1

0

1 boxing: jab

0 500 1000 0 500 1000

Figure 5: Exemplary human motion training data. Plots show the range-normalized ver-
sions used as input for the reservoir. The four rows show four out of the 15 loaded
patterns. The three columns show three out of the 61 data dimensions. Thick
red lines: training data; black lines: 1000-step free-running pattern recall under
conceptor control. For explanation see text.

control. The resulting choreographed recall sequence of one minute duration was rendered
into a video. The video is on YouTube (www.youtube.com/watch?v=DkS_Yw1ldD4). Figure
6 shows a few snapshots.

Morphing and generalizing dynamical patterns is a common but nontrivial task for
training motor patterns in robots. It typically requires training demonstrations of numerous
interpolating patterns (Reinhart and Steil, 2008; Coates et al., 2008; Lukic et al., 2012).
Conceptor-based pattern learning and morphing appears promising for flexible robot motor
pattern learning from a very small number of training patterns. I want to emphasize that
this is only a method for “playback” of learnt trajectories with flexible sequence scheduling
and motion blending with potential applications in computer game character animation; it
is not a method for motor control. The procedure demonstrated here is visually superior
to some existing neural-network based approaches (wyffels and Schrauwen, 2009; Sutskever
et al., 2009; Boström et al., 2013; Wright and Jordanov, 2012) with respect to number of
patterns, body model complexity, and smoothness of transitions. The mocap-trained human
motion generation system presented by Taylor et al. (2011), which is based on restricted
Boltzmann machines, comes close to the conceptor-based demo with respect to number of
patterns and body model complexity, and has visually more appealing transitions between
gaits.

14

www.youtube.com/watch?v=DkS_Yw1ldD4

Managing neural memory

Figure 6: Snapshots from a human motion re-generation video created from a conceptor-
controlled RNN. First row: standing up from a stool and starting a slow walk,
second row: kneeling down and starting to crawl, third row: cartwheel.

I emphasize that this case study is solely meant as a visually appealing demo that
conceptor-controlled pattern generation can scale to sizable numbers of high-dimensional,
non-stationary patterns. In this it serves the same purpose as the other motion capture
learning neural networks that I referenced above. It is neither a method for motor con-
trol in physical robots, nor does it aspire to compete with state-of-the-art game character
animation engines, which each combine a diversity of sophisticated animation techniques,
often including physics simulations (Gillies and Spanlang, 2010).

2.4 Aperture Adaptation

For good performance in recall, the aperture must be chosen appropriately. To illustrate
this, I loaded four patterns into a N = 500 reservoir. The patterns were obtained from
four classical chaotic attractors, p1: Lorenz attractor; p2: Rössler attractor; p3: Mackey-
Glass attractor; p4: Hénon attractor (details in the appendix). Green plots in Fig. 7A,B
visualize the clean training signals. In the reproduction stage, for each pattern pj a number
of different conceptors Cj with varied apertures were tried. Fig. 7A shows the effects for the
Lorenz attractor. When α is too small, the reservoir-conceptor feedback loop becomes too
constrained and the generated patterns de-differentiate. With α too large the feedback loop
becomes over-excited. In this demonstration, a good aperture could be automatically found
by minimizing a measurable that I call attenuation. This is the fraction of the reservoir
signal energy which is suppressed by applying the conceptor. Formally, the attenuation
aC,α induced by a conceptor C at aperture α is

aC,α = E[‖r(n)− z(n)‖2]/E[‖r(n)‖2],

15

Jaeger

11 66 4e+02 2.4e+03 1.4e+04

1e+03 1e+03 6.3e+02

A

B

C
1 2 3 4 5
6

4

2

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 100 200 300 400 5000

0.5

1

si
ng

ul
ar

 v
al

ue

 = 11
 = 66
 ~ 400
 ~ 2400
 ~ 14400

D

Figure 7: Reproducing four chaotic attractor patterns in a single network. Green: original
training signals, blue: network-generated reproductions. The 2-dimensional plots
are obtained from 1-dimensional timeseries by delay embedding, plotting y(n)
against y(n−d) for a delay d chosen to yield instructive graphics. (A) The Lorenz
attractor re-generated with five different aperture settings (α values inserted in
panels). (B) From left to right: re-generations of the the Rössler, Mackey-Glass,
and Hénon attractors. (C) Log10 of attenuation plotted against log10 of aperture.
Dots mark the apertures used in the reproductions in (A,B). (D) Singular value
spectra of conceptors used for the Lorenz attractor (compare panel A).

where r(n) = tanh(Wz(n−1)+b), z(n) = C r(n). This quantity can be cheaply estimated
online and can be used to automatically adapt the aperture at recall time. Fig. 7C plots at-
tenuation against aperture. The minimum of this curve marks a good aperture value, where
“good” means “good visual agreement of recalled attractor with original attractor” (I did
not implement an attractor comparison metric). The apertures used for the reproductions
shown in Fig. 7B were obtained via this minimum-attenuation criterion.

While placing the aperture roughly in the right range is important, fine-tuning is un-
necessary. The Lorenz attractor shown in Fig. 7A is quite well reproduced with apertures
ranging over two orders of magnitude. This is also true for the other chaotic attractor sig-
nals, as well as for all other simulation studies that I undertook so far. While this 4-pattern
demo is an academic exercise, it underlines the functionality of conceptors to stabilize neural
pattern generation.

16

Managing neural memory

3. Autoconceptors

The definition and usage of conceptors, as described so far, invites an obvious critique:
conceptor matrices have the same size as the reservoir weight matrix. Thus, for represent-
ing a pattern pj by a conceptor matrix Cj one has to create and store an object that is
as heavyweight as the hosting reservoir—one might say that each new pattern adds an-
other brain. This is clearly inappropriate for computational neuroscience modeling, and it
may become too expensive in machine learning applications. The storing cost of adding a
conceptor matrix can be reduced by storing only economical SVDs of conceptor matrices,
which often have low numerical rank. This however only mitigates but does not solve the
principal problem.

I can offer two answers to this important critique:

Conceptor auto-adaptation and content-addressable memories. At loading time, when pat-
tern internalization or pattern simulation weights are computed, no conceptors are
created. Pattern recall functions by content-addressing: a short / incomplete cue of
the target pattern is presented and an appropriate conceptor is generated on the fly
by an auto-adaptation process. This leads to a memory model which is reminiscent of
Hopfield networks. The present section is devoted to such auto-adapting conceptors.

Diagonal conceptors with single-neuron representations. When conceptor matrices are con-
strained to diagonal form, filtering a reservoir state by a conceptor reduces to unit-wise
scalar multiplications, and a conceptor can be mathematically represented by a vec-
tor, which in turn could possibly be biologically implemented by a single neuron. This
venue is explored in some detail in Jaeger (2014), where also proof-of-principle demos
are presented of multi-reservoir hierarchical memory systems that are based on such
diagonal conceptors. I am however not satisfied with the robustness properties of di-
agonal conceptors (they are too parameter-sensitive), and I am currently working on
improved versions. Therefore I will not report on the available material from Jaeger
(2014) this article.

3.1 Conceptor Auto-Adaptation

In the preceding sections I have defined conceptors as transforms Cj = Rj (Rj + α−2I)−1

of reservoir state correlation matrices Rj (Equation 8) obtained from driving the reservoir
with pattern pj . The conceptor Cj could then be exploited for pattern re-generation via
x(n+1) = Cj tanh(Wx(n)+b) (using input internalization weights) or its variant x(n+1) =
Cj tanh(W ∗ x(n) +D x(n) + b) (using input simulation weights).

This way of using conceptors, however, requires that the conceptor matrices Cj are
computed at loading time, and they have to be stored in some way for usage at exploitation
time. Such a procedure may be useful in some practical engineering respects (for instance,
for dynamical pattern morphing and pattern stabilization), but otherwise invites the critique
pointed out at the beginning of this section.

This motivates to look for ways of how conceptors can be used for constraining reservoir
dynamics without the necessity to create and store conceptor matrices beforehand. The
network would have to create the requisite conceptors on the fly by some auto-adaptation
process while it is performing some relevant task. In this section I investigate auto-adapted

17

Jaeger

conceptors for the task of realizing a content-addressable memory. They are also useful for
other tasks—in Jaeger (2014) (Section 3.15) I demonstrate the use of such auto-adapted
conceptors for the task of simultaneous signal denoising and classification.

For ease of discussion, I call conceptors created by auto-adaptation at use-time autocon-
ceptors, as opposed to the conceptors which are created at pattern loading time and which
are externally inserted into the reservoir update loop at use-time—I will refer to those as
alloconceptors. Autoconceptors, like alloconceptors, are positive semidefinite matrices with
singular values in the unit interval. Aperture operations are identical for allo- and autocon-
ceptors. However, the way how autoconceptors are generated by auto-adaptation leads to
additional constraints on their algebraic characteristics. The set of autoconceptor matrices
is a proper subset of the set of alloconceptor matrices.

3.1.1 Basic Equations

The basic system equation for autoconceptor systems is

x(n+ 1) = C(n) tanh(W ∗ x(n) +W inp(n+ 1) + b) (10)

or variants thereof, like

x(n+ 1) = C(n) tanh(W x(n) + b) (11)

or
x(n+ 1) = C(n) tanh(W ∗x(n) +Dx(n) + b), (12)

the latter two capturing the situation after having patterns loaded by input internalization
or input simulation weights. The novel element in these equations is that C(n) is time-
dependent. Its evolution is governed by an adaptation rule that I will describe presently.
C(n) need not be positive semidefinite at all times; only after convergence the C(n) matrices
will have the algebraic properties of conceptors.

It is convenient to formally split the network state x in (10) into a “reservoir state”
r measured directly after the neuron nonlinearity, and a “filtered” state z obtained after
passing the reservoir state through the conceptor. This turns (10) into

r(n+ 1) = tanh(W ∗z(n) +W inp(n+ 1) + b) (13)

z(n+ 1) = C(n) r(n+ 1). (14)

The auto-adaptation of C(n) aims at minimizing a loss that at first sight looks the same
as the loss (7):

L(C) = E[‖C z(n)− z(n)‖2] + α−2 ‖C‖2fro, (15)

which for alloconceptors was solved by C = R (R + α−2 I)−1 with R = E[x x′] being the
autocorrelation matrix of reservoir states. Similarly, (15) is minimized by

C = R (R+ α−2 I)−1, with R = E[z z′]. (16)

The crucial difference is that now the state correlation matrix R depends on C:

R = E[z z′] = E[Cr (Cr)′] = C E[r r′]C =: CQC,

18

Managing neural memory

!

r

!

z

W*

C
!

W in

!

p

Figure 8: Network representation of a basic autoconceptor system. Bias b and readout
mechanisms are omitted. The red arrow indicates that C is adapted online. For
explanation see text.

where we introduce Q = E[r r′]. This transforms the explicit solution formula (8) into a
fixed-point equation:

C = CQC (CQC + α−2 I)−1. (17)

Since Q depends on r states, which in turn depend on z states, which in turn depend
on C again, Q depends on C and should be more appropriately be written as QC . A formal
analysis of solutions to the fixed-point equation C = CQCC (CQCC + α−2 I)−1 is involved
(carried out in some detail in Jaeger (2014)). Explicit solution formulas are unlikely to
exist because the nonlinear reservoir is involved in QC . When one uses autoconceptors,
however, one does not need to solve (17) explicitly. Instead, one can invoke stochastic
gradient descent to minimize the loss (15). It is easily derived (Jaeger, 2014) that

C(n+ 1) = C(n) + λ
(
(z(n)− C(n) z(n)) z′(n)− α−2C(n)

)
(18)

implements stochastic gradient descent with respect to the loss (15). Here λ is an adaptation
rate. Equations (13), (14) and (18) taken together—or versions where (13) is replaced by
(11) or (12)—define the joint state update and conceptor adaptation working cycle.

In Jaeger (2014) I show that, if the driver p(n) is a stationary process and if C(n) con-
verges under this auto-adaptation rule, the limit C is positive semidefinite with singular
values in the set (1/2, 1) ∪ {0}. Singular values of C asymptotically obtained under the
evolution (18) are either greater than 1/2 or they are zero. If the aperture α is fixed at in-
creasingly smaller values, increasingly many singular values converge to zero. Furthermore,
the analysis in Jaeger (2014) reveals that among the nonzero singular values, the majority
will be close to 1. Both effects together endow autoconceptors with singular value spectra
that are typically approximately rectangular.

3.1.2 Basic Demonstrations

In order to display how autoconcepters can be used to realize a content-addressable memory,
I ran simulations according to the following scheme:

19

Jaeger

1. Loading. A collection of 10 scalar patterns pj was loaded in an N -dimensional reser-
voir, yielding an input simulation matrix D and readout weights W out. More specif-
ically, D was computed to minimize the loss (6), using states xj(n) obtained from
driven runs xj(n+1) = tanh(W ∗ xj(n)+W in pj(n)+b). No conceptors were involved
or computed in the loading procedure.

2. Recall. For each pattern pj , a recall run was executed which consisted of three stages:

(a) Initial washout. Starting from a zero network state, the reservoir was driven with
pj for nwashout steps, in order to obtain a task-related reservoir state.

(b) Cueing. The reservoir was continued to be driven with pj for another ncue steps.
During this cueing period, Cj was adapted through z(n + 1) = tanh(W ∗z(n) +
W inp(n) + b), Cj(n+ 1) = Cj(n) + λcue ((z(n)−Cj(n) z(n)) z′(n)−α−2Cj(n)).
At the beginning of this cueing period, Cj(0) was initialized to the zero matrix.
Notice that during cueing, the nascent conceptor Cj(n) was not inserted in the
reservoir state update loop. At the end of this period, a conceptor Cj cue was
obtained.

(c) Autonomous auto-adaptation and pattern recall. The network run was continued
with the external input switched off, using z(n + 1) = Cj(n) tanh(W ∗z(n) +
Dz(n) + b), while continuing to auto-adapt the conceptor through Cj(n+ 1) =
Cj(n) + λrecall ((z(n)−Cj(n) z(n)) z′(n)−α−2Cj(n)). At three test time points
t1, t2, t3 the conceptor Cj(ti) in its current adaptation stage was recorded for an
offline quality assessment.

3. Measuring the quality of conceptors. The quality of the conceptors Cj cue and Cj(ti)
(where i = 1, 2, 3) was measured in separate offline runs without conceptor adaptation
using z(n+1) = C tanh(W ∗z(n)+Dz(n)+b), where C was one of Cj cue, Cj(t1), C

j(t2),
Cj(t3). A reconstructed pattern y(n) = W out z(n) was obtained and its similarity with
the original pattern pj was quantified in terms of a NRMSE.

I carried out two instances of this experiment, using two kinds of patterns:

5-periodic pattern. The patterns were random integer-periodic patterns of period 5. Exper-
iment parameters: Reservoir size N = 100, spectral radius of W ∗ set to 1.5, input
weight scaling 1.5, bias weight scaling 0.5, ridge regularization coefficients %2D, %

2
Wout

both set to 0.0001, aperture α = 1000, nwashout = 20, ncue = 10, t1, t2, t3 = 10, 50, 500,
auto-adaptation rates γcue = 0.02, γrecall = 0.01. To make the task more challeng-
ing, during the 10-step cueing phase the cue input pattern was corrupted by additive
uniform noise sampled from [−0.05, 0.05], and during the autonomous recall time the
reservoir states were very strongly perturbed by additive Gaussian noise (fed inside
the tanh) whose variance equalled the average reservoir state component variance (a
signal-to-noise ratio of 1).

2-parametric mix of 2 irrational-period sines. The 10 patterns were were taken from the
2-parametric family of patterns governed by

p(n) = a sin(2π n/P) + (1− a) sin(4π (b+ n/P)).

20

Managing neural memory

These signals are weighted sums of two sines, the first with period length P and
the second with period length P/2. The weights of these two components are a and
(1 − a), and the second component is phase-shifted relative to the first by a fraction
b of its period length P/2. The reference period length P was fixed to P =

√
30.

The parameters a, b were freshly sampled from the uniform distribution on [0, 1] for
each pj . Network parameters: N = 100, reservoir spectral radius 1.5, input weight
scaling 1.5, bias scaling 0.5, %2D = %2

Wout = 0.0001, α = 200, nwashout = 100, ncue = 12,

t1, t2, t3 = 20, 1000, 10000, γcue = γrecall = 0.01. Cue patterns were corrupted by the
same amount of additive noise as the 5-periodic patterns, and reservoir states were
again perturbed with a signal-to-noise ratio of 1 during the autonomous recall.

Figure 9 illustrates the outcomes of these two experiments. For brevity I refer to the
two experiments as the “IP5” and “PF” conditions. Observations and interpretations:

• The quality of the preliminary conceptor Cj cue was always much improved by the
subsequent auto-adaptation (panels B, D).

• The effects of autoconceptive adaptation are reflected in the singular value profiles
of Cj cue versus Cj(t3) (A, C). During the short cueing time, the online adaptation
of the conceptor from a zero matrix to Cj cue only manages to build a preliminary
“nascent” profile, which then “matures” by auto-adaptation.

• The conceptors Cj(t3) have an almost rectangular singular value profile, in agreement
with mathematical analyses (Jaeger, 2014).

• In PF the averge re-generation NRMSE with the final conceptor C(t3) was 0.11. For
comparison I loaded and recalled the 10 patterns following the basic alloconceptor
procedure with a manually optimized aperture. This gave an NRMSE of 0.087, that
is, content-addressed autoconceptor recall from short and noisy cues here worked
almost as well as re-generation with previously stored conceptors.

• For the 5-periodic patterns, a comparison simulation with the basic alloconceptor
procedure yielded a mean NRMSE of .0033, much better than the mean NRMSE
of 0.070 obtained after t3 = 500 steps in the IP5 experiment. When perturbations
to the cue signal and the reservoir states were switched off (not shown), the final
NRMSE improved to 0.0037, almost as good as in the alloconceptor comparison. In
summary, with cue and state noise the IP5 experiment worked out satisfactorily, and
in a noise-free version essentially as well as with alloconceptors.

• In the FP experiment, unlike in IP5, state noise not only did not harm, but was con-
ducive for fast adaptation. As a comparison I repeated the simulation with noiseless
cues and without state noise insertion during autoconception (not shown). The out-
come: in some cases the auto-adaptation failed altogether, and when it did function,
it needed much longer runtimes (1,000,000 steps) to reach reconstruction qualities
similar to what is reported in Figure 9 C D. State noise in auto-adaptation helps
to drive the singular values of relevant state components toward 1 and considerably
speeds up the adaptation.

21

Jaeger

A

0

1

singular values

1

0

1
p and y

0

1

1

0

1

0 5 10
0

1

0 5 10
1

0

1

B
1 2 3 4 5 6 7 8 9 10

2

1.5

1

0.5

0

0.5

Pattern index

lo
g1

0
N

R
M

SE

C

0

1

singular values

1

0

1
p and y

0

1

1

0

1

0 10 20
0

1

5 10 15
1

0

1

D
1 2 3 4 5 6 7 8 9 10

2

1.5

1

0.5

0

0.5

Pattern index

lo
g1

0
N

R
M

SE

Figure 9: Basic content-addressable memory demos. A, B: 5-periodic pattern, C, D: mix
of sines pattern. Panels A, C show the first three patterns, giving the first few
singular values of the conceptors Ccue, C(t1), C(t2), C(t3). The “p and y” panels
show the original patterns (white), the pattern re-generated with Ccue (thick
red) and with the final C(t3) (thick blue) after optimal phase alignment with the
original. B, D: recall log10 NRMSEs obtained from Ccue, C(t1), C(t2), C(t3).

• The robustness of auto-adaptation against very strong state noise may seem surprising
at first, but is easily explained. Autoconceptor adaptation leads to singular value
spectra with many zero values (Jaeger, 2014). Reservoir state noise components in
directions of the nulled eigenvectors are entirely suppressed in the conceptor-reservoir
loop, and state noise components within the nonzero conceptor eigenspace do not
impede the development of a “clean” rectangular profile but in fact, as seen in FP,
may even speed up the auto-adaptation process.

22

Managing neural memory

• In the simulations reported above, zero singular values were present from the start
because the conceptor was initialized as the zero matrix. If it had been initialized dif-
ferently (for instance, as the identity matrix), the auto-adaptation would only asymp-
totically pull (the majority of) singular values to zero, with noise robustness only
gradually emerging to the degree that many singular values decrease toward zero. If
noise robustness is desired, it can be reached by additional adaptation mechanisms
for C. In particular, it is helpful to include thresholding: all singular values of C(n)
exceeding a suitable threshold are set to 1, all singular values dropping below a certain
cutoff are zeroed (not shown).

• The simulations reported here were done with unfavorable settings on purpose, using
short cueing times and strong noise. With larger reservoir networks, longer cueing
times, less noise etc. much higher recall accuracies can be obtained (not shown).

An inquisitive reader may ask why I don’t install auto-adaptation with respect to the
reservoir output r instead of z, that is, why not use the loss

L(C) = E[‖C r(n)− r(n)‖2] + α−2 ‖C‖2fro, (19)

instead of the loss (15). This alternative loss (19) appears as natural as the loss (15) (and its
solutions would be much easier to analyze mathematically). But in simulation experiments
(not reported) I found that the performance of auto-adaptation based on (19) was far
inferior to the version used above. Specifically, (i) all noise robustness was lost, (ii) during
auto-adaptation the conceptors grew very heavy tails in their singular value spectra even
for 5-periodic patterns where one would desire a spectrum with exactly 5 nonzero singular
values, and (iii) singular values greater than 1 emerged under auto-adaptation, likewise
undesirable within the conceptor philosophy.

The conceptor auto-adaptation dynamics in content-addressable memories is quite in-
volved, with intriguing analogies and differences to Hopfield network adaptation dynamics.
I discuss this in Section 3.3.

3.2 From Rote Learning to “Understanding”

When the cue represents a pattern that was not loaded, autoconceptors can be invoked to
re-generate even such patterns. Specifically, if the reservoir was loaded with a few patterns
p1, . . . , pk from a parametric family and then is cued with another pattern p∗ from that
family, an attempt can be made to re-generate this new pattern, too. This will work out
provided that (i) enough patterns p1, . . . , pk had been loaded to instruct the reservoir about
the characteristics of the pattern family, and (ii) the reservoir size is large enough to code
the characteristics of the pattern family. For a demonstration I chose a 100-neuron reservoir
and the mix-of-sines patterns from the 2-parametric family used before. A cue time of 12
steps and an auto-adaption time of 10,000 was used. The simulation was carried out as
follows (detail in the appendix):

1. Create a random reservoir.

2. In separate trials, load this reservoir with an increasing number k of patterns (ranging
from k = 1 to k = 1000), randomly taken from the parametric family.

23

Jaeger

1 2 3 5 10 30 100 300 1000
1.2

1

0.8

0.6

0.4

0.2

Nr of loaded patterns

lo
g1

0
N

R
M

SE

Figure 10: Class learning effect. Error bars indicate 95 % confidence intervals for mean
NRMSEs. The curves are means over the 10 recall targets and the 10 experiment
repetitions (blue: recall of patterns that were loaded; green: recall of patterns
that were not loaded). Both axes are in logarithmic scale. For explanation see
text.

3. After loading, cue (with noiseless cues) and re-generate the loaded patterns by auto-
conceptors. Measure the final recall accuracy for the first 10 of the loaded patterns
(when fewer than 10 were loaded, do it only for these).

4. In addition, per trial, also try to cue and “recall” 10 novel patterns that were drawn
randomly from the family. Monitor the “recall” accuracy of these novel patterns as
well.

5. Repeat this entire scheme 10 times, with freshly sampled reservoirs and patterns.
Report averaged diagnostics.

Figure 10 shows the results. Observations:

• The recall NRMSE for patterns that have been expressedly loaded is lowest when only
few patterns have been loaded. As the number of loaded patterns grows, the NRMSE
first rises, then levels out for very large numbers of loaded patterns.

• The recall NRMSE for non-loaded patterns is high in conditions when only few pat-
terns have been loaded. As the number of loaded patterns grows, this NRMSE de-
creases and levels out at about the same goodness as the NRMSE for loaded patterns.

Similar findings were obtained in other simulations (Jaeger, 2014). Pending a formal
analysis, the following interpretation suggests itself:

• For small numbers of loaded patterns the system stores and recalls individual patterns.
The input simulation matrix D represents individual patterns.

24

Managing neural memory

• For large numbers of loaded patterns, the system learns a representation of the
parametrized pattern family and can re-generate any pattern from that family from
a cue. The input simulation matrix D represents the class of patterns.

In suggestive wording, as more and more patterns are loaded this memory system
changes its nature from “rote learning” to “understanding” the nature of the pattern fam-
ily. With the aid of autoconceptors, any member of the family can be “recognized” from
a cue and become re-generated. This family learning effect becomes effective already when
only a single pattern has been loaded, and when as few as about 5 patterns are loaded, the
recall log10 NRMSE for novel patterns is within 20% of the accuracy for loaded patterns.
This is another display of the generalization powers of conceptor-based systems, which we
encountered before in connection with conceptor morphing (Section 2.2).

3.3 Analysis of Auto-Adaptation Dynamics

The dynamics of autoadaptation—that is, the evolution of C(n) under the simultaneous
reservoir state update (13), (14) (or variants) and conceptor matrix adaptation rule (18)—
is highly nonlinear and involves at least the two timescales of reservoir updates (fast, N
variables) and C adaptation (slow, N2 variables). A full analysis is out of reach, but some
core aspects are analytically accessible. In Jaeger (2014) I investigate properties of fixed
points of C auto-adaptation. Here I review the most important findings and attempt an
interpretation of some phenomena found in simulation studies in the light of these analytical
insights. This subsection assumes some familiarity with methods from dynamical systems
theory. Readers not interested in technical detail may jump to the intuitive summary at
the end of this subsection.

My analysis was based on assuming an adaptation rate λ that is small enough to admit
temporal averaging over the fast z(n) state variables. The discrete update equation (18)
can then be transformed into a continuous-time ODE which is easier to analyze. This ODE
is

τ Ċ = (I − C)C QC C
′ − α−2C, (20)

where QC = Ez[tanh(W z + b) tanh(W z + b)′] = Er[r r′] is the autocorrelation matrix of
reservoir states (here in a version with input internalization weights, versions with input
simulation weights are analog) when these states evolve under the control of C. The time
constant τ is of no concern for the qualitative analysis. Specifically I investigated two
objects:

Fixed points F of (20). These are candidates for conceptors that are asymptotically ob-
tained for convergent autoadaptation runs.

Jacobians JF of fixed points F . JF is an N2 × N2 matrix whose (i, j)-th element is the
derivative ∂Ḟi/∂Fj , under the dynamics (20) linearized in F , and where Fi is the
i-th element of F (enumerated row-wise). The eigenvalues of JF characterize stability
properties of F .

Here is a summary of insights from this analysis:

• Fixed points F are positive-semidefinite matrices with eigenvalues (= singular values)
ranging in [0, 1], and thus qualify as conceptors.

25

Jaeger

• When F has singular values that are smaller than 1/2 and greater than 0, JF has
positive eigenvalues and hence F is not a stable fixed point. Such F cannot be
obtained in empirical auto-adaptation runs. Conversely, this means that if auto-
adaptation converges, the resulting conceptors C have singular values that are either
exactly zero or larger than 1/2.

• The rank of F is bounded from above by the number of singular values of QF which
are greater than 4α−2. This implies that reducing the aperture α forces an increasing
number of singular values of F to become zero.

• Assume F has rank k. Then JF has k(N − k) zero eigenvalues, that is, a center
manifold K of dimension k(N −k). On this center manifold the stability properties of
the dynamics (20) cannot be elucidated by linearization techniques; it may be stable,
instable, or neutral.

• If F is a rank-k solution of the fixed-point equation (17) which is generic in the
sense that the nonzero singular values of F are pairwise different, and if Q in (17)
is fixed (that is, its dependency on C is ignored), then differential changes of F
along a k(N − k)-dimensional subspace will also lead to rank-k solutions of (17)
(Jaeger (2014), Section 3.13.4). The identity of the center manifold dimension and
the dimension of this local solution space implies that the center manifold coincides
with the local solution space. Hence the adaptation dynamics on the center manifold
K is neutrally stable: K is a plane attractor. Note however that this interpretation
is based on fixing Q at QF in the vicinity of F . Plane attractors are non-generic in
randomly parametrized ODEs, and fixed point solutions F are generically isolated
(not embedded in a plane attractor). When the dependence of Q on C is included
in the picture, and F is a fixed-point solution of (17), we would generically expect
a separation of timescales in the autoadaptation dynamics in the vicinity of F : fast
convergence toward F in directions orthogonal to K and (very) slow drift within K.
Below I present a numerical simulation that corroborates this intuition.

• In order to obtain a better understanding of convergence properties in directions
orthogonal to K one needs to analyse the negative eigenvalues of the Jacobian JF .
Assume again that F has rank k, and furthermore the k nonzero singular values
s1, . . . , sk of F are greater than 1/2. Then the N2 − k(N − k) nonzero eigenvalues of
JF are all negative. They come in three sorts (Proposition 16 in Jaeger (2014)):

1. N(N − k) eigenvalues are equal to −α−2 (“sort 1”),

2. k eigenvalues are associated with the k singular values si and have the form
−α−2 (2si − 1)/(1− si) (“sort 2”),

3. the remaining k(k − 1) eigenvalues (“sort 3”) come in pairs

λ1,2 =
−α−2

2

 sl
1− sm

+
sm

1− sl
±

√(
sl

1− sm
− sm

1− sl

)2

+ 4

 ,

where m < l ≤ k.

26

Managing neural memory

When k � N , which is often the case, the majority of all eigenvalues of F is of sort
1, revealing that in the majority of directions orthogonal to the center manifold the
convergence rate toward F is inversely proportional to α2. A relevant message here is
that increasing the aperture substantially slows down convergence. An eigenvalue of
sort 2 is also inversely proportional to α2, but furthermore the term (2si− 1)/(1− si)
indicates that as si ↓ 1/2, the convergence rate in this direction slows down arbitrarily
much, while conversely for si ↑ 1, convergence becomes arbitrarily fast. Finally,
eigenvalues of sort 3 are products of two factors too, the first factor being again
inversely proportional to α2. The second factor, which depends on a pair sl, sm, may
become arbitrarily large or arbitrarily small depending on sl, sm and the ± choice.
Specifically, this second factor approaches zero if both sl, sm approach 1/2 from above
and the “−” option is taken. In summary, outside the center manifold convergence
rates are always co-determined by a factor proportional to α2, and by factors that
depend on the singular values si of F , where these latter factors may shrink toward
zero if associated singular values si approach 1/2.

• As we have just seen, singular values si of F which are close to 1/2 lead to slow
convergence (which implies weak stability) in some directions of C. It is therefore
relevant to investigate into typical values of si. Unfortunately I can only provide a
plausibility argument to the effect that most si will be close to 1 and only very few
(if any at all) close to 1/2. This argument goes as follows. Recall from (16) that
F , because it is a minimizer of (15), can be written as F = R(R + α−2I)−1, where
R = E[z z′]. This implies that the singular values si of F relate to the singular values
sRi of R by si = sRi / (sRi + α−2). Furthermore, nonzero si must be greater than
1/2. Assume the “worst case” that the smallest nonzero singular value of the (rank
k) matrix F is sk = 1/2, which translates to sRk = α−2. Let sRk−1 = sRk + ε be the

next greater singular value of R. A simple argument based on the derivative d si/d s
R
i

evaluated at sRk yields that for small increments ε we get sk−1 ≈ 1/2 + 1/4α2 ε. In
words, the singular values si of F grow away from 1/2 by increments 1/4α2 ε. Since
apertures are often in the order of 10 (or much larger), this means that we may expect
that most if not all nonzero singular values of F will be close to 1. This is in fact
what I consistently observe in simulations, like in the demos above (Figure 9). It
is a desirable effect because according to the considerations made in this subsection
before, singular values si ≈ 1 or si = 0 foster noise robustness of auto-adaptation.

• The analyses available so far can explain the robustness of conceptor auto-adaptation
to state noise. When at some stage of auto-adaptation the matrix C(n) has k nonzero
singular values and N − k singular values equal to zero, the latter will be preserved
under auto-adaptation because the states z(n) = C(n) r(n) that enter the adaptation
of C(n) will have zero components in the N − k directions associated with the zero
singular values. The effect of state noise on the nonzero si(n) is to drive them closer
to 1 than they would go without state noise. Conceptors eventually converged to
with state noise are not identical, but similar to variants that would be obtained
without noise: the difference being that the former are (even) more rectangular than
the latter. This favourable situation however hinges on the condition that the post-
cue Ccue has (many) zero singular values. In the simulations in previous subsections

27

Jaeger

!

" "

A B

Figure 11: Hypothetical phase portraits of C autoadaptation in the parameter space of C
(schematic). Blue points show stable fixed point solutions C. The gray plane
in A represents the center manifold K and in B the merged center manifolds
of neighboring fixed points C. Green arrows show sample trajectories of late
stages of C adaptation. Green crosses mark the starting points of the adaptation
trajectories set by the cueing procedure. A: When a small number of patterns
has been loaded, individual stable fixed point conceptors C are created. B:
In the case of learning a d-parametric pattern class, fixed point solutions Ci
become located within a d-dimensional pattern manifoldM (magenta line). For
explanation see text.

this was achieved by (i) initializing C(0) = 0 and (ii) not inserting state noise during
the cueing—state noise insertion in that sensitive period would have led to a large
number of nonzero singular values in Ccue. If state noise or other perturbations are
unavoidable during cueing, it will be a practical idea to simply zero small singular
values of the developing C(n) through a thresholding mechanism.

Based on these insights I tentatively offer the following qualitative account of conceptor
auto-adaptation dynamics.

This dynamics evolves in theN2-dimensional parameter space of conceptor (or conceptor
candidate) matrices C(n) under the assumption of a small enough adaptation rate λ, such
that we may use the ODE (20). I distinguish two cases depending on whether few or many
patterns have been loaded. Figure 11 gives a graphical impression.

Representing individual patterns. This corresponds to the situation called “rote learning”
in Section 3.2. Here I assume that a small number of patterns pj have been loaded,
and that they become represented by corresponding isolated attracting fixed points
F j of (20). The dynamics in a neighborhood of F j then should be characterized by
a (very) slow timescale of attraction in the directions of the center manifold K and
faster attraction in orthogonal directions (Figure 11 A). The attraction orthogonal to

28

Managing neural memory

K may in turn be governed by a wide range of different timescales due to what we
have learnt about the dependency of eigenvalues of JF j on the singular values of F j .

Representing a pattern family. When many patterns pj from a family characterized by d
parameters have been loaded, we have seen in Section 3.2 that any pattern from
that family will be re-generated upon cue equally well. I hypothesize that during
the loading procedure a d-dimensional manifold M is created which represents the
pattern family and which superficially appears like a line/plane attractor: when by
virtue of the cueing procedure the auto-adaptation is initialized into the vicinity ofM,
one will observe an auto-adaptation towardM (Figure 11 B). The dimension d ofM
will typically be much smaller than the dimension k(N − k) of the center manifold of
conceptors inM. I hypothesize thatM is embedded as a submanifold in a k(N − k)-
dimensional manifold K which can be understood as a merge of the (locally defined)
center manifolds of conceptors sitting in M. The convergence toward M leads to a
good reconstruction of the cue pattern after a “reasonable” adaptation time. It is this
convergence which was exploited for 10,000 step runtimes in the experiment shown in
Figure 10. However, as remarked earlier, line/plane attractors are non-generic objects
and unlikely to exist in empirical or randomly created systems. Therefore, for very
long runtimes I would predict a very slow drift within M that lets auto-adaptation
ultimately end up in some isolated attracting fixed point withinM. According to this
view, line/plane attractors only appear phenomenally on some intermediate timescale,
and hence the class learning effect described in Section 3.2 should degrade for very
long adaptation times.

In order to substantiate this interpretation of an only “ephemeral” appearance of a
line/plane attractor, I carried out a long-duration auto-adaptation simulation. Ten 5-
periodic patterns were loaded into a small (N = 50) reservoir. These patterns represented
ten stages of a linear morph between two similar patterns p1 and p10, resulting in a morph
sequence p1, p2, . . . , p10 where pi = (1 − (i − 1)/9) p1 + ((i − 1)/9) p10, thus representing
instances from a 1-parametric family. Considering what was found in Section 3.2, loading
these ten patterns should enable the system to re-generate by auto-adaptation any linear
morph ptest between p1 and p10 after being cued with ptest.

After loading, the system was cued for 20 steps with 20 different cues. In each of
these j = 1, . . . , 20 conditions, the cueing pattern pjtest was the j-th linear interpolation
between the loaded p1 and p10. At the end of the cueing, the system will be securely driven
into a state z that is very accurately connected to re-generating the pattern pjtest, and the
conceptor matrix that has developed by the end of the cueing would enable the system to
re-generate a close simile of pjtest (a post-cue log10 NRMSE of about −2.7 was obtained in
this simulation).

After cueing, the system was left running in conceptor auto-adaptation mode for 1
Mio timesteps, with an adaptation rate of λ = 0.01. At times n = 1, 1000, 10000, 1e6

the stage of convergence was assessed as follows. The pairwise distances between the
twenty autoconceptors Cj(n) were compared, resulting in a 20×20 distance matrix D(n) =
(‖Ck(n)− C l(n)‖fro)k,l=1,...,20. Figure 12 shows color plots of these distance matrices. The
outcome: at the beginning of autoadaptation (n = 1), the 20 autoconceptors are spaced
from each other by distances proportional to their morphing distances. In terms of the

29

Jaeger

Figure 12: Numerical exploration of fixed point solutions under C auto-adaptation. Each
panel shows pairwise distances of 20 conceptor matrices obtained after n auto-
adaptation steps, after being cued along a 20-step morph sequence of cue signals.
Color coding: blue: zero distance; red: maximum distance. For explanation see
text.

schematic in Figure 11 B, they would all be almost equi-distantly lined up on the manifold
M, which is a line in this case of a 1-parametric pattern family. Then, as the adaptation
time n grows, they contract toward three point attractors within M (which would corre-
spond to a version of 11 B with three isolated fixed point attractors within M). These
three point attractors correspond to the three dark blue squares on the diagonal of the last
distance matrix shown in Figure 12.

This singular simulation cannot, of course, provide conclusive evidence that the qualita-
tive picture proposed in Figure 11 is correct. A rigorous mathematical characterization of
the hypothetical manifoldM and its relation to the center manifolds of fixed point solutions
of the adaptation dynamics remains to be worked out.

Plane attractors have been proposed as models for a number of biological neural adap-
tation processes (summarized in Eliasmith (2005)). Specifically, the fact that animals can
fix their gaze in arbitrary (continuously many) directions has been modelled by plane at-
tractors in the oculomotoric neural control system. Each gaze direction corresponds to a
(controlled) constant neural activation profile. It would be interesting to carry out in-vivo
experiments of gaze direction fixation where the animal (or human) is cued with a direction
target, which is then removed, under the instruction to preserve the gaze direction after
target removal for an extended timespan. The mathematical model outlined above would
predict that the gaze direction would start drifting, possibly becoming ultimately arrested
in one of a number of isolated, “preferred” gaze directions.

3.4 Single-Step Content-Addressing by Thresholding

We observed above that approximately rectangular conceptors evolved in auto-adaptation
and that directions in z states which are nulled by Ccue remain nulled during auto-adaptation.
This suggests a drastic shortcut of the recall procedure: take the preliminary Ccue which
is available immediately after the cue period, then transform its singular value profile to
a binary 0-1-rectangular shape by thresholding to give Ccue, and use this conceptor for
pattern re-generation. Accordingly, I re-ran the 5-periodic and mix-of-sines demos from

30

Managing neural memory

A
1 2 3 4 5 6 7 8 9 10

2

1.5

1

0.5

0

0.5

Pattern index

lo
g1

0
N

R
M

SE

B
1 2 3 4 5 6 7 8 9 10

2

1.5

1

0.5

0

0.5

Pattern index

lo
g1

0
N

R
M

SE

Figure 13: Using single-step adapted conceptors Ccue for cued pattern recall. A: 5-periodic
patterns, B: mix-of-sines. Red and blue plots are identical to Figure 9 and
represent post-cue NRMSE from Ccue and C(t3). The black plot gives the
NRMSE obtained from Ccue.

Section 3.1.2 with the same reservoirs and cueing conditions, and directly at the end of the
cueing phase I computed Ccue from Ccue as follows:

1. compute the SVD USU ′ = Ccue,

2. recompute the entries si on the diagonal of S to new, binary values by thresholding,
obtaining S with diagonal values

si =

{
1, if si > τ
0, else

for some threshold τ ,

3. recombine into Ccue = USU ′,

4. immediately use Ccue for re-generating a pattern and report the matching NRMSE
with the original pattern that was used for the cue.

Figure 13 displays the outcome. I used thresholds τ of 0.5 and 0.01 respectively for
the 5-periodic and mix-of-sines experiments. For both kinds of patterns the re-generation
quality obtained from Ccue conceptors is essentially the same as the quality obtained from
the auto-adapted C(t3) after 500 resp. 10,000 steps for the two kinds of patterns.

Considering that thresholded Ccue are much faster and cheaper to create than online-
adapted conceptors, yet (in these simulations) are of the same quality, it is natural to ask
why one should bother about online-adapted autoconceptors at all instead of focussing all
attention on thresholded conceptors. The reasons why I spent much effort on the former
(and used much of the reader’s patience) are manifold:

31

Jaeger

• There are other applications of online-adapted autoconceptors besides pattern recall
from a memory. In Jaeger (2014) I employ conceptor auto-adaptation in hierarchical
RNN demonstrator systems for tasks of signal denoising, pattern classification, and
pattern mixture recognition, and in ongoing work I am using them for single-shot
training of a nonlinear channel equalizer and blind signal separation. In all of these
cases, an adaptive RNN-based system has to be able to smoothly adjust its reactions to
a non-stationary input stream, requiring a continuously ongoing gradual adaptation.

• A serious drawback of the above auto-adaptation mechanism is that it is based on
stochastic gradient descent in a high-dimensional space, incurring the well-known sta-
bility issues which mandate small adaptation rates, hence yield slow convergence. In
Jaeger (2014) I introduce a simplified version of conceptors which basically constrains
conceptor matrices C to diagonal form, leading to decoupled adaptation rules for the
diagonal parameters which admits individual and very large adaptation rates. While
systems of this kind work well in some specific scenarios (demos in Jaeger (2014),
Section 3.15), I am not satisfied with them in general, mainly because the value range
for well-working apertures becomes very narrow. My current research concentrates
on new types of conceptors which combine fast online adaptivity with the robustness
properties found in matrix conceptors.

• In computational neuroscience, attractor-like phenomena of all sorts are widely in-
vestigated as neural mechanisms for representing and processing information in neu-
ral systems (partial overviews in Durstewitz et al. (2000); Fusi and Wang (2016);
Jaeger (2012)). The multiple-timescale attractor phenomenology of conceptor auto-
adaptation discussed in the previous section sheds some further light on this field,
especially with respect to the role of line/plane attractors in the representation and
addressing of continuous memory items.

• Biological implausibility. The fast thresholding mechanism invokes a matrix SVD
computation. Much research has been devoted to determine biologically plausible
neural algorithms for the closely related task of computing a PCA or of finding some
cost-optimal projection subspaces (Oja, 1982; Pehlevan et al., 2015). However, these
neural algorithms share with my stochastic gradient conceptor adaptation the short-
coming of slow convergence, and biological plausibility remains debatable in my view.

3.5 Comparison with Hopfield Networks

As I mentioned in the Introduction, Hopfield networks and its relatives (Willshaw et al.,
1969; Cooper, 1973; Kohonen, 1974; Palm, 1980; Hopfield, 1982) are the paradigmatic model
of content-addressable neural long-term memories. For brevity I will use the term Hopfield
networks (HNs) as an umbrella term for this family of models, and refer to the networks
introduced in this section as autoconceptor networks (ACNs). ACNs are analogous to HNs
in some ways and different in others:

Nature of memory items. Patterns stored in (auto-associative) HNs are static (often im-
ages), though hetero-associative HN variants can be trained to re-generate sequences
of static patterns—I briefly discussed this in the Introduction. ACNs intrinsically

32

Managing neural memory

host temporal patterns. The pattern sequences of static patterns learnt by sequence-
representing HNs differ in kind from the temporal patterns in ACNs. The former are
“jump” transitions between a finite number of explicitly trained “waypoint” patterns,
and in principle any transition order can be learnt. Temporal patterns in ACNs have
what one might call intrinsic temporality; the reservoir state sequence cannot in gen-
eral be re-trained in other orders. Specifically, ACNs can host non-periodic patterns
sampled from ODE evolutions which is not possible with hetero-associative HNs. One
might word this as, “hetero-associative HNs can store pattern sequences, and ACNs
can store sequence patterns”.

States and patterns. In HNs patterns are identified with certain network states. In ACNs
patterns are state evolution processes.

Symmetric vs. directed synaptic connections. Standard auto-associative HNs have symmet-
ric connections, which admits an analysis of HN dynamics in terms of descent in an
energy landscape. Reservoir networks in ACNs with their asymmetric weight matrices
do not admit an energy-based interpretation.

Pattern restauration. A hallmark of HNs is their ability to restore patterns perfectly and
quickly from highly corrupted cues. This striking capability results from the fact
that HN training creates well-defined local minima in the HN energy landscape which
correspond 1-1 to target patterns; from any arbitrary cue the HN must settle in
one of these perfect target patterns (setting aside the issue of spurious attractors in
HNs). Furthermore, perfection of restauration is aided by the circumstance that HNs
often are installed with binary neurons, representing binary patterns. In contrast,
the continuous-valued states in ACNs and the vastly more complex multi-timescale
dynamics of auto-adaptation limit the perfection and speed of pattern re-generation.

Class learning. ACNs can learn entire continuous-parametric pattern classes (with the caveats
pointed out in Section 3.3), which HNs cannot.

All in all, while both HNs and ACNs are models of content-addressable neural long-term
memories, their underlying neuro-dynamical working mechanisms and their performance
characteristics are fundamentally—and interestingly—different.

4. Discussion

This article is the first peer-reviewed publication about conceptors and thereby assumes
the role of an “official” introduction of this concept and name. New scientific concepts and
terminology should be introduced with care and circumspection. So, what is a “conceptor”?

This article dealt with conceptors that come in the specific form of positive-semidefinite
matrices derived from reservoir state correlation matrices R via C = R (R + α−2I)−1. In
Jaeger (2014) I also describe conceptors that are realized by a forward- and backprojection
to/from a higher-dimensional random feature space. In my initial explorations (unpub-
lished) I also used affine maps, as well as pure linear subspace projectors. Currently I am
investigating a kind of conceptors built on the basis of a variant of self-organizing maps. In

33

Jaeger

the light of this diversity I wouldn’t want to make any specific mathematical or algorithmical
format a defining part of “conceptors”.

This article focussed on neural long-term memory for temporal patterns. In Jaeger
(2014) however I use conceptors also for static patterns (where an input pattern is trans-
formed to a single neural state, not a sequence of states), and without loading (which is not
necessary when conceptors are employed for non-generative tasks like pattern classification).
I am also aware of ongoing work by others in static pattern recognition where backprop-
trained deep feedforward neural networks are combined with conceptors. Thus, neither
temporality of patterns, nor loading them persistently, nor the use of random networks are
necessary attributes of “conceptors”, the way I want them to be seen.

Then what is left? Here is an outline of how I would like the concept of conceptors to
be understood:

1. Set-up: patterns encoded by states. Given: some computational framework where a di-
versity of patterns pj are encoded by probability distributions P j over a metric
state space X. Comment: patterns can be temporal or static. The state space is
typically high-dimensional, and encodings would typically be “distributed”.

2. Filtering of encodings. A conceptor Cj is a map associated with a pattern pj which
transforms state vectors x ∈ X to state vectors Cj(x) ∈ X, and which is optimized in
some way to preserve states xj that are typical for pattern pj : if P j(x) is large, then
the distance d(x,Cj(x)) is small. Furthermore, Cj projects off-pattern states closer to
pattern-typical regions of X: if P j(x) is small, then P j(Cj(x)) > P j(x). Comment:
The map Cj can be instantiated by a mathematical formula, or by some neural circuit,
or in any other way.

3. Conceptual operations. Given a collection {pj} of patterns, on the associated collection
of conceptors {Cj} one has available an assortment of operations which can construct
new conceptors from the conceptors contained in the original collection {Cj}. These
operations should be interpretable as “cognitive-level” operations on concepts, and it
is these operations that connect conceptors with concepts. Comment: this is obviously
vague. This article featured the following such operations: (i) conceptual blending by
conceptor morphing, (ii) “focussing” by aperture adaptation. A large part of Jaeger
(2014) is devoted to a third kind of conceptual operations on conceptors, namely, (iii)
Boolean combinations of conceptors.

My ultimate motivation to investigate conceptors is to establish an effective link between
“low-level”, “subsymbolic”, “distributed” neural representations and processing mecha-
nisms on the one hand, and a “high-level”, “conceptual” organization and interpretability
of such processing on the other hand. This intended use of conceptors, which is expressed
in item 3. in the list above, is to some degree independent of the “mechanics” of conceptors,
which is stated in item 2. It turns out that conceptors also can serve relevant “low-level”
functionalities, especially neural noise suppression and stabilization of neural state dynam-
ics.

Conceptors can be engineered into artificial neural architectures, and they might be
instantiated in one way or the other by neural circuitry in biological systems. In such

34

Managing neural memory

cases they become procedurally effective in the concerned systems, implementing conceptor
mechanisms. This was the perspective adopted in this article. But conceptors can also be
used “epistemologically” by a researcher who investigates some (likely neural) information
processing system which may or may not itself have have effective conceptor mechanisms
inside. Then conceptors may become elements of a descriptive scientific language that talks
about neural encodings of concepts. In Jaeger (2014) I describe in detail such scientific
languages in the format of formal conceptor logics.

Acknowledgments

I am indebted to Emre Neftci for bringing the work of Sompolinsky and Kanter (1986) to
my attention. The first ideas of conceptors were triggered by research within the European
FP7 project AMARSi (contract 248311, amarsi-project.eu) on the modulation of neural
pattern generators for humanoid robot motor control.

Appendix A. Documentation of Simulation Detail

Training and test errors are given as normalized root mean square error (NRMSE) between
a signal s(n) and its target t(n), that is, by the square root of the mean square error divided
by the variance of the target.

A.1 Detail for Section 2.1

Pattern definition: Pattern p1 is a sinewave sampled at intervals of about 1.9944. Pattern
p2 alternates between −0.5 and 0.5.

Network set-up: Initial weights W ∗ were sampled from the normal distribution, then the
weight matrix was rescaled to a spectral radius (largest absolute eigenvalue) of 1.3. Input
and bias weights were sampled from the normal distribution, then scaled by 1.4 and 0.1
respectively.

Learning: For training W out the reservoir was driven by iid input sampled from the
normal distribution scaled by 1.5 for 200 steps (plus an initial washout of 100 steps). The
linear regression was computed without regularization, resulting in a training NRMSE of
0.39 (training W out from state patterns x1(n),x2(n) would have given an NRMSE of 0.14).
For the (not regularized) linear regression leading to W , again 200 states from each of the
two patterns were used, leading to an NRMSE of 0.093 (average over the three neurons).

Recall: In order to numerically compare the re-generated patterns y(n) = W out xj(n)
to the original patterns pj(n), sample trajectories of both were phase-aligned by (i) super-
sampling with cubic spline interpolation by a factor of 20, (ii) finding the best-fitting phase
shift, (iii) subsampling back to the original sampling rate, (iv) computing the NRMSE,
which was 0.15 for the first and 0.13 for the second pattern.

Note: Parameters and the random seed for network set-up were hand-selected for good
visual appearance of this demo example. Better recall accuracies were obtained with smaller
apertures, but these would have given less instructive graphics. At any rate, a network size
of N = 3 is far too small for high-precision results.

35

amarsi-project.eu

Jaeger

A.2 Detail for Section 2.2

Interpolation from 5-periodic to irrational sine (Fig. 3): A 100-unit reservoir was used, W ∗

scaled to a spectral radius of 1.6, input weights scaled to 1.6, bias vector to 0.3. Linear
regression for W was regularized by a Tychonov regularizer of size %2 = 0.0001. Apertures
for the two conceptors: 10 and 100.

Morphing between and beyond three patterns from a family (Fig. 4): Patterns were taken
from the parametrized family with parameters A,B

pA,B(n) = 2

(
1

2
sin(2πn/(P +A)) +

1

2

)exp(B)

+ 1, A,B ∈ R; |A| < P.

This family contains modulated versions of sines whose period lengths vary around a refer-
ence period P by differences A and whose shape is modulated by B. Figure 4 (top panels)
shows the three stored patterns, which were defined by P ≈ 8.2, A = −1.1

√
3; 1.1

√
3/2; 0,

B = −0.2,−0.2, 0.4. Going upward by one tile changes a mixture from (a1, a2, a3) to
(a1 − 1/8, a2 − 1/8, a3 + 1/4), going right by one tile to (a1 − 1/4, a2 + 1/4, a3). The reser-
voir had 100 units, spectral radius of initial weight matrix: 2.2, input weight scaling: 2.2,
bias scaling; 1.5, aperture of all conceptors 2.0. Ridge regression coefficient for loading:
% = 0.001.

A.3 Detail for Section 2.3

Preparation of training data. Fifteen human motion capture (mocap) sequences were
retrieved from the public-domain mocap repository maintained by the Graphics Lab at
Carnegie Mellon University (http://mocap.cs.cmu.edu/). Using the public mocap tool-
suite provided by Burger and Toiviainen (2013), the marker trace format of the original
mocap data was transformed into joint angle data in the following way. A human segment
model with 17 segments was chosen. The original marker trace data was transformed into
metric 3D trajectories of the segment endpoints (joints). The joint between the two hip
joints was designated as “root”. Let x, y denote the two ground coordinates and z the
height coordinate (measured as distance from ground), and let δ (measured in rad) denote
the horizontal pointing direction (in x, y) of the root.

The motion of the root joint was coded in the following four variables:

1. h(n): simply the z coordinate of the Euclidean trajectory of the root,

2. δ̇(n): the angular velocity (in rad/frame) of the root pointing direction,

3. d1(n), d2(n): travel distance of root joint in the x, y plane of the current frame, relative
to the horizontal pointing direction (Fig. 14), measured in mm/frame.

The locations of the other joints were coded relative to their predecessor joints in the
kinematic chain tree, with the root joint as the top node, as follows:

1. The current frame n is horizontally shifted and rotated such that the root joint has
(x, y)-position (0, 0) and is pointing in the direction of the x-axis. For every joint j
this results in three Euclidean coordinates xj(n), yj(n), zj(n).

36

http://mocap.cs.cmu.edu/

Managing neural memory

x

y
current root
xy-direction

current root
xy-motion

d1

d2

Figure 14: How the quantities d1, d2 geometrically relate to current root direction and root
travel.

2. For each of the 19 non-root joints j, the current orientation was coded in three variables
sxj (n), syj (n), szj (n) as follows:

(a) Determine the predecessor joint i of j (the adjacent joint that is closer to the
root).

(b) Compute the segment vector sj0(n) = (xj(n)−xi(n), yj(n)−yi(n), zj(n)−zi(n))′

and normalize it to sj(n) = sj0(n)/‖sj0(n)‖. The three components of sj(n) are
returned as coding the current spatial angle of the segment ending in joint j.

All in all this leads to a 61-dimensional coding of a body pose and root motion per
frame. From such 61-dimensional sequences, joint trajectories in Euclidean task space can
be recovered by a reversal of the coding procedure.

For each of the 15 original mocap timeseries, such a 61-dimensional encoding was pro-
duced. Each of the 61 signal components was shifted/scaled such that it ranged exactly in
[−1, 1], across all 15 patterns. These 15 range-normalized sequences were then loaded into
the reservoir, and the readout weights were computed to recover them.

Reservoir setup. Different from all other simulations reported in the article, the motor
pattern demonstration used a reservoir with leaky integration neurons:

x(n+ 1) = (1− a) x(n) + a tanh(W x(n) +W in p(n+ 1) + b),

where the leaking rate a is an additional tuning parameter. This alternative choice of
network model does not affect any of the conceptor-related computations. Reservoirs based
on leaky integration units effectively implement temporal smoothing which is indicated
when slowly changing (relative to the network update cycle) patterns have to be processed.

Simulation parameters. Network size N = 600; leaking rate a = 0.6; spectral radius of
W ∗ was 1; input and bias weights were sampled from the uniform distribution on [−.8, .8].
Loading each pattern used a washout of 50 network updates (corresponding to 5/12 seconds
of simulated real time). Two of the input channels were found to act essentially only as
noise sources (because they were essentially constant and after range normalization small
fluctuations in the constant value were magnified); their input weights were nulled. Linear
regression without regularization was used for computing W and W out. The aperture was

37

Jaeger

0 60 120
0

0.5

1

Figure 15: The morphing ramp %(n) used for smooth transitions between motor patterns.

set to α = 10 for all fifteen conceptors except for the “slow walk” (α = 2) and “boxing:
jab” patterns (α = 20; with α = 10 the jab pattern would be reduced to a mildly active
legwork without the jabs being triggered).

Training errors. The training NRMSE for W was 0.0068 and for W out was 0.044.

Video creation. For creating the video, the durations of the individual patterns were
set to yield an appealing overall choreography. Between every two successive pattern pi, pj

evocations, a transition period of 120 network updates (= 1 simulated second) was inserted.
In this transition period the preceding conceptor Ci was morphed into the succeeding con-
ceptor Cj , using a morphing function % : {1, . . . , 120} → [0, 1] made from two suitably
scaled and shifted branches of the square function (red and green lines in Fig. 15), via
Cmorph(m) = (1 − %(m))Ci(m) + %(m)Cj(m) [m = 1, . . . , 120]. While the reservoir was
generating the behavioral sequence visualized in the video, the only external input to the
system was the activation sequence of conceptors (shown in the left upper corner of the
video).

The visualization of the re-generated motion sequence in the video keeps the simulated
actor centered in the drawing box and illustrates its motion in the x, y plane by a moving
floor tile pattern. The centering as well as the corresponding virtual floor motion is com-
puted relative to the mean of the x, y coordinates of all 20 joints. This mean is therefore
always centered on x = y = 0 in each displayed frame. The apparent foot slipping results
from this “quick and dirty” centering method.

A.4 Detail for Section 2.4

Data generation. For the Rössler attractor, training time series were obtained from the
standard Rössler ODE ẋ = −(y+ z), ẏ = x+a y, ż = b+x z− c z with a = b = 0.2, c = 8.
The evolution of this system was Euler approximated with stepsize 1/200 and the resulting
discrete time series was then subsampled by 150. The x and y coordinates were assembled
in a 2-dimensional driving sequence, where each of the two channels was shifted/scaled to
a range of [0, 1]. For the Lorenz attractor, the ODE ẋ = σ(y − x), ẏ = r x− y − x z, ż =
x y − b z with σ = 10, r = 28, b = 8/3 was Euler-approximated with stepsize 1/200 and
subsequent subsampling by 15. The x and z coordinates were collected in a 2-dimensional
driving sequence, again each channel normalized to a range of [0, 1]. The Mackey-Glass

timeseries was obtained from the delay differential equation ẋ(t) = β x(t−τ)
1+x(t−τ)n − γ x(t) with

β = 0.2, n = 10, τ = 17, γ = 0.1. An Euler approximation with stepsize 1/10 was used.
To obtain a 2-dim timeseries that could be fed to the reservoir through the same two
input channels as the other attractor data, pairs x(t), x(t − τ) were combined into 2-dim

38

Managing neural memory

vectors. Again, these two signals were normalized to the [0, 1] range. The Hénon attractor
is governed by the iterated map x(n + 1) = y(n) + 1 − a x(n), y(n + 1) = b x(n), where I
used a = 1.4, b = 0.3. The two components were filed into a 2-dim timeseries (x(n), y(n))′

with no resampling, and again normalization to a range of [0, 1] in each component.
Reservoir setup. A 500-unit reservoir RNN was created with a normal distributed, 10%-

sparse weight matrix W ∗ scaled to a spectral radius of 0.6. The bias vector b and input
weights W in (sized 400 × 2 for two input channels) were sampled from standard normal
distribution and then scaled by 0.4 and 1.2, respectively. These scaling parameters were
found by a coarse manual optimization of the performance of the pattern loading process.
The network size was chosen large enough to warrant a robust trainability of the four chaotic
patterns. Repeated executions of the experiment with different randomly initialized weights
(not documented) showed no significant differences.

Pattern loading. The length of training signals used in loading was L = 2500 with a
washout of n0 = 500 for all four patterns. The ridge regression regularizer was %2W = 1e−6.
Output weights were computed from the pattern-driven states with a regularizer %2out =
1e−8. The average (over neurons and the four patterns) NRMSEs obtained for the reservoir
and readout weights were 0.0082 and 0.013, respectively.

A.5 Detail for Section 3.2

Scalings of reservoirs: spectral radius of W ∗: 1.1; W in: 1.1; b: 0.25. Aperture: 1000.
Regularization coefficients %2 = 0.01 both for W out and D. Data collection runlengths in
loading: 500 (plus 100 washout) per pattern. Cueing: washout 100 steps, cue adaptation
time 12 steps. No noise added to cue signal. State noise added during auto-adaptation with
a signal-to-noise ratio of 1.

39

Jaeger

References

S.-I. Amari. Learning patterns and pattern sequences by self-organizing nets of threshold
elements. IEEE Trans. on Computers, C-21(11):1197–1207, 1972.

A. Billard and G. Hayes. DRAMA, a connectionist architecture for control and learning in
autonomous robots. Adaptive Behavior, 7(1):35–63, 1999.

K. J. Boström, H. Wagner, M. Prieske, and M. de Lussanet. Model for a flexible motor
memory based on a self-active recurrent neural network. Human Movement Science, 32:
880–898, 2013.

B. Burger and P. Toiviainen. MoCap Toolbox – A Matlab toolbox for computational
analysis of movement data. In Roberto Bresin, editor, 10th Sound and Music Com-
puting Conference, pages 172–178, Stockholm, Sweden, 2013. KTH Royal Institute of
Technology. URL https://www.jyu.fi/hum/laitokset/musiikki/en/research/coe/

materials/mocaptoolbox.

CMU Graphics Lab. Motion Capture Database. URL http://mocap.cs.cmu.edu/. re-
trieved Feb 2013.

A. Coates, P. Abbeel, and A. Y. Ng. Learning for control from multiple demonstrations. In
Proc. 25th ICML, Helsinki, 2008.

L. N. Cooper. A possible organization of animal memory and learning. In B. Lundqvist and
S. Lundqvist, editors, Collective properties of physical systems: Medicine and Natural
Sciences, Nobel Symposia on Medicine and Natural Sciences, pages 252–264. Academic
Press, New York and London, 1973.

R. Douglas and T. Sejnowski. Future challenges for the sciene and engineering of learning:
Final workshop report. Technical report, National Science Foundation, 2008. URL http:

//www.nsf.gov/sbe/SLCWorkshopReportjan08.pdf.

D. Durstewitz, J. K. Seamans, and T. J. Sejnowski. Neurocomputational models of working
memory. Nature Neuroscience, 3:1184–91, 2000.

C. Eliasmith. A unified approach to building and controlling spiking attractor networks.
Neural Computation, 17:1276–1314, 2005.

R. M. French. Catastrophic interference in connectionist networks. In L. Nadel, editor,
Encyclopedia of Cognitive Science, volume 1, pages 431–435. Nature Publishing Group,
2003.

S. Fusi and X.-J. Wang. Long-term, short-term and working memory. In M. Arbib and
J. Bonaiuto, editors, From Neuron to Cognition via Computational Neuroscience, chap-
ter 11, pages 319–344. MIT Press, 2016.

M. Gillies and B. Spanlang. Comparing and evaluating real time character engines for
virtual environments. Presence, 19(2):95–117, 2010.

40

https://www.jyu.fi/hum/laitokset/musiikki/en/research/coe/materials/mocaptoolbox
https://www.jyu.fi/hum/laitokset/musiikki/en/research/coe/materials/mocaptoolbox
http://mocap.cs.cmu.edu/
http://www.nsf.gov/sbe/SLCWorkshopReportjan08.pdf
http://www.nsf.gov/sbe/SLCWorkshopReportjan08.pdf

Managing neural memory

B. Goodrich and I. Arel. Unsupervised neuron selection for mitigating catastrophic for-
getting in neural networks. In Proc. IEEE 57th International Midwest Symposium on
Circuits and Systems (MWSCAS), pages 997–1000. IEEE, 2014.

S. Grossberg. Linking attention to learning, expectation, competition, and consciousness.
In L. Itti, G. Rees, and J. Tsotsos, editors, Neurobiology of attention, chapter 107, pages
652–662. San Diego: Elsevier, 2005.

X. Hinaut and P. F. Dominey. A three-layered model of primate prefrontal cortex encodes
identity and abstract categorical structure of behavioral sequences. J. Physiology - Paris,
105(1-3):16–24, 2011.

J. J. Hopfield. Neural networks and physical systems with emergent collective computational
abilities. Proc. Natl. Acad. Sci. USA, 79:2554–2558, 1982.

J. Huang and M. Hagiwara. A combined multi-winner multidirectional associative memory.
Neurocomputing, 48:369–389, 2002.

H. Jaeger. The ”echo state” approach to analysing and training recurrent neural networks.
GMD Report 148, GMD - German National Research Institute for Computer Science,
2001. URL http://minds.jacobs-university.de/pubs.

H. Jaeger. Reservoir self-control for achieving invariance against slow input distortions.
technical report 23, Jacobs University Bremen, 2010.

H. Jaeger. Long short-term memory in echo state networks: Details of a simulation
study. Technical Report 27, Jacobs University Bremen, 2012. URL http://minds.

jacobs-university.de/pubs.

H. Jaeger. Controlling recurrent neural networks by conceptors. Technical Report 31, Jacobs
University Bremen, 2014. arXiv:1403.3369.

X. Jiang, V. Gripon, C. Berrou, and M. Rabbat. Storing sequences in binary tournament-
based neural networks. IEEE Trans. on Neural Networks and Learning Systems, 27(5):
913–925, 2016.

M. I. Jordan. Serial order: a parallel distributed processing approach. In J. W. Donahoe
and V. Packard Dorsel, editors, Neural-Networks Models of Cognition, chapter 25, pages
471–495. Elsevier, 1997. Abridged reprint of a technical report from 1986.

T. Kohonen. An adaptive associative memory principle. IEEE Transactions on Computers,
23(4):444–445, 1974.

J. F. Kolen and J. B. Pollack. Multiassociative memory. In Proc. of the Thirteenth Annual
Conference of the Cognitive Science Society, pages 785–789, 1991.

A. F. Krause, V. Dürr, B. Bl̈(a)sing, and T. Schack. Evolutionary optimization of echo state
networks: multiple motor pattern learning. In ANNIIP - 6th International Workshop on
Artificial Neural Networks and Intelligent Information Processing, 2010.

41

http://minds.jacobs-university.de/pubs
http://minds.jacobs-university.de/pubs
http://minds.jacobs-university.de/pubs

Jaeger

R. Laje and D. V. Buonomano. Robust timing and motor patterns by taming chaos in
recurrent neural networks. Nature Neuroscience, 16(7):925–933, 2013.

L. Lukic, J. Santos-Victor, and A. Billard. Learning coupled dynamical systems from
human demonstration for robotic eye-arm-hand coordination. In IEEE-RAS International
Conference on Humanoid Robots, Osaka 2012, 2012.

M. Lukosevicius. A practical guide to applying echo state networks. In K.-R. Müller,
G. Montavon, and G. Orr, editors, Neural Networks Tricks of the Trade, Reloaded, LNCS,
pages 659–686. Springer Verlag, 2012.

G. Manjunath and H. Jaeger. Echo state property linked to an input: Exploring a funda-
mental characteristic of recurrent neural networks. Neural Computation, 25(3):671–696,
2013.

N. M. Mayer and M. Browne. Echo state networks and self-prediction. In Biologically
Inspired Approaches to Advanced Information Technology, volume 3141 of LNCS, pages
40–48. Springer Verlag Berlin / Heidelberg, 2004.

E. Oja. A simplified neuron model as a principal component analyzer. J. Math. Biol., 15:
267–273, 1982.

R. W. Paine and J. Tani. How hierarchical control self-organizes in artificial adaptive
systems. Adaptive Behaviour, 13(3):211–225, 2005.

G. Palm. On associative memory. Biol. Cybernetics, 36(1):19–31, 1980.

C. Pehlevan, T. Hu, and D. B. Chklovskii. A Hebbian/anti-Hebbian neural network for
linear subspace learning: A derivation from multidimensional scaling of streaming data.
Neural Computation, 27(7):1461–1495, 2015.

J. B. Pollack. Recursive distributed representations. Artificial Intelligence, 46(1-2):77–105,
1990.

F. R. Reinhart and J. J. Steil. Recurrent neural associative learning of forward and inverse
kinematics for movement generation of the redundant pa-10 robot. In A. Stoica, E. Tunsel,
T. Huntsberger, T. Arslan, S. Vijayakumar, and A. O. El-Rayis, editors, LAB-RS 2008,
vol. 1, pages 35–40, 2008.

R. F. Reinhart and J. J. Steil. A constrained regularization approach for input-driven
recurrent neural networks. Differential Equations and Dynamical Systems, 19(1–2):27–
46, 2011. DOI 10.1007/s12591-010-0067-x is an 2010 online pre-publication.

G. J. Rinkus. A combinatorial neural network exhibiting episodic and semantic memory
properties for spatiotemporal patterns. Phd thesis, Boston University, 1996.

H. Ritter and T. Kohonen. Self-organizing semantic maps. Biological Cybernetics, 61:
241–254, 1989.

42

Managing neural memory

L. Shastri. Advances in Shruti – a neurally motivated model of relational knowledge repre-
sentation and rapid inference using temporal synchrony. Artificial Intelligence, 11:79–108,
1999.

H. Sompolinsky and I. Kanter. Temporal association in asymmetric neural networks. Phys-
ical Review Letters, 57(22):2861–2864, 1986.

D. Sussillo and L. Abbott. Transferring learning from external to internal weights in echo-
state networks with sparse connectivity. PLoS ONE, 7(5):e37372, 2012.

I. Sutskever, G. E. Hinton, and G. W. Taylor. The recurrent temporal restricted boltzmann
machine. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, Advances in
Neural Information Processing Systems 21 (NIPS 08), pages 1601–1608, 2009.

I. Sutskever, J. Martens, and G. Hinton. Generating text with recurrent neural networks.
In ICML 2011 (online), 2011. URL http://www.icml-2011.org/papers.php.

G. W. Taylor, G. E. Hinton, and S. T. Roweis. Two distributed-state models for generating
high-dimensional time series. Journal of Machine Learning Research, 12(March):1025–
1068, 2011.

D. J. Willshaw, O. P. Buneman, and H. C. Longuet-Higgins. Non-holographic associative
memory. Nature, 222(June 7):960–962, 1969.

J. Wright and I. Jordanov. Intelligent approaches in locomotion. In WCCI 2012 IEEE
World Congress on Computational Intelligence, pages 1–8, 2012. doi: dx.doi.org/10.
1109/IJCNN.2012.6252537.

F. wyffels and B. Schrauwen. Design of a central pattern generator using reservoir computing
for learning human motion. In Advanced Technologies for Enhanced Quality of Life, 2009.
AT-EQUAL ’09, pages 118–122. IEEE, 2009.

43

http://www.icml-2011.org/papers.php

	Introduction
	Storing a Multitude of Temporal Patterns in an RNN
	Basic Idea and Formalism
	Preparations
	Storing Patterns
	Geometry of Conceptors
	Pattern Re-generation
	Intuitive Summary, and Relationship to Reservoir Computing

	Morphing and Generalization
	A Real-World Data Example
	Aperture Adaptation

	Autoconceptors
	Conceptor Auto-Adaptation
	Basic Equations
	Basic Demonstrations

	From Rote Learning to ``Understanding''
	 Analysis of Auto-Adaptation Dynamics
	Single-Step Content-Addressing by Thresholding
	Comparison with Hopfield Networks

	Discussion
	Documentation of Simulation Detail
	Detail for Section 2.1
	Detail for Section 2.2
	Detail for Section 2.3
	Detail for Section 2.4
	Detail for Section 3.2

