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Abstract

Supervised manifold learning methods learn data representations by preserving the geomet-
ric structure of data while enhancing the separation between data samples from different
classes. In this work, we propose a theoretical study of supervised manifold learning for
classification. We consider nonlinear dimensionality reduction algorithms that yield linearly
separable embeddings of training data and present generalization bounds for this type of
algorithms. A necessary condition for satisfactory generalization performance is that the
embedding allow the construction of a sufficiently regular interpolation function in relation
with the separation margin of the embedding. We show that for supervised embeddings
satisfying this condition, the classification error decays at an exponential rate with the
number of training samples. Finally, we examine the separability of supervised nonlinear
embeddings that aim to preserve the low-dimensional geometric structure of data based on
graph representations. The proposed analysis is supported by experiments on several real
data sets.

Keywords: Manifold learning, dimensionality reduction, classification, out-of-sample
extensions, RBF interpolation

1. Introduction

In many data analysis problems, data samples have an intrinsically low-dimensional struc-
ture although they reside in a high-dimensional ambient space. The learning of low-
dimensional structures in collections of data has been a well studied topic of the last two
decades (Tenenbaum et al., 2000), (Roweis and Saul, 2000), (Belkin and Niyogi, 2003), (He
and Niyogi, 2004), (Donoho and Grimes, 2003), (Zhang and Zha, 2005). Following these
works, many classification methods have been proposed in the recent years to apply such
manifold learning techniques to learn classifiers that are adapted to the geometric struc-
ture of low-dimensional data (Hua et al., 2012), (Yang et al., 2011), (Zhang et al., 2012),
(Sugiyama, 2007), (Raducanu and Dornaika, 2012). The common approach in such works
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is to learn a data representation that enhances the between-class separation while preserv-
ing the intrinsic low-dimensional structure of data. While many efforts have focused on
the practical aspects of learning such supervised embeddings for training data, the gen-
eralization performance of these methods as supervised classification algorithms has not
been investigated much yet. In this work, we aim to study nonlinear supervised dimension-
ality reduction methods and present performance bounds based on the properties of the
embedding and the interpolation function used for generalizing the embedding.

Several supervised manifold learning methods extend the Laplacian eigenmaps algo-
rithm (Belkin and Niyogi, 2003), or its linear variant LPP (He and Niyogi, 2004) to the
classification problem. The algorithms proposed by Hua et al. (2012), Yang et al. (2011),
Zhang et al. (2012) provide a supervised extension of the LPP algorithm and learn a linear
projection that preserves the proximity of neighboring samples from the same class, while
increasing the distance between nearby samples from different classes. The method by
Sugiyama (2007) proposes an adaptation of the Fisher metric for linear manifold learning,
which is in fact shown to be equivalent to the above methods by Yang et al. (2011), Zhang
et al. (2012). In (Li et al., 2013), (Cui and Fan, 2012), (Wang and Chen, 2009), some other
similar Fisher-based linear manifold learning methods are proposed. In (Raducanu and
Dornaika, 2012) a method relying on a similar formulation as in (Hua et al., 2012), (Yang
et al., 2011), (Zhang et al., 2012) is presented, which, however, learns a nonlinear embed-
ding. The main advantage of linear dimensionality reduction methods over nonlinear ones
is that the generalization of the learnt embedding to novel (initially unavailable) samples
is straightforward. However, nonlinear manifold learning algorithms are more flexible as
the possible data representations they can learn belong to a wider family of functions, e.g.,
one can always find a nonlinear embedding to make training samples from different classes
linearly separable. On the other hand, when a nonlinear embedding is used, one must also
determine a suitable interpolation function to generalize the embedding to new samples,
and the choice of the interpolator is critical for the classification performance.

The common effort in all of these supervised dimensionality reduction methods is to
learn an embedding that increases the separation between different classes, while preserving
the geometric structure of data. It is interesting to note that supervised manifold learning
methods achieve separability by reducing the dimension of data, while kernel methods in
traditional classifiers achieve this by increasing the dimension of data. Meanwhile, making
training data linearly separable in supervised manifold learning does not mean much only
by itself. Assuming that the data are sampled from a continuous distribution (hence two
samples coincide with 0 probability), it is almost always possible to separate a discrete
set of samples from different classes with a nonlinear embedding, e.g., even with a simple
embedding such as the one mapping each sample to a vector encoding its class label. What
actually matters is how the embedding generalizes to test data, i.e., where the test samples
will be mapped to in the low-dimensional domain of embedding and how well the perfor-
mance will be. The generalization for test data is straightforward for kernel methods, it is
determined by the underlying main algorithm. However, in nonlinear supervised manifold
learning, this question has rather been overlooked so far. In this work we aim to fill this
gap and look into the generalization capabilities of supervised manifold learning algorithms.
We study the conditions that must be satisfied by the embedding of the training samples
and the interpolation function for satisfactory generalization of the classifier. We then ex-
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amine the rates of convergence of supervised manifold learning algorithms that satisfy these
conditions.

In Section 2, we consider arbitrary supervised manifold learning algorithms that compute
a linearly separable embedding of training samples. We study the generalization capability
of such algorithms for two types of out-of-sample interpolation functions. We first consider
arbitrary interpolation functions that are Lipschitz-continuous on the support of each class,
and then focus on out-of-sample extensions with radial basis function (RBF) kernels, which
is a popular family of interpolation functions. For both types of interpolators, we derive
conditions that must be satisfied by the embedding of the training samples and the regu-
larity of the interpolation function that generalizes the embedding to test samples, when
a nearest neighbor or linear classifier is used in the low-dimensional domain of embedding.
These conditions enforce the Lipschitz constant of the interpolator to be sufficiently small,
in comparison with the separation margin between training samples from different classes
in the low-dimensional domain of embedding. The practical value of these results resides
in their implications about what must really be taken into account when designing a su-
pervised dimensionality reduction algorithm: Achieving a good separation margin does not
suffice by itself; the geometric structure must also be preserved so as to ensure that a suffi-
ciently regular interpolator can be found to generalize the embedding to the whole ambient
space. We then particularly consider Gaussian RBF kernels and show the existence of an
optimal value for the kernel scale by studying the condition in our main result that links
the separation with the Lipschitz constant of the kernel.

Our results in Section 2 also provide bounds on the rate of convergence of the classifi-
cation error of supervised embeddings. We show that the misclassification error probability
decays at an exponential rate with the number of samples, provided that the interpolation
function is sufficiently regular with respect to the separation margin of the embedding.
These convergence rates are higher than those reported in previous results on RBF net-
works (Niyogi and Girosi, 1996), (Lin et al., 2014), (Hernández-Aguirre et al., 2002), and
regularized least-squares regression algorithms (Caponnetto and De Vito, 2007), (Steinwart
et al., 2009). The essential difference between our results and such previous works is that
those assume a general setting and do not focus on a particular data model, whereas our
results are rather relevant to settings where the support of each class admits some certain
structure, so as to allow the existence of an interpolator that is sufficiently regular on the
support of each class. Moreover, in contrast with these previous works, our bounds are
independent of the ambient space dimension and vary only with the intrinsic dimensions of
the class supports as they characterize the error in terms of the covering numbers of the
supports.

The results in Section 2 assume an embedding that makes training samples from different
classes linearly separable. Even if most nonlinear dimensionality reduction methods are
observed to yield separable embeddings in practice, we aim to verify this theoretically in
Section 3. In particular, we focus on the nonlinear version of the supervised Laplacian
eigenmaps embeddings (Raducanu and Dornaika, 2012), (Hua et al., 2012), (Yang et al.,
2011), (Zhang et al., 2012). Supervised Laplacian eigenmaps methods embed the data with
the eigenvectors of the linear combination of two graph Laplacian matrices that encode the
links between neighboring samples from the same class and different classes. In such a data
representation, the coordinates of neighboring data samples change slowly within the same
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class and rapidly across different classes. We study the conditions for the linear separability
of these embeddings and characterize their separation margin in terms of some graph and
algorithm parameters.

In Section 4, we evaluate our results with experiments on several real data sets. We
study the implications of the condition derived in Section 2 on the separability margin
- interpolator regularity tradeoff. The experimental comparison of several supervised di-
mensionality reduction algorithms shows that this compromise between the separation and
interpolator regularity can indeed be related to the practical classification performance of a
supervised manifold learning algorithm. This suggests that, one can possibly improve the
accuracy of supervised dimensionality reduction algorithms by considering more carefully
the generalization capability of the embedding during the learning. We then study the vari-
ation of the classification performance with parameters such as the sample size, the RBF
kernel scale, and the dimension of the embedding, in view of the generalization bounds
presented in Section 2. Finally, we conclude in Section 5.

2. Performance Bounds for Supervised Manifold Learning Methods

2.1 Notation and Problem Formulation

Consider a setting with M data classes where the samples of each class m ∈ {1, . . . ,M} are
drawn from a probability measure νm in a Hilbert space H such that νm has a bounded
support Mm ⊂ H. Let X = {xi}Ni=1 ⊂ H be a set of N training samples such that
each xi is drawn from one of the probability measures νm, and the samples drawn from
each νm are independent and identically distributed. We denote the class label of xi by
Ci ∈ {1, 2, . . . ,M}.

Let Y = {yi}Ni=1 ⊂ Rd be a d-dimensional embedding of X , where each yi corresponds to
xi. We consider supervised embeddings such that Y is linearly separable. Linear separability
is defined as follows:

Definition 1 The data representation Y is linearly separable with a margin of γ > 0, if
for any two classes k, l ∈ {1, 2, . . . ,M}, there exists a separating hyperplane defined by
ωkl ∈ Rd, ‖ωkl‖ = 1 and bkl ∈ R such that

ωTkl yi + bkl ≥ γ/2 if Ci = k

ωTkl yi + bkl ≤ −γ/2 if Ci = l.
(1)

The above definition of separability implies the following. For any given class m,
there exists a set of hyperplanes {ωmk}k 6=m ⊂ Rd, ‖ωmk‖ = 1, and a set of real num-
bers {bmk}k 6=m ⊂ R that separate class m from other classes, such that for all yi of class
Ci = m

ωTmk yi + bmk > γ/2, ∀k 6= m (2)

and for all yi of class Ci 6= m, there exists a k such that

ωTmk yi + bmk < −γ/2. (3)

These hyperplanes are obtained by setting ωkm = −ωmk, bkm = −bmk.
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Figure 1: Illustration of a linearly separable embedding. Data in X are sampled from two
different classes with supports M1, M2. The samples X are mapped to the
coordinates Y with a low-dimensional embedding, where the two classes become
linearly separable with margin γ with the hyperplane given by ω, b.

Figure 1 shows an illustration of a linearly separable embedding of data samples from
two classes. Manifold learning methods typically compute a low-dimensional embedding
Y of training data X in a pointwise manner, i.e., the coordinates yi are computed only
for the initially available training samples xi. However, in a classification problem, in
order to estimate the class label of a new data sample x of unknown class, x needs to be
mapped to the low-dimensional domain of embedding as well. The construction of a function
f : H → Rd that generalizes the learnt embedding to the whole space is known as the out-
of-sample generalization problem. Smooth functions are commonly used for out-of-sample
interpolation, e.g. as in (Qiao et al., 2013), (Peherstorfer et al., 2011).

Now let x be a test sample drawn from the probability measure νm, hence, the true class
label of x is m. In our study, we consider two basic classification schemes in the domain of
embedding:

Linear classifier. The embeddings of the training samples are used to compute the
separating hyperplanes, i.e., the classifier parameters {ωmk} and {bmk}. Then, mapping x
to the low-dimensional domain as f(x) ∈ Rd, the class label of x is estimated as Ĉ(x) = l
if there exists l ∈ {1, . . . ,M} such that

ωTlk f(x) + blk > 0, ∀k ∈ {1, . . . ,M} \ {l}. (4)

Note that the existence of such an l is not guaranteed in general for any x, but for a given
x there cannot be more than one l satisfying the above condition. Then x is classified
correctly if the estimated class label agrees with the true class label, i.e., Ĉ(x) = l = m.

Nearest neighbor classification. The test sample x is assigned the class label of the
closest training point in the domain of embedding, i.e., Ĉ(x) = Ci′ , where

i′ = arg min
i=1,...,N

‖yi − f(x)‖.

In the rest of this section, we study the generalization performance of supervised dimen-
sionality reduction methods. We first consider in Section 2.2 interpolation functions that
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vary regularly on each class support and we search for a lower bound on the probability of
correctly classifying a new data sample in terms of the regularity of f , the separation of
the embedding, and the sampling density. Then in Section 2.3, we study the classification
performance for a particular type of interpolation functions, namely RBF interpolators,
which is one of the most popular ones (Peherstorfer et al., 2011), (Chin and Suter, 2008).
We focus particularly on Gaussian RBF interpolators in Section 2.4 and derive some results
regarding the existence of an optimal kernel scale parameter. Lastly, we discuss our results
in comparison with previous literature in Section 2.5.

In the results in Sections 2.2-2.4, we keep a generic formulation and simply treat the
supports {Mm} as arbitrary bounded subsets of H, each of which represents a different data
class. Nevertheless, from the perspective of manifold learning, our results are of interest
especially when the data is assumed to have an underlying low-dimensional structure. In
Section 2.5, we study the implications of our results for the setting where Mm are low-
dimensional manifolds. We then examine how the proposed bounds vary in relation to the
intrinsic dimensions of {Mm}.

2.2 Out-of-Sample Interpolation with Regular Functions

Let f : H → Rd be an out-of-sample interpolation function such that f(xi) = yi for each
training sample xi, i = 1, . . . , N . Assume that f is Lipschitz continuous with constant
L > 0 when restricted to any one of the supports Mm; i.e., for any m ∈ {1, . . . ,M} and
any u, v ∈Mm

‖f(u)− f(v)‖ ≤ L ‖u− v‖,

where ‖ · ‖ denotes above the `2-norm if the argument is in Rd, and the norm induced from
the inner product in H if the argument is in H.

We will find a relation between the classification accuracy and the number of training
samples via the covering number of the supports Mm. Let Bε(x) ⊂ H denote an open ball
of radius ε around x

Bε(x) = {u ∈ H : ‖x− u‖ < ε}.

The covering number N (ε, A) of a set A ⊂ H is defined as the smallest number of open
balls Bε of radius ε whose union contains A (Kulkarni and Posner, 1995)

N (ε, A) = inf{k : ∃u1, . . . , uk ∈ H s.t.A ⊂
k⋃
i=1

Bε(ui)}.

We assume that the supports Mm are totally bounded, i.e., Mm has a finite covering
number N (ε,Mm) for any ε > 0.

We state below a lower bound for the probability of correctly classifying a sample x
drawn from νm, in terms of the number of training samples drawn from νm, the separation
of the embedding and the regularity of f .

Theorem 2 For some ε with 0 < ε ≤ γ/(2L), let the training set X contain at least Nm

samples drawn i.i.d. according to a probability measure νm such that

Nm ≥ N (ε/2,Mm).
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Let Y be an embedding of the training samples X that is linearly separable with margin larger
than γ, and let f be an interpolation function that is Lipschitz continuous with constant L
on the supportMm. Then the probability of correctly classifying a test sample x drawn from
νm independently from the training samples with the linear classifier (4) is lower bounded
as

P
(
Ĉ(x) = m

)
≥ 1− N (ε/2,Mm)

2Nm
.

The proof of the theorem is given in Appendix A.1. Theorem 2 establishes a link
between the classification performance and the separation of the embedding of the training
samples. In particular, due to the condition ε ≤ γ/(2L), the increase in the separation γ
allows a larger value for ε, provided that the interpolator regularity is not affected much.
This reduces the covering number N (ε/2,Mm) in return and increases the probability of
correct classification. Similarly, from the condition ε ≤ γ/(2L), one can also observe that
at a given separation γ, a smaller Lipschitz constant L for the interpolation function allows
the parameter ε to take a larger value. This reduces the covering number N (ε/2,Mm)
and therefore increases the correct classification probability. Thus, choosing a more regular
interpolator at a given separation helps improve the classification performance. If the ε
parameter is fixed, the Lipschitz constant of the interpolator is allowed to increase only
proportionally to the separation margin. The condition that the interpolator must be
sufficiently regular in comparison with the separation suggests that increasing the separation
too much at the cost of impairing the interpolator regularity may degrade the classifier
performance. In the case that the supportsMm are low-dimensional manifolds, the covering
number N (ε/2,Mm) increases at a geometric rate with the intrinsic dimension D of the
manifold, since a D-dimensional manifold is locally homeomorphic to RD. Therefore, from
the condition on the number of samples, Nm should increase at a geometric rate with D.

In Theorem 2 the probability of misclassification decreases with the number Nm of
training samples at a rate of O(N−1m ). In the rest of this section, we show that it is in
fact possible to obtain an exponential convergence rate with linear and NN-classifiers under
certain assumptions. We first present the following lemma.

Lemma 3 Let X = {xi}Ni=1 ⊂ H be a set of training samples such that each xi is drawn
i.i.d. from one of the probability measures {νm}Mm=1. Let x be a test sample randomly drawn
according to the probability measure νm of class m. Let

A = {xi ∈ X : xi ∈ Bδ(x), xi ∼ νm} (5)

be the set of samples in X that are in a δ-neighborhood of x and also drawn from the measure
νm. Assume that A contains |A| = Q samples. Then

P

‖f(x)− 1

Q

∑
xj∈A

f(xj)‖ ≤ Lδ +
√
dε

 ≥ 1− 2d exp

(
− Qε2

2L2δ2

)
. (6)

Lemma 3 is proved in Appendix A.2. The inequality in (6) shows that as the number Q
of training samples falling in a neighborhood of a test point x increases, the probability of
the deviation of f(x) from its average within the neighborhood decreases. The parameter
ε captures the relation between the amount and the probability of deviation.
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When studying the classification accuracy in the main result below, we will use the
following generalized definition of the linear separation.

Definition 4 Let Y be a linearly separable embedding with margin γ such that each pair
(k, l) of classes are separated with the hyperplanes given by ωkl, bkl as defined in Definition
1. We say that the linear classifier given by {ωkl}, {bkl} has a Q-mean separability margin of
γQ > 0 if any choice of Q samples {yk,i}Qi=1 ⊂ Y from class k and Q samples {yl,i}Qi=1 ⊂ Y
from class l, l 6= k, satisfies

ωTkl

(
1

Q

Q∑
i=1

yk,i

)
+ bkl ≥ γQ/2

ωTkl

(
1

Q

Q∑
i=1

yl,i

)
+ bkl ≤ −γQ/2.

(7)

The above definition of separability is more flexible than the one in Definition 1. Clearly,
an embedding that is linearly separable with margin γ has a Q-mean separability margin
of γQ ≥ γ for any Q. As in the previous section, we consider that the test sample x is
classified with the linear classifier (4) in the low-dimensional domain, defined with respect
to the set of hyperplanes given by {ωmk} and {bmk} as in (2) and (3).

In the following result, we show that an exponential convergence rate can be obtained
with linear classifiers in supervised manifold learning. We define beforehand a parameter
depending on δ, which gives the smallest possible measure of the δ-neighborhood Bδ(x) of
a point x in support Mm.

ηm,δ := inf
x∈Mm

νm(Bδ(x)).

Theorem 5 Let X = {xi}Ni=1 ⊂ H be a set of training samples such that each xi is drawn
i.i.d. from one of the probability measures {νm}Mm=1. Let Y be an embedding of X in Rd
that is linearly separable with a Q-mean separability margin larger than γQ. For a given
ε > 0 and δ > 0, let f be a Lipschitz-continuous interpolator such that

Lδ +
√
dε ≤

γQ
2
. (8)

Consider a test sample x randomly drawn according to the probability measure νm of class
m. If X contains at least Nm training samples drawn i.i.d. from νm such that

Nm >
Q

ηm,δ
,

then the probability of correctly classifying x with the linear classifier given in (4) is lower
bounded as

P
(
Ĉ(x) = m

)
≥ 1− exp

(
−

2 (Nm ηm,δ −Q)2

Nm

)
− 2d exp

(
− Qε2

2L2δ2

)
. (9)

8



Classification With Supervised Manifold Learning

Theorem 5 is proved in Appendix A.3. The theorem shows how the classification ac-
curacy is influenced by the separation of the classes in the embedding, the smoothness of
the out-of-sample interpolant, and the number of training samples drawn from the density
of each class. The condition in (8) points to the tradeoff between the separation and the
regularity of the interpolation function. As the Lipschitz constant L of the interpolation
function f increases, f becomes less “regular”, and a higher separation γQ is needed to
meet the condition. This is coherent with the expectation that, when f becomes irregular,
the classifier becomes more sensitive to the perturbations of the data, e.g., due to noise.
The requirement of a higher separation is then for ensuring a larger margin in the linear
classifier, which compensates for the irregularity of f . From (8), it is also observed that the
separation should increase with the dimension d as well, and also with ε, whose increase
improves the confidence of the bound (9). Note that the condition in (8) implies also the
following: When computing an embedding, it is not advisable to increase the separation of
training data unconditionally. In particular, increasing the separation too much may violate
the preservation of the geometry and yield an irregular interpolator. Hence, when designing
a supervised dimensionality reduction algorithm, one must pay attention to the regularity
of the resulting interpolator as much as the enhancement of the separation margin.

Next, we discuss the roles of the parameters Q and δ. The term exp(−Qε2/(2L2δ2)) in
the correct classification probability bound (9) shows that, for fixed δ, the confidence in-
creases with the value of Q. Meanwhile, due to the numerator of the term exp(−2 (Nm ηm,δ−
Q)2/Nm), for a high confidence, the number of samples Nm should also be relatively big
with respect to Q to have a high overall confidence. Similarly, at fixed Q, δ should be
made smaller to increase the confidence due to the term exp(−(Qε2)/(2L2δ2)), which then
reduces the parameter ηm,δ and eventually requires the number of samples Nm to take a
sufficiently large value in order to make the term exp(−2 (Nm ηm,δ − Q)2/Nm) small and
have a high confidence. Therefore, these two parameters Q and δ behave in a similar way,
and determine the relation between the number of samples and the correct classification
probability, i.e., they indicate how large Nm should be in order to have a certain confidence
of correct classification.

Theorem 5 studies the setting where the class labels are estimated with a linear classi-
fier in the domain of embedding. We also provide another result below that analyses the
performance when a nearest-neighbor classifier is used in the domain of embedding.

Theorem 6 Let X = {xi}Ni=1 ⊂ H be a set of training samples such that each xi is drawn
i.i.d. from one of the probability measures {νm}Mm=1. Let Y be an embedding of X in Rd
such that

‖yi − yj‖ < Dδ, if ‖xi − xj‖ ≤ δ and Ci = Cj

‖yi − yj‖ > γ, if Ci 6= Cj ,

hence, nearby samples from the same class are mapped to nearby points, and samples from
different classes are separated by a distance of at least γ in the embedding.

For given ε > 0 and δ > 0, let f be a Lipschitz-continuous interpolation function such
that

Lδ +
√
dε+D2δ ≤

γ

2
. (10)
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Consider a test sample x randomly drawn according to the probability measure νm of
class m. If X contains at least Nm training samples drawn i.i.d. from νm such that

Nm >
Q

ηm,δ
,

then the probability of correctly classifying x with nearest-neighbor classification in Rd is
lower bounded as

P
(
Ĉ(x) = m

)
≥ 1− exp

(
−

2 (Nm ηm,δ −Q)2

Nm

)
− 2d exp

(
− Qε2

2L2δ2

)
. (11)

Theorem 6 is proved in Appendix A.4. Theorem 6 is quite similar to Theorem 5 and
can be interpreted similarly. Unlike in the previous result, the separability condition of the
embedding is based on the pairwise distances of samples from different classes here. The
condition (10) suggests that the result is useful when the parameter D2δ is sufficiently small,
which requires the embedding to map nearby samples from the same class in the ambient
space to nearby points.

In this section, we have characterized the regularity of the interpolation functions via
their rates of variation when restricted to the supports Mm. While the results of this
section are generic in the sense that they are valid for any interpolation function with the
described regularity properties, we have not examined the construction of such functions.
In a practical classification problem where one uses a particular type of interpolation func-
tions, one would also be interested in the adaptation of these results to obtain performance
guarantees for the particular type of function used. Hence, in the following section we focus
on a popular family of smooth functions; radial basis function (RBF) interpolators, and
study the classification performance of this particular type of interpolators.

2.3 Out-of-Sample Interpolation with RBF Interpolators

Here we consider an RBF interpolation function f : H → Rd of the form

f(x) = [f1(x) f2(x) . . . fd(x)],

such that each component fk of f is given by

fk(x) =
N∑
i=1

cki φ(‖x− xi‖),

where φ : R → R+ is a kernel function, cki ∈ R are coefficients, and xi are kernel centers.
In interpolation with RBF functions, it is common to choose the set of kernel centers as
the set of available data samples. Hence, we assume that the set of kernel centers {xi}Ni=1

is selected to be the same as the set of training samples X . We consider a setting where
the coefficients cki are set such that f(xi) = yi, i.e., f maps each training point in X to its
embedding previously computed with supervised manifold learning.

We consider the RBF kernel φ to be a Lipschitz continuous function with constant
Lφ > 0, hence, for any u, v ∈ R

|φ(u)− φ(v)| ≤ Lφ |u− v|.
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Also, let C be an upper bound on the coefficient magnitudes such that for all k = 1, . . . , d

N∑
i=1

|cki | ≤ C.

In the following, we analyze the classification accuracy and extend the results in Section
2.2 to the case of RBF interpolators. We first give the following result, which probabilisti-
cally bounds how much the value of the interpolator f at a point x randomly drawn from
νm may deviate from the average interpolator value of the training points of the same class
within a neighborhood of x.

Lemma 7 Let X = {xi}Ni=1 ⊂ H be a set of training samples such that each xi is drawn
i.i.d. from one of the probability measures {νm}Mm=1. Let x be a test sample randomly drawn
according to the probability measure νm of class m. Let

A = {xi ∈ X : xi ∈ Bδ(x), xi ∼ νm} (12)

be the set of samples in X that are in a δ-neighborhood of x and also drawn from the measure
νm. Assume that A contains |A| = Q samples. Then

P

‖f(x)− 1

Q

∑
xj∈A

f(xj)‖ ≤
√
dC(Lφδ + ε)

 ≥ 1− 2N exp

(
−(Q− 1) ε2

2L2
φδ

2

)
. (13)

The proof of Lemma 7 is given in Appendix A.5. The lemma states a result similar to
the one in Lemma 3; however, is specialized to the case where f is an RBF interpolator.

We are now ready to present the following main result.

Theorem 8 Let X = {xi}Ni=1 ⊂ H be a set of training samples such that each xi is drawn
i.i.d. from one of the probability measures {νm}Mm=1. Let Y be an embedding of X in Rd
that is linearly separable with a Q-mean separability margin larger than γQ. For a given
ε > 0 and δ > 0, let f be an RBF interpolator such that

√
d C (Lφδ + ε) ≤

γQ
2
. (14)

Consider a test sample x randomly drawn according to the probability measure νm of class
m. If X contains at least Nm training samples drawn i.i.d. from νm such that

Nm >
Q

ηm,δ
,

then the probability of correctly classifying x with the linear classifier given in (4) is lower
bounded as

P
(
Ĉ(x) = m

)
≥ 1− exp

(
−

2 (Nm ηm,δ −Q)2

Nm

)
− 2N exp

(
−(Q− 1) ε2

2L2
φδ

2

)
. (15)

11
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The theorem is proved in Appendix A.6. The theorem bounds the classification accuracy
in terms of the smoothness of the RBF interpolation function and the number of samples.
The condition in (14) characterizes the compromise between the separation and the reg-
ularity of the interpolator, which depends on the Lipschitz constant of the RBF kernels
and the coefficient magnitude. As the Lipschitz constant Lφ and the coefficient magnitude
parameter C increase (i.e., f becomes less “regular”), a higher separation γQ is required
to provide a performance guarantee. When the separation margin of the embedding and
the interpolator satisfy the condition in (14), the misclassification probability decays ex-
ponentially as the number of training samples increases, similarly to the results in Section
2.2.

Theorem 8 studies the misclassification probability when the class labels in the low-
dimensional domain are estimated with a linear classifier. We also present below a bound
on the misclassification probability when the nearest-neighbor classifier is used in the low-
dimensional domain.

Theorem 9 Let X = {xi}Ni=1 ⊂ H be a set of training samples such that each xi is drawn
i.i.d. from one of the probability measures {νm}Mm=1. Let Y be an embedding of X in Rd
such that

‖yi − yj‖ < Dδ, if ‖xi − xj‖ ≤ δ and Ci = Cj

‖yi − yj‖ > γ, if Ci 6= Cj .

For given ε > 0 and δ > 0, let f be an RBF interpolator such that

√
d C (Lφδ + ε) +D2δ ≤

γ

2
. (16)

Consider a test sample x randomly drawn according to the probability measure νm of
class m. If X contains at least Nm training samples drawn i.i.d. from νm such that

Nm >
Q

ηm,δ
,

then the probability of correctly classifying x with nearest-neighbor classification in Rd is
lower bounded as

P
(
Ĉ(x) = m

)
≥ 1− exp

(
−

2 (Nm ηm,δ −Q)2

Nm

)
− 2N exp

(
−(Q− 1) ε2

2L2
φδ

2

)
. (17)

Theorem 9 is proved in Appendix A.7. While it provides the exact convergence rate as
in Theorem 8, the necessary condition in (16) includes also the parameter D2δ. Hence, if the
embedding maps nearby samples from the same class to nearby points, and a compromise
is achieved between the separation and the interpolator regularity, the misclassification
probability can be upper bounded.

12
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2.4 Optimizing the Scale of Gaussian RBF Kernels

In data interpolation with RBFs, it is known that the accuracy of interpolation is quite
sensitive to the choice of the shape parameter for several kernels including the Gaussian
kernel (Baxter, 1992). The relation between the shape parameter and the performance of
interpolation has been an important problem of interest (Piret, 2007). In this section, we
focus on the Gaussian RBF kernel, which is a popular choice for RBF interpolation due to
its smoothness and good spatial localization properties. We study the choice of the scale
parameter of the kernel within the context of classification.

We consider the RBF kernel given by

φ(r) = e−
r2

σ2 ,

where σ is the scale parameter of the Gaussian function. We focus on the condition (14) in
Theorem 8 √

d C (Lφδ + ε) ≤ γQ/2,

(or equivalently the condition (16) if the nearest neighbor classifier is used), which relates the
interpolation function properties with the separation. In particular, for a given separation
margin, this condition is satisfied more easily when the term on the left hand side of the
inequality is smaller. Thus, in the following, we derive an expression for the left hand side
of the above inequality by deriving the Lipschitz constant Lφ and the coefficient bound C in
terms of the scale parameter σ of the Gaussian kernel. We then study the scale parameter
that minimizes

√
d C (Lφδ + ε).

Writing the condition f(xi) = yi in a matrix form for each dimension k = 1, . . . , d, we
have

Φck = yk, (18)

where Φ ∈ RN×N is a matrix whose (i, j)-th entry is given by Φij = φ(‖xi−xj‖), ck ∈ RN×1
is the coefficient vector whose i-th entry is cki , and yk ∈ RN×1 is the data coordinate vector
giving the k-th dimensions of the embeddings of all samples, i.e., yki = Yik. Assuming that
the embedding is computed with the usual scale constraint Y TY = I, we have ‖yk‖ = 1.
The norm of the coefficient vector can then be bounded as

‖ck‖ ≤ ‖Φ−1‖‖yk‖ = ‖Φ−1‖. (19)

In the rest of this section, we assume that the data X are sampled from the Euclidean
space, i.e., H = Rn. We first use a result by Narcowich et al. (1994) in order to bound the
norm ‖Φ−1‖ of the inverse matrix. From (Narcowich et al., 1994, Theorem 4.1) we get1

‖Φ−1‖ ≤ β σ−neασ2
, (20)

where α > 0 and β > 0 are constants depending on the dimension n and the minimum
distance between the training points X (separation radius) (Narcowich et al., 1994). As the

1. The result stated in (Narcowich et al., 1994, Theorem 4.1) is adapted to our study by taking the measure
as β(ρ) = δ(ρ − ρ0) so that the RBF kernel defined in (Narcowich et al., 1994, (1.1)) corresponds to a
Gaussian function as F (r) = exp(−ρ0 r2). The scale of the Gaussian kernel is then given by σ = ρ0

−1/2.

13
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`1-norm of the coefficient vector can be bounded as ‖ck‖1 ≤
√
N‖ck‖, from (19) one can set

the parameter C that upper bounds the coefficients magnitudes as

C = aσ−neασ
2
,

where a = β
√
N .

Next, we derive a Lipschitz constant for the Gaussian kernel φ(r) in terms of σ. Setting
the second derivative of φ to zero

d2φ

dr2
= e−

r2

σ2

(
4r2

σ4
− 2

σ2

)
= 0,

we get that the maximum value of |dφ/dr| is attained at r = σ/
√

2. Evaluating |dφ/dr| at
this value, we obtain

Lφ =
√

2e−
1
2σ−1.

Now rewriting the condition (14) of the theorem, we have

√
d C (Lφδ + ε) = a1σ

−n−1eασ
2

+ a2σ
−neασ

2 ≤ γQ/2,

where a1 =
√

2d a e−1/2δ and a2 =
√
d a ε. We thus determine the Gaussian scale parameter

σ that minimizes
F (σ) = a1σ

−n−1eασ
2

+ a2σ
−neασ

2
.

First, notice that as σ → 0 and σ →∞, the function F (σ)→∞. Therefore, it has at least
one minimum. Setting

dF

dσ
= eασ

2
σ−n−2

(
2αa2σ

3 + 2αa1σ
2 − a2nσ − a1(n+ 1)

)
= 0,

we need to solve
2αa2σ

3 + 2αa1σ
2 − a2nσ − a1(n+ 1) = 0. (21)

The leading and the second-degree coefficients are positive, while the first-degree and the
constant coefficients are negative in the above cubic polynomial. Then, the sum of the roots
is negative and the product of the roots is positive. Therefore, there is one and only one
positive root σopt, which is the unique minimizer of F (σ).

The existence of an optimal scale parameter 0 < σopt < ∞ for the RBF kernel can be
intuitively explained as follows. When σ takes too small values, the support of the RBF
function concentrated around the training points does not sufficiently cover the whole class
supportsMm. This manifests itself in (14) with the increase in the term Lφ, which indicates
that the interpolation function is not sufficiently regular. This weakens the guarantee that
a test sample will be interpolated sufficiently close to its neighboring training samples from
the same class and mapped to the correct side of the hyperplane in the linear classifier.
On the other hand, when σ increases too much, the stability of the linear system (18) is
impaired and the coefficients c increase too much. This results in an overfitting of the
interpolator and, therefore, decreases the classification performance. Hence, the analysis in
this section provides a theoretical justification of the common knowledge that σ should be
set to a sufficiently large value while avoiding overfitting.
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Remark: It is also interesting to observe how the optimal scale parameter changes
with the number of samples N . In the study (Narcowich et al., 1994), the constants α
and β in (20) are shown to vary with the separation radius q at rates α = O(q−2) and
β = O(qn), where the separation radius q is proportional to the smallest distance between
two distinct training samples. Then a reasonable assumption is that the separation radius
q should typically decrease at rate O(N−1/n) as N increases. Using this relation, we get
that α and β should vary at rates α = O(N2/n) and β = O(N−1) with N . It follows that
a = β

√
N = O(N−1/2), and the parameters a1, a2 of the cubic polynomial in (21) also

vary with N at rates a1 = O(N−1/2), a2 = O(N−1/2). The equation (21) in σ can then be
rearranged as

b3σ
3 + b2σ

2 − b1σ − b0 = 0,

such that the constants vary with N at rates b3 = O(N2/n), b2 = O(N2/n), b1 = O(1),
b0 = O(1). We can then inspect how the roots of this equation change with N as N
increases. Since b3 and b2 dominate the other coefficients for large N , three real roots will
exist if N is sufficiently large, two of which are negative and one is positive. The sum of the
pairwise products of the roots is negative and it decays with N at rate O(N−2/n), and the
product of the roots also decays with N . Then at least two of the roots must decay with
N . Meanwhile, the sum of the three roots is O(1) and negative. This shows that one of the
negative roots is O(1), i.e., does not decay with N . From the product of three roots, we
then observe that the product of the two decaying roots is O(N−2/n). However, their sum
also decays at the same rate (from the sum of the pairwise products), which is possible if
their dominant terms have the same rate and cancel each other. We conclude that both of
the decaying roots vary at rate O(N−1/n), one of which is the positive root and the optimal
value σopt of the scale parameter.

This analysis shows that the scale parameter of the Gaussian kernel should be adapted
to the number of training samples, and a smaller kernel scale must be preferred for a larger
number of training samples. In fact, the relation σopt = O(N−1/n) is quite intuitive, as the
average or typical distance between two samples will also decrease at rate O(N−1/n) as the
number of samples N increases in an n-dimensional space. Then the above result simply
suggests that the kernel scale should be chosen as proportional to the average distance
between the training samples.

2.5 Discussion of the Results in Relation with Previous Results

In Theorems 8 and 9, we have presented a result that characterizes the performance of
classification with RBF interpolation functions. In particular, we have considered a setting
where an RBF interpolator is fitted to each dimension of a low-dimensional embedding
where different classes are separable. Our study has several links with RBF networks or
least-squares regression algorithms. In this section, we interpret our findings in relation
with previously established results.

Several previous works study the performance of learning by considering a probability
measure ρ defined on X×Y , where X and Y are two sets. The “label” set Y is often taken
as an interval [−L,L]. Given a set of data pairs {(xj , yj)}Nj=1 sampled from the distribution
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ρ, the RBF network estimates a function f̂ of the form

f̂(x) =

R∑
i=1

ci φ

(
‖x− ti‖
σi

)
. (22)

The number of RBF terms R may be different from the number of samples N in general.
The function f̂ minimizes the empirical error

f̂ = arg min
f

N∑
j=1

(f(xj)− yj)2 .

The function f̂ estimated from a finite collection of data samples is often compared to
the regression function (Cucker and Smale, 2002)

fo(x) =

∫
Y
y dρ(y|x),

where dρ(y|x) is the conditional probability measure on Y . The regression function fo
minimizes the expected risk as

fo = arg min
f

∫
X×Y

(
f(x)− y

)2
dρ.

As the probability measure ρ is not known in practice, the estimate f̂ of fo is obtained from
data samples. Several previous works have characterized the performance of learning by
studying the approximation error (Niyogi and Girosi, 1996), (Lin et al., 2014)

E[(fo − f̂)2] =

∫
X

(fo(x)− f̂(x))2dρX(x), (23)

where ρX is the marginal probability measure on X. This definition of the approximation
error can be adapted to our setting as follows. In our problem the distribution of each class
is assumed to have a bounded support, which is a special case of modeling the data with an
overall probability distribution ρ. If the supports Mm are assumed to be nonintersecting,
the regression function fo is given by

fo(x) =

M∑
m=1

mIm(x),

which corresponds to the class labels m = 1, . . . ,M , where Im is the indicator function of
the support Mm. It is then easy to show that the approximation error E[(fo − f̂)2] can be
bounded as a constant times the probability of misclassification P (Ĉ(x) 6= m). Hence, we
can compare our misclassification probability bounds in Section 2.3 with the approximation
error in other works.

The study in (Niyogi and Girosi, 1996) assumes that the regression function is an element
of the Bessel potential space of a sufficiently high order and that the sum of the coefficients
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|ci| is bounded. It is then shown that for data sampled from Rn, with probability greater
than 1− δ the approximation error in (23) can be bounded as

E[(fo − f̂)2] ≤ O
(

1

R

)
+O

(√
Rn log(RN)− log(δ)

N

)
, (24)

where R is the number of RBF terms.
The analysis by Lin et al. (2014) considers families of RBF kernels that include the

Gaussian function. Supposing that the regression function fo is of Sobolev class W r
2 , and

that the number of RBF terms is given by R = N
n

n+2r in terms of the number of samples
N , the approximation error is bounded as

E[(fo − f̂)2] ≤ O(N−
2r

n+2r log2(N)). (25)

Next, we overview the study by Hernández-Aguirre et al. (2002), which studies the
performance of RBFs in a Probably Approximately Correct (PAC)-learning framework. For
X ⊂ Rn, a family F of measurable functions from X to [0, 1] is considered and the problem
of approximating a target function f0 known only through examples with a function in
f̂ ∈ F is studied. The authors use a previous result from (Vidyasagar, 1997) that relates
the accuracy of empirical risk minimization to the covering number of F and the number of
samples. Combining this result with the bounds on covering number estimates of Lipschitz
continuous functions (Kolmogorov and Tihomirov, 1961), the following result is obtained for
PAC function learning with RBF neural networks with Gaussian kernel. Let the coefficients
be bounded as |ci| ≤ A, a common scale parameter be chosen as σi = σ, and E[|f0 − f̂ |] be
computed under a uniform probability measure ρ. Then if the number of samples satisfies

N ≥ 8

ε2
log

(√
2RnA

e−1/2σζ

)
, (26)

an approximation of the target function is obtained with accuracy parameter ε and confi-
dence parameter ζ:

P (E[|f0 − f̂ |] > ε) ≤ ζ. (27)

In the above expression, the expectation is over the test samples, whereas the probability
is over the training samples; i.e., over all possible distributions of training samples, the
probability of having the average approximation error larger than ε is bounded. Note that,
our results in Theorems 8 and 9, when translated into the above PAC-learning framework,
correspond to a confidence parameter of ζ = 0. This is because the misclassification prob-
ability bound of a test sample is valid for any choice of the training samples, provided that
the condition (14) (or the condition (16)) holds. Thus, in our result the probability running
over the training samples in (27) has no counterpart. When we take ζ = 0, the above result
does not provide a useful bound since N → ∞ as ζ → 0. By contrast, our result is valid
only if the conditions (14), (16) on the interpolation function holds. It is easy to show
that, assuming nonintersecting class supports Mm, the expression E[|f0 − f̂ |] is given by a
constant times the probability of misclassification. The accuracy parameter ε can then be
seen as the counterpart of the misclassification probability upper bound given on the right
hand sides of (15) and (17) (the expression subtracted from 1). At fixed N , the dependence
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of the accuracy on the kernel scale parameter is monotonic in the bound (26); ε decreases
as σ increases. Therefore, this bound does not guide the selection of the scale parameter of
the RBF kernel, while the discussion in Section 2.4 (confirmed by the experimental results
in Section 4.2) suggests the existence of an optimal scale.

Finally, we mention some results on the learning performance of regularized least squares
regression algorithms. In (Caponnetto and De Vito, 2007) optimal rates are derived for the
regularized least squares method in a Reproducing Kernel Hilbert Space (RKHS) in the
minimax sense. It is shown that, under some hypotheses concerning the data probability
measure and the complexity of the family of learnt functions, the maximum error (yielded
by the worst distribution) obtained with the regularized least squares method converges at
a rate of O(1/N). Next, the work in (Steinwart et al., 2009) shows that, in regularized least
squares regression over a RKHS, if the eigenvalues of the kernel integral operator decay
sufficiently fast, and if the `∞-norms of regression functions can be bounded, the error of
the classifier converges at a rate of up to O(1/N) with high probability. Steinwart et al.
also examine the learning performance in relation with the exponent of the function norm
in the regularization term and show that the learning rate is not affected by the choice of
the exponent of the function norm.

We now overview the three bounds given in (24), (25), and (26) in terms of the depen-
dence of the error on the number of samples. The results in (24) and (25) provide a useful
bound only in the case where the number of samples N is larger than the number of RBF
terms R, contrary to our study where we treat the case R = N . If it is assumed that N is
sufficiently larger than R, the result in (24) predicts a rate of decay of only O(

√
log(N)/N)

in the misclassification probability. The bound in (25) improves with the Sobolev regularity
of the regression function; however, the dependence of the error on the number of samples
is of a similar nature to the one in (24). Considering ε as a misclassification error parameter
in the bound in (26), the error decreases at a rate of O(N−1/2) as the number of samples
increases. The analysis in (Caponnetto and De Vito, 2007) and (Steinwart et al., 2009) also
provide the similar rates of convergence of O(N−1). Meanwhile, our results in Theorems
8 and 9 predict an exponential decay in the misclassification probability as the number of
samples N increases (under the reasonable assumption that Nm = O(N) for each class m).
The reason why we arrive at a more optimistic bound is the specialization of the analysis to
the considered particular setting, where the support of each class is assumed to be restricted
to a totally bounded region in the ambient space, as well as the assumed relations between
the separation margin of the embedding and the regularity of the interpolation function.

Another difference between these previous results and ours is the dependence on the
dimension. The results in (24), (25), and (26) predict an increase in the error at the
respective rates of O(

√
n), O(e−1/n), and O(

√
log n) with the ambient space dimension n.

While these results assume that the data X ⊂ Rn is in an Euclidean space of dimension
n, our study assumes the data X to be in a generic Hilbert space H. The results in
Theorems 5-8 involve the dimension d of the low-dimensional space of embedding and
does not explicitly depend on the dimension of the ambient Hilbert space H (which could
be infinite-dimensional). However, especially in the context of manifold learning, it is
interesting to analyze the dependence of our bound on the intrinsic dimension of the class
supports Mm.
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In order to put the expressions (15), (17) in a more convenient form, let us reduce one
parameter by setting Q = Nmηm,δ/2. Then the misclassification probability is of

O

(
exp(−Nmη

2
m,δ) +N exp

(
−
Nm ηm,δ ε

2

L2
φ δ

2

))
.

We can relate the dependence of this expression on the intrinsic dimension as follows.
Since the supports Mm are assumed to be totally bounded, one can define a parameter Θ
that represents the “diameter” of Mm, i.e., the largest distance between any two points
on Mm. Then the measure ηm,δ of the minimum ball of radius δ in Mm is of O((δ/Θ)D),
where D is the intrinsic dimension ofMm. Replacing this in the above expression gives the
probability of misclassification as

O

(
exp

(
−Nm δ

2D

Θ2D

)
+N exp

(
−Nm δ

D−2 ε2

L2
φ ΘD

))
.

This shows that in order to retain the correct classification guarantee, as the intrinsic
dimension D grows, the number of samples Nm should increase at a geometric rate with D.
In supervised manifold learning problems, data sets usually have a low intrinsic dimension,
therefore, this geometric rate of increase can often be tolerated. Meanwhile the dimension of
the ambient space is typically high, so that performance bounds independent of the ambient
space dimension are of particular interest. Note that generalization bounds in terms of the
intrinsic dimension have been proposed in some previous works as well (Bickel and Li, 2007),
(Kpotufe, 2011), for the local linear regression and the K-NN regression problems.

3. Separability of Supervised Nonlinear Embeddings

In the results in Section 2, we have presented generalization bounds for classifiers based on
linearly separable embeddings. One may wonder if the separability assumption is easy to
satisfy when computing structure-preserving nonlinear embeddings of data. In this section,
we try to answer this question by focusing on a particular family of supervised dimensionality
reduction algorithms, i.e., supervised Laplacian eigenmaps embeddings, and analyze the
conditions of separability. We first discuss the supervised Laplacian eigenmaps embeddings
in Section 3.1 and then present results in Section 3.2 about the linearly separability of these
embeddings.

3.1 Supervised Laplacian Eigenmaps Embeddings

Let X = {xi}Ni=1 ⊂ H be a set of training samples, where each xi belongs to one of M
classes. Most manifold learning algorithms rely on a graph representation of data. This
graph can be a complete graph in some works, in which case an edge exists between each pair
of samples. Meanwhile, in some manifold learning algorithms, in order to better capture
the intrinsic geometric structure of data, each data sample is connected only to its nearest
neighbors in the graph. In this case, an edge exists only between neighboring data samples.

In our analysis, we consider a weighted data graph G each vertex of which represents
a point xi. We write xi ∼ xj , or simply i ∼ j if the graph contains an edge between the
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data samples xi, xj . We denote the edge weight as wij > 0. The weights wij are usually
determined as a positive and monotonically decreasing function of the distance between xi
and xj in H, where the Gaussian function is a common choice. Nevertheless, we maintain
a generic formulation here without making any assumption on the neighborhood or weight
selection strategies.

Now let Gw and Gb represent two subgraphs of G, which contain the edges of G that
are respectively within the same class and between different classes. Hence, Gw contains
an edge i ∼w j between samples xi and xj , if i ∼ j and Ci = Cj . Similarly, Gb contains
an edge i ∼b j if i ∼ j and Ci 6= Cj . We assume that all vertices of G are contained in
both Gw and Gb; and that Gw has exactly M connected components such that the training
samples in each class form a connected component2. We also assume that Gw and Gb do
not contain any isolated vertices; i.e., each data sample xi has at least one neighbor in both
graphs.

The N ×N weight matrices Ww and Wb of Gw and Gb have entries as follows.

Ww(i, j) =

{
wij if i ∼ j and Ci = Cj
0 otherwise

Wb(i, j) =

{
wij if i ∼ j and Ci 6= Cj
0 otherwise

Let dw(i) and db(i) denote the degrees of xi in Gw and Gb

dw(i) =
∑
j∼wi

wij , db(i) =
∑
j∼bi

wij ,

and Dw, Db denote the N×N diagonal degree matrices given by Dw(i, i) = dw(i), Db(i, i) =
db(i). The normalized graph Laplacian matrices Lw and Lb of Gw and Gb are then defined
as

Lw := D−1/2w (Dw −Ww)D−1/2w , Lb := D
−1/2
b (Db −Wb)D

−1/2
b .

Supervised extensions of the Laplacian eigenmaps and LPP algorithms seek a d-dimensional
embedding of the data set X , such that each xi is represented by a vector yi ∈ Rd×1. De-
noting the new data matrix as Y = [y1 y2 . . . yN ]T ∈ RN×d, the coordinates of data samples
are computed by solving the problem

“Minimize tr(Y TLwY ) while maximizing tr(Y TLbY ).” (28)

The reason behind this formulation can be explained as follows. For a graph Laplacian
matrix L = D−1/2(D − W )D−1/2, where D and W are respectively the degree and the
weight matrices, defining the coordinates Z = D−1/2Y normalized with the vertex degrees,
we have

tr(Y TLY ) = tr(ZT (D −W )Z) =
∑
i∼j
‖zi − zj‖2wij , (29)

2. The straightforward application of common graph construction strategies, like connecting each training
sample to its K-nearest neighbors or to its neighbors within a given distance, may result in several
disconnected components in a single class in the graph if there is much diversity in that class. However,
this difficulty can be easily overcome by introducing extra edges to bridge between graph components
that are originally disconnected.
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where zi is the i-th row of Z giving the normalized coordinates of the embedding of the data
sample xi. Hence, the problem in (28) seeks a representation Y that maps nearby samples
in the same class to nearby points, while mapping nearby samples from different classes to
distant points. In fact, when the samples xi are assumed to come from a manifold M, the
term yTLy is the discrete equivalent of∫

M
‖∇f(x)‖2dx,

where f :M→ R is a continuous function on the manifold that extends the one-dimensional
coordinates y to the whole manifold. Hence, the term tr(Y TLY ) captures the rate of change
of the learnt coordinate vectors Y over the underlying manifold. Then, in a setting where
the samples of different classes come from M different manifolds {Mm}Mm=1, the formulation
in (28) looks for a function that has a slow variation on each manifoldMm, while having a
fast variation “between” different manifolds.

The supervised learning problem in (28) has so far been studied by several authors with
slight variations in their problem formulations. Raducanu and Dornaika (2012) minimize a
weighted difference of the within-class and between-class similarity terms in (28) in order to
learn a nonlinear embedding. Meanwhile, linear dimensionality reduction methods pose the
manifold learning problem as the learning of a linear projection matrix P ∈ Rd×n; therefore,
solve the problem in (28) under the constraint yi = P xi, where xi ∈ Rn×1 and d < n. Hua
et al. (2012) formulate the problem as the minimization of the difference of the within-
class and the between-class similarity terms in (28) as well. Thus, their algorithm can be
seen as the linear version of the method by Raducanu and Dornaika (2012). Sugiyama
(2007) proposes an adaptation of the Fisher discriminant analysis algorithm to preserve
the local structures of data. Data sample pairs are weighted with respect to their affinities
in the construction of the within-class and the between-class scatter matrices in Fisher
discriminant analysis. Then the trace of the ratio of the between-class and the within-class
scatter matrices is maximized to learn a linear embedding. Meanwhile, the within-class
and the between-class local scatter matrices are closely related to the two terms in (28) as
shown by Yang et al. (2011). The terms Y TLwY and Y TLbY , when evaluated under the
constraint yi = P xi, become equal to the locally weighted within-class and between-class
scatter matrices of the projected data. Cui and Fan (2012) and Wang and Chen (2009)
propose to maximize the ratio of the between-class and the within-class local scatters in the
learning. Yang et al. (2011) optimize the same objective function, while they construct the
between-class graph only on the centers of mass of the classes. Zhang et al. (2012) similarly
optimize a Fisher metric to maximize the ratio of the between- and within-class scatters;
however, the total scatter is also taken into account in the objective function in order to
preserve the overall manifold structure.

All of the above methods use similar formulations of the supervised manifold learning
problem and give comparable results. In our study, we base our analysis on the following
formal problem definition

min
Y

tr(Y TLwY )− µ tr(Y TLbY ) subject to Y TY = I, (30)

which minimizes the difference of the within-class and the between-class similarity terms
as in works such as (Raducanu and Dornaika, 2012) and (Hua et al., 2012). Here I is the
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d × d identity matrix and µ > 0 is a parameter adjusting the weights of the two terms.
The condition Y TY = I is a commonly used constraint to remove the scale ambiguity of
the coordinates. The solution of the problem (30) is given by the first d eigenvectors of the
matrix

Lw − µLb
corresponding to its smallest eigenvalues.

Our purpose in this section is then to theoretically study the linear separability of the
learnt coordinates of training data, with respect to the definition of linear separability
given in (1). In the following, we determine some conditions on the graph properties and
the weight parameter µ that ensure the linear separability. We derive lower bounds on the
margin γ and study its dependence on the model parameters. Let us give beforehand the
following definitions about the graphs Gw and Gb.

Definition 10 The volume of the subgraph of Gw that corresponds to the connected com-
ponent containing samples from class k is

Vk :=
∑

i:Ci=k

dw(i).

We define the maximal within-class volume as

Vmax := max
k=1,...,M

Vk.

The volume of the component of Gb containing the edges between the samples of classes k
and l is 3

V b
kl :=

∑
i∼bj

Ci=k,Cj=l

2wij .

We then define the maximal pairwise between-class volume as

V b
max := max

k 6=l
V b
kl.

In a connected graph, the distance between two vertices xi and xj is the number of
edges in a shortest path joining xi and xj . The diameter of the graph is then given by the
maximum distance between any two vertices in the graph (Chung, 1996). We define the
diameter of the connected component of Gw corresponding to class k as follows.

Definition 11 For any two vertices xi and xj such that Ci = Cj = k, consider a within-
class shortest path joining xi and xj, which contains samples only from class k. Then the
diameter Dk of the connected component of Gw corresponding to class k is the maximum
number of edges in the within-class shortest path joining any two vertices xi and xj from
class k.

Definition 12 The minimum edge weight within class k is defined as

wmin,k := min
i∼wj

Ci=Cj=k

wij .

3. In order to keep the analogy with the definition of Vk, a 2 factor is introduced in this expression as each
edge is counted only once in the sum.

22



Classification With Supervised Manifold Learning

3.2 Separability Bounds for Two Classes

We now present a lower bound for the linear separability of the embedding obtained by
solving (30) in a setting with two classes Ci ∈ {1, 2}. We first show that an embedding
of dimension d = 1 is sufficient to achieve linear separability for the case of two classes.
We then derive a lower bound on the separation in terms of the graph parameters and the
algorithm parameter µ.

Consider a one-dimensional embedding Y = y = [y1 y2 . . . yN ]T ∈ RN×1, where yi ∈ R
is the coordinate of the data sample xi in the one-dimensional space. The coordinate vector
y is given by the eigenvector of Lw−µLb corresponding to its smallest eigenvalue. We begin
with presenting the following result, which states that the samples from the two classes are
always mapped to different halves (nonnegative or nonpositive) of the real line.

Lemma 13 The learnt embedding y of dimension d = 1 satisfies

yi ≤ 0 if Ci = 1 (or respectively Ci=2)

yi ≥ 0 if Ci = 2 (or respectively Ci=1)

for any µ > 0 and for any choice of the graph parameters.

Lemma 13 is proved in Appendix B.1. The lemma states that in one-dimensional embed-
dings of two classes, samples from different classes always have coordinates with different
signs. Therefore, the hyperplane given by ω = 1, b = 0 separates the data as ωT yi ≤ 0 for
Ci = 1 and ωT yi ≥ 0 for Ci = 2 (since the embedding is one dimensional, the vector ω is
a scalar in this case). However, this does not guarantee that the data is separable with a
positive margin γ > 0. In the following result, we show that a positive margin exists and
give a lower bound on it. In the rest of this section, we assume without loss of generality
that classes 1 and 2 are respectively mapped to the negative and positive halves of the real
axis.

Theorem 14 Defining the normalized data coordinates z = D
−1/2
w y, let

z1,max := max
i:Ci=1

zi z2,min := min
i:Ci=2

zi

denote the maximum and minimum coordinates that classes 1 and 2 are respectively mapped
to with a one-dimensional embedding learnt with supervised Laplacian eigenmaps. We also
define the parameters

wmin = min
k∈{1,2}

wmin,k
Dk

, βi =
dw(i)

db(i)
, βmax = max

i
βi ,

where Dk is the diameter of the graph corresponding to class k as defined in Definition
11. Then, if the weight parameter is chosen such that 0 < µ < wmin/(βmaxV

b
max), any

supervised Laplacian embedding of dimension d ≥ 1 is linearly separable with a positive
margin lower bounded as below:

z2,min − z1,max ≥
1√
Vmax

1−

√
µβmaxV b

max

wmin

 . (31)
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The proof of Theorem 14 is given in Appendix B.2. The proof is based on a variational
characterization of the eigenvector of Lw − µLb corresponding to its smallest eigenvalue,
whose elements are then bounded in terms of the parameters of the graph such as the
diameters and volumes of its connected components.

Theorem 14 states that an embedding learnt with the supervised Laplacian eigenmaps
method makes two classes linearly separable if the weight parameter µ is chosen sufficiently
small. In particular, the theorem shows that, for any 0 < δ < Vmax

−1/2, a choice of the
weight parameter µ satisfying

0 < µ ≤ wmin
βmax V b

max

(
1−

√
Vmax δ

)2
guarantees a separation of z2,min − z1,max ≥ δ between classes 1 and 2 at d = 1. Here, we
use the symbol δ to denote the separation in the normalized coordinates z. In practice,
either one of the normalized eigenvectors z or the original eigenvectors y can be used for

embedding the data. If the original eigenvectors y are used, due to the relation y = D
1/2
w z,

we can lower bound the separation as y2,min − y1,max ≥
√
dw,min(z2,min − z1,max) where

dw,min = mini dw(i). Thus, for any embedding of dimension d ≥ 1, there exists a hyperplane
that results in a linear separation with a margin γ of at least

γ ≥

√
dw,min
Vmax

1−

√
µβmaxV b

max

wmin

 .

Next, we comment on the dependence of the separation on µ. The inequality in (31)
shows that the lower bound on the separation z2,min − z1,max has a variation of O(1−√µ)
with the weight parameter µ. The fact that the separation decreases with the increase in µ
seems counterintuitive at first; this parameter weights the between-class dissimilarity in the
objective function. This can be explained as follows. When µ is high, the algorithm tries to
increase the distance between neighboring samples from different classes as much as possible
by moving them away from the origin (remember that different classes are mapped to the
positive and the negative sides of the real line). However, since the normalized coordinate
vector z has to respect the equality zTDwz = 1, the total squared norm of the coordinates
cannot be arbitrarily large. Due to this constraint, setting µ to a high value causes the
algorithm to map non-neighboring samples from different classes to nearby coordinates
close to the origin. This occurs since the increase in µ reduces the impact of the first term
yTLwy in the overall objective and results in an embedding with a weaker link between the
samples of the same class. This causes a polarization of the data and eventually reduces
the separation. Hence, the µ parameter should be carefully chosen and should not take too
large values.

Theorem 14 characterizes the separation at d = 1 in terms of the distance between the
supports of the two classes. Meanwhile, it is also interesting to determine the individual
distances of the supports of the two classes to the origin. In the following corollary, we
present a lower bound on the distance between the coordinates of any sample and the
origin.
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Corollary 15 The distance between the supports of the first and the second classes and the
origin in a one-dimensional embedding is lower bounded in terms of the separation between
the two classes as

min{|z1,max|, |z2,min|} ≥
1

2

βmin
βmax

(z2,min − z1,max)

where

βmin = min
i
βi, βmax = max

i
βi.

Corollary 15 is proved in Appendix B.3. The proof is based on a Lagrangian formulation
of the embedding as a constrained optimization problem, which then allows us to establish a
link between the separation and the individual distances of class supports to the origin. The
corollary states a lower bound on the portion of the overall separation lying in the negative
or the positive sides of the real line. In particular, if the vertex degrees are equal for all
samples in Gw and Gb (which is the case, for instance, if all vertices have the same number
of neighbors and a constant weight of wij = 1 is assigned to the edges), since βmin = βmax,
the portions of the overall separation in the positive and negative sides of the real line will
be equal.

We have examined the linear separability of supervised Laplacian embeddings for the
case of two classes in this section. An extension of these results to the case of multiple
classes under some assumptions is available in the accompanying technical report (Vural
and Guillemot, 2016b).

4. Experimental Results

In this section, we present results on synthetical and real data sets. We compare several
supervised manifold learning methods and study their performances in relation with our
theoretical results.

4.1 Separability of Embeddings with Supervised Manifold Learning

We first present results on synthetical data in order to study the embeddings obtained with
supervised dimensionality reduction. We test the supervised Laplacian eigenmaps algorithm
in a setting with two classes. We generate samples from two nonintersecting and linearly
nonseparable surfaces in R3 that represent two different classes. We experiment on three
different types of surfaces; namely, quadratic surfaces, Swiss rolls and spheres. The data
sampled from these surfaces are shown in Figure 2. We choose N = 200 samples from each
class. We construct the graph Gw by connecting each sample to its K-nearest neighbors
from the same class, where K is chosen between 20 and 30. The graph Gb is constructed
similarly, where each sample is connected to its K/5 nearest neighbors from the other class.
The graph weights are determined as a Gaussian function of the distance between the
samples. The embeddings are then computed by minimizing the objective function in (30).
The one-dimensional, two-dimensional, and three-dimensional embeddings obtained for the
quadratic surface are shown in Figure 3, where the weight parameter is taken as µ = 0.57
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Figure 2: Data sampled from two-dimensional synthetical surfaces. Red and blue colors
represent two different classes.
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Figure 3: Supervised Laplacian embeddings of data sampled from quadratic surfaces.

(to have a visually clear embedding for the purpose of illustration). Similar results are
obtained on the Swiss roll and the spherical surface. One can observe that the data samples
that were initially linearly nonseparable become linearly separable when embedded with
the supervised Laplacian eigenmaps algorithm. The two classes are mapped to different
(positive or negative) sides of the real line in Figure 3(a) as predicted by Lemma 13. The
separation in the 2-D and 3-D embeddings in Figure 3 is close to the separation obtained
with the 1-D embedding.

We then compute and plot the separation obtained at different values of µ. Figure 4(a)
shows the experimental value of the separation γ = z2,min − z1,max obtained with the 1-D
embedding for the three types of surfaces. Figure 4(b) shows the theoretical upper bound
for µ in Theorem 14 that guarantees a separation of at least γ. Both the experimental value
and the theoretical bound for the separation γ decrease with the increase in the parameter
µ. This is in agreement with (31), which predicts a decrease of O(1−√µ) in the separation
with respect to µ. The theoretical bound for the separation is seen to decrease at a relatively
faster rate with µ for the Swiss roll data set. This is due to the particular structure of this
data set with a nonuniform sampling density where the sampling is sparser away from the
spiral center. The parameter wmin then takes a small value, which consequently leads to a
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Figure 4: Variation of the separation γ between the two classes with the parameter µ for
the synthetic data sets

fast rate of decrease for the separation due to (31). Comparing Figures 4(a) and 4(b), one
observes that the theoretical bounds for the separation are numerically more pessimistic
than their experimental values, which is a result of the fact that our results are obtained
with a worst-case analysis. Nevertheless, the theoretical bounds capture well the actual
variation of the separation margin with µ.

4.2 Classification Performance of Supervised Manifold Learning Algorithms

We now study the overall performance of classification obtained in a setting with super-
vised manifold learning, where the out-of-sample generalization is achieved with smooth
RBF interpolators. We evaluate the theoretical results of Section 2 on several real data
sets: the COIL-20 object database (Nene et al., 1996), the Yale face database (Georghi-
ades et al., 2001), the ETH-80 object database (Leibe and Schiele, 2003), and the MNIST
handwritten digit database (LeCun et al., 1998). The COIL-20, Yale face, ETH-80, and
MNIST databases contain a total of 1420, 2204, 3280, and 70046 images from 20, 38, 8, and
10 image classes respectively. The images in the COIL-20, Yale and ETH-80 data sets are
converted to greyscale, normalized, and downsampled to a resolution of respectively 32×32,
20× 17, and 20× 20 pixels.

4.2.1 Comparison of Supervised Manifold Learning to Baseline Classifiers

We first compare the performance of supervised manifold learning with some reference clas-
sification methods. The performances of SVM, K-NN, kernel regression, and the supervised
Laplacian eigenmaps methods are evaluated and compared. Figure 5 reports the results
obtained on the COIL-20 data set, the ETH-80 data set, the Yale data set, a subset of
the Yale data set consisting of its first 10 classes (reduced Yale data set), and the MNIST
data set. The SVM, K-NN, and kernel regression algorithms are applied in the original
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(a) COIL-20 object data set
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(b) ETH-80 object data set
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(c) Yale face data set
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(d) Reduced Yale face data set
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(e) MNIST data set

Figure 5: Comparison of the performance of several supervised classification methods

domain and their hyperparameters are optimized with cross-validation. In the supervised
Laplacian eigenmaps method, the embedding of the training images into a low-dimensional
space is computed. Then, an out-of-sample interpolator with Gaussian RBFs is constructed
that maps the training samples to their embedded coordinates as described in Section 2.3.
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Test samples are mapped to the low-dimensional domain via the RBF interpolator and
the class labels of test samples are estimated via nearest-neighbor classification in the low-
dimensional domain. The supervised Laplacian eigenmaps and the SVM methods are also
tested over an alternative representation of the image data sets based on deep learning. The
images are provided as input to the pretrained AlexNet convolutional neural network pro-
posed in (Krizhevsky et al., 2012), and the activation values at the second fully connected
layer are used as the feature representations of the images. The feature representations of
training and test images are then provided to the supervised Laplacian eigenmaps and the
SVM methods. The plots in Figure 5 show the variation of the misclassification rate of test
samples in percentage with the ratio of the number of training samples in the whole data
set. The results are the average of 5 repetitions of the experiment with different random
choices for the training and test samples.

The results in Figure 5 show that the best results are obtained with the supervised
Laplacian eigenmaps algorithm in general. The performances of the algorithms improve
with the number of training images as expected. In the COIL-20 and ETH-80 object
data sets, the supervised Laplacian eigenmaps and the SVM algorithms yield significantly
smaller error when applied to the feature representations of the images obtained with deep
learning. Meanwhile, in the Yale face data set these two methods perform better on raw
image intensity maps. This can be explained with the fact that the AlexNet model may
be more successful in extracting useful features for object images rather than face images
as it is trained on many common object and animal classes. It is interesting to compare
Figures 5(c) and 5(d). While the performances of the supervised Laplacian eigenmaps and
the SVM methods are closer in the reduced version of the Yale database with 10 classes,
the performance gap between the supervised Laplacian eigenmaps method and the other
methods is larger for the full data set with 38 classes. This can be explained with the fact
that the linear separability of different classes degrades as the number of classes increases,
thus causing a degradation in the performance of the classifiers in comparison. Meanwhile,
the performance of the supervised Laplacian eigenmaps method is not much affected by the
increase in the number of classes. The K-NN and kernel regression classifiers are seen to
give almost the same performance in the plots in Figure 5. The number of neighbors is set
as K = 1 for the K-NN algorithm in these experiments, where it has been observed to attain
its best performance; and the scale parameter of the kernel regression algorithm is optimized
to get the best accuracy, which has turned out to take relatively small values. Hence the
performances of these two classifiers practically correspond to that of the nearest-neighbor
classifier in the original domain.

4.2.2 Variation of the Error with Algorithm Parameters and Sample Size

We first study the evolution of the classification error with the number of training samples.
Figures 6(a)- 6(c) show the variation of the misclassification rate of test samples with respect
to the total number of training samples N for the COIL-20, ETH-80 and Yale data sets.
Each curve in the figure shows the errors obtained at a different value of the dimension d
of the embedding. The decrease in the misclassification rate with the number of training
samples is in agreement with the results in Section 2 as expected.
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(a) COIL-20 object data set
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(b) ETH-80 object data set
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(c) Yale face data set

Figure 6: Variation of the misclassification rate with the number of training samples

The results of Figure 6 are replotted in Figure 7, where the variation of the misclassifi-
cation rate is shown with respect to the dimension d of the embedding at different N values.
It is observed that there may exist an optimal value of the dimension that minimizes the
misclassification rate. This can be interpreted in light of the conditions (14) and (16) in
Theorems 8 and 9, which impose a lower bound on the separability margin γQ in terms of
the dimension d of the embedding. In the supervised Laplacian eigenmaps algorithm, the
first few dimensions are critical and effective for separating different classes. The decrease in
the error with the increase in the dimension for small values of d can be explained with the
fact that the separation increases with d at small d, thereby satisfying the conditions (14),
(16). Meanwhile, the error may stagnate or increase if the dimension d increases beyond a
certain value, as the separation does not necessarily increase at the same rate.

We then examine the variation of the misclassification rate with the separation. We
obtain embeddings at different separation values γ by changing the parameter µ of the
supervised Laplacian eigenmaps algorithm. Figure 8 shows the variation of the misclas-
sification rate with the separation γ. Each curve is obtained at a different value of the
scale parameter σ of the RBF kernels. It is seen that the misclassification rate decreases
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(b) ETH-80 object data set
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Figure 7: Variation of the misclassification rate with the dimension of the embedding
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(a) COIL-20 object data set
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(b) ETH-80 object data set
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(c) Yale face data set

Figure 8: Variation of the misclassification rate with the separation

in general with the separation for small γ values. This is in agreement with our results,
as the conditions (14), (16) require the separation to be higher than a threshold. On the
other hand, the possible increase in the error at relatively large values of the separation is
due to the following. These parts of the plots are obtained at very small µ values, which
typically result in a deformed embedding with a degenerate geometry. The deformation
of structure at too small values of µ may cause the interpolation function to be irregular
and hence result in an increase in the error. The tradeoff between the separation and the
interpolation function regularity is further studied in Section 4.2.3.

Finally, Figure 9 shows the relation between the misclassification error and the scale
parameter σ of the Gaussian RBF kernels. Each curve is obtained at a different value of the
µ parameter. The optimum value of the scale parameter minimizing the misclassification
error can be observed in most experiments. These results confirm the findings of Section
2.4, suggesting that there exists a unique value of σ that minimizes the left hand side of the
conditions (14), (16), which probabilistically guarantee the correct classification of data.
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(a) COIL-20 object data set
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(b) ETH-80 object data set
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Figure 9: Variation of the misclassification rate with the scale parameter

4.2.3 Performance Analysis of Several Supervised Manifold Learning
Algorithms

Next, we compare several supervised manifold learning methods. We aim to interpret the
performance differences of different types of embeddings in light of our theoretical results
in Section 2.3. First, remember from Theorem 8 that the condition

√
d C (Lφδ + ε) ≤ γ/2 (32)

needs to be satisfied (or, equivalently the condition (16) from Theorem 9) in order for the
generalization bounds to hold. This preliminary condition basically states that a compro-
mise must be achieved between the regularity of the interpolation function, captured via
the terms C and Lφ, and the separation γ of the embedding of training samples, in order to
bound the misclassification error. In other words, increasing the separation too much in the
embedding of training samples does not necessarily lead to good classification performance
if the interpolation function has poor regularity.
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Hence, when comparing different embeddings in the experiments of this section, we
define a condition parameter given by

√
dCLφ
γ

,

which represents the ratio of the left and right hand sides of (32) (by fixing the probability
parameters δ and ε). Setting the Lipschitz constant of the Gaussian RBF kernel as Lφ =√

2e−
1
2σ−1 (see Section 2.4 for details), we can equivalently define the condition parameter

as

κ =

√
dC
σγ

(33)

and study this condition parameter for the supervised dimensionality methods in com-
parison. Note that a smaller condition parameter means that the necessary conditions of
Theorems 8 and 9 are more likely to be satisfied, hence hinting at the expectation of a
better classification accuracy.

We compare the following supervised embeddings:

• Supervised Laplacian eigenmaps embedding obtained by solving (30):

min
Y

tr(Y TLwY )− µ tr(Y TLbY ) subject to Y TY = I.

• Fisher embedding4, obtained by solving

max
Y

tr(Y TLbY )

tr(Y TLwY )
. (34)

• Label encoding, which maps each data sample to its label vector of the form

[0 0 . . . 1 . . . 0],

where the only nonzero entry corresponds to its class.

The label encoding method is included in the experiments to provide a reference, which
can also be regarded as a degenerate supervised manifold learning algorithm that provides
maximal separation between data samples from different classes. In all of the above meth-
ods the training samples are embedded into the low-dimensional domain, and test samples
are mapped via Gaussian RBF interpolators and assigned labels via nearest neighbor clas-
sification in the low-dimensional domain. The scale parameter σ of the RBF kernel is set
to a reference value in each data set within the typical range [0.5, 1] where the best accu-
racy is attained. We have fixed the weight parameter as µ = 0.01 in all setups, and set
the dimension of the embedding as equal to the number of classes. In order to study the
properties of the interpolation function in relation with the condition parameter in (33), we
also test the supervised Laplacian eigenmaps and the label encoding methods under RBF

4. We use a nonlinear version of the formulation in (Wang and Chen, 2009) by removing the constraint
that the embedding be given by a linear projection of the data.
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Figure 10: Misclassification rates and the condition parameters of the embeddings for the
COIL-20 object data set
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Figure 11: Misclassification rates and the condition parameters of the embeddings for the
ETH-80 object data set

interpolators with high scale parameters, which are chosen as a few times the reference
σ value giving the best results. Finally, we also include in the comparisons a regularized
version of the supervised Laplacian eigenmaps embedding by controlling the magnitude of
the interpolation function.

The results obtained on the COIL-20, ETH-80, Yale and reduced Yale data sets are
reported respectively in Figures 10-13. In each figure, panel (a) shows the misclassification
rates of the embeddings and panel (b) shows the condition parameters of the embeddings at
different total number of training samples (N). The logarithm of the condition parameter
is plotted for ease of visualization.
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Figure 12: Misclassification rates and the condition parameters of the embeddings for the
Yale face data set
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Figure 13: Misclassification rates and the condition parameters of the embeddings for the
reduced Yale face data set
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The plots in Figures 10-13 show that the label encoding, supervised Laplacian eigen-
maps, and the regularized supervised Laplacian eigenmaps embeddings yield better classifi-
cation accuracy than the other three methods (supervised Fisher, and the embeddings with
high scale parameters) in all experiments, with the only exception of the cases N = 60 and
N = 100 for the reduced Yale data set. Meanwhile, examining the condition parameters of
the embeddings, we observe that label encoding, supervised Laplacian eigenmaps, and the
regularized supervised Laplacian eigenmaps embeddings always have a smaller condition
parameter than the other three methods. This observation confirms the intuition provided
by the necessary conditions of Theorems 8 and 9: A compromise between the separation and
the interpolator regularity is required for good classification accuracy. The increase in the
condition parameter as N increases is since the coefficient bound C involves a summation
over all training samples. The reason why the embeddings with high σ parameters yield
better classification accuracy than the other ones in the cases N = 60 and N = 100 for the
reduced Yale data set is that a larger RBF scale helps better cover up the ambient space
when the number of training samples is particularly low.

In the COIL-20 and the reduced Yale data sets, the best classification accuracy is ob-
tained with the regularized supervised Laplacian eigenmaps method, while this is also the
method having the smallest condition number, except for the smallest two values of N in
the reduced Yale data set. In the ETH-80 and Full Yale data sets, the classification ac-
curacy of label encoding attains that of the supervised Laplacian eigenmaps method. The
condition parameter of the label encoding embedding is relatively small in these two data
sets; in fact, in ETH-80 the label encoding embedding has the smallest condition number
among all methods. This may be useful for explaining why this simple classification method
has quite favorable performance in this data set. Likewise, if we leave aside the versions of
the methods with high-scale interpolators, the Fisher embedding has the highest misclas-
sification rate compared to label encoding, the supervised Laplacian, and the regularized
supervised Laplacian embeddings, while it also has the highest condition parameter among
these methods. 5

To conclude, the results in this section suggest that the experimental findings are in
agreement with the main results in Section 2.3, justifying the pertinence of the conditions
(14) and (16) to classification accuracy, hence suggesting that a balance must be sought
between the separability margin of the embedding and the regularity of the interpolation
function in supervised manifold learning.

5. Conclusions

Most of the current supervised manifold learning algorithms focus on learning represen-
tations of training data, while the generalization properties of these representations have
not been understood well yet. In this work, we have proposed a theoretical analysis of
the performance of supervised manifold learning methods. We have presented generaliza-
tion bounds for nonlinear supervised manifold learning algorithms and explored how the
classification accuracy relates to several setup parameters such as the linear separation

5. The formulation in (34) has been observed to give highly polarized embeddings in (Vural and Guillemot,
2016a), where the samples of only few classes stretch out along each dimension and all the other classes
are mapped close to zero.
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margin of the embedding, the regularity of the interpolation function, the number of train-
ing samples, and the intrinsic dimensions of the class supports (manifolds). Our results
suggest that embeddings of training data with good generalization capacities must allow
the construction of sufficiently regular interpolation functions that extend the mapping to
new data. We have then examined whether the assumption of linear separability is easy
to satisfy for structure-preserving supervised embedding algorithms. We have taken the
supervised Laplacian eigenmaps algorithms as reference, and showed that these methods
can yield linearly separable embeddings. Providing insight about the generalization capa-
bilities of supervised dimensionality reduction algorithms, our findings can be helpful in the
classification of low-dimensional data sets.
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Appendix A. Proof of the Results in Section 2

A.1 Proof of Theorem 2

Proof Given x, let xi ∈ X be the nearest neighbor of x in X that is sampled from νm

i = arg min
j
‖x− xj‖ s.t. xj ∼ νm.

Due to the separation hypothesis,

ωTmk yi + bmk > γ/2, ∀k = 1, . . . ,M − 1.

We have

ωTmk f(x) + bmk = ωTmk f(xi) + bmk + ωTmk (f(x)− f(xi))

≥ ωTmk yi + bmk −
∣∣ωTmk (f(x)− f(xi))

∣∣
> γ/2− ‖f(x)− f(xi)‖ ≥ γ/2− L‖x− xi‖.

Then if the condition L‖x − xi‖ ≤ γ/2 is satisfied, from the above inequality we have
ωTmk f(x) + bmk > 0 for all k = 1, . . . ,M − 1. This gives Ĉ(x) = m and thus ensures that x
is classified correctly.

In the sequel, we lower bound the probability that the distance ‖x− xi‖ between x and
its nearest neighbor from the same class is smaller than γ/2. We employ the following result
by Kulkarni and Posner (1995). It is demonstrated in the proof of Theorem 1 in (Kulkarni
and Posner, 1995) that, if X contains at least Nm samples drawn i.i.d. from νm such that
Nm ≥ N (ε/2,Mm) for some ε > 0, then the probability of ‖x− xi‖ being larger than ε can
be upper bounded in terms of the covering number of Mm as

P (‖x− xi‖ > ε) ≤ N (ε/2,Mm)

2Nm
.
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Therefore, for any ε such that ε ≤ γ/(2L) and Nm ≥ N (ε/2,Mm), with probability at least
1−N (ε/2,Mm)/(2Nm), we have

‖x− xi‖ ≤ ε ≤ γ/(2L),

thus, the class label of x is correctly estimated as Ĉ(x) = m due to the above discussion.

A.2 Proof of Lemma 3

Proof We first bound the deviation of f(x) from the sample average of f in the neighbor-
hood of x as ∥∥∥∥∥∥f(x)− 1

Q

∑
xj∈A

f(xj)

∥∥∥∥∥∥ ≤ ‖f(x)−mf‖+

∥∥∥∥∥∥ 1

Q

∑
xj∈A

f(xj)−mf

∥∥∥∥∥∥ , (35)

where mf is the conditional expectation of f(u), given u ∈ Bδ(x)

mf = Eu
[
f(u) |u ∈ Bδ(x)

]
=

1

νm
(
Bδ(x)

) ∫
Bδ(x)

f(u) dνm(u).

The first term in (35) can be bounded as

‖f(x)−mf‖ =

∥∥∥∥∥ 1

νm
(
Bδ(x)

) ∫
Bδ(x)

(
f(x)− f(u)

)
dνm(u)

∥∥∥∥∥
≤ 1

νm
(
Bδ(x)

) ∫
Bδ(x)

‖f(x)− f(u)‖ dνm(u) ≤ 1

νm
(
Bδ(x)

) ∫
Bδ(x)

L‖x− u‖ dνm(u)

≤ 1

νm
(
Bδ(x)

) ∫
Bδ(x)

Lδ dνm(u) = Lδ,

(36)

where the second inequality follows from the fact that f is Lipschitz continuous on the
support Mm, where the measure νm is nonzero.

The second term in (35) is given by∥∥∥∥∥∥ 1

Q

∑
xj∈A

f(xj)−mf

∥∥∥∥∥∥ =

 d∑
k=1

∣∣∣∣ 1

Q

∑
xj∈A

fk(xj)−mk
f

∣∣∣∣2
1/2

, (37)

where mk
f denotes the k-th component of mf , for k = 1, . . . , d. Consider the random

variables fk(xj). Defining

fkmin = inf
u∈Bδ(x)

fk(u), fkmax = sup
u∈Bδ(x)

fk(u),

it follows that fkmax−fkmin ≤ 2Lδ due to the Lipschitz continuity of f . Then from Hoeffding’s
inequality, we have

P

∣∣∣∣ 1

Q

∑
xj∈A

fk(xj)−mk
f

∣∣∣∣ ≥ ε
 ≤ 2 exp

(
− 2Qε2

(fkmax − fkmin)2

)
≤ 2 exp

(
− Qε2

2L2δ2

)
.
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From the union bound, we get that with probability at least 1− 2d exp
(
− Qε2

2L2δ2

)
, for all k∣∣∣∣ 1

Q

∑
xj∈A

fk(xj)−mk
f

∣∣∣∣ ≤ ε,
which yields from (37) ∥∥∥∥∥∥ 1

Q

∑
xj∈A

f(xj)−mf

∥∥∥∥∥∥ ≤ √dε.
Combining this result with the bound in (36), we conclude that with probability at least

1− 2d exp
(
− Qε2

2L2δ2

)
∥∥∥∥∥∥f(x)− 1

Q

∑
xj∈A

f(xj)

∥∥∥∥∥∥ ≤ Lδ +
√
dε.

A.3 Proof of Theorem 5

Proof Given the test sample x and a training sample xi drawn i.i.d. with respect to νm,
the probability that xi lies within a δ-neighborhood of x is given by

P (xi ∈ Bδ(x)) = νm(Bδ(x)) ≥ ηm,δ.

Then, among the Nm samples drawn with respect to νm, the probability that Bδ(x) contains
at least Q samples is given by

P (|A| ≥ Q) =

Nm∑
q=Q

(
Nm

q

)(
νm(Bδ(x))

)q(
1− νm(Bδ(x))

)Nm−q

≥
Nm∑
q=Q

(
Nm

q

)
(ηm,δ)

q (1− ηm,δ)Nm−q,

where the set A is defined as in (5). The last expression above is the probability of having
at least Q successes out of Nm realizations of a Bernoulli random variable with probability
parameter ηm,δ. This probability can be lower bounded using a tail bound for binomial
distributions. We thus have

P (|A| ≥ Q) ≥ 1− exp

(
−2 (Nm ηm,δ −Q)2

Nm

)
,

which simply follows from interpreting |A| as the sum of of Nm i.i.d. observations of a
Bernoulli distributed random variable and then applying Hoeffding’s inequality as shown
by Herbrich (1999), under the hypothesis that Nm > Q/ηm,δ.
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Assuming that Bδ(x) contains at least Q samples, Lemma 3 states that with probability
at least

1− 2d exp

(
− |A|ε

2

2L2δ2

)
≥ 1− 2d exp

(
− Qε2

2L2δ2

)
the deviation between f(x) and the sample average of its neighbors is bounded as∥∥∥∥∥∥f(x)− 1

|A|
∑
xj∈A

f(xj)

∥∥∥∥∥∥ ≤ Lδ +
√
dε.

Hence, with probability at least(
1− exp

(
−2 (Nm ηm,δ −Q)2

Nm

))(
1− 2d exp

(
− Qε2

2L2δ2

))
≥ 1− exp

(
−2 (Nm ηm,δ −Q)2

Nm

)
− 2d exp

(
− Qε2

2L2δ2

)
we have ∥∥∥∥∥∥f(x)− 1

|A|
∑
xj∈A

f(xj)

∥∥∥∥∥∥ ≤ Lδ +
√
dε. (38)

The class label of a test sample x drawn from νm is correctly estimated with respect to
the classifier (4) if

ωTmk f(x) + bmk > 0, ∀k = 1, . . . ,M − 1, k 6= m.

If the condition in (38) is satisfied, for all k 6= m, we have

ωTmk f(x) + bmk = ωTmk
1

|A|
∑
xj∈A

f(xj) + bmk + ωTmk

f(x)− 1

|A|
∑
xj∈A

f(xj)


≥ ωTmk

1

|A|
∑
xj∈A

f(xj) + bmk − ‖f(x)− 1

|A|
∑
xj∈A

f(xj)‖

> γQ/2− ‖f(x)− 1

|A|
∑
xj∈A

f(xj)‖ ≥ γQ/2− Lδ −
√
dε ≥ 0.

Here, we obtain the second inequality from the hypothesis that the embedding is Q-mean
separable with margin larger than γQ, which implies that the embedding is also R-mean
separable with margin larger than γQ, for R > Q. Then the last inequality is due to the
condition (8) on the interpolation function in the theorem. We thus get that with probability
at least

1− exp

(
−2 (Nm ηm,δ −Q)2

Nm

)
− 2d exp

(
− Qε2

2L2δ2

)
,

ωTmk f(x)+bmk > 0 for all k 6= m, hence, the sample x is correctly classified. This concludes
the proof of the theorem.
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A.4 Proof of Theorem 6

Proof Remember from the proof of Theorem 5 that with probability at least

1− exp

(
−2 (Nm ηm,δ −Q)2

Nm

)
− 2d exp

(
− Qε2

2L2δ2

)
the δ-neighborhood Bδ(x) of a test sample x from class m contains at least Q samples from
class m, and ∥∥∥∥∥∥f(x)− 1

|A|
∑
xj∈A

f(xj)

∥∥∥∥∥∥ ≤ Lδ +
√
dε, (39)

where A is the set of training samples in Bδ(x) from class m.
Let xi, xj ∈ A be two training samples from class m in Bδ(x). As ‖xi − xj‖ ≤ 2δ, by

the hypothesis on the embedding, we have ‖yi − yj‖ = ‖f(xi)− f(xj)‖ ≤ D2δ, which gives

‖f(xi)−
1

|A|
∑
xj∈A

f(xj)‖ =

∥∥∥∥∥∥ 1

|A|
∑
xj∈A

(
f(xi)− f(xj)

)∥∥∥∥∥∥ ≤ 1

|A|
∑
xj∈A

‖f(xi)− f(xj)‖ ≤ D2δ.

Then, for any xi ∈ Bδ(x),

‖f(x)− f(xi)‖ = ‖f(x)− 1

|A|
∑
xj∈A

f(xj) +
1

|A|
∑
xj∈A

f(xj)− f(xi)‖

≤ ‖f(x)− 1

|A|
∑
xj∈A

f(xj)‖+D2δ.

Combining this with (39), we get that with probability at least

1− exp

(
−2 (Nm ηm,δ −Q)2

Nm

)
− 2d exp

(
− Qε2

2L2δ2

)
Bδ(x) will contain at least Q samples xi from class m such that

‖f(x)− f(xi)‖ ≤ Lδ +
√
dε+D2δ. (40)

Now, assuming (40), let x′i be a training sample from another class (other than m). We
have

‖f(x)− f(x′i)‖ ≥ ‖f(xi)− f(x′i)‖ − ‖f(x)− f(xi)‖ > γ − (Lδ +
√
dε+D2δ),

which follows from (40) and the hypothesis on the embedding that ‖f(xi)− f(x′i)‖ > γ.
It follows from the condition (10) that γ ≥ 2Lδ+ 2

√
dε+ 2D2δ. Using this in the above

equation, we get
‖f(x)− f(x′i)‖ > Lδ +

√
dε+D2δ.

This means that the distance of f(x) to the embedding of any other sample from another
class is more than Lδ +

√
dε + D2δ, while there are samples from its own class within a

distance of Lδ+
√
dε+D2δ to f(x). Therefore, x is classified correctly with nearest-neighbor

classification in the low-dimensional domain of embedding.
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A.5 Proof of Lemma 7

Proof The deviation of each component fk(x) of the interpolator from the sample average
in the neighborhood of x is given by∣∣∣∣∣∣fk(x)− 1

Q

∑
xj∈A

fk(xj)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
N∑
i=1

cki

φ(‖x− xi‖)−
1

Q

∑
xj∈A

φ(‖xj − xi‖)

∣∣∣∣∣∣ . (41)

We thus proceed by studying the term

φ(‖x− xi‖)−
1

Q

∑
xj∈A

φ(‖xj − xi‖), (42)

which will then be used in the above expression to arrive at the stated result.
Now let xi ∈ X be any training sample. In order to study the term in (42), we first look

at ∣∣∣∣φ(‖x− xi‖)− Eu
[
φ(‖u− xi‖) |u ∈ Bδ(x)

]∣∣∣∣,
where Eu

[
φ(‖u− xi‖) |u ∈ Bδ(x)

]
denotes the conditional expectation of φ(‖u− xi‖) over

u, given u ∈ Bδ(x). The conditional expectation is given by

Eu
[
φ(‖u− xi‖) |u ∈ Bδ(x)

]
=

1

νm
(
Bδ(x)

) ∫
Bδ(x)

φ(‖u− xi‖) dνm(u).

We have ∣∣∣∣φ(‖x− xi‖)− Eu
[
φ(‖u− xi‖) |u ∈ Bδ(x)

]∣∣∣∣
=

1

νm
(
Bδ(x)

) ∣∣∣∣ ∫
Bδ(x)

(
φ(‖x− xi‖)− φ(‖u− xi‖)

)
dνm(u)

∣∣∣∣
≤ 1

νm
(
Bδ(x)

) ∫
Bδ(x)

∣∣φ(‖x− xi‖)− φ(‖u− xi‖)
∣∣ dνm(u).

The term in the integral is bounded as∣∣φ(‖x− xi‖)− φ(‖u− xi‖)
∣∣ ≤ Lφ ∣∣‖x− xi‖ − ‖u− xi‖∣∣ ≤ Lφ ‖x− u‖.

Using this in the above term, we get∣∣∣∣φ(‖x− xi‖)− Eu
[
φ(‖u− xi‖) |u ∈ Bδ(x)

]∣∣∣∣
≤

Lφ

νm
(
Bδ(x)

) ∫
Bδ(x)

‖x− u‖ dνm(u) = Lφ Eu
[
‖u− x‖ |u ∈ Bδ(x)

]
≤ Lφ δ.

(43)

We now analyze the term in (42) for a given xi for two different cases, i.e., for xi /∈ Bδ(x)
and xi ∈ Bδ(x). We first look at the case xi /∈ Bδ(x). For xj ∈ Bδ(x), let

ζj := φ(‖xj − xi‖).
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The observations ζj are i.i.d. (since xj are i.i.d.) with mean mζ = Eu
[
φ(‖u−xi‖) |u ∈ Bδ(x)

]
and take values in the interval ζmin ≤ ζj ≤ ζmax, where

ζmin := inf
u∈Bδ(x)

φ(‖u− xi‖), ζmax := sup
u∈Bδ(x)

φ(‖u− xi‖).

Since for any u1, u2 ∈ Bδ(x), ‖u1 − u2‖ ≤ 2δ, it follows from the Lipschitz continuity of φ
that ζmax − ζmin ≤ 2Lφδ. Using this together with the Hoeffding’s inequality, we get

P

(∣∣∣∣ 1

Q

∑
xj∈A

ζj −mζ

∣∣∣∣ ≥ ε) ≤ 2 exp

(
− 2Qε2

(ζmax − ζmin)2

)
≤ 2 exp

(
− Qε2

2L2
φδ

2

)
. (44)

We have∣∣∣∣φ(‖x− xi‖)−
1

Q

∑
xj∈A

φ(‖xj − xi‖)
∣∣∣∣ ≤ ∣∣φ(‖x− xi‖)−mζ

∣∣+

∣∣∣∣mζ −
1

Q

∑
xj∈A

φ(‖xj − xi‖)
∣∣∣∣.

Using (43) and (44) in the above equation, it holds with probability at least

1− 2 exp

(
− Qε2

2L2
φδ

2

)
that ∣∣∣∣φ(‖x− xi‖)−

1

Q

∑
xj∈A

φ(‖xj − xi‖)
∣∣∣∣ ≤ Lφδ + ε.

Next, we study the case xi ∈ Bδ(x). For any fixed xi ∈ Bδ(x), hence xi ∈ A, we have∣∣∣∣φ(‖x− xi‖)−
1

Q

∑
xj∈A

φ(‖xj − xi‖)
∣∣∣∣

=

∣∣∣∣ 1

Q
φ(‖x− xi‖) +

Q− 1

Q
φ(‖x− xi‖)−

1

Q
φ(‖xi − xi‖)−

1

Q

∑
xj∈A\{xi}

φ(‖xj − xi‖)
∣∣∣∣

≤ 1

Q

∣∣∣∣φ(‖x− xi‖)− φ(‖xi − xi‖)
∣∣∣∣+

Q− 1

Q

∣∣∣∣φ(‖x− xi‖)−
1

Q− 1

∑
xj∈A\{xi}

φ(‖xj − xi‖)
∣∣∣∣.

The first term above is bounded as

1

Q

∣∣∣∣φ(‖x− xi‖)− φ(‖xi − xi‖)
∣∣∣∣ ≤ Lφδ

Q
.

Next, similarly to the analysis of the case xi 6= Bδ(x), we get that for xi ∈ Bδ(x) with
probability at least

1− 2 exp

(
−(Q− 1) ε2

2L2
φδ

2

)
it holds that ∣∣∣∣φ(‖x− xi‖)−

1

Q− 1

∑
xj∈A\{xi}

φ(‖xj − xi‖)
∣∣∣∣ ≤ Lφδ + ε,
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hence ∣∣∣∣φ(‖x− xi‖)−
1

Q

∑
xj∈A

φ(‖xj − xi‖)
∣∣∣∣ ≤ Lφδ

Q
+
Q− 1

Q
(Lφδ + ε) ≤ Lφδ + ε.

Combining the analyses of the cases xi 6= Bδ(x) and xi ∈ Bδ(x), we conclude that for any
given xi ∈ X ,

P

∣∣∣∣φ(‖x− xi‖)−
1

Q

∑
xj∈A

φ(‖xj − xi‖)
∣∣∣∣ ≤ Lφδ + ε

 ≥ 1− 2 exp

(
−(Q− 1) ε2

2L2
φδ

2

)
.

Therefore, applying the union bound on all N samples xi in X , we get that with probability
at least

1− 2N exp

(
−(Q− 1) ε2

2L2
φδ

2

)
it holds that ∣∣∣∣φ(‖x− xi‖)−

1

Q

∑
xj∈A

φ(‖xj − xi‖)
∣∣∣∣ ≤ Lφδ + ε (45)

for all xi ∈ X .

We can now use this in (41) to bound the deviation of fk(x) from the empirical mean
of fk in the neighbourhood of x. Assuming that the condition (45) holds for all xi ∈ X , we
obtain ∣∣∣∣∣∣fk(x)− 1

Q

∑
xj∈A

fk(xj)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
N∑
i=1

cki

φ(‖x− xi‖)−
1

Q

∑
xj∈A

φ(‖xj − xi‖)

∣∣∣∣∣∣
≤ (Lφδ + ε)

N∑
i=1

|cki | ≤ C(Lφδ + ε),

which gives

‖f(x)− 1

Q

∑
xj∈A

f(xj)‖ =

 d∑
k=1

(
fk(x)− 1

Q

∑
xj∈A

fk(xj)

)2
1/2

≤
√
dC(Lφδ + ε).

We thus get

P

‖f(x)− 1

Q

∑
xj∈A

f(xj)‖ ≤
√
dC(Lφδ + ε)

 ≥ 1− 2N exp

(
−(Q− 1) ε2

2L2
φδ

2

)
,

which completes the proof.
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A.6 Proof of Theorem 8

Proof
Remember from the proof of Theorem 5 that

P (|A| ≥ Q) ≥ 1− exp

(
−2 (Nm ηm,δ −Q)2

Nm

)
.

Lemma 7 states that, if Bδ(x) contains at least Q samples from class m, i.e., |A| ≥ Q,
then

P

‖f(x)− 1

|A|
∑
xj∈A

f(xj)‖ ≤
√
dC(Lφδ + ε)

 ≥ 1− 2N exp

(
−(|A| − 1) ε2

2L2
φδ

2

)

≥ 1− 2N exp

(
−(Q− 1) ε2

2L2
φδ

2

)
.

Hence, combining these two results (multiplying both probabilities), we get that with
probability at least(

1− exp

(
−2 (Nm ηm,δ −Q)2

Nm

))(
1− 2N exp

(
−(Q− 1) ε2

2L2
φδ

2

))

≥ 1− exp

(
−2 (Nm ηm,δ −Q)2

Nm

)
− 2N exp

(
−(Q− 1) ε2

2L2
φδ

2

)
it holds that

‖f(x)− 1

|A|
∑
xj∈A

f(xj)‖ ≤
√
dC(Lφδ + ε). (46)

A test sample x drawn from νm is classified correctly with the linear classifier if

ωTmk f(x) + bmk > 0, ∀k = 1, . . . ,M − 1, k 6= m.

If the condition in (46) is satisfied, for all k 6= m, we have

ωTmk f(x) + bmk = ωTmk
1

|A|
∑
xj∈A

f(xj) + bmk + ωTmk

f(x)− 1

|A|
∑
xj∈A

f(xj)


≥ ωTmk

1

|A|
∑
xj∈A

f(xj) + bmk − ‖f(x)− 1

|A|
∑
xj∈A

f(xj)‖

> γQ/2− ‖f(x)− 1

|A|
∑
xj∈A

f(xj)‖ ≥ γQ/2−
√
dC(Lφδ + ε) ≥ 0.

We thus conclude that with probability at least

1− exp

(
−2 (Nm ηm,δ −Q)2

Nm

)
− 2N exp

(
−(Q− 1) ε2

2L2
φδ

2

)
,

ωTmk f(x) + bmk > 0 for all k 6= m, hence, the class label of x is estimated correctly.
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A.7 Proof of Theorem 9

Proof First, recall from the proof of Theorem 8 that, with probability at least

1− exp

(
−2 (Nm ηm,δ −Q)2

Nm

)
− 2N exp

(
−(Q− 1) ε2

2L2
φδ

2

)

the δ-neighborhood Bδ(x) of a test sample x from class m contains at least Q samples from
class m, and

‖f(x)− 1

|A|
∑
xj∈A

f(xj)‖ ≤
√
dC(Lφδ + ε), (47)

where A is the set of training samples in Bδ(x) from class m.

Then it is easy to show that (as in the proof of Theorem 6), with probability at least

1− exp

(
−2 (Nm ηm,δ −Q)2

Nm

)
− 2N exp

(
−(Q− 1) ε2

2L2
φδ

2

)
,

Bδ(x) will contain at least Q samples xi from class m such that

‖f(x)− f(xi)‖ ≤
√
dC(Lφδ + ε) +D2δ. (48)

Hence, for a training sample x′i from another class (other than m), we have

‖f(x)− f(x′i)‖ ≥ ‖f(xi)− f(x′i)‖ − ‖f(x)− f(xi)‖ > γ − (
√
dC(Lφδ + ε) +D2δ),

which follows from (48) and the hypothesis on the embedding that ‖f(xi)− f(x′i)‖ > γ.

Due to the condition (16), we have γ ≥ 2
√
d C (Lφδ + ε) + 2D2δ. Using this above

equation, we obtain

‖f(x)− f(x′i)‖ >
√
dC(Lφδ + ε) +D2δ.

Therefore, the distance of f(x) to the embedding of the samples from other classes is more
than

√
dC(Lφδ + ε) + D2δ, while there are samples from its own class within a distance

of
√
dC(Lφδ + ε) + D2δ to f(x). We thus conclude that the class label of x is estimated

correctly with nearest-neighbor classification in the low-dimensional domain of embedding.

Appendix B. Proof of the Results in Section 3

B.1 Proof of Lemma 13

Proof The coordinate vector y is the eigenvector of the matrix Lw − µLb corresponding
to its minimum eigenvalue. Hence,

y = arg min
ξ

‖ξ‖=1

ξT (Lw − µLb)ξ.
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Equivalently, defining the degree-normalized coordinates z = D
−1/2
w y, and thus replacing

the above ξ by D
1/2
w ξ, we have

z = arg min
ξ

ξTDwξ=1

N(ξ)

N(ξ) = ξTD1/2
w (Lw − µLb)D1/2

w ξ

= ξT (Dw −Ww)ξ − µ ξT (DwD
−1
b )1/2 (Db −Wb) (D−1b Dw)1/2ξ.

(49)

Then, denoting βi = dw(i)/db(i), the term N(ξ) can be rearranged as

N(ξ) =
∑
i

ξi

(
dw(i) ξi −

∑
j∼wi

ξj wij

)
− µ

∑
i

ξi

(
dw(i) ξi −

∑
j∼bi

ξj wij
√
βiβj

)
=
∑
i

ξi
∑
j∼wi

(ξi − ξj)wij − µ
∑
i

ξi
∑
j∼bi

(βiξi −
√
βiβj ξj)wij

=
∑
i

∑
j∼wi

(ξ2i − ξiξj)wij − µ
∑
i

∑
j∼bi

(βiξ
2
i −

√
βiβjξiξj)wij ,

which gives 6

N(ξ) =
∑
i∼wj

(ξi − ξj)2wij − µ
∑
i∼bj

(√
βiξi −

√
βjξj

)2
wij (50)

by grouping the neighboring (i, j) pairs in the inner sums. Now, for any ξ ∈ RN×1 such
that ξTDwξ = 1, we define ξ∗ as follows

ξ∗i =

{
−|ξi| if Ci = 1
|ξi| if Ci = 2.

(51)

Clearly, ξ∗ also satisfies (ξ∗)TDwξ
∗ = 1. From (50), it can be easily checked that N(ξ∗) ≤

N(ξ) for any ξ, Then, a minimizer z of the problem (49) has to be of the separable form
defined in (51); otherwise z∗ would yield a smaller value for the function N , which would
contradict the fact that z is a minimizer. Note that the equality N(z∗) = N(z) holds only
if z = z∗ or z = −z∗, thus when z is separable. Therefore, the embedding z satisfies the
condition

zi ≤ 0 if Ci = 1, zi ≥ 0 if Ci = 2,

or the equivalent condition

zi ≤ 0 if Ci = 2, zi ≥ 0 if Ci = 1.

Finally, since yi =
√
dw(i) zi, the same property also holds for the embedding y.

6. In our notation, the terms i ∼w j and i ∼b j in the summation indices as in (50) refer to edges rather
than neighboring (i, j)-pairs; i.e., each pair is counted only once in the summation.
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B.2 Proof of Theorem 14

Proof From (49) and (50), we have

z = arg min
ξ

ξTDwξ=1

∑
i∼wj

(ξi − ξj)2wij − µ
∑
i∼bj

(√
βiξi −

√
βjξj

)2
wij . (52)

Thus, at the optimal solution z the objective function takes the value

N(z) =
∑
i∼wj

(zi − zj)2wij − µ
∑
i∼bj

(√
βizi −

√
βjzj

)2
wij . (53)

In the following, we derive a lower bound for the first sum and an upper bound for the
second sum in (53). We begin with the first sum. Let i1,min, i1,max, i2,min and i2,max denote
the indices of the data samples in class 1 and class 2 that are respectively mapped to the
extremal coordinates z1,min, z1,max, z2,min, z2,max, where

zk,min = min
i:Ci=k

zi , zk,max = max
i:Ci=k

zi .

Let P1 = {(xki−1
, xki)}

L1
i=1 be a shortest path of length L1 joining xi1,min and xi1,max and

P2 = {(xni−1 , xni)}
L2
i=1 be a shortest path of length L2 joining xi2,min and xi2,max . We have

∑
i∼wj

(zi − zj)2wij ≥
L1∑
i=1

(zki − zki−1
)2wki−1ki +

L2∑
i=1

(zni − zni−1)2wni−1ni

≥ wmin,1
L1∑
i=1

(zki − zki−1
)2 + wmin,2

L2∑
i=1

(zni − zni−1)2 ,

(54)

where the first inequality simply follows from the fact that the set of edges making up
P1 ∪ P2 are contained in the set of all edges in Gw. For a sequence {ai}Li=0, the following
inequality holds

(aL − a0)2 =

L∑
i=1

(ai − ai−1)2 +

L∑
i,j=1
i 6=j

(ai − ai−1)(aj − aj−1)

≤
L∑
i=1

(ai − ai−1)2 +
1

2

L∑
i,j=1
i 6=j

(
(ai − ai−1)2 + (aj − aj−1)2

)
= L

L∑
i=1

(ai − ai−1)2.

Hence,
L∑
i=1

(ai − ai−1)2 ≥
1

L
(aL − a0)2.

Using this inequality in (54), we get∑
i∼wj

(zi − zj)2wij ≥
wmin,1
L1

(z1,max − z1,min)2 +
wmin,2
L2

(z2,max − z2,min)2.
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Since the path lengths L1 and L2 are upper bounded by the diameters D1 and D2, we finally
obtain the lower bound∑

i∼wj
(zi − zj)2wij ≥

wmin,1
D1

(z1,max − z1,min)2 +
wmin,2
D2

(z2,max − z2,min)2. (55)

Next, we find an upper bound for the second sum in (53). Using Lemma 13, we obtain the
following inequality∑

i∼bj

(√
βizi −

√
βjzj

)2
wij ≤

∑
i∼bj

(z2,max − z1,min)2 βmaxwij

=
1

2
(z2,max − z1,min)2 βmaxV

b
max.

(56)

Now, since the solution z in (52) minimizes the objective function N(ξ), we have

N(z) = λmin(Lw − µLb),

where λmin(·) and λmax(·) respectively denote the minimum and the maximum eigenvalues
of a matrix. For two Hermitian matrices A and B, the inequality λmin(A+B) ≤ λmin(A) +
λmax(B) holds. As Lw and Lb are graph Laplacian matrices, we have λmin(Lw) = λmin(Lb) =
0 and thus

N(z) = λmin(Lw − µLb) ≤ λmin(Lw) + λmax(−µLb) = λmin(Lw)− µλmin(Lb) = 0.

Using in (53) the above inequality and the lower and upper bounds in (55) and (56), we
obtain

0 ≥ N(z) =
∑
i∼wj

(zi − zj)2wij − µ
∑
i∼bj

(√
βizi −

√
βjzj

)2
wij

≥ wmin,1
D1

(z1,max − z1,min)2 +
wmin,2
D2

(z2,max − z2,min)2

− 1

2
µ(z2,max − z1,min)2 βmaxV

b
max.

Hence

wmin,1
D1

(z1,max−z1,min)2 +
wmin,2
D2

(z2,max−z2,min)2 ≤ 1

2
µ(z2,max−z1,min)2 βmaxV

b
max. (57)

The RHS of the above inequality is related to the overall support z2,max − z1,min of the
data, whereas the terms on the LHS are related to the individual supports z1,max − z1,min
and z2,max − z2,min of the two classes in the learnt embedding. Meanwhile, the separation
z2,min− z1,max between the two classes is given by the gap between the overall support and
the sums of the individual supports. In order to use the above inequality in view of this
observation, we first derive a lower bound on the RHS term. Since zTDwz = 1, we have

1 =
∑
i

z2i dw(i) =
∑
i:Ci=1

z2i dw(i) +
∑
i:Ci=2

z2i dw(i)

≤ z21,min
∑
i:Ci=1

dw(i) + z22,max
∑
i:Ci=2

dw(i) = z21,minV1 + z22,maxV2.
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This gives

z21,min + z22,max ≥
1

Vmax
.

Hence, we obtain the following lower bound on the overall support

(z2,max − z1,min)2 ≥ z22,max + z21,min ≥
1

Vmax
. (58)

Denoting the supports of class 1 and class 2 and the overall support as

S1 = z1,max − z1,min, S2 = z2,max − z2,min, S = z2,max − z1,min,

we have from (57)

wmin(S2
1 + S2

2) ≤ 1

2
µS2 βmaxV

b
max,

which yields the following upper bound on the total support of the two classes

S1 + S2 ≤
√

2(S2
1 + S2

2) ≤ S

√
µβmaxV b

max

wmin
.

We can thus lower bound the separation z2,min − z1,max as

z2,min − z1,max = S − (S1 + S2) ≥ S

1−

√
µβmaxV b

max

wmin

 ,

provided that µ < wmin/(βmaxV
b
max). From the lower bound on the overall support in (58),

we lower bound the separation as follows

z2,min − z1,max ≥
1√
Vmax

1−

√
µβmaxV b

max

wmin

 .

Finally, since the separation of any embedding with dimension d ≥ 1 is at least as much as
the separation z2,min− z1,max of the embedding of dimension d = 1, the above lower bound
holds for any d ≥ 1 as well.

B.3 Proof of Corollary 15

Proof The one-dimensional embedding z is given as the solution of the constrained opti-
mization problem

z = arg minN(ξ) s.t. D(ξ) = 1,

where
N(ξ) = ξTD1/2

w (Lw − µLb)D1/2
w ξ, D(ξ) = ξTDwξ.

Defining the Lagrangian function

Λ(ξ, λ) = N(ξ) + λ(D(ξ)− 1)
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at the optimal solution z, we have

∇ξΛ = ∇λΛ = 0,

where ∇ξ and ∇λ respectively denote the derivatives of Λ with respect to ξ and λ. Thus,
at ξ = z,

∂Λ

∂ξi
=
∂N(ξ)

∂ξi
+ λ

∂D(ξ)

∂ξi
= 0

for all i = 1, . . . , N . From (50), the derivatives of N(ξ) and D(ξ) at z are given by

∂N(ξ)

∂ξi

∣∣∣∣
ξ=z

=
∑
j∼wi

2(zi − zj)wij − µ
∑
j∼bi

2
(√

βizi −
√
βjzj

) √
βiwij

∂D(ξ)

∂ξi

∣∣∣∣
ξ=z

= 2 dw(i) zi,

which yields∑
j∼wi

(zi − zj)wij − µ
∑
j∼bi

(√
βizi −

√
βjzj

) √
βiwij + λ dw(i) zi = 0 (59)

for all i. At i = i1,max, as z attains its maximal value z1,max for class 1, we have

λ dw(i1,max) z1,max =
∑

j∼wi1,max

(zj − z1,max)wi1,maxj

+ µ
∑

j∼bi1,max

(√
βi1,maxz1,max −

√
βjzj

)√
βi1,max wi1,maxj

≤ −µβmin (z2,min − z1,max) db(i1,max).

Hence

|z1,max| = −z1,max ≥
µβmin (z2,min − z1,max)db(i1,max)

λ dw(i1,max)
≥ µβmin (z2,min − z1,max)

λβmax
. (60)

We proceed by deriving an upper bound for λ. The gradients of N(ξ) and D(ξ) are given
by

∇ξN = 2D1/2
w (Lw − µLb)D1/2

w ξ, ∇ξD = 2Dwξ.

From the condition ∇ξΛ = 0 at ξ = z, we have

D1/2
w (Lw − µLb)D1/2

w z + λDwz = 0

(Lw − µLb)y + λy = 0.

Since y = D
1/2
w z is the unit-norm eigenvector of Lw − µLb corresponding to its smallest

eigenvalue, the Lagrangian multiplier λ is given by

λ = −λmin(Lw − µLb).
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We can lower bound the minimum eigenvalue as

λmin(Lw − µLb) ≥ λmin(Lw) + λmin(−µLb) = 0− µλmax(Lb) ≥ −2µ

since the eigenvalues of a graph Laplacian are upper bounded by 2. This gives λ ≤ 2µ.
Using this upper bound on λ in (60), we obtain

|z1,max| ≥
1

2

βmin
βmax

(z2,min − z1,max).

Repeating the same steps for i = i2,min following (59), one can similarly show that

z2,min ≥
1

2

βmin
βmax

(z2,min − z1,max).
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