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Abstract
Consider the problem of sampling sequentially from a finite number of N > 2 populations,
specified by random variables X i

k, i = 1, . . . ,N, and k = 1,2, . . .; where X i
k denotes the

outcome from population i the kth time it is sampled. It is assumed that for each fixed
i, {X i

k}k>1 is a sequence of i.i.d. normal random variables, with unknown mean µi and
unknown variance σ2

i . The objective is to have a policy π for deciding from which of
the N populations to sample from at any time t = 1,2, . . . so as to maximize the expected
sum of outcomes of n total samples or equivalently to minimize the regret due to lack
on information of the parameters µi and σ2

i . In this paper, we present a simple inflated
sample mean (ISM) index policy that is asymptotically optimal in the sense of Theorem
4 below. This resolves a standing open problem from Burnetas and Katehakis (1996b).
Additionally, finite horizon regret bounds are given.

Keywords: Inflated Sample Means, UCB policies, Multi-armed Bandits, Sequential Al-
location

1. Introduction and Summary

Consider the problem of a controller sampling sequentially from a finite number of N > 2
populations or ‘bandits’, where the measurements from population i are specified by a
sequence of i.i.d. random variables {X i

k}k>1, taken to be normal with finite mean µi and
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finite variance σ2
i . The means {µi} and variances {σ2

i } are taken to be unknown to the
controller. It is convenient to define the maximum mean, µ∗ = maxi{µi}, and the bandit
discrepancies {∆i} where ∆i = µ∗−µi > 0. It is additionally convenient to define σ2

∗ as the
minimal variance of any bandit that achieves µ∗, that is σ2

∗ = mini:µi=µ∗ σ2
i .

In this paper, given k samples from population i we will take the estimators: X̄ i
k =∑

k
t=1 X i

t /k
and S2

i (k) = ∑
k
t=1
(
X i

t − X̄ i
k

)2
/k for µi and σ2

i respectively. Note that the use of the biased
estimator for the variance, with the 1/k factor in place of 1/(k−1), is largely for aesthetic
purposes - the results presented here adapt to the use of the unbiased estimator as well.

For any adaptive, non-anticipatory policy π , π(t) = i indicates that the controller samples
bandit i at time t. Define T i

π(n) = ∑
n
t=11{π(t) = i}, denoting the number of times bandit i

has been sampled during the periods t = 1, . . . ,n under policy π; we take, as a convenience,
T i

π(0) = 0 for all i,π . The value of a policy π is the expected sum of the first n outcomes
under π , which we define to be the function Vπ(n) :

Vπ(n) = E

 N

∑
i=1

T i
π (n)

∑
k=1

X i
k

=
N

∑
i=1

µiE
[
T i

π(n)
]
, (1)

where for simplicity the dependence of Vπ(n) on the true, unknown, values of the param-
eters µ = (µ1, . . . ,µN) and σ2 = (σ2

1 , . . . ,σ
2
N), is supressed. The pseudo-regret, or simply

regret, of a policy is taken to be the expected loss due to ignorance of the parameters µ and
σ2 by the controller. Had the controller complete information, she would at every round
activate some bandit i∗ such that µi∗ = µ∗ = maxi{µi}. For a given policy π , we define the
expected regret of that policy at time n as

Rπ(n) = nµ
∗−Vπ(n) =

n

∑
i=1

∆iE
[
T i

π(n)
]
. (2)

It follows from Eqs. (1) and (2) that maximization of Vπ(n) with respect to π is equivalent
to minimization of Rπ(n). This type of loss due to ignorance of the means (regret) was first
introduced in the context of an N = 2 problem by Robbins (1952) as the ‘loss per trial’
Lπ(n)/n = µ∗−∑

N
i=1 ∑

T i
π (n)

k=1 X i
k/n (for which Rπ(n) = E [Lπ(n)]). Robbins constructed a

modified (along two sparse sequences) ‘play the winner’ policy, πR, such that for all choices
of bandit parameters, LπR(n) = o(n) (a.s.) and RπR(n) = o(n), using for his derivation only
the assumption of the Strong Law of Large Numbers. Following Burnetas and Katehakis
(1996b) when n→∞, if π is such that Rπ(n) = o(n) for all choices of bandit parameters, we
say policy π is uniformly convergent (UC) (since then limn→∞Vπ(n)/n = µ∗ ). However,
if under a policy π , Rπ(n) grew at a slower pace, such as Rπ(n) = o(n1/2), or better Rπ(n) =
o(n1/100) etc., then the controller would be assured that π is making an effective trade-off
between exploration and exploitation. It turns out that it is possible to construct ‘uniformly
fast convergent’ (UFC) policies, also known as consistent or strongly consistent, defined
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as the policies π for which:

Rπ(n) = o(nα), for all α > 0 for all (µ,σ2).

For clarification, it is worth noting here that while a naive policy such as ‘always activate
bandit 1’ will have 0 regret for some choices of (µ,σ2) (in particular, those for which
µ1 = µ∗), such a policy will have linear regret for any other choice of (µ,σ2) and hence
cannot be a UFC policy.

The existence of UFC policies in the case considered here is well established, e.g., Auer
et al. (2002) (Fig. 4 therein) presented the following UFC policy πACF:

Policy πACF (UCB1-NORMAL). At each n = 1,2, . . .:

i) Sample from any bandit i for which T i
πACF

(n)< d8lnne .

ii) If T i
πACF

(n)> d8lnne, for all i= 1, . . . ,N, sample from bandit πACF(n+1)
with

πACF(n+1) = arg maxi

{
X̄ i

T i
π (n)

+4 ·Si(T i
π(n))

√
lnn

T i
π(n)

}
. (3)

(Taking, in this case, S2
i (k) as the unbiased estimator.)

Additionally, Auer et al. (2002) (in Theorem 4 therein) gave the following bound:

RπACF(n)6 MACF(µ,σ
2) lnn+CACF(µ), for all n and all (µ,σ2), (4)

with

MACF(µ,σ
2) = 256 ∑

i:µi 6=µ∗

σ2
i

∆i
+8

N

∑
i=1

∆i, (5)

CACF(µ) = (1+
π2

2
)

N

∑
i=1

∆i. (6)

Ineq. (4) readily implies that RπACF(n) 6 MACF(µ,σ
2) lnn + o(lnn). Thus, since lnn =

o(nα) for all α > 0 and RπACF(n)> 0, it follows that πACF is uniformly fast convergent.

Given that UFC policies exist, the question immediately follows: just how fast can they be?
The primary motivation of this paper is the following general result, from Burnetas and
Katehakis (1996b), which leveraged the UFC property to establish an asymptotic lower
bound on the growth of regret for any such policy π , as well as determining a constant
associated with that growth, i.e, that for any UFC policy π , the following holds:

liminf
n→∞

Rπ(n)
lnn

>MBK(µ,σ
2), for all (µ,σ2), (7)
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where the bound itself MBK(µ,σ
2) is determined by the specific distributions of the popu-

lations, in this case

MBK(µ,σ
2) = ∑

i:µi 6=µ∗

2∆i

ln
(

1+ ∆2
i

σ2
i

) . (8)

For comparison, depending on the specifics of the bandit distributions, there can be consid-
erable distance between the logarithmic term of the upper bound of Eq. (4) and the lower
bound implied by Ineq. (7).

The derivation of Ineq. (7) implies that in order to guarantee that a policy is uniformly fast
convergent, sub-optimal populations have to be sampled at least a logarithmic number of
times. The above bound is a special case of a more general result derived in Burnetas and
Katehakis (1996b) (part 1 of Theorem 1 therein) for distributions with multi-parameters θ

being unknown:

MBK(θ) = ∑
i:µi 6=µ∗

∆i

K(θ i,µ∗)
, (9)

where
K(θ ,µ∗) = inf

θ
′
{I( fθ ; fθ

′) : µ(θ ′)> µ
∗}, (10)

taking I( f ;g) to represent the Kullback-Leibler divergence between densities f and g. For
the case of normal distributions with unknown means and variances, the derivation of Eq.
(8) from Eq. (9) is given as Proposition 7 in the Appendix.

Previously, Lai and Robbins (1985) had obtained a lower bound for distributions with one-
parameter (such as in the current problem of Normal populations with unknown mean
but known variance), policies that achieved the lower bound were called asymptotically
efficient or asymptotically optimal.

Ineq. (7) motivates the definition of a uniformly fast convergent policy π as having a uni-
formly maximal convergence rate (UM) or simply being asymptotically optimal, within
the class of uniformly fast convergent policies, if limn→∞ Rπ(n)/ lnn =MBK(µ,σ

2), since
then Vπ(n) = nµ∗−MBK(µ,σ

2) lnn+o(lnn).

Burnetas and Katehakis (1996b) proposed the following index policy πBK as one that could
achieve this lower bound:

Policy πBK (ISM-NORMAL0)

i) For n = 1,2, . . . ,2N sample each bandit twice, and

ii) for n > 2N, sample from bandit πBK(n+1) with

πBK(n+1) = arg maxi

{
X̄ i

T i
π (n)

+Si(T i
π(n))

√
n

2
T i
π (n) −1

}
. (11)
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Burnetas and Katehakis (1996b) were not able to establish the asymptotic optimality of
the πBK policy because they were not able to establish a sufficient condition (Condition
A3 therein), which we express here as the following equivalent conjecture (the referenced
open question in the Abstract).

Conjecture 1 For each i, for every ε > 0, and for k→ ∞, the following is true:

P
(

X̄ i
j +Si( j)

√
k2/ j−1 < µi− ε for some 2 6 j 6 k

)
= o(1/k). (12)

We show that the above conjecture is false, cf. Proposition 9 in the Appendix. In addition, it
will follow as a result of Theorem 2 that RπBK > O(

√
n), i.e., πBK fails to be asymptotically

optimal.

One of the central results of this paper is to establish that with a small change (though
with large effect), the policy πBK may be modified to one that is provably asymptotically
optimal. We introduce in this paper the policy πCHK defined as follows

Policy πCHK (ISM-NORMAL2)

i) For n = 1,2, . . . ,3N sample each bandit three times, and

ii) for n > 3N, sample from bandit πCHK(n+1) with

πCHK(n+1) = arg maxi

{
X̄ i

T i
π (n)

+Si(T i
π(n))

√
n

2
T i
π (n)−2 −1

}
. (13)

Note that the policy πCHK is only a slight modification of πBK, introducing a −2 in the
power of n under the radical. This change is seemingly asymptotically negligible, as in
practice, T i

πBK
(n)→ ∞ (a.s.) with n. It will be shown that not only is πCHK asymptotically

optimal (Theorem 5 below), but also:

Theorem 2 Consider a policy π(a,b), with a > b, that initially samples each bandit a times,
then successively activates bandits according to the maximal index arg maxiui(n,T i

π(a,b)
(n))

where

ui(n,k) = X̄ i
k +Si(k)

√
n

2
k−b −1. (14)

Then, if the optimal bandit is unique, for b < 1,

Rπ(a,b) > O(n
1−b
a−b ). (15)

The proof is given in the Appendix.

Remark 1. 1) We note that the indices of policy πCHK are a significant modification of those
of the optimal allocation policy πσ2 for the case of normal bandits with known variances,
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cf. Burnetas and Katehakis (1996b) and Katehakis and Robbins (1995), which are:

πσ2(n+1) = arg maxi

{
X̄ i

T i
π (n)

+σi

√
2lnn
T i

π(n)

}

the difference being replacing the term σi

√
2lnn
T i

π (n)
in πσ2 by Si(T i

π(n))

√
n

2
T i
π (n)−2 −1 in

πCHK. However, the upper confidence bounds used in policy πACF are a minor modifi-
cation of the optimal policy πσ2 the difference being replacing the term σi

√
2lnn
T i

π (n)
in πσ2 by

Si(T i
π(n))

√
16lnn
T i

π (n)
in πACF.

2) The πBK and πσ2 policies can be seen as connected in the following way, however,

observing that 2 lnn/T i
π(n) is a first-order approximation of n2/T i

π (n)−1 = e2lnn/T i
π (n)−1.

Following Robbins (1952), and additionally Gittins (1979), Lai and Robbins (1985) and
Weber (1992) there is a large literature on versions of this problem, cf. Burnetas and Kate-
hakis (2003), Burnetas and Katehakis (1997b) and references therein. For recent work in
this area we refer to Audibert et al. (2009), Auer and Ortner (2010), Gittins et al. (2011),
Bubeck and Slivkins (2012), Cappé et al. (2013), Kaufmann (2015), Li et al. (2014), Cowan
and Katehakis (2015b), Cowan and Katehakis (2015c), and references therein. For more
general dynamic programming extensions we refer to Burnetas and Katehakis (1997a),
Butenko et al. (2003), Tewari and Bartlett (2008), Audibert et al. (2009), Littman (2012),
Abbasi et al. (2013),Feinberg et al. (2014) and references therein. Other related work
in this area includes: Burnetas and Katehakis (1993), Burnetas and Katehakis (1996a),
Lagoudakis and Parr (2003), Bartlett and Tewari (2009), Tekin and Liu (2012), Jouini et al.
(2009), Dayanik et al. (2013), Filippi et al. (2010), Osband and Van Roy (2014), Denardo
et al. (2013).

To our knowledge, outside the work in Lai and Robbins (1985), Burnetas and Katehakis
(1996b) and Burnetas and Katehakis (1997a), asymptotically optimal policies have only
been developed in in Honda and Takemura (2011), and in Honda and Takemura (2010) for
the problem of finite known support where optimal policies, cyclic and randomized, that
are simpler to implement than those consider in Burnetas and Katehakis (1996b) were con-
structed. Recently in Cowan and Katehakis (2015a), an asymptotically optimal policy for
uniform bandits of unknown support was constructed. The question of whether asymptot-
ically optimal policies exist in the case discussed herein of normal bandits with unknown
means and unknown variances was recently resolved in the positive by Honda and Take-
mura (2013) who demonstrated that a form of Thompson sampling with certain priors on
(µ,σ2) achieves the asymptotic lower bound MBK(µ,σ

2).

The structure of the rest of the paper is as follows. In Section 2, Theorem 4 establishes a
finite horizon bound on the regret of πCHK. From this bound, it follows that πCHK is asymp-
totically optimal (Theorem 5), and we provide a bound on the remainder term (Theorem 6).
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Additionally, in Section 3, the Thompson sampling policy of Honda and Takemura (2013)
and πCHK are compared and discussed, as both achieve asymptotic optimality.

2. The Optimality Theorem and Finite Time Bounds

The main results of this paper, that Conjecture 1 is false (cf. Proposition 9 in the Appendix),
the asymptotic optimality, and the bounds on the behavior of πCHK, all depend on the
following probability bounds; we note that tighter bounds seem possible, but these are
sufficient for the proof of the main Theorem.

Proposition 3 Let Z, U be independent random variables, Z ∼N(0,1) a standard normal,
and U ∼ χ2

d a chi-squared distribution with d degrees of freedom, where d > 2.

For δ > 0, p > 0, the following holds for all k > 1:

1
2
P
(

1
4

Z2 >U > δ
2
)

k−d/p 6P
(

δ +
√

U
√

k2/p−1 < Z
)
6

e−(1+δ 2)/2 p
2δ 2
√

d
k(1−d)/p

lnk
. (16)

The proof is given in the Appendix. The bounds provided by this proposition are hardly
intuitive, and it is not clear that they are of any particular interest in their own right. How-
ever, the order results for the dependence on k, p, and d allow the analysis of this paper to
go through.

Theorem 4 For policy πCHK as defined above, under any choice of bandit parameters, the
following bounds hold for all n > 3N and all ε ∈ (0,1):

RπCHK(n)6 ∑
i:µi 6=µ∗

 2lnn

ln
(

1+ ∆2
i

σ2
i

(1−ε)2

(1+ε)

) +

√
π

2e
8σ3
∗

∆3
i ε3

ln lnn+
8
ε2 +

8σ2
i

∆2
i ε2 +3

∆i. (17)

Before giving the proof of this bound, we present two results, the first demonstrating the
asymptotic optimality of πCHK, the second giving an ε-free version of the above bound,
which gives a bound on the sub-logarithmic remainder term. It is worth noting the fol-
lowing: the bounds of Theorem 4 can actually be improved, through the use of a modified
version of Proposition 3, to eliminate the ln lnn dependence, so the only dependence on n
is through the initial lnn term. The cost of this, however, is a dependence on a larger power
of 1/ε . The particular form of the bound given in Eq. (17) was chosen to simplify the
following two results, cf. Remark 5 in the proof of Proposition 3.

Theorem 5 For a policy πCHK as defined above, πCHK is asymptotically optimal in the
sense that for any choice of bandit parameters,

lim
n→∞

RπCHK(n)
lnn

=MBK(µ,σ
2). (18)
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Proof For any ε such that 0 < ε < 1, we have from Theorem 4 that the following holds:

limsup
n→∞

RπCHK(n)
lnn

6 ∑
i:µi 6=µ∗

2∆i

ln
(

1+ ∆2
i

σ2
i

(1−ε)2

(1+ε)

) . (19)

Taking the infimum over all such ε ,

limsup
n→∞

RπCHK(n)
lnn

6 ∑
i:µi 6=µ∗

2∆i

ln
(

1+ ∆2
i

σ2
i

) =MBK(µ,σ
2), (20)

and observing the lower bound of Ineq. (7) completes the result.

Having established the primary growth order of the regret under policy πCHK, in the fol-
lowing theorem we give a bound on the growth of the remainder term. The utility of this
bound depends to some extent on the specific bandit parameters, but we view this particular
form of the remainder term as an artifact of the analysis given here, rather than an inherent
property of the policy itself. Alternative analyses might yield tighter bounds, we simply
establish a convenient bound on the growth order of the remainder.

Theorem 6 For a policy πCHK as defined above, RπCHK(n)6MBK(µ,σ
2) lnn+O((lnn)3/4 ln lnn),

and more concretely

RπCHK(n)6 M0
CHK(µ,σ

2) lnn+M1
CHK(µ,σ

2)(lnn)3/4 ln lnn

+M2
CHK(µ,σ

2)(lnn)3/4

+M3
CHK(µ,σ

2)(lnn)1/2

+M4
CHK(µ,σ

2),

(21)

where

M0
CHK(µ,σ

2) =MBK(µ,σ
2)

M1
CHK(µ,σ

2) = 64
√

π

2e ∑
i:µi 6=µ∗

(
σ3
∗

∆2
i

)

M2
CHK(µ,σ

2) = 10 ∑
i:µi 6=µ∗

 ∆3
i(

σ2
i +∆2

i
)(

ln
(

1+ ∆2
i

σ2
i

))2


M3

CHK(µ,σ
2) = 32 ∑

i:µi 6=µ∗

(
∆i +

σ2
i

∆i

)
M4

CHK(µ,σ
2) = 3 ∑

i:µi 6=µ∗
∆i.

(22)
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While the above bound admittedly has a more complex form than such a bound as in Eq.
(4), it demonstrates the asymptotic optimality of the dominating term, and bounds the sub-
logarithmic remainder term.

Proof The bound follows directly from Theorem 4, taking ε = 1
2(lnn)−1/4 for n > 3, and

observing the following bound, that for ε such that 0 < ε < 1/2,

1

ln
(

1+ ∆2
i

σ2
i

(1−ε)2

1+ε

) 6
1

ln
(

1+ ∆2
i

σ2
i

) +
10∆2

i(
σ2

i +∆2
i
)(

ln
(

1+ ∆2
i

σ2
i

))2 ε. (23)

This inequality is proven separately as Proposition 10 in the Appendix.

We make no claim that the results of Theorems 4, 6 are the best achievable for this policy
πCHK. At several points in the proofs, choices of convenience were made in the bounding
of terms, and different techniques may yield tighter bounds still. But they are sufficient to
demonstrate the asymptotic optimality of πCHK, and give useful bounds on the growth of
RπCHK(n).

Proof [of Theorem 3] In this proof, we take π = πCHK as defined above. For notational
convenience, we define the index function

ui(k, j) = X̄ i
j +Si( j)

√
k

2
j−2 −1. (24)

The structure of this proof will be to bound the expected value of T i
π(n) for all sub-optimal

bandits i, and use this to bound the regret Rπ(n). The basic techniques follow those in
Katehakis and Robbins (1995) for the known variance case, modified accordingly here for
the unknown variance case and assisted by the probability bound of Proposition 3. For any
i such that µi 6= µ∗, we define the following quantities: Let 1 > ε > 0 and define ε̃ = ∆iε/2.
For n > 3N,

ni
1(n,ε) =

n

∑
t=3N

1{π(t +1) = i,ui(t,T i
π(t))> µ

∗− ε̃, X̄ i
T i

π (t)
6 µi + ε̃,S2

i (T
i

π(t))6 σ
2
i (1+ ε)}

ni
2(n,ε) =

n

∑
t=3N

1{π(t +1) = i,ui(t,T i
π(t))> µ

∗− ε̃, X̄ i
T i

π (t)
6 µi + ε̃,S2

i (T
i

π(t))> σ
2
i (1+ ε)}

ni
3(n,ε) =

n

∑
t=3N

1{π(t +1) = i,ui(t,T i
π(t))> µ

∗− ε̃, X̄ i
T i

π (t)
> µi + ε̃}

ni
4(n,ε) =

n

∑
t=3N

1{π(t +1) = i,ui(t,T i
π(t))< µ

∗− ε̃}.

(25)

Hence, we have the following relationship for n > 3N, that

T i
π(n+1) = 3+

n

∑
t=3N

1{π(t +1) = i}= 3+ni
1(n,ε)+ni

2(n,ε)+ni
3(n,ε)+ni

4(n,ε). (26)
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The proof proceeds by bounding, in expectation, each of the four terms.

Observe that, by the structure of the index function ui,

ni
1(n,ε)6

n

∑
t=3N

1

{
π(t +1) = i,(µi + ε̃)+σi

√
1+ ε

√
t

2
T i
π (t)−2 −1 > µ

∗− ε̃

}

=
n

∑
t=3N

1

π(t +1) = i,T i
π(t)6

2ln t

ln
(

1+ 1
σ2

i

(∆i−2ε̃)2

(1+ε)

) +2


=

n

∑
t=3N

1

π(t +1) = i,T i
π(t)6

2ln t

ln
(

1+ ∆2
i

σ2
i

(1−ε)2

(1+ε)

) +2


6

n

∑
t=3N

1

π(t +1) = i,T i
π(t)6

2lnn

ln
(

1+ ∆2
i

σ2
i

(1−ε)2

(1+ε)

) +2


6

2lnn

ln
(

1+ ∆2
i

σ2
i

(1−ε)2

(1+ε)

) +2+1−3

=
2lnn

ln
(

1+ ∆2
i

σ2
i

(1−ε)2

(1+ε)

) .

(27)

The last inequality follows, observing that T i
π(n) may be expressed as the sum of π(t) = i

indicators, and seeing that the additional condition bounds the number of non-zero terms
in this sum. The additional +1 term accounts for the potential π(n+ 1) = i term beyond
the condition on T i

π(t), and the −3 accounts for the initial three activations of bandit i,
which are not counted within the bounds of the sum. Note, this bound holds surely, over
all outcomes.

For the second term,

ni
2(n,ε)6

n

∑
t=3N

1{π(t +1) = i,S2
i (T

i
π(t))> σ

2
i (1+ ε)}

=
n

∑
t=3N

t

∑
k=3

1{π(t +1) = i,S2
i (k)> σ

2
i (1+ ε),T i

π(t) = k}

=
n

∑
t=3N

t

∑
k=3

1{π(t +1) = i,T i
π(t) = k}1{S2

i (k)> σ
2
i (1+ ε)}

6
n

∑
k=3

1{S2
i (k)> σ

2
i (1+ ε)}

n

∑
t=k

1{π(t +1) = i,T i
π(t) = k}

6
n

∑
k=3

1{S2
i (k)> σ

2
i (1+ ε)}.

(28)
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The last inequality follows as, for fixed k, {π(t + 1) = i,T i
π(t) = k} may be true for at

most one value of t. Recall that kS2
i (k)/σ2

i has the distribution of a χ2
k−1 random variable.

Letting Uk ∼ χ2
k , from the above we have

E
[
ni

2(n,ε)
]
6

n

∑
k=3

P
(
S2

i (k)> σ
2
i (1+ ε)

)
=

∞

∑
k=3

P(Uk−1/k > (1+ ε))

6
∞

∑
k=3

P(Uk−1/(k−1)> (1+ ε))

6
∞

∑
k=1

P(Uk > k(1+ ε))

6
1√

eε

1+ε
−1

6
8
ε2 < ∞.

(29)

The penultimate step is a Chernoff bound on the terms, P(Uk > k(1+ ε)) 6 (e−ε(1 +
ε))k/2. As this bound is not common, it is verified in the Appendix as Proposition 8.

To bound the third term, a similar rearrangement to Eq. (28) (using the sample mean instead
of the sample variance) yields:

ni
3(n,ε)6

n

∑
t=3N

1{π(t +1) = i, X̄ i
T i

π (t)
> µi + ε̃}6

n

∑
k=3

1{X̄ i
k > µi + ε̃}. (30)

Recalling that X̄ i
k−µi ∼ Zσi/

√
k for Z a standard normal,

E
[
ni

3(n,ε)
]
6

n

∑
k=3

P
(
X̄ i

k > µi + ε̃
)
6

∞

∑
k=1

P
(

Zσi/
√

k > ε̃

)
6

1

e
ε̃2

2σ2
i −1

6
2σ2

i
ε̃2 < ∞. (31)

The penultimate step is the standard Chernoff bound on the terms, P
(

Z > δ
√

k
)
6 e−kδ 2/2.

To bound the ni
4 term, observe that in the event π(t + 1) = i, from the structure of the

policy it must be true that ui(t,T i
π(t)) = max j u j(t,T

j
π (t)). Thus, if i∗ is some bandit such

that µi∗ = µ∗, ui∗(t,T i∗
π (t)) 6 ui(t,T i

π(t)). In particular, we take i∗ to be a bandit that not
only achieves the maximal mean µ∗, but also the minimal variance among optimal bandits,
σ2

i∗ = σ2
∗ . We have the following bound,

ni
4(n,ε)6

n

∑
t=3N

1{π(t +1) = i,ui∗(t,T i∗
π (t))< µ

∗− ε̃}

6
n

∑
t=3N

1{ui∗(t,T i∗
π (t))< µ

∗− ε̃}

6
n

∑
t=3N

1{ui∗(t,s)< µ
∗− ε̃ for some 3 6 s 6 t}.

(32)
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The last step follows as for t in this range, 3 6 T i∗
π (t)6 t. Hence

E
[
ni

4(n,ε)
]
6

n

∑
t=3N

P(ui∗(t,s)< µ
∗− ε̃ for some 3 6 s 6 t) . (33)

As an aside, this is essentially the point at which the conjectured Eq. (12) would have come
into play for the proof of the optimality of πBK, bounding the growth of the corresponding
term for that policy. We will essentially prove a successful version of that conjecture here.
Define the events A∗s,t,ε̃ = {ui∗(t,s) < µ∗− ε̃}. Observing that

√
s(X̄ i∗

s − µ∗)/σ∗ ∼ Z and
S2

i∗(s)∼ σ2
∗Us−1/s where Z has a standard normal distribution and Us−1∼ χ2

s−1, Z and Us−1
independent,

P
(
A∗s,t,ε̃

)
= P

(
X̄ i∗

s +Si∗(s)
√

t
2

s−2 −1 < µ
∗− ε̃

)
= P

(
µ
∗+Z

σ∗√
s
+σ∗

√
Us−1√

s

√
t

2
s−2 −1 < µ

∗− ε̃

)
= P

(
Z +

√
Us−1

√
t

2
s−2 −1 <− ε̃

σ∗

√
s
)
.

(34)

Observing the symmetry of the standard normal distribution, the above may be rewritten as

P
(
A∗s,t,ε̃

)
= P

(
ε̃

σ∗

√
s+
√

Us−1

√
t

2
s−2 −1 < Z

)
6

e−(ε̃/σ∗)
2s/2(s−2)

2(ε̃/σ∗)
2s
√

e(s−1)

(
t−1

ln t

)

6
e−(ε̃/σ∗)

2s/2

2(ε̃/σ∗)
2

1√
es

(
t−1

ln t

)
=

(
1

2(ε̃/σ∗)
2√e

)
e−(ε̃/σ∗)

2s/2
√

s

(
t−1

ln t

)
,

(35)

where the first inequality follows as an application of Proposition 3, and the second since
s > 3.
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Applying a union bound to Eq. (33),

E
[
ni

4(n,ε)
]
6

n

∑
t=3N

t

∑
s=3

P
(
A∗s,t,ε̃

)
6

n

∑
t=3N

t

∑
s=3

(
1

2(ε̃/σ∗)
2√e

)
e−(ε̃/σ∗)

2s/2
√

s

(
t−1

ln t

)

6

(
1

2(ε̃/σ∗)
2√e

)∫
∞

s=0

e−(ε̃/σ∗)
2s/2

√
s

ds
∫ n

t=e

(
t−1

ln t

)
dt

=

(
1

2(ε̃/σ∗)
2√e

) √
2π

(ε̃/σ∗)
ln lnn

=

√
π

2e
σ3
∗

ε̃3 ln lnn.

(36)

The bounds follow, removing the dependence of the s-sum on t by extending it to ∞, and
bounding the sums by integrals of the (decreasing) summands by slightly extending the
range of each.

From the above results, and observing that T i
π(n)6 T i

π(n+1), it follows from Eq. (26) that
for any ε such that 0 < ε < 1,

E
[
T i

π(n)
]
6 3+

2lnn

ln
(

1+ ∆2
i

σ2
i

(1−ε)2

(1+ε)

) +
8
ε2 +

2σ2
i

ε̃2 +

√
π

2e
σ3
∗

ε̃3 ln lnn

= 3+
2lnn

ln
(

1+ ∆2
i

σ2
i

(1−ε)2

(1+ε)

) +
8
ε2 +

8σ2
i

∆2
i ε2 +

√
π

2e
8σ3
∗

∆3
i ε3

ln lnn.
(37)

The result then follows from the definition of regret in Eq. (2).

Remark 2. It is interesting to note in the above proof the effect of the −2 in the exponent
on t in Eq. (35) and Eq. (36), as this is effectively what differentiates the asymptotically
optimal πCHK from the sub-optimal πBK. With the −2, the application of Proposition 3
yields a t−1/ ln t bound, while without the −2, the resulting t-term is t−1+2/s/ ln t.

Remark 3. Numerical Regret Comparison: Figure 1 shows the results of a small simulation
study done on a set of six populations with means and variances given in Table 1. It
provides plots of the regrets when implementing policies πCHK (the index policy of Eq.
(13)), πACF (the index policy of Eq. (3)) , and πG a ‘greedy’ policy that always activates the
bandit with the current highest average. Each policy was implemented over a horizon of
100,000 activations, each replicated 10,000 times to produce a good estimate of the average
regret Rπ(n) over the times indicated. The left plot is on the time scale of the first 10,000
activations, and the right is on the full time scale of 100,000 activations.
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µi 8 8 7.9 7 -1 0
σ2

i 1 1.4 0.5 3 1 4
Table 1
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Figure 1: Numerical Regret Comparison of πACF, πCHK, and πG; Left: [0,10,000] range, Right:
[0,100,000] range.

Remark 4. Bounds and Limits: Figure 2 shows first (left) a comparison of the theoretical
bounds on the regret, BπACF(n) and BπCHK(n) representing the theoretical regret bounds
of the RHS of Eq. (4) and Eq. (17) respectively, taking ε = (lnn)1/4 in the latter case,
for the means and variances indicated in Table 1. Additionally, Figure 2 (right) shows
the convergence of RπCHK(n)/ lnn to the theoretical lower bound MBK(µ,σ

2). It is worth
noting that the convergence to the asymptotic limit from below is an artifact of the specific
bandit parameters chosen in this case. Alternative parameters can be found that result in
convergence from above, for instance parameter choices that force the initial activation
period to accumulate regret above this limit.

3. A Comparison of πCHK and Thompson Sampling

Honda and Takemura (2013) considered the following policy:
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Figure 2: Left: Plots of BπACF(n) and BπCHK(n). Right: Convergence of RπCHK(n)/ ln(n) to
MBK(µ,σ

2).

Policy πTS (TS-NORMALα )

i) Initially, sample each bandit ñ > max(2,3−b2αc) times.

ii) For n > ñ : For each i generate a random sample

U i
n ∼ X̄ i

T i
π (n)

+Si(T i
π(n))

Ti,n(T i
π(n)+2α−1)√

T i
π(n)+2α−1

,

with Ti,n(d) a t-distribution with degree d, i.e., the posterior distribution for

µi, given
(

X̄ i
T i

π (n)
,S2

i (T
i

π(n))
)

, and a prior for
(
µi,σ

2
i
)

∝
(
σ2

i
)−1−α .

iii) Then, take
πTS(n+1) = arg maxi U i

n. (38)

It was proven in Honda and Takemura (2013) that for α < 0, the above Thompson sampling
algorithm is asymptotically optimal, i.e., limn→∞ RπTS(n)/ lnn =MBK(µ,σ

2), and further
that RπTS(n) =MBK(µ,σ

2) lnn+O((lnn)4/5).

Policies πTS and πCHK differ decidedly in structure. One key difference, πTS is an inherently
randomized policy, while decisions under πCHK are completely determined given the bandit
results at a given time. Given that both πTS and πCHK are asymptotically optimal, it is
interesting to compare the performances of these two algorithms over finite time horizons,
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and observe any practical differences between them. To that end, two small simulation
studies were done for different sets of bandit parameters (µ,σ2). In each case, the uniform
prior α =−1 was used. The simulations were carried out on a 10,000 round time horizon,
and replicated sufficiently many times to get good estimates for the expected regret over
the times indicated.

0 2000 4000 6000 8000 10000
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100
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200

re
gr

et

rounds

πCHK

πTS

0 2000 4000 6000 8000 10000

50

100

150

200

re
gr

et

rounds

πCHK

πTS

Figure 3: Numerical Regret Comparison of πCHKand πTS for the parameters, of Table 1, left and
Table 2, right.

µi 10 9 8 7 -1 0
σ2

i 8 1 1 0.5 1 4
Table 2

We observe from the above, and from general sampling of bandit parameters, that πTS
and πCHK generally produce comparable expected regret. A general exploration of random
parameters suggests that, on average, πTS is slightly superior to πCHK in cases where all
bandits have roughly equal variances, while πCHK has an edge when the optimal bandits
have large variance relative to the other bandits, and the size of the bandit discrepancies.
We additionally plot the variance in sample regret associated with the previous simulations
(Fig. 4). Additional numerical experiments, not pictured here, indicate that the superior
policy in each case may exhibit a slightly heavier tail distribution towards larger regret. In
general, the question of which policy is superior seems largely context specific.
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Figure 4: Numerical comparison of variance of sample regret for πCHKand πTS for different param-
eters, of Table 1, left and Table 2, right.
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Appendix A. Additional Proofs

Proof [of Proposition 3] Let P = P
(

δ +
√

U
√

k2/p−1 < Z
)

. Note immediately, P >

P
(

δ +
√

Uk1/p < Z
)

. Further,

P > P
(

δ +
√

Uk1/p < Z and
√

Uk1/p > δ

)
> P

(
2
√

Uk1/p < Z and
√

Uk1/p > δ

)
=
∫

∞

δ2

k2/p

∫
∞

2
√

uk1/p

e−z2/2
√

2π
fd(u)dzdu.

(39)
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Where fd(u) is taken to be the density of a χ2
d -random variable. Letting ũ = k2/pu,

P >
1

k2/p

∫
∞

δ 2

∫
∞

2
√

ũ

e−z2/2
√

2π
fd

(
ũ

k2/p

)
dzdũ

=
1

k2/p

∫
∞

δ 2

∫
∞

2
√

ũ

e−z2/2
√

2π

1
2d/2Γ(d/2)

(
ũ

k2/p

)d/2−1

e
− ũ

2k2/p dzdũ

=

(
1

k2/p

)d/2 ∫ ∞

δ 2

∫
∞

2
√

ũ

e−z2/2
√

2π

1
2d/2Γ(d/2)

ũd/2−1e
− ũ

2k2/p dzdũ.

(40)

Observing that k2/p > 1,

P >

(
1

k2/p

)d/2 ∫ ∞

δ 2

∫
∞

2
√

ũ

e−z2/2
√

2π

1
2d/2Γ(d/2)

ũd/2−1e−
ũ
2 dzdũ

= k−d/pP
(

2
√

U 6 Z and U > δ
2
)

=
1
2

k−d/pP
(
4U 6 Z2 and U > δ

2)= 1
2

k−d/pP
(

1
4

Z2 >U > δ
2
)
.

(41)

The exchange from integral to probability is simply the interpretation of the integrand as
the joint pdf of U and Z.

For the upper bound, we utilize the classic normal tail bound, P(x < Z)6 e−x2/2/(x
√

2π).

P 6 E

 e−
(

δ+
√

U
√

k2/p−1
)2

/2

(δ +
√

U
√

k2/p−1)
√

2π

6
e−δ 2/2

δ
√

2π
E
[

e−δ
√

U
√

k2/p−1− 1
2U(k2/p−1)

]
. (42)

Observing the bound that for positive x, e−x 6 1/x, and recalling that d > 2,

P 6
e−δ 2/2

δ
√

2π
E

[
e−

1
2U(k2/p−1)

δ
√

U
√

k2/p−1

]

=
e−δ 2/2

δ 2
√

2π

√
k2/p−1

E
[
U−

1
2 e−

1
2U(k2/p−1)

]
=

e−δ 2/2

δ 2
√

2π

√
k2/p−1

(
k(1−d)/pΓ

(d
2 −

1
2

)
√

2Γ
(d

2

) )
.

(43)

Here we utilize the following bounds: ex − 1 > (e/2)x2, which is easy to prove, and
Γ(d/2− 1/2)/Γ(d/2) 6

√
2π/d, which may be proved on integer d > 2 by induction.

This yields:

P 6
e−(1+δ 2)/2 p

2δ 2 lnk
k(1−d)/p
√

d
. (44)
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This completes the proof.

Remark 5. Room for Improvement: The choice of the ex−1 > (e/2)x2 bound above was
in fact arbitrary - other bounds, such as involving alternative powers of x, could be used.
This would influence how the resulting bound on P is utilized, for instance in the proof of
Theorem 4. The use of e−x 6 1/x in Eq. (43) should be considered similarly.

Proposition 7 In the case of normal distributions with unknown means and variances,

MBK(µ,σ
2) = ∑

i:µi 6=µ∗

2∆i

ln
(

1+ ∆2
i

σ2
i

) . (45)

Proof From Eq. (9) and Eq. (10), it suffices to show that in the case of normal distributions
with unknown means and variances, for any sub-optimal bandit i,

K((µi,σ
2
i ),µ

∗) = inf
(µ̃,σ̃2)

{I( f(µi,σ
2
i )

; f(µ̃,σ̃2)) : µ̃ > µ
∗}= 1

2
ln
(

1+
∆2

i

σ2
i

)
, (46)

where again I( f ;g) is the Kullback-Leibler divergence between densities f and g. Taking
the densities here as normal, we have

I( f(µi,σ
2
i )

; f(µ̃,σ̃2)) =
∫

∞

−∞

ln

(
f(µi,σ

2
i )
(x)

f(µ̃,σ̃2)(x)

)
f(µi,σ

2
i )
(x)dx

=
∫

∞

−∞

(
−(x−µi)

2

2σ2
i

+
(x− µ̃)2

2σ̃2 + ln
(

σ̃

σi

))
1

σi
√

2π
e
− (x−µi)

2

2σ2
i dx

=
(µ̃−µi)

2 +(σ2
i − σ̃2)

2σ̃2 + ln
(

σ̃

σi

)
.

(47)

Restricting to µ̃ > µ∗ and σ̃2 > 0, the infimum is realized (since µ∗ > µi) taking µ̃ = µ∗

and σ̃2 = (µ∗−µi)
2 +σ2

i , yielding

K((µi,σ
2
i ),µ

∗) =
1
2

ln
(

1+
(µ∗−µi)

2

σ2
i

)
=

1
2

ln
(

1+
∆2

i

σ2
i

)
. (48)

Proposition 8 For a χ2
k random variable Uk, and ε > 0,

P(Uk > k(1+ ε))6 (e−ε(1+ ε))k/2. (49)
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Proof Let r > 0, and let Z be a standard normal random variable. We have that

P(Uk > k(1+ ε)) = P(erUk > erk(1+ε))6
E
[
erUk

]
erk(1+ε)

=
E
[
erZ2
]k

erk(1+ε)
, (50)

the last step following from viewing the Uk as the sum of k independent squared standard
normals. Hence,

P(Uk > k(1+ ε))6

E
[
erZ2
]

er(1+ε)

k

=

(
1

er(1+ε)
√

1−2r

)k

, (51)

if 0 < r < 1/2. Taking r = (1/2)(ε/(1+ ε)) completes the result.

Proposition 9 Conjecture 1 is false and for each i, for ε > 0,

P
(

X̄ i
j +Si( j)

√
k2/ j−1 < µi− ε for some 2 6 j 6 k

)
1/k

→ ∞ as k→ ∞. (52)

.

Proof Define the events Ai
j,k,ε = {X̄

i
j+Si( j)

√
k2/ j−1 < µi−ε}. As the samples are taken

to be normally distributed with mean µi and variance σ2
i , we have that X̄ i

j− µi ∼ Zσi/
√

j
and S2

i ( j)∼σ2
i U/ j, where Z is a standard normal, U ∼ χ2

j−1, and Z,U independent. Hence,

P(Ai
j,k,ε) = P

Z
σi√

j
+

√
U

σ2
i
j

√
k2/ j−1 <−ε

= P
(

ε

σi

√
j+
√

U
√

k2/ j−1 < Z
)
.

(53)

The last step is simply a re-arrangement, and an observation on the symmetry of the dis-
tribution of Z. For j > 3, we may apply Proposition 3 here for d = j− 1, p = j, to yield

P(Ai
j,k,ε)>

1
2

k1/ j

k
P
(

1
4

Z2 >U >
ε2

σ2
i

j
)
. (54)

For a fixed j0 > 3, for k > j0 we have

P
(

Ai
j,k,ε for some 2 6 j 6 k

)
> P(Ai

j0,k,ε)> O(1/k)k1/ j0. (55)

The proposition follows immediately.
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Proposition 10 For G > 0, 0 6 ε < 1/2, the following holds:

1

ln
(

1+G (1−ε)2

1+ε

) 6
1

ln(1+G)
+

10G

(1+G)(ln(1+G))2 ε. (56)

Proof For any G > 0, the function 1/ ln
(

1+G (1−ε)2

1+ε

)
is positive, increasing, and convex

on ε ∈ [0,1) (Proposition 11). For a given G > 0, noting that the above inequality holds (as
equality) at ε = 0, due to the convexity it suffices to show that the inequality is satisfied at
ε = 1/2, or

1
ln
(
1+ G

6

) 6 5G

(1+G)(ln(1+G))2 +
1

ln(1+G)
. (57)

Equivalently, we consider the inequality

0 6
5G

(1+G)
+ ln(1+G)− (ln(1+G))2

ln
(
1+ G

6

) . (58)

Define the function F(G) to be the RHS of Ineq. (58). Note that as G→ 0, F(G)→ 0, and
in simplified form we have (for G > 0 and the limit as G→ 0),

F ′(G) =

(
(1+G) ln(1+G)− (6+G) ln

(
1+ G

6

))2

(1+G)2(6+G) ln
(
1+ G

6

)2 > 0. (59)

It follows that F(G)> 0, and hence the desired inequality holds at ε = 1/2. This completes
the proof.

Proposition 11 The function HG(ε)= 1/ ln
(

1+G (1−ε)2

1+ε

)
is positive, increasing, and con-

vex in ε ∈ [0,1), for any constant G > 0.

Proof That HG(ε) is positive and increasing in ε , follows immediately from inspection of
HG and H ′G, given the hypotheses on G, and ε .

To demonstrate convexity, by inspection of the terms of H ′′G(ε), it suffices to show that for
all relevant G, and ε , the following inequality holds.

2G(1− ε)2(3+ ε)2 +
(
−8(1+ ε)+G(1− ε)2(1+ ε(6+ ε))

)
ln
(

1+G
(1− ε)2

1+ ε

)
> 0.

(60)
Defining C = G(1− ε)2/(1+ ε), it is sufficient to show that for all C > 0 and ε ∈ [0,1)
(eliminating a factor of (1+ ε) from the above),

2C(3+ ε)2 +(−8+C(1+ ε(6+ ε))) ln(1+C)> 0. (61)
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Defining JC(ε) as the LHS of the above, note that J′C(ε) = 2C(3+ε)(2+ ln(1+C))> 0. It
suffices then to show JC(0)> 0, or 18C+(C−8) ln(1+C)> 0. Note this holds at C = 0,
and d/dC[JC(0)] = (10+19C)/(1+C)+ ln(1+C)> 0 for C > 0. Hence, JC(ε)> 0, and
H ′′G(ε)> 0.

Proof [of Theorem 2] In the interests of comparing πBK and πCHK, consider a general policy
π depending on a > b that initially samples each bandit a times, then for times greater than
aN, samples according to the maximal index

ui(n,k) = X̄ i
k +Si(k)

√
n

2
k−b −1.

Note, πBK corresponds to the choices a = 2,b = 0, and πCHK corresponds to the choices
a = 3,b = 2.

Let i∗ be the optimal bandit, and let j be such that µ∗= µi∗ > µ j =maxk:µk 6=µ∗ . Let ε̃ = 2σ j.

First, for n > aN, we have the following bound:

n

∑
t=aN

1{π(t +1) 6= i∗}> 1

{
∞⋂

k=1

{X̄ j
k > µ j− ε̃}

}
n−aN+1

∑
m=1

1

{
aN+m−1⋂

t=aN

{
ui∗(t,a)< µ j− ε̃

}}
.

(62)
The above inequality can be seen in the following way: In attempting to bound the sub
optimal activations of π beyond time t = aN from below, we may restrict ourselves to the
event that the sample mean for j 6= i∗ is never below µ j− ε̃ (and hence, the index for j
is never below µ j− ε̃) and count only the initial consecutive non-activations of i∗ beyond
time t = aN. The number of these initial consecutive non-activations, restricted in this way,
is bound from below by the number of times the index for i∗ is consecutively below µ j− ε̃ ,
counted by the righthand sum.
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Noting that ui∗(t,a) is an increasing function of t, we have that

n−aN+1

∑
m=1

1

{
aN+m−1⋂

t=aN

{
ui∗(t,a)< µ j− ε̃

}}

=
n−aN+1

∑
m=1

1
{

ui∗(aN +m−1,a)< µ j− ε̃
}

=
n−aN+1

∑
m=1

1

{
X̄ i∗

a +Si∗(a)
√

(aN +m−1)
2

a−b −1 < µ j− ε̃

}

= 1

{
X̄ i∗

a < µ j− ε̃

}n−aN+1

∑
m=1

1

m <

((µ j− ε̃)− X̄ i∗
a

Si∗(a)

)2

+1

 a−b
2

+1−aN


> 1

{
X̄ i∗

a < µ j− ε̃

}
min

n−aN +1,

((µ j− ε̃)− X̄ i∗
a

Si∗(a)

)2

+1

 a−b
2

−aN


> 1

{
X̄ i∗

a < µ j− ε̃

}
min

n,

((µ j− ε̃)− X̄ i∗
a

Si∗(a)

)2

+1

 a−b
2
−aN.

(63)

From the above, we have that

n

∑
t=aN

1{π(t +1) 6= i∗}

> 1

{
∞⋂

k=1

{X̄ j
k > µ j− ε̃}

}
1

{
X̄ i∗

a < µ j− ε̃

}
min

n,

((µ j− ε̃)− X̄ i∗
a

Si∗(a)

)2

+1

 a−b
2
−aN.

(64)

To compute the relevant expectations, note that (recycling the bound from Eq. (31)),

P

(
∞⋂

k=1

{X̄ j
k > µ j− ε̃}

)
= 1−P

(
∞⋃

k=1

{X̄ j
k < µ j− ε̃}

)
> 1−

∞

∑
k=1

P
(

X̄ j
k < µ j− ε̃

)
>

1
2
.

(65)
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Hence,

E

[
n

∑
t=aN

1{π(t +1) 6= i∗}

]
+aN

>
1
2
E

1{X̄ i∗
a < µ j− ε̃

}
min

n,

((µ j− ε̃)− X̄ i∗
a

Si∗(a)

)2

+1

 a−b
2



=
1
2
E

1{∆ j + ε̃ +σi∗Z/
√

a < 0
}

min

n,

((
∆ j + ε̃ +σi∗Z/

√
a

σi∗
√

U/
√

a

)2

+1

) a−b
2



=
1
2
E

1{∆̃+Z < 0
}

min

n,

((
∆̃+Z√

U

)2

+1

) a−b
2

 ,

(66)

recalling that X̄ i∗
a ∼ µ∗+ σi∗Z/

√
a and Si∗(a) ∼ σ2

i∗U/a where Z,U are independent, Z
a standard normal and U a χ2

a−1 random variable, and taking ∆̃ =
√

a(∆ j + ε̃)/σi∗ > 0.
Taking d = a−1,

E

[
n

∑
t=aN

1{π(t +1) 6= i∗}

]
+aN

> O(1)
∫

∞

0

∫ −∆̃

−∞

min

n,

((
∆̃+ z√

u

)2

+1

) a−b
2
e−z2/2u

d
2−1e−u/2dzdu.

(67)

Taking the transformation (z,u) = (−∆̃−cos(θ)
√

r,r sin(θ)2), for r ∈ [0,∞), θ ∈ [0,π/2],
we have dzdu = 2sin(θ)

√
rdrdθ , and

∫
∞

0

∫ −∆̃

−∞

min

n,

((
∆̃+ z√

u

)2

+1

) a−b
2
e−z2/2−u/2u

d
2−1dzdu

= 2
∫

π/2

0

∫
∞

0
min

{
n,csc(θ)a−b

}
e−

r
2−∆̃cos(θ)

√
r− ∆̃2

2 r
d−1

2 sin(θ)d−1drdθ

> 2
∫

π/2

0

∫
∞

0
min

{
n,csc(θ)a−b

}
e−

r
2−∆̃
√

r− ∆̃2
2 r

d−1
2 sin(θ)d−1drdθ

= 2
(∫

∞

0
e−

1
2 (∆̃+

√
r)2

r
d−1

2 dr
)(∫

π/2

0
min

{
n,csc(θ)a−b

}
sin(θ)a−2dθ

)

> 2
(∫

∞

0
e−

1
2 (∆̃+

√
r)2

r
d−1

2 dr
)∫ π/2

arcsin
(

n−
1

a−b

) sin(θ)b−2dθ

 .

(68)
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From the above, for b > 2, the above integral converges to a constant as n→ ∞, and in
that sense the bound is uninformative, giving an O(1) lower bound. For b < 2, taking the
bounds that θ > sin(θ) on the indicated range, and arcsin(x)6 π/2x for x ∈ [0,1], we have

E

[
n

∑
t=aN

1{π(t +1) 6= i∗}

]
+aN > O(1)

∫
π/2

π

2 n−
1

a−b
θ

b−2dθ = O(1)
∫ 1

n−
1

a−b
τ

b−2dτ. (69)

Noting that Rπ(n)> ∆ jE [∑n
t=aN 1{π(t +1) 6= i∗}], we may therefore summarize as

Rπ(n)>


O(1) if b > 1,
O(lnn) if b = 1,

O
(

n
1−b
a−b−1
1−b

)
if b < 1.

(70)

While the above bound is uninformative in the case of π = πCHK (with a = 3,b = 2), it
follows that π = πBK (with a = 2,b = 0) suffers from at least O(

√
n) regret.
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