Journal of Machine Learning Research 18 (2017) 1-35 Submitted 3/15; Revised 8/16; Published 1/17

Local algorithms for interactive clustering

Pranjal Awasthi PRANJAL.AWASTHI@RUTGERS.EDU
Department of Computer Science
Rutgers University

Maria Florina Balcan NINAMF @ CS.CMU.EDU
School of Computer Science
Carnegie Mellon University

Konstantin Voevodski KVODSKI@GOOGLE.COM
Google, NY, USA

Editor: Le Song

Abstract

We study the design of interactive clustering algorithms. The user supervision that we consider is in
the form of cluster split/merge requests; such feedback is easy for users to provide because it only
requires a high-level understanding of the clusters. Our algorithms start with any initial clustering
and only make local changes in each step; both are desirable properties in many applications. Local
changes are desirable because in practice edits of other parts of the clustering are considered churn
- changes that are perceived as quality-neutral or quality-negative. We show that in this framework
we can still design provably correct algorithms given that our data satisfies natural separability
properties. We also show that our framework works well in practice.

1. Introduction

Clustering is usually studied in an unsupervised learning scenario where the goal is to partition
the data given pairwise similarity information. Designing provably-good clustering algorithms is
challenging because given a similarity function there may be many possible clusterings of the data.
Traditional approaches resolve this ambiguity by making assumptions on the data-generation pro-
cess. For example, there is a large body of work on clustering data that is generated by a mixture of
Gaussians (Achlioptas and McSherry, 2005; Kannan et al., 2005; Dasgupta, 1999; Arora and Kan-
nan, 2001; Brubaker and Vempala, 2008; Kalai et al., 2010; Moitra and Valiant, 2010; Belkin and
Sinha, 2010), and finding clusters with certain density (Rinaldo and Wasserman, 2010; Chaudhuri
and Dasgupta, 2010). But instead of making such assumptions and trying to set the correspond-
ing hyperparameters, we can use limited user (expert) supervision to help the algorithm reach the
correct answer.

Interactive clustering algorithms have been facilitated by the availability of cheap crowd-sourcing
tools in recent years, which enable collection of relevant user input. In certain applications such as
search and document classification, where users are willing to help a clustering algorithm arrive
at their own desired answer with a small amount of additional feedback, interactive clustering al-
gorithms are very useful. The works of Balcan and Blum (2008) and Awasthi and Zadeh (2010)
provide some initial theoretical results in this new and exciting research area, but their models are
not very practical.

(©2017 Pranjal Awasthi, Maria Florina Balcan, Konstantin Voevodski.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided at
http://Jmlr.org/papers/v18/15-085.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v18/15-085.html

AWASTHI, BALCAN AND VOEVODSKI

We observe that in many practical settings we already start with a fairly good clustering com-
puted with semi-automated techniques. For example, consider a massive online news portal that
maintains a large collection of news articles. Suppose that the news articles are clustered on the
“back-end,” and are used to serve several “front-end” applications such as recommendations and
article profiles. For such a system, we do not have the freedom to compute arbitrary clusterings and
present them to the user, which has been suggested in prior interactive clustering work (Balcan and
Blum, 2008; Awasthi and Zadeh, 2010). But it is still feasible to get specific feedback on the current
proposed clustering and locally edit this clustering. In particular, we may only want to change the
“bad” part of the clustering that is revealed by the feedback without changing the rest of the clus-
tering. Our intuition for only considering local edits is that in practice changes to other parts of the
clustering are considered churn - changes that are perceived as quality-neutral or quality-negative.
This observation is especially true for large clustering systems that serve many users, which op-
erate on the assumption that if some of the data is broken, it will be pointed out by a user. For
such applications it is undesirable to change what the user is not complaining about. Motivated by
these observations, in this paper we study the problem of designing /ocal algorithms for interactive
clustering.

We propose a theoretical interactive clustering model and provide strong experimental evidence
supporting its utility in practice. In our model we start with some initial clustering of the data. The
algorithm then interacts with the user in stages. In each stage the user provides limited feedback on
the proposed clustering in the form of split and merge requests. The algorithm then makes a local
edit to the clustering that is consistent with user feedback. Such edits are aimed at improving the
problematic part of the clustering pointed out by the user. The goal of the algorithm is to quickly
converge (using as few requests as possible) to a clustering that the user is happy with - we call this
clustering the target (ground truth) clustering.

In our model the user may request a certain cluster to be split if it is overclustered (intersects
two or more clusters in the target clustering). The user may also request to merge two given clusters
if they are underclustered (both intersect the same target cluster). Note that the user does not tell
the algorithm how to perform the split or the merge; such input is unrealistic because it requires a
manual analysis of the data points in the corresponding clusters. We also restrict the algorithm to
only make /ocal changes at each step - in response we may change only the cluster assignments of
the points in the corresponding clusters. If the user requests to split a cluster C;, we may change
only the cluster assignments of the points in C;, and if the user requests to merge C; and Cj, we
may only reassign the points in C; and Cj.

The split and merge requests in our model are a natural form of feedback. It is easy for users
to spot over/underclustering errors and request the corresponding splits/merges (without having to
provide any additional information about how to perform the edit). For our model to be practically
applicable, we also need to account for noise in the user requests. In particular, if the user requests
a merge, only a fraction or a constant number of the points in the two clusters may belong to the
same target cluster. Our model (see Section 2) allows for such noisy user responses.

We study the complexity of algorithms in this framework (the number of edits requests needed
to find the target clustering) as a function of the error of the initial clustering. We define clustering
error in terms of underclustering error §,, and overclustering error d, (see Section 2). Given that the
initial error is often fairly small !, we would like to develop algorithms whose complexity depends

1. Given 2 different k-clusterings, ., and J, is at most k2.

LOCAL ALGORITHMS FOR INTERACTIVE CLUSTERING

polynomially on §,, d, and only logarithmically on n, the number of data points. We show that this
is indeed possible given that the target clustering satisfies a natural stability property (see Section 2).
In addition, we develop provably correct algorithms for the well-known correlation-clustering ob-
jective (Bansal et al., 2004), which considers pairs of points that are clustered inconsistently with
respect to the target clustering (see Section 2).

1.1 Our Results

Our local interactive clustering model is summarized in Section 2.4. This model is then instantiated
with specific split/merge algorithms in Section 3 and Section 4. In Section 3 we study the 7-merge
model. Here we assume that the user may request to split a cluster C; only if C; contains points
from several ground-truth clusters. The user may request to merge C; and C; only if an 7-fraction
of the points in each C; and C}; are from the same ground-truth cluster. Note that these restrictions
are on the user requests, and not the clustering we are editing. In particular, there may be pairs of
clusters C; and C; where a smaller fraction of the points are from the same target cluster. But we
assume that the user will not request to merge C; and C; in such cases because there is not enough
evidence to request this merge. Instead, we assume that the user will ask for a split of C; and/or C}
first, or ask for another merge involving C; or C; (where there is more evidence that they need to be
merged). This is a realistic restriction because we assume that the merge requests come from high-
level observations about the clusters, for example from observing the cluster profiles/summaries.

For this model for n > 0.5, given an initial clustering with overclustering error J, and under-
clustering error J,, we present interactive clustering algorithms that require 6§, split requests and
2(0y, + k) log 1 n merge requests to find the target clustering, where n is the number of points in

1-n

the data set. For 7 > 2/3, given an initial clustering with correlation-clustering error d.., we present
algorithms that require at most J.. edit requests to find the target clustering.

In Section 4 we relax the condition on the merges and allow the user to request a merge even if
C; and C; only have a single point from the same target cluster. We call this the unrestricted-merge
model. Here the requirement on the accuracy of the user response is much weaker and we need
to make further assumptions about the nature of the requests. In particular, we assume that each
merge request is chosen uniformly at random from the set of possible merge requests. Under this
assumption we present algorithms that with probability at least 1 — € require J,, split requests and
O(log %(53) merge requests to find the target clustering.

Our interactive clustering algorithms take either global or local pairwise similarity data as input.
Our most general algorithms use the global average-linkage tree Ty, to compute local clustering
edits. This tree is constructed from all the data points in the clustering, but it is too large to be
directly pruned by users. Still, we can use this global tree to compute accurate local clustering edits.
Our split algorithm finds the node in T};,;, where the corresponding points are first split in two. It
is more challenging to design a correct merge procedure, given that we allow “impure” merges,
where the clusters in the merge request intersect more than one ground-truth cluster. To perform
such merges, in the n-merge model we design an algorithm to extract the “pure” subsets of the
two clusters, which must only contain points from the same target cluster. Our algorithm searches
for the deepest node in Ty, that has enough points from both clusters. In the unrestricted-merge
model, we develop another merge algorithm that either merges the two clusters or merges them and
splits them. This algorithm always makes progress if the requested merge is “impure,” and makes
progress on average if it is “pure” (both clusters are subset of the same target cluster).

AWASTHI, BALCAN AND VOEVODSKI

When the data satisfies stronger assumptions, we present more efficient split and merge algo-
rithms that do not require global pairwise similarity information. These procedures compute the
edit by only considering the similarities between the points in the user request.

In Section 5 we demonstrate the effectiveness of our algorithms on real data. We show that for
the purposes of splitting known overclustering instances, our split algorithm performs better than
well-known algorithms in unsupervised split/merge clustering literature, such as spectral clustering
and k-means. We also test our entire interactive clustering framework on the 20 Newsgroup data
set, which is known to very challenging for unsupervised (Telgarsky and Dasgupta, 2012; Heller
and Ghahramani, 2005; Dasgupta and Hsu, 2008; Dai et al., 2010; Boulis and Ostendorf, 2004;
Zhong, 2005) and semi-supervised clustering methods (Basu et al., 2002, 2004). We find that in
many scenarios our framework is able find the target Newsgroup clustering after a limited number
of edit requests.

1.2 Related work

In this section we give an overview of the related work in the literature.

Interactive Clustering: Interactive clustering models in previous works (Balcan and Blum,
2008; Awasthi and Zadeh, 2010) were inspired by an analogous model for learning under feedback
(Angluin, 1998). In this model, the algorithm can propose a hypothesis to the user (in this case, a
clustering of the data) and get some feedback regarding the correctness of the current hypothesis.
As in our model, the feedback in Balcan and Blum (2008); Awasthi and Zadeh (2010) is in the
form of split and merge requests. The goal is to design efficient algorithms that require few user
requests. A major limitation in the models of Balcan and Blum (2008) and Awasthi and Zadeh
(2010) is that the algorithm is able to choose any arbitrary clustering as the starting point, and can
make arbitrary changes to the clustering in each step. Hence these algorithms may propose a series
of “bad” clusterings to the user to quickly prune the search space and reach the target clustering.
Our interactive clustering model is in the context of an initial clustering; we are restricted to only
making local changes to this clustering to correct the errors pointed out by the user. This model is
well-motivated by several applications, including the Google application described in Section 5.1.

Active Clustering: Other active clustering frameworks have been proposed, where active ei-
ther refers to selecting which pairwise similarities to consider (not studied here), or requesting user
supervision with respect to the ground-truth clustering. For the former problem, Erikkson et al.
(2011) study minimizing the number of pairwise similarities needed for an algorithm to compute an
accurate clustering. They propose an adaptive algorithm that selects which pairwise similarities to
consider. The assumption on the similarity function that they study, which they call tight clustering
condition, is equivalent to the strict separation property studied here. Krishnamurthy et al. (2012)
propose a different framework to adaptively select which pairwise similarities to consider. They
also study an assumption on the similarity function, which is a generalization of the strict separa-
tion property that considers the expected pairwise similarities. Their framework recursively splits
clusters; they propose a spectral-clustering algorithm to perform the split. They also suggest using
the k-means algorithm to perform the split (albeit with no provable guarantees). In our experimental
section we compare our proposed split procedures with a similar spectral clustering algorithm and
the k-means algorithm (see Section 5.1).

For the latter semi-supervised clustering problem, Nie et al. (2012) develop a clustering algo-
rithm that iteratively extends class labels. It may be used with an empty set of initial labels (unsu-

LOCAL ALGORITHMS FOR INTERACTIVE CLUSTERING

pervised setting), or with a non-empty set of initial labels (semi-supervised setting). The algorithm
minimizes an estimate of Bayes error with respect to the unlabeled instances.

Basu et al. (2002) study the same semi-supervised clustering problem in the context of the k-
means objective. Their algorithm has access to the class labels of some seed fraction f of the points
in the data set. They propose two variations of a supervised k-means algorithm: one which only
uses the known labels to compute the initial clustering (termed Seeded K-Means), and another that
also enforces that the known labels do not change while the centers/clusters are updated (termed
Constrained K-Means). They perform experiments on the same 20 Newsgroups data sets that we
consider in Section 5.2. The experiments of Basu et al. (2002) show that even though the supervision
improves accuracy, even for f > 0.5 the output clustering still has many mistakes. They also show
that the accuracy depends on how difficult the data set is w.r.t. the separability of the ground-truth
clusters, and show improved accuracy on an easier instance (termed Different-3 Newsgroups) when
compared to a harder one (termed Same-3 Newsgroups). In a related work, Basu et al. (2004)
study the same problem but with supervision in the form of pairwise must-link and cannot-link
constraints. They propose another supervised k-means algorithm and perform experiments on the
same 20 Newsgroups data sets. They are still unable to come close to recovering the ground-
truth for a difficult Newsgroups data set (termed News-sim3), but have more success with an easier
Newsgroup data set (termed News-diff3). Ashtiani et al. (2016) also study the k-means objective
with supervision in the form of pairwise must-link and cannot-link constraints, which are modeled as
oracle queries. For center-based clustering instances (specified by a Voroni decomposition around a
set of centers) that satisfy a separability condition with respect to the cluster centers, they propose an
accurate algorithm that requires a limited number of queries; they do not provide any experimental
results.

In our experimental section we give a comparison of our results on the 20 Newsgroups data sets
with those of Basu et al. (2002) and Basu et al. (2004) (see Section 5.2.4). Our comparison considers
the amount of required supervision and accuracy of the final clustering output. We show that only
our framework is able to fully recover the ground-truth clustering, albeit we can do this consistently
only with some restrictions on the requested merges. On the other hand, Basu et al. (2002) and Basu
et al. (2004) do not come close to finding the ground-truth for the harder Newsgroups data sets even
when they use a large amount of supervision.

We also note that the supervision considered by Nie et al. (2012), Basu et al. (2002), Basu
et al. (2004) and Ashtiani et al. (2016) is harder for the user to provide. Such supervision requires
an understanding of the individual data points on the part of the user. The user must study the
individual data points to provide instance class labels as in Nie et al. (2012) and Basu et al. (2002),
or study pairwise relationships between individual data points to provide must-link and cannot-link
constraints as in Basu et al. (2004) and Ashtiani et al. (2016). The supervision in the form of cluster
split/merge requests that we consider here is a more realistic form of interaction - it only requires
the user to understand the high-level properties of the clusters.

Split/Merge Techniques: Several unsupervised split/merge frameworks have also been pro-
posed (Ding and He, 2002; Lee et al., 2012; Chaudhuri et al., 1992). They focus on designing
split/merge algorithms but do not consider any user feedback. Ding and He (2002) propose to use a
spectral clustering algorithm to perform the splits. To perform merges, they only consider returning
the union of the points in the two clusters. In our experiments, we compare the effectiveness of our
split procedures with splits given by spectral clustering (see Section 5.1). With respect to merges,
our merge algorithms for n = 1 are equivalent to the merge proposed by Ding and He (2002), but

AWASTHI, BALCAN AND VOEVODSKI

in our framework merges may only be initiated by user requests, while Ding and He (2002) propose
automatically selecting the next clusters to merge using the max-min-cut criterion (without any user
supervision), which they show works well in practice. However, the experiments of Ding and He
(2002) also assume that we know the target number of clusters, while our model does not make such
assumptions.

Lee et al. (2012) propose a different unsupervised split/merge framework based on optimizing
Bayes error. They propose spectral clustering and k-means for computing the splits, which we
compare with in our experimental section (see Section 5.1). To perform merges, they again only
consider returning the union of the two clusters; the next two clusters to merge are selected by op-
timizing Bayes error. Unlike Ding and He (2002), they do not assume that we know the number
of target clusters. They show good experimental results for video segmentation, but their unsuper-
vised approach may not work for challenging data sets like 20 Newsgroups, where it may not be
possible to find the ground truth without user feedback. Chaudhuri et al. (1992) propose another
unsupervised split/merge framework for image-segmentation applications. Their split procedure is
application-specific because it considers gray-scale values (we cannot compare with it), while their
merge is based on edge density.

Data Separability Properties: The data separability (stability) property that we consider in
this work is a natural generalization of the “stable marriage” property (see Definition 2), which has
been studied in a variety of previous works (Balcan et al., 2008; Bryant and Berry, 2001). It is
the weakest among the stability properties that have been studied recently such as strict separation
and strict threshold separation (Balcan et al., 2008; Erikkson et al., 2011; Ackerman et al., 2012;
Ackerman and Dasgupta, 2014; Balcan et al., 2014). This property is also known to hold for real-
world data. In particular, Voevodski et al. (2012) observed that this property holds for protein
sequence data, where similarities are computed with sequence alignment and ground truth clusters
correspond to evolutionary-related proteins. Other stronger separability properties have also been
considered in the literature (Awasthi and Balcan, 2015).

2. Notation and Preliminaries

Given a data set X of n points we define C = {C},Cy,...Cy} to be a k-clustering of X where
the C;’s represent the individual clusters. Given two clusterings C and C’, we next define several
notions of clustering error, which are used in our theoretical analysis.

2.1 Clustering Error
Given two clusterings C and C’, we define the distance between a cluster C; € C and the clustering
C' as:

dist(C;,C') = |{C]’ e C; NC; # 0} — 1.

This distance is the number of additional clusters in C’ that contain points from C;; it evaluates
to 0 when all points in C; are contained in a single cluster in C’. Naturally, we can then define the
distance between C and C’ as:

dist(C,C") = > dist(C;,).
C;eC

LOCAL ALGORITHMS FOR INTERACTIVE CLUSTERING

Notice that this notion of clustering distance is asymmetric: dist(C,C’) # dist(C’,C). Also
note that dist(C,C’) = 0 if and only if C refines C’. Observe that if C is the ground-truth clustering,
and C’ is a proposed clustering, then dist(C,C’) can be considered an underclustering error, and
dist(C’, C) an overclustering error.

An underclustering error is an instance of several clusters in a proposed clustering containing
points from the same ground-truth cluster; this ground-truth cluster is said to be underclustered.
Conversely, an overclustering error is an instance of points from several ground-truth clusters con-
tained in the same cluster in a proposed clustering; this proposed cluster is said to be overclustered.
In the following sections we use C* = {C},C3, ... C}} to refer to the ground-truth clustering, and
use C to refer to a proposed clustering. We use 9,, to refer to the underclustering error of a proposed
clustering, and d, to refer to the overclustering error. In other words, we have d,, = dist(C*,C)
and J, = dist(C,C*). We use J to denote the sum of the two errors: § = 9, + d,. We call § the
under/overclustering error, and use §(C, C*) to refer to the error of C with respect to C*.

We observe that the under/overclustering error §(C,C*) may also be restated in terms of the
bipartite cluster-intersection graph of Xiang et al. (2012). This bipartite graph G = (C,C*, E)
describes the relationships between the clusters of C and C*, with nodes on one side corresponding
to the clusters of C and nodes on the other side corresponding to the clusters of C*. The set of
(unweighted) edges E corresponds to the intersections between the two sets of clusters: there is an
edge if the corresponding clusters intersect on at least one data point (Xiang et al., 2012). Then
we can express the under/overclustering error 6(C,C*) using vol(G), the sum of the degrees of the
nodes of G:

5(C,C*) = vol(G) — [c| — |C*].

In addition to the under/overclustering error defined above, in parts of our analysis we define
the distance between two clusterings using the correlation-clustering objective function. Given a
proposed clustering C, and a ground-truth clustering C*, we define the correlation-clustering error
dcc as the number of (ordered) pairs of points that are clustered inconsistently with C*:

dee = {(u,v) € X x X : c(u,v) # c*(u,v)},

where ¢(u,v) = 1 if u and v are in the same cluster in C, and 0 otherwise; ¢*(u,v) = 1 if w and v
are in the same cluster in C*, and 0 otherwise. In our analysis we also call each such pair of points
a pairwise correlation-clustering error.

Note that as before we may divide the correlation-clustering error d,. into overclustering com-
ponent d.., and underclustering component ¢,

Occo = [{(u,v) € X x X : ¢(u,v) = 1and ¢*(u,v) = 0}|,

deew = [{(u,v) € X x X : ¢(u,v) = 0 and c¢*(u,v) = 1}|.
Observe that by definition d.c = dcco + Occu-

2.2 Definitions

Our interactive clustering model concerns computing local clustering edits, which only change the
part of the clustering that the user is complaining about. This intuition is captured by the following
definition.

AWASTHI, BALCAN AND VOEVODSKI

Definition 1 (Local algorithm) We say that an interactive clustering algorithm is local if in each
iteration only the cluster assignments of the points involved in the edit request may be changed. If
the user requests to split C;, the algorithm may only reassign the points in C;. If the user requests
to merge C; and Cj, the algorithm may only reassign the points in C; U C}.

We next define the properties of a clustering that we study in this work, which describe how
separable the ground-truth clusters are.

Definition 2 (Stability) Given a clustering C = {C1,Cs, - - - Cy} over a domain X and a similarly
function S : X x X — R, we say that C satisfies stability with respect to S if for all i # j,
and for all A C Cj and A C Cj, S(A,C; \ A) > S(A, A"), where for any two sets A, A,
S(A, A,) = E:BEA,yGA’S(xa Y)-

In addition to the stability property, we also study the stronger strict separation and strict thresh-
old separation properties, which were first introduced in Balcan et al. (2008). They are defined
below. Clearly, we can verify that strict separation and strict threshold separation imply stability.

Definition 3 (Strict separation) Given a clustering C = {C1,Cs, - - Cy} over a domain X and a
similarly function S : X x X — R, we say that C satisfies strict separation with respect to S if for
alli # j, x,y € Cyand z € Cj, S(x,y) > S(x, 2).

Definition 4 (Strict threshold separation) Given a clustering C = {C1,Cq,---Cy} over a do-
main X and a similarly function S : X x X — R, we say that C satisfies strict threshold separation
with respect to S if there exists a threshold t such that, for all i, x,y € C;, S(x,y) > t, and, for all
i#j,xeCyeCj Sy <t

We model the user as an oracle that provides edit requests. In order for our algorithms to
make progress, the oracle requests must be somewhat consistent with the target clustering, which is
captured by the following definitions.

Definition 5 (n-merge model) The oracle may request to split a cluster C; only if C; contains
points from more than one target cluster. The oracle may request to merge two clusters C; and C;
only if at least an n-fraction of the points in each C; and C; belong to the same target cluster.

Definition 6 (unrestricted-merge model) The oracle may request to split a cluster C; only if C;
contains points from more than one target cluster. The oracle may request to merge two clusters C;
and C; only if C; and C}j both intersect the same target cluster.

Note that the assumptions about the split requests are the same in both models. With respect
to the merges, in the 77-merge model the oracle may request to merge two clusters if both have a
constant fraction of points from the same target cluster. In the unrestricted-merge model, the oracle
may request to merge two clusters even if both only have some points from the same target cluster.
In each model, we will refer to the split/merge requests that satisfy these definitions as valid edit
requests.

Also note that in the n-merge model the restrictions on valid merge requests are with respect to
the oracle requests, and not the clustering we are editing. In particular, there may be pairs of clusters
C; and C; where a smaller fraction of the points are from the same target cluster. But we assume
that the oracle will not request to merge C; and Cj in such cases. Instead, we assume that the oracle
will ask for a split of C; and/or Cj first, or ask for a different (valid) merge involving C; or Cj.

LOCAL ALGORITHMS FOR INTERACTIVE CLUSTERING

2.3 Generalized clustering error

We observe that the clustering errors defined in the previous section may be generalized by abstract-
ing their common properties. We define the following properties of what we call natural clustering
error, which is any integer-valued error that decreases when we locally improve the proposed clus-
tering.

Definition 7 We say that a clustering error is natural if it satisfies the following properties:

o [f there exists a cluster C; that contains points from C]"»‘ and some other ground-truth clus-
ter(s), then splitting this cluster into two clusters C;1 = C; N C;-‘ and C; 2 = C; — C; 1 must
decrease the error.

o [fthere exist two clusters that contain only points from the same target cluster, then merging
them into one cluster must decrease the error.

o The error is integer-valued.

We expect a lot of definitions of clustering error to satisfy the above criteria (especially the first
two properties), in addition to other domain-specific criteria. Clearly, the under/overclustering error
0 = dy + 6, and the correlation-clustering error d.. are also natural clustering errors (Claim 8).
Given a natural clustering error -, a proposed clustering C and the target clustering C*, we will
use (C,C*) to denote the magnitude of the error of C with respect to C*. We can also prove that
the under/overclustering error defined in the previous section is the lower-bound on any natural
clustering error (Theorem 9).

Claim 8 The under/overclustering error and the correlation clustering error satisfy Definition 7
and hence are natural clustering errors.

Theorem 9 For any natural clustering error ~y, any proposed clustering C, and any target clustering
C*, y(C,C*) > 6(C,C").

Proof Given any proposed clustering C, and any target clustering C*, we may transform C into C*
via the following sequence of edits. First, we split all overclustering instances using the following
iterative procedure: while there exists a cluster C; that contains points from C; and some other
ground-truth cluster(s), we split it into two clusters C; 1 = C; N C’;‘ and C; 2 = C; — C; 1. Note that
this iterative split procedure will require exactly &, split edits, where d,, is the initial overclustering
error. Then, when we are left with only “pure” clusters (each intersects exactly one target cluster),
we merge all underclustering instances using the following iterative procedure: while there exist
two clusters C; and C; that contain only points from the same target cluster, merge C; and C}.
Note that this iterative merge procedure will require exactly J,, merge edits, where §,, is the initial
underclustering error. Let us use v to refer to any natural clustering error of C with respect to C*.
By the first property of natural clustering error, each split must have decreased by at least one.
By the second property, each merge must have decreased ~y by at least one as well. Given that we
performed exactly § = §, + 0,, edits, it follows that initially 7(C,C*) must have been at least 6. H

For additional discussion about comparing clusterings see Meild (2007). Note that several criteria
discussed in Meild (2007) satisfy our first two properties (given that we replace “must decrease

AWASTHI, BALCAN AND VOEVODSKI

the error” with “must increase the similarity” in Definition 7). In addition, the Rand criteria and
the Mirkin criteria discussed in Meild (2007) are closely related to the correlation clustering error
defined here (all three measures are a function of the number of pairs of points that are clustered
incorrectly).

2.4 Local interactive clustering

We now give a general overview of our local interactive clustering model. This model is then instan-
tiated by specific split/merge algorithms in Section 3 and Section 4 (depending on the assumptions
about the oracle requests and the separability of the data).

Our approach is outlined in Figure 1 - we iteratively keep on making the local edits requested
by the oracle. Note that the oracle does not provide the algorithm with any additional information
about how to execute the split/merge. The description in Figure 1 also assumes that the requests
come one at a time. Batch requests can be handled as well by queuing them in arbitrary order and
then executing them one at a time (as long as the clusters in the request have not changed).

Given that the oracle requests must be somewhat consistent with the target clustering (see our
assumptions about the validity of such requests in Section 2.2), and that our algorithms must there-
fore make progress with respect to finding the target clustering (see our analysis in Section 3 and
Section 4), we expect the loop to terminate when we reach the target clustering.

Also note that the description in Figure 1 does not say anything about the sequence of oracle re-
quests. The algorithms for the -merge model in Section 3 are consistent with this description; they
make no additional assumptions about this sequence. However, the algorithms in the unrestricted-
merge model in Section 4 do make an additional assumption that each merge request is drawn
uniformly at random from the set of valid merge requests.

Figure 1: Local interactive clustering model

while (there exists split/merge request from oracle)

e perform corresponding local clustering edit

3. The n-merge model

In this section we describe and analyze our split/merge algorithms in the n-merge model. As a
preprocessing step for all our split/merge algorithms, we first run the hierarchical average-linkage
algorithm on all the points in the data set to compute the global average-linkage tree, which we
denote by Ty;.p. The leaf nodes in this tree contain the individual points, and the root node contains
all the points. The tree is computed in a bottom-up fashion: starting with the leafs in each iteration
the two most similar nodes are merged, where the similarity between two nodes /N7 and Ns is the
average similarity between the points in N1 and the points in Na.

We assign a label “impure” to each cluster in the initial clustering; these labels are used by the
merge procedure but are not visible to the user. Given a split or merge request from the oracle, a
local clustering edit is computed from the global tree Ty, as described in Figure 2 and Figure 3.

10

LOCAL ALGORITHMS FOR INTERACTIVE CLUSTERING

To implement Step 1 in Figure 2, we start at the root of 1,5, and “follow” the points in C; down
one of the branches until we find a node that splits them. In order to implement Step 2 in Figure 3, it
suffices to perform a post-order traversal of T}, and return the first node that has “enough” points
from both clusters.

Figure 2: Split procedure

Algorithm: SPLIT PROCEDURE
Input: Cluster Cj, global average-linkage tree Tg;p.

1. Search Ty, to find the node IV at which the set of points in C; are first split in two.

2. Let N1 and N5 be the children of N. Set Cz‘,l =N NCGC;, CZ'72 = NoNCGC;.

3. Delete C; and replace it with C; 1 and C; ». Mark the two new clusters as “impure”.

The split procedure is fairly intuitive: if the average-linkage tree is consistent with the target
clustering, it suffices to find the node in the tree where the corresponding points are first split in two.
It is more challenging to develop a correct merge procedure: note that Step 2 in Figure 3 is only
correct if n > 0.5, which ensures that if two nodes in the tree have more than an n-fraction of the
points from C; and C}j, one must be an ancestor of the other. If the average-linkage tree is consistent
with the ground-truth, then clearly the node equivalent to the corresponding target cluster (that C;
and Cj both intersect) will have enough points from C; and Cj; therefore the node that we find in
Step 2 must be this node or one of its descendants. In addition, because our merge procedure may
replace two clusters with three, we require pure/impure labels for the merge requests to terminate:
“pure” clusters may only have other points added to them, and retain this label throughout the
execution of the algorithm.

Figure 3: Merge procedure
Algorithm: MERGE PROCEDURE

Input: Clusters C; and C, global average-linkage tree Tgop.

1. If C; is marked as “pure” set 1 = 1 else set 171 = 7. Similarly set 7, for C}.

2. Search Ty for a node of maximal depth IV that contains enough points from C; and
Cji ‘Nﬂ Cl’ > 771|CZ'| and |Nﬂ CJ| > 772|Cj’.

3. Replace C; by C; \ N, replace Cj by C; \ N.

4. Add a new cluster containing N N (C; U C}), mark it as “pure”.

We now state the performance guarantee for these split and merge algorithms.

Theorem 10 Suppose the target clustering satisfies stability, and the initial clustering has overclus-
tering error 9, and underclustering error §,. In the n-merge model, for any n > 0.5, the algorithms

11

AWASTHI, BALCAN AND VOEVODSKI

in Figure 2 and Figure 3 require at most 9§, split requests and 2(5,, + k) log_1_ n merge requests to
1—n

find the target clustering.

In order to prove the theorem, we must do some preliminary analysis. First, we observe that if
the target clustering satisfies stability, then every node of the average-linkage tree must be laminar
(consistent) with respect to the target clustering. Informally, each node in a hierarchical clustering
tree 7" is said to be laminar (consistent) with respect to the clustering C if for each cluster C; € C,
the points in C; are first grouped together in 71" before they are grouped with points from any other
cluster C'j;. We formally state and prove these observations next.

Definition 11 (Laminar) A node N is laminar with respect to a clustering C if for each cluster
C; € C we have either NN C; =0, N C C;, or C; C N.

Lemma 12 Suppose the ground-truth clustering C* over a domain X satisfies stability with respect
to a similarity function S. Let T be the average-linkage tree for X constructed with S. Then every
node in T is laminar w.r.t. C*.

Proof The proof of this statement can be found in Balcan et al. (2008). The intuition is that if there
is a node in T that is not laminar w.r.t. C*, then the average-linkage algorithm, at some step, must
have merged A C C7, with B C C7 for some ¢ # j. However, this will contradict the stability
property for the sets A and/or B. |

It follows that the split computed by the algorithm in Figure 2 must also be consistent with the
target clustering; we call such splits clean.

Definition 13 (Clean split) A partition (split) of a cluster C; into clusters C; 1 and C; o is said to
be clean if C; 1 and C; 2 are non-empty, and for each ground-truth cluster C} such that C;NC; # 0,
either C]* NnNeC; = C]* N CZ'J or C]* NC; = C]* N 01'72.

We now prove the following properties regarding the correctness of the split/merge procedures;
these properties are then used in the proof of Theorem 10.

Lemma 14 [f the ground-truth clustering satisfies stability and n > 0.5 then,
a. The split procedure in Figure 2 always produces a clean split.

b. The new cluster added by the merge procedure in Figure 3 must be “pure”, i.e., it must contain
points from a single ground-truth cluster.

Proof a. For purposes of contradiction, suppose the returned split is not clean: C; ; and C; 2 contain
points from the same ground-truth cluster C7. It must be the case that C; contains points from sev-
eral ground-truth clusters, which implies that w.l.0.g. C; 1 contains points from some other ground-
truth cluster Cj' e This implies that /Ny is not laminar w.r.t. C*, which contradicts Lemma 12. b. By
our assumption, at least n|C;| points from C; and n|C}| points from C; are from the same ground-
truth cluster C}'. Clearly, the node N’ in T, that is equivalent to C}* (which contains all the points
in C and no other points) must contain enough points from C; and C;, and only ascendants and

12

LOCAL ALGORITHMS FOR INTERACTIVE CLUSTERING

descendants of N’ may contain more than an 7 > 1/2 fraction of points from both clusters. There-
fore, the node N that we find in Step 2 in Figure 3 must be N’ or one of its descendants, and will
only contain points from C}'. n

We also prove an additional property of the split algorithm - it always makes progress with
respect to reducing overclustering error. This property is then used in the proof of Theorem 10.

Lemma 15 If the ground-truth clustering satisfies stability, then the split algorithm in Figure 2
must reduce overclustering error by exactly 1.

Proof Suppose we execute Split(Cy), and call the resulting clusters Cy and C3. Call §; the over-
clustering error before the split, and d5 the overclustering error after the split. Let’s use k; to refer
to the number of ground-truth clusters that intersect C, and define ks and k3 in the same manner.
Due to the clean split property, no ground-truth cluster can intersect both C and C'3, therefore it
must be the case that ko 4+ k3 = ky. Also, clearly ko, k3 > 0. Therefore we have:

0y = (51—(k1—1>+(k2—1)+(k‘3—1)
= 01—k + (ko +k3) -1
= 0 — 1.

Using Lemma 14 and Lemma 15, we can now prove the bounds on the number of split and
merge requests stated in Theorem 10.

Proof [Proof of Theorem 10] We first give a bound on the number of splits. Lemma 15 shows
that each split reduces the overclustering error by exactly 1. It is easy to verify that merges cannot
increase overclustering error. Therefore the total number of splits may be at most d,,.

We next give the argument about the number of impure and pure merges. We call a merge pure
if both clusters have the label “pure”, and call it impure otherwise. We first argue that we cannot
have too many impure merges before each cluster in C' is marked pure. Consider the clustering
P = {C; N C3 | C;is marked “impure” and C; N C} # 0}. Clearly, at the start [P| = 6, + k. A
merge does not increase the number of clusters in P, and the splits do not change P at all (because
of the clean split property). Moreover, each impure merge depletes some P; € P by moving at least
1| P;| of its points to a pure cluster. Clearly, we can then have at most log; /(1—n) " merges depleting
each P;. Since each impure merge must deplete some P;, it must be the case that we can have at
most (dy, + k) logy /(1) 7 impure merges in total.

Notice that a pure cluster can only be created by an impure merge, and there can be at most
one pure cluster created by each impure merge. Clearly, a pure merge removes exactly one pure
cluster. Therefore the number of pure merges may be at most the total number of pure clusters that
are created, which is at most the total number of impure merges. Therefore the total number of
merges must be less than 2(0y, + k) logy /(1 7. [|

We can also restate the run-time bound in Theorem 10 in terms of any natural clustering error
. The following corollary follows from Theorem 10 and Theorem 9.

13

AWASTHI, BALCAN AND VOEVODSKI

Corollary 16 Suppose the target clustering satisfies stability, and the initial clustering has cluster-

ing error vy, where vy is any natural clustering error as defined in Definition 7. In the n-merge model,

for any n > 0.5, the algorithms in Figure 2 and Figure 3 require at most O((y + k)log_1_n) edit
1-n

requests to find the target clustering.

3.1 Algorithms for correlation-clustering error

To efficiently find the target clustering with respect to the correlation clustering error, we propose a
different merge procedure, which is described in Figure 4.

Figure 4: Merge procedure for the correlation-clustering objective
Algorithm: MERGE PROCEDURE

Input: Clusters C; and C;, global average-linkage tree Ty,

Search T for a node of maximal depth N that contains enough points from C; and Cj:
NG| = n|Cil and [N 0 Cy| > |Gl
if |C;| > |C}| then
Replace C; by C; U (N N C})
Replace C; by C; \ N
else
Replace C; by C; \ N
replace C; by C; U (N N C})
end if

Here instead of creating a new “pure” cluster, we add the corresponding points to the larger of
the two clusters in the merge request. Notice that this algorithm is much simpler than the merge
algorithm in Figure 3, and does not require pure/impure labels. Using this merge procedure and the
split procedure presented earlier gives the following performance guarantee.

Theorem 17 Suppose the target clustering satisfies stability, and the initial clustering has correlation-
clustering error ... In the n-merge model, for any n > 2/3, using the split and merge procedures
in Figures 2 and 4 requires at most d.. edit requests to find the target clustering.

Proof Recall that we may express the correlation clustering error .. as a summation of overclus-
tering error d.., and underclustering error d.., (see Section 2.1). Consider the contributions of
individual points to .., and .., which are defined as:

deco(u) = [{v € X : ¢(u,v) = 1 and ¢*(u,v) = 0},
Oceu(u) = {v € X : e(u,v) = 0and c*(u,v) = 1}|.

We first argue that a split of a cluster C; must reduce d... Given that the split is clean, it is easy
to verify that the outcome may not increase d.., (1) for any v € C;. We can also verify that for each
u € Cj, deco(u) must decrease by at least 1. This completes the argument, given that for all other
points w ¢ Cj, d¢eeo(w) and deey, (w) remain unchanged.

We now argue that if > 2/3, each merge of C; and C; must reduce ... Without loss of
generality, suppose that |C;| > |C}], and let us use P to refer to the “pure” subset of C; that is

14

LOCAL ALGORITHMS FOR INTERACTIVE CLUSTERING

moved to C;. We observe that the outcome must remove at least §1 pairwise correlation-clustering
errors (see Section 2.1), where d; satisfies §; > 2| P|(n|C;|). Similarly, we observe that the outcome
may add at most Jy pairwise correlation-clustering errors, where s satisfies:

d2 < 2|P[((1 = n)|Gil) + 2| P[((1 — n)|C;]) < 4[P|((1 = n)|Cil)-

It follows that for n > 2/3, d; must exceed Jo; therefore the number of pairwise correlation-
clustering errors must decrease, giving a lower correlation-clustering error. |

Observe that the runtime bound in Theorem 17 is tight up to a constant: in some instances any
local algorithm requires at least d../2 edits to find the target clustering. To verify this, suppose the
target clustering is composed of n singleton clusters, and the initial clustering contains n/2 clusters
of size 2. In this instance, the initial correlation clustering error d.. = n, and the oracle must issue at
least n/2 split requests before we reach the target clustering (one for each of the n /2 initial clusters).

3.2 Algorithms under stronger assumptions

When the data satisfies stronger separability properties we may simplify the presented algorithms
and/or obtain better performance guarantees. In particular, if the data satisfies the strict separation
property (see Definition 3), we may change the split and merge algorithms to use the local average-
linkage tree, which is constructed from only the points in the edit request. In addition, if the data
satisfies strict threshold separation (see Definition 4), we may remove the restriction on 7 and use
a different merge procedure that is correct for any n > 0.

Theorem 18 Suppose the target clustering satisfies strict separation, and the initial clustering has

overclustering error 0, and underclustering error 0. In the n-merge model, for any n > 0.5, the

algorithms in Figure 5 and Figure 6 require at most 0, split requests and 2(6,, + k) log_1_n merge
1—n

requests to find the target clustering.

Proof Let us use £* to refer to the ground-truth clustering of the points in the split/merge request.
If the target clustering satisfies strict separation, it is easy to verify that every node in the local
average-linkage tree T}, must be laminar (consistent) w.r.t. £*. We can then use this observation
to prove the equivalent of Lemma 14 for strict separation for the split procedure in Figure 5 and
the merge procedure in Figure 6. Similarly, we can prove the equivalent of Lemma 15 for strict
separation for the split procedure in Figure 5. The analysis in Theorem 10 remains unchanged. W

Theorem 19 Suppose the target clustering satisfies strict threshold separation, and the initial clus-

tering has overclustering error 6, and underclustering error 6. In the n-merge model, for any n >

0, the algorithms in Figure 5 and Figure 7 require at most 6, split requests and 2(0,, + k)log_1_n
1-n

merge requests to find the target clustering.
Proof If the target clustering satisfies strict threshold separation, we can verify that for any > 0,

the split procedure in Figure 5 and the merge procedure in Figure 7 still have the properties stated
in Lemma 14 and Lemma 15. The analysis in Theorem 10 remains unchanged.

15

AWASTHI, BALCAN AND VOEVODSKI

To verify that the split procedure always produces a clean split, again let us use L£* to refer to
the ground-truth clustering of the points in the split request. If the target clustering satisfies strict
threshold separation, we can again verify that every node in the local average-linkage tree 7;,. must
be laminar (consistent) w.r.t. £*. It follows that the split procedure always produces a clean split
and must reduce overclustering error by exactly 1. Note that clearly this argument does not depend
on the setting of 7.

We now verify that the new cluster added by the merge procedure in Figure 7 must be “pure”
(must contain points from a single target cluster). Observe that due to the strict threshold separation
property, in the graph G in Figure 7, all pairs of points from the same target cluster must be con-
nected before any pairs of points from different target clusters. It follows that the first component
that contains at least an 7-fraction of points from C; and C'; must be “pure”. Note that this argument
applies for any n > 0. |

Figure 5: Split procedure under stronger assumptions
Algorithm: SPLIT PROCEDURE

Input: Cluster C;, local average-linkage tree Tj,..

1. Let C; 1 and C; 2 be the children of the root in 7j.

2. Delete C; and replace it with C; 1 and C; ». Mark the two new clusters as “impure”.

Figure 6: Merge procedure under strict separation
Algorithm: MERGE PROCEDURE

Input: Clusters C; and C, local average-linkage tree Tj,..

1. If C; is marked as “pure” set ; = 1 else set 77 = 7. Similarly set 73 for C;.

2. Search T}, for a node of maximal depth N that contains enough points from C; and C}:
|N N CZ| > 771|Ci| and |N N C]| > 772|Cj|.

3. Replace C; by C; \ N, replace Cj by C; \ N.

4. Add a new cluster containing N N (C; U C}), mark it as “pure”.

As in Corollary 16, we may also restate the run-time bounds in Theorem 18 and Theorem 19
in terms of any natural clustering error v. The following corollaries follow from Theorem 18,
Theorem 19 and Theorem 9.

Corollary 20 Suppose the target clustering satisfies strict separation, and the initial clustering has

clustering error v, where ~y is any natural clustering error as defined in Definition 7. In the n-merge

model, for any 1 > 0.5, the algorithms in Figure 5 and Figure 6 require at most O((y+k)log_1_n)
1—n

edit requests to find the target clustering.

16

LOCAL ALGORITHMS FOR INTERACTIVE CLUSTERING

Figure 7: Merge procedure under strict threshold separation
Algorithm: MERGE PROCEDURE

Input: Clusters C; and C}.

1. If C; is marked as “pure” set ; = 1 else set 77 = 7. Similarly set 772 for C;.
2. Let G = (V, E) be a graph where V = C; UCj and E = (). Set N = ().

3. While true:

Connect the next-closest pair of points in G;

Let Cy, Co, ..., Chy, be the connected components of G;

if there exists C; such that |C; N C;| > 7|C;i| and |C) N Cj| > n|C;| then
N=Cp
break;

end if

4. Replace C; by C; \ N, replace Cj by C;j \ N.

5. Add a new cluster containing /N, mark it as “pure”.

Corollary 21 Suppose the target clustering satisfies strict threshold separation, and the initial clus-
tering has clustering error ~y, where ~ is any natural clustering error as defined in Definition 7.
In the n-merge model, for any n > 0, the algorithms in Figure 5 and Figure 7 require at most
O((y+ k) log . n) edit requests to find the target clustering.

4. The unrestricted-merge model

In this section we further relax the assumptions about the nature of the oracle requests. As before,
the oracle may request to split a cluster if it contains points from two or more target clusters. For
merges, now the oracle may request to merge C; and C if both clusters contain only a single
point from the same ground-truth cluster. We note that this is a minimal set of assumptions for
a local algorithm to make progress, otherwise the oracle may request irrelevant splits or merges
that prevent the algorithm from finding the target clustering. For this model we propose the merge
algorithm described in Figure 8. The split algorithm remains the same as in Figure 2.

To provably find the ground-truth clustering in this setting we require that each merge request
must be chosen uniformly at random from the set of valid merge requests. This assumption is
consistent with the observation in Awasthi and Zadeh (2010) that in the unrestricted-merge model
with arbitrary request sequences, even very simple clustering instances require a prohibitively large
number of requests. We do not make additional assumptions about the nature of the split requests;
in each iteration any valid split may be proposed by the oracle. In this setting our algorithms have
the following performance guarantee.

Theorem 22 Suppose the target clustering satisfies stability, and the initial clustering has overclus-
tering error d, and underclustering error d,. In the unrestricted-merge model, assuming that each

17

AWASTHI, BALCAN AND VOEVODSKI

Figure 8: Merge procedure for the unrestricted-merge model
Algorithm: MERGE PROCEDURE

Input: Clusters C; and (), global average-linkage tree T, .
1. Let C;, C% = Split(C; U Cj), where the split is performed as in Figure 2.
2. Delete C; and C}.

3. If the sets C/ and CJ’- are the same as C; and C}, then add C; U C;, otherwise add C/ and
C".
J

merge request is chosen uniformly at random from the set of valid merge requests, with probability
at least 1 — €, the algorithms in Figure 2 and Figure 8 require 0, split requests and O(log %53)
merge requests to find the target clustering.

Theorem 22 is proved in the following lemmas. We first state a lemma regarding the correctness
of the Algorithm in Figure 8. We argue that if the algorithm merges C; and C);, it must be the case
that both C; and C}; only contain points from the same ground-truth cluster.

Lemma 23 If the algorithm in Figure 8 merges C; and C; in Step 3, it must be the case that
C; C Cf and C; C Cf for some ground-truth cluster Cf.

Proof We prove the contrapositive. Suppose C; and C; both contain points from Cj, and in addi-
tion C; U Cj contains points from some other ground-truth cluster. Let us define S; = C} N C; and
Sy = Cf N Cj. Because the clusters Cj, C; result from a clean split, it follows that 51, Sz C C; or
S1,S2 C C}. Without loss of generality, assume S, So C C;. Then clearly C; # C; and C} # Cj,
so C; and C} are not merged. |

The d, bound on the number of split requests follows from the observation that each split reduces
the overclustering error by exactly 1 (see Lemma 15), and the fact that the merge procedure does
not increase overclustering error (see Lemma 24).

Lemma 24 The merge algorithm in Figure 8 does not increase overclustering error.

Proof Suppose C; U C intersects several ground-truth clusters, and hence we obtain two new
clusters C7, C’]’-. Let us call ; the overclustering error before the merge, and J5 the overclustering
error after the merge. Let’s use k; to refer to the number of ground-truth clusters that intersect C;,
ko to refer to the number of ground-truth clusters that intersect C;, and define & and k5 in the same
manner. The new clusters C? and CJ’- result from a “clean” split, therefore no ground-truth cluster
may intersect both of them. It follows that k] + k% < k1 + k2. Therefore we now have:

b = 01— (k1—1)— (ke —1)+ (K1 — 1)+ (k5 —1)
(51—(k1+k2)+(]€i+k/2)<(51.

18

LOCAL ALGORITHMS FOR INTERACTIVE CLUSTERING

If C; and C are both subset of the same ground-truth cluster, then clearly the merge operation has
no effect on the overclustering error. |

Finally, Lemma 25 and Lemma 26 bound the number of impure and pure merges. Here we
call a proposed merge pure if both clusters are subset of the same ground-truth cluster, and impure
otherwise.

Lemma 25 The merge algorithm in Figure 8 requires at most 6, impure merge requests.

Proof We argue that the result of each impure merge request must reduce the underclustering error
0, by at least 1. Recall from Section 2.1 that we may express d,, as a summation of underclustering
error with respect to each target cluster. Suppose the oracle requests to merge C; and C;, and C!
and CJ’» are the resulting clusters. Clearly, the local edit has no effect on the underclustering error
with respect to target clusters that do not intersect C; or C;. In addition, because the new clus-
ters C/ and CJ'~ result from a clean split, for target clusters that intersect exactly one of C;, C;, the
underclustering error must stay the same. For target clusters that intersect both C; and C}, the un-
derclustering error must decrease by exactly one; the number of such target clusters is at least one. H

Lemma 26 Assuming that each merge request is chosen uniformly at random from the set of valid
merge requests, the probability that the algorithm in Figure 8 requires more than O(log %65) pure
merge requests is less than e.

Proof We first consider the pure merge requests involving points from some ground-truth clus-
ter C, the total number of pure merge requests (involving any ground-truth cluster) can then be
bounded with a union-bound. To facilitate our argument, let us assign an identifier to each cluster
containing points from C in the following manner:

1. Maintain a cluster-id variable, which is initialized to 1. To assign a “new” identifier to a
cluster, set its identifier to cluster-id, and increment cluster-id.

2. In the initial clustering, assign a new identifier to each cluster containing points from C;".

3. When we split a cluster containing points from C, assign its identifier to the newly-formed
cluster containing points from C7'.

4. When we merge two clusters that are not both subset of the same target cluster, if one of the
clusters contains points from C, assign its identifier to the newly-formed cluster containing
points from C7. If both clusters contain points from C, assign a new identifier to the newly-
formed cluster containing points from C'.

5. When we merge two clusters C'; and C», and both contain only points from C, if the outcome
is one new cluster, assign it a new identifier. If the outcome is two new clusters, assign them
the identifiers of Cy and Cs.

Observe that when clusters containing points from C* are assigned identifiers in this manner,
the maximum value of cluster-id is bounded by O(9;), where J; denotes the underclustering error

19

AWASTHI, BALCAN AND VOEVODSKI

of the initial clustering with respect to C: §; = dist(C}, C'). To verify this, consider that we assign
exactly d; + 1 new identifiers in Step 2, and each time we assign a new identifier in Steps 4 and 5,
d; decreases by one.

We say that a pure merge request involving points from C} is original if the user has never
asked us to merge clusters with the given identifiers, otherwise we say that this merge request is
repeated. Given that the maximum value of cluster-id is bounded by O(d;), the total number of
original merge requests must be O(62).

We now argue that if a merge request is not original, we can lower bound the probability that it
will result in the merging of the two clusters. For a repeated merge request M; = Merge(Cy, Cs),
let X; be a random variable defined as follows:

1 if neither C'; nor Cs have been involved in a pure merge request since
X; = the last time a merge of clusters with these identifiers was proposed.
0 otherwise.

Clearly, when X; = 1 it must be the case that C; and Cy are merged. Assuming that each
merge request is chosen uniformly at random from the set of valid merge requests, we observe that
Pr[X; = 1] > Wlﬂ' To verify this, observe that in each merge request the probability that the
user requests to merge Cy and C5 is %, and the probability that the user requests a pure merge
involving C; or (s and some other cluster is less than %’, where m is the total number of valid
merge requests; we can then bound the probability that the former happens before the latter.

We can then use a Chernoff bound to argue that after ¢ = O(log %63) repeated merge requests,
the probability that Zzzl X; < 6&; (which must be true if we need more repeated merge requests)
is less than €/k. Therefore, the probability that we need more than O(log %522) repeated merge
requests is less than €/k.

By the union-bound, the probability that we need more than O(log %612) repeated merge re-
quests for any ground-truth cluster C; is less than & - ¢/k = €. Therefore with probability at least
1 — € for all ground-truth clusters we need) . O(log %53) = O(log % >, 02) = O(log %65) re-
peated merge requests, where ¢, is the underclustering error of the initial clustering. Also recall
that for all ground-truth clusters we need >, O(62) = O(02) original merge requests. Adding the
two terms together, it follows that with probability at least 1 — € we need a total of O(log 553) pure

€
merge requests. |

As in the previous section, we also restate the run-time bound in Theorem 22 in terms of any
natural clustering error . The following corollary follows from Theorem 22 and Theorem 9.

Corollary 27 Suppose the target clustering satisfies stability, and the initial clustering has cluster-
ing error vy, where vy is any natural clustering error as defined in Definition 7. In the unrestricted-
merge model, assuming that each merge request is chosen uniformly at random from the set of valid
merge requests, with probability at least 1 — ¢, the algorithms in Figure 2 and Figure 8 require
O(log f’yz) edit requests to find the target clustering.

4.1 Algorithms under stronger assumptions

As in Section 3.2, if the data satisfies strict separation, then instead of the split procedure in Figure 2
we can use the procedure in Figure 5, which uses the local average-linkage tree (constructed from

20

LOCAL ALGORITHMS FOR INTERACTIVE CLUSTERING

only the points in the user request). Similarly, we can modify the merge procedure in Figure 8 to
perform the split as in Figure 5. We can then prove the equivalent of Theorem 22 and Corollary 27
for strict separation for these split/merge algorithms.

5. Experimental Results

We perform two sets of experiments. We first test our proposed split algorithm on the clustering of
business listings maintained by Google. We then test the proposed model in its entirety on the 20
Newsgroups data set.

5.1 Clustering business listings

Google maintains a large collection of data records representing businesses, which as of 2013 con-
tained more than 100 millions records. These records are initially clustered using a similarity func-
tion. Each cluster is expected to contain records about the same distinct business. Clusters are
then summarized; these summaries are served to users online via various front-end applications.
Users report bugs such as “you are displaying the name of one business, but the address of another”
(caused by overclustering), or “a particular business is shown multiple times” (caused by under-
clustering). The clusters involved in these requests are often quite large and usually contain records
about several businesses. Therefore this setting closely matches our interactive clustering model
- users provide high-level feedback requesting cluster merges/splits, where the corresponding data
points intersect several ground-truth clusters.

Here we evaluate the effectiveness of our proposed split algorithm in such cases. Correctness
of a split is evaluated with respect to the ground-truth labels, which are obtained through manual
inspection of the listings in the cluster. For example, from manual inspection it is very easy to see
that two Starbucks records with different addresses are in fact different businesses (have different
ground-truth labels) even if, say, they have the same corporate phone number. But this observation
is not necessarily captured by the noisy similarity function, causing the listings to incorrectly cluster
together.

We consider two criteria to determine whether a split is correct or not, and show experimental
results for both. We first consider a binary split correct if the two resulting sub-clusters are “clean”
according to Definition 13. Note that a clean split is sufficient and necessary for reducing the
under/overclustering error in our model. To compute the splits, we use the algorithm in Figure 5,
which we refer to as Clean-Split. This algorithm is easier to implement and run than the algorithm
in Figure 2 because it only requires local pairwise similarities (for the listings in the cluster). But
this algorithm is still provably correct under stronger assumptions on the data (see Theorem 18 and
Theorem 19), which we believe are still satisfied in this application.

We compare performance with two well-known split algorithms from split/merge clustering lit-
erature: the optimal 2-median clustering (2-Median), and a “sweep” of the second-smallest eigen-
vector of the corresponding graph Laplacian matrix. With respect to the spectral split algorithm, let
{v1,...,v,} be the order of the vertices when sorted by their eigenvector entries. We compute the
partition {v1, ..., v;} and {v;41, ..., v, } such that its conductance is smallest (Spectral-Balanced),
and a partition such that the similarity between v; and v;; is smallest (Spectral-Gap).

We compare the split algorithms on overclustering instances that were discovered during a man-
ual clustering quality evaluation. We consider 20 such instances to ensure that our results are con-
sistent, given that there may be differences in the difficulty of each instance. We have anonymized

21

AWASTHI, BALCAN AND VOEVODSKI

Table 1: Number of correct (clean) splits on the Google business listings data sets.

Clean-Split 2-Median Spectral-Gap Spectral-Balanced
19 13 12 3

these data-sets and made them publicly available. > The results are presented in Table 1. We ob-
serve that the Clean-Split algorithm works best, giving a correct split in 19 out of the 20 cases.
The well-known Spectral-Balanced technique usually does not give correct splits in this applica-
tion. The balance constraint causes it to put records about the same business on both sides of the
partition (especially when all the “clean” splits are not well-balanced), which increases clustering
error. As expected, the Spectral-Gap technique improves on this limitation (because it does not
have a balance constraint), but the result is often still incorrect. The 2-Median algorithm performs
fairly well, but it is still a limited approach in this application: the optimal centers may correspond
to listings about the same business, and even if they represent distinct businesses, the resulting split
is still sometimes incorrect.

In addition to using the clean-split criterion, we also evaluate the computed splits using the
correlation-clustering (cc) error. We find that using this criterion Clean-Split and 2-Median compute
the best splits, while the other two algorithms perform significantly worse. The results for Clean-
Split and 2-Median are presented in Table 2 - we see that Clean-Split is more reliable because it
fails to reduce the cc-error only once, compared to 4 such failures for 2-Median. Table 2 also
reinforces our theoretical understanding of the effectiveness of our split algorithm. We know that
a clean split is sufficient to reduce the cc-error, but it is not necessary. Our experiments illustrate
these observations: Clean-Split makes progress in reducing the cc-error in 19 out of 20 cases (when
the resulting split is clean), while we have also confirmed that 2-Median sometimes still reduces the
cc-error even when the resulting split is not clean.

5.2 Clustering Newsgroup documents

In order to test our entire interactive clustering model, we perform experiments on the 20 News-
groups data set.> The points in the data set are posts to twenty different online forums (called
newsgroups). We sample these data to generate 5 data sets of manageable size (containing 276-301
points), which are labeled A through E in the figures. Each data set contains some documents from
every newsgroup. The purpose of these 5 data sets is to check the consistency of our results, given
that there may be considerable variation in how separable the ground-truth clusters are in each case.
For each data set, the ground-truth is determined by the newsgroups that the documents belong to.

Each Newsgroup document is represented by a term frequency - inverse document frequency
(tf-idf) vector (Salton and Buckley, 1988). We use cosine similarity to compare these vectors, which
gives a similarity score in [0, 1]. We compute an initial clustering by using the following procedure
to perturb the ground-truth: for each document we keep its ground-truth cluster assignment with
probability 0.5, and otherwise reassign it to one of the other clusters, which is chosen uniformly
at random. This procedure generates initial clusterings with overclustering error of about 100,
underclustering error of about 100, and correlation-clustering error of about 5000.

2. The anonymized Google business listings data sets are available here.
3. http://people.csail.mit.edu/jrennie/20Newsgroups/

22

http://voevodski.org/data/businessListingsDatasets/description.html

LOCAL ALGORITHMS FOR INTERACTIVE CLUSTERING

Table 2: Change in correlation-clustering error for splits on the Google business listings data sets.
A negative value corresponds to a decrease in error.

Data Set Clean-Split 2-Median

1 -14 -14
2 -5 -5
3 -11 -11
4 -117 -117
5 -42 +90
6 -4 -4
7 -12 -30
8 -27 -27
9 -6 -6
10 -6 -6
11 +6 -8
12 -10 +14
13 -6 -6
14 -12 -22
15 -6 -6
16 -10 +14
17 -11 =27
18 -10 -10
19 -11 -5
20 -10 -10

To simulate user feedback, we compute the set of all valid split and merge requests. Consistent
with our model, a split of a cluster is considered valid if it contains points from 2 or more ground-
truth clusters, and a merge is considered valid if at least an 7)- fraction of the points in each cluster
are from the same ground-truth cluster. We then choose one of the valid splits/merges uniformly
at random, and ask the algorithm to compute the corresponding split/merge. We continue to iterate
until we find the ground-truth clustering or reach a limit on the number of edit requests (set to
20000).

The Newsgroup data is know to be very challenging for unsupervised (Telgarsky and Dasgupta,
2012; Heller and Ghahramani, 2005) and semi-supervised clustering algorithms (Basu et al., 2002,
2004). In particular, on harder Newsgroup clustering instances Basu et al. (2002) and Basu et al.
(2004) report that they are unable to come close to finding the ground-truth clustering even with
considerable supervision.

To study how our algorithms perform on easier clustering instances, we also slightly prune our
data sets. Our heuristic iteratively finds and removes the outlier in each target cluster, where the
outlier is the point with minimum sum-similarity to the other points in the target cluster. For each

23

AWASTHI, BALCAN AND VOEVODSKI

data set, we perform experiments with the original (unpruned) data set, a pruned data set with 2
points removed per target cluster, and a pruned data set with 4 points removed per target cluster,
which prunes 40 and 80 points, respectively. Our pruning heuristic generates clustering instances
where the ground-truth clusters are more separable, similar to the Different-3 data set of Basu et al.
(2002) and the News-diff3 data set of Basu et al. (2004).

5.2.1 EXPERIMENTS IN THE 1-MERGE MODEL

We first experiment with algorithms in the n-merge model. Here we use the algorithm in Figure 2
to perform the splits, and the algorithm in Figure 3 to perform the merges. We show the results for
data set A in Figure 9; the complete experimental results are in Appendix B. We find that for larger
settings of 7, the amount of supervision (number of split/merge requests needed to find the target
clustering) is quite low and consistent with our theoretical analysis. The results are better for pruned
data sets, where we get very good performance regardless of the setting of 1. The results for the
algorithms in Figure 2 and Figure 4 (for the correlation-clustering objective) are very favorable as
well.

5.2.2 EXPERIMENTS IN THE UNRESTRICTED-MERGE MODEL

We also experiment with algorithms in the unrestricted merge model. Here we use the same algo-
rithm to perform the splits, and use the algorithm in Figure 8 to perform the merges. We show the
results on data set A in Figure 10; the complete experimental results are in Appendix B. We find
that again for larger settings of 1 the amount of supervision is quite low and consistent with our
theoretic analysis (we only show results for 7 > 0.5), and performance improves further for pruned
data sets. Our investigations show that for unpruned data sets and smaller settings of 1, we are still
able to quickly achieve very small clustering error (results not shown), but the algorithms are unable
to converge to the ground-truth clustering due to inconsistencies in the average-linkage tree. We can
address some of these inconsistencies by constructing the tree in a more robust way, which indeed
gives improved performance (see Appendix C).

5.2.3 EXPERIMENTS WITH SMALL INITIAL ERROR

We also consider a setting where the initial clustering is already very accurate. In order to simulate
this scenario, when we compute the initial clustering, for each document we keep its ground-truth
cluster assignment with probability 0.95, and otherwise reassign it to one of the other clusters,
which is chosen uniformly at random. This procedure usually gives us initial clusterings with over-
clustering and underclustering error between 5 and 20, and correlation-clustering error between 500
and 1000. Note that this setting also closely matches the scenario where the initial clustering is
computed using a good clustering algorithm, which is quite realistic in some applications.

As expected, in this setting our interactive algorithms perform much better, especially on pruned
data sets. Figure 11 displays the results; we can see that in these scenarios it often takes less than
one hundred edit requests to find the target clustering in both models.

24

LOCAL ALGORITHMS FOR INTERACTIVE CLUSTERING

Eta-Merge
20000
18000
4 16000
)
14000
= eta=0.5
& 12000
- eta=0.6
5 10000
B eta=0.7
a 8000
o meta=0.8
6000
g Heta=0.9
2 4000
Heta=1.0
2000 I
O _
no pruning 2 per cluster 4 per cluster
Pruned Points
Eta-Merge
20000 -
18000 -
8 16000 -
]
g 14000
g 12000
< eta=0.7
5 10000
w HMeta=0.8
5 8000 -
o Heta=0.9
6000 -
g Heta=1.0
Z 4000 -
2000 -
0 . T,
no pruning 2 per cluster 4 per cluster

Pruned Points

Figure 9: Experimental results in the 7-merge model for data set A. The second chart corresponds
to algorithms for correlation clustering error.

25

AWASTHI, BALCAN AND VOEVODSKI

Unrestricted-Merge

20000
18000
£ 16000
]
14000
g- eta=0.5
& 12000
- eta=0.6
5 10000
= eta=0.7
L 8000
o meta=0.8
€ 6000
S Meta=0.9
2 4000
HMeta=1.0
2000
0 L I ——— e —

no pruning 2 per cluster 4 per cluster
Pruned Points

Figure 10: Experimental results in the unrestricted merge model for data set A.

5.2.4 COMPARISON WITH OTHER SEMI-SUPERVISED CLUSTERING MODELS

In this section we give a performance comparison on the 20 Newsgroups data sets with the semi-
supervised clustering models of Basu et al. (2002) and Basu et al. (2004). The accuracy of the output
clustering is stated in terms of normalized mutual information (NMI) (see Strehl et al., 2000).

Table 3 shows a comparison on a harder Newsgroup clustering instance; table 4 shows a compar-
ison on an easier instance. The performance of our approach is with respect to the n-merge model,
using the algorithm in Figure 2 to perform the splits, and the algorithm in Figure 3 to perform the
merges; we focus on a single setting of = 0.7. To compare the amount of supervision used by
each model, consider that n instance class labels in the framework of Basu et al. (2002) are equiva-
lent to n(n — 1)/2 pairwise labels in the framework of Basu et al. (2004). Let us also oversimplify
and assume that the cost of a pairwise label in the framework of Basu et al. (2004) is the same as
the cost of one/split merge request in our framework. Also, we can adjust for differences in data set
size by assuming that the proportion of supervision does not change. In particular, 1500 instance
class labels on a data set of 3000 documents correspond to 150 instance class labels on a data set
of 301 documents. These 150 instance class labels are then equivalent to 150 * 149 / 2 = 11175
pairwise labels. Similarly, 1500 instance class labels on a data set of 3000 documents correspond to
138 instance class labels on a data set of 276 documents, which are then equivalent to 138 * 137/2
= 9453 pairwise labels.

Then for a harder clustering instance we observe that we need less supervision than Basu et al.
(2002) and roughly 7.5 times more supervision than Basu et al. (2004) to achieve a completely
correct clustering (NMI = 1.0) as opposed to a clustering that is only half-correct (NMI = 0.44, 0.55).
For an easier clustering instance, we observe that we need roughly 2.7 times less supervision than

26

LOCAL ALGORITHMS FOR INTERACTIVE CLUSTERING

Eta-Merge
300
» 250
k7
s
& 200 eta=0.5
< -
eta=0.6
£ 150
w eta=0.7
2 100 meta=0.8
§ meta=0.9
50 I l h meta=1.0
0
A B C D E
Data Set
Eta-Merge
300 -
a 250 |
w
3
3200 -
2 ta=0.7
eta=0.
£ 150
o Meta=0.8
é 100 | meta=0.9
S Meta=1.0
Z 50 -
0
A B C D E
Data Set
Unrestricted-Merge
300
250
wv
®
]
?-’- 200 eta=0.5
e« eta=0.6
5 150
2 eta=0.7
2 100 meta=038
5 Meta=0.9
0
A B c D E

Data Set

Figure 11: Experimental results for initial clusterings with small error. Results presented for pruned
data sets (4 points per cluster). The second chart corresponds to algorithms for correla-
tion clustering error.

27

AWASTHI, BALCAN AND VOEVODSKI

Basu et al. (2002), and 3.9 times more supervision than Basu et al. (2004) to achieve a completely
correct clustering (NMI = 1.0) as opposed to a mostly-correct clustering (NMI = 0.88).

These are favorable comparisons for our model - we are able to compute more accurate clus-
terings while using a comparable amount of supervision. We also note that for Basu et al. (2002)
and Basu et al. (2004), additional supervision does not improve accuracy - the stated performance
is the best accuracy they can achieve. Our framework is the only approach that has demonstrated a
complete recovery of the ground truth on the Newsgroup data.

Table 3: Framework comparison on harder Newsgroup clustering instance.

Framework Data Set Name Data Set Size Amount of Supervision Output Accuracy
~Basu et al. (2002) Same-3 3000 1500 labeled data points ~ NMI = 0.4

Basu et al. (2004) News-sim3 300 1000 pairwise constraints NMI =0.55

Interactive clustering Data Set E 301 7573 split/merge requests NMI=1.0

Table 4: Framework comparison on easier Newsgroup clustering instance.

Framework Data Set Name Data Set Size Amount of Supervision Output Accuracy
" Basu et a1.7(2002) Different-3 3000 1500 labeled data points NMI = 0.88

Basu et al. (2004) News-diff3 300 1000 pairwise constraints NMI = (0.88

Interactive clustering Data Set D 276 3548 split/merge requests NMI=1.0

6. Discussion

In this work we motivated and studied a new framework and algorithms for interactive clustering.
Our framework models practical constraints on the algorithms: we start with an initial clustering that
we cannot modify arbitrarily, and are only allowed to make local edits consistent with user requests.
In this setting, we develop several simple, yet effective algorithms under different assumptions about
the nature of the edit requests and the structure of the data. We present theoretical analysis that
shows that our algorithms converge to the target clustering after a limited number of edit requests.
We also present experimental evidence that shows that our algorithms work well in practice.

Several directions come out of this work. It would be interesting to relax the condition on 7
in the n-merge model, and the assumption about the request sequences in the unrestricted-merge
model. It is also important to study additional properties of an interactive clustering algorithm. In
particular, it is often desirable that the algorithm never increase the error of the current clustering.
Our algorithms in Figures 2, 4 and 8 have this property, but the algorithm in Figure 3 does not.

Other user feedback models have also been proposed (see Appendix A for how they relate to
the split/merge feedback considered here). It is valuable to further study the practical applicability
of each kind of feedback and understand under what conditions they are equivalent.

28

LOCAL ALGORITHMS FOR INTERACTIVE CLUSTERING

7. Acknowledgments

This work was supported in part by grants NSF CCF-0953192, NSF-CCF 1535967, NSF CCF-
1422910, NSF 1IS1618714, ONR grant N00014-09-1-0751, AFOSR grant FA9550-09-1-0538, a
Google Research Award, and a Microsoft Research Fellowship.

References

Dimitris Achlioptas and Frank McSherry. On spectral learning of mixtures of distributions. In
COLT, 2005.

Margareta Ackerman and Sajoy Dasgupta. Incremental clustering: The case for extra clusters. In
NIPS, 2014.

Margareta Ackerman, Shai Ben-David, Simina Branzei, and David Loker. Weighted clustering. In
AAAI 2012.

Dana Angluin. Queries and concept learning. Machine Learning, 2(4):319-342, 1998.
Sanjeev Arora and Ravi Kannan. Learning mixtures of arbitrary gaussians. In STOC, 2001.

Hassan Ashtiani, Shrinu Kushagra, and Shai Ben-David. Clustering with same-cluster queries.
CoRR, abs/1606.02404, 2016.

Pranjal Awasthi and Maria-Florina Balcan. Center based clustering: A foundational perspective.
In Christian Hennig, Marina Meila, Fionn Murtagh, and Roberto Rocci, editors, Handbook of
Cluster Analysis. CRC Press, 2015.

Pranjal Awasthi and Reza Bosagh Zadeh. Supervised clustering. In NIPS, 2010.
Maria-Florina Balcan and Avrim Blum. Clustering with interactive feedback. In ALT, 2008.
Maria-Florina Balcan and Pramod Gupta. Robust hierarchical clustering. In COLT, 2010.

Maria-Florina Balcan, Avrim Blum, and Santosh Vempala. A discriminative framework for cluster-
ing via similarity functions. In STOC, 2008.

Maria-Florina Balcan, Yingyu Liang, and Pramod Gupta. Robust hierarchical clustering. Journal
of Machine Learning Research, 15:3831-3871, 2014.

Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering. Machine Learning, 56
(1-3):89-113, 2004.

Sugato Basu, Arindam Banerjee, and Raymond Mooney. Semi-supervised clustering by seeding. In
ICML, 2002.

Sugato Basu, Arindam Banerjee, and Raymond J. Mooney. Active semi-supervision for pairwise
constrained clustering. In SDM, 2004.

Mikhail Belkin and Kaushik Sinha. Polynomial learning of distribution families. In FOCS, 2010.

29

AWASTHI, BALCAN AND VOEVODSKI

Constantinos Boulis and Mari Ostendorf. Combining multiple clustering systems. In PKDD, 2004.

S. Charles Brubaker and Santosh Vempala. Isotropic PCA and affine-invariant clustering. CoRR,
abs/0804.3575, 2008.

David Bryant and Vincent Berry. A structured family of clustering and tree construction methods.
Advances in Applied Mathematics, 27(4):705-732, 2001.

D. Chaudhuri, B. B. Chaudhuri, and C. A. Murthy. A new split-and-merge clustering technique.
Pattern Recognition Letters, 13(6):399-409, 1992.

Kamalika Chaudhuri and Sanjoy Dasgupta. Rates of convergence for the cluster tree. In NIPS,
2010.

Bo Dai, Baogang Hu, and Gang Niu. Bayesian maximum margin clustering. In /CDM, 2010.
Sanjoy Dasgupta. Learning mixtures of gaussians. In FOCS, 1999.
Sanjoy Dasgupta and Daniel Hsu. Hierarchical sampling for active learning. In /CML, 2008.

Chris Ding and Xiaofeng He. Cluster merging and splitting in hierarchical clustering algorithms. In
ICDM, 2002.

Brian Erikkson, Gautam Dasarathy, Aarti Singh, and Robert Nowak. Active clustering: robust and
efficient hierarchical clustering using adaptively selected similarities. In AISTATS, 2011.

Katherine A. Heller and Zoubin Ghahramani. Bayesian hierarchical clustering. In ICML, 2005.

Adam Tauman Kalai, Ankur Moitra, and Gregory Valiant. Efficiently learning mixtures of two
Gaussians. In STOC, 2010.

Ravindran Kannan, Hadi Salmasian, and Santosh Vempala. The spectral method for general mixture
models. In COLT, 2005.

Akshay Krishnamurthy, Sivaraman Balakrishnan, Min Xu, and Aarti Singh. Efficient active algo-
rithms for hierarchical clustering. In /ICML, 2012.

Juho Lee, Suha Kwak, Bohyung Han, and Seungjin Choi. Online video segmentation by bayesian
split-merge clustering. In ECCV, 2012.

Marina Meild. Comparing clusterings - an information based distance. Journal of Multivariate
Analysis, 98(5):873-895, 2007.

Ankur Moitra and Gregory Valiant. Settling the polynomial learnability of mixtures of gaussians.
In FOCS, 2010.

Feiping Nie, Dong Xu, and Xuelong Li. Initialization independent clustering with actively self-
training method. [EEE Transactions on Systems, Man and Cybernetics, Part B, 42(1):17-217,
2012.

Alessandro Rinaldo and Larry Wasserman. Generalized density clustering. The Annals of Statistics,
38(5):2678-2722, 2010.

30

LOCAL ALGORITHMS FOR INTERACTIVE CLUSTERING

Gerard Salton and Christopher Buckley. Term-weighting approaches in automatic text retrieval.
Information processing and management, 24(5):513-523, 1988.

Alexander Strehl, Joydeep Ghosh, and Raymond Mooney. Impact of similarity measures on web-
page clustering. In AAAI, 2000.

Matus Telgarsky and Sanjoy Dasgupta. Agglomerative bregman clustering. In ICML, 2012.

Konstantin Voevodski, Maria-Florina Balcan, Heiko Roglin, Shang-Hua Teng, and Yu Xia. Active
clustering of biological sequences. Journal of Machine Learning Research, 13:203-225, 2012.

Qiaoliang Xiang, Qi Mao, Kian Ming A. Chai, Hai Leong Chieu, Ivor Wai-Hung Tsang, and Zhen-
dong Zhao. A split-merge framework for comparing clusterings. In ICML, 2012.

Shi Zhong. Generative model-based document clustering: a comparative study. Knowledge and
Information Systems, 8:374-384, 2005.

Appendix A. Other feedback models

Besides the cluster split/merge feedback considered here, two other kinds of feedback have also
been studied in the literature: cluster-assignment feedback (Basu et al., 2002; Nie et al., 2012) and
must-link/cannot-link feedback (Basu et al., 2004; Ashtiani et al., 2016). The former reveals the
ground-truth cluster assignment of a single data point; the latter reveals whether or not a pair of
points are in the same ground-truth cluster.

Claim 28 Cluster-assignment feedback and must-link/cannot link feedback can be converted to
cluster split/merge feedback in the unrestricted-merge model.

Proof We first observe that cluster-assignment feedback can be converted to must-link/cannot-link
feedback as follows. For every two known cluster assignments for points « and y s.t. x and y
belong to the same ground-truth cluster, output a must-link feedback for (x,y). For every two
known cluster assignments for points x and y s.t. « and y belong to different ground-truth clusters,
output a cannot-link feedback for (z,y).

We next observe that must-link/cannot-link feedback can be converted to cluster split/merge
feedback in the unrestricted merge model as follows. For every must-link feedback for points x and
y, if x and y belong to different clusters in the proposed clustering, request to merge these two clus-
ters. For every cannot-link feedback for points x and y, if and y belong to the same cluster in the
proposed clustering, request to split this cluster. Observe that by definition, the output split/merge
requests satisfy the assumptions of the unrestricted-merge model. |

However, the conversion in Claim 28 is sometimes vacuous: cluster split/merge feedback is only
output when the cluster-assignment or must-link/cannot-link feedback disagrees with the current
clustering. Still, it is reasonable to assume that while the proposed clustering is not equivalent to
the ground truth, a constant fraction of such feedback will disagree with the proposed clustering.

31

AWASTHI, BALCAN AND VOEVODSKI

Appendix B. Complete experimental results

The following figures show the complete experimental results for all the algorithms. Figure 12
shows the results in the n-merge model. Figure 13 shows the results in the n-merge model for the
algorithms in Figure 2 and Figure 4 (for the correlation-clustering objective). Figure 14 shows the
results in the unrestricted-merge model.

Data Set A Data Set B
20000 - 20000
18000 - 18000
© 16000 - © 16000
g £ 14000
14000
3-; eta=0.5 % eta=0.5
12000 12000
« eta=0.6 « eta=0.6
5 10000 5 10000
= eta=0.7 2 eta=0.7
o 8000 - o 8000
2 meta=0.8 2 meta=0.8
6000 - 6000
g meta=0.9 g meta=0.9
Z 4000 | 2 4000 -
meta=1.0 meta=1.0
2000 - I 2000 -
0 0 b e e
no pruning 2 per cluster 4 per cluster no pruning 2 per cluster 4 per cluster
Pruned Points Pruned Points
Data Set C Data Set D
20000 20000
18000 18000
2 16000 2 16000
g g 14000
14000
§ eta=0.5 ug)- eta=0.5
12000 12000
« eta=0.6 « eta=0.6
5 10000 5 10000
= eta=0.7 2 eta=0.7
% 8000 T 8000
- meta=0.8 -1 Weta=0.8
6000 6000
5 meta=0.9 5 meta=0.9
4000 4000
2 meta=1.0 200 meta=1.0
00 0
0 - o | (B
no pruning 2 per cluster 4 per cluster no pruning 2 per cluster 4 per cluster
Pruned Points Pruned Points
Data Set E
20000
18000
% 16000
14000
?-; eta=0.5
12000
= eta=0.6
5 10000
2 eta=0.7
& 8000
2 meta=0.8
£ 6000
S meta=0.9
Z 4000
meta=1.0
2000 I
0 . .
no pruning 2percluster 4 per cluster

Pruned Points

Figure 12: Experimental results in the n-merge model.

32

LOCAL ALGORITHMS FOR INTERACTIVE CLUSTERING

Data Set A Data Set B
20000 20000
18000 18000
© 16000 © 16000
4 B
2 14000 2 14000
g 12000 g 12000
« eta=0.7 o« eta=0.7
5 10000 5 10000
= meta=0.8 2 meta=0.8
8000 T 8000
2 Heta=0.9 -1 Wmeta=0.9
6000 6000
§ meta=1.0 g Heta=1.0
Z 4000 Z 4000
2000 2000
0 J— [L — 0 L e e e
no pruning 2 per cluster 4 per cluster no pruning 2 per cluster 4 per cluster
Pruned Points Pruned Points
Data Set C Data Set D
20000 20000
18000 18000
g 16000 § 16000
% 14000 $ 14000
g 12000 g 12000
= eta=0.7 = eta=0.7
5 10000 5 10000
& Weta=0.8 2 Weta=0.8
& 8000 & 8000
3 meta=0.9 2 meta=0.9
€ 6000 € 6000
S meta=1.0 3 Weta=1.0
Z 4000 Z 4000

2000 2000
I e o | e

no pruning 2percluster 4 per cluster no pruning 2 per cluster 4 per cluster
Pruned Points Pruned Points

Data Set E

eta=0.7
meta=0.8
meta=0.9
meta=1.0

0 ,,,kJL‘

no pruning 2percluster 4 per cluster
Pruned Points

Figure 13: Experimental results in the n-merge model for algorithms for correlation-clustering ob-
jective.

33

Number Edit Requests

Number Edit Requests

20000
18000
16000
14000
12000
10000
8000
6000
4000
2000

20000
18000
16000
14000

B
o N
S 9
S 9
S &

8000
6000
4000
2000

AWASTHI, BALCAN AND VOEVODSKI

Data Set A Data Set B
20000
18000
2 16000
eta=05 $ 14000
’ g 12000
- «<
eta=0.6 =
eta=0.7 F 10000
& 8000
meta=0.8 3
6000
meta=09 g
Z 4000
meta=1.0
2000
g SRS S— o e, . B
no pruning 2percluster 4 per cluster no pruning 2 per cluster 4 per cluster
Pruned Points Pruned Points
Data Set C Data Set D
20000 -
18000 -
2 16000 -
14
eta= 05 $ 14000 -
& 12000 -
- «<
eta=0.6 =
eta=0.7 g 100007
% 8000 -
meta=0.8 2
6000 -
meta=09 g
Z 4000 |
meta=1.0
2000 - I
0
no pruning 2percluster 4 per cluster no pruning 2 per cluster 4 per cluster
Pruned Points Pruned Points
Data Set E
20000 -
18000 -
2 16000 -
]
14000 -
% eta=0.5
12000 -
« eta=0.6
5 10000 -|
2 eta=0.7
5 8000 -
3 meta=0.8
6000
g meta=0.9
Z 4000 -
meta=1.0
2000 - I
0 -
no pruning 2 per cluster 4 per cluster

Pruned Points

Figure 14: Experimental results in the unrestricted-merge model.

34

eta=0.5
eta=0.6
eta=0.7
meta=0.8
meta=0.9
meta=1.0

eta=0.5
eta=0.6
eta=0.7
meta=0.8
meta=0.9
meta=1.0

LOCAL ALGORITHMS FOR INTERACTIVE CLUSTERING

Appendix C. Experiments with robust average-linkage tree

When we investigate instances where our algorithms are unable to find the target clustering, we
observe that there are outlier points that are attached near the root of the average-linkage tree,
which are incorrectly split off and re-merged by the algorithm without making any progress towards
finding the target clustering.

We can address these outliers by constructing the average-linkage tree in a more robust way:
first find groups (“blobs”) of similar points of some minimum size, compute an average-linkage tree
for each group, and then combine these trees using average-linkage. The tree constructed in such
fashion may then be used by our algorithms.

We tried this approach, using Algorithm 2 from Balcan and Gupta (2010) to compute the blobs.
We find that using the robust average-linkage tree gives better performance for the unpruned data
sets, but gives no gains for the pruned data sets, as expected. Figure 15 displays the comparison in
the unrestricted merge model for the five unpruned data sets. For the pruned data sets, we expect
the robust tree to be very similar to the standard tree, which explains why there is little difference in
performance (results not shown).

Average-Linkage Tree Robust Average-Linkage Tree
20000 20000
18000 18000
£ 16000 i 16000
14000 - $ 14000 -
: eta=0.5 ?',' eta=0.5
12000 12000
« eta=0.6 « eta=0.6
S 10000 5 10000
2 eta=0.7 2 eta=0.7
& 8000 - & 8000 -
3 Heta=0.8 3 Meta=0.8
6000 -| 6000 -|
g meta=0.9 g Heta=0.9
Z 4000 - Z 4000 -
meta=1.0 meta=1.0
2000 -| 2000 - I
0 - 0 -
A B c D E A B c D E
Data Set Data Set

Figure 15: Experimental results in the unrestricted-merge model using a standard versus robust
average-linkage tree. Results presented for unpruned data sets.

35

	Introduction
	Our Results
	Related work

	Notation and Preliminaries
	Clustering Error
	Definitions
	Generalized clustering error
	Local interactive clustering

	The -merge model
	Algorithms for correlation-clustering error
	Algorithms under stronger assumptions

	The unrestricted-merge model
	Algorithms under stronger assumptions

	Experimental Results
	Clustering business listings
	Clustering Newsgroup documents
	Experiments in the -merge model
	Experiments in the unrestricted-merge model
	Experiments with small initial error
	Comparison with other semi-supervised clustering models

	Discussion
	Acknowledgments
	Other feedback models
	Complete experimental results
	Experiments with robust average-linkage tree

