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Abstract

In this paper we introduce a new optimization formulation for sparse regression and
compressed sensing, called CLOT (Combined L-One and Two), wherein the regularizer is a
convex combination of the `1- and `2-norms. This formulation differs from the Elastic Net
(EN) formulation, in which the regularizer is a convex combination of the `1- and `2-norm
squared. It is shown that, in the context of compressed sensing, the EN formulation does
not achieve robust recovery of sparse vectors, whereas the new CLOT formulation achieves
robust recovery. Also, like EN but unlike LASSO, the CLOT formulation achieves the
grouping effect, wherein coefficients of highly correlated columns of the measurement (or
design) matrix are assigned roughly comparable values. It is already known LASSO does
not have the grouping effect. Therefore the CLOT formulation combines the best features
of both LASSO (robust sparse recovery) and EN (grouping effect).

The CLOT formulation is a special case of another one called SGL (Sparse Group
LASSO) which was introduced into the literature previously, but without any analysis of
either the grouping effect or robust sparse recovery. It is shown here that SGL achieves
robust sparse recovery, and also achieves a version of the grouping effect in that coefficients
of highly correlated columns belonging to the same group of the measurement (or design)
matrix are assigned roughly comparable values.
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1. Introduction

The LASSO and the Elastic Net (EN) formulations are among the most popular approaches
for sparse regression and compressed sensing. In this section, we briefly review these two
problems and their current status, so as to provide the background for the remainder of the
paper.

1.1 Sparse Regression

In sparse regression, one is given a measurement matrix (also called a design matrix in
statistics) A ∈ Rm×n where m � n, together with a measurement or measured vector
y ∈ Rm. The objective is to choose a vector x ∈ Rn such that x is rather sparse, and Ax is
either exactly or approximately equal to y. The problem of finding the most sparse x that
satisfies Ax = y is known to be NP-hard (Natarajan, 1995); therefore it is necessary to find
alternate approaches.

For the sparse regression problem, the general approach is to determine the estimate x̂
by solving the minimization problem

x̂ = argmin
z
‖y −Az‖22 s.t. R(z) ≤ γ, (1)

or in Lagrangian form,
x̂ = argmin

z
‖y −Az‖22 + λR(z), (2)

whereR : Rn → R is known as a “regularizer,” and γ, λ are adjustable parameters. Different
choices of the regularizer lead to different approaches. With the choice Rridge(z) = ‖z‖22, the
approach is known as ridge regression (Hoerl and Kennard, 1970), which builds on earlier
work (Tikhonov, 1943). The LASSO approach (Tibshirani, 1996) results from choosing
RLASSO(z) = ‖z‖1, while the Elastic Net (EN) approach (Zou and Hastie, 2005) results
from choosing

REN(z) = α1‖z‖1 + α2‖z‖22, (3)

where α1, α2 are adjustable parameters. For later use, we redefine the EN regularizer as

REN(z) = (1− µ)‖z‖1 + µ‖z‖22, (4)

where
µ =

α2

α1 + α2
∈ [0, 1]

is an adjustable parameter, and the constant α1 + α2 can be absorbed into the Lagrange
multiplier λ in (2). Note that the EN regularizer function interpolates ridge regression and
LASSO, in the sense that EN reduces to LASSO if µ = 0 and to ridge regression if µ = 1. A
very general approach to regression using a convex regularizer is given in (Negabhan et al.,
2012).

The LASSO approach can be shown to return a solution x̂ with no more than m nonzero
components, under mild regularity conditions; see (Osborne et al., 2000). There is no such
bound on the number of components of x̂ when EN is used. However, when the columns
of the matrix A are highly correlated, then LASSO chooses just one of these columns
and ignores the rest. Measurement matrices with highly correlated columns occur in many
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practical situations, for example, in microarray measurements of messenger RNA, otherwise
known as gene expression data. The EN approach was proposed at least in part to overcome
this undesirable behavior of the LASSO formulation. It is shown in (Zou and Hastie, 2005,
Theorem 1) that if two columns (say i and j) of the matrix A are highly correlated, then
the corresponding components x̂i and x̂j of the EN solution are nearly equal. This is known
as the “grouping effect”, and the point is that EN demonstrates the grouping effect whereas
LASSO does not.

1.2 Compressed Sensing

In compressed sensing, the objective is to choose the measurement matrix A (which is part
of the data in sparse regression), such that whenever the vector x is nearly sparse, it is
possible to nearly recover x from noise-corrupted measurements of the form y = Ax + η.
Let us make the problem formulation precise. For this purpose we begin by introducing
some notation.

Throughout, the symbol [n] denotes the index set {1, . . . , n}. The support of a vector
x ∈ Rn is denoted by supp(x) and is defined as

supp(x) := {i ∈ [n] : xi 6= 0}.

A vector x ∈ Rn is said to be k-sparse if |supp(x)| ≤ k. The set of all k-sparse vectors is
denoted by Σk. The k-sparsity index of a vector x with respect to a given norm ‖ · ‖ is
defined as

σk(x, ‖ · ‖) := min
z∈Σk

‖x− z‖. (5)

It is obvious that x ∈ ΣK if and only if σk(x, ‖ · ‖) = 0 for every norm.

The general formulation of the compressed sensing problem given below is essentially
taken from (Cohen et al., 2009). Suppose that A ∈ Rm×n is the “measurement matrix”, and
∆ : Rm → Rn is the “decoder map”, where m� n. Suppose x ∈ Rn is an unknown vector
that is to be recovered. The input to the decoder consists of y = Ax + η where η denotes
the measurement noise, and a prior upper bound in the form ‖η‖2 ≤ ε is available; in other
words, ε is a known number. In this set-up, the vector x̂ = ∆(y) is the approximation to
the original vector x. With these conventions, we can now state the following.

Definition 1 Suppose p ∈ [1, 2]. The pair (A,∆) is said to achieve robust sparse recov-
ery of order k with respect to ‖ · ‖p if there exist constants C and D that might depend on
A and ∆ but not on x or η, such that

‖x̂− x‖p ≤
1

k1−1/p
[Cσk(x, ‖·‖1) +Dε]. (6)

The restriction that p ∈ [1, 2] is tied up with the fact that the bound on the noise is for
the Euclidean norm ‖η‖2. The usual choices for p in (6) are p = 1 and p = 2.

Among the most popular approaches to compressed sensing is `1-norm minimization,
which was popularized in a series of papers, of which we cite only (Candès and Tao, 2005;
Candès et al., 2006; Candès, 2008; Donoho, 2006). The survey paper (Davenport et al.,
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2012) has an extensive bibliography on the topic, as does the recent book (Foucart and
Rauhut, 2013). In this approach, the estimate x̂ is defined as

x̂ := argmin
z
‖z‖1 s.t. ‖Az − y‖2 ≤ ε. (7)

Note that the above definition does indeed define a decoder map ∆ : Rm → Rn. In order
for the above pair (A,∆) to achieve robust sparse recovery, the matrix A is chosen so as to
satisfy a condition defined next.

Definition 2 A matrix A ∈ Rm×n is said to satisfy the Restricted Isometry Property
(RIP) of order k with constant δk if

(1− δk)‖u‖22 ≤ ‖Au‖22 ≤ (1 + δk)‖u‖22, ∀u ∈ Σk. (8)

Starting with (Candès and Tao, 2005), several papers have derived sufficient conditions
that the RIP constant of the matrix A must satisfy in order for `1-norm minimization to
achieve robust sparse recovery. Recently, the “best possible” bound has been proved in (Cai
and Zhang, 2014). These results are stated here for the convenience of the reader.

Theorem 3 (See (Cai and Zhang, 2014, Theorem 2.1)) Suppose A satisfies the RIP of
order tk for some number t ≥ 4/3 such that tk is an integer, with δtk <

√
(t− 1)/t. Then

the recovery procedure in (7) achieves robust sparse recovery of order k.

Theorem 4 (See (Cai and Zhang, 2014, Theorem 2.2)) Let t ≥ 4/3. For all γ > 0
and all k ≥ 5/γ, there exists a matrix A satisfying the RIP of order tk with constant
δtk ≤

√
(t− 1)/t+ γ such that the recovery procedure in (7) fails for some k-sparse vector.

Observe that the Lagrangian formulation of the LASSO approach is

x̂ := argmin
z

[‖Az − y‖22 + λ‖z‖1],

whereas the Lagrangian formulation of (7) is

x̂ := argmin
z

[‖z‖1 + β‖Az − y‖2],

which is essentially the same as the Lagrangian formulation of

x̂ = argmin
z
‖Az − y‖2 s.t. ‖z‖1 ≤ γ.

This last formulation of sparse regression is known as “square-root LASSO” (Belloni et al.,
2014). Therefore the community refers to the approach to compressed sensing given in (7)
as the LASSO, though this may not be strictly accurate.
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1.3 Compressed Sensing with Group Sparsity

Over the years some variants of LASSO have been proposed for compressed sensing, such
as the Group LASSO (GL) (Yuan and Lin, 2006) and the Sparse Group LASSO (SGL)
(Simon et al., 2013). In the GL formulation, the index set {1, . . . , n} is partitioned into g
disjoint sets G1, . . . , Gg, and the associated norm is defined as

‖z‖GL :=

g∑
i=1

‖zGi‖2, (9)

where zGi denotes the projection of the vector z onto the components in Gi. The notation is
intended to remind us that the norm depends on the specific partitioning G. Some authors
divide the term ‖zGi‖2 by |Gi|, but we do not do that. A further refinement of GL is the
sparse group LASSO (SGL), in which the group structure is as before, but the norm is now
defined as

‖z‖SGL,µ :=

g∑
i=1

(1− µ)‖zGi‖1 + µ‖zGi‖2, (10)

where as before µ ∈ [0, 1]. If x ∈ Rn is an unknown vector, then recovery of x is attempted
via

x̂ = argmin
z
‖z‖GL s.t. ‖Az − y‖2 ≤ ε (11)

in Group LASSO, and via

x̂ = argmin
z
‖z‖SGL,µ s.t. ‖Az − y‖2 ≤ ε (12)

in Sparse Group LASSO.

The main idea behind GL is that one is less concerned about the number of nonzero
components of x̂, and more concerned about the number of distinct groups containing these
nonzero components. Therefore GL attempts to choose an estimate x̂ that has nonzero
entries in as few distinct sets as possible. In principle, SGL tries to choose an estimate x̂
that not only has nonzero components within as few groups as possible, but within those
groups, has as few nonzero components as possible. Note that if µ = 0, then SGL reduces to
LASSO (because of the summability of the `1-norm), whereas if µ = 1, then SGL reduces to
GL. Note too that if g = n and every set Gi is a singleton {i}, then GL reduces to LASSO.

1.4 Motivation and Contributions of the Paper

Now we come to the motivation and contributions of the present paper. The LASSO
formulation is well-suited for compressed sensing (see Theorem 3), but not so well-suited
for sparse regression, because it lacks the grouping effect. The EN formulation is well-suited
for sparse regression as it exhibits the grouping effect, but it is not known whether it can
achieve compressed sensing.

The first result presented in the paper is that if the EN regularizer of (4) is used instead
of the `1-norm in (7), then the resulting approach does not achieve robust sparse recovery
unless m ≥ n/4, that is, the number of measurements grows linearly with respect to the size

5



Ahsen, Challapalli and Vidyasagar

of the vector. This would not be considered “compressed” sensing. This led us to formulate
another regularizer, namely

‖z‖C,µ = (1− µ)‖z‖1 + µ‖z‖2. (13)

Note that, while the EN regularizer in (4) is a convex function, it is not a norm. In contrast,
‖ · ‖C,µ is not just convex but is also a norm. Also, the EN regularizer in its original form
in (3) is intended to have two adjustable parameters. Our intent is that, in compressed
sensing applications, the constant µ in (13) is a fixed constant, and not intended to be
varied. Therefore, if the `1-norm in (7) is replaced by ‖ · ‖C,µ, then there is only one
adjustable parameter, namely the Lagrange multiplier associated with the constraint. The
same remark applies also to GL and SGL, that is, (11) and (12) respectively. We refer to
‖·‖C,µ as the CLOT norm, with CLOT standing for Combined L-One and Two. It is shown
that the CLOT norm combines the best features of both LASSO and EN, in that

• When the CLOT norm is used as the regularizer in sparse regression, the resulting
solution exhibits the grouping effect.

• When the `1-norm is replaced by the CLOT norm in (7), the resulting solution achieves
robust sparse recovery if the matrix A satisfies the RIP.

• Moreover, if µ in CLOT is set to zero so that CLOT becomes LASSO, the bound on
the RIP constant reduces to the “best possible” bound in Theorem 3.

Clearly the CLOT norm is a special case of the SGL norm with the entire index set [n]
being taken as a single group (though the adjective “sparse” is no longer appropriate). This
led us to explore whether the SGL norm achieves either grouping effect or robust sparse
recovery. We are able to show that SGL does indeed achieve both.

Now we place these contributions in perspective. There is empirical evidence to support
the belief that both the GL and the SGL formulations work well for compressed sensing.
However, until the publication of a companion paper by a subset of the present authors (Ah-
sen and Vidyasagar, 2016), there were no proofs that either of these formulations achieved
robust sparse recovery. In (Ahsen and Vidyasagar, 2016), it is shown that both the GL and
SGL formulations achieve robust sparse recovery provided the group sizes are sufficiently
small. This restriction on group sizes is removed in the present paper. Moreover, so far as
the authors are aware, until now there are no results on the grouping effect for either of
these formulations. In the present paper, it is shown that if two columns of the measurement
matrix A that belong to the same group are highly correlated, then the corresponding com-
ponents of the estimate x̂ have nearly equal values. However, if two columns that belong to
different groups are highly correlated, then their coefficients need not be nearly equal. From
the standpoint of applications, this is a highly desirable property. To illustrate, suppose
the groups represent biological pathways. Then one would wish to assign roughly similar
weights to genes in the same pathway, but not necessarily to those in disjoint pathways.

Thus the contributions of the present paper are:

• To show that the EN does not achieve robust sparse recovery.

• To show that both the CLOT and SGL formulations achieve both robust sparse re-
covery as well as the grouping effect.
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• To derive a condition under which CLOT achieves robust sparse recovery, which re-
duces to the “best possible” condition in Theorem 3 when µ is set to zero, so that
CLOT becomes LASSO.

Taken together, these results might indicate that CLOT and SGL are attractive alternatives
to the LASSO and EN formulations.

2. Main Theoretical Results

This section contains the main contributions of the paper. We begin by showing in Section
2.1 that the solution paths of EN and CLOT are identical if both λ1 and λ2 are treated
as adjustable parameters. Therefore further research would be needed to establish whether
CLOT offers any advantages over EN in numerical performance in sparse regression.

Then we present several theoretical advantages of CLOT over both EN and LASSO. First
it is shown in Section 2.2 that the EN approach does not achieve robust sparse recovery, and
is therefore not suitable for compressed sensing applications. Next, it is shown in Section
2.3 that the SGL formulation assigns nearly equal weights to highly correlated features
within the same group, though not necessarily to highly correlated features from different
groups. It follows as a corollary that CLOT assigns nearly equal weights to highly correlated
features. Then it is shown in Section 2.4 that the SGL formulation achieves robust sparse
recovery. The contents of a companion paper by a subset of the present authors Ahsen and
Vidyasagar (2016) establish that SGL achieves robust sparse recovery of order k provided
that each group size is smaller than k. There is no such restriction here. It follows as a
corollary that CLOT also achieves robust sparse recovery.

2.1 Relationship Between Solution Paths of EN and CLOT

In this subsection, it is shown that if both µ and λ are tuned via cross-validation in (3),
then the solution paths of CLOT are identical to those of EN when both λ1 and λ2 are
tuned. However, it is shown via an example that if µ is kept fixed and only λ is tuned in
(3), then CLOT and EN have different solution paths.

Towards this end, we rewrite the CLOT formulation with both µ and λ being tuned in
the form

x̂CLOT := argmin
z

[‖y −Ax‖22 + λ1‖z‖1 + λ2‖z‖2]. (14)

It is easy to see that the transformation

µ =
λ2

λ1 + λ2
, λ = λ1 + λ2

maps (14) into (3). In the other direction, we would define

λ1 = (1− µ)λ, λ2 = µλ.

We are grateful to one of the reviewers for pointing out the result as described in Theorem
5, and providing a proof.
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Theorem 5 Given y ∈ Rm and A ∈ Rm×n, define two vectors:

x̂CLOT(λ1, λ̃2) = argmin
z

[‖y −Az‖22 + λ1‖z‖1 + λ̃2‖z‖2],

x̂EN(λ1, λ̂2) = argmin
z

[‖y −Az‖22 + λ1‖z‖1 + λ̂2‖z‖22].

Then for each fixed λ1 > 0 and each λ̃2 > 0, there exists a λ̂2 > 0 such that

x̂CLOT(λ1, λ̃2) = x̂EN(λ1, λ̂2),

and vice versa.

Proof We begin with the following rather obvious observation. Suppose f(·) and g(·) are
convex functions, and consider two problems:

(P1) x̂1(λ) = argmin
z

[f(z) + λg(z)],

(P2) x̂2(c) = argmin
z

f(z) s.t. g(z) ≤ c.

Then for each λ there exists a c such that x̂1(λ) = x̂2(c), and vice versa. To establish this,
write down the optimality conditions for the two problems, with ∂f(·), ∂g(·) denoting the
subgradient sets of f(·), g(·) respectively. Then a necessary and sufficient condition for
x̂1(λ) to be the solution of (P1) is:

0 ∈ ∂f(x̂1(λ)) + λ∂g(x̂1(λ)), (15)

where 0 denotes the zero vector. Similarly, for (P2) the necessary and sufficient conditions
are the existence of a constant λ∗ such that

0 ∈ ∂f(x̂1(λ∗)) + λ∂g(x̂1(λ∗)), and λ∗(g(x̂1(λ∗))− c) = 0. (16)

Suppose (15) holds; then (16) holds with c = g(x̂1(λ)). Conversely, suppose (16) holds;
then (15) holds with λ = λ∗.

Now apply this reasoning with f(z) = ‖y −Az‖22 + λ1‖z‖1, g1(z) = ‖z‖2, g2(z) = ‖z‖22.
Then each x̂CLOT(λ1, λ̃2) equals the minimizer of f(z) subject to ‖z‖2 ≤ c for some c, while
each x̂EN(λ1, λ̂2) equals the minimizer of f(z) subject to ‖z‖22 ≤ c′ for some c′. However, it
is obvious that

[‖z‖2 ≤ c] ⇐⇒ [‖z‖22 ≤ c2].

Therefore the theorem is proved. �

2.2 Lack of Robust Sparse Recovery of the Elastic Net Formulation

The first result of this section shows that EN formulation does not achieve robust sparse
recovery, and therefore is not suitable for compressed sensing applications.
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Theorem 6 Suppose a matrix A ∈ Rm×n has the following property: There exist constants
C and D such that, whenever y = Ax+ η for some x ∈ Rn and η ∈ Rm with ‖η‖2 ≤ ε, the
solution

x̂EN := argmin
z∈Rn

[(1− µ)‖z‖1 + µ‖z‖22] s.t. ‖y −Az‖2 ≤ ε

satisfies

‖x̂EN − x‖2 ≤ Cσk(x, ‖ · ‖1) +Dε. (17)

Then

m ≥ n/4. (18)

Proof: Let N (A) denote the null space of the matrix A, that is, the set of all h ∈ Rn
such that Ah = 0. Let h ∈ N (A) be arbitrary, and let Λ ⊆ {1, . . . , n} denote the index set
of the k largest components of h by magnitude. Therefore

‖hΛc‖2 = σk(h, ‖ · ‖2).

Next, (17) implies that, if η = 0, then x̂EN = x for all x ∈ Σk. In other words,

x = argmin
z∈Rn

[(1− µ)‖z‖1 + µ‖z‖22] s.t. Az = Ax,

or equivalently,

(1− µ)‖x‖1 + µ‖x‖22 ≤ (1− µ)‖z‖1 + µ‖z‖22, ∀z ∈ A−1({Ax}), ∀x ∈ Σk. (19)

Now observe that, because h ∈ N (A), we have that

AhΛ = −AhΛc ,

and more generally,

A(βhΛ) = A(−βhΛc), ∀β > 0.

Apply (19) with x = βhΛ ∈ Σk and z = −AβhΛc ∈ A−1({Ax}). This leads to

(1− µ)β‖hΛ‖1 + β2µ‖hΛ‖22 ≤ (1− µ)β‖hΛc‖1 + β2µ‖hΛc‖22.

Now divide both sides by β2µ, and observe that, for each fixed µ > 0,

1− µ
βµ

→ 0 as β →∞.

Therefore

‖hΛ‖22 ≤ ‖hΛc‖22, or ‖hΛ‖2 ≤ ‖hΛc‖2, ∀h ∈ N (A).

Next

‖h‖2 ≤ ‖hΛ‖2 + ‖hΛc‖2 ≤ 2‖hΛc‖2, ∀h ∈ N (A).

Equivalently

‖h‖2 ≤ 2σk(h, ‖ · ‖2), ∀h ∈ N (A).
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This is Equation (5.2) of Cohen-Dahmen-Devore (2009) with C0 = 2. As shown in Theorem
5.1 of that paper, this implies that m ≥ n/C2

0 = n/4, which is the desired conclusion. �
Note that the proof of Theorem 6 remains valid even if we were to allow the constant µ

to be “tuned”, provided that it is bounded away from zero. In other words, the proof does
not make use of the fact that µ is a fixed constant. Therefore even in the “naive” version of
EN, in which the regularizer is defined as in (3), and both constants α1 and α2 are adjusted,
robust sparse recovery requires that m ≥ n/4 provided only that the ratio α1/α2 remains
bounded away from zero as both parameters are tuned.

2.3 Grouping Property of the SGL and CLOT Formulations

One advantage of the EN over LASSO is that the former assigns roughly equal weights to
highly correlated features, as shown in (Zou and Hastie, 2005, Theorem 1) and referred to
as the grouping effect. In contrast, if LASSO chooses one feature among a set of highly
correlated features, then generically it assigns a zero weight to all the rest. To illustrate,
if two columns of A are identical, then in principle LASSO could assign nonzero weights
to both columns; however, the slightest perturbation in the data would cause one or the
other weight to become zero. The drawback of this is that the finally selected feature set
is very sensitive to noise in the measurements. In this section we prove an analog of (Zou
and Hastie, 2005, Theorem 1) for SGL formulation. Our result states that if two highly
correlated features within the same group are chosen by SGL, then they will have roughly
similar weights. Since CLOT is a special case of SGL with the entire feature set treated
as one group, it follows that CLOT assigns roughly similar weights to highly correlated
features in the entire set of features. As a result, the final feature sets obtained using SGL
or CLOT are less sensitive to noise in measurements than the ones obtained using LASSO.

Theorem 7 Let y ∈ Rm, A ∈ Rm×n be some vector and matrix respectively. Without loss
of generality, suppose that y is centered, i.e. ytem = 0, where em denotes a column vector
consisting of m ones, and that A is standardized, i.e. ‖aj‖2 = 1 where aj denotes the j-th
column of A. Suppose µ > 0, and let G denote a partition of {1, . . . , n} into g disjoint
subsets. Define

x̂ := argmin
z

λ‖y −Az‖22 + ‖z‖SGL,µ, (20)

where λ > 0 is a Lagrange multiplier. Suppose that, for two indices i, j belonging to the
same group Gs, we have that x̂ix̂j 6= 0, where x̂i, x̂j denote the components of the vector
x̂. By changing the sign of one of the columns of A if necessary, it can be assumed that
x̂ix̂j > 0. Define

d(i, j) :=
|x̂i − x̂j |
2λ‖y‖2

, ρ(i, j) = atiaj .

Then

d(i, j) ≤
√

2(1− ρ(i, j))‖x̂s‖2
µ

, (21)

where x̂s is shorthand for x̂Gs.
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Proof: Define

L(z, µ) := λ‖y −Az‖22 + ‖z‖SGL,µ

= λ‖y −Az‖22 + (1− µ)‖z‖1 + µ

g∑
s=1

‖zs‖2,

where, as above, zs denotes ZGs . Then L is differentiable with respect to zi whenever zi 6= 0.
In particular, since both x̂i and x̂j are nonzero by assumption, it follows that

∂L

∂zi

∣∣∣∣
z=x̂

=
∂L

∂zj

∣∣∣∣
z=x̂

= 0.

Expanding the partial derivatives leads to

−2λati(y −Ax̂) + (1− µ)sign(x̂i) + µ
x̂i
‖x̂s‖2

= 0,

−2λatj(y −Ax̂) + (1− µ)sign(x̂j) + µ
x̂j
‖x̂s‖2

= 0.

Subtracting one equation from the other gives

2λ(atj − ati)(y −Ax̂) + µ
x̂i − x̂j
‖x̂s‖2

= 0.

Hence

|x̂i − x̂j |
‖x̂s‖2

=
2λ

µ
|(atj − ati)(y −Ax̂)|

≤ 2λ

µ
‖aj − ai‖2‖y −Ax̂‖2

≤ 2λ

µ

√
2(1− ρ(i, j))‖y‖2.

In the last step, we use the fact that

‖y −Ax̂‖2 ≤ ‖y −A0‖2 = ‖y‖2.

Rearranging gives

1

2λ

|x̂i − x̂j |
‖y‖2

≤
√

2(1− ρ(i, j))‖x̂s‖2
µ

,

which is the desired conclusion. �
Let us illustrate the above result using the CLOT formulation. In the case of CLOT

formulation we have g = 1, G = {G1}, G1 = {1, · · · , n}, and the inequality in (21) becomes

d(i, j) ≤
√

2(1− ρ(i, j))‖x̂‖2
µ

, (22)

11
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where x̂ is the solution of the CLOT formulation, and

d(i, j) =
|x̂i − x̂j |
2λ‖y‖2

. (23)

Now suppose that two indices i and j are highly correlated such that ρ(i, j) ≈ 1, so that the
right hand side of the inequality in (22) is almost equal to zero. Combining this with (23)
we can conclude x̂i ≈ x̂j , so CLOT assigns similar weights to highly correlated variables. �

Though the focus of the present paper is not on the GL formulation, we digress briefly
to discuss the implications of Theorem 7 for GL. This theorem also implies that the GL
formulation exhibits the grouping effect, because GL is a special case of SGL with µ = 1.
Indeed, it can be observed from (21) that the bound on the right side is minimized by setting
µ = 1, that is, using GL instead of SGL. This is not surprising, because SGL not only tries
to minimize the number of distinct groups containing the support of x̂, but within each
group, tries to choose as few elements as possible. Thus, within each group, SGL inherits
the weaknesses of LASSO. Thus one would expect that, within each group, the feature set
chosen would become more sensitive as we decrease µ.

2.4 Robust Sparse Recovery of the SGL and CLOT Formulations

In this subsection, we present some sufficient conditions for the SGL and CLOT formulations
to achieve robust sparse recovery. When CLOT is specialized to LASSO by setting µ = 0,
the sufficient condition reduces to the “tight” bound given in Theorem 3.

Recall the definitions. The CLOT norm with parameter µ is given by

‖z‖C,µ := (1− µ)‖z‖1 + µ‖z‖2,

while the SGL norm is given by

‖z‖SGL,µ :=

g∑
i=1

[(1− µ)‖zGi‖1 + µ‖zGi‖2]

Recall also the problem set-up. The measurement vector y equals Ax+ η where ‖η‖2 ≤ ε,
a known upper bound. The recovered vector x̂ is defined as

x̂ = argmin
z
‖z‖SGL,µ s.t. ‖Az − y‖2 ≤ ε (24)

if SGL is used, and as

x̂ = argmin
z
‖z‖C,µ s.t. ‖Az − y‖2 ≤ ε (25)

if CLOT is used.

Definition 8 A matrix A ∈ Rm×n is said to satisfy the `2 robust null space property
(RNSP) if there exist constants ρ ∈ (0, 1) and τ ∈ R+ such that, for all sets S ⊆ [n] with
|S| ≤ k, we have

‖hS‖2 ≤
ρ√
k
‖hSc‖1 +

τ√
k
‖Ah‖2. (26)

12
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This property was apparently first introduced in (Foucart and Rauhut, 2013, Definition
4.21). Note that the definition in Foucart and Rauhut (2013) has just τ in place of τ/

√
k.

It is easy to show that, if (26) holds, then

‖hS‖1 ≤ ρ‖hSc‖1 + τ‖Ah‖2.

The following result is established in Ranjan and Vidyasagar (2016) in the context of
group sparsity, but is new even for conventional sparsity. The reader is directed to that
source for the proof.

Theorem 9 ((Ranjan and Vidyasagar, 2016, Theorem 5)) Suppose that, for some number
t > 1, the matrix A satisfies the RIP of order tk with constant δtk <

√
(t− 1)/t. Let δ be

an abbreviation for δtk, and define the constants

ν :=
√
t(t− 1)− (t− 1) ∈ (0, 0.5), (27)

a := [ν(1− ν)− δ(0.5− ν + ν2)]1/2, (28)

b := ν(1− ν)
√

1 + δ, (29)

c :=

[
δν2

2(t− 1)

]1/2

. (30)

Then A satisfies the `2-robust null space property with

ρ =
c

a
< 1, τ =

b
√
k

a2
. (31)

In Theorem 10 below, it is assumed that the matrix A satisfies the RIP of order tk with
δtk <

√
(t− 1)/t, in accordance with Theorem 3. With this assumption, we prove bounds

on the residual error ‖x̂− x‖1 with SGL; the bounds for CLOT can be obtained simply by
setting g = 1 in the SGL bounds. Note that, once bounds for ‖x̂ − x‖1 are proved, it is
possible to extend the bounds to ‖x̂− x‖p for all p ∈ [1, 2]; see (Foucart and Rauhut, 2013,
Theorem 4.22).

Theorem 10 Suppose x ∈ Rn and that A ∈ Rm×n satisfies the RIP of order tk with
constant δ = δtk <

√
(t− 1)/t, and define constants ρ, τ as in (31). Suppose that

µ <
1− ρ

√
g(1 + ρ)

. (32)

Define

γ =
µ
√
g

1− µ
. (33)

With these assumptions,

‖x̂− x‖1 ≤ Cσk(x, ‖ · ‖1) +Dε, (34)

13
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‖x̂− x‖p ≤
1

k1−1/p
[(1 + ρ)Cσk(x, ‖ · ‖1) + ((1 + ρ)D + 2τ)ε], ∀p ∈ (1, 2], (35)

where

C =
2(1 + ρ)

(1− γ)− (1 + γ)ρ
,D =

4τ

(1− γ)− (1 + γ)ρ
. (36)

The proof of the above theorem is presented in an appendix, due to its length.

In the above theorem, we started with the restricted isometry constant δ and computed
an upper bound on µ in order for SGL and CLOT to achieve robust sparse recovery. As
δtk gets closer to the limit δtk <

√
(t− 1)/t (which is known to be the best possible in view

of Theorem 4), the limit on µ would approach zero. It is also possible to start with µ and
find an upper bound on δ, by rearranging the inequalities. As this involves just routine
algebra, we simply present the final bound. Given the number t ≥ 4/3, define ν as in (27),
and define

θ1 := ν(1− ν) ∈ (0, 0.25), θ2 := 0.5− θ1 ∈ (0.25, 0.5), (37)

θ3 :=
ν2

2(t− 1)
. (38)

Given µ > 0, define γ as in (33), and define

ρ̄ :=
1− γ
1 + γ

.

If the matrix A satisfies the RIP of order tk with a constant δ = δtk, then SGL achieves
robust sparse recovery of order k provided

δ < ρ̄2 θ1

θ3 + ρ̄2θ2
, (39)

3. Numerical Examples

In this section we present two simulation studies, to demonstrate the the grouping effect of
CLOT and the lack of robust sparse recovery of EN, respectively.

3.1 Grouping Effect of CLOT

To illustrate that CLOT demonstrates the grouping effect as does EN (see Theorem 7), we
ran the same example as at the end of (Zou and Hastie, 2005, Section 5). Specifically, we
chose Z1 and Z2 to be two independent U(0, 20) random variables, and the observation y
as N(Z1 + 0.1Z2, 1). The six observations were

x1 = Z1 + ε1, x2 = −Z1 + ε2, x3 = Z1 + ε3, x4 = Z2 + ε4, x5 = −Z2 + ε5, x6 = Z2 + ε6,

where the εi are i.i.d. N(0, 1/16). The objective was to express y as a linear combination
of x1 through x6. In other words, we wished to express y = Xβ, where X is the matrix
with the xi as columns, and β is a 6 × 1 vector. Ideally the outcome should be to assign
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Figure 1: Solution Paths for CLOT

high weights to the correlated group x1, x2, x3 and low weights to x4, x5, x6. Therefore, if
β denotes the six-dimensional coefficient vector, we should have that

β1 ≈ −β2 ≈ β3,

and that β4 through β6 are much smaller than β1 through β3.

The three algorithms LASSO, EN, and CLOT were implemented via the Lagrangian
formulation in (2), with λ being increased. Clearly, when λ is sufficiently large, the optimal
value of β is the zero vector. The “sufficiently large” value of λ varies from one algorithm
to the next. Figures 1 through 3 show the solution trajectories of the three algorithms
as functions of λ, with µ set equal to 0.5. From Figures 1 and 2, it is clear that both
CLOT and EN very quickly reach the correct proportionalities between the large coefficient
values, which eventually become smaller and go to zero as λ becomes larger. In contrast,
the LASSO solutions are quite inaccurate.

3.2 Lack of Robust Sparse Recovery by EN

In this subsection we illustrate Theorem 6. In this set-up, n = 4, 000 and k = 3. The first
three components of the vector x are assigned values at random using the Matlab rand

function, which resulted in [ 0.8147 0.9058 0.1270 ]. The remaining components of x
were set equal to zero. We could have chosen not just the values but also the location of the
nonzero components at random; but this would have been just a permuation of the above
example.
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Figure 2: Solution Path for EN
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Figure 3: Solution Path for LASSO
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Next, in order to achieve robust sparse recovery of order k, following Theorem 3 we
needed to choose a t ≥ 4/3 and then choose a matrix A such that A satisfied the RIP of
order dtke with constant δ <

√
(t− 1)/t. We chose t = 1.5, which resulted in dtke = 5, and

δ5 <
√

1/3 ≈ 0.5774. We chose δ5 = 0.4. Therefore we had to choose an integer m and a
matrix A ∈ Rm×n such that A satisfied the RIP of order 5 with constant δ5 ≤ 0.4. Such
a matrix was constructed using the deterministic procedure suggested in (DeVore, 2007).
This required the choice of an integer r ≥ 2 and a prime number p such that

p ≥ max

{
(dtke − 1)r

δ
, n1/(r+1)

}
= max{20, 15.87} = 20.

and led to a binary matrix of dimensions p2 × pr+1. The smallest prime number greater
than 20 is p = 23, and m = p2 = 529. Note that m < n/4. The main advantages of the
construction in (DeVore, 2007) are that (i) the construction is deterministic, (ii) the matrix
A is binary, and (iii) only a fraction 1/p of the elements of A are equal to 1, and the rest
are equal to zero. This makes computation very fast.

Once the matrix A was chosen, we defined the measured vector as y = Ax; that is, we
did not introduce any measurement noise. Then we computed estimates of x using both
CLOT and EN. With δ = 0.4, the constant ρ defined in (31) becomes 0.6551, and the bound
in (32), after substituting g = 1, becomes µ < 0.2084. Therefore we chose µ = 0.2, and
defined

x̂CLOT = argmin
z
‖z‖C,µ s.t. Az = y,

x̂EN = argmin
z

(1− µ)‖z‖1 + µ‖z‖22 s.t. Az = y,

with the same value of µ = 0.2 in both cases. Then we replaced x by 10cx for c = 1, 2, 3, 4
and recomputed the estimates. Because m < n/4, according to Theorem 7, EN should fail
as the norm of the vector x is increased.

The above constrained optimization problems were solved using the cvx package in
Matlab, on an HP Pavilion laptop. The actual results are shown in Table 1. For compactness
only the first three components of x̂ are shown. As can be seen, when c = 0 or c = 1, both
CLOT and EN give the correct answer. However, for larger values of c, the CLOT estimate
simply got multiplied by the same scale factor, whereas the EN estimate started diverging
from the true value with c = 2; the algorithm failed to converge with c = 4.

4. Discussion and Concluding Remarks

In this paper we have introduced a new optimization formulation called CLOT (Combined
L-One and Two), wherein the regularizer is a convex combination of the `1- and `2-norms.
This formulation differs from the Elastic Net (EN) formulation, in which the regularizer is
a convex combination of the `1- and `2-norm squared. This seemingly simple modification
has fairly significant consequences. In particular, it is shown in this paper that the EN
formulation does not achieve robust recovery of sparse vectors in the context of compressed
sensing, whereas the new CLOT formulation does so. Also, like EN but unlike LASSO, the
CLOT formulation achieves the grouping effect, wherein coefficients of highly correlated
columns of the measurement (or design) matrix are assigned roughly comparable values. It
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c x̂CLOT x̂EN

0 0.8147 0.8147
0.9058 0.9058
0.1270 0.1270

1 8.1472 8.1472
9.0579 9.0579
1.2699 1.2699

2 81.4724 24.1502
90.5792 31.8304
12.6987 4.7944

3 814.7236 111.2433
905.7918 132.8940
126.9868 15.3818

4 8.1472× 103 NaN
9.0579× 103 NaN
1.2699× 103 NaN

Table 1: Comparison of solutions of the CLOT and EN algorithms as the unknown vector
is scaled by successive powers of 10. The CLOT output simply scales by the same
factor, whereas the EN output begins to be incorrect already when the scale factor
is 100. For a scale factor of 104, the algorithm fails.

is noteworthy that LASSO does not have the grouping effect and EN (as shown here) does
not achieve robust sparse recovery. Therefore the CLOT formulation combines the best
features of both LASSO (robust sparse recovery) and EN (grouping effect).

The CLOT formulation is a special case of another one called SGL (Sparse Group
LASSO) which was introduced into the literature previously, but without any analysis of
either the grouping effect or robust sparse recovery (Simon et al., 2013). It is shown here
that SGL achieves robust sparse recovery, and also achieves a version of the grouping effect
in that coefficients of highly correlated columns of the measurement (or design) matrix are
assigned roughly comparable values, if the columns belong to the same group.

There are several papers in the literature that discuss LASSO-like formulations for
group sparsity; some of these are discussed here. First, there is a companion paper by a
subset of the present authors (Ahsen and Vidyasagar, 2016), which studies the problem of
robust sparse recovery with SGL-like formulations, but with restrictions on the group size.
In contrast, in the present paper, there is no such restriction, which is why the results
derived here for the SGL formulation can be directly applied to the CLOT formulation.
Second, for the case where several columns of the matrix A are highly correlated, (Bühlmann
et al., 2013) suggests a two-stage process whereby first correlated columns are clustered,
and second, a variant of LASSO is applied. In a discussion of this paper, namely (Bien
and Wegkamp, 2013), all the LASSO variants together with EN are run on various test
data. For the purposes of the present discussion, the salient observation is that the EN
formulation performed roughly as well – no better and no worse – compared almost all the
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LASSO variants. Finally, in (van de Geer, 2014), a general theory is presented whereby the
fully decomposable `1-norm is replaced by a weakly decomposable norm, and oracle bounds
are derived for ‖x̂ − x‖ provided that the index set [n] is divided into an “allowed set”
and its complement. There is also some discussion of overlapping group decompositions.
Specifically, when an element of the index set [n] appears in two groups, the corresponding
column of A is simply replicated to remove the overlap. However, if two columns of A are
identical (and normalized), then the RIP constant δ2 would equal zero, as would δk for
k ≥ 2. Therefore, if the case of overlapping groups is handled in this manner, then any
analysis based on RIP would be infructuous. The above discussion is quite cursory, and the
reader may consult these references for fuller details.

It would be worthwhile to study the behavior of SGL with overlapping groups. There are
variants of SGL with overlapping groups, provided they satisfy some additional constraints;
see (Jenetton et al., 2011; Obozinski et al., 2011) for example. However, in a companion
paper (Ahsen and Vidyasagar, 2016), it is shown that the assumptions of (Jenetton et al.,
2011; Obozinski et al., 2011) still enforce a nonoverlap constraint, but in a nonobvious
fashion. As pointed out in the previous paragraph, the approach of introducing duplicate
columns into A to eliminate overlap would render any analysis based on RIP impossible.
Thus a suitable approach remains to be discovered.
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Appendix A: Proof of Theorem 10

Proof Hereafter we write zi instead of zGi in the interests of brevity.

Define h = x̂− x ∈ Rn. From the definition of the estimate, we have that

‖x‖SGL,µ ≥ ‖x̂‖SGL,µ = ‖x+ h‖SGL,µ

From the definition of the SGL norm, this expands to

(1− µ)‖x‖1 + µ

g∑
j=1

‖xj‖2 ≥ (1− µ)‖x+ h‖1 + µ

g∑
j=1

‖xj + hj‖2.

This can be rearranged as

(1− µ)(‖x‖1 − ‖x+ h‖1) + µ

g∑
j=1

(‖xj‖2 − ‖(xj + hj‖2) ≥ 0. (40)
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We will work separately on each of the two terms separately. First, by the triangle inequality,
we have that

‖xj + hj‖2 ≥ ‖xj‖2 − ‖hj‖2, or ‖hj‖2 ≥ ‖xj‖2 − ‖xj + hj‖2.

As a consequence,
g∑
j=1

‖hj‖2 ≥
g∑
j=1

[‖xj‖2 − ‖xj + hj‖2]

From Schwarz’ inequality, we get

g∑
j=1

‖hj‖2 ≤
√
g‖h‖2 ≤

√
g‖h‖1 ≤

√
g(‖hS‖1 + ‖hSc‖1),

for any S ⊆ [n]. Combining everything gives

g∑
j=1

[‖xj‖2 − ‖xj + hj‖2] ≤ √g(‖hS‖1 + ‖hSc‖1), (41)

for any subset S ⊆ [n]. Second, for any subset S ⊆ [n], the decomposability of ‖ · ‖1 implies
that

‖x‖1 = ‖xS‖+ ‖xSc‖1,

while the triangle inequality implies that

‖x+ h‖1 = ‖xS + hS‖1 + ‖xSc + hSc‖1
≥ ‖xS‖1 − ‖hS‖1 + ‖hSc‖1 − ‖xSc‖1.

Therefore
‖x‖1 − ‖x+ h‖1 ≤ ‖hS‖1 − ‖hSc‖1 + 2‖xSc‖1. (42)

If we now choose S to be the set corresponding to the k largest elements of x by magnitude,
then

‖xSc‖1 = σk(x, ‖ · ‖1) =: σk.

With this choice of S, (42) becomes

‖x‖1 − ‖x+ h‖1 ≤ ‖hS‖1 − ‖hSc‖1 + 2σk. (43)

Substituting the bounds (41) and (42) into (40) gives

0 ≤ µ√g(‖hS‖1 + ‖hSc‖1) + (1− µ)(‖hS‖1 − ‖hSc‖1 + 2σk).

Now recall the definition of the constant γ from (33). Using this definition, the above
inequality can be rearranged as

0 ≤ γ(‖hS‖1 + ‖hSc‖1) + (‖hS‖1 − ‖hSc‖1 + 2σk).

and equivalently as
(1− γ)‖hSc‖1 − (1 + γ)‖hS‖1 ≤ 2σk. (44)
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This is the first of two equations that we need.

Now we derive the second equation. From Theorem 9, we know that the matrix A sat-
isfies the l2-robust null space property, namely (26). An application of Schwarz’ inequality
shows that

‖hS‖1 ≤ ρ‖hSc‖1 + τ‖Ah‖2.

However, because both x and x̂ are feasible for the optimization problem in (24), we get

‖Ah‖2 = ‖Ax̂+ η − (Ax+ η)‖2 ≤ 2ε.

Substituting this bound for ‖Ah‖2 gives us the second equation we need, namely

‖hS‖1 ≤ ρ‖hSc‖1 + 2τε,

or equivalently

−ρ‖hSc‖1 + ‖hS‖1 ≤ 2τε. (45)

The two inequalities (44) and (45) can be written compactly as

M

[
‖hSc‖1
‖hS‖1

]
≤
{[

2
0

]
σk +

[
0
2τ

]
ε

}
, (46)

where the coefficient matrix M is given by

M =

[
(1− γ) −(1 + γ)
−ρ 1

]
The matrix M has positive diagonal elements (recall that γ < 1), and negative off-diagonal
elements. Therefore, if det(M) > 0, then every element of M−1 is positive, in which we can
multiply both sides of (46) by M−1. Now

det(M) = 1− γ − ρ(1 + γ) > 0 ⇐⇒ ρ <
1− γ
1 + γ

.

Recall the definition of γ from (33). Now routine algebra shows that

ρ <
1− γ
1 + γ

⇐⇒ ρ <
1− µ√g
1 + µ

√
g
⇐⇒ µ <

1− ρ
√
g(1 + ρ)

,

which is precisely (32). Thus we can multiply both sides of (46) by M−1, which gives

[
‖hSc‖1
‖hS‖1

]
≤ 1

det(M)

1 (1 + γ)

ρ (1− γ)

{[2
0

]
σk +

[
0
2τ

]
ε

}
.

Clearing out the matrix multiplication gives[
‖hSc‖1
‖hS‖1

]
≤ 1

det(M)

{[
2
2ρ

]
σk +

[
2τ(1 + γ)
2τ(1− γ)

]
ε

}
. (47)
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Now the triangle inequality states that

‖h‖1 ≤ ‖hSc‖1 + ‖hS‖1 =
[
1 1

] [‖hSc‖1
‖hS‖1

]
Substituting from (47) gives

‖h‖1 ≤
1

det(M)
[2(1 + ρ)σk + 4τε].

By substituting that det(M) = (1−γ)− (1 +γ)ρ, we get (34) with the constants as defined
in (36).

To prove (35), suppose p ∈ (1, 2]. This part of the proof closely follows that of (Foucart
and Rauhut, 2013, Theorem 4.22), except that we provide explicit values for the constants.
Let Λ0 denote the index set of the k largest components of h by magnitude. Then

‖h‖p ≤ ‖hΛ0‖p + ‖hΛc
0
‖p.

We will bound each term separately. First, by (Foucart and Rauhut, 2013, Theorem 2.5)
and (34), we get

‖hΛc
0
‖p ≤

1

k1−1/p
‖h‖1 ≤

1

k1−1/p
(Cσk +Dε). (48)

Now we apply in succession Hölder’s inequality, the robust null space property, the fact that
‖Ah‖2 ≤ 2ε, and (34). This gives

‖hΛ0‖p ≤ k1/p−1/2‖hΛ0‖2

≤ k1/p−1/2

√
k

[ρ‖hΛc
0
‖1 + τ‖Ah‖2]

≤ 1

k1−1/p
[ρ(Cσk +Dε) + 2τε]

=
1

k1−1/p
[ρCσk + (ρD + 2τ)ε]. (49)

Adding (48) and (49) gives (35).
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