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Abstract

In machine learning, one often encounters data sets where a general pattern is violated by
a relatively small number of exceptions (for example, a rule that says that all birds can fly
is violated by examples such as penguins). This complicates the concept learning process
and may lead to the rejection of some simple and expressive rules that cover many cases. In
this paper we present an approach to this problem in description logic learning by comput-
ing partial descriptions (which are not necessarily entirely complete) of both positive and
negative examples and combining them. Our Symmetric Parallel Class Ezxpression Learn-
ing approach enables the generation of general rules with exception patterns included. We
demonstrate that this algorithm provides significantly better results (in terms of metrics
such as accuracy, search space covered, and learning time) than standard approaches on
some typical data sets. Further, the approach has the added benefit that it can be paral-
lelised relatively simply, leading to much faster exploration of the search tree on modern
computers.

Keywords: description logic learning, parallel, symmetric, exception

1. Introduction

In machine learning we seek general rules that describe data. However, it is not uncommon
for there to be exceptions to general rules, i.e., particular situations where those rules do
not apply. In this situation, non-monotonic reasoning can be used, and a default rule that
covers most of the cases is retracted if further evidence is provided that overrides the general
case. Non-monotonic reason will be discussed more in Section 4.1.

For example, in the classic Tweety demonstration of logical proof, the first assertion
is that ‘Birds fly’. This is generally true, and so the follow-up statement that ‘Tweety is
a bird’ has the implication that ‘Tweety can fly’. However, there are several species of
bird that cannot fly, such as penguins. This type of example can be covered by a set of
extra statements: ‘Penguins are birds. Penguins do not fly. Tweety is a penguin.’ Non-
monotonic reasoning is able to retract the earlier inference that ‘Tweety can fly’ given the
extra information that ‘Tweety is a penguin.’
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An alternative approach to this is to make the general rules correct by listing the ex-
ceptions: ‘Birds fly except penguins’. Providing that the complete rule is still ‘simpler’
(e.g., shorter) than other rules that describe the same situation (i.e., enumerations, or dis-
junctions of types of birds that can fly), this can provide a net gain in learning. Thus, a
short general rule can be augmented by a set of exception rules that make the general rule
correct. In the Tweety case this could be a list of counter-examples, possibly by species and
genus, such as ‘All birds can fly except ratites and penguins’.

In this paper, we enable such use of exception for description logics by explicitly con-
sidering negative examples and building rules for them. As we will show, this leads to a
parallel algorithm that treats positive and negative examples in exactly the same way (thus
meaning that the learning would be invariant to a switch between positive and negative in
the data). Experiments on a variety of standard learning problems demonstrate that this
algorithm is statistically significantly faster and more accurate than standard approaches
from the literature.

Most existing description logic (DL) learning algorithms, e.g. AL — QUIN (Lisi and
Malerba, 2003), DL-FOIL (Fanizzi et al., 2008), CELOE (Lehmann and Hitzler, 2010) and
ParCEL (Tran et al., 2012), only take the definitions of negative examples into account
implicitly, by incorporating them into the definitions of positive examples. Learning starts
from a very general concept, usually ‘top’ in DL, and subclasses and sub-properties, con-
junction (intersection) and the combination of conjunction and negation (subtraction) are
used to remove the negative examples from the candidate concepts.

While this approach is suitable for many concept learning problems and has been used
successfully by Hellmann (2008); Lehmann and Hitzler (2010); Tran et al. (2012), it does not
use descriptions in the search space efficiently. Consider a top-down approach for learning
such as CELOE, which constructs the search tree using a downward refinement operator
until it finds a node (expression) that correctly and completely defines the positive examples.
Given a concept learning problem with a set of positive (4+) and negative (-) examples, the
concepts D1, Dy, N1, Na and their coverage! as described in Figure 1(a), CELOE will find
the single concept C' = (D1 M —Nyp) U (D2 M —N3) (shown in Figure 1(b)).

Algorithms that combine both top-down and bottom-up approaches (such as ParCEL
and DL-FOIL) find two simpler concepts: P, = Dj M —N; and P» = Dy M =Ny, These
concepts are visualised in Figure 1(c). If all of the concepts Di, Do, Ny and Ny have the
same length of 3, then the length of the longest concepts generated by these two approaches
are 16 (4 concepts of length 3 plus 4 operators) and 8 (2 concepts of length 3 plus 2
operators) respectively. If a concept is of length 16 then it must occur at a depth of at
least 16 in the search tree, and so CELOE will only be able to identify this concept after
searching the previous 15 levels of the search tree. As the expansion of the search tree in
these approaches is directed by a heuristic that is based upon accuracy, not all branches of
the search tree are fully expanded; this prevents ‘dummy’ breadth-first expansion.

The difference between these two methods is the way that the search tree is constructed:
CELOE refines a general concept, while ParCEL searches for partial solutions that provide
a correct (true) description of a subset of the data, and combines them to generate a
complete solution. This idea of partial solutions can be extended to define exceptions as

1. Coverage of a concept is the set of its instances, see Definition 1
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Figure 1: Exception patterns in learning. Pluses (+) denote positive examples, minuses
(-) denote negative examples. The ellipses represent coverage of the corresponding class
expressions.

(a) The target concept can
be constituted from simple de-
scriptions D1, D2, N1 and Na:
(D1 M —|N1) (] (Dg Il —|N2). The
description would be given by
the SPaCEL learning algorithm
described in this paper.

(b) CELOE learnt concept: a
single complex description C' =
(D1 Il —\N1) L (D2 M —\NQ) is re-
quired

(¢) ParCEL learnt concepts:
constructed from more complex
descriptions P, = DM~ N7 and
P> = D5 M =Ny describe the
data set concisely

partial descriptions of negative examples, and this is what we consider in this paper. It
enables a learning algorithm to find the solution suggested in Figure 1(a), which is at
depth three in the search tree that combines descriptions of positive and negative examples
separately. This is the main idea of the algorithm that we propose in this paper, which
we call SPaCEL for reasons that will be made clear later, and which treats positive and
negative examples equally and can search for their definition in parallel. Definitions of
negative examples can then be combined with other concepts in the search tree to construct
new partial solutions. In the case of the example in Figure 1, definitions N7 and No of
negative examples, which are ignored by CELOE and ParCEL, are employed by SPaCEL
and are combined with concepts D; and Dy to to constitute partial solutions D; M =Ny
(equivalent to P; in CELOE) and Dy M —=N3 (equivalent to P» in CELOE). In some cases,
definitions of negative examples can be very simple and thus they can be found very early
in the search process. In addition, each negative example can be combined with a variety
of concepts to constitute several partial solutions. This will result in smaller search trees
and faster learning time. Our evaluation shows that this approach works well not only in
cases where exceptions exist, but also in normal cases.

Figure 2, which extends the Tweety example using the knowledge base shown in Figure
2(a), provides another simple example of the benefits of exceptions. For the instances given
in Figure 2(b) (where b; are instances of Bird, p; instances of Penguin, ¢ instances of
Mammal and ¢, instances of Bat), the p; can be considered as exceptions to a rule that
says that birds fly, and likewise t,, for a rule that says that mammals do not. Figure
2(c) represents the search tree for the three learning strategies described above. Finding a
complete definition (triple-line node, e.g., CELOE) requires a deeper search tree than finding
several shorter partial definitions (double-line nodes, e.g. ParCEL, DL-FOIL). However,
using definitions of exceptions (dotted-line nodes) can produce even shallower search trees.
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Further, since some ‘useful’ definitions (such as Bat in this example) are based on negative
examples, they may be ignored by the first two approaches.

Another, more complex example that demonstrates differences between the three ap-
proaches is in the uncle relationship for the Forte Uncle data set. The knowledge base of
this data set contains concepts and relations that are related to family relationships, such as
Person, Male, Female, married, has parent, has sibling, etc. It also includes some instances
of people and their properties. For example, Alfred is a male and is the father of David and
Elisa. Alice is a female, she is married to Art and is the mother of F14, M13, M15. Art
is a male and he is the father of F14, M13 and M15. He also has two siblings, Umo and
Wendy. Wendy is a female and is married to Walt. She has two children, F12 and M11.
Her siblings are Art and Umo. In this set, Art is a positive example of an uncle, and Alfred,
Alice and Wendy are negative examples (Alfred does not have siblings, Alice and Wendy
are female). There are a total of 186 instances in the data set. A detailed description of
this data set is provided in Section 3.1.

Written in Manchester syntax (Horridge and Patel-Schneider, 2009) and also in English,
definitions of the uncle relationship learnt by the three different approaches are :

e CELOE: generates a single complex solution of length 15:

male AND ((married SOME hasSibling SOME Person) OR
(married SOME hasSibling SOME hasChild SOME Thing))

(An uncle is a male who has married someone with a sibling; or a man who married
someone’s sibling and the sibling has some children)

e ParCEL: generates two partial solutions of length 7 and 9:

1. male AND hasSibling SOME hasChild SOME Thing

(An uncle is a man who has at least sibling and a sibling has children)

2. male AND married SOME hasSibling SOME hasChild SOME Thing
(An uncle is a man who married someone with at least one sibling, and that

sibling has a child)

e SPaCEL: generates two partial solutions that are created by combining two concepts
“hasSibling SOME hasChild SOME Thing” of length 5 and “married SOME hasSi-
bling SOME hasChild SOME Thing” of length 7 with a partial solution “female” of
negative examples:

1. hasSibling SOME hasChild SOME Thing AND (NOT female)

(An uncle is a person who has a sibling with children, and who is not female)

2. married SOME hasSibling SOME hasChild SOME Thing AND (NOT female)

(An uncle is a person who married someone with a sibling who has children and
who is not female)
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Figure 2: Different approaches to learning the definition for the extended Tweety concept
learning problem.

(a) The knowledge base of the learning

problem. (b) Visualisation of the knowledge base.
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(c) The search tree for learning the extended Tweety example using three different approaches. Triple-
line nodes represent complete definitions (e.g., CELOE). Double-line nodes represent partial definitions (e.g.,
ParCEL). Dashed-line nodes represent definitions of some negative examples. The ellipses represent the com-
binations of an (incorrect and incomplete) expression with a definition of negative examples that constitutes
a partial definition. Solid arrows represent the paths to the definitions for positive or negative examples.
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The partial solution of negative examples can be found in an early stage of the learning
progress. However, it is ignored by CELOE and ParCEL, whereas SPaCEL employs it for
later combinations with concepts in the search tree to generate partial solutions if possible.
All three solutions are valid, but the SPaCEL one can be found more quickly.

Using exceptions could increase the risk of selective over-fitting, since sub-cases are given
high weight, but the emphasis on short descriptions for the general rules, and the fact that
the exception cases are also based on short descriptions, ensures that this is unlikely to
happen. We present experimental evidence that this method often gives higher predictive
accuracy on test data. It is true that logical formulae based on exceptions can quickly
become torturous, as a short general description gets progressively more complex caveats
added to it, and possibly even exceptions to the exceptions. However, the constraints on
search that are implicit in logic programming (such as search tree size, definition length,
and learning time) means that these complex cases are very unlikely to ever be found.

One key part of our approach is that positive and negative examples are treated in the
same way; this ‘symmetry’ gives us the name of our algorithm: Symmetric Parallel Class
Ezxpression Learning (SPaCEL). A secondary point (referred to in the ‘parallel’ part of the
name) is that the algorithm is inherently parallelisable in the first phase of learning, where
separate definitions of positive and negative examples are sought. These definitions are
combined in the second phase to construct a sufficiently accurate definition. By using rules
about negative examples to remove them from the concepts in the search tree it is possible
to combine (potentially very short) concepts and so define relatively complex concepts based
on much smaller depth traversals. Consequently, concepts in the search tree are used more
effectively and thus the learning time can be reduced.

We present a formal definition of our learning algorithm in Section 2, together with a
discussion of various strategies for combining partial definitions of positive and negative
examples. In addition, we demonstrate the parallelisation strategy that is one part of what
makes our algorithm so effective computationally. We then present the data sets that we use
for evaluation in Section 3.1, followed by a comparison of the three strategies for combining
definitions that we have considered. Following this, in Section 3.3 we report search tree
size, predictive accuracy, learning time, and definition length for 15 data sets of varying
complexity for CELOE, ParCEL and SPaCEL. In Section 4.1, we summarise some related
work before concluding with a summary and discussion of future work in Section 5.

2. Symmetric Parallel Class Expression Learning

Our learning approach constructs definitions of both positive and negative examples and
gives them equal weight in order to find the final definition. This is performed in three
main steps:

1. Find partial definitions for positive and negative examples separately such that the
set of definitions, together, cover all positive and negative examples.

2. Consolidate the partial definitions to remove redundancies (i.e., the partial definitions
whose coverage is a subset of the union of other partial definitions) and select the best
candidates for constructing a complete definition.

3. Aggregate the best candidates to form the complete definition using disjunction.
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In the first step, partial definitions can be produced directly by specialisation using a
downward refinement operator, as in algorithms such as DL-FOIL and ParCEL. Definitions
for negative examples are constructed side-by-side with definitions for positive examples
and are used in combination with existing expressions in the search tree to create further
partial definitions.

In the next section we introduce the concepts necessary for our algorithms. The al-
gorithms themselves will be presented in Section 2.2. We follow the definitions used by
Lehmann and Hitzler (2010) closely, although some of the concepts have to be extended in
order to include negative examples.

2.1 Symmetric class expression learning

A concept learning problem in description logics can be described as a structure (K, (E1,£7))
where K is a knowledge base (ontology), £1 is a set of positive examples and £~ is a set
of negative examples such that £ N E~ = (. A learnt concept is also called a hypothesis
or definition. K = C(a) denotes that a is an instance of class C with respect to the
knowledge base K. If £ = C(a) is satisfied, C is said to cover a with respect to K.
The aim of description logic learning is to find a concept C' such that K = C(e) for all
e € ET (completeness) and K ¥ C(e) for all e € £~ (correctness). A learnt concept is
called complete if it covers all positive examples, correct if it does not cover any negative
examples, accurate if it is both complete and correct, overly general if it is complete but
incorrect, and owverly specific if it is correct but incomplete.

In order to define negative examples, we extend the concept cover for a set of instances
in the form of a function, as follows:

Definition 1 (Cover) Let K be a logic knowledge base, X be a set of instances and C be
a concept. Then, cover(K, C, X) is a function that computes a set of examples in X covered
by C with respect to K:

cover(IC,C, X) = {e € X | K | C(e)(that is:e is covered by C with respect to K)}
This can be generalised to a set of definitions as:
cover(K, @, X) = Jocg cover(K,C, X)
where IC be a knowledge base, X be a set of instances and Q be a set of definitions.
Definition 1 enables us to give definitions of positive examples (which are called partial
definitions) and negative examples (which are called counter-partial definitions):

cept C is called a partial definition if cover(K,C,E1) # 0 and cover(KC,C,E7) = 0.

Definition 3 (Counter-partial definition) For a concept learning problem (K, (ET,E7)),
a concept C is called a counter-partial definition if cover(K, C,E) = () and cover(K,C,E7) #
0.
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Definitions 2 and 3 are ‘ideal’” in that they insist on the cover of the opposite set being
the empty set. In practice, it is possible to allow a few negative examples to be covered by
a partial definition, and a few positive examples by a counter-partial definition; this could
potentially help with noisy data.

The first (top-down) step of our algorithm consists of finding partial and counter-partial
definitions separately using a refinement operator and a combination strategy to compute
further partial definitions from the counter-partial definitions and existing expressions in the
search tree. As these searches are performed separately and simultaneously, our approach
avoids being over-specific for concept learning problems that contain exceptions.

These sets are then combined, which enables the algorithm to cope with exceptions to
general rules through the opposing definitions (so rules made of partial definitions can have
counter-partial definitions added, and vice versa). This is simply the use of conjunction
and negation, The combination acts as an extra step to deal with the exceptions with the
support of counter-partial definitions. In our approach, only one downward refinement
operator is used in the specialisation step to generate both partial and counter-partial
definitions. The combination strategy essentially consists of checking for the possibility of
creating new partial definitions from an expression and counter-partial definitions, using
conjunction and negation: a combination of an expression C with a set of counter-partial
definitions X" has the form C M =(Upex D).

Definition 4 (Combinability) Given a concept learning problem LP = (K, (ET,E7)), a
set of counter-partial definitions Q, and an expression C such that cover(K,C,ET) # () and
cover(KC,C,E7) # 0, C is said to be combinable with Q iff:

cover(KC,C,E7) C cover(K, Q,E7),
which means that C can be “corrected” by Q.

The main objective of the combination step is to check for the combinability of descrip-
tions in the search tree. Combining definitions can be performed at several stages of the
learning algorithm; this is discussed further in Section 2.3.

In this paper, we employ the refinement operator used by Lehmann and Hitzler (2010).
However, the combination step helps us avoid the usage of negation in the refinement
without any loss of generality, and the use of partial models and disjunction in the reduction
steps means there is no need for disjunction in the refinement. Therefore, we use only 5
of the 7 basic rules in the original refinement operator described by Lehmann and Hitzler
(2010). The two rules which refine the negation and disjunction are not used, thus our
refinement operator is defined as:

Definition 5 (SPaCEL refinement operator pn) Given an expression C, a set of con-
cept names N¢ and a set of property (role) names Ng, then pn is defined as follows:

1. if C € N¢ (Cis an atomic concept):
pn(C)={C"| C"cCand AC" € Nc:C'C C"c Cyu{CncC' | C" € pn(T)}
(if C'is an atomic concept, it is specialised by using its proper sub-concepts or creating
a conjunction with the refinements of the TOP concept pn(T)).



SYMMETRIC PARALLEL CLASS EXPRESSION LEARNING

2. if C =T (Cis the TOP concept):
pn(C)={C"| C" € N¢,}C" € N¢ : C' & C" = C}
U {3r.T | re€ Nr} U {Vr.T | r € Ng}
(if C is the TOP concept, specialise it by using its proper sub-concepts or property
restrictions)

3. ifC=C1N...NCy, (Cis a conjunctive of descriptions):
pn(C)={Cin..NnC'"N..NC, | C" € pn(Ci),1 <i<n}

(if C'is a conjunction, it is specialised by refinements of its conjuncts)

4. if C =¥r.D,r € Ng: pn(C) ={vr.D' | D' € pn(D)}
U {Vr.L | D= A€ N¢ and #A" € N s.t. A’ C A}
(if C'is a ‘for all’ property restriction, it is specialised by refinements of its range)

5. if C =3r.D,r € Ng: pn(C)={3r.D' | D’ € pn(D)}

(this rule is for the ‘there exists’ property restriction, and is similar to the 4" rule.)

Note that in the expression for pm in the second rule, negation and disjunction are not
used, since they can be generated by combination and aggregation (steps 2 and 3 of our
algorithm) respectively.

The top-down step finishes when either the partial definitions cover all positive examples
or the counter-partial definitions cover all negative examples (up to allowable noise), which
produces this formal definition (where the first line of this describes as the union of correct
descriptions of the positive data and correctable descriptions of the same data):

Definition 6 (SPaCEL top-down learning) Given a concept learning problem LP =
(K, (ET,E7)), the top-down learning step in this approach aims to find a set of partial
definitions P, a set of counter-partial definitions Q and a set of expressions X such that:

cover(IC, P,ET) U cover(KK, X,E1) = T,
such that VC' € X | C is combinable with Q, or
cover(KC, Q,E7) =&

Figure 3 demonstrates the top-down step in our approach that uses the refinement
operator pn to produce both partial and counter-partial definitions. In this example, the
combination of the counter-partial definition C'y and the expression Cio creates a partial
definition Cio M —=Cy.

Asin the ParCEL algorithm, the selection of expressions in the search tree for refinement
is controlled by node scores that are computed by a learning heuristic. The particular
learning heuristic that we use is adapted from Lehmann and Hitzler (2010). However, the

factors involving in the scoring function and their weights are redefined accordingly to our
learning strategy:

Definition 7 (SPaCEL score) Let LP = (K,(ET,E7)) be a concept learning problem, C
be a class expression and C' the parent expression of C. The score of C is computed as:

score(C) = correctness(C, LP)
+ a x gain(C, LP) 4+ 8 x completeness(C, LP) — v x length(C, LP)
(¢=0,820,720)
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Figure 3: The top-down learning step aims to find both partial definitions and counter-
partial definitions. Double-line nodes are partial definitions, dashed-line nodes are counter-
partial definitions. pn is the refinement operator defined in Definition 5. Connections from
nodes to examples represent the coverage of the expressions.
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where gain(C, LP) = accuracy(C, LP) — accuracy(C’, LP).

In this definition, correctness, completeness and accuracy have their standard meanings,
i.e., (Lehmann and Hitzler, 2010):

correctness(C,LP) = |5_\cove’;(|/|C, ¢.e0l ;
|cover(IC,C,ET)|
€71 ’
lcover(KC,C,ET)| + |E™ \cover(K,C,E7)|
|EXUE| '

completeness(C, LP)

accuracy(C,LP) =

The length of an expression is taken to be the sum of the number of concept names,
role names, quantifiers, and connective symbols occurring in the expression, which for ex-
pressions in the ALC language can be defined as:

Definition 8 (Length of an ALC expression) The length of an expression D or E (de-
noted by |D|) is defined inductively as follow (where A denotes an atomic concept):

Al =[T|=[L] =1
|-D| = |D| +1
|IDUE|=|DNE|=1+|D|+|E|
|3r.D| = |Vr.D| = 2 + |D|
The learning heuristic is mainly based on the correctness of the class expression (in
contrast to that of Lehmann and Hitzler (2010), which is based on accuracy). A penalty is

applied for long definitions to avoid infinitely deep search (necessary because the refinement
operator used in our learning algorithm is infinite). A bonus for accuracy gained by an

10
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expression is also applied, as accurate expressions are more likely to be close to the solution.
A bonus is also given for the relatively complete expressions.

Default values for the weightings of the above factors were chosen based on experimental
investigations and the work by Lehmann and Hitzler (2010). We chose a = 0.2,5 =
0.01,v = 0.05. These values can be adjusted based on the characteristics of the learning
problem, such as decreasing the penalty for learning problems that need long definitions,
thus biasing the search to look for deeper solutions.

The last step of our algorithm, the aggregation of the best candidates, can be performed
using disjunction.

One optimisation step that can be applied to our learning is to notice irrelevant concepts
and remove them from the search tree. Irrelevant concepts are those from which no partial
or counter-partial definition can be produced, hence they cannot be expanded. An irrelevant
concept in SPaCEL is defined as follows:

Definition 9 (Irrelevant concept) Given a concept learning problem LP = (K,(ET,
E7)), a concept C is irrelevant if cover(K,C,ET) = 0 and cover(K,C,E7) = 0, i.e., it
covers no positive and no negative examples.

2.2 The algorithms

The SPaCEL learning algorithm is essentially top-down learning combined with a reduction
task. The top-down step is used to solve the sub-problems of the given concept learning
problem and the reduction is used to reduce and combine the sub-solutions into an overall
solution. The former is performed by the downward refinement operator and a combination
strategy, while the latter uses a set coverage algorithm to choose the best partial definitions
and disjunction to form the overall solution.

Algorithm 1 describes the main loop of our learning algorithm, the reducer. It chooses
the best concepts (i.e., those with highest score, based on the search heuristic described
in Definition 7) from the search tree and uses the SPECIALISE algorithm (see Algorithm 2)
for refinement and evaluation until the completeness of the partial definitions is sufficient.
Concepts are scored using an expansion heuristic that is mainly based on the correctness of
the concepts. Our reducer is the analogue of the cover removal step in ILP in that it tries
to remove redundancies.

The specialisation, which performs the refinement and evaluation of the concepts as-
signed by the learning algorithm, is described in Algorithm 2. It refines the given concept
(pn(C)) and evaluates the result (cover(K,C,ET) and cover(K,C,E7)). Irrelevant concepts
are removed, as no partial definition or counter-partial definition can be computed from
them. Then, the specialisation finds new partial definitions, counter-partial definitions and
descriptions from the refinements. In practice, new descriptions are checked for redun-
dancy before being evaluated and added to the search tree, as the same description can be
generated from different branches of the search tree.

The sets of new descriptions, partial definitions and counter-partial definitions produced
by the SPECIALISE algorithm are used to update the corresponding data structures and the
set of covered positive and negative examples in the learning algorithm, and the new de-
scriptions are combined with the counter-partial definitions to create new partial definitions

11
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Algorithm 1: Symmetric Class Expression Learning Algorithm-—

SPACEL(K,E+,67¢)

®

10
11

12
13

14

15

16
17
18
19

20
21

22
23
24
25
26

27

Input: background knowledge K, a set of positive £ and negative £~ examples,

and a noise value ¢ € [0, 1] (0 means no noise)

Output: a definition C such that |cover(IC, C,E1)| > (€| x (1 —¢)) and cover(K,

C,E7) =0 (empty set)

begin
initialise the search tree ST = {T} /+ T: TOP concept in DL */
cum_pdefs = () /* set of cumulative partial definitions */
cum_cpdefs = ) /x set of cumulative counter-partial definitions =/
cunch::@ /* set of cumulative covered positive examples x/
cum_cn =) /* set of cumulative covered negative examples x/
/* cf. Def. 6 for the meaning of the OR operator x/
while [cum_cp| < (|ET| x (1 —¢€)) or |cum_cn| < |E~| do
get and remove the ‘best’ concept B from ST /* see text */
(pdefs, cpdefs, descriptions) = SPECIALISE(B,ET,E7) /% cf.Alg.2 */
cum_pdefs = cum_pdefs U pdefs
cum_cpdefs = cum_cpdefs U cpdefs
cum_cp = cum_cpU {e | e € cover(K, P,ET), P € pdefs}
cum_cn = cum_cn U {e | e € cover(KC, P,E7), P € cpdefs}
/* online combination, see Sec.2.3 =/
foreach D € descriptions do
/+* if D can be ‘‘corrected’’ by existing cpdefs */
if (cover(KC,D,E7) \ cum_cn) = () then
/* combine D with cpdefs if possible */
candidates = COMBINE(D, cum_cpdefs,E™) /* cf.Alg.3 =*/
new_pdef = D N =(|| sccandidates(4)) /* new partial def. x/
cum_pdefs = cum_pdefs U new_pdef
cum_cp = cum_cp U cover(K, new_pdef, E1)
else
| ST =STuU{D}
/* explore more partial definitions to satisfy completeness x/
if [cum_cp| < (|ET] x (1 —¢)) then
foreach D € ST do
candidates = COMBINE(D, cum_cpdefs, E~)
new_pdef = DT ﬁ(UAEcandidates(A))
cum_pdefs = cum_pdefs U new_pdef
return REDUCE (cum_pdefs) /% for description, see text x/

12
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where possible, a form of theory learning. Concepts that have been refined can be scheduled
for further refinements.

The refinement operator given in Definition 5 is infinite (i.e., it can continue to expand
the tree without limit), but in practice each refinement step is monotonic and bounded, as
it is only allowed to generate descriptions of at most a pre-defined length (see Definition 8).
For example, a concept of length N will first be refined to concepts of length (N + 1), and
later, when it is revisited, to concepts of length (N+2), etc. For the sake of simplicity, we use
pn in the algorithms to refer to one refinement step rather than the entire refinement. This
technique is used in DL-Learner and discussed in detail by Lehmann and Hitzler (2010).

When the learning algorithm reaches a sufficient degree of completeness, it stops and
reduces the partial definitions to remove the redundancies using the REDUCE function,
which is essentially a set coverage algorithm: given a set of partial definitions X and a set
of positive examples £, it finds a subset X’ C X such that £T C |Jpe . (cover(KC, D, ET)).
The solution returned by the algorithm is a disjunction of the reduced partial definitions.
As an alternative, a set of partial definitions could be returned instead. This may be
useful in some contexts, such as making the result more readable. The reduction algorithm
may be tailored to meet particular requirements, such as the shortest definition or the
smallest number of partial definitions. The combination of descriptions and counter-partial
definitions that is given in Algorithm 1 is one of the combination strategies implemented in
our evaluation. This strategy is called the on-the-fly combination strategy; it gave the best
performance in our evaluation (see Section 3.2). A description of the various combination
strategies we tried is given in Section 2.3.

Algorithm 2: Specialisation algorithm — SPECIALISE(C, K,ET,E7)

Input: a description C and a concept learning problem LP = (K, (£T,E7)).

Output: a triple consisting of a set of partial definitions pdefs C pn(C); a set of
counter-partial definitions cpdefs C pn(C); and a set of new descriptions
descriptions C pn(C) such that
VD € descriptions : D is not irrelevant and D ¢ (pdefs U cpdefs), in which
pn is the refinement operator defined in Definition 5.

1 begin

2 pdefs = {D € pn(C) | cover(K,D,EY) £ 0 A cover(K,D,E7) = 0}

3 cpdefs = {D € pr(C) | cover(K,D,ET) =0 A cover(K,D,E™) # 0}

4 descriptions = {D € pn(C) | cover(K,D,ET) #0 N cover(K,D,E7) # 0}

5 return (pdefs, cpdefs, descriptions)

Algorithm 3 describes the combination algorithm that is used to combine the descriptions
and counter-partial definitions to construct new partial definitions. This is basically a set
coverage algorithm. One of the smallest sets of counter-partial definitions that together
cover all negative examples covered by the given expression will be returned. This set of
counter-partial definitions is then used to correct the given expression.

13
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Algorithm 3: Combination algorithm — COMBINE(C, cpdefs, £7)
Input: a description C, a set of counter-partial definitions cpdefs and a set of negative
examples £~
Output: a set candidates C cpdefs such that
CO'U@T'(K:, C? Si) - UPEcandidates(Cover(K:v P7 87))

1 begin

2 candidates = () /* candidate counter-partial definitions =/
3 cn_c = cover(lC,C’,g_) /* negative examples covered by C */
4 sort cpdefs by descending coverage of negative examples

5 while cpdefs # () and cn_c # () do

6 get and remove the top counter-partial definition D from cpdefs

7 if (cover(K,D,E7) Nenc) # () then

8 candidates = candidates U D

9 L en_c = cn_c \ cover(K,D,E7))

10 if cn_c # () then

11 ‘ return ( /% return the empty set */
12 else
13 ‘ return candidates

COMPLETENESS OF THE ALGORITHM

The refinement operator used in our algorithm is based on the refinement operator described
by Lehmann (2010). In that paper a proof of completeness over the ALC language is given,
i.e., any concepts in the ALC language can be produced by this operator after a finite
number of refinement steps.

Due to our learning strategy, our refinement operator does not generate negation and
disjunction. As a result, our refinement operator itself is not complete. However, negation
and disjunction can be created by the reduction and combination steps of the algorithm.
The combination step uses negation and conjunction to correct an expression with counter-
partial definitions (see Algorithm 3 and Definition 4) whereas the reduction step can gener-
ate disjunctions. Clearly, the completeness of our algorithm depends upon the combination
strategy that produces the negations. Three combination strategies are proposed in Section
2.3, and our learning algorithm is complete when the on-the-fly and delayed combination
strategies are used; completeness is not guaranteed for the late combination strategy.

2.3 Counter-partial definitions combination strategies

Counter-partial definitions are combined with expressions in the search tree to create new
partial definitions where possible, producing expressions of the form C M —(Upex D) (for
expression C and a set of counter-partial definitions X'). The combinability of an expression
with respect to a set of counter-partial definitions is given in Definition 4. The combination
step can be performed at several stages of the learning algorithm, and different choices
have different effects on the learning result. We describe three combination strategies. An
evaluation of these strategies is given in Section 3.2.

14
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2.3.1 LATE COMBINATION

In this strategy, the algorithm maintains sets of partial definitions and counter-partial defini-
tions separately. When all positive or negative examples are covered (or another termination
condition is reached, such as maximum time allowed, or a sufficient percentage of examples
covered), it will combine descriptions from the search tree and the set of counter-partial
definitions.

Since the combination is performed after the learning stops, this strategy may provide
a better combination, i.e., it may have better choices of counter-partial definitions to use
for the combination. However, for concept learning problems in which both positive and
negative examples use negation, the algorithm may not be able to find the definition because
the refinement operator designed for this algorithm does not use negation. If this is the case
and a maximum time timeout is set, then the combination will be made when the timeout
is reached in order to find the definition. Otherwise, the algorithm will not terminate.

For example, the concept learning problem shown in Figure 2 may cause this strategy to
run out of memory without finding an accurate concept if there is no timeout or no noise is
allowed. To cover all positive examples, we need a class expression with negation as follows:

Bat U (Bird M —Penguin)
and to completely cover all negative examples, the following class expression is needed:
Penguin U (Mammal M —Bat)

To produce the definition for positive examples, the counter-partial definition Penguin
needs to be combined with the expression Bird, which cannot be performed directly due
to the removal of negation from the refinement operator. However, in this strategy, the
combination is only called when all positive examples or negative examples are covered, and
in the example this condition is never met, as the expression =Bat cannot be produced.

2.3.2 ON-THE-FLY COMBINATION

This strategy is used in Algorithm 1. When a new description is generated from the refine-
ment or an existing description is revisited, it is combined with the existing counter-partial
definitions if possible. This strategy can avoid the termination problem discussed in the late
combination strategy because negation is used in the combination. The evaluation suggests
that this strategy, overall, gives the best performance and the smallest search tree. However,
the final results can be optimised since a counter-partial definition may be combined with
many expressions and thus the final definition is unnecessarily long. For example, in the
concept learning problem described in Figure 2, when the description Bird is generated,
there is no counter-partial definition to combine it with. However, when it is revisited for
refinement, it will be combined with the new counter-partial definition Penguin to produce
a partial definition Bird M —Penguin.

This strategy seems to produce similar results to the original refinement by Lehmann
and Hitzler (2010), which can generate negation. However, they are essentially different. In
our approach, the negation is only used for counter-partial definitions to remove negative
examples from the description in the search tree, while negation may be applied for any
description in the original refinement operator. In addition, in our approach, the counter-
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Figure 4: Top-down learning in SPaCEL with multiple workers.
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partial-definitions are stored to be reused to “correct” the new descriptions in the search
tree, while the original refinement may regenerate the same negated description.

2.3.3 DELAYED COMBINATION

This strategy lies inbetween the previous two, and checks the possibility of combinations
when a new description is generated. However, even if the combination is possible, only the
set of cumulative covered positive examples is updated (by removing the elements that are
covered by the new description), while the new description is put into a potential partial
definitions set. The combination is executed when the termination condition is reached, i.e.,
either all positive examples or all negative examples are covered, or the algorithms times
out.

This strategy may help to prevent the problem of the late combination strategy, and
it may return better combinations in comparison with the on-the-fly strategy because it
inherits the advantage of the late combination strategy. However, as the combinable de-
scriptions in this strategy are not combined until the learning terminates, the search tree is
likely to be larger than that of the on-the-fly strategy.

2.4 Parallelisation of the learning algorithm

One benefit of the symmetric approach is that it is inherently parallel: several expressions
(branches) in the search tree can be processed (refined and evaluated) in parallel using
multiple workers to find the partial definitions. A central reducer, which is part of the
learner, controls the management of partial and counter-partial definitions produced by the
workers until the termination condition described in Definition 6 is met. Then it performs
the reduction and aggregation steps to create a final definition. The parallel exploration of
the search tree by multiple workers is illustrated in Figure 4.

Our organisation of learning tasks described above follows the idea of the map-reduce
architecture (Dean and Ghemawat, 2008), which enables the parallel divide and conquer
strategy. Here, we organise our algorithm architecture into two parts as shown in Figure
5. The computationally heavy parts, including refinement and evaluation of concepts, are
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Figure 5: Implementation architecture. Note that the combination step may be performed
by the workers or the reducer, depending upon the combination strategy (see Section 2.3).
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done by the multiple workers. The combining of descriptions and counter-partial definitions
is also performed on the worker side.

3. Evaluation

In order to evaluate the Symmetric Class Expression Learning approach of SPaCEL, we
compared it to CELOE and ParCEL using 10-fold cross validation with 15 data sets. These
are summarised in Section 3.1, using the search tree size, predictive accuracy and learning
time, and the length of the definitions learnt as the metrics for comparison. CELOE is one of
the description logic learning algorithms in the DL-Learner framework. It is well-evaluated
and has been compared with many other learning algorithms. Therefore, using it for com-
parison enables an implicit comparison with other learning algorithms; the evaluations by
Hellmann (2008); Lehmann (2010) suggest that, overall, CELOE produced better results
than the comparators. The implementation of CELOE that we used is publicly available
at https://github.com/tcanvn/SParCEL/.

Before performing the comparison, we used the same evaluation method to compare the
three evaluation strategies described in Section 2.3, meaning that only one of them (the
on-the-fly strategy) was used in the comparison experiments.
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3.1 Experimental data sets

To ensure the evaluation covers as much as possible of the space of cases, which helps to
archive a thorough assessment of the learning algorithms, we chose data sets that vary in:
i) size of knowledge base and examples, ii) the length of definitions, and iii) the amount of
noise. In some cases, (i) was achieved by using subsets of a particular data set.

The data sets are divided into three groups. The first group includes 7 learning problems
that have low to medium complexity and on which all algorithms in the experiment can
find solutions on the training set without timing out in the 10 minutes we allowed. The
second group contains high to very high complexity learning problems; all algorithms in
the experiment can also find accurate solutions on the training set without timing out.
The third contains leaning problems for which one of the learning algorithms could not
find accurate solution on the training set (i.e. timeout occurred). The complexity of the
learning problems is approximately estimated based on the definition length produced by
CELOE: i) low: (0, 8]; ii) medium: (8, 15]; iii) high: (15, 20]; and very high: longer than
20. The reason for treating problems learnt with and without timeout separately is that
some metrics cannot be compared if the learning algorithm cannot find the solution (e.g.
learning time, search space size).

The list of data sets used and their properties are summarised in Table 1, and an
overview of them is given next. We use Manchester OWL Syntax (Horridge and Patel-
Schneider, 2009) to describe the learning problems’ expected definitions.

Moral This data set was first introduced by Wogulis (1994) and is available at the Uni-
versity of California Irvine (UCI) machine learning repository? (Frank and Asuncion,
2010). It is intended to be used to learn definitions of harm-doing activities and con-
tains concepts and observations related to the classification of activities as ‘guilty’ and
‘not guilty’ through a set of sub-categories such as ‘blameworthy’ and ‘justified’.

Poker A description of 10 classes of poker hands (5 cards drawn from a standard deck)
based on 10 predictive attributes (suit and rank of each card). This data set can be
customised into binary-class learning and is available at the UCI repository?.

Family A set of data sets containing observations about family relations such as aunt,
brother, cousin, daughter, father, grandson and uncle (Richards and Mooney, 1995).
This data set can be found in many repositories. In our evaluation, we use the data
set distributed with the DL-Learner package (which can be found in the DL-Learner
repository?). Each family relation can be treated as a separate learning problem, and
we use several of them. We also use the Forte Uncle problem used by Lehmann
(2007) and available in the DL-Leaner repository.

CarcinoGenesis This data set is used to learn the structure of chemical compounds and
bioassays that may cause cancer based on data from the US National Toxicology
Program. It was transformed into logic programming and used for evaluation of ILP
algorithms by many authors such as Bahler (1993); Srinivasan et al. (1997) and was

2. http://archive.ics.uci.edu/ml/datasets/Moral+Reasoner
3. http://archive.ics.uci.edu/ml/datasets/Poker+Hand
4. https://github.com/AKSW /DL-Learner
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transformed into the OWL ontology format and used to evaluate the description logic
learning algorithms in the DL-Learner framework (Lehmann, 2010)°. It is particularly
noisy, which makes it a challenging problem in machine learning for both symbolic
and sub-symbolic learning approaches.

MUSE Dataset We employ use case 1 of a set of context-aware smart home simulations
by Lyons et al. (2010) for normal and abnormal living behaviours. The data set is
available in the SPaCEL repository®.

ILPD Dataset A data set based on the liver function test records of patients collected from
the North East of Andhra Pradesh, India (Indian Liver Patient Dataset). Each record
comprises patient information such as age and gender and results of liver function tests
including total Bilirubin, Albumin, and total protein, and the target is an expert-
assigned label of cancerous or non-cancerous. This data set is also available in the
UCI repository”.

MUBus Dataset A data set developed to demonstrate the SPaCEL algorithm, it is based
on a bus timetable that varies according to conditions such as weekday /weekend, uni-
versity holidays, and school holidays. Data was generated by sampling at 5 minute
intervals. Sub-datasets can be created by restricting the sampling times, such as
“MUBus12 [07:00 - 09:20]” (shortened as MUBus-1), “MUBus12 [07:00 - 12:00]”
(shortened as MUBus-2) and “MUBus12 [07:00 - 21:30]” (shortened as MUBus-3).
This data set is available in the SPaCEL repository; for more information about it,
see (Tran, 2013).

The timetable makes surprising complicated rules, such as the following description
for a weekend bus:

(NOT Holidayl) AND ((hasMinute VALUE 0 and hasHour VALUE 9) OR
(hasMinute VALUE 20 AND
(hasHour VALUE 10 OR hasHour VALUE 14 OR hasHour VALUE 16)) OR
(hasMinute VALUE 40 AND
(hasHour VALUE 11 OR hasHour VALUE 13 OR hasHour VALUE 15)))

3.2 Comparison of Combination Strategies

As was described in Section 2.3, three combination strategies were implemented: late, de-
layed and on-the-fly. We chose to compare these strategies in order to choose one as the
most useful for SPaCEL. Table 2 shows the experimental results. It can be seen that the
accuracies achieved are similar across all three, but the learning times and search space sizes
differ. For example, the late combination strategy did not terminate in some cases: for the
MUBus-2 data set the learner was interrupted by timeout after 10 minutes. However, by
applying the algorithm after the learner was interrupted, a definition with 100% accuracy
on the training data set was produced. This means the solution existed implicitly, but the

5. http://svn.code.sf.net/p/dl-learner/code/trunk/examples/carcinogenesis/
6. https://github.com/tcanvn/SParCEL/
7. http://archive.ics.uci.edu/ml/datasets/ILPD+(Indian+Liver+Patient+Dataset)
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Table 1: Properties of the evaluation data sets. OPs and DPs are short for Object Properties
and Data Properties respectively. Number of examples is given in the form positive/negative
examples.

Assertions
No Dataset Classes OPs DPs Class oP DP Examples
1.  Moral 43 0 0 4646 0 0 102/100
2. Forte uncle 3 3 0 86 251 0 23/163
3. Poker 4 6 0 374 1080 0 4/151
4. Carcino- 142 4 15 22,372 40,666 11,185 182/155
Genesis
5. ILPD 4 0 10 976 0 1952 323/165
6. UCAl 30 4 11 300 200 200 73/77
(MUSE)
Family  data 4 4 0 606 728 0 -
set
7. Aunt - - - - - - 41/41
8. Brother - - - - - - 43/30
9.  Cousin - - - - - - 71/71
10.  Daughter - - - - - - 52/52
11.  Father - - - - - - 60/60
12, Grandson - - - - - - 30/30
13.  Uncle - - - - - - 38/38
MUBus12 Dataset
14.  [07:00-09:10] 25 0 12 2675 0 32110 383/2292
15.  [07:00-12:00] 25 0 12 6314 0 75766 670/5643
16.  [07:00-21:30] 25 0 12 17128 0 205534 1250/15877
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learner was not able to compute it. To make sure that the learner was not terminated too
early, the experiment was rerun for 3 hours, but the learner was still not able to find the

solution on the training data set. This demonstrates the disadvantage of this strategy.

Table 2: Combination strategies experimental result (means + standard deviations of 10

folds).
| Metric Late | Delayed On-the-fly
UCA1
Learning time (s) 1.01 + 0.33 0.54 + 0.23 0.72 + 0.17
Accuracy (%) 100.00 +0 100.00 +0 100.00 +0
Definition length 20.20 + 0.63 58.60 + 21.31 66.60 + 1.90
No of descriptions 11,137.30 + 2.711.99 5,065.30 + 1,867.64 6,998.70 4+ 859.74
No of pdef.8 1.00 + 0.00 3.40 + 1.27 4.00 + 0.00
Avg.? pdef. length 20.20 +0.63 17.65 + 2,02 16.65  + 0.47
MUBus1
Learning time (s) 47.59 + 17.66 23.02 + 28.33 7.52 + 2.37
Accuracy (%) 100.00 +0 99.81 + 0.36 99.74 + 0.36
Definition length 297.30 + 22.67 383.00 4+ 170.47 393.30 £ 73.51
No of descriptions 39,096.80 + 12,210.86 | 14,463.90 + 20.232.28 2,130.10 £ 1,179.48
No of pdef. 1.00 + 0.00 4.20 + 1.69 6.30 + 1.25
Avg. pdef. length 297.30 + 22.67 145.32 £ 155.66 63.40 £ 10.54
MUBus?2
Learning time (s) | int.19 @600s 90.97  + 73.43 48.46  + 16.56
Accuracy (%) 99.89 + 0.15 99.84 + 0.20 99.78 + 0.23
Definition length 1,419.20 =+ 328.20 1,372.30 =+ 539.13 1,179.50 =+ 209.80
No of descriptions | 187,279.60 + 2.584.59 | 23,843.40 + 21.430.22 8,575.10 + 4,184.27
No of pdef. 8.00 +0 8.60 + 0.10 12.00 + 2.79
Avg. pdef. length 177.40 + 41.03 161.52 + 67.40 101.29 £ 45.37
MUBus3
Learning time (s) | int. @900s 566.89 £ 224.52 495.94 + 267.67
Accuracy (%) 99.83 + 0.10 97.96 + 1.90 99.72 + 0.40
Definition length 4,120.10 =+ 1.045.59 3,740.50 =+ 1,228.56 3,728.00 £ 1,598.00
No of descriptions | 141,243.00 + 2,185 | 49,980.00 £ 21,778 | 23,477.00 + 13,897
No of pdef. 18.20 + 0.79 15.70 + 2.83 18.10 + 1.85
Avg. pdef. length 225.38 + 51.33 249.16  + 100.58 205.90 £ 85.49

In addition, as the late combination strategy performed the combination at the end, only
after all positive or negative examples are covered, its learning times were always longer
than other strategies. In theory this might produce more concise solutions than the on-the-
fly strategy, as can be seen in the following partial definitions produced by the on-the-fly

strategy with the UCA1 data set:

1. activityHasDuration SOME hasDurationValue < 15.5 AND
(NOT (Activity AND activityHasDuration SOME hasDurationValue < 4.5))

8. Partial definitions
9. Average
10. Interrupted
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2. activityHasStarttime SOME Autumn AND
(NOT (Activity AND activityHasDuration SOME hasDurationValue < 4.5)) AND
(NOT (Activity AND activityHasDuration SOME hasDurationValue > 19.5))

3. activityHasStarttime SOME Summer AND
(NOT (Activity AND activityHasDuration SOME hasDurationValue < 4.5)) AND
(NOT (Activity AND activityHasDuration SOME hasDurationValue > 19.5))

4. activityHasDuration SOME hasDurationValue > 4.5 AND
activityHasStarttime SOME Spring AND
(NOT (Activity AND activityHasDuration SOME hasDurationValue > 19.5))

In contrast, the delayed strategy found:

activityHasDuration SOME (hasDurationValue > 4.5 AND
hasDurationValue < 19.5) AND

(NOT (activityHasStarttime SOME Winter AND
activityHasDuration SOME hasDurationValue > 15.5))

The difference is between a large number of short expressions and a smaller number of
long ones; usually the delayed strategy produced shorter descriptions overall. However, the
on-the-fly strategy dominated in most aspects, particularly the learning time and search
space covered. Our hope that the delayed strategy would combine the advantages of both
of the others was not bourne out, and we therefore chose to use the on-the-fly strategy for
the experimental comparison of SPaCEL with other algorithms.

3.3 Comparison Experiment

We measured search tree size (Table 3), predictive accuracy (Table 4), learning time (also
Table 4), and definition length (Table 6) for all 15 data sets using CELOE, PaRCEL and
SPaCEL. This section reports and discusses the results of this experiment.

The search tree size reported in this experiment is the total number of all descriptions
that are inserted into the search tree, including the irrelevant descriptions (the partial and
counter-partial definitions which are removed later by the algorithm). If an algorithm can
find the solution, the result reported is the search tree size after the learning algorithm has
terminated. Otherwise, it is the search tree size at the time when the timeout has occurred.
In this case, the comparison should be treated with caution as it depends upon the timeout
assigned for the learning algorithm. Only learning problems on which at least one of the
algorithms found an accurate definition on the training set were considered. Therefore, the
results for the CarcinoGenesis and ILDP learning problems are not reported, since all three
algorithms timed out.

In the first group of learning problems, SPaCEL produced smaller search trees than
both CELOE and ParCEL for 4 out of 7 learning problems. However, the definitions of
these learning problems were short and therefore the search tree sizes were usually small.
Consequently, they were sensitive to the parallelisation: as the search tree in our algorithm
is expanded by multiple workers, the solution may be found by one of the workers while
the other workers are still processing the search tree. The search tree may be therefore
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Table 3: Search tree size (means + standard deviations of 10 folds). The underlined values
are the search tree size after the timeout has occurred. The statistical significance was tested
using t-tests: bold values are statistically significantly higher (at the 95% confidence level)
than other values; unformatted values are statistically significantly lower than other values;
bold italic values are statistically significantly lower than the bold values, and statistically

significantly higher than the unformatted values.

\ Problem \ CELOE \ ParCEL \ SPaCEL
Low to medium complexity learning problems without timeout
Moral 540.5 + 16.9 33.3 + 11.0 223.4 + 364.2
Forte 64,707.9 + 33,6419 | 859.5 + 251.2 174.1 + 108.2
PokerStraight | 1,090.8 +12.5 | 14,204.8 L2847 | 2,105.0 + 1,217.7
Brother 37.0 +0 104.4 + 92.6 18.4 + 9.1
Daughter 21.0 + 0 111.3 + 110.2 18.1 + 5.9
Father 29.0 +0 82.9 + 63.8 23.0 + 7.0
Grandson 80.5 + 3.0 | 1,867.5 + 1,519.3 125.3 + 25.3
High to very high complexity learning problems without timeout
Aunt 85,883.8 L (7.328.8 | 7,023.4 + 2,912.1 | 2,127.8 & 1,160.9
Cousin 20,331.6 + 233.6 | 35,484.4 + 39,0554 | 6,761.1 + 722.9
Uncle 541,081.8 +0| 6,332.5 + 3,2/7.9 | 2,400.0 + 551.2
Learning problems with at least 1 timeout
UCA1 1,465,263.2 + 11,515.5 | 28,676.0 + 14.935.2 | 6,998.70 + 859.7
MUBus-1 161,832.2 + 3,054.5 | 643,401.5 + 139,303 | 2,130.1 + 1,179.5
MUBus-2 79.959.2 £+ 1185 | 879,866.1 -+ 34,000.4 | 8,575.1 -+ 4,184.3
MUBus-3 55,130.4 + 73.7 | 453,605.1 -+ 7.565.3 | 23,477.0 + 13,897
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expanded redundantly and thus the reported search tree sizes might be unnecessarily larger
than the minimal search tree size required to learn the problem.

In the second and the third groups, SPaCEL always produced the smallest search trees
for all learning problems. The search tree sizes generated by the three algorithms for the
same learning problem in this group were extremely different. For example, SPaCEL only
needed to explore about 2,400 expressions to find the solution for the Uncle learning problem
while CELOE had to explore more than 541,081 expressions. Similarly, SPaCEL found a
solution after exploring about 2,130 expressions, while ParCEL needed to explore 643,401
expressions on the MUBus-1 learning problem. CELOE could not find an accurate solution
for this learning problem and timed out after 10 minutes. The average search tree size at
the time of timeout was about 161,832 expressions.

A t-test rejected the null hypothesis for similarity of search tree size of the algorithms on
all learning problems at the 99% confidence level, meaning that the search trees generated
by SPaCEL were statistically significantly smaller than CELOE in 12 out of 14 learning
problems and than ParCEL for 13 out of 14 learning problems.

With regard to predictive accuracy and learning time, which are reported in Table 4, in
general, SPaCEL achieved better predictive accuracy in most learning problems. In the first
two groups (10 learning problems) all three learning algorithms achieved very high accuracy,
including 100% accuracy in 5 of them. In the remaining 5 learning problems, SPaCEL was
statistically significantly more accurate than CELOE for 3 out of 5 and ParCEL for 1 out of
5 problems. There were no learning problems in this group where SPaCEL was statistically
significantly less accurate than either of the other algorithms.

Table 4: Learning time and predictive accuracy experimental results summary (means +
standard deviations of 10 folds). Result of the statistical significance t-test (at the 95%
confidence level) is also included: the bold and highlighted values are statistically signifi-
cantly better than other values; the unformatted values are statistically significantly worse
than other values; the bold and italic and highlighted values are statistically significantly
worse than the bold and highlighted values, and statistically significantly better than the
unformatted values; the underlined values represent the values that are not statistically
significantly different from the other values.

Problem Predictive accuracy (%) Learning time (s)

CELOE | ParCEL | SPaCEL || CELOE | ParCEL | SPaCEL
Low to medium complexity learning problems without timeout.

Moral 100.00 100.00 100.00 0.15 0.02 0.03
+0.00 +0.00 +0.00 +0.03 +0.01 +0.02
Forte 98.86 100.00 100.00 2.60 0.23 0.05
+2.27 +0.00 +0.00 +1.64 +0.17 +0.02
Poker-Straight 100.00 96.43 98.21 0.36 0.59 0.32
+0.00 +4.12 +3.57 +0.71 +0.08 +0.18
Brother 100.00 100.00 100.00 0.19 0.03 0.02
+0.00 +0.00 +0.00 +0.16 +0.02 +0.01
Daughter 100.00 100.00 100.00 0.2 0.03 0.02
+0.00 +0.00 +0.00 +0.02 +0.03 +0.01
Continued on next page
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Table 4 — continued

Problem Predictive accuracy (%) Learning time (s)

CELOE | ParCEL | SPaCEL || CELOE | ParCEL | SPaCEL

Father 100.00 100.00 100.00 0.02 0.03 0.02
+0.00 +0.00 +0.00 +0.10 +0.03 +0.01

Grandson 100.00 100.00 100.00 0.08 0.19 0.05
40.00 +0.00 +0.00 +0.07 +0.79 +0.02

High to very high complexity learning problems without timeout.

Aunt 96.5 100.00 100.00 30.01 0.26 0.22
+0.00 +0.00 +0.00 +0.02 +0.15 +0.15

Cousin 99.29 99.29 100.00 3.79 0.54 0.80
+0.00 +2.26 +0.00 +0.54 +0.20 +0.28

Uncle 95.83 98.75 95.42 34.13 0.29 0.16
+6.80 +3.95 +10.84 +14.94 +0.18 +0.11

Learning problems with timeout.

CarcinoGenesis 53.73 56.05 60.52 int.* int.* int.*
+4.79 +4.30 +6.06 @2000s @2000s @2000s

UCA1 91.42 100.00 100.00 int.* 29.75 0.72
+7.01 +0.00 +0.00 @2000s +5.77 +0.17

MUBus-1 53.61 99.63 99.74 int.* 395.33 7.52
+2.45 +0.31 + 0.36 @600s | +11.83 +2.37

MUBus-2 14.35 97.91 99.78 int.* int.* 48.46
+1.10 +0.50 +0.23 @600s @600s +16.56

MUBus-3 11.34 95.85 99.72 int.* int.* 495.94
+0.06 +0.31 +0.40 @900s @900s | +267.67

ILPD 76.02 71.12 72.67 int.* int.* int.*
+2.61 +5.36 +8.12 @120s @120s @120s

Note: *: Interrupted by timeout

In the last group of problems SPaCEL outperformed CELOE on 5 out of 6 and ParCEL
on 3 out of 6 learning problems. The data set MU-Bus is a complex learning problem in
which the target definition is very long, as the bus operation time depends upon many
conditions. For this data set, SPaCEL outperformed both ParCEL and CELOE. It always
found the complete definition on the training set and the accuracy on the test set was always
over 99.7%, while CELOE could not find accurate definitions on the training set and the
accuracy on the test set was very low, from 11.34% to 53.61%. ParCEL performed better
than CELOE and the accuracy was also very high but it was still statistically significantly
less accurate than SPaCEL.

For the ILPD data set it appears that CELOE had higher predictive accuracy that
SPaCEL, although the difference was not statistically significant. However, as the ILPD
and MuBus data sets are unbalanced, it is more appropriate to use balanced accuracy ! for
these learning problems. Table 5 shows the balanced predictive accuracy for ILPD and some
other unbalanced learning problems. The balanced accuracy of SPaCEL and ParCEL on the
ILDP learning problem were statistically significantly higher than CELOE. The outcome
of the statistical significance test on the balanced accuracy of other learning problems did
not change.

|true positive| + |true negative|
[ n

- 1,
11. balanced accuracy = 3 (|positive examples egative ezamples|
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the results’ representation are similar to that of in Table 4.

Problem Balanced predictive accuracy (%)
CELOE | ParCEL |  SPaCEL
MUBus-1 71.12 4+ 0.65 | 99.68 + 0.60 | 99.74 + 0.62
MUBus-2 52.09 +0.06 | 91.86 + 3.02 | 99.78 + 0.59
MUBus-3 52.18 + 0.03 | 73.07 + 1.91 99.02 + 2.67
ILDP 64.62 + 4.83 | 70.94 + 10.87 | 71.73 + 12.29

Our symmetric approach to class expression learning not only increased the predictive
accuracy, but also decreased the learning time, although this effect can only be observed for
the medium and high complexity data sets. The t-test result on learning time shows that
SPaCEL was statistically significantly faster than CELOE in 13 out of 14 problems and
than ParCEL for 10 out of 14 learning problems. It was statistically significantly slower
than ParCEL for 2 out of 14 problems, both in the first and second groups. The definition
lengths in this group were short and the learning times were very small.

The last metric that we evaluated was the length of the definitions learnt; the results
can be seen in Table 6. The definition lengths of ParCEL and SPaCEL are reported by
the number of partial definitions and the average length of the partial definitions, the total
average length of their definitions is the product of those numbers.

Table 6: Definition length of the learning problems (means £+ standard deviations of 10
folds). The bold values are the definition lengths after the timeout occurred.

Problem (Partial) definition length No of partial definitions
CELOE | ParCEL | SPaCEL ParCEL | SPaCEL
Low to medium complexity learning problems without timeout

Moral 3.00 1.52 1.50 2.10 2.00
+0.00 +0.05 +0.00 +0.32 +0.00

Forte 13.50 7.75 8.50 2.00 2.00
+1.00 +0.50 +0.00 +0.00 +0.00

PokerStraight 11.70 10.90 19.75 1.70 1.00
+0.68 +1.31 +2.50 +0.68 +0.00

Brother 6.00 6.00 6.40 1.00 1.00
+0.00 +1.83 +0.84 +0.00 +0.00

Daughter 5.00 5.25 6.20 1.10 1.00
+0.00 +1.09 +0.63 +0.32 +0.00

Father 5.00 5.50 5.90 1.00 1.00
+0.00 +0.53 +0.98 +0.00 +1.00

Grandson 7.25 7.25 8.00 1.00 1.00
+0.50 +0.50 40.00 +0.00 +0.00

High to very high complexity learning problems without timeout

Aunt 19.00 8.80 10.10 2.00 2.00
+0.00 +0.48 +0.97 +0.00 +0.00

Cousin 23.40 8.50 8.50 2.00 2.00
+2.59 +0.00 +0.00 40.00 40.00

Continued on next page
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Table 6 — continued

Problem (Partial) definition length No of partial definitions
CELOE | ParCEL | SPaCEL ParCEL | SPaCEL
Uncle 19.00 8.40 10.15 2.00 2.00
+14.94 +0.38 +1.67 +0.00 +0.00
Learning problems with timeout

CarcinoGenesis 4.80 55.87 138.00 72.70 17.00

+0.42 +9.52 +51.46 +3.43 +5.7
UCA1 9.00 12.75 16.65 4.00 4.00
+0.00 +0.00 +0.47 +0.00 +0.00
MUBus-1 12.70 16.99 63.40 15.00 6.30
+0.48 +0.42 +10.54 +1.56 +1.25
MUBus-2 2.00 16.07 101.29 24.80 12.00
+0.00 +0.19 +45.37 +3.52 +2.79
MUBus-3 2.00 14.64 205.90 25.40 18.10
+0.00 +0.13 +85.49 +1.58 +1.85
ILPD 5.80 8.34 13.30 42.80 37.00
+1.69 +0.12 +1.40 +1.69 +2.06

The experimental results show that ParCEL and SPaCEL produced longer definitions
than CELOE for most learning problems. By manually inspecting the results we identified
that this was because partial definitions tend to overlap, and that the creation of sub-
solutions leads to more specific definitions. It may also be that since CELOE timed out
more often, it had not yet managed to produce completely accurate (and necessarily longer)
solutions before the learning was terminated.

For the learning problems in the first two groups, where all three algorithms can find the
definition for the training sets without timeout, the differences in definition length between
the three algorithms were small, and any difference was caused by the overlap between
partial definitions. In some cases, this can be shortened using an optimisation strategy. For
example, the definitions produced by CELOE and SPaCEL for the Forte Uncle data set
are:

e CELOE:

male AND ((married SOME sibling SOME Person) OR
(married SOME hasSibling SOME hasChild SOME Thing))

e SPaCEL (two partial definitions):
1. hasSibling SOME hasChild SOME Thing AND (NOT female)

2. married SOME hasSibling SOME hasChild SOME Thing AND (NOT female)

The length of the definition produced by CELOE is 15 and SPaCEL is 19 (length of
two partial definitions plus 1 for disjunction). However, at least 3 axioms in the SPaCEL
final definition can be reduced by removing the common part among partial definitions,
i.e. AND NOT female. That means that if the same normal form (Lloyd, 1984; Gabbay
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et al., 1998) is applied for both CELOE and SPaCEL, the difference between their lengths
can be reduced. Moreover, NOT female can be replaced by Male if male and female
are declared as disjoint and jointly exhaustive properties. This is the idea of optimisation
and simplification in description logic (Horrocks and Patel-Schneider, 1999; Baader et al.,
2010). Currently, this idea has not yet been implemented in our algorithm. However, rather
than applying optimisation and simplication to the definition constructed by combining
multiple partial definitions using conjunction, breaking down a long definition into several
smaller partial definitions (as in SPaCEL) may help to make the definition more readable,
particularly when the definition is long.

For the learning problems on which at least one of the learning algorithms cannot
find an accurate definition on the training set, i.e. timeout occurred in the experiments,
definitions produced by SPaCEL are significant longer than those of CELOE. An interesting
comparison is seen in the definitions produced for the UCA1 data set, which is complex,
but noiseless:

e CELOE:

activityHasDuration SOME (hasDurationValue > 4.5 AND
hasDurationValue < 21.5)

e ParCEL:

1. activityHasDuration SOME
(hasDurationValue > 4.5 AND hasDurationValue < 15.5)

2. activityHasDuration SOME
(hasDurationValue > 15.5 AND hasDurationValue < 19.5) AND
activityHasStarttime SOME Spring

3. activityHasDuration SOME
(hasDurationValue > 15.5 AND hasDurationValue < 19.5) AND
activityHasStarttime SOME Summer

4. activityHasStarttime SOME Autumn AND activityHasDuration SOME
(hasDurationValue >= 4.5 AND hasDurationValue <= 19.5)

e SPaCEL (late combination):

activityHasDuration SOME (hasDurationValue > 4.5 AND
hasDurationValue < 19.5) AND (NOT (activityHasDuration SOME
hasDurationValue > 15.5 AND activityHasStarttime SOME Winter))

Obviously, the short definition (length 9) produced by CELOE does not fully define
the positive examples (both training accuracy and predictive accuracy were below 100%).
Meanwhile, ParCEL produced a far longer definition (length 51) that describes the positive
examples accurately (both training and predictive accuracy were 100%). The definition
produced by SPaCEL for this data set better demonstrates the idea of using the symmetric
learning approach and exceptions in learning, since it is a combination of an expression:
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activityHasDuration SOME
(hasDurationValue > 4.5 AND hasDurationValue < 19.5)

and a counter-partial definition:

activityHasDuration SOME
(hasDurationValue > 15.5 AND activityHasStarttime SOME Winter)

This definition is shorter than the definition produced by ParCEL and it still describes
the positive examples accurately.

4. Related Work

4.1 Description logic learning

Learning in description logic is basically a search problem in which the search tree is often
dynamically generated by a refinement operator. In contrast to other algorithms, SPaCEL
uses a top-down approach to learning both positive and negative patterns. Only YinYang
(Tannone et al., 2007) has particularly considered negative patterns previously, and they
took a bottom-up approach to them, despite learning top-down for the positive patterns.
The bottom-up approach creates concepts by joining most specific concepts created for
positive examples using disjunction, which can create large concept definitions that are not
truly intentional.

Top-down learning has been used by several algorithms reported in the literature, such as
Badea and Nienhuys-Cheng (2000), which uses a refinement operator designed for the ALER
description logic. However, as discussed by Lehmann and Hitzler (2010), this refinement
operator cannot be extended to handle more expressive description logic language such as
SRIOQ(D), which is the language on which OWL2 is based.

Lisi and Malerba (2003) proposed an alternative based on the hybrid AL-log language,
which combines the ALC description logic language and Datalog. In Nienhuys-Cheng and
De Wolf (1997) an ideal downward refinement operator for the AL-log language was pro-
posed that is based on the notation of B-subsumption. This is a generalisation of the
generalised subsumption in the AL-log language and is suitable for the hybrid knowledge
representation systems that are constituted by the relational and structural subsystems. It
was implemented in the AL-QUIN (AL-log Query Induction) system.

In Esposito et al. (2004); Iannone et al. (2007), a top-down refinement operator for
the ALC language is used in combination with a bottom-up most specific concept (MSC)
operator. The essential idea of these studies lies in the concept of counterfactuals, that is
errors within candidate hypotheses. Therefore, for each candidate hypothesis, the learning
algorithm uses an MSC operator to find the concept(s) representing errors and remove them
from the candidate hypothesis. However, this approach has two disadvantages: i) finding
of concept(s) for counterfactuals may be repeated for the same set of errors, and ii) as a
result, it tends to generate unnecessarily long concepts.

Some description logic learning algorithms also have been proposed by Lehmann (2010),
where two top-down refinement operators have been proposed. One is for the ££ language
and the other is for ALC (although it can be extended to more expressive languages).
The latter is the most expressive refinement operator proposed so far. In addition, several
learning approaches based on the proposed refinement operators were also developed. Two
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interesting algorithms in this framework are Class Expression Learner for Ontology Engi-
neering (CELOE) and OWL Class Expression Learner (OCEL). These algorithms perform
very well when compared with other learning approaches (Hellmann, 2008). However, they
are sequential algorithms and thus they cannot take advantages of parallel systems such
as multi-core processors or cloud computing platforms. In addition, these algorithms focus
on generating short descriptions and thus they have another disadvantage: they cannot
handle complex learning problems (see Hellmann (2008) and Tran et al. (2012)). Recently,
an extension of CELOE has been developed and integrated into the DLLearner framework.
This algorithm is the parallelisation of CELOE in which the search tree is expanded by
multiple threads. Basically, the learning approach is the same as CELOE, i.e., it looks for
a complete definition. Therefore, its performance (learning speed) is improved, but not the
capability for learning problems requiring complex (long) concepts.

DL-FOIL (Fanizzi et al., 2008) combines both top-down and bottom-up learning. The
top-down step finds a set of correct concepts such that each of them correctly defines a
subset of the positive examples. Then, the bottom-up step computes a complete concept
that defines all positive examples. This approach handles complex concepts better than the
top-down or bottom-up approach alone. However, it produces longer concepts in comparison
with the approaches proposed by Lehmann (2010). The unnecessarily long learnt concepts
are caused by the lack of optimisation in the aggregation step. In addition, like other
existing description logic learning algorithms, this approach is serial by nature and thus it
cannot take advantage of concurrency.

During the early 90s, a related idea to the overly general descriptions that we use
is this paper was proposed by Bain and Muggleton (1990) for first-order theories. Called
non-monotonic learning, this approach adopted a specialisation schema based on an existing
non-monotonic logic formalism for incremental specialising of over-general beliefs. Although
this learning method also employs the negative examples to correct the learned beliefs, the
use of negative examples in this approach is different from our approach. In Bain and
Muggleton’s approach, each negative example is intentionally and incrementally used to
specialise the learned beliefs. On the other hand, negative examples in our algorithm are
mainly used to verify the correctness of the learned beliefs. Their definitions, which are
occasionally found in the process of finding the definition for positive examples, are used to
correct (specialise) the over-general concepts.

Recent research in description logic learning has focused on the induction instance re-
trieval cast as a classification problem (Rizzo et al., 2015). They extend the decision tree to
describe logic representations (terminological decision trees) by using the nodes to represent
conjunctive description logics and left and right branches of the binary tree corresponding
to the result of checking some instance against the parent node. In essence, this is a top-
down learning approach in which the child nodes are generated by a downward refinement
operator.

4.2 Parallelisation in description logic learning

Parallel computing has a history of development since the late 1950s, from multi-processor
computer systems to multi-core processors. Parallelisation helps to use computer resources
more effectively in order to create fast, efficient scalable algorithms. Currently, parallelisa-
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tion can be found in every area of computing, with many parallel frameworks developed,
such as Parallel Virtual Machine (PVM) (Sunderam, 2006) and Apache Hadoop (Bhan-
darkar, 2010).

In logics, parallelisation has been used to develop parallel logic programming languages
such as PARLOG (Gregory, 1987) and PEPSys (Ratcliffe and Syre, 1987), allowing par-
allelised logic deduction. A parallel inductive logic programming approach was proposed
by Dehaspe and De Raedt (1995), based on partitioning positive examples into several sets
depending on the parallel level of the system and combining the concepts for the partitioned
sets at the end. In Matsui et al. (1998), several parallelisation strategies were implemented in
FOIL, an inductive logic learning algorithm (Quinlan, 1990). These strategies differ mainly
in the dividing strategies, either dividing space among processors (i.e. multiple refinements
work in parallel) or partitioning the data and learning the partitions independently, simi-
larly to Dehaspe and De Raedt (1995), although using background knowledge to perform
the partition. Our parallel learning approach is similar to the first strategy: we explore the
search space in parallel. However, we use a different learning strategy, employing concepts
for a subset of positive examples and use a reduction strategy to construct the final concept.

Parallelisation is also used in description logics, but mainly not for reasoning, with only
the Deslog reasoner (Wu and Haarslev, 2012), and parallel inferencing algorithms for OWL
(Liebig and Miiller, 2007; Soma and Prasanna, 2008) being reported to date.

5. Conclusion and Future Work

A symmetric approach to class expression learning has been proposed, where we learn
from both positive and negative examples simultaneously. This is motivated by learning
scenarios where negative examples can be classified using simple patterns. This is common
in practice and our empirical experiments suggest that our approach deals well with this
kind of scenario. This approach to class expression learning can deal with other kinds of
concept learning problems, as shown in Table 4. For example, the Forte learning problem
can be solved by a top-down approach (e.g., CELOE and ParCEL) without using negation.
However, this learning problem is solved faster by SPaCEL, which uses the definitions of
negative examples, without decreasing the predictive accuracy.

Some current learning algorithms, e.g. CELOE and ParCEL, which were used in our
evaluations, can also solve this category of problem by specialising the concepts or using
negation and conjunction to remove negative examples from candidate concepts. However,
for some data sets with regular exception patterns such as MUBus and UCA1, these algo-
rithms had difficulties in finding the right concept: their learning times were very long in
comparison with SPaCEL, which sometimes caused the system to run out of memory before
the definition could be found. The most impressive improvements were in the search tree
size and learning time. Although SPaCEL often generated longer definitions than other
algorithms, there was no over-fitting for the data sets used.

However, the definitions generated by SPaCEL are not optimised. Normalisation and
simplification can be used to produce better definitions, i.e. shorter and more readable.
This, together with investigations on more data sets, will require further research.
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