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1. Introduction

This paper introduces a class of dependent Pitman-Yor processes1 that can be used for time-
varying density estimation and classification in a variety of settings. The construction of
this class of dependent Pitman-Yor processes is in terms of a generalised Pólya urn scheme
where dependencies between distributions that evolve over time, for instance, are induced
by simple urn-like operations on counts and the parameters to which they are associated.

Our Pólya urn for time-varying Pitman-Yor processes is expressive per dependent slice,
as each is represented by a Pitman-Yor process (infinite) mixture distribution of which the
component densities may as usual take any form. The dependency-inducing mechanism is
also flexible and easy to control, a claim supported by an applied literature (see Gasthaus
et al. (2008); Ji and West (2009); Ozkan et al. (2009); Bartlett et al. (2010); Neiswanger
et al. (2014); Jaoua et al. (2014) among others) that has grown around the subsumed version
of this work (Caron et al., 2007). The generalised Pólya urn dependent Dirichlet process
can be recovered by a specific settings of the parameters in this generalized model.

Most of the emphasis of this paper is on defining the model and describing its statistical
characteristics. While additional model complexity does not automatically beget useful ex-
pressivity, in the case of this model and others like it (see Lin et al. (2010) for example), we
assert that it does. For example, in applications like fully unsupervised visual object detec-
tion and tracking there is an increasing need for top-down models that introduce coherence
through bias towards physical plausibility. While dependent density estimation techniques
abound in the literature, there are few that possess the right combination of interpretability
and flexibility to fill the role of top-down priors for such complex applications. We illustrate
experimentally that this model succeeds at filling this role.

The remainder of the paper is organized as follows: In Section 2 we review Pitman Yor
processes and stationarity. In Section 3, we present our main contribution, first-order sta-
tionary Pitman-Yor mixture models. Section 4 describes sequential Monte Carlo (SMC) and
Markov chain Monte Carlo (MCMC) algorithms for inference. We demonstrate the mod-
els and algorithms in Section 5 on various applications. Finally we discuss some potential
extensions of this class of models in Section 6 and Appendix A.

2. Background

Pitman-Yor processes include a wide class of distributions on random measures such as the
popular Dirichlet process (Ferguson, 1973) and the finite symmetric Dirichlet-multinomial
prior (Green and Richardson, 2001); see for example (Pitman and Yor, 1997). In particular,
Dirichlet process mixtures can be interpreted as a generalization of finite mixture models to
infinite mixture models and have become very popular over the past few years in statistics
and related areas to perform clustering and density estimation (Escobar and West, 1995;
Müller and Quintana, 2004; Teh and Jordan, 2010). More general Pitman-Yor processes
enjoy greater flexibility and have been shown to provide a better fit to text or image data
due to their ability to capture power-law properties of such data (Teh, 2006).

However, there are many situations where we cannot assume that the distribution of the
observations is fixed and instead this latter evolves over time. For example, in a clustering

1. A preliminary version of this work has been presented as a conference paper (Caron et al., 2007)
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application, the number of clusters and the locations of these clusters may vary over time.
This situation also occurs in spatial statistics where the spatial distribution of localized
events such as diseases or earthquakes changes over time (Hall et al., 2006). To address
such problems, this article introduces a novel class of time-varying first-order stationary
Pitman-Yor process mixtures; that is processes which have marginals following the same
Pitman-Yor process mixture.

We first briefly recall here standard results about Pitman-Yor process mixtures. Let
t = 1, 2, ... denote a discrete-time index. Note that this index is not needed in this section
but will become essential in what is to come. For any generic sequence {xm}, we define
xk:l = (xk, xk+1, . . . , xl). For ease of presentation, we assume that we receive a fixed number
n of observations at each time t denoted zt = z1:n,t which are independent and identically
distributed samples from

Ft (·) =

∫
Y
f(·|y)dGt(y) (1)

where f(·|y) is the mixed probability density function and Gt is the mixing distribution
distributed according to a Pitman-Yor process

Gt ∼ PY(α, θ,H). (2)

Here H is a base probability measure and the real parameters α and θ satisfy either

0 ≤ α < 1 and θ > −α (3)

or α < 0 and θ = −mα for m ∈ N. (4)

The case α = 0 and θ > 0 corresponds to the Dirichlet process denoted DP (θ,H). The
random measure Gt satisfies the following stick-breaking representation (Sethuraman, 1994;
Pitman, 1996)

Gt =
∞∑
j=1

Vj,tδUj,t (5)

with Vj,t = βj,t
∏j−1
i=1 (1− βi,t), βj,t

ind∼ B(1− α, θ + jα), Uj,t
iid∼ H where B denotes the Beta

distribution. From (1), we have equivalently, for k = 1, . . . , n, the following hierarchical
model

yk,t|Gt
iid∼ Gt, (6)

zk,t|yk,t
iid∼ f(·|yk,t). (7)

We can also reformulate the Pitman-Yor process mixture by integrating out the mixing
measure Gt and introducing allocation variables ct = c1:n,t. For any j ∈ J (ct), where J (ct)
is the set of unique values in ct, we have

Uj,t
iid∼ H, (8)

zk,t|Uck,t ∼ f(·|Uck,t,t).

For convenience, we label here the clusters by their order of appearance. We set c1,1 = 1,
K1 = 1 and m1

1 = m1
1:K1,1

a vector of size K1. Then, at time t = 1, for k = 2, . . . , n the
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following Pólya urn model describes the predictive distribution of a new allocation variable
(Blackwell and MacQueen, 1973; Pitman, 1996)

w.p.
m1
i,1−α

k−1+θ , i ∈ {1, . . . ,K1} set c1
k,1 = i, m1

i,1 = m1
i,1 + 1,

w.p. K1α+θ
k−1+θ , set K1 = K1 + 1, c1

k,1 = K1, m
1
K1,1

= 1,
where the abbreviation ‘w.p.’ stands for ‘with probability’.

The sequence associated with c1,t, . . . , cn,t is exchangeable and induces a random par-
tition of n, that is an unordered collection of k ≤ n positive integers with sum n or,
equivalently, a random allocation of n unlabeled points into some random number of un-
labeled clusters (materialized by a color for example); each cluster containing at least one
point. A common way to represent a partition of n is by the number of terms of various
sizes; that is the vector of counts (a1, . . . , an) where

∑n
j=1 aj = k and

∑n
j=1 jaj = n. Here

a1 is the number of terms of size 1, a2 is the number of terms of size 2, etc. Following
(Antoniak, 1974), we say that ct ∈ C(a1:n) if there are a1 distinct values of ct that occur
only once, a2 that occur twice, etc. It can be shown that Pr(ct ∈ C(a1:n)) = Pn(a1:n) is
given by the two-parameter Ewens sampling formula (Pitman, 1995)

Pn(a1, . . . , an) =
n!
∏∑

j aj
i=1 (θ + (i− 1)α)∏n
i=1(θ + i− 1)

n∏
i=1

(∏i−1
j=1(j − α)

i!

)ai
1

ai!
. (9)

In this paper, we introduce a class of statistical models with dependencies between the
distributions {Ft} and mixing distributions {Gt} while preserving (1) and (2) at any time
t. This allows us to explicitly characterize the marginal model at each time step (more
generally, at each value of the covariate) and have fine control over prior parameterization
of the marginal model. Methods that preserve stationarity in this way have found use
in other Bayesian nonparametric models (Teh et al., 2011; Griffin and Steel, 2011), and
allow us to achieve good empirical performance in epidemiological and video applications in
Section 5. We briefly review constructions in the literature for dependent processes below.

2.1 Literature review

Several authors have considered previously the problem of defining dependent nonpara-
metric models, and in particular dependent Dirichlet processes for time series and spatial
models, see e.g. Foti and Williamson (2013) for a recent review.

In an early contribution, Cifarelli and Regazzini (1978) introduced dependencies between
distributions by defining a parametric model on the base distribution Hs dependent on a
covariate s and Gs ∼ DP(θ,Hs). This approach is different from ours as we follow here the
setting introduced by MacEachern et al. (1999) and introduce dependencies directly on two
successive mixing distributions while H is fixed.

The great majority of recent papers use the stick-breaking representation (5) to in-
troduce dependencies. Under this representation, a realization of a Dirichlet process is
represented by two (infinite dimensional) vectors of weights V1:∞,s and cluster locations
U1:∞,s. Dependency with respect to a covariate s is introduced on V1:∞,s in (Griffin and
Steel, 2006; Rodriguez and Dunson, 2011; Arbel et al., 2014), on U1:∞,s in (MacEachern,
2000; Iorio et al., 2004; Gelfand et al., 2005; Caron et al., 2008) and on both cluster locations
and weights in (Griffin and Steel, 2009).
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An alternative approach consists of considering the mixing distribution to be a convex
combination of independent random probability measures sampled from a Dirichlet process.
The dependency is then introduced through some weighting coefficients; e.g. (Dunson
et al., 2006; Dunson and Park, 2007; Müller et al., 2004). More recently, various classes
of dependent Dirichlet processes were proposed by Griffin (2011), Rao and Teh (2009),
Huggins and Wood (2014) and Lin et al. (2010) which rely on the representation of the DP
as a normalized random measure.

Although these previous approaches have merits, we believe that it is possible to build
more intuitive models in the time domain based on Pólya urn-type schemes. In (Zhu
et al., 2005; Ahmed and Xing, 2008; Blei and Frazier, 2011), time-varying Pólya urn models
were proposed but these models do not marginally preserve a Dirichlet process. The only
model we know of which satisfies this property is presented in (Walker and Muliere, 2003).
The authors define a joint distribution p(G1,G2) such that G1 and G2 are marginally

DP (θ,H) by introducing m artificial auxiliary variables wi
iid∼ G1 and then G2|w1:m ∼

DP(θ + m,
θH+

∑m
i=1 δwi

θ+m ). An extension to time series is discussed in (Srebro and Roweis,
2005). An important drawback of this approach is that it requires introducing a very large
number m of auxiliary variables to model strongly dependent distributions. When inference
is performed, these auxiliary variables need to be inferred from the data and the resulting
algorithm can be computationally intensive.

2.2 Contributions and Organization

The models developed here are based on a Pólya urn representation of the Pitman-Yor
process but do not require introducing a large number of auxiliary variables to model
strongly dependent distributions.

To obtain a first-order stationary Pitman-Yor process mixture using such an approach,
we need to ensure that any time t

(A) the sequence ct induces a random partition distributed according to the two-
parameter Ewens sampling formula (9),

(B) for j ∈ ct, the Uj,ts are identically and independently distributed from H.
The main contribution of this paper consists of defining models satisfying (A) using

a generalized Pólya urn prediction rule based on the consistence properties under specific
deletion procedures of the Ewens sampling formula (Kingman, 1978; Gnedin and Pitman,
2005). Ensuring (B) can be performed using standard methods from the time series litera-
ture; e.g. (Joe, 1997; Pitt and Walker, 2005).

Our models allow us to modify both the cluster locations and their weights. Further-
more, they rely on simple and intuitive birth and death procedures. By using a Pólya urn
approach, the models are defined on the space of partitions; i.e. the labelling of the class to
which each data belongs is irrelevant. From a computational point of view, it is usually easier
to design efficient MCMC and SMC algorithms for inference based on this finite-dimensional
representation than the infinite-dimensional stick-breaking representation, where slice sam-
pling (Walker, 2007; Kalli et al., 2011) or retrospective sampling (Papaspiliopoulos and
Roberts, 2008) techniques can be used.
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3. Stationary Pitman-Yor Process Mixtures

We present here some models ensuring property (A) is satisfied. We then briefly discuss in
Section 3.2 how to ensure (B).

3.1 Stationary Pitman-Yor Processes

The main idea behind our models consists at each time step t of

• deleting randomly a subset of the allocations variables sampled from time 1 to t − 1
which had survived the previous t− 1 deletion steps,

• sampling n new allocation variables corresponding to the n observations zt.

For any t ≥ 2, we have generated the allocation variables c1:t−1 corresponding to z1:t−1

from time 1 to t − 1. We denote by ct−1
1:t−1 the subset of c1:t−1 corresponding to variables

having survived the deletion steps from time 1 to t− 1, and we denote by ct1:t−1 the subset
corresponding to those having survived from time 1 to t. Let Kt−1 be the number of clusters
created from time 1 to t − 1. We denote by mt−1

t−1 the vector of size Kt−1 containing the

size of the clusters associated to ct−1
1:t−1, and we denote by mt

t−1 the vector containing the
size of clusters associated to ct1:t−1. Hence, these vectors have zero entries corresponding
to ‘dead’ clusters. The introduction of mt−1

t−1 and mt
t−1 simplifies the presentation of the

procedure but note that, from a practical point of view, there is obviously no need to store
these vectors of increasing dimension. It is only necessary to store the size of the non-empty
clusters and their associated labels.

At time 1, we just generate c1 according to a standard Pólya urn described in the
introduction. At time t ≥ 2 we have ct−1

1:t−1 =
(
ct−1

1:t−2, ct−1

)
and we sample ct1:t =

(
ct1:t−1, ct

)
as follows. We first obtain ct1:t−1 by deleting a random number of allocation variables from
ct−1

1:t−1 according to one of the following rules.

• Uniform deletion: delete each allocation variable in ct−1
1:t−1 with probability 1 − ρ

where 0 ≤ ρ ≤ 1. This is statistically equivalent to sampling a number r from a binomial
distribution Bin(

∑
km

t−1
k,t−1, 1−ρ) and then removing r items uniformly from ct−1

1:t−1 to obtain

ct1:t−1. For ρ = 0, the partitions ct and ct+1 are independent whereas for ρ = 1 we have a
static Pitman-Yor process.

• Deterministic deletion: delete the allocation variables ct−r from ct−1
1:t−1, where r ∈ N

and r < t.

• Cluster deletion (for α, θ verifying condition (3) with θ ≥ 0): compute the following
discrete probability distribution over the set of non-empty clusters

πk,t =
(
∑

`m
t−1
`,t−1 −m

t−1
k,t−1)γ +mt−1

k,t−1(1− γ)

(
∑

`m
t−1
`,t−1)(1− γ + (Kt−1 − 1)γ)

where
∑

k πk,t = 1, γ = α
α+θ then sample an index from this distribution and delete the

corresponding cluster to obtain ct1:t−1. The cluster deletion allows us to model large po-
tential ‘jumps’ in the distributions of the observations. Dependent on the value of γ, we
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delete clusters with a probability independent of their size, proportional to their size or
proportional to the size of the partition minus their size (Gnedin and Pitman, 2005). The
introduction of the Pitman-Yor process gives us this extra modeling flexibility here. In
particular, the following three cases are of special interest:

Size-biased deletion For α = 0 and θ > 0, and hence γ = 0, each cluster of
size r is selected with probability proportional to r. This result is known as Kingman’s
characterization of the Ewens family of (0, θ) partition structures (Kingman, 1978).

Unbiased (uniform) deletion For γ = α
α+θ = 1

2 , given that there are l clusters,

each cluster is chosen with probability 1
l i.e., each cluster is deleted independently of its size.

For 0 ≤ α ≤ 1, the (α, α) partition structures are the only partition structures invariant
under uniform deletion.

Cosize-biased deletion For γ = 1 (hence θ = 0), each cluster of size r is selected
with probability proportional to the size n− r of the remaining partition.

It is also possible to consider any mixture and composition of these deletion procedures.
For example, we can pick w.p. ξ the uniform deletion strategy and w.p. 1 − ξ the clus-
ter deletion strategy or perform one uniform deletion followed by one cluster deletion or
a deterministic deletion etc. Finally, after these deletion steps, we sample the allocation
variables ct according to a standard Pólya urn scheme based on the surviving allocation
variables ct1:t−1.

To summarize, the generalized Pólya urn scheme proceeds as in Algorithm 1, where
I
(
mt
t

)
and

∣∣I (mt
t

)∣∣ denote respectively the indices corresponding to the non-zero entries
of mt

t and the number of non-zero entries.

Algorithm 1 Generalized Pólya Urn

At time t = 1
• Set c1

1,1 = 1, m1
1,1 = 1 and K1 = 1.

• For k = 2, ..., n

w.p.
m1
i,1−α

k−1+θ , i ∈ {1, . . . ,K1} set c1
k,1 = i, m1

i,1 = m1
i,1 + 1,

w.p. K1α+θ
k−1+θ , set K1 = K1 + 1, c1

k,1 = K1, m
1
K1,1

= 1.
At time t ≥ 2
• Kill a subset of ct−1

1:t−1 using a mixture/composition of uniform, size-biased and deterministic
deletions to obtain ct1:t−1 (hence mt

t−1) and set mt
t = mt

t−1, Kt = Kt−1.
• For k = 1, ..., n

w.p.
mti,t−α∑
im

t
i,t+θ

, i ∈ I
(
mt
t

)
set ctk,t = i, mt

i,t = mt
i,t + 1,

w.p.
|I(mt

t)|α+θ∑
im

t
i,t+θ

, set Kt = Kt + 1, ctk,t = Kt, m
t
Kt,t

= 1.

The proof that ct satisfies (A) is a direct consequence of the remarkable consistence
properties under deletion of the Ewens sampling formula which have been first established
in (Kingman, 1978) for the one-parameter case and then extended to the two-parameter
case in (Gnedin and Pitman, 2005).

Proposition. At any time t ≥ 1, ct induces a random partition distributed according
to the Ewens sampling formula.
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Proof. We prove by induction a stronger result; that is ct1:t induces a random partition
following (9). At time 1, this is trivially true as c1

1 = c1 is generated according to a standard
Pólya urn. Assume it is true at time t − 1. For the deterministic and uniform deletion,
exchangeability of the partition ensures that ct1:t−1 also induces a random partition following
(9). For the cluster deletion procedure, consistency follows from the results of (Kingman,
1978, pp. 3 and 5) and (Gnedin and Pitman, 2005, p. 4) on regenerative partitions. Finally,
as ct is sampled according to a standard Pólya urn scheme based on the surviving allocation
variables ct1:t−1 then ct1:t indeed induces by construction a random partition following (9).
Thanks to exchangeability, it implies that ct also induces a random partition distributed
according to the Ewens sampling formula.�

So far, so as to simplify presentation, we have considered that the number of allocation
variables at each time t is fixed to a value n corresponding to the number of observations
received at each time instant. The value of n impacts on the number of alive allocation
variables and the correlations between successive vectors mt

1:t. More precisely, the statis-
tical model is not consistent in the Kolmogorov sense. For example, let π1(c1,1, c1,2) and
π2(c1,1, c2,1, c1,2, c2,2) be two models defined for n = 1 and n = 2, then

∑
c2,1

∑
c2,2

π2(c1,1, c2,1, c1,2, c2,2)

 6= π1(c1,1, c1,2).

This lack of consistency is shared by other models based on the Pólya urn construc-
tion (Zhu et al., 2005; Ahmed and Xing, 2008; Blei and Frazier, 2011). Blei and Frazier
(2011) provide a detailed discussion on this issue and describe cases where this property is
relevant or not.

It is nonetheless possible to define a slightly modified version of our model that is
consistent under marginalisation, at the expense of an additional set of latent variables.
This is described in Appendix C.

3.2 Stationary Models for Cluster Locations

To ensure we obtain a first-order stationary Pitman-Yor process mixture model, we also
need to satisfy (B). This can be easily achieved if for k ∈ I(mt

t)

Uk,t ∼
{
p (·|Uk,t−1) if k ∈ I(mt

t−1)
H otherwise

where H is the invariant distribution of the Markov transition kernel p (·|·). In the time
series literature, many approaches are available to build such transition kernels based on
copulas (Joe, 1997) or Gibbs sampling techniques (Pitt and Walker, 2005).

Combining the stationary Pitman-Yor and cluster locations models, we can summarize
the full model by the following Bayesian network in Figure 1. It can also be summarized
using a Chinese restaurant metaphor (see Figure 2).
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Figure 1: A representation of the time-varying Pitman-Yor process mixture as a directed
graphical model, representing conditional independencies between variables. All
assignment variables and observations at time t are denoted ct and zt, respectively.

3.3 Properties of the Models

Under the uniform deletion model, the number At =
∑

im
t
i,t−1 of alive allocation variables

at time t can be written as

At =

t−1∑
j=1

n∑
k=1

Xj,k

where Xj,i are independently distributed from a Bernoulli of parameter ρj . At is therefore
distributed from a Poisson binomial (also called Pólya Frequency) distribution (Pitman,
1997). The asymptotic mean and variance of the distribution of At are respectively nρ

1−ρ
and nρ

1−ρ2 , and the distribution Pr(At = k) ∝ ak,t−1 where ak,t, k = 0, . . . , nt satisfies the
algebraic identity

t∏
i=1

(
x+

1− ρi

ρi

)n
=

nt∑
k=0

ak,tx
k. (10)

Its stationary distribution is obtained by taking the limit as t→∞.
Clearly the sequence {ct} is not Markovian but

{
ct1:t

}
and

{
ct1:t−1

}
and the associated

vectors
{
mt

1:t

}
and

{
mt

1:t−1

}
are for the uniform and cluster deletions. The transition

probabilities for these processes are quite complex. However it can be shown easily for
example that, for the uniform deletion model, we have for k ∈ I(mt

t−1)

E
[
mt+1
k,t |m

t
t−1

]
= E

[
E
[
mt+1
k,t

∣∣∣mt
k,t

]
|mt

t−1

]
= ρE

[
mt
k,t|mt

t−1

]
= ρ

(
mt
k,t−1 + n

mt
k,t−1 −

∣∣I (mt
t−1

)∣∣α
θ +

∑
km

t
k,t−1

)

9
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(a)

×

××
×

× ×
(b) (c)

(d) (e) (f)

Figure 2: Illustration of the uniform deletion time-varying Pitman-Yor process mixture.
Consider a restaurant with a countably infinite number of tables. (a) At time t,
there are a certain number of customers in the restaurant, shared between several
tables. Each customer remains seated at her/his table (w.p. ρ), or leaves the
restaurant (w.p. (1− ρ)). (b) Once this choice has been made by each customer,
empty tables are removed, and a certain number of customers remain in the
restaurant. (c) Each table that is still occupied has its location evolved according
to the transition kernel p(·|·). (d) A new customer enters the restaurant and
either (e) sits at a table with a probability proportional to the number of people
at this table or (f) sits alone at a new table whose location has distribution H.
When n− 1 other new customers enter the restaurant, repeat operations (d)-(f).

and

E[
∑

k/∈I(mt
t−1)

mt+1
k,t |m

t
t−1] =

ρn
[∣∣I (mt

t−1

)∣∣α+ θ
]

θ +
∑

km
t
k,t−1

.

For any deletion model, it can be additionally shown that we have, conditional on
mt
t−1 (Pitman, 1996)

Gt =
∑

j∈I(mt
t−1)

PjUj,t +RtG?
t

where G?
t ∼ PY(α, θ + α

∣∣I (mt
t−1

)∣∣ ,H) and(
{Pj |j ∈ I(mt

t−1)}, Rt
)
|mt

t−1 ∼ D({mt
j,t−1 − α|j ∈ I(mt

t−1)},
∣∣I(mt

t−1)
∣∣α+ θ)

where D is the standard Dirichlet distribution. Moreover, G?
t and

(
{Pj |j ∈ I(mt

t−1)}, Rt
)

are statistically independent. In particular, in the Dirichlet process case, we have

Gt|ct1:t−1, Uj,t ∼ DP

(
θ +

∣∣I (mt
t−1

)∣∣ , 1

θ +
∣∣I (mt

t−1

)∣∣(θH +
∑
k

mt−1
k,t δUk,t)

)
.
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We display a Monte Carlo estimate of corr
(∫

yGt(dy),
∫

yGt+τ (dy)
)

when H (y) is a
standard normal distribution for different values of ρ, ξ and r resp. for the uniform, size-
biased and deterministic deletions, and θ (with α = 0) in Fig. 3. The correlations decrease
faster as ρ, r and ξ decrease as expected.
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Figure 3: Plots of corr
(∫

yGt(dy),
∫

yGt+∆t(dy)
)

approximated by Monte Carlo simula-
tions as a function of the time difference ∆t for (a) uniform (b) deterministic and
(c) cluster deletions, for different values of θ and (a) ρ, (b) r and (c) ξ.

4. Bayesian Inference in Time-Varying PYPM

Bayesian inference is based on the posterior distribution of the cluster assignment variables
ct, the vectors mt

t−1 and U1:Kt given by p(c1:t,m
1:t
1:t−1, U1:Kt |z1:t) at time t. We describe

sequential Monte Carlo methods to fit our models.

To sample approximately from the sequence of distributions p(c1:t,m
1:t
1:t−1, U1:Kt |z1:t) as

t increases, we propose an SMC method also known as particle filter. In this approach,
the posterior distribution is approximated by a large collection of random samples—termed
particles—which are propagated through time using Sequential Importance Sampling with
resampling steps; see (Doucet et al., 2001) for a review of the literature. MacEachern et al.
(1999) developed a sequential importance sampling method for Beta-Binomial Dirichlet
process mixtures and Fearnhead (2004) proposed a SMC method for general conjugate
Dirichlet process mixtures. In these papers, even in cases where the mixed distribution
G can be integrated out analytically, the fact that G is a static parameter leads to an
accumulation of the Monte Carlo errors over time (Kantas et al., 2009; Poyiadjis et al.,
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2011). This prevents using such techniques for large datasets with long time sequences.
We deal here with time-varying models whose forgetting properties limit drastically this
accumulation of errors.

We present in Algorithm 2 a general SMC algorithm. It relies on importance distri-

butions denoted generically by q (·) and is initialized with weights w
(i)
0 = N−1 and cluster

sizes m
0 (i)
0 = 0 for i = 1, ..., N. The simplest case of this algorithm consists of selecting the

prior as an importance distribution. Note that we use A to denote the complementary of
the set A ⊂ N in N.

Algorithm 2 Sequential Monte Carlo for Time-Varying Pitman-Yor mixture processes

At time t ≥ 1
• For each particle i = 1, .., N

• Sample m̃
t (i)
t−1 |m

t−1 (i)
t−1 ∼ Pr(mt

t−1|m
t−1 (i)
t−1 )

• Sample c̃
(i)
t ∼ q(ct|m̃

t (i)
t−1 , U

(i)

I(m̃
(i)
t ),t−1

, zt)

• For k ∈ J (c̃
(i)
t ) ∩ I(m̃

t (i)
t−1 ), sample Ũ

(i)
k,t ∼ q(Uk,t|{zj,t|c̃

(i)
j,t = k})

• For k ∈ I(m̃
t (i)
t−1 ), sample Ũ

(i)
k,t ∼

{
q(Uk,t|U

(i)
k,t−1, {zj,t|c̃

(i)
j,t = k}) if k ∈ J (c̃

(i)
t )

p(Uk,t|U
(i)
k,t−1) otherwise

• For i = 1, .., N , update the weights

w̃
(i)
t ∝ w(i)

t−1
p(zt|Ũ(i)

t ,c̃
(i)
t ) Pr(c̃

(i)
t |m̃

t (i)
t−1 )

q(c̃
(i)
t |m̃

t (i)
t−1 ,U

(i)

I(m̃(i)
t ),t−1

,zt)
×
∏
k∈I(m̃

t (i)
t−1 )

p(Ũ
(i)
k,t|U

(i)
k,t−1)

q(Ũ
(i)
k,t|U

(i)
k,t−1,{zj,t|c̃

(i)
j,t=k})

×
∏
k∈J (c̃

(i)
t )∩I(m̃

t (i)
t−1 )

H(Ũ
(i)
k,t)

q(Ũ
(i)
k,t|{zj,t|c̃

(i)
j,t=k})

(11)

with
∑N

i=1 w̃
(i)
t = 1.

• Resampling. Compute Neff =

[∑(
w̃

(i)
t

)2
]−1

. If Neff ≤ NT , multiply the particles with

large weights and remove the particles with small weights, resulting in a new set of particles

denoted ·(i)t with weights w
(i)
t = 1/N . Otherwise, rename the particles and weights by removing

the ·̃.

In this algorithm, NT is a threshold triggering the resampling step; typically we set
NT = N/2. The posterior p(c1:t,m

1:t
1:t−1, U1:Kt |z1:t) is approximated using the set of weighted

samples
{
w

(i)
t ,
(
c

(i)
1:t,m

1:t (i)
1:t−1 , U

(i)
1:Kt

)}
. In cases where H is a conjugate prior for f , we can

integrate out the cluster locations and sample only the allocation variables.
We also develop a particle MCMC (PMCMC) inference algorithm (Andrieu et al., 2010)

for this model. PMCMC is a method that uses SMC as an intermediate sampling step
to move efficiently through high dimensional state spaces. It is an alternative to other
common forms of MCMC, such as single-site Gibbs sampling, which we have found suffer
from worse empirical performance due to quasi-ergodicity (i.e. poor mixing as the Markov
chain becomes stuck in posterior modes). We implement the iterated-conditional SMC
form of PMCMC (Andrieu et al., 2009, 2010), which involves iterating through the SMC
algorithm described above while conditioning on a sampled particle at each iteration. While
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this algorithm does not operate in an online fashion, as SMC does, we show in Section 5 that
it yields improved performance in tasks such as video object tracking (shown in Section 5).

An alternative approach consists of modelling the observations as follows (we discuss
here the deterministic deletion model but the uniform deletion can be defined similarly).
In this model, the predictive distribution of zt conditional on ct = k only depends on the
observations assigned to the same cluster in the time interval {t− r + 1, ..., t− 1} and

p(zt|ct = k, z1:t−1, c1:t−1) = p(zt|{zj : cj = k for j = t− r + 1, . . . , t− 1})

=

∫
Y f(zt|y)

∏
{j∈{t−r+1,...t−1}:cj=k} f(zj |y)dH(y)∫

Y
∏
{j∈{t−r+1,...t−1}:cj=k} f(zj |y)dH(y)

. (12)

This distribution can be computed in closed-form in the conjugate case. We propose the
simple deterministic Algorithm 3 to approximate the posterior in the context of this model.

The posterior p(c1:t|z1:t) is approximated using the set of weighted samples
{
w

(i)
t , c

(i)
1:t

}
.

This algorithm uses a deterministic selection step. Alternatively, we could have used the
stochastic resampling procedure of Fearnhead (2004).

Algorithm 3 N−best algorithm for Deterministic Deletion

At time t ≥ 1

• Set w(i)
0,t = w

(i)
n,t−1

• For k = 1, . . . , n
• For each particle i = 1, .., N

• For j ∈ J ({c(i)
1:k−1,t, c

(i)
1:t−1}) ∪ {0} ∪ {cnew}, let c̃

(i,j)
k,t = j and compute the weight

w̃
(i,j)
k,t ∝ w

(i)
k−1,tp

(
zk,t| z1:k−1,t, z1:t−1, c

(i)
1:k−1,t, c

(i)
1:t−1, c̃

(i,j)
k,t

)
p
(
c̃

(i,j)
k,t

∣∣∣ c(i)
1:k−1,t, c

(i)
1:t−1

)
(13)

• Keep the N particles
(
c

(i)
1:k−1,t, c

(i)
1:t−1, c̃

(i,j)
k,t

)
with highest weights w̃

(i,j)
k,t , rename them(

c
(i)
1:k,t, c

(i)
1:t−1

)
and denote w

(i)
k,t the associated weights.

5. Applications

In this Section, we demonstrate the models and algorithms on simulated data, modeling of
the spread of a disease, and multi-object tracking.

5.1 Sequential Time-Varying Density Estimation

We consider the synthetic problem of estimating sequentially time-varying densities Ft on
the real line using observations zt. We assume the observations zt (where n = 1) follow
a time-varying Dirichlet process with both uniform and size-biased deletion, a Gaussian
mixed density and normal-inverse Wishart base distribution, whose pdf is given by

p(µ,Σ|µ0, κ0, ν0,Λ0) ∝ |Σ|−
ν0+p+1

2 exp

[
−1

2
tr(Λ0Σ−1 − κ0

2
(µ− µ0)TΣ−1(µ− µ0))

]
13
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where p = 1 in this case. To keep the presentation simple, we assume here that the
hyperparameters of the base distribution are assumed fixed and known µ0 = 0, κ0 = 0.1,
ν0 = 2 and Λ0 = 1. Following Pitt et al. (2002), we introduce a time-varying model on the
cluster location using r auxiliary variables ωj,t, j = 1, . . . , r

ωj,t ∼ N
(
µt,

Σt

τ

)
for all j

(µt+1,Σt+1)|ω1:r,t ∼ N iW (µ′0, κ
′
0, ν
′
0,Λ

′
0)

where τ = 0.5 and r = 4000 are fixed parameters, κ′0 = κ0 + rτ , ν ′0 = ν0 + r, µ′0 =
rτ

κ0+rτw + κ0
κ0+rτ µ0 and Λ′0 = Λ0 + κ0rτ

κ0+rτ (ω − µ0)(ω − µ0)T + τ
∑n

j=1(ωj,t − ω)(ωj,t − ω)T

and ω = 1
n

∑r
j=1 ωj,t. The DP scale parameter is θ = 3. Instead of fixing ρ, we assume it is

time-varying with ρt|ρt−1 ∼ B(aρ, aρ
1−ρt−1

ρt−1
) where aρ = 1000, such that E[ρt|ρt−1] = ρt−1

and var(ρt|ρt−1) =
ρ2t−1(1−ρt−1)

aρ+ρt−1
. Note that the resulting model is still first-order stationary.

We select a mixture of uniform and cluster deletions with ξ = 0.98. The observations
zt are generated for t = 1, . . . , 1000 from a sequence of mixtures of normal distributions,
see Figure 4. Abrupt changes occur at times t = 301 and t = 601 where modes of the
true density appear/disappear whereas the mode moves smoothly from 0 to −1.5 between
t = 701 and t = 850. For illustration purposes, we compute the average number of alive
allocation variables Nt|t as follows

Nt|t = E

[
Kt∑
k=1

mt
k,t

∣∣∣∣∣ z1:t

]
. (14)

A SMC algorithm is implemented with 1000 particles (Doucet et al., 2001); this algo-
rithm is a slight generalization of the Algorithm 2 where ρt is also sampled. Results are
displayed in Figure 4 and the estimates of Nt|t and ρt|t = E [ρt| z1:t] are plotted in Figure 5.

In Figure 4, we display the filtered density estimate Ft|t = E [Ft|z1:t] which manages to
track the slow and abrupt changes of the true density. In Figure 5, we see that the model
adapts to Ft quickly by also estimating ρt: ρt suddenly decreases at times t = 300 where the
modes of the density suddenly change. Nt|t follows a similar evolution: whenever Ft does
not evolve, we use as many previously collected observations as possible to estimate the
density by letting Nt|t increases. When Ft changes abruptly, Nt|t also decreases abruptly
and the model quickly gets rid of the old clusters. Moreover, the cluster deletion procedure
allows us to only delete irrelevant clusters. This is illustrated at t = 600 where the two
minor modes disappear whereas the main mode is preserved.

5.2 Foot and Mouth Disease

Foot and Mouth disease is a highly transmissible viral infection which can spread rapidly
among livestock. The epidemic which started in February 2001 and ended in October 2001
saw 2000 cases of death in farms throughout England. Although complex models have been
designed in the epidemiology literature relying for example on the spatial distribution of
farms (Keeling et al., 2001), we propose to use our model to estimate clusters of cases of
Foot and Mouth disease. Let zk,t be the two-dimensional geographical position of case k
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Figure 4: (a) Data (b) True density and (c) filtered density estimate. Abrupt changes occur
at times t = 301 and t = 601. The mode of the density evolves smoothly between
times t = 700 and t = 850.
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Figure 5: (a) Time evolution of the average number of alive clusters. (b) Time evolution of
ρt|t.

at day number t. We assume that zt follows a time-varying Dirichlet process mixture with
a Gaussian mixed pdf whereas H is a Normal inverse Wishart distribution. We consider
a deterministic deletion model where r = 7; seven days being an upper bound for the
incubation of the disease. For the cluster locations, we use the model defined by Eq. (12).
Inference is performed using theN−best algorithm 3 withN = 1000 particles. The marginal
maximum a posteriori estimates of the cluster locations for some days during the epidemic
are represented in Figure 6.

We computed the predictive cumulative density function Pr(zk,t ≤ z|z1:k−1,t, z1:t−1) for
each disease case. The inverse Gaussian cumulative density function transform of it is
plotted in Figure 7 for each of the two dimensions. As can be shown, our simple model
does fit the data relatively well, considering that no prior information about farm locations
is used here.
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Figure 6: Evolution of the predictive density over time. Red dots represent foot and mouth
cases over the last 7 days.
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Figure 7: Normal qq-plot of the transformed predictive distribution for foot-and-mouth
disease dataset for the two dimensions.

5.3 Object Tracking in Videos

The time-varying Pitman-Yor process can also be used as a prior in models used to find,
track, and learn representations of arbitrary objects in a video without a predefined method
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for object detection2. We present a model that localizes objects via unsupervised tracking
while learning a representation of each object, avoiding the need for pre-built detectors. This
model uses the Pitman-Yor prior to capture the uncertainty in the number and appearance
of objects and requires only spatial and color video data that can be efficiently extracted via
frame differencing. Nonparametric mixture models have been used in the past for a variety
of computer vision tasks, including tracking (Topkaya et al., 2013; Neiswanger et al., 2014),
trajectory clustering (Wang et al., 2011), and video retrieval (Li et al., 2008).

To find and track arbitrary video objects, we model spatial and color features that are
extracted as objects travel within a video scene. The model isolates independently moving
video objects and learns object models for each that capture their shape and appearance.
The learned object models allow for tracking through occlusions and in crowded videos. The
unifying framework is a time-varying Pitman-Yor process mixture, where each component
is a (time-varying) object model. This setup allows us to estimate the number of objects
in a video and track moving objects that may undergo changes in orientation, perspective,
and appearance.

We describe the form of the extracted data, define the components of the model, and
demonstrate this model on three real video datasets: a video of foraging ants, where we show
improved performance over other detection-free methods; a human tracking benchmark
video, where we show comparable performance against object-specific methods designed to
detect humans; and a T cell tracking task where we demonstrate our method on a video
with a large number of objects and show how our unsupervised method can be used to
automatically train a supervised object detector.

Data. At each frame t, we assume we are given a set of Nt foreground pixels,
extracted via some background subtraction method (such as those detailed in (Yilmaz et al.,
2006)). These methods primarily segment foreground objects based on their motion relative
to the video background. For example, an efficient method applicable for stationary videos
is frame differencing: in each frame t, one finds the pixel values that have changed beyond
some threshold, and records their positions zst,n = (zs1t,n, z

s2
t,n). In addition to the position

of each foreground pixel, we extract color information. The spectrum of RGB color values
is discretized into V bins, and the local color distribution around each pixel is described
by counts of surrounding pixels (in an m ×m grid) that fall into each color bin, denoted
zct,n = (zc1t,n, . . . , z

cV
t,n). Observations are therefore of the form

zt,n = (zst,n, z
c
t,n) = (zs1t,n, z

s2
t,n, z

c1
t,n, . . . , z

cV
t,n). (15)

Examples of spatial pixel data extracted via frame differencing are shown in Figure 8 (a)-(g).

The time-varying Pitman-Yor process mixture of objects We define an object
model, F(Uk,t), which is a distribution over pixel data, where Uk,t represents the parameters
of the kth object at time t. We wish to keep our object model general enough to be applied
to arbitrary video objects, but specific enough to learn a representation that can aid in
tracking. In this paper, we model each object with

zt,n ∼ F(Uk,t) = N (zst,n|µk,t,Σk,t)Mult(zct,n|δk,t) (16)

2. A preliminary version of this work has been presented as a conference paper (Neiswanger et al., 2014).
Matlab code is available at https://github.com/willieneis/DirichletProcessTracking.
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Figure 8: (a - f) Two pairs of consecutive frames and the spatial observations zst,n extracted
by taking the pixel-wise frame difference between each pair. (g) The results of
frame differencing over a sequence of images (from the PETS2010 dataset).

where object parameters Uk,t = {µk,t,Σk,t, δk,t}, and
∑V

j=1 δ
j
k,t = 1. The object model

captures the objects’ locus and extent with the multivariate Gaussian and color distribution
with the multinomial. We demonstrate in the following experiments that this representation
can capture the physical characteristics of a wide range of objects while allowing objects
with different shapes, orientations, and appearances to remain isolated during tracking. We
define H, which represents the prior distribution over object parameters, to be

H(µk,t,Σk,t, δk,t|µ0, κ0, ν0,Λ0, q0) = N iW (µk,t,Σk,t|µ0, κ0, ν0,Λ0)D(δk,t|q0). (17)

To satisfy stationarity, we introduce a set of M auxiliary variables akt = (akt,1, . . . , a
k
t,M )

for cluster k at time t (Pitt and Walker, 2005). Due to the form of the object parameter
priors (i.e the base distribution of the Dirichlet process) and the object model, we can
easily apply this auxiliary variable method. With this addition, object parameters do not
directly depend on their values at a previous time, but are instead dependent through
an intermediate sequence of variables. This allows the cluster parameters at each time
step to be marginally distributed according to the base distribution H while maintaining
simple time varying behavior. We can therefore sample from the transition kernel using
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Uk,t ∼ T (Uk,t−1) = T2 ◦ T1(Uk,t−1), where

akt,1:M ∼ T1(Uk,t−1) = N (µk,t−1,
Σk,t−1

τ
)Mult(δk,t−1) (18)

µk,t,Σk,t, δk,t ∼ T2(akt,1:M ) = N iW (µM , κM , νM ,ΛM )D(qM ) (19)

where we choose τ = 1 for all experiments, and formulae for µM , κM , νM ,ΛM and qM are
given in Appendix B.

We apply uniform deletion of allocation variables in this application, to maintain gen-
erality of the method over a variety of object types in videos. Additionally, we chose
hyperparameter values by simulating from the prior and inspecting the simulated param-
eters for similarity with existing data. We found that the algorithm performance was not
very sensitive to the hyperparameter values settings, and remained fairly consistent over a
wide range of settings. In the following experiments we perform inference using both the
SMC and PMCMC inference algorithms with N = 100 particles, and compare performance
of both algorithms.

Detection-free comparison methods. Detection-free tracking strategies aim to
find and track objects without any prior information about the objects’ characteristics
nor any manual initialization. One type of existing strategy uses optical flow or feature
tracking algorithms to produce short tracklets, which are then clustered into full object
tracks. We use implementations of Large Displacement Optical Flow (LDOF) (Brox and
Malik, 2011) and the Kanade-Lucas-Tomasi (KLT) feature tracker (Tomasi and Kanade,
1991) to produce tracklets3. Full trajectories are then formed using the popular normalized-
cut (NCUT) method (Shi and Malik, 2000) to cluster the tracklets or with a variant that
uses non-negative matrix factorization (NNMF) to cluster motion using tracklet velocity
information (Cheriyadat and Radke, 2009)4. We also compare against a detection-free
blob-tracking method, where extracted foreground pixels are segmented into components
in each frame (Stauffer and Grimson, 2000) and then associated with the nearest neighbor
criterion (Yilmaz et al., 2006).

Performance metrics. For quantitative comparison, we report two commonly
used performance metrics for object detection and tracking, known as the sequence frame
detection accuracy (SFDA) and average tracking accuracy (ATA) (Kasturi et al., 2008).
These metrics compare detection and tracking results against human-authored ground-
truth, where SFDA∈ [0, 1] corresponds to detection performance and ATA∈ [0, 1] corre-
sponds to tracking performance, the higher the better. We authored the ground-truth for
all videos with the Video Performance Evaluation Resource (ViPER) tool (Doermann and
Mihalcik, 2000).

Insect tracking. The video contains six ants with a similar texture and color
distribution as the background. The ants are hard to discern, and it is unclear how a
predefined detection criteria might be constructed. Further, the ants move erratically and
the spatial data extracted via frame differencing does not yield a clear segmentation of the

3. The LDOF implementation can be found at http://www.seas.upenn.edu/~katef/LDOF.html and the KLT im-

plementation at http://www.ces.clemson.edu/~stb/klt/.

4. The NCUT implementation can be found at http://www.cis.upenn.edu/~jshi/software/ and the NNMF im-

plementation at http://www.ornl.gov/~czx/research.html.
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objects in individual frames. A still image from the video, with ant locations shown, is
given in Figure 3(a).

SMC
PMCMC

(e)

(b) (d)

(a)

(f)

(c)

Figure 9: The ants in (a) are difficult to discern (positions labeled). We plot 100 samples
from the inferred posterior over object parameters (using SMC (c) and PMCMC
(d)) with ground-truth bounding boxes overlaid (dashed). PMCMC proves to give
more accurate object parameter samples. We also plot samples over object tracks
(sequences of mean parameters) using PMCMC in (f) , and its MAP sample in
(b). We show the SFDA and ATA scores for all comparison methods in (e).

We compare the SMC and PMCMC inference algorithms, and find that PMCMC yields
more accurate posterior samples (3(d)) than SMC (3(c)). Note that we run PMCMC as
described in Section 4 for 100 iterations, where the first pass is equivalent to the SMC
algorithm. Ground-truth bounding boxes (dashed) are overlaid on the posterior samples.
The MAP PMCMC sample is shown in 3(b) and posterior samples of the object tracks
are shown in 3(f), along with overlaid ground-truth tracks (dashed). SFDA and ATA
performance metrics for all comparison methods are shown in 3(e). Our model yields higher
metric values than all other detection-free comparison methods, with PMCMC inference
scoring higher than SMC. The comparison methods seemed to suffer from two primary
problems: very few tracklets could follow object positions for an extended sequence of
frames, and clustering tracklets into full tracks sharply decreased in accuracy when the
objects came into close contact with one another.

Comparisons with detector-based methods. Next, we aim to show that our
general-purpose algorithm can compete against state of the art object-specific algorithms,
even when it has no prior information about the objects. We use a benchmark human-
tracking video from the International Workshop on Performance Evaluation of Tracking
and Surveillance (PETS) 2009-2013 conferences (Ellis and Ferryman, 2010), due to its
prominence in a number of studies (listed in Figure 10(f)). It consists of a monocular,
stationary camera, 794 frame video sequence containing a number of walking humans. Due
to the large number of frames and objects in this video, we perform inference with the SMC
algorithm only.
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Our model is compared against ten object-specific detector-based methods from the
PETS conferences. These methods all either leverage assumptions about the orientation,
position, or parts of humans, or explicitly use pre-trained human detectors. For example,
out of the three top scoring comparison methods, (Breitenstein et al., 2009) uses a state
of the art pedestrian detector, (Yang et al., 2009) performs head and feet detection, and
(Conte et al., 2010) uses assumptions about human geometry and orientation to segment
humans and remove shadows.

Figure 10: Results on the PETS human tracking benchmark dataset and comparison with
object-detector-based methods. The MAP object parameter samples are over-
laid on four still video frames (a-d). The MAP object parameter samples are
also shown for a sequence of frames (a 50 time-step sequence) along with spa-
tial pixel observations (e) (where the assignment variables ct,n for each pixel
are represented by marker type and color). The SFDA and ATA performance
metric results for our model and ten human-specific, detection-based tracking
algorithms are shown in (f), demonstrating that the our model achieves compa-
rable performance to these human-specific methods. Comparison results were
provided by the authors of (Ellis and Ferryman, 2010).

In Figure 4(a-d), the MAP sample from the posterior distribution over the object pa-
rameters is overlayed on the extracted data over a sequence of frames. The first 50 frames
from the video are shown in 4(e), where the assignment of each data point is represented
by color and marker type. We show the SFDA and ATA values for all methods in 4(f), and
can see that our model yields comparable results, receiving the fourth highest SFDA score
and tying for the second highest ATA score.

Tracking populations of T cells. Automated tracking tools for cells are useful
for cell biologists and immunologists studying cell behavior (Manolopoulou et al., 2012).
We present results on a video containing T cells that are hard to detect using conventional
methods due to their low contrast appearance against a background (Figure 5(a)). Further-
more, there are a large number of cells (roughly 60 per frame, 92 total). In this experiment,
we aim to demonstrate the ability of our model to perform a tough detection task while
scaling up to a large number of objects. Ground-truth bounding boxes for the cells at a
single frame are shown in 5(b) and PMCMC inference results (where the MAP sample is
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plotted) are shown in in 5(c). A histogram illustrating the inferred posterior over the total
number of cells is shown in 5(e). It peaks around 87, near the true value of 92 cells.

Figure 11: T cells are numerous, and hard to detect due to low contrast images (a). For
a single frame, ground-truth bounding boxes are overlaid in (b), and inferred
detection and tracking results are overlaid in (c). A histogram showing the pos-
terior distribution over the total number of cells is shown in (e). The SFDA and
ATA for the detection-free comparison methods are shown in (f). Inferred cell
positions (unsupervised) were used to automatically train an SVM for super-
vised cell detection; SVM detected cell positions for a single frame are shown in
(d).

Manually hand-labeling cell positions to train a detector is feasible but time consuming;
we show how unsupervised detection results from our model can be used to automatically
train a supervised cell detector (a linear SVM), which can then be applied (via a sliding
window across each frame) as a secondary, speedy method of detection (Figure 5(d)). This
type of strategy in conjunction with our model could allow for an ad-hoc way of constructing
detectors for arbitrary objects on the fly, which could be taken and used in other vision
applications, without needing an explicit predefined algorithm for object detection.

6. Discussion

In this article, we have presented a class of first-order stationary Pitman-Yor processes
for time-varying density estimation and clustering. These models are based on a simple
generalized Pólya urn sampling scheme whose validity follows from the consistence proper-
ties under specific deletion rules of the two-parameter Ewens sampling formula. We have
proposed SMC and PMCMC methods to fit these models and have demonstrated them on
several applications. The model proposed in the present paper has also been successfully
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applied to dynamic spike sorting (Gasthaus et al., 2008) and to cell fluorescent microscopic
imaging tracking (Ji and West, 2009).

There are numerous potential extensions to this work. We have focused on specify-
ing directly the marginal distribution of the allocation variables, the underlying infinite-
dimensional process {Gt} being integrated out. This has allowed us to develop intuitive
models and simple algorithms to fit them. However, it would be interesting to explore
whether it is possible to obtain an explicit representation for {Gt} and whether this can be
related to the class of models described in (Griffin, 2011).

The uniform and deterministic deletion steps can be applied to any hierarchical model,
as long as the predictive distribution is known. We could therefore develop time-varying
versions of exchangeable models such as the Bernoulli trips introduced by Walker et al.
(1999). The same methodology could also be extended to dynamic social networks. In
this context, a classical model is Friend I, which assumes a finite Pólya Urn scheme as the
reinforcement procedure for friends interactions (Skyrms and Pemantle, 2000). In order
to take into account fading memory, a model called ‘discounted from the past’ has been
proposed, where the weights of the Pólya Urn are discounted at each time step– an approach
similar to that of Zhu et al. (2005). However this model has poor asymptotic properties, as
each individual always ends up being friend with a single individual (Skyrms and Pemantle,
2000). We conjecture that uniform deletion rules would have nicer properties.

Finally in some applications, it would be interesting to develop models allowing clusters
to merge and split over time. We believe that it is possible to build first-order stationary
models including such merge-split mechanisms exploiting once more the remarkable proper-
ties of the Poisson-Dirichlet distributions under splitting and merging transformations; see
e.g. (Pitman, 2002).
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Appendix A. Extensions

A.1 Species Sampling Priors

The consistence properties under size-biased deletion are remarkable properties specific to
the two-parameter Ewens sampling formula (Gnedin and Pitman, 2005). However, the uni-
form and deterministic deletion steps can be extended to any model with a given prediction
rule which ensures exchangeability over the data. In particular, the class of species sampling
priors - which includes the two-parameter Ewens sampling formula - is of particular interest
as it enjoys these two properties (Pitman, 1996; Lee, 2009). A sequence {yn} is called a

5. The contents reflect only the authors views and not the views of the European Commission.
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species sampling sequence if the following prediction rule holds

y1 ∼ G0

yn+1|y1, . . . ,yn ∼
k∑
j=1

p(n1, . . . , nj + 1, . . . , nk)

p(n1, . . . , nj , . . . , nk)
δUj +

p(n1, . . . , nj , . . . , nk, 1)

p(n1, . . . , nj , . . . , nk)
G0 (20)

where G0 is a base distribution, Uj and nj , j = 1, . . . k, are respectively the set of distinct
values within y1:n and their relative occurrences. Here p : ∪∞k=1Nk → [0, 1] is a symmetric
function of k-tuples of non-negative integers with sum n called the Exchangeable Partition
Probability Function. This function must satisfy

p(1) = 1 and p(n1, . . . , nk) =
k∑
j=1

p(n1, . . . , nj + 1, . . . , nk) + p(n1, . . . , , nk, 1).

To obtain first-order stationary species sampling process, we can apply the uniform and
deterministic deletion steps followed by the predictive step (20).

A.2 Time-varying Hierarchical and Coloured Dirichlet Processes

Various hierarchical extensions of the Dirichlet process have been proposed such as the
popular hierarchical Dirichlet process (Teh et al., 2006) and the coloured Dirichlet pro-
cess (Green, 2010). We show here how time-varying stationary versions of these models can
easily be designed.

The hierarchical Dirichlet process consists of embedded Dirichlet processes where we
have at the top of the hierarchy

G ∼ DP(α,G0)

then for each group k = 1, . . . , d

Gk|G ∼ DP(a,G)

and finally for each item i = 1, . . . , nk within group k

yi,k|Gk ∼ Gk

zi,k|yi,k ∼ f(·|yi,k).

A popular application of this model is topic clustering. In this case, a group k represents
a document and data zi,k represent words within documents. The ‘mother’ mixing distri-
bution G represents the overall mixture over topics, and each ‘child’ mixing distribution
Gk represents the mixture associated to a document k, sampled from a Dirichlet process
of base measure G. This model can be straightforwardly extended to take into account a
time-varying base measure Gt. Similarly to (Teh et al., 2006), a ‘Chinese restaurant fran-
chise’ formulation can be expressed based on the set of alive allocation variables at time
t.

The coloured Dirichlet process consists of a finite mixture of Dirichlet process mixtures
where

π1:K ∼ D(a1, . . . , aK).
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Here D denotes the Dirichlet distribution. For each group k = 1, . . . ,K, we have

Gk ∼ DP(αk,G0,k).

Finally for each item i = 1, . . . , n, we have

ci|π1:K ∼ π1:K ,

yi|ci ∼ Gci ,

zi|yi ∼ f(·|yi).

The main application of such models is for clustering data in presence of some background
noise. Again, a time-varying version of this model, where the weights and cluster locations
evolve over time, can straightforwardly be developed by deleting allocation variables as
described in Section 3 and sampling them conditionally on the set of alive variables as
described in (Green, 2010).

Appendix B. Auxiliary Variable Formulae

The parameters µM , κM , νM ,ΛM and qM in Eq. (19) can be written as

κM = κ0 +M (21)

νM = ν0 +M (22)

µM =
κ0

κ0 +M
µ0 +

M

κ0 +M
as (23)

ΛM = Λ0 + Sas (24)

qM = q0 +

M∑
i=1

aci (25)

where as and ac respectively denote the spatial and color components of the auxiliary
variables, and a and Sa respectively denote the sample mean and sample covariance of the
auxiliary variables.

Appendix C. Kolmogorov-Consistent Model

As mentioned in Section 3, the model is not Kolmogorov-consistent. Consider a sequence
of distributions πn(c1:n,1:t), n = 1, 2, . . . , where there are n allocation variables at each time
t, then, except in the trivial cases ρ = 0 or ρ = 1∑

cn,1:t

πn(c1:n,1:t) 6= πn−1(c1:n−1,1:t). (26)

It is possible to construct a slightly different model that satisfies the above equality. Con-
sider that there are p latent variables c̃k,t which evolve according to the generalized Pólya
urn defined in Algorithm 1. We denote by c̃t−1

1:t−1 the subset of c̃1:t−1 corresponding to vari-
ables having survived the deletion steps from time 1 to t − 1, and we denote by c̃t1:t−1 the

subset corresponding to those having survived from time 1 to t. Let K̃t−1 be the number of
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clusters created from time 1 to t−1. We denote by m̃t−1
t−1 the vector of size K̃t−1 containing

the size of the clusters associated to c̃t−1
1:t−1, and we denote by m̃t

t−1 the vector containing
the size of clusters associated to c̃t1:t−1.

Conditional on (c̃t1:t−1, c̃t) (or equivalently (m̃t
t−1, , c̃t)), the allocation variables ck,t of

the n observations are simply drawn from a standard Pólya urn. The whole model is
represented in Figure 12. As the Markov process is on the latent variables and not on the
allocation variables ck,t associated to observations, this model is Kolmogorov-consistent:∑

cn,1:t

πn(c1:n,1:t) = πn−1(c1:n−1,1:t). (27)

Note that we have in this case an additional tuning parameter p. Larger values of p induce
higher correlations.

~

~~

~

Figure 12: A representation of the time-varying Pitman-Yor process mixture as a directed
graphical model, representing conditional independencies between variables. All
assignment variables and observations at time t are denoted ct and zt, respec-
tively.
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