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Abstract
For spline regressions, it is well known that the choice of knots is crucial for the performance
of the estimator. As a general learning framework covering the smoothing splines, learning in a
Reproducing Kernel Hilbert Space (RKHS) has a similar issue. However, the selection of training
data points for kernel functions in the RKHS representation has not been carefully studied in the
literature. In this paper we study quantile regression as an example of learning in a RKHS. In this
case, the regular squared norm penalty does not perform training data selection. We propose a
data sparsity constraint that imposes thresholding on the kernel function coefficients to achieve a
sparse kernel function representation. We demonstrate that the proposed data sparsity method can
have competitive prediction performance for certain situations, and have comparable performance
in other cases compared to that of the traditional squared norm penalty. Therefore, the data sparsity
method can serve as a competitive alternative to the squared norm penalty method. Some theoretical
properties of our proposed method using the data sparsity constraint are obtained. Both simulated
and real data sets are used to demonstrate the usefulness of our data sparsity constraint.
Keywords: kernel learning, Rademacher complexity, regression, smoothing, sparsity

1. Introduction

Regression is one of the most important and commonly used statistical tools. Given a set of data
points whose predictors and responses are both available, one builds a regression model to predict
the response variable for any new instance with only predictors observed. When solving a regression
problem, linear regression can be insufficient. In particular, when the response has highly nonlinear
dependence on the predictors, linear models can be suboptimal. To overcome this difficulty, various
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nonlinear regression models such as kernel smoothers (see Hastie et al., 2009, for a review) and
splines (De Boor, 1978) can be used. The main idea is to find a regression function in a nonlinear
functional class that best fits the response variable.

In a typical spline regression problem with a univariate predictor, one can use a piecewise non-
linear function as the regression function. The function is smooth everywhere including at the knots,
where the nonlinear pieces connect. The knots play a crucial role in spline regression. For the reg-
ular smoothing splines (see, for example, Wahba, 1990; Gu, 2002, and the references therein), the
knots are located at the observed predictor values automatically. For some other types of spline
regressions, one needs to determine the knots. For instance, B-splines (De Boor, 1978) commonly
use a set of equally spaced knots, and certain types of P-splines (Eilers and Marx, 1996; Ruppert
et al., 2003) take knots based on quantiles of the predictor variable.

For spline regression, it is known that too many knots may lead to overfitting and unnecessary
fluctuation in the resulting estimator. For instance, based on Chappell (1989), Koenker et al. (1994)
gave an example where the regular smoothing splines perform poorly because of too many change
points, and the one-change-point method proposed by Chappell (1989) works much better. Exten-
sive efforts have been devoted on how to choose the knots for B-spline and P-spline methods in
the literature (see, for example, Friedman and Silverman, 1989; Eilers and Marx, 1996; Zhou et al.,
1998; Ruppert, 2002; Hansen and Kooperberg, 2002; Mao and Zhao, 2003; Miyata and Shen, 2005;
Gervini, 2006; Eilers and Marx, 2010, and the references therein).

In this paper, we consider multi-dimensional regression problems with the regression function in
a Reproducing Kernel Hilbert Space (RKHS, Aronszajn, 1950; Schölkopf and Smola, 2002). This
is a very general setting, which includes many well known regression techniques as special cases,
for example penalized linear regressions, additive spline models with or without interactions, and
the entire family of smoothing splines. Typically, the optimization of such a RKHS regression can
be written in a loss + penalty form. Since the regression function is assumed to be in a RKHS, it is
common to take the squared norm of the function as the penalty. By the well celebrated representer’s
theorem (Kimeldorf and Wahba, 1971), the resulting regression function can be represented as a
linear combination of kernel functions determined by the training data.

Our motivation for this paper is based on the following observation. The kernel representation
of the regression function is similar to the knot structure in smoothing splines, in the sense that
each observation in the training data can be regarded as a “knot” in a multi-dimensional space.
In particular, when we restrict the RKHS regression to the smoothing splines, the kernel function
representation is equivalent to the piecewise nonlinear function representation. With the regular
squared norm penalty, the resulting estimator involves all kernel functions on the training data.
For large sample size problems, this estimator is known to be consistent with desirable theoretical
properties. However, for problems with relatively smaller numbers of observations, using all kernel
functions for the representation may introduce a similar issue as using too many knots in spline
regressions. Hence it is desirable to have a regularization method that can select the kernel functions.

To this end, we propose a new penalty method to achieve a “data sparsity” model. Through
simulation studies, we observe that for some cases, the data sparsity model can perform better than
the regular squared norm penalty method, and for other cases, their performance is comparable.
See Section 2 for more detailed discussions. Moreover, we provide some theoretical insights on
the data sparsity method. In particular, we show that under very mild conditions, the asymptotic
convergence rates of the estimation errors for the two methods are the same, and both are close to the
“parametric rate”. Furthermore, we give finite sample error bounds on the prediction errors for both
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methods. We show that for a general RKHS and problems with small sample sizes, the bound for the
squared norm penalty method can be large. On the other hand, the data sparsity method can enjoy
a better bound because its corresponding functional space is smaller. Hence, we propose the data
sparsity method as an alternative approach to the squared norm penalty for RKHS learning. Note
that in the literature, Takeuchi et al. (2006) studied kernel based nonparametric quantile regression
problems, and mentioned a similar method as a natural extension of their formulation. However,
their work focused on nonparametric quantile regression, whereas the possible overfitting of the
squared norm penalty wasn’t brought to attention. Moreover, Takeuchi et al. (2006) didn’t perform
detailed theoretical or numerical studies on the data sparsity constraint. Our important contribution
in this paper is to explore the similarity and (more importantly) differences between the data sparsity
constraint and the regular squared norm penalty, through both numerical and theoretical studies.

In a regression problem, one needs to choose the loss function. The commonly used loss func-
tion is the squared error loss, which estimates the conditional mean of the response given the pre-
dictors. It is known that compared to the conditional mean estimation, the conditional median
estimation is more robust against outliers. Therefore, in this paper, we consider quantile regression,
and the loss function we use is the check function (Koenker and Bassett, 1978), although the idea of
imposing data sparsity constraint is very general and can be applied to many other settings as well.
Note that quantile regression with the check function provides the conditional median estimation
as a special case. Another advantage is that it can provide more information on the conditional
distribution of the response. Quantile regression has been widely used in many scientific fields,
including survival analysis (Koenker and Geling, 2001), microarray study (Wang and He, 2007),
economics (Koenker and Hallock, 2001), growth chart (Wei and He, 2006), and many others. Note
that quantile regression in RKHS with the regular squared norm penalty was previously studied by
Takeuchi et al. (2006) and Li et al. (2007).

In the machine learning literature, the Support Vector Machine (SVM, Boser et al., 1992; Cortes
and Vapnik, 1995) and the Support Vector Regression (SVR, Drucker et al., 1997; Vapnik et al.,
1997; Smola and Schölkopf, 1998; Stitson et al., 1999; Smola and Schölkopf, 2004) have been well
studied and widely used as classification and regression tools. One attractive feature of the SVM
and SVR is that even with the regular square norm penalty, due to the choice of the loss functions,
the estimated classification function or regression function has a sparse representation in the dual
space of the corresponding optimization problem. If the classification or regression function is in a
RKHS, sparsity in the dual space representation is equivalent to sparsity in the kernel representation.
However, with many other loss functions and the squared norm penalty, the advantage of a sparse
representation is lost (Smola and Schölkopf, 2004). Our proposed data sparsity constraint is able to
provide such a sparse representation for general loss functions. Note that in the Bayesian learning
literature, Tipping (2001) proposed the relevance vector machines to obtain sparse solutions for
regression and classification problems.

The rest of this article is organized as follows. In Section 2, we first discuss quantile regression
problems under the RKHS learning, then introduce our data sparsity constraint. In Section 3, we
derive theoretical results for both asymptotic and finite sample analysis of our data sparsity method.
In Section 4, we discuss how to derive the solution path of the involved optimization problem with
respect to the tuning parameter, and tackle the problem of tuning parameter selection. In Section 5,
we demonstrate the performance of our data sparsity method, using both simulated and real data
sets. Some discussions are provided in Section 6. All technical proofs are collected in the appendix.
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2. Methodology

We are given the training data (xi,yi); i = 1, . . . ,n, which are observed according to the model
Y = f0(X)+ ε(X). Let D be the domain of f0, and let the dimensionality of D be p. We assume
that for any given X , ε(X) has a finite mean. This assumption on ε is very general, in the sense that
both the homoscedastic and heteroscedastic cases are covered, along with many commonly used
distributions. To estimate the 100τ% quantile of the conditional distribution of Y given X for some
quantile level τ ∈ (0,1), Koenker and Bassett (1978) proposed to use the check loss function, which
can be written as

ρτ(u) =
{

τu if u > 0,
−(1− τ)u if u≤ 0,

where τ ∈ (0,1) indicates the quantile we are interested in. It is known that for a given X , the popu-
lation minimizer to the check function is the 100τ% conditional quantile. For a given τ, suppose that
ftrue(X) is the population minimizer to the check function. Note that in general f0 6= ftrue. A regular
quantile regression problem can be typically formulated in terms of the following optimization

min
f∈F

1
n

n

∑
i=1

ρτ

(
yi− f (xi)

)
+λJ( f ), (1)

where F is the functional class we are interested in, J(·) is a penalty on f to prevent overfitting, and
λ is a tuning parameter that controls the magnitude of J(·). With p = 1, J( f ) =

∫
|d

2 f (x)
dx2 |dx, and an

appropriately chosen F , Koenker et al. (1994) showed that the solution to (1) is a linear spline with
knots at xi; i = 1, . . . ,n.

In this article, we consider the case with p ≥ 1 and the regression function in a RKHS, which
is a more general setting than the regular smoothing splines. To begin with, we introduce some
notations. A summary of important notations used in this paper can be found in Tables 11-14.
Assume F = { f = f ′+ b : f ′ ∈ H , b ∈ R}, where H is a RKHS over X with the kernel function
K(·, ·), and b is the intercept of the regression function. Throughout this paper, we use the notation
f ′ for any function when it belongs to a RHKS without an extra intercept term. This definition of
F allows a more flexible setting than F = H , because some RKHS’s, for example the very popular
Gaussian RKHS, do not include non-zero constant functions (Minh, 2010). In this paper, without
loss of generality we assume each f ∈ F can be uniquely decomposed as f ′+ b. Let the norm in
H be ‖ · ‖H . For more detailed discussions about H and ‖ · ‖H , we refer the readers to Aronszajn
(1950), Wahba (1999), Schölkopf and Smola (2002), Steinwart et al. (2006), Hofmann et al. (2008),
Minh (2010), and the references therein. Furthermore, we assume that the RKHS H is separable,
and the kernel function K(·, ·) is upper bounded by 1. Our theory can be generalized to the case
where supX1,X2

K(X1,X2) < ∞. Note that a similar assumption was previously used in Steinwart
and Scovel (2007) and Blanchard et al. (2008). With a little abuse of notation, we define K to be the
n by n matrix

(
K(xi,x j)

)
; i, j = 1, . . . ,n, which we call the gram matrix.

The quantile regression with the regular squared norm penalty (Takeuchi et al., 2006; Li et al.,
2007) solves

min
f∈F

1
n

n

∑
i=1

ρτ

(
yi− f (xi)

)
+λ‖ f ′‖2

H . (2)
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By the representer’s theorem, the solution to (2) can be written as

f̃n(x) = f̃ ′n(x)+ b̃ =
n

∑
i=1

α̃iK(xi,x)+ b̃, (3)

where K(xi, ·) is the ith kernel function from the training sample, and α̃ = (α̃1, . . . , α̃n)
T is the esti-

mated kernel function coefficient vector. In this paper, to clarify notation, we denote the estimated
function using the squared norm penalty by f̃n, and the estimated function using our proposed data
sparsity constraint by f̂n. Because f̃n possesses such a finite form, (2) can be equivalently written as

min
α,b

1
n

n

∑
i=1

ρτ{yi−
( n

∑
j=1

α jK(xi,x j)+b
)
}+λα

T Kα. (4)

Li et al. (2007) provided a solution path for (4), with respect to the tuning parameter λ.
For many commonly used kernel functions, we can assume that the gram matrix K is positive

definite (Paulsen, 2009). Hence for any αi; i = 1, . . . ,n, the penalty αT Kα in (4) constrains α in
an ellipsoid, which does not have any singularity at αi = 0. This is illustrated on the left panel
of Figure 1. Note that in the linear learning literature, Fan and Li (2006) discussed the effect of
singularity of penalties on variable selection. Similarly, in RKHS regression problems, because the
regular squared norm penalty does not have any singularity at αi = 0, it does not perform “kernel
function selection”. As a result, the estimated α̃i 6= 0 for all i = 1, . . . ,n.

As discussed in Section 1, it is desirable to have a method that can deliver estimators with a
sparse kernel function representation. To this end, we propose to penalize directly on the kernel
function coefficients α such that some estimated αi’s will be set to 0. The details of our method are
as follows. By the representer’s theorem (Kimeldorf and Wahba, 1971), the estimated f̃n in (4) lies
in a space linearly spanned by K(xi, ·); i = 1, . . . ,n, and α̃ is constrained in an ellipsoid. To obtain
a data-sparsely represented function, we propose to constrain α in an L1 ball. In other words, we
solve the following optimization problem with the data sparsity constraint

min
α,b

1
n

n

∑
i=1

ρτ

(
yi− f (xi)

)
, subject to |b|+

n

∑
i=1
|αi| ≤ s, (5)

where s > 0 is the tuning parameter. Note that Takeuchi et al. (2006) briefly mentioned a possible
natural extension of their method that is similar to (5).

The constraint in (5) is an L1 type regularization and imposes a soft thresholding (Tibshirani,
1996) on α. On the right panel of Figure 1, we illustrate the effect of the data sparsity constraint.
For a small s, many of the estimated α̂i values will be set to 0. Consequently, the regression function
f̂n has a parsimonious representation in (3).

Through simulation studies, we demonstrate that for some settings, the data sparsity method can
have a better performance, compared to the regular squared norm penalty method. For other cases,
the performance difference between the two approaches is small. In particular,

• when n is small or moderate, and the underlying function can be well approximated by a
sparse representation ∑

m
i=1 γiK(zi, ·) + c for small m’s, where zi are fixed points in D and

c,γi ∈ R. The data sparsity can then provide a parsimonious model, and the corresponding
prediction performance can be better. We demonstrate this issue using an example where
p= 1 with the Laplacian kernel in Figure 2, and another example with p= 2 and the Gaussian
kernel in Figure 3;
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(a) The regular squared norm penalty.
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(b) The proposed data sparsity constraint.

Figure 1: The left panel demonstrates the contour of the regular squared norm penalty αT Kα = 1
with K =

[
(1,0.3)T (0.3,1)T

]
. The right panel plots the contour of our data sparsity

constraint |α1|+ |α2|= 1. For the regular squared norm penalty, there is no singularity at
the intersections of the contour and the axes (α1 = 0, α2 = 0), thus it does not encourage
sparsity in the estimated kernel function coefficients. In contrast, the data sparsity penalty
has singularity at the intersections and is able to achieve sparsity in the estimated kernel
function coefficients.

• when n is small or moderate, and the underlying function does not possess such a sparse
representation, the data sparsity method tends to choose a large s in (5). As a result, the
fitted model is not sparsely represented. In this case, the prediction performance of the data
sparsity method and the squared norm penalty method is often comparable. This is illustrated
in Figure 4;

• and when n is large, there is enough information to estimate the underlying function accu-
rately, and both methods can perform well in terms of prediction. In particular, we show in
Section 3.1 that the estimation errors of (4) and (5) both converge at a rate very close to the
“parametric rate” OP(n−1/2). In other words, asymptotically the data sparsity method can
perform as well as the squared norm penalty. However, (5) can still provide a data sparse
representation model. The advantages of such a parsimonious estimator is that the prediction
for new observations can be much faster than the regular method, and a sparser model can be
easier to interpret.

Therefore, the data sparsity method can be regarded as an alternative learning technique to the
regular squared norm penalty method.

Notice that although we observe that the data sparsity constraint may work well under some
settings when n is small or moderate, we still need a certain amount of information from the data
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(a) The fitted f̃n from (4).
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(b) The fitted f̂n from (5).

Figure 2: Plot of the fitted f̃n and f̂n (solid lines) in a simulated example with n= 30 and τ= 0.5, us-
ing the regular squared norm penalty (left panel) and the proposed data sparsity constraint
(right panel). The kernel used is the Laplacian kernel. The error ε follows U(−2,2). The
best tuning parameters (λ, s and the kernel parameter) are selected by the GACV cri-
terion (Yuan, 2006). The dotted line is the true regression function. Note that as the
regular squared norm does not have sparsity in the estimated kernel function coefficients,
the estimated regression function has quite a few wiggles which degrades the prediction
performance. On the other hand, our data sparsity method performs remarkably well in
this example.

to estimate the underlying function reasonably well. When the dimensionality p is high and the
sample size n is small, without variable selection, the curse of dimensionality would prevent most
of the kernel methods from working well. Therefore, we focus on the case when p is not large in
this paper.

We would like to point out that besides the data sparsity constraint on α, we also impose reg-
ularization on b in (5). Although penalizing b may not be standard, some papers, for example Fan
et al. (2008), also considered penalizing the intercept. The effect of penalizing on b is two fold.
Firstly, it guarantees the uniqueness of the solution path with respect to s, which is discussed in Sec-
tion 4. Secondly, it prevents b from diverging too fast as n→∞. This helps to bound the complexity
of F and the functional space we consider in (5), and consequently helps to derive the theoretical
properties in Section 3. If we remove b from the constraint, more conditions are needed for the
corresponding theorems to be valid. In particular, in the RKHS learning literature, many theoretical
results are derived with f = f ′ ∈ H without the intercept term. See, for example, Bousquet and
Elisseeff (2002), Chen et al. (2004), and the discussion on Page 17 of Steinwart and Christmann
(2008). Our data sparsity constraint can naturally incorporate the intercept in the regularization, and
consequently provide desirable theoretical properties without additional assumptions. More discus-
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(a) The underlying f0(X).
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(b) The fitted f̃n from (4).
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(c) The fitted f̂n from (5).

Figure 3: Panel (a) displays the underlying function f0(X), which has a sparse representation in the
Gaussian RKHS. Panel (b) shows the estimated regression function f̃n from (4), using
a simulated example of size 50 with the Gaussian RKHS and the regular square norm
penalty. Panel (c) shows the estimated regression function f̂n from the same example with
our data sparsity constraint in (5). The error ε follows N(0,1), and we use τ = 0.5. We
select the best tuning parameters (λ, s and the kernel parameter) over a grid of candidates
by the GACV criterion (Yuan, 2006). On Panel (b), one can see that there are fluctuations
in f̃n which degrade its prediction performance. On the other hand, f̂n from our data
sparsity method has less fluctuations.

sions on this issue are provided in Remark 4 and the proofs of the corresponding theorems in the
appendix. In Section 5, we study the numerical performance of our method with and without |b| pe-
nalized, respectively. The results demonstrate that the difference between the two settings is small,
in terms of their empirical performance. In real data analysis, practitioners can choose whether to
penalize b or not based on the nature of the problem and the model.

Next, we derive some theoretical properties of our data sparsity method, as well as the regular
squared norm penalty method.

3. Statistical Theory

In this section, we investigate some statistical theory of our data sparsity method. In particular,
we study the asymptotic behavior of our data sparsity method and the standard penalized quantile
regression with the regular squared norm penalty as n→ ∞ in Section 3.1. An example is given
in Section 3.2 to calculate the rate of convergence of the approximation error. We discuss the
approximation ability of the RKHS in Section 3.3. We also derive some finite sample error bounds
in Section 3.4. Note that our main results (Theorems 1-9) require only that the noise ε(X) has finite
mean for all X , therefore they hold in general for both homoscedastic and heteroscedastic cases.
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(a) The fitted f̃n from (4).
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(b) The fitted f̂n from (5).

Figure 4: The left panel shows the fitted f̃n from (4) with a simulated example of size 30 and the
Laplacian kernel for τ = 0.5. The right panel shows the fitted f̂n from (5) using the same
sample data and τ. The error follows N(0,1). The best tuning parameters (λ, s and the
kernel parameter) are selected by minimizing the GACV criterion (Yuan, 2006). Because
the underlying function is quite wiggly, a sparse representation in this case cannot perform
well. However, by allowing a large s, the data sparsity constraint yields a model that is
not “sparse”. Therefore one can see that the two methods give comparable performance.

3.1 Asymptotic Results

Before stating our main results, we introduce some additional notations. Let Fn(s) = { f = f ′+b :
f ′(x) = ∑

n
i=1 αiK(x,xi); |b|+∑

n
i=1 |αi| ≤ s} be the functional space of the optimization problem (5).

Note that we can define the functional space of the regular squared norm penalized method in a
similar manner. Let F (∞) = lims→∞ limn→∞ Fn(s). Next, we define f (s)n = arginf f∈Fn(s) Eρτ(Y −
f (X)) and f (∞) = arginf f∈F (∞) Eρτ(Y − f (X)). Here the expectation is taken with respect to the
joint distribution of X and the noise ε. Note that the conditional 100τ% quantile function ftrue
may not belong to F (∞). Now let e( f1, f2) = Eρτ(Y − f1(X))−Eρτ(Y − f2(X)). In the following
theorem, we explore the convergence rate of e( f̂n, f (∞)) by decomposing it into the estimation error
e( f̂n, f (s)n ) and the approximation error e( f (s)n , f (∞)), where f̂n = argmin f∈Fn(s)

1
n ∑

n
i=1 ρτ(yi− f (xi)).

We also study the convergence rate of e( f̃n, f (∞)) for the regular method using the squared norm
penalty.

Theorem 1 For the data sparse L1 method (5), we have e( f̂n, f (∞)) = OP(max(sn−1/2 log(n),dn,s)),
where dn,s = e( f (s)n , f (∞)) is the approximation error between Fn(s) and F (∞).

9
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For the regular squared norm method with |b| penalized, the estimation error of the solution f̃n

to

min
f∈F

1
n

n

∑
i=1

ρτ

(
yi− f (xi)

)
, subject to |b|2 +‖ f ′‖2

H ≤ s2 (6)

enjoys the same rate as above.

Remark 2 In Theorem 1, the estimation error converges at the rate OP
(
sn−1/2 log(n)

)
, and dn,s ap-

proaches 0 as s,n→∞. Therefore the optimal value of the tuning parameter s is roughly determined
by sn−1/2 log(n) ≈ dn,s. It can be considered as the trade-off between the approximation error and
the estimation error.

Remark 3 Theorem 1 is developed for a general separable RKHS such that the kernel function
K(·, ·) is upper bounded. The results in Section 3 can be refined if one focuses on a smaller set of
RKHS’s that satisfies additional conditions. For example, the Gaussian RKHS is commonly used
in the literature, and the corresponding theoretical properties are well studied (see, for example,
Zhou, 2002; Keerthi and Lin, 2003; Steinwart et al., 2006; Steinwart and Scovel, 2007; Minh,
2010, and the references within). In Theorem 1, the width parameter σ of the Gaussian kernel and
the dimensionality of X do not affect the convergence rate explicitly. They are both involved in the
approximation error dn,s. The choice of σ is often data dependent, as described in Section 5. The
asymptotic effect of σ is studied in many papers, for example Keerthi and Lin (2003). If f is an
element in a Banach space whose norm is defined to be ‖ f1− f2‖ = |(Eρτ(Y − f1(X))−Eρτ(Y −
f2(X)))| with an appropriate definition of limits for Cauchy sequences, then the corresponding
theory of dn,s can be derived as studied in Cucker and Smale (2002) and Smale and Zhou (2003).
In Section 3.2, we give a simple example in which dn,s can be explicitly calculated and vanishes in
a rate much faster than the estimation error.

Remark 4 The constraint on |b| in (5) and (6) helps to bound the complexity of Fn(s) in terms of
its L2 entropy number. The definition of the L2 entropy number is as follows. Let Q be a σ-finite
measure on X. One can define the L2(Q) norm of a square integratable function f on X to be
‖ f‖L2(Q) = (

∫
f 2dQ)1/2. An η−net on Fn(s) is defined to be a set of functions G = {g1,g2, . . .}

such that for all f ∈ Fn(s), there exists a g ∈ G satisfying ‖ f − g‖L2(Q) ≤ η. For any fixed η, the
L2(Q) entropy number of Fn(s) is defined as the logarithm of the cardinality of an η−net G on
Fn(s) whose size is the smallest (Van der Vaart and Wellner, 2000). A bound on |b| helps to control
the L2 entropy number of Fn(s). See Lemma 14 and its proof in the appendix for more details. Our
theory can also be valid with some additional assumptions if |b| is not penalized. The next corollary
discusses a natural generalization of our asymptotic results without penalizing |b|, when we impose
some assumptions on f0 and ε. First, we define

F ∗n (s) = { f = f ′+b : f ′(x) =
n

∑
i=1

αiK(x,xi);
n

∑
i=1
|αi| ≤ s},

and f (∗s)n , F ∗(∞), and f (∗∞) are defined analogously as in Theorem 1. Note that if a random variable
X is sub-Gaussian with the parameter S, then pr(|X |> t)≤ 2exp(−t2/S) for t large enough.

10
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Corollary 5 Suppose that f0 is uniformly bounded, and the error ε(X) follows a sub-Gaussian
distribution with a common finite parameter for any X. Then the solution f̂ ∗n to the following opti-
mization

min
α,b

1
n

n

∑
i=1

ρτ

(
yi− f (xi)

)
, subject to

n

∑
i=1
|αi| ≤ s,

satisfies that e( f̂ ∗n , f (∗∞)) = OP(max(sn−1/2 log(n),d∗n,s)), where d∗n,s = e( f (∗s)n , f (∗∞)) is the approx-
imation error between F ∗n (s) and F ∗(∞).

In Corollary 5, we impose the assumption that the distributions of error terms εi; i= 1, . . . ,n, are
all sub-Gaussian, which covers many commonly used distributions. Consequently, the probability
that any observed yi being significantly away from f0(xi) can be well controlled. If the distribution
of εi has a heavier tail than sub-Gaussian, and we do not penalize b, the convergence rate of the
estimation error can be slower than that in Theorem 1. See the proof in the appendix for more
discussions. Compared to Corollary 5, our asymptotic theory with |b| in the constraint only requires
the noise ε being integrable, hence is more general.

Remark 6 Note that our results in Theorem 1 also apply to the regular squared norm penalty
method. This suggests that asymptotically, the two methods can both perform well. However, for
problems with a moderate or small n, asymptotic results may be less useful. In Section 3.4, we
give bounds on the prediction errors Eρτ(Y − f̂n) and Eρτ(Y − f̃n). In particular, we give two such
bounds. The first bound works for both the regular method with the squared norm penalty and
the proposed data sparsity method. The second bound is only for the data sparsity method. We
show that for a small n, the second bound can be better than the first one. Therefore, when the
true function can be well approximated by functions in Fm(s0) for small m and s0, the data sparsity
method can enjoy a smaller prediction error bound.

In the next section, we give an example where f0 ∈ Fm(s0) for some fixed s0 and m, and the
approximation error dn,s converges to 0 in a speed much faster than OP(n−1/2 log(n)). In that case,
e( f̂n, f (∞)) = OP(n−1/2 log(n)).

In the literature, Takeuchi et al. (2006) derived finite sample bounds on the estimation error for
general quantile regression problems, using the Rademacher complexity technique (Mohri et al.,
2012). They showed that the estimation error can be upper bounded by the Rademacher complex-
ity of the corresponding functional space (plus a small penalty which exists only in finite sample
problems). Under various settings where the Rademacher complexity is well studied, one can ob-
tain the asymptotic convergence rate of the estimation error accordingly. For example, when we
perform learning with a radial basis function kernel such that K(·, ·) is upper bounded, or when
the functional space has finite VC dimensions, one can verify that the corresponding Rademacher
complexity converges to zero at a rate close or equal to OP(n−1/2). Li et al. (2007) also studied the
asymptotic convergence rate of e( f̃n, f (∞)) under some assumptions. For example, a bound on the
complexity of F in terms of the L2 metric entropy was assumed. Our asymptotic theory for quan-
tile regression with the data sparsity constraint is more general, as we only use the assumption that
the RKHS is separable and bounded. This is a very weak assumption and can be satisfied by most
commonly used kernel spaces. Furthermore, in Section 3.4, we obtain finite sample error bounds
on the prediction error for our proposed method with the data sparsity constraint. Our bounds can
be directly calculated using the training data and the corresponding tuning parameter.

11



ZHANG, LIU AND WU

3.2 An Illustrative Example on the Approximation Error

In this section we give an example to calculate dn,s, where we know f0 and the distribution of X .
The Gaussian RKHS is considered.

For simplicity, let p = 1, τ = 1/2, σ = 1 and X be uniformly distributed on [0,1]. Moreover,
assume that ε is symmetric with respect to 0 for all X . Suppose the underlying model is ftrue =
f0(x) = exp(−x2). One can verify that when s is fixed at 1, dn,s ≤ 1

2 E(|Y − f0(X)|)− E(|Y −
f(1)(X)|), where f(1)(x) = exp(−(1−x(1))2) with x(1) being the smallest order statistic of the sample
x = (x1, . . . ,xn). Note that the probability density function of x(1) is n(1− x)n−1I[0,1] and dn,s ≤
1
2 E(| f0(X)− f(1)(X)|). Since the largest difference between f0(x) and f(1)(x) occurs at x = 0, dn,s ≤
1
2
∫ 1

0 (1−exp(−x2))n(1−x)n−1dx. By the Taylor’s expansion, one can verify that (1−exp(−x2))≤
2x2 for all x ∈ [0,1]. Thus, dn,s ≤ 1

2
∫ 1

0 2nx2(1− x)n−1dx = 2
(n+1)(n+2) . Hence in this example,

dn,s = OP(n−2), which converges to 0 at a much faster rate than OP
(
n−1/2 log(n)

)
.

In general, when f0(x) = ∑
m
j=1 γ jK(x,z j)+ c, where c ∈ R, γ j ∈ R, and z j ∈ Rp are fixed points

(not the observed data points), we can have s fixed and the approximation error vanishes quickly
as n → ∞. This is because with growing n, there will be some observed xi’s that are close to
z j; j = 1, . . . ,m, and the approximation error dn,s may converge at a rate faster than OP(n−1/2 log(n))
with s = |c|+∑

m
j=1 |γ j|.

3.3 Approximation Ability of F (∞)

We have explored the convergence rate of the estimation errors e( f̂n, f (s)n ) and e( f̃n, f (s)n ) in Sec-
tion 3.1, and in Section 3.2 we have given an example to illustrate the convergence rate of the ap-
proximation error dn,s = e( f (s)n , f (∞)). For real applications, it is desirable to study the approximation
ability of F (∞). In other words, how well f (∞) can approximate ftrue. However, this approximation
ability depends on the properties of ftrue (i.e., the smoothness, etc.), the richness of the RKHS, and
the underlying marginal distribution of X . In the literature of RKHS learning, Steinwart and Scovel
(2007) studied the approximation ability of the Gaussian RKHS for support vector machines. In
this section, we provide a discussion on this issue for quantile regression with a general RKHS. We
measure such approximation ability by A(∞) := E

(
ρτ(Y − f (∞))

)
−E

(
ρτ(Y − ftrue)

)
. We first show

that if ftrue is a bounded piecewise step function, an upper bound on A(∞) for the Gaussian kernel
learning can be obtained. This upper bound depends on the marginal distribution of X . In particular,
when the marginal distribution of X is absolutely continuous with respect to the Lebesgue measure,
the Gaussian RKHS can approximate ftrue arbitrary well. Then, we extend to the case where ftrue
is a Lipschitz function. Finally, we note that this upper bound can be generalized to other kernels
satisfying certain conditions.

We begin with the description of ftrue and some further notations. Recall the definition of D, and
without loss of generality assume D = Rp. As mentioned above, we assume that ftrue is a bounded
step function. In particular, assume ftrue = ai on Di, where ai is a constant, Di is a measurable set in
D, and D =

⋃
Di. Let a > 0 be the upper bound of | ftrue|. Next, for any x ∈ Di, define the distance

of x to other D j; j 6= i as ψx = min j 6=i dis(x,D j), where dis(x,D j) = infx′∈D j ‖x− x′‖ and ‖ · ‖ is
the usual Euclidean norm in D. By this definition of ψx, one can verify that B(x,ψx) ∈ Di for all x,
where B(x,ψx) is the ball centered at x with the radius ψx. Note that B(x,ψx) is well defined for all
x ∈ D. Recall that σ is the kernel parameter of the Gaussian RKHS.

The next theorem gives an upper bound on A(∞).

12
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Theorem 7 Suppose ftrue is a piecewise step function with | ftrue| ≤ a for some a > 0. Define ψx

and A(∞) as above. One has

A(∞)≤max(τ,1− τ)EPX

{
8aexp

(
−ψ

2
x/(2pσ

2)
)}

, (7)

where PX is the marginal distribution of X, p is the dimensionality of X and σ is the kernel parameter
of the Gaussian RKHS.

For a fixed p, the upper bound in Theorem 7 depends on ψx, σ and the distribution PX . If PX

is absolutely continuous with respect to the Lebesgue measure, one can verify that A(∞)→ 0 with
σ→ 0. This means that f (∞) can approximate ftrue arbitrarily well almost everywhere.

Next we consider the case where ftrue is a general bounded measurable function. All bounded
measurable functions can be approximated arbitrarily well by step functions. However, if ftrue is too
wiggly or is discontinuous at too many points in D, it cannot be well approximated by the Gaussian
RKHS functions. For example, when ftrue is discontinuous on a dense subset of D, ψx = 0 for all
x if the step function is close enough to ftrue. This leads to the right hand side of (7) being large.
Therefore, we need some smoothness condition on ftrue. The next corollary shows that when ftrue is
Lipschitz, A(∞)→ 0 as σ→ 0.

Corollary 8 Assume that ftrue is a bounded Lipschitz function, and PX is absolutely continuous with
respect to the Lebesgue measure on D. Then A(∞)→ 0 as σ→ 0.

The discussions above have focused on the Gaussian RKHS. We note that it is possible to
generalize the obtained results to more general RKHS’s. For example, using similar techniques,
one can verify that similar results as in Theorem 7 and Corollary 8 still hold if we consider many
other radial kernels such as the Laplacian kernel. Other kernels, for example the polynomial kernel,
may not have such guarantee that functions in the kernel space can approximate the underlying
function arbitrary well. See the proof of Theorem 7 in the appendix for more discussions.

3.4 Finite Sample Error Bounds

The theory in Section 3.1 gives the asymptotic convergence rate of the estimation error. It is useful
when the sample size is large. In this section, we derive some finite sample bounds on the prediction
errors Eρτ(Y − f̂n) and Eρτ(Y − f̃n), which can be used to assess the goodness of fit of the resulting
model, when n is not large. In this section, we focus on the comparison between Eρτ(Y − f̂n) and
Eρτ(Y− f̃n). In particular, we show that the Rademacher complexity for f̂n can be smaller compared
to that of f̃n. Hence, the prediction error bound for the data sparsity method can be better, and this
demonstrates the usefulness of our proposed method. Note that Takeuchi et al. (2006) also used the
Rademacher complexity to bound the estimation error. In this paper, we further consider how to
bound the Rademacher complexity, especially for the data sparsity method.

To begin with, we introduce the following assumption.
Assumption A: The noise ε is bounded such that |ε| ≤ t for some positive t.

Theorem 9 Suppose Assumption A holds. Then the solution f̂n to (5) satisfies that, with probability
at least 1−δ with a small and positive δ,

Eρτ(Y − f̂n)≤
1
n

n

∑
i=1

ρτ

(
yi− f̂n(xi)

)
+Zn +max(τ,1− τ)µ,

13
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where Zn = 3max(τ,1− τ)
(

n−1(2s2 +2t2) log(2/δ)
)1/2

and

µ = s

√
2log(2n+2)

n
.

Moreover, the solution f̃n to (6) satisfies that, with probability at least 1−δ,

Eρτ(Y − f̃n)≤
1
n

n

∑
i=1

ρτ

(
yi− f̃n(xi)

)
+Zn +max(τ,1− τ)µ,

where Zn is defined as above and

µ = 2sn−1/4 +
√

n−1
(
211n1/4 +2log(5)+0.5log(n)

)
.

One can see from Theorem 9 that µ for f̂n is much smaller than f̃n. This is because the functional
space of (5) is smaller than that of (4) (see Lemma 13 in the appendix). The key to the proof for f̃n

is to control the covering number of the functional space in (4), as in Lemma 14. In particular, we
study the covering number of a unit ball in H , i.e., { f ′ : ‖ f ′‖H ≤ 1}. On the other hand, the key
to the proof for f̂n is that the Rademacher complexity of the functional space of (5) is equivalent to
the Rademacher complexity of a convex hull of functions with 2n+2 vertices, and the latter enjoys
a much better bound compared to the Rademacher complexity in (4).

From Theorem 9, one can conclude that when the underlying function can be well approximated
by a function that has a sparse representation (in other words, the term 1

n ∑
n
i=1 ρτ

(
yi− f̂n(xi)

)
and s

are both small), the prediction error bound for the data sparsity method can be better. This observa-
tion provides some insight on the usefulness of the data sparsity method, which is illustrated by our
numerical examples in Section 5, and discussed in Section 2.

Notice that our theory is for a general RKHS with very weak assumptions. Thus, the first choice

of µ, µ = 2sn−1/4 +
√

n−1
(
211n1/4 +2log(5)+0.5log(n)

)
, can be refined if one considers specific

kernels with additional assumptions, such as the decay rate of the eigenvalues of the corresponding
Hilbert-Schmidt integral operator. See, for example, Zhou (2002) and Steinwart and Scovel (2007).
This can lead to a better bound in Theorem 9. For example, with Gaussian kernel learning (including
intercepts), an application of the result in Zhou (2002) gives µ = 2sn−1/3+2p+2 p1/2n−1/3 logp/2(n),
where p is the dimensionality of X . Hence for a small p, our µ on f̃n in Theorem 9 can be loose in
this case. Nevertheless, one can verify that the bound on the data sparsity method is still better than
µ = 2sn−1/3+2p+2 p1/2n−1/3 logp/2(n). If we use the Gaussian kernel without an intercept, then one
can verify that we have µ = OP(n−1/2) for f̃n (Mendelson, 2003). However, without the intercept,
the empirical prediction error term might be large for some problems, which can lead to suboptimal
results.

As a remark, we note that Assumption A ensures that the response variable y is bounded if we
restrict our consideration to the space Fn(s). Because we want to bound a finite sample error, any
large noise in the response data, that is, an observed yi being significantly away from its expected
value given the predictors, can result in the failure of our bound derived in Theorem 9. Assumption
A excludes the possibility that this large noise happens. This assumption can be removed if one
assumes that the tail of the distribution of |ε| satisfies certain properties, and similar results can
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be obtained by modifying the proof of Theorem 9 accordingly. Corollary 10 gives one possible
generalization of the bound in Theorem 9, where we make an assumption of the distribution of the
error ε. Note that the results in Theorem 9 and Corollary 10 can be calculated directly from the data
and the tuning parameter s we use.

Corollary 10 Suppose that the errors εi; i = 1, . . . ,n follow a common distribution with a continu-
ous cumulative distribution function Φε. For simplicity, assume that the distribution of ε is symmet-
ric with respect to 0. Then f̂n and f̃n are controlled by the same finite sample bounds as in Theorem 9

except that Zn = 3max(τ,1−τ)
(

n−1(2s2+2t2) log(4/δ)
)1/2

and t = Φ−1
ε

(
0.5+0.5(1−δ/2)1/n

)
.

If ε follows a Gaussian distribution, one can verify that for a fixed δ, t = OP
(

log(n)1/2
)

as
n→ ∞. Hence, t diverges in a slow rate. For other error distributions, one can obtain similar results
by studying the corresponding Φε, and we omit the details here.

4. Optimization and Tuning Procedure

The numerical optimization of (5) for fixed s and τ can be done by a simple linear programming.
However, it is often desirable to have the entire solution path of α̂ and b̂ with respect to s. For
example, when we need to perform a comprehensive tuning procedure for choosing the optimal
s, the solution path can significantly reduce the computational cost. In the literature of penalized
quantile regression, Li et al. (2007) developed the solution path for (4) with respect to λ, Li and
Zhu (2008) derived the solution path for L1 penalized quantile regression with linear learning, and
Rosset (2009) studied the solution surface with respect to both λ and τ in (4). In this section, we
first briefly discuss how to derive the corresponding solution path with respect to s, then consider
how to select the tuning parameter s.

Let K̃ be the n by (n+ 1) matrix (1 K), where 1 is a vector of 1 of length n, and let ᾱ =
(b,α1, . . . ,αn). With b penalized, one can verify that the optimization (5) is equivalent to

min
ᾱ

1
n

n

∑
i=1

ρτ

(
yi− f (xi)

)
, subject to |ᾱ| ≤ s,

where
(

f (x1), . . . , f (xn)
)
= K̃ᾱ. We note that the solution path of this optimization problem can be

obtained in a similar manner as in Li and Zhu (2008) without an intercept in their notation, despite
that they only considered linear learning problems. We omit the details here.

To illustrate the algorithm, using the data considered in Figure 2, we plot the piecewise linear
solution path {b(s),α(s)} in Figure 5. Because the entire set {b(s),α(s)} consists of 31 piecewise
linear functions, we only report a subset of {b(s),α(s)} in Figure 5 to make the plot clear. Moreover,
if we plot the solution path on [0,s1] for large s1, the lines become less clear on [0,s2] with s2� s1.
Hence, we only plot the solution path on [0,20] for a demonstration.

Remark 11 As mentioned in Section 2, penalizing |b| helps to guarantee the uniqueness of the
solution path. In particular, if the intercept is not regularized, when s is large (or equivalently, the
model is mildly penalized), there exist cases where b is not uniquely determined. See Li et al. (2007)
and Li and Zhu (2008) for detailed discussions on this issue.
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Figure 5: A subset of the solution path {b(s),α(s)} as a function of s. Notice that for brevity, we
only plot five α̂i(s)’s and the intercept b, and we restrict s such that s ∈ [0,20] to illustrate
the solution path. The solid line corresponds to b(s).

Next, we briefly discuss how to select the optimal tuning parameter s in (5) for a given regression
problem. Similar to many other penalized techniques, a proper choice of s is crucial in practice. In
particular, s being too large can lead to an overfitted model, and s being too small can lead to
an underfitted model. For either cases, the prediction accuracy can be low. Here we discuss two
commonly used criteria for kernel quantile regression. The first criterion is the Schwarz Information
Criterion (SIC, Schwarz, 1978; Koenker et al., 1994), which can be written as

SIC(s) = log

{
1
n

n

∑
i=1

ρτ

(
yi− f̂ (xi)

)}
+

log(n)d f
n

.

Here d f measures the dimensionality of the model, and log(n)d f
n balances the model complexity and

goodness-of-fit. The second criterion is the Generalized Approximate Cross-Validation criterion
(GACV, Yuan, 2006), defined as

GACV(s) =
1

n−d f

{
1
n

n

∑
i=1

ρτ

(
yi− f̂ (xi)

)}
.

Note that GACV was originally proposed as a stable estimator of the generalized comparative
Kullback-Leibler distance for the model.

To estimate d f , it has been proposed to use the divergence (Nychka et al., 1995; Yuan, 2006)

div( f̂ ) =
n

∑
i=1

∂ f̂ (xi)

∂yi
.
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Li et al. (2007) showed that for the kernel quantile regression with the regular squared norm penalty,
div( f̂ ) coincides with the number of interpolated yi’s, and this makes the estimation of d f conve-
nient. The next proposition shows that for the proposed quantile regression with the data sparsity
constraint, we have the same estimation formula, given the “one at a time” condition (Efron et al.,
2004).

Proposition 12 Assume the “one at a time” condition holds. For (yi; i = 1, . . . ,n) ∈ Rn except on
a set of Lebesgue measure 0 and any fixed s, we have

n

∑
i=1

∂ f̂ (xi)

∂yi
= |E |,

where E is the set of interpolated yi’s.

5. Numerical Examples

In this section, we examine the performance of our proposed method with the data sparsity constraint
using both simulated and real data sets. We demonstrate the effect of the SIC and GACV criteria.
As a comparison, we also apply quantile regression using RKHS learning with the regular squared
norm penalty, which was previously studied in Takeuchi et al. (2006) and Li et al. (2007).

5.1 Simulated Examples

We use three simulated examples to compare the performance of the proposed method with the data
sparsity constraint and the standard method using the regular squared norm penalty. In particular,
we study the three examples given in Section 2, which cover two cases. The first case (Examples
1 and 2) considers the situation when f0(x) can be well approximated by functions of the form
∑

m
j=1 γ jK(x,z j) for some fixed z j and γ j, where m is a small positive integer. For the second case

(Example 3), f0 is constructed to have many fluctuations. In this situation, f0 cannot be well ap-
proximated by functions of the form ∑

m
j=1 γ jK(x,z j) with a small m.

For each example, we consider two choices of n: moderate (n ∈ [30,50]) and very large (n =
1000). We show that for Examples 1-2 with moderate n’s, the sparsely represented model from
our method using the data sparsity constraint can have better prediction performance. On the other
hand, for the case with a moderately large n but with the true function being quite wiggly (Example
3), or with a very large n, the performance of the two methods is comparable in terms of prediction
accuracy. This is consistent with our theoretical insights.

We explore the performance under various settings of the noise. In particular, for the ho-
moscedastic case, we let ε follow the standard normal distribution N(0,1) (homoscedastic normal
distribution, ho-norm. in Tables 2-7), and the t distribution with degrees of freedom 3 (t3). For
the case when the noise is heteroscedastic, we let ε(x) ∼U [−‖x‖2/1.5,‖x‖2/1.5] (heteroscedastic
uniform distribution, unif. in Tables 2-7), and ε(x)∼N(0,‖x‖2/3) (heteroscedastic normal distribu-
tion, he-norm. in Tables 2-7), where ‖ · ‖2 is the usual Euclidian norm. Then we generate a training
data set. Prediction models that correspond to different tuning parameters are built on the training
data. We select the best tuning parameters by minimizing the SIC and GACV criteria on the training
data respectively. The kernel parameters are also selected via the tuning procedure. We predict on
a separate testing data set with the size 10000, to compare the performances of the two criteria. For
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the choice of quantiles, since ε follows symmetric distributions with respect to 0, we choose τ = 0.1,
0.3 and 0.5.

As discussed in Section 3, in this section, we will demonstrate that empirically, the effect of
whether to penalize the intercept b or not is not large. In particular, for all the examples, we fit
the models of the two compared methods with or without |b| penalized. Note that for the regular
squared norm method, we include |b| in the penalty as in (6).

To measure the goodness of fit of the model, we calculate the prediction error

1
10000 ∑

i∈test set
ρτ(yi− f̂n(xi)),

and the L1 norm of f̂n− ftrue. This procedure is repeated 1000 times and we report the average
prediction error, average L1 norm and average model complexity in terms of d f . For our data
sparsity method, we also report the percentage of non-zero αi’s as a measurement of how sparse the
model is. Note that this percentage for the regular squared norm method is always 100%.

The simulation results are reported in Tables 2-7. For brevity, we only report the results for
certain settings listed in Table 1. The other results are omitted because the general pattern is similar.
Notice that for the cases where we compare moderate to large n’s, we penalize the intercept of
the data sparsity method, but not the intercept of the regular squared norm method, because the
numerical difference is small.

Example τ Comparison
Ex 1 τ = 0.1 Penalize b or not

τ = 0.3 Moderate or large n
Ex 2 τ = 0.3 Penalize b or not

τ = 0.5 Moderate or large n
Ex 3 τ = 0.5 Penalize b or not

τ = 0.1 Moderate or large n

Table 1: Summary of the settings for the reported simulation results.

Example 1: We generate the data in the same way as in Figure 2. In particular, x is one dimensional
and follows the uniform distribution between −6 and 6. The underlying f0(x) = 10exp(−x2). We
use n = 30 for the training data. The Laplacian kernel is used.
Example 2: The data are generated in the same way as in Figure 3. In particular, we let x be
uniformly distributed in [−3,3]× [−3,3]. The underlying true model is given by f0(x)= 10exp(‖x−
(−2,−2)T‖2

2)+5exp(‖x− (−1,1)T‖2
2)+2exp(‖x− (2,−1)T‖2

2). There are 50 observations in the
training data set. We apply the Gaussian kernel for this example.
Example 3: The data are generated similarly as in Figure 4. To be specific, x is one dimensional,
uniformly distributed in [−7,7]. We have the underlying function f0(x) = 5sin(2.5x). The training
data consist of 30 observations, and the Laplacian kernel is employed.

We summarize our findings from the simulation results as follows.

• For Examples 1 and 2 with a moderate n, the data sparsity method tends to choose a simpler
model than that of the square norm penalty, with either the GACV or the SIC criterion. Fur-
thermore, the data sparsity constraint performs better than the regular squared norm penalty.
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This implies that functions estimated by the squared norm penalty can have potential over-
fitting because of too many kernel functions, as indicated by Figures 2 and 3. For a large n,
the prediction performance of the two methods is comparable, because asymptotically both
methods can perform well.

• For Example 3 with a moderate n, the data sparsity method tends to choose a model with a
large number of non-zero αi’s. In this case, the model from (5) is not sparse, and the two
methods perform similarly.

• For a large n in all the examples, the data sparsity method can choose models with simpler
representation than the regular method, while keeping similar prediction performance. Con-
sequently, the data sparsity method yields a parsimonious model that has advantages in terms
of computational efficiency and interpretability.

• The SIC always tends to choose a simpler model than the GACV criterion. In these examples,
GACV overall works slightly better than SIC, for both the data sparsity constraint and the
squared norm penalty.

• As τ gets closer to 0.5, the performances of the two penalties and the two criteria become
better, in terms of the L1 norm.

|b| penalized |b| not penalized
Squared norm Data sparsity Squared norm Data sparsity

Dist. GACV SIC GACV SIC GACV SIC GACV SIC
Pred ho-norm. 0.760 0.910 0.517 0.596 0.752 0.909 0.523 0.579

t3 0.893 1.013 0.677 0.699 0.849 1.075 0.711 0.726
unif. 0.869 0.995 0.636 0.701 0.933 0.959 0.598 0.700

he-norm. 0.913 0.925 0.708 0.734 0.958 1.033 0.722 0.748
L1 Norm ho-norm. 2.061 2.291 0.733 0.759 2.062 2.294 0.715 0.753

t3 2.233 2.426 1.239 1.297 2.236 2.429 1.244 1.280
unif. 2.362 2.217 0.665 0.687 2.246 2.199 0.626 0.699

he-norm. 2.343 2.366 1.290 1.375 2.109 2.256 1.276 1.391
d f ho-norm. 13.24 12.55 6.939 6.703 13.56 12.33 6.899 6.716

t3 13.19 11.87 6.771 6.529 13.48 11.44 6.784 6.545
unif. 13.28 11.13 7.044 6.512 13.64 11.23 7.033 6.529

he-norm. 15.16 14.57 8.182 7.903 15.22 14.91 8.452 8.005
Percent. ho-norm. - - 17.33 16.25 - - 17.49 16.88

t3 - - 17.18 16.10 - - 17.36 16.42
unif. - - 17.58 16.69 - - 17.42 17.01

he-norm. - - 19.21 18.34 - - 18.87 18.55

Table 2: Results of the simulation Example 1 with τ= 0.1 and |b| penalized (left) or not (right). The
best mean prediction errors are 0.40 (ho-norm., homoscedastic normal distribution), 0.56
(t3), 0.59 (unif., heteroscedastic uniform distribution), and 0.60 (he-norm., heteroscedastic
normal distribution). The standard errors of the prediction errors range from 0.0040 to
0.0053. The standard errors of the L1 norms range from 0.0068 to 0.0095. The standard
errors of d f range from 0.050 to 0.066. The standard errors of the percentage of non-zero
αi’s for the data sparsity method range from 0.032 to 0.051.
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n = 30 n = 1000
Squared norm Data sparsity Squared norm Data sparsity

Dist. GACV SIC GACV SIC GACV SIC GACV SIC
Pred ho-norm. 0.847 0.903 0.711 0.716 0.514 0.510 0.512 0.512

t3 1.044 1.070 0.928 0.946 0.688 0.691 0.685 0.693
unif. 0.914 0.916 0.833 0.820 0.655 0.667 0.659 0.671

he-norm. 0.966 0.989 0.831 0.845 0.711 0.709 0.705 0.713
L1 Norm ho-norm. 1.462 1.841 0.517 0.552 0.657 0.644 0.659 0.650

t3 1.533 1.897 0.583 0.694 1.024 1.058 1.062 0.989
unif. 1.541 1.882 0.755 0.795 0.578 0.560 0.556 0.581

he-norm. 1.515 1.798 0.689 0.726 0.913 0.926 0.912 0.904
d f ho-norm. 15.67 12.77 6.523 6.040 20.44 20.16 18.16 18.05

t3 13.97 12.05 6.164 6.070 21.52 21.09 19.13 18.07
unif. 15.85 13.71 6.775 6.433 19.89 19.15 18.29 18.14

he-norm. 16.77 15.84 7.782 7.503 22.10 22.28 21.85 22.34
Percent. ho-norm. - - 17.33 16.25 - - 0.614 0.603

t3 - - 17.18 16.10 - - 0.610 0.606
unif. - - 17.44 16.96 - - 0.612 0.606

he-norm. - - 18.92 17.77 - - 0.693 0.687

Table 3: Results of the simulation Example 1 with τ= 0.3 and moderate n (left) or large (right). The
best mean prediction errors are 0.40 (ho-norm., homoscedastic normal distribution), 0.56
(t3), 0.59 (unif., heteroscedastic uniform distribution), and 0.60 (he-norm., heteroscedastic
normal distribution). The standard errors of the prediction errors range from 0.0030 to
0.0046. The standard errors of the L1 norms range from 0.0055 to 0.0079. The standard
errors of d f range from 0.048 to 0.059. The standard errors of the percentage of non-zero
αi’s for the data sparsity method range from 0.031 to 0.055.

5.2 Real Data Analysis

In this section, we apply our proposed method (5) to several real data sets. In particular, we consider
20 data sets studied in Section 5 of Takeuchi et al. (2006), and the well known annual salary of
baseball players data studied in He et al. (1998), Yuan (2006) and Li et al. (2007). The description
and a summary table of the first 20 data sets can be found in Takeuchi et al. (2006), and we do not
repeat it here. For the baseball data, it consists of statistics for 263 North American major league
baseball players in the year 1986. The original data set has 22 predictors and the players’ 1987
annual salary as the response, and we use the whole data for our analysis reported in Tables 8-10.
Furthermore, following He et al. (1998), Yuan (2006) and Li et al. (2007), we use two representative
predictors from the baseball data to perform an illustrative analysis, which is reported in Figure 7.
In particular, we measure players’ performance by the number of home runs in the latest year, and
measure player’s seniority by the number of years played.

For all real data analysis, the Gaussian kernel is used. For the results reported in Tables 8-10, we
first standardize the predictors and response to make the results comparable. We split each data set
into 10 parts of roughly the same size. We choose 1 part as the testing data set, and the remaining
as the training data. Then we select the best tuning parameter and kernel parameter on the training
data, and predict on the testing data. We continue to the next random split once all the 10 parts
have served as the testing data. This random split is repeated 100 times for each data set, and we
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|b| penalized |b| not penalized
Squared norm Data sparsity Squared norm Data sparsity

Dist. GACV SIC GACV SIC GACV SIC GACV SIC
Pred ho-norm. 0.885 1.075 0.527 0.673 0.847 1.031 0.557 0.624

t3 1.068 1.118 0.677 0.894 1.124 1.341 0.710 0.909
unif. 1.057 1.243 0.644 0.692 1.147 1.286 0.613 0.629

he-norm. 1.021 1.226 0.697 0.801 1.089 1.146 0.703 0.811
L1 Norm ho-norm. 1.826 2.078 0.760 0.911 1.864 2.271 0.796 0.894

t3 1.873 2.213 0.875 1.244 1.905 2.400 0.892 1.303
unif. 2.002 2.199 0.841 1.199 1.953 2.168 0.872 1.240

he-norm. 2.112 2.351 0.873 0.992 1.913 2.325 0.846 1.023
d f ho-norm. 18.16 16.22 12.33 9.885 18.83 16.06 12.51 10.21

t3 17.91 16.22 11.97 8.678 18.05 15.80 12.03 9.146
unif. 18.44 15.78 12.91 9.913 18.31 16.03 12.50 10.12

he-norm. 19.05 18.79 14.41 12.90 19.33 19.03 14.29 12.46
Percent. ho-norm. - - 13.24 12.90 - - 13.44 13.00

t3 - - 14.26 12.92 - - 14.55 13.22
unif. - - 16.64 15.68 - - 17.02 15.94

he-norm. - - 17.22 16.78 - - 16.89 16.59

Table 4: Results of the simulation Example 2 with τ= 0.3 and |b| penalized (left) or not (right). The
best mean prediction errors are 0.40 (ho-norm., homoscedastic normal distribution), 0.56
(t3), 0.59 (unif., heteroscedastic uniform distribution), and 0.60 (he-norm., heteroscedastic
normal distribution). The standard errors of the prediction errors range from 0.0055 to
0.0068. The standard errors of the L1 norms range from 0.0071 to 0.0133. The standard
errors of d f range from 0.066 to 0.072. The standard errors of the percentage of non-zero
αi’s for the data sparsity method range from 0.044 to 0.057.

report the average prediction error (Pred) and its sample standard deviation (SSD) in Tables 8-10
for τ = 0.1,0.5,0.9. We only report the results where the intercept is penalized for the data sparsity
method, but not for the standard method with the squared norm penalty. Similar to the results in
Section 5.1, the numerical difference of whether the intercept is penalized or not is not large. For the
results reported in Figure 7, we train the model using the entire data set. We then plot the predicted
values against the two dimensional input space.

Similar to Takeuchi et al. (2006), we perform a two-sided paired-sample t-test to compare the
prediction performance of the two methods. In Tables 8-10, we can see that for the caution, sniffer,
GAGurine, topo, CobarOre, and baseball data sets, the performance of the data sparsity method is
overall better than that of the squared norm penalty method. For birthwt, engel, gilgais, and mcycle,
the data sparsity method is slightly better. For BostonHousing and cpus, the squared norm penalty
is slightly better. For the other data sets, their performance is comparable. This demonstrates the
usefulness of the data sparsity method. Moreover, we plot the fitted functions f̂n and f̃n with τ = 0.5
for the mcycle data on the left panel of Figure 6. Compared to Figure 3 in Takeuchi et al. (2006),
one can see that the data sparsity model has less wiggles, and yields a more interpretable result. We
also plot the fitted functions with τ = 0.1 on the right panel of Figure 6. In this case, one can see
that f̃n is quite wiggly compared to f̂n.

For the results on the illustrative analysis of the baseball data, from the right panels of Figure 7
(our data sparsity constraint), we can see that for all players, the income increases with their perfor-
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n = 30 n = 1000
Squared norm Data sparsity Squared norm Data sparsity

Dist. GACV SIC GACV SIC GACV SIC GACV SIC
Pred ho-norm. 0.922 0.984 0.546 0.683 0.487 0.466 0.482 0.478

t3 1.243 1.309 0.798 0.913 0.634 0.633 0.612 0.629
unif. 1.155 1.272 0.877 0.916 0.637 0.640 0.642 0.638

he-norm. 1.133 1.287 0.764 0.787 0.688 0.685 0.681 0.684
L1 Norm ho-norm. 1.416 1.813 0.653 0.772 0.714 0.720 0.711 0.715

t3 1.679 2.002 0.718 1.060 0.922 0.918 0.918 0.927
unif. 1.744 2.102 0.899 1.132 0.559 0.576 0.565 0.563

he-norm. 1.553 1.842 0.957 1.086 1.010 1.004 0.989 0.995
d f ho-norm. 18.40 15.66 12.17 10.11 16.14 16.01 15.98 15.79

t3 18.54 16.11 11.10 9.264 16.48 16.22 16.14 15.88
unif. 18.25 16.94 11.46 10.72 15.66 15.41 15.36 15.20

he-norm. 19.91 17.27 14.62 13.78 18.89 18.43 17.67 17.40
Percent. ho-norm. - - 12.28 11.90 - - 0.591 0.582

t3 - - 13.42 13.00 - - 0.611 0.590
unif. - - 16.54 14.30 - - 0.622 0.605

he-norm. - - 16.88 15.53 - - 0.630 0.616

Table 5: Results of the simulation Example 2 with τ= 0.5 and moderate n (left) or large (right). The
best mean prediction errors are 0.40 (ho-norm., homoscedastic normal distribution), 0.56
(t3), 0.59 (unif., heteroscedastic uniform distribution), and 0.60 (he-norm., heteroscedastic
normal distribution). The standard errors of the prediction errors range from 0.0052 to
0.0068. The standard errors of the L1 norms range from 0.0083 to 0.0114. The standard
errors of d f range from 0.044 to 0.078. The standard errors of the percentage of non-zero
αi’s for the data sparsity method range from 0.065 to 0.097.

mances. On the other hand, the salary does not necessarily increase with the seniority. For many
players, especially the high income ones (τ = 0.75), the salary increases with the seniority until a
golden age, then it decreases. This is consistent with our intuition. For the results with the squared
norm penalty (the left panels), we can see the same trend. However, for the very senior players,
because the estimated salary function has fluctuations from kernel functions, the salary decreases if
their performances increase from 20 to 30. This is against our intuition. Therefore, in this data set,
our data sparsity constraint performs well and gives a good interpretation of the data.

6. Discussion

In this paper, we study the learning problem in a RKHS. In particular, we propose a data sparsity
constraint that can achieve a parsimonious representation of the resulting learning function. Using
quantile regression as an example, we numerically show that when the underlying function can be
well approximated by functions that have a sparse representation in the corresponding RKHS and
n is not large, the data sparsity method can perform better than the regular squared norm penalty
method. For other cases, such as when the true function is relatively difficult to be approximated by
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|b| penalized |b| not penalized
Squared norm Data sparsity Squared norm Data sparsity

Dist. GACV SIC GACV SIC GACV SIC GACV SIC
Pred ho-norm. 1.770 1.812 1.749 1.796 1.742 1.814 1.759 1.803

t3 2.119 2.230 2.138 2.206 2,178 2.267 2.104 2.257
unif. 1.997 1.989 1.846 2.014 1.884 1.892 1.865 1.911

he-norm. 1.849 1.897 1.833 1.878 1.845 1.904 1.890 1.926
L1 Norm ho-norm. 1.657 1.690 1.664 1.711 1.649 1.698 1.625 1.709

t3 2.058 2.224 2.060 2.215 2.121 2.269 2.150 2.298
unif. 1.887 1.845 1.869 1.893 1.853 1.829 1.850 1.837

he-norm. 1.848 1.820 1.851 1.827 1.857 1.841 1.866 1.836
d f ho-norm. 24.66 24.03 13.76 13.09 24.48 23.19 14.90 13.55

t3 25.53 24.69 13.96 13.14 25.56 23.92 14.14 14.00
unif. 25.12 23.55 15.47 14.16 25.09 24.61 14.98 13.58

he-norm. 25.79 24.15 14.16 13.90 25.12 24.07 13.92 13.23
Percent. ho-norm. - - 66.24 61.32 - - 68.45 65.37

t3 - - 70.18 66.26 - - 68.91 65.28
unif. - - 68.93 65.21 - - 70.52 66.42

he-norm. - - 71.29 67.84 - - 68.35 66.91

Table 6: Results of the simulation Example 3 with τ= 0.5 and |b| penalized (left) or not (right). The
best mean prediction errors are 0.40 (ho-norm., homoscedastic normal distribution), 0.56
(t3), 0.59 (unif., heteroscedastic uniform distribution), and 0.60 (he-norm., heteroscedastic
normal distribution). The standard errors of the prediction errors range from 0.0091 to
0.0143. The standard errors of the L1 norms range from 0.0128 to 0.0175. The standard
errors of d f range from 0.088 to 0.144. The standard errors of the percentage of non-zero
αi’s for the data sparsity method range from 0.244 to 0.351.

functions in the RKHS, or when n is large, the data sparsity method can have comparable perfor-
mance as the regular method. Therefore, the data sparsity method can be regarded as an alternative
penalization method to solve learning problems with RKHS learning. Moreover, because of the
sparsity in the kernel representation, the prediction for new data sets can be computationally faster.
Through theoretical comparisons, we demonstrate that the data sparsity method can achieve the
same convergence rate of the estimation error, compared with the squared norm penalty method.
Furthermore, we show that for certain cases, the data sparsity method can enjoy a smaller bound on
the finite sample prediction error. This helps to shed some light on the usefulness of the data sparsity
constraint. We also discuss how to obtain a solution path with respect to the tuning parameter s.

We would like to point out several open problems for the theory developed in Section 3. The
technique used to prove Theorems 1 and 9 there does not take into account the fact that the “active
functional space” of the estimated function is often smaller than the entire Fn(s). Therefore, one
possible way to obtain better results is to consider the “localized” covering number of the active
functional space of (5). See the discussion of localization idea in, for example, Bartlett et al. (2005).
In that case, we can expect a faster convergence rate and a tighter bound on the prediction error.
Another open problem is to consider a combination of the L2 and L1 penalties, which can be a more
general form than the pure L1 or L2 penalty. In the literature of linear learning, Zou and Hastie
(2005) proposed the elastic net penalty as a convex combination of the L2 and L1 penalties. In
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n = 30 n = 1000
Squared norm Data sparsity Squared norm Data sparsity

Dist. GACV SIC GACV SIC GACV SIC GACV SIC
Pred ho-norm. 1.569 1.658 1.554 1.772 0.745 0.761 0.746 0.753

t3 2.044 2.168 2.015 2.247 0.810 0.813 0.825 0.839
unif. 1.717 1.826 1.679 1.774 0.876 0.891 0.859 0.880

he-norm. 1.946 2.091 1.925 2.083 0.845 0.886 0.839 0.891
L1 Norm ho-norm. 1.746 1.766 1.753 1.760 0.924 0.995 0.957 0.986

t3 2.193 2.324 2.301 2.332 1.103 1.166 1.098 1.156
unif. 1.986 2.009 2.054 2.013 0.883 0.916 0.849 0.872

he-norm. 2.094 2.129 1.954 2.058 1.124 1.196 1.049 1.087
d f ho-norm. 25.65 24.88 15.52 14.49 33.14 33.09 32.45 32.16

t3 25.97 25.12 15.66 14.79 30.26 30.28 31.06 30.73
unif. 26.36 25.77 16.28 16.11 32.28 32.06 32.44 31.98

he-norm. 27.48 27.01 16.94 16.59 33.04 32.85 33.30 32.19
Percent. ho-norm. - - 50.53 46.68 - - 4.221 4.057

t3 - - 55.16 53.25 - - 4.528 4.247
unif. - - 55.23 54.71 - - 4.567 4.059

he-norm. - - 56.14 54.90 - - 4.778 4.670

Table 7: Results of the simulation Example 3 with τ= 0.1 and moderate n (left) or large (right). The
best mean prediction errors are 0.40 (ho-norm., homoscedastic normal distribution), 0.56
(t3), 0.59 (unif., heteroscedastic uniform distribution), and 0.60 (he-norm., heteroscedastic
normal distribution). The standard errors of the prediction errors range from 0.0107 to
0.0177. The standard errors of the L1 norms range from 0.0109 to 0.0186. The standard
errors of d f range from 0.099 to 0.158. The standard errors of the percentage of non-zero
αi’s for the data sparsity method range from 0.414 to 0.572.

kernel learning, how to perform such a generalization effectively can be an interesting problem to
pursue.
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Appendix A. Proof of Theorem 1

In the following proofs, when the technique can be applied to both the proposed data sparsity con-
straint and the regular squared norm penalty, we omit the difference between f̂n and f̃n for brevity.

Before giving the proof of Theorem 1, we first introduce a lemma.
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Square norm Data sparsity
GACV SIC GACV SIC

Data Pred SSD Pred SSD Pred SSD Pred SSD
baseball 10.09 0.67 10.14 0.52 9.814 0.43 10.33 0.49

BigMac2003 6.442 0.64 6.414 0.52 6.297 0.57 6.371 0.77
birthwt 18.44 0.84 18.80 0.72 18.38 0.69 18.92 0.74

BostonHousing 5.543 0.35 5.569 0.29 5.677 0.52 5.712 0.39
*caution 9.782 0.74 9.891 0.56 8.433 0.61 8.598 0.59

*CobarOre 15.74 1.16 16.12 1.28 12.19 0.95 12.10 0.84
*cpus 4.692 0.16 4.575 0.20 5.132 0.13 5.242 0.17
crabs 3.952 0.05 4.127 0.12 3.893 0.09 4.016 0.10
engel 5.490 0.42 5.336 0.39 5.356 0.51 5.561 0.35

ftcollinssnow 15.99 3.36 16.43 3.28 15.62 3.03 15.88 3.00
GAGurine 8.224 0.32 8.138 0.24 8.261 0.35 8.210 0.38

geyser 8.440 0.49 9.158 0.58 8.923 0.49 8.682 0.65
gilgais 6.731 0.32 6.849 0.29 6.680 0.29 7.003 0.33
heights 14.91 0.38 15.56 0.35 14.69 0.37 15.27 0.41

highway 8.964 0.57 9.059 0.63 9.112 0.71 8.877 0.56
*mcycle 7.732 0.25 8.105 0.31 7.012 0.21 7.033 0.29
*sniffer 6.372 0.33 6.457 0.30 5.416 0.28 5.608 0.28

snowgeese 5.788 1.01 5.892 0.84 5.694 0.70 6.010 0.69
topo 6.514 0.48 6.449 0.42 6.268 0.34 6.435 0.35
ufc 10.11 1.10 11.06 0.64 10.49 0.89 10.83 0.93

UN3 12.29 1.11 12.04 1.24 11.92 0.92 12.09 1.05

Table 8: Results of the real data analysis for τ = 0.1. We reported 100×prediction error for Pred.
Here ∗ means the difference of prediction error between the two methods, both GACV vs.
GACV and SIC vs. SIC, is statistically significant at level 0.05 using two-sided paired-
sample t-test.

Lemma 13 Suppose the RKHS is separable and supX1,X2
K(X1,X2) = 1. Then ∑

n
i=1 |αi| ≤ s implies

‖ f ′‖2
H ≤ s2.

Lemma 13 indicates that a bound on ∑
n
i=1 |αi| is a stronger constraint than the usual squared

norm constraint. Hence the effect of our data sparsity penalty is two fold: control the complexity of
f and impose a soft threshold to gain data sparsity. Lemma 13 helps to bound the covering number
of the functional class in Lemma 14.
Proof of Lemma 13: For any f ′(x) = ∑

n
i=1 αiK(xi,x) with ∑

n
i=1 |αi| ≤ s, we have that ‖ f ′‖2

H =

αT Kα = ∑
n
i=1 ∑

n
j=1 K(xi,x j)αiα j ≤ ∑

n
i=1 |αi| ·∑n

j=1 |α j| ≤ s2, because K(·, ·)≤ 1. �
To prove Theorem 1, note that ρτ(y− f ) ≤ |y− f |. Hence in the following arguments, we can

consider the loss L(a,b) = |a−b| instead of the check function. Recall that the definition of f (s)n is
f (s)n = argmin f∈Fn(s) L(Y, f ). Define g f (·) = (2s)−1(L(·, f )−L(·, f (s)n )), and G = {g f : f ∈ Fn(s)}.

First we provide a lemma that controls the complexity of G in terms of its covering number.
Notice that this technique can also be applied to the regular squared norm method, therefore, the
result in Theorem 1 is also valid for the regular method that penalizes |b| (or make additional as-
sumptions to avoid this penalty on |b|). Before that we introduce some further notation. Let TX

be the empirical measure of a training set ((x1,y1), . . . ,(xn,yn)), and the L2 norm be defined as
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Square norm Data sparsity
GACV SIC GACV SIC

Data Pred SSD Pred SSD Pred SSD Pred SSD
*baseball 24.47 0.87 25.61 0.78 22.16 0.69 21.58 0.70

BigMac2003 18.81 2.24 19.00 2.51 18.42 1.86 19.13 1.72
*birthwt 36.44 1.31 37.68 1.09 33.20 1.21 33.97 1.10

*BostonHousing 10.92 0.55 11.43 0.59 13.10 0.47 13.55 0.61
*caution 23.17 1.23 23.20 1.08 20.19 0.99 20.01 1.04

*CobarOre 41.26 1.84 40.07 1.45 35.98 1.76 36.62 1.64
cpus 3.128 0.23 3.269 0.30 3.202 0.22 3.294 0.25
crabs 5.133 0.24 5.249 0.22 5.227 0.31 5.158 0.28
engel 14.18 0.82 14.76 0.86 14.25 0.68 14.40 0.91

ftcollinssnow 40.58 5.14 41.89 5.46 41.43 4.91 40.29 3.88
*GAGurine 14.98 0.56 15.25 0.45 13.07 0.43 13.56 0.42

geyser 29.16 1.57 32.45 1.29 30.08 1.06 31.66 1.11
*gilgais 13.15 0.51 13.59 0.44 11.02 0.47 11.27 0.39
heights 36.72 1.13 35.48 0.78 36.14 0.81 35.55 0.92

highway 27.21 2.17 27.49 2.24 26.79 1.82 27.34 1.70
mcycle 18.24 0.77 19.17 0.61 17.53 0.71 18.32 0.64
sniffer 10.17 0.67 10.35 0.71 10.68 0.55 10.51 0.60

snowgeese 17.76 1.91 18.14 1.54 17.42 1.64 18.08 1.73
*topo 15.28 0.55 16.01 0.62 14.01 0.43 13.76 0.50

ufc 22.78 1.27 21.75 1.01 23.04 1.21 22.11 1.24
UN3 21.71 1.55 22.94 1.42 21.25 1.62 22.18 1.39

Table 9: Results of the real data analysis for τ = 0.5. We reported 100×prediction error for Pred.
Here ∗ means the difference of prediction error between the two methods, both GACV vs.
GACV and SIC vs. SIC, is statistically significant at level 0.05 using two-sided paired-
sample t-test.

‖ f‖L2(TX ) =
(1

n ∑
n
i=1 | f (xi,yi)|2

)1/2. For any η > 0, define M to be a η-net of a class of function F
if, for any f ∈ F , there exists m ∈M such that ‖m− f‖L2(TX ) ≤ η. Now let the L2(TX) covering
number N(η,F ,L2(TX)) be the minimal size of all possible η-nets.

Lemma 14 For η > 0 small enough and C0 = 210, we have that

sup
TX

N
(
η,G ,L2(TX)

)
≤ 5exp(C0η−2)

η
.

Proof of Lemma 14: The proof consists of two steps. The first step is to bound the entropy number
when there is no intercept in the regression function. The second step is to add the intercept into
consideration, and bound the corresponding entropy based on the results obtained in the first step.

Here we focus on the covering number of GH ,b := {(2s)−1L(·, f ) : f ∈ Fn(s)}, because GH ,b
has the same covering number as G . To that end, we first calculate the covering number of GH :=
{(2s)−1L(·, f ′) : f ′ = ∑

n
i=1 αiK(xi, ·),∑n

i=1 |αi| ≤ s}. Define

G ′H := {(2s)−1 f ′ : f ′ =
n

∑
i=1

αiK(xi, ·),
n

∑
i=1
|αi| ≤ s}.
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Square norm Data sparsity
GACV SIC GACV SIC

Data Pred SSD Pred SSD Pred SSD Pred SSD
*baseball 19.61 0.77 19.22 0.64 15.52 0.69 15.99 0.59

BigMac2003 11.33 0.92 11.84 0.74 10.92 0.81 10.44 0.99
birthwt 16.44 0.90 15.89 0.74 16.27 0.72 16.03 0.65

BostonHousing 7.775 0.36 8.104 0.40 8.158 0.34 7.960 0.39
*caution 16.76 0.56 16.33 0.49 12.51 0.51 13.09 0.62

*CobarOre 14.43 0.88 15.16 0.82 12.55 0.75 13.08 0.80
cpus 1.551 0.28 1.479 0.24 1.492 0.20 1.505 0.20
crabs 2.461 0.18 2.447 0.20 2.569 0.15 2.450 0.14

*engel 6.168 0.42 6.284 0.35 5.041 0.38 5.297 0.40
ftcollinssnow 20.18 4.14 22.46 4.51 19.59 3.97 22.13 4.22
*GAGurine 10.01 0.42 10.57 0.44 8.558 0.53 9.101 0.46

geyser 12.63 0.66 13.10 0.71 12.76 0.59 12.91 0.73
gilgais 6.167 0.40 6.228 0.29 6.109 0.31 6.334 0.34
heights 15.21 0.58 15.42 0.64 15.63 0.69 15.02 0.56

highway 16.96 1.42 16.27 1.59 15.88 1.49 16.59 1.34
mcycle 7.162 0.62 7.246 0.41 6.197 0.53 6.331 0.49
*sniffer 5.691 0.31 5.743 0.39 4.409 0.24 4.553 0.28

snowgeese 8.166 0.74 8.259 0.88 7.919 0.80 8.260 0.92
*topo 11.57 0.40 12.18 0.35 10.51 0.40 10.86 0.38

ufc 10.52 0.82 11.77 0.62 10.24 0.77 10.31 0.65
UN3 7.774 0.87 8.126 1.00 7.910 0.94 7.885 0.83

Table 10: Results of the real data analysis for τ = 0.9. We reported 100×prediction error for Pred.
Here ∗ means the difference of prediction error between the two methods, both GACV
vs. GACV and SIC vs. SIC, is statistically significant at level 0.05 using two-sided
paired-sample t-test.

Define T ′X to be the empirical measure of the set (x1, . . . ,xn). For any g1 := (2s)−1L(·, f ′1) ∈ GH ,
g2 := (2s)−1L(·, f ′2) ∈ GH , |g1 − g2| ≤ (2s)−1| f ′1 − f ′2|. Hence, an L2(T ′X) net on G ′H naturally
introduces an L2(TX) net on GH , and furthermore the L2(TX) covering number of GH is upper
bounded by the L2(T ′X) covering number of G ′H . Moreover, by Lemma 13, ‖(2s)−1 f ′‖H ≤ 1. Thus,
G ′H ⊂ BH , where BH is the unit ball in H . Hence, we only need to bound N(η,BH ,L2(T ′X)).
This can be done by a similar argument as in Theorem 2.1 of Steinwart and Scovel (2007). In
particular, from analogous arguments as those that lead to (21) in Steinwart and Scovel (2007),
we have that supT ′X

N(η,BH ,L2(T ′X)) ≤ exp(C0η−2

4 ), where one can choose C0 = 210 (Carl and
Stephani, 1990). In one words, we have that supTX

N(η,GH ,L2(TX)) ≤ supT ′X
N(η,G ′H ,L2(T ′X)) ≤

supT ′X
N(η,BH ,L2(T ′X)) ≤ exp(C0η−2

4 ). Note that Theorem 2.1 of Steinwart and Scovel (2007) con-
sidered only the Gaussian RKHS, however the proof of the entropy bound for p = 2 in their notation
only requires that the RKHS is separable.

We proceed to bound the entropy number of GH ,b. Define G ′H ,b = {(2s)−1 f : f ∈ Fn(s)}. By
similar arguments as above, N(η,GH ,b,L2(TX)) ≤ N(η,G ′H ,b,L2(T ′X)). Suppose G ′′ is a minimal
η

2 -net of G ′H . One can verify that the union
⋃S

i=−S{G ′′+ is η

2} is an η-net of G ′H ,b, where S is the
smallest integer that is larger than 2

η
. To see this, let gb

1 = (2s)−1( f ′1 + b1) be an arbitrary point
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(a) The fitted regression functions with τ = 0.5 in the
mcycle data.
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(b) The fitted regression functions with τ = 0.1 in the
mcycle data.

Figure 6: The estimated functions for the mcycle data with τ = 0.5 and τ = 0.1. The dashed lines
correspond to f̃n using the squared norm penalty method, and the solid lines correspond
to f̂n using the data sparsity method. Note that Takeuchi et al. (2006) also plotted the
estimator for the squared norm penalty in their Figure 3. Compared to the dashed lines,
the solid lines on both panels have less fluctuations especially when the predictor value is
large, and are more interpretable.

in G ′H ,b, and gb
2 = (2s)−1( f ′2 + b2), with (2s)−1 f ′2 being the corresponding point in G ′′ that has an

L2(T ′X) distance to (2s)−1 f ′1 smaller than η

2 , and b2 = is η

2 for some integer i ∈ [−S,S], such that
|b2−b1| ≤ s η

2 . Now the L2(T ′X) distance between gb
1 and gb

2 is

(∫
(gb

1−gb
2)

2)1/2

≤ (2s)−1(∫ (2( f ′1− f ′2)
2 +2(b1−b2)

2)2)1/2

≤ η,

where the integral is taken with respect to the counting measure on T ′X . Therefore, the covering
number of G ′H ,b is less than ( 4

η
+ 2)exp(C0η−2). Consequently, the covering number of GH ,b is

upper bounded by ( 4
η
+2)exp(C0η−2). The desired result follows when η is small enough. �

Proof of Theorem 1: The outline of the proof is as follows. First, we define M =
√

2n−1/2 log(n).
Notice the difference between M (a number) and M (a functional space used for the definition of the
entropy number introduced just before Lemma 14). Then we bound the probability P(e( f̂n, f (∞))≥
8sM+dn,s). In particular, we show that P(e( f̂n, f (∞))≥ 8sM+dn,s)≤ 6(1− 1

16nM2 )
−1 exp(−nM2),

then apply the Borel-Cantelli Lemma to obtain the result.
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For M =
√

2n−1/2 log(n), we first verify that for a large n, this M satisfies

(log2
16
√

6ηn,0

M
+1)2(

256C0

n
)≤ M2

256
, (8)

where ηn,0 > 0 is chosen to satisfy

C0

η2
n,0

+ log
5

ηn,0
=

1
4

nM2, (9)

and C0 = 210 is a constant as in Lemma 14. From (9), one can verify that ηn,0 goes to 0. Now (8)

is equivalent to (log2
16
√

6ηn,0
M +1)2 ≤ nM2

216C0
. Note that nM2

216C0
is of the order OP(log(n))2. The order

of (log2
16
√

6ηn,0
M + 1)2 is less than that of (log 1

M )2, which is OP(log n1/2

log(n))
2, and OP(log n1/2

log(n))
2 <

OP(log(n))2. Thus with n large enough, (8) holds.
Now we prove P(e( f̂n, f (∞))≥ 8sM+dn,s)≤ 6(1− 1

16nM2 )
−1 exp(−nM2). We have, by definition

of dn,s,

P(e( f̂n, f (∞))> 8sM+dn,s)≤ P(e( f̂n, f (s)n )(2s)−1 > 4M).

Then because 1
n ∑

n
i=1(L( f (s)n ,yi)−L( f̂ ,yi))> 0, we have

P(e( f̂n, f (∞))> 8sM+dn,s)

≤ P∗( sup
f∈Fn(s):e( f , f (s)n )(2s)−1>4M

1
n

n

∑
i=1

(L( f (s)n ,yi)−L( f ,yi))> 0)

≤ P∗( sup
f∈Fn(s):e( f , f (s)n )(2s)−1>4M

−1
n

n

∑
i=1

[g f (yi)−Eg f (y)]> (2s)−1E(L( f ,Y )−L( f (s)n ,Y )))

≤ P∗( sup
g f∈G
|Png f −Pg f |> 4M).

Here P∗ denotes the outer probability, and the expectation is taken jointly with respect to the
distribution of X and the noise. In the last inequality, for brevity we have the empirical process
g f → Png f −Pg f , where g f ∈ G , Pg f =

∫
g f and Png f =

1
n ∑

n
i=1 g f (yi).

Now we show that P∗(supg f∈G |Png f −Pg f |> 4M)≤ 6(1− 1
16nM2 )

−1 exp(−nM2).
This part of proof follows a similar line as Theorem A.2 in Wang and Shen (2007). There are

two steps involved. The first step is to sample n observations without replacement from N = 2n
instances, which are i.i.d. samples from P, and let (W1, . . . ,WN) be uniformly distributed on the set
of all permutations of 1, . . . ,N. Define P̃n,N = 1

n ∑
n
i=1 δ(X)Wi

, and PN = 1
N ∑

N
i=1 δ(X)i , where δ(X)i is

the Dirac measure at the observation X i. Then we can bound the LHS of the required inequality by
Lemma 2.14.18 in Van der Vaart and Wellner (2000),

P∗( sup
g f∈G
|Png f −Pg f |> 4M)≤ (1− 1

16nM2 )
−1P∗|N(sup

G
|P̃n,Ng f −PNg f |> M), (10)

where P|N is the conditional probability given N observations.
The second step is to bound P∗|N(supG |P̃n,Ng f −PNg f | > M). We apply the chaining technique

here. Let ηn,0 > η1 > · · · > ηT > 0 be a sequence of positive numbers to be determined later
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on. Let Gq be the minimal ηq-net for G with respect to the L2(TX) norm. For each q, let πqg =
argminh∈Gq

‖g−h‖L2(TX ). That means, πqg is the closest point to g within Gq. By definition, |Gq|=
N(ηq,G ,L2(TX)), and ‖πqg− g‖L2(TX ) ≤ ηq. Hence, decompose P∗|N(supG |P̃n,Ng f −PNg f | > M)
into

P∗|N(sup
G
|P̃n,Ng f −PNg f |> M)

≤ P∗|N(sup
G
|(P̃n,N−PN)(π0g f )|> 7M/8)

+P∗|N(sup
G
|(P̃n,N−PN)(π0g f −πT g f )|> M/16)

+P∗|N(sup
G
|(P̃n,N−PN)(πT g f −g f )|> M/16)

≤ |G0|sup
G

P∗|N(|(P̃n,N−PN)(π0g f )|> 7M/8)

+
T

∑
q=1
|Gq||Gq−1|sup

G
P∗|N(|(P̃n,N−PN)(π0g f −πT g f )|> χ)

+P∗|N(sup
G
|(P̃n,N−PN)(πT g f −g f )|> M/16)

:= P1 +P2 +P3,

where T χ≤M/16. Next, we bound P1, P2 and P3 individually.
For P3, one can verify that P̃n,N f ≤ 2PN f for any non-negative f . Note that we have ((P̃n,N −

PN)z)2≤ 2(P̃n,Nz2+PNz2) for any z. Thus, |(P̃n,N−PN)(πT g f −g f )|2≤ 2(P̃n,N +PN)(πT g f −g f )
2≤

6η2
T . This yields P3 = 0 if we choose ηT = M

16
√

6
.

For P1, note that 0 ≤ π0g f ≤ 1 for any g f ∈ G because G is scaled. By Hoeffding’s inequali-
ties for sums of bounded random variables (Hoeffding, 1963), P∗|N(|(P̃n,N−PN)(π0g f )|> 7M/8)≤
2exp(−2n(7/8)2M2). Thus by assumption (9) and Lemma 14,

P1 ≤ 2N(ηn,0,G ,L2(TX))exp(−2n(7/8)2M2)≤ 2exp(−nM2).

For P2, if ηn,0 ≤ M
16
√

6
, then let ηq = ηn,0;q = 1, . . . ,T , and we have P2 = 0 by a similar argument

as in the P3 part discussed above. So suppose ηn,0 >
M

16
√

6
> ηT . Note that PN(πqg f −πq−1g f )

2 ≤
2(PN(πqg f −g f )

2 +PN(πq−1g f −g f )
2) ≤ 4η2

q−1. By Massart’s inequality from Lemma 2.14.19 in

Van der Vaart and Wellner (2000), we have P∗|N(|(P̃n,N −PN)(π0g f − πT g f )| > χ) ≤ 2exp(− nχ2

2σ2
N
)

with σ2
N = PN(πqg f −πq−1g f )

2 ≤ 4η2
q−1. So,

P2 ≤ 2
T

∑
q=1
|Gq|2 exp(− nχ2

2σ2
N
)

≤ 2
T

∑
q=1

exp(2C0η
−2
q +2log

5
ηq
− nχ2

8η2
q−1

).

Let ηq = 2−qη;q = 1, . . . ,T , and let T be the greatest integer that does not exceed log2
16
√

6ηn,0
M .

Then let χ = (256C0
n )1/2. By assumption (8), we can verify that T χ ≤ M/16 as satisfied. Because
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when η is small enough, C0
η2 > log 5

η
, and this leads to

P2 ≤ 2
T

∑
q=1

exp(
−4
η2

q
C0)

≤ 2
T

∑
q=1

exp(−22q−1(nM2))

≤ 4exp(−nM2).

Thus, P∗|N(supG |P̃n,Ng f −PNg f | > M) < 6exp(−nM2). The desired result follows after we take
expectation with respect to the distribution of N observations. We have proved P∗(supg f∈G |Png f −
Pg f |> 4M)≤ 6(1− 1

16nM2 )
−1 exp(−nM2).

Finally, observe that nM2 = 2(log(n))2 > 2log(n). We have exp(−nM2)≤ exp(−2log(n))= 1
n2 .

The desired result in Theorem 1 then follows from Borel-Cantelli Lemma. �

Appendix B. Proof of Corollary 5

The key to the proof is to show that with a high probability, the estimated b would be bounded in a
range. Then we can apply the same technique as that in the proof of Theorem 1 to prove the desired
result.

Without loss of generality, assume | f0(X)| < ζ for a fixed ζ > 0. Moreover, for simplicity, we
assume that ε(X) follows a common sub-Gaussian distribution with c.d.f. Φε. The generalization
to heteroscedastic cases is straightforward, because we are only concerned with the tail probability
pr(|ε(X)|> t). Next, for a small positive number δ, define t∗=Φ−1

ε

(
0.5+0.5(1−δ/2)1/n

)
. One can

verify that with probability at least 1−δ/2, all the errors εi; i = 1, . . . ,n are in [−t∗, t∗]. Therefore,
for any τ, we have that with probability at least 1−δ/2, |b| ≤ ζ+ t∗. This is because the estimated
function cannot be smaller (or larger) than all the observations. Hence, letting s∗ = s + ζ + t∗,
M∗ =

√
2n−1/2 log(n)/t∗ and using similar techniques as that in the proof of Theorem 1, we have

P(e( f̂ ∗n , f (∞))> 8s∗M∗+dn,s∗)≤ 6(1− 1
16nM∗2 )

−1 exp(−nM∗2)+δ/2. Let δ converge to zero at the
rate OP(n−2 log(n)). The last step is to check that (8) and (9) are both true with our new choice of
M∗. Because we assume that Φε is the c.d.f. of a sub-Gaussian distribution with a fixed parameter,
one can verify that t∗ diverges at a rate slower than OP(log(n)). Hence, (8) and (9) remain valid,
and the Borel-Cantelli Lemma as in the final step of the proof of Theorem 1 holds. This completes
the proof. �

Appendix C. Proof of Theorem 7

The proof uses a similar technique as Theorem 2.7 in Steinwart and Scovel (2007). Consider the
function

V (x) =C
∫

D
exp(
|x− x′|2

2σ2 ) ftrue(x′)dx′, (11)
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where C is a constant that depends only on σ and p and is to be determined later on. One can verify
that V (x) ∈ F (∞) (Steinwart et al., 2006). Hence,

A(∞)≤ E
(
ρτ(Y −V )

)
−E

(
ρτ(Y − ftrue)

)
≤ EPX

(
ρτ(V − ftrue)

)
.

Therefore, one only needs to bound EPX

(
ρτ(V − ftrue)

)
. We have

V (x) =C
∫

D
exp(
|x− x′|2

2σ2 )
(

ftrue(x′)+a
)
dx′−a

≥C
∫

B(x,ψx)
exp(
|x− x′|2

2σ2 )
(

ftrue(x′)+a
)
dx′−a

= ai− (ai +a)P′(|u| ≥ ψx),

where the first inequality is because ftrue(x′)+a is lower bounded by 0, and on B(x,ψx) the function
ftrue is constant. Here one chooses C such that P′ is the measure of a spherical Gaussian in D (see
the definition of spherical Gaussian in, for example, Steinwart, 2002). By the inequality (3.5) on
page 59 of Ledoux and Talagrand (1991), P′(|u| ≥ ψx) ≤ 4exp

(
−ψ2

x/(2pσ2)
)
, and consequently

we have that on Di,
V − ftrue ≥−8aexp

(
−ψ

2
x/(2pσ

2)
)
.

An analogous derivation on − ftrue and −V gives

V − ftrue ≤ 8aexp
(
−ψ

2
x/(2pσ

2)
)
.

Therefore
E
(
ρτ(V − ftrue)

)
≤max(τ,1− τ)EPX

{
8aexp

(
−ψ

2
x/(2pσ

2)
)}

.

This completes the proof.
Notice that the core part of the proof is at the inequality (3.5) on page 59 of Ledoux and Ta-

lagrand (1991). For the Gaussian kernel (and other radial kernels), the probability P′(|u| ≥ ψx)
vanishes as σ→ 0. However, for other kernels this may not be true. Take the polynomial kernel
as an example. One can verify that when |x1− x2| is large, K(x1,x2) is large, and this leads to
P′(|u| ≥ ψx) being large. Therefore, the result here does not hold true for general RKHS’s. �

Appendix D. Proof of Corollary 8

Without loss of generality, let the Lipschitz constant of ftrue be 1. In this proof, let ε be a small
positive number, instead of the noise as Y = f0+ε. We first consider the approximation of V to ftrue
on [0,1]p, where V is defined as in the proof of Theorem 7. Because [0,1]p is a compact set, there
exists a finite set of B(x j,ε); j = 1, . . . ,J that covers [0,1]p. Here B(x j,ε) is a ball with center at
x j and radius ε, and J is a positive integer. Based on B(x j,ε); j = 1, . . . ,J, one can construct sets
Sx j ⊂ B(x j,ε); j = 1, . . . ,J such that Sxi and Sx j are non-overlapping for i 6= j, and

⋃J
j=1 Sx j = [0,1]p.

On each Sx j , one can verify that

ftrue(x j)− ε≤ ftrue ≤ ftrue(x j)+ ε.

32



QUANTILE REGRESSION IN RKHS WITH DATA SPARSITY CONSTRAINT

Now on Sx j , define f̄true = ftrue(x j). We have that

E[0,1]pρτ(V − ftrue)≤ E[0,1]pρτ(V − f̄true)+E[0,1]pρτ( f̄true− ftrue). (12)

By Theorem 7 and the discussion thereafter, the first part on the right hand side of (12) goes to 0 with
σ→ 0, and the second part is upper bounded by ε. Let ε→ 0 and this proves that V can approximate
ftrue arbitrarily well on [0,1]p. For the approximation on D, notice that D can be decomposed into
countably many sets such as [0,1]p, and a similar argument as above proves the corollary. �

Appendix E. Proof of Theorem 9

To prove Theorem 9, we need to introduce the Rademacher variables (see, for example, Bartlett
and Mendelson (2002), Koltchinskii and Panchenko (2002), Shawe-Taylor and Cristianini (2004),
Bartlett et al. (2005), Koltchinskii (2006), Mohri et al. (2012) and the references therein). With a
little abusing of notations, let σi; i = 1, . . . ,n be i.i.d. random variables that take 1 with probability
1/2, and −1 with probability 1/2. Denote by S a sample of (xi,yi); i = 1, . . . ,n, i.i.d. from the joint
distribution of X and Y . Recall the definition of Fn(s) in Section 3.1. With S fixed, we define the
empirical Rademacher complexity of the function class Fn(s) as

R̂n(Fn(s)) = Eσ[ sup
f∈Fn(s)

1
n

n

∑
i=1

σiρτ

(
yi− f (xi)

)
],

where Eσ represents the expectation with respect to σ = (σ1, . . . ,σn). Moreover, let the Rademacher
complexity of Fn(s) be

Rn(Fn(s)) = ESR̂n(Fn(s)),

where ES is the expectation with respect to the distribution of S.
The proof of Theorem 9 follows directly from Lemmas 15, 17 and 18. Lemma 15 bounds

Eρτ(Y − f̂n) or Eρτ(Y − f̃n) in terms of the sum of its empirical measurement, the Rademacher
complexity of the function class Fn(s), and a penalty term on δ, where δ is the small probability
that the bound fails. Lemma 17 and Lemma 18 bound the Rademacher complexity. In particular,

Lemma 17 provides the bound with µ =
√

n−1
(
211n1/4 +2log(5)+0.5log(n)

)
that works for both

the regular squared norm method and the data sparsity method. This is because the complexity
bound of Fn(s) is from Lemma 14, which holds for both methods. As discussed in the main text,
we provide another bound that only works for the data sparsity method in Lemma 18, which leads

to µ = s
√

2log(2n+2)
n .

Lemma 15 Define Rn(Fn(s)) and R̂n(Fn(s)) as above. Suppose Assumption A holds. With proba-
bility at least 1−δ,

Eρτ(Y − f̂n)≤
1
n

n

∑
i=1

ρτ(yi− f̂n(xi))+2Rn(Fn(s))+Tn(δ), (13)

where Tn(δ) = max(τ,1− τ)
(

n−1(2s2 + 2t2) log(1/δ)
)1/2

. In addition, with probability at least
1−δ,

Eρτ(Y − f̂n)≤
1
n

n

∑
i=1

ρτ(yi− f̂n(xi))+2R̂n(Fn(s))+3Tn(δ/2). (14)

33



ZHANG, LIU AND WU

Moreover, (13) and (14) hold for f̃n.

Proof of Lemma 15: We divide the proof into three parts. In the first part, we bound the left hand
side of (13) in terms of its empirical estimation and the expectation of their supremum difference,
by the McDiarmid inequality (McDiarmid, 1989). The second part bounds the expectation of the
supremum difference from the first step by the previously defined Rademacher complexity with a
symmetrization technique. In the third part, we bound the Rademacher complexity by its empirical
version. In this proof, we focus on f̂n, as the proof for f̃n is the same.

We begin the proof by introducing some notation. For a given sample S, let

φ(S) = sup
f∈Fn(s)

[Eρτ(Y − f (X))− 1
n

n

∑
i=1

ρτ(yi− f (xi))].

Define S(i,x) = {(x1,y1), . . . ,(x′i,yi), . . . ,(xn,yn)} to be another sample from the joint distribution of
X and Y . Notice that the difference between S and S(i,x) is only on the x value of their ith pair.
Similarly, define S(i,y) = {(x1,y1), . . . ,(xi,y′i), . . . ,(xn,yn)} with the y values in the ith pair being
different. Then we have

|φ(S)−φ(S(i,x))|= | sup
f∈Fn(s)

[Eρτ(Y − f (X))− 1
n ∑

S
ρτ(yi− f (xi))]

− sup
f∈Fn(s)

[Eρτ(Y − f (X))− 1
n ∑

S(i,x)
ρτ(yi− f (xi))]|. (15)

For simplicity, we consider only the case where there exists a measurable function f S ∈ Fn(s) that
achieves the supremum of φ(S). Note that the case of no function achieving the supremum can be
treated similarly, with only minor modification on the proof, and the details are omitted. Substitute
f S in (15) and after some calculation, we have that

|φ(S)−φ(S(i,x))| ≤2
n

max(τ,1− τ)s.

Similarly, one can verify that |φ(S)− φ(S(i,y))| ≤ 2
n max(τ,1− τ)t. Hence, by the McDiarmid in-

equality, for any z > 0, P(φ(S)−Eφ(S) ≥ z) ≤ exp
(
− 2z2

1
n

(
max(τ,1−τ)

)2
(4s2+4t2)

)
. Therefore, with

probability at least 1−δ, φ(S)−Eφ(S)≤ Tn(δ). This proves the first part of the lemma.
In the second step, we bound E{φ(S)} by the Rademacher complexity Rn(Fn(s)) using a sym-

metrization technique. To this end, define S′ = {(x′i,y′i) (i = 1, . . . ,n)} as a duplicate sample of S
with size n, and assume the distribution of S′ is the same as S. Recall the definition of ES. Moreover,
notice that

ES′
[1

n ∑
S

{
ρτ

(
y′i− f̂n(x′i)

)
| S
}]

=
1
n ∑

S

{
ρτ

(
y′i− f̂n(x′i)

)
,

and

ES′
[1

n ∑
S′

{
ρτ

(
y′i− f̂n(x′i)

)
| S
}]

= Eρτ

(
Y − f̂n(X)

)
.
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Hence, with the Jensen’s inequality and the definition of σ, we have

E{φ(S)}= ES
(

sup
f∈Fn(s)

ES′
[1

n ∑
S′

{
ρτ

(
y′i− f̂n(x′i)

)}
− 1

n ∑
S

{
ρτ

(
yi− f̂n(xi)

)}]
| S
)

≤ ES,S′
[1

n ∑
S′

{
ρτ

(
y′i− f̂n(x′i)

)}
− 1

n ∑
S

{
ρτ

(
yi− f̂n(xi)

)}]
= ES,S′,σ

[
sup

f∈Fn(s)

1
n ∑

S′

{
ρτ

(
y′i− f̂n(x′i)

)}
− 1

n ∑
S

{
ρτ

(
yi− f̂n(xi)

)}]
≤ 2Rn(Fn(s)).

This completes the proof of the second step.
The third step bounds Rn(Fn(s)) by the empirical counterpart R̂n(Fn(s)). This part of the proof

is similar to that of the first part, in the sense that we apply the McDiarmid inequality on R̂n(Fn(s))
and its expectation Rn(Fn(s)). One can then verify that with probability at least 1−δ, Rn(Fn(s))≤
R̂n(Fn(s))+Tn(δ).

The proof of Lemma 15 is thus completed, after combining the results in Steps 1-3 and replacing
δ by δ/2. �

The next lemma, Lemma 17, bounds R̂n(Fn(s)) with the data and tuning parameter that we use.
It employs the result obtained in Lemma 14, and is a direct application of the “η-net” idea (Van der
Vaart and Wellner, 2000). Because the result in Lemma 14 can be applied to both the regular squared
norm method and the data sparsity method, the result in Lemma 17 holds for both methods as well.
Before discussing Lemma 17 and its proof, we first introduce the Hoeffding’s Inequality.

Proposition 16 (Hoeffding’s Inequality). Let X be a random variable with mean 0 and range in
[a,b]. Then for any fixed z > 0, E(exp(zX))≤ exp(z2(b−a)2/8).

Lemma 17 The empirical Rademacher complexity R̂n(Fn(s)) for f̃n satisfies that

R̂n(Fn(s))≤ 2sn−1/4 +max(τ,1− τ)(s+ t)
√

211n−1/2 +(log(5)/n)+(log(n)/4n).

Proof of Lemma 17: Let R = R̂nFn(s)
2s . We consider the following function h f (·) = (2s)−1ρτ( f −·),

and the corresponding class HR = {h f : f ∈ Fn(s)}. From the proof of Lemma 14, one can verify
that the entropy number of HR is bounded by that of G , because the check function is upper bounded
by L( f , ·) defined after the proof of Lemma 13. Next, we construct the smallest η-net of HR, Y ,
such that for all f ∈ Fn(s), there exists an element gY ∈ Y with the L2(TX) distance between f and
gY smaller than η, for any arbitrary empirical measure TX . Therefore, one can verify that

R≤ 1
2s

Eσ[sup
gY

1
n

n

∑
i=1

σiρτ(gY (xi)− yi)]

+
1
2s

Eσ[ sup
f ,gY close

1
n

n

∑
i=1

σi
(
ρτ( f (xi)− yi)−ρτ(gY (xi)− yi)

)
]

:=R1 +R2.
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Here “ f ,gY close” means that the L2(TX) distance between f and gY is smaller than η. Conse-
quently, we have that R2 is bounded by η, by the Hölder’s Inequality.

Now we bound R1. To this end, let z be a positive number to be determined later. From the
Jensen’s Inequality, we have

exp(2sznR1)≤Eσ exp[zsup
gY

n

∑
i=1

σiρτ(gY (xi)− yi)]

≤∑
gY

Eσ[exp(z
n

∑
i=1

σiρτ(gY (xi)− yi))]

≤∑
gY

n

∏
i=1

Eσi [exp(zσiρτ(gY (xi)− yi)].

Observe that Eσi [σiρτ(gY (xi)− yi)] = 0, and

−max(τ,1− τ)(s+ t)≤ ρτ(gY (xi)− yi)≤max(τ,1− τ)(s+ t).

Therefore, by the Hoeffding’s Inequality, we have

exp(2sznR1)≤∑
gY

n

∏
i=1

exp(
z2(2max(τ,1− τ)(s+ t))2

8
)

≤|Y |exp(
nz2(max(τ,1− τ)(s+ t))2

2
).

Equivalently, we have 2snR1 ≤ log |Y |
z + nz(max(τ,1−τ)(s+t))2

2 . Choose z =
√

2log |Y |
max(τ,1−τ)(s+t)

√
n , and we

have

2snR1 ≤max(τ,1− τ)(s+ t)
√

2n log |Y |,

or equivalently,

R1 ≤
max(τ,1− τ)(s+ t)

√
2log |Y |

2s
√

n
≤ max(τ,1− τ)(s+ t)

2s
√

n

√
2(C0η−2 + log(5/η)).

After we combine the bounds of R1 and R2, choose η = n−1/4, the results then follows. �
Next, we focus on the data sparsity method. In Lemma 18 we would prove that the empirical

Rademacher complexity of the functional space in (5) can be smaller than that of (4). As we will
see, the technique we use only works for the data sparsity constraint. This bound then leads to

another finite sample bound on the prediction error, namely, µ = s
√

2log(2n+2)
n . As discussed in the

main text, when n is small or moderate, this bound can be much better than the one derived from
Lemma 14.

Lemma 18 The empirical Rademacher complexity R̂n(Fn(s)) for f̂n in (5) satisfies that

R̂n(Fn(s))≤ smax(τ,1− τ)

√
2log(2n+2)

n
.
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Proof of Lemma 18: We first consider the empirical Rademacher complexity of the functional
space Fn(s) without taking the check loss function into consideration. To this end, let us define
R̂ f (Fn(s)) = Eσ[sup f∈Fn(s)

1
n ∑

n
i=1 σi f (xi)]. Recall the definition of ᾱ from Section 4, and define the

augmented vector K̃i = (1,Ki) for i = 1, . . . ,n, where Ki is the ith row of the gram matrix K. We can
now rewrite R̂ f (Fn(s)) as

R̂ f (Fn(s)) = Eσ[ sup
‖ᾱ‖1≤s

1
n

n

∑
i=1

σiᾱ
T K̃i]

=
s
n

Eσ‖
n

∑
i=1

σiK̃i‖∞

=
s
n

Eσ[ max
σ′, j=1,...,n+1

σ
′

n

∑
i=1

σiK̃i( j)],

where ‖ · ‖∞ is the L∞ norm, K̃i( j) is the jth element of K̃i, and σ′ is an independent Rademacher
variable. Notice that the new functional space defined by

{σ′(K̃1( j), K̃2( j), . . . , K̃n( j))T ; j = 1, . . . ,n+1,σ′ ∈ {±1}}

consists of 2n+2 elements.
Next, by applying the same technique as we used in the proof of Lemma 17 to bound R1, we

can show that

R̂ f (Fn(s))≤ s

√
2log(2n+2)

n
.

The rest of the proof is to apply the Talagrand’s lemma (Lemma 4.2 on page 78 in Mohri et al.,
2012). In particular, as the check loss function is max(τ,1− τ)-Lipschitz, we have

R̂n(Fn(s))≤max(τ,1− τ)R̂ f (Fn(s))≤ smax(τ,1− τ)

√
2log(2n+2)

n
.

This completes the proof. �

Appendix F. Proof of Corollary 10

With the t defined in Corollary 10, one can verify that with probability at least 1−δ/2, all the errors
εi; i = 1, . . . ,n are in [−t, t]. Conditioning on this, the claim follows from Theorem 9. �

Appendix G. Proof of Proposition 12

The proof follows directly from that of Theorem 1 in Li et al. (2007) and is omitted. �
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Section 2 Methodology
x, X Predictor variable
y, Y Response
n Number of observation
p Dimensionality of x
τ Quantile level
ε(·) Noise, may depend on x
f0(·) Defined as Y = f0 + ε

D Domain of f0
ρτ(·) The check function
ftrue The population minimizer of the check function
J(·) Penalty on the regression function
λ, s Tuning parameters
F Functional class
R The real line
H A RKHS
‖ · ‖H The norm in the RKHS H
b Intercept
f ′ Regression function in H without an explicit intercept
f Regression function in H ⊕R
K(·, ·) The kernel function
K The gram matrix
α = (α1, . . . ,αn) The kernel function coefficients
f̂n The estimated regression function using the proposed data sparsity constraint
f̃n The estimated regression function using the squared norm penalty

Table 11: Important notation introduced in Section 2.
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Section 3 Statistical Theory
Fn(s) { f = f ′+b : f ′(x) = ∑

n
i=1 αiK(x,xi); |b|+∑

n
i=1 |αi| ≤ s}

F (∞) lims→∞ limn→∞ Fn(s)
f (s)n arginf f∈Fn(s) Eρτ(Y − f (X))

f (∞) arginf f∈F (∞) Eρτ(Y − f (X))

e( f1, f2) Eρτ(Y − f1(X))−Eρτ(Y − f2(X))

dn,s e( f (s)n , f (∞)), the approximation error between Fn(s) and F (∞)

f̂ ∗n The estimated function using the data sparsity constraint, without penalty on |b|
‖ f‖L2(Q) (

∫
f 2dQ)1/2, the L2(Q) norm of f

A(∞) E
(
ρτ(Y − f (∞))

)
−E

(
ρτ(Y − ftrue)

)
ai Constants
Di A partition of D, and ftrue = ai on Di
a Upper bound on | ftrue|
dis(x,D j) The distance between the point x and the set D j
ψx min j 6=i dis(x,D j)
B(x,ψx) The ball centered at x with radius ψx
σ Kernel parameter for Gaussian/Laplacian kernels
PX The marginal distribution of X
t The upper bound of |ε| in Assumption A
δ A small probability

µ min
(

2
√

n−1/2
(

log(n)+1
)
,
√

n−1
(
211n1/4 +2log(5)+0.5log(n)

))
Φε The common cumulative distribution function of ε

Table 12: Important notation introduced in Section 3.
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Appendix
L(a,b) |a−b|
g f (·) (2s)−1(L(·, f )−L(·, f (s)n )), a scaled empirical process
G {g f : f ∈ Fn(s)}
TX The empirical measure of a training set
‖ f‖L2(TX )

( 1
n ∑

n
i=1 | f (xi,yi)|2

)1/2

M A η-net with respect to the ‖ · ‖L2(TX ) distance
N(η,F ,L2(TX )) The η-covering number of F with respect to the ‖ · ‖L2(TX ) distance
M

√
2n−1/2 log(n)

ηn,0 A number depending on n, chosen to satisfy (9)
C0 210, a large constant
Png f Defined as Png f =

1
n ∑

n
i=1 g f (yi)

Pg f
∫

g f
P∗ The outer probability
N N = 2n
(W1, . . . ,WN) A permutation of 1, . . . ,N whose distribution is uniform
δ(X)i Dirac measure at the observation X i

P̃n,N
1
n ∑

n
i=1 δ(X)Wi

PN
1
N ∑

N
i=1 δ(X)i

P|N The conditional probability given N observations
T A positive integer
η1, . . . ,ηT A sequence of T positive numbers
Gq ηq-net of G
πqg The projection of g on Gq
P1, P2, P3 Three probabilities to be bounded
χ A number such that T χ≤M/16
σ2

N Defined as σ2
N = PN(πqg f −πq−1g f )

2

GH ,b {(2s)−1L(·, f ) : f ∈ Fn(s)}
GH {(2s)−1L(·, f ′) : f ′ = ∑

n
i=1 αiK(xi, ·),∑n

i=1 |αi| ≤ s}
G ′H {(2s)−1 f ′ : f ′ = ∑

n
i=1 αiK(xi, ·),∑n

i=1 |αi| ≤ s}
T ′X The empirical measure of the set (x1, . . . ,xn)
BH The unit ball in H
G ′H ,b {(2s)−1 f : f ∈ Fn(s)}
G ′′ A minimal η/2-net of G ′H

Table 13: Important notation introduced in the Appendix (Part 1).

P. H. C. Eilers and B. D. Marx. Splines, knots, and penalties. Wiley Interdisciplinary Reviews:
Computational Statistics, 2(6):637–653, 2010.

J. Fan and R. Li. Statistical challenges with high dimensionality: feature selection in knowledge
discovery. Proceedings of the International Congress of Mathematicians, 3:595–622, 2006.

R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. LIBLINEAR: a library for large
linear classification. Journal of Machine Learning Research, 9:1871–1874, 2008.

J. H. Friedman and B. W. Silverman. Flexible parsimonious smoothing and additive modeling.
Technometrics, 31:3–21, 1989.

40



QUANTILE REGRESSION IN RKHS WITH DATA SPARSITY CONSTRAINT

Appendix
ζ Upper bound on f0. Assumed in the proof of Corollary 5.
t∗ t∗ = Φ−1

ε

(
0.5+0.5(1−δ/2)1/n

)
s∗ s∗ = s+ζ+ t∗

M∗ M∗ =
√

2n−1/2 log(n)/t∗

V (x) C
∫

D exp( |x−x′|2
2σ2 ) ftrue(x′)dx′

C A constant such that V (x) can be used to estimate ftrue
P′ The measure of a spherical Gaussian in D
f̄true A piecewise constant function used to approximate ftrue
σ = (σi; i = 1, . . . ,n) A set of n Rademacher random variables,

where P(σi = 1) = 1/2 and P(σi =−1) = 1/2
S A sample of (x1,y1), . . . ,(xn,yn) i.i.d. from the joint distribution of X and Y
R̂n(Fn(s)) Eσ[sup f∈Fn(s)

1
n ∑

n
i=1 σiρτ

(
Y − f (X)

)
]

Rn(Fn(s)) ESR̂n(Fn(s))

Tn(δ) max(τ,1− τ)
(

n−1(2s2 +2t2) log(1/δ)
)1/2

φ(S) sup f∈Fn(s)[Eρτ(Y − f (X))− 1
n ∑

n
i=1 ρτ(yi− f (xi))]

S(i,x) {(x1,y1), . . . ,(x′i,yi), . . . ,(xn,yn)},
the difference between S(i,x) and S is only on the x value of their ith pair

S(i,y) {(x1,y1), . . . ,(xi,y′i), . . . ,(xn,yn)}
R R̂nFn(s)

2s
h f (·) (2s)−1ρτ( f −·)
HR {h f : f ∈ Fn(s)}
Y The smallest η-net on HR
gY The projection of f on Y
R1

1
2s Eσ[supgY

1
n ∑

n
i=1 σiρτ(gY (xi)− yi)]

R2
1
2s Eσ[sup f ,gY close

1
n ∑

n
i=1 σi

(
ρτ( f (xi)− yi)−ρτ(gY (xi)− yi)

)
]

Λ (Λ1, . . . ,Λ2n), convex combination parameters of any element in G ′H
F1, . . . ,Fk i.i.d. random elements with pr(F1 = ei) = Λi; i = 1, . . . ,2n
F̄ The average of F1, . . . ,Fk

Table 14: Important notation introduced in the Appendix (Part 2)
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QUANTILE REGRESSION IN RKHS WITH DATA SPARSITY CONSTRAINT

Hom
e R

un

10

20

30

40

Year

5

10

15

20

S
alary

0.0

0.5

1.0

1.5

2.0

2.5

(a) Squared norm penalty with τ = 0.25.
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(b) Data sparsity constraint with τ = 0.25.
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(c) Squared norm penalty with τ = 0.5.
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(d) Data sparsity constraint with τ = 0.5.
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(e) Squared norm penalty with τ = 0.75.
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(f) Data sparsity constraint with τ = 0.75.

Figure 7: Estimated salary for the Baseball data using the number of home runs and the number of
years played as the predictors.
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