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Abstract

Applying standard Markov chain Monte Carlo (MCMC) algorithms to large data sets
is computationally expensive. Both the calculation of the acceptance probability and the
creation of informed proposals usually require an iteration through the whole data set. The
recently proposed stochastic gradient Langevin dynamics (SGLD) method circumvents this
problem by generating proposals which are only based on a subset of the data, by skipping
the accept-reject step and by using decreasing step-sizes sequence (δm)m≥0.

We provide in this article a rigorous mathematical framework for analysing this algo-
rithm. We prove that, under verifiable assumptions, the algorithm is consistent, satisfies a
central limit theorem (CLT) and its asymptotic bias-variance decomposition can be char-
acterized by an explicit functional of the step-sizes sequence (δm)m≥0. We leverage this
analysis to give practical recommendations for the notoriously difficult tuning of this al-
gorithm: it is asymptotically optimal to use a step-size sequence of the type δm � m−1/3,
leading to an algorithm whose mean squared error (MSE) decreases at rate O(m−1/3).

Keywords: Markov chain Monte Carlo, Langevin dynamics, big data

1. Introduction

We are entering the age of Big Data, where significant advances across a range of scien-
tific, engineering and societal pursuits hinge upon the gain in understanding derived from
the analyses of large scale data sets. Examples include recent advances in genome-wide
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association studies (Hirschhorn and Daly, 2005; McCarthy et al., 2008; Wang et al., 2005),
speech recognition (Hinton et al., 2012), object recognition (Krizhevsky et al., 2012), and
self-driving cars (Thrun, 2010). As the quantity of data available has been outpacing the
computational resources available in recent years, there is an increasing demand for new
scalable learning methods, for example methods based on stochastic optimization (Robbins
and Monro, 1951a; Srebro and Tewari, 2010; Sato, 2001; Hoffman et al., 2010), distributed
computational architectures (Ahmed et al., 2012; Neiswanger et al., 2013; Minsker et al.,
2014), greedy optimization (Harchaoui and Jaggi, 2014), as well as the development of spe-
cialized computing systems supporting large scale machine learning applications (Gonzalez,
2014).

Recently, there has also been increasing interest in methods for Bayesian inference scal-
able to Big Data settings. Rather than attempting a single point estimate of parameters
typical in optimization-based or maximum likelihood settings, Bayesian methods attempt to
obtain characterizations of the full posterior distribution over the unknown parameters and
latent variables in the model, hence providing better characterizations of the uncertainties
inherent in the learning process, as well as providing protection against overfitting. Scalable
Bayesian methods proposed in the recent literature include stochastic variational inference
(Sato, 2001; Hoffman et al., 2010), which applies stochastic approximation techniques to op-
timizing a variational approximation to the posterior, parallelized Monte Carlo (Neiswanger
et al., 2013; Minsker et al., 2014), which distributes the computations needed for Monte
Carlo sampling across a large compute cluster, as well as subsampling-based Monte Carlo
(Welling and Teh, 2011; Ahn et al., 2012; Korattikara et al., 2014), which attempt to reduce
the computational complexity of Markov chain Monte Carlo (MCMC) methods by applying
updates to small subsets of data.

In this paper we study the asymptotic properties of the stochastic gradient Langevin dy-
namics (SGLD) algorithm first proposed by Welling and Teh (2011). SGLD is a subsampling-
based MCMC algorithm based on combining ideas from stochastic optimization, specifically
using small subsets of data to estimate gradients, with Langevin dynamics, a MCMC method
making use of gradient information to produce better parameter updates. Welling and Teh
(2011) demonstrated that SGLD works well on a variety of models and this has since been
extended by Ahn et al. (2012, 2014) and Patterson and Teh (2013b).

The stochastic gradients in SGLD introduce approximations into the Markov chain,
whose effect has to be controlled by using a slowly decreasing sequence of step sizes. Welling
and Teh (2011) provided an intuitive argument that as the step-size decreases the varia-
tions introduced by the stochastic gradients gets dominated by the natural stochasticity
of Langevin dynamics, the result being that the stochastic gradient approximation should
wash out asymptotically and that the Markov chain should converge to the true posterior
distribution.

In this paper, we make this intuitive argument more precise by providing conditions
under which SGLD converges to the targeted posterior distribution; we describe a number
of characterizations of this convergence. Specifically, we show that estimators derived from
SGLD are consistent (Theorem 7) and satisfy a central limit theorem (CLT) (Theorem 8);
the bias-variance trade-off of the algorithm is discussed in details in Section 5. In Section
6 we prove that, when observed on the right (inhomogeneous) time scale, the sample path
of the algorithm converges to a Langevin diffusion (Theorem 9).
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Our analysis reveals that for a sequence of step-sizes with algebraic decay δm � m−α the
optimal choice, when measured in terms of rate of decay of the mean squared error (MSE),
is given for α? = 1/3; the choice δm � m−α? leads to an algorithm that converges at rate
O(m−1/3). This rate of convergence is worse than the standard Monte-Carlo m−1/2-rate of
convergence. This is not due to the stochastic gradients used in SGLD, but rather to the
decreasing step-sizes.

These results are asymptotic in the sense that they characterise the behaviour of the
algorithm as the number of steps approaches infinity. Therefore they do not necessarily
translate into any insight into the behaviour for finite computational budgets which is the
regime in which the SGLD might provide computational gains over alternatives. The math-
ematical framework described in this article show that the SGLD is a sound algorithm, an
important result that has been missing in the literature.

In the remainder of this article, the notation N(µ, σ2) denotes a Gaussian distribution
with mean µ and variance σ2. For two positive functions f, g : R→ [0,∞), one writes f . g
to indicate that there exists a positive constant C > 0 such that f(θ) ≤ C g(θ); we write
f � g if f . g . f . For a probability measure π on a measured space X , a measurable
function ϕ : X → R and a measurable set A ⊂ X , we define π(ϕ;A) =

∫
θ∈A ϕ(θ)π(dθ) and

π(ϕ) = π(ϕ;X ). Finally, densities of probability distributions on Rd are implicitly assumed
to be defined with respect to the usual d-dimensional Lebesgue measure.

2. Stochastic Gradient Langevin Dynamics

Many MCMC algorithms evolving in a continuous state space, say Rd, can be realised
as discretizations of a continuous time Markov process (θt)t≥0. An example of such a
continuous time process, which is central to SGLD as well as many other algorithms, is the
Langevin diffusion, which is given by the stochastic differential equation

dθt =
1

2
∇ log π(θt) dt+ dWt, (1)

where π : Rd → (0,∞) is a probability density and (Wt)t≥0 is a standard Brownian motion
in Rd. The linear operator A denotes the generator of the Langevin diffusion (1): for a
twice continuously differentiable test function ϕ : Rd → R,

Aϕ(θ) =
1

2
〈∇ log π(θ),∇ϕ(θ)〉+

1

2
∆ϕ(θ), (2)

where ∆ϕ
def
=
∑d

i=1∇2
iϕ denotes the standard Laplacian operator. The motivation behind

the choice of Langevin diffusions is that, under certain conditions, they are ergodic with re-
spect to the distribution π; for example, (Roberts and Tweedie, 1996; Stramer and Tweedie,
1999a,b; Mattingly et al., 2002) describe drift conditions of the type described in Section
3.2 that ensure that the total variation distance from stationarity of the law at time t of
the Langevin diffusion (1) decreases to zero exponentially quickly as t→∞.

Given a time-step δ > 0 and a current position θt, it is often straightforward to simulate
a random variable θ? that is approximately distributed as the law of θt+δ given θt. For
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stochastic differential equations, the Euler-Maruyama scheme (Maruyama, 1955) might be
the simplest approach for approximating the law of θt+δ. For a Langevin diffusion this reads

θ? = θt +
1

2
δ∇ log π(θt) + δ1/2 η (3)

for a standard d-dimensional centred Gaussian random variable η. To fully correct the
discretization error, one can adopt a Metropolis-Hastings accept-reject mechanism. The
resulting algorithm is usually referred to as the Metropolis-Adjusted-Langevin algorithm
(MALA) (Roberts and Tweedie, 1996). Other discretizations can be used as proposals.
For example, the random walk Metropolis-Hastings algorithm uses the discretization of a
standard Brownian motion as the proposal, while the Hamiltonian Monte Carlo (HMC)
algorithm (Duane et al., 1987) is based on discretizations of an Hamiltonian system of
differential equations. See the excellent review of Neal (2010) for further information.

In this paper, we shall consider the situation where the target π is the density of the
posterior distribution under a Bayesian model where there are N � 1 i.i.d. observations,
the so called Big Data regime,

π(θ) ∝ p0(θ)

N∏
i=1

p (yi | θ) . (4)

Here, both computing the gradient term ∇ log π(θt) and evaluating the Metropolis-Hastings
acceptance ratio require a computational budget that scales unfeasibly as O(N). One
approach is to use a standard random walk proposal instead of Langevin dynamics, and
to efficiently approximating the Metropolis-Hastings accept-reject mechanism using only a
subset of the data (Korattikara et al., 2014; Bardenet et al., 2014).

This paper is concerned with stochastic gradient Langevin dynamics (SGLD), an alter-
native approach proposed by Welling and Teh (2011). This follows the opposite route and
chooses to completely avoid the computation of the Metropolis-Hastings ratio. By choos-
ing a discretization of the Langevin diffusion (1) with a sufficiently small step-size δ � 1,
because the Langevin diffusion is ergodic with respect to π, the hope is that even if the
Metropolis-Hastings accept-reject mechanism is completely avoided, the resulting Markov
chain still has an invariant distribution that is close to π. Choosing a decreasing sequence
of step-sizes δm → 0 should even allow us to converge to the exact posterior distribution.
To further make this approach viable in large N settings, the gradient term ∇ log π(θ) can
be further approximated using a subsampling strategy. For an integer 1 ≤ n ≤ N and a
random subset τ

def
= (τ1, . . . , τn) of [N ] ≡ {1, . . . , N} generated by sampling with or without

replacement from [N ], the quantity

∇ log p0(θ) +
N

n

n∑
i=1

∇ log p(xτi | θ) (5)

is an unbiased estimator of ∇ log π(θ). Most importantly, this stochastic estimate can be
computed with a computational budget that scales as O(n) with n potentially much smaller
than N . Indeed, the larger the quotient n/N , the smaller the variance of this estimate.

Stochastic gradient methods have a long history in optimisation and machine learning
and are especially relevant in the large dataset regime considered in this article (Robbins
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and Monro, 1951b; Bottou, 2010; Hoffman et al., 2013). In this paper we will adopt a
slightly more general framework and assume that one can compute an unbiased estimate

∇̂ log π(θ,U) to the gradient ∇ log π(θ), where U is an auxiliary random variable which
contains all the randomness involved in constructing the estimate. Without loss of generality
we may assume (although this is unnecessary) that U is uniform on (0, 1). The unbiasedness

of the estimator ∇̂ log π(θ,U) means that

E [H(θ,U)] = 0 with H(θ,U)
def
= ∇̂ log π(θ,U)−∇ log π(θ). (6)

In summary, the SGLD algorithm can be described as follows. For a sequence of asymptoti-
cally vanishing time-steps (δm)m≥0 and an initial parameter θ0 ∈ Rd, if the current position
is θm−1, the next position θm is defined though the recursion

θm = θm−1 +
1

2
δm ∇̂ log π(θm−1,Um) + δ1/2

m ηm (7)

for an i.i.d. sequence ηm ∼ N(0, Id), and an independent and i.i.d. sequence Um of auxiliary
random variables. This is the equivalent of the Euler-Maruyama discretization (3) of the
Langevin diffusion (1) with a decreasing sequence of step-sizes and a stochastic estimate
to the gradient term. The analysis presented in this article assumes for simplicity that the
initial position θ0 of the algorithm is deterministic; in the simulation study of Section 7,
the algorithms are started at the MAP estimator. Indeed, more general situations could
be analysed with similar arguments at the cost of slightly less transparent proofs. Note
that the process (θm)m≥0 is a non-homogeneous Markov chain, and many standard analysis
techniques for homogeneous Markov chains do not apply.

For a test function ϕ : Rd → R, the expectation of ϕ with respect to the posterior
distribution π can be approximated by the weighted sum

πm(ϕ)
def
=
δ1 ϕ(θ0) + . . .+ δm ϕ(θm−1)

Tm
(8)

with Tm = δ1 + . . . + δm. The quantity πm(ϕ) thus approximates the ergodic average

T−1
m

∫ Tm
0 ϕ(θt) dt between time zero and t = Tm. During the course of the proof of our

fluctuation Theorem 8, we will need to consider more general averaging schemes than the
one above. Instead, for a general positive sequence of weights ω = (ωm)m≥1, we define the
ω-weighted sum

πωm(ϕ)
def
=
ω1 ϕ(θ0) + . . .+ ωm ϕ(θm−1)

Ωm
(9)

with Ωm
def
= ω1 + . . . + ωm. Indeed, πωm(ϕ) = πm(ϕ) in the particular case (ωm)m≥1 =

(δm)m≥1; we will consider the weight sequence ω = {δ2
m}m≥1 in the proof of Theorem 8.

Let us mention several directions that can be explored to improve upon the basic SGLD
algorithm explored in this paper. Langevin diffusions of the type dθt = drift(θt) dt +
M(θt) dWt, reversible with respect to the posterior distribution π, can be constructed for
various choices of positive definite volatility matrix function M : Rd → Rd,d. Note nonethe-
less that, for a non-constant volatility matrix function θ 7→ M(θ), the drift term typically
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involves derivatives of M . Concepts of information geometry (Amari and Nagaoka, 2007)
give principled ways (Livingstone and Girolami, 2014) of choosing the volatility matrix
function M ; when the Fisher information matrix is used, this leads to the Riemannian
manifold MALA algorithm (Girolami and Calderhead, 2011). This approach has recently
been applied to the Latent Dirichlet Allocation model for topic modelling (Patterson and
Teh, 2013a). For high-dimensional state spaces d � 1, one can use a constant volatility
function M , also known in this case as the preconditioning matrix, for taking into account
the information contained in the prior distribution p0 in the hope of obtaining better mixing
properties (Beskos et al., 2008; Cotter et al., 2013); infinite dimensional limits are obtained
in (Pillai et al., 2012; Hairer et al., 2014). Under an uniform-ellipticity condition and a
growth assumption on the volatility matrix function M : Rd → Rd,d, we believe that our
framework could, at the cost of increasing complexity in the proofs, be extended to this set-
ting. To avoid the slow random walk behaviour of Markov chains based on discretization of
reversible diffusion processes, one can use instead discretizations of an Hamiltonian system
of ordinary differential equations (Duane et al., 1987; Neal, 2010); when coupled with the
stochastic estimates to the gradient above described, this leads to the stochastic gradient
Hamiltonian Monte Carlo algorithm of (Chen et al., 2014).

In the rest of this paper, we will build a rigorous framework for understanding the prop-
erties of this SGLD algorithm, demonstrating that the heuristics and numerical evidences
presented in Welling and Teh (2011) were indeed correct.

3. Assumptions and Stability Analysis

This section starts with the basics assumptions we will need for the asymptotic results to
follow, and illustrates some of the potential stability issues that may occur, would the SGLD
algorithm be applied without care.

3.1 Basic Assumptions

Throughout this text, we assume that the sequence of step-sizes δ = (δm)m≥1 satisfies the
following usual assumption.

Assumption 1 The step-sizes δ = (δm)m≥1 form a decreasing sequence with

lim
m→∞

δm = 0 and lim
m→∞

Tm =∞.

Indeed, this assumption is easily seen to also be necessary for the Law of Large Numbers of
Section 4 to hold. Furthermore, we will need at several occasions to assume the following
assumption on the oscillations of a sequence of step-sizes (ωm)m≥1.

Assumption 2 The step-sizes sequence (ωm)m≥1 is such that ωm → 0 and Ωm →∞ and

lim
m→∞

∑
m≥1

∣∣∆(ωm/δm)
∣∣ /Ωm <∞ and

∑
m≥1

ω2
m/[δmΩ2

m] <∞.

where ∆(ωm/δm)
def
= ωm+1/δm+1 − ωm/δm.
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Remark 3 Assumption 2 holds if δ = (δm)m≥1 satisfies Assumption (1) and the weights
are defined as ωm = δpm, for some some exponent p ≥ 1 small enough for Ωm →∞. This is
because the first sum is less than

∑
m≥1

∣∣∆(ωm/δm)
∣∣/Ω1 = δp−1

1 /Ω1, while the finiteness of
the second sum can be seen as follows:∑

m≥1

ω2
m/
(
δmΩ2

m

)
. 1 +

∑
m≥2

(ωm/δm)2 (1/Ωm−1 − 1/Ωm)

. 1 +
∑
m≥2

(1/Ωm−1 − 1/Ωm) = 1 + 1/Ω1.

For any exponents 0 < α < 1 and 0 < p < 1/α the sequences δm = (m0 + m)−α and
ωm = δpm satisfy both Assumption 1 and Assumption 2.

3.2 Stability

Under assumptions on the tails of the posterior density π, the Langevin diffusion (1) is non-
explosive and for any starting position θ0 ∈ Rd the total-variation distance dTV

(
P(θt ∈ ·), π

)
converges to zero as t → ∞. For instance, Theorem 2.1 of (Roberts and Tweedie, 1996)
shows that it is sufficient to assume that the drift term satisfies the condition (1/2) 〈∇ log π(θ), θ〉 ≤
α‖θ‖2 + β for some constants α, β > 0. We refer the interested reader to (Roberts and
Tweedie, 1996; Stramer and Tweedie, 1999a,b; Roberts and Stramer, 2002; Mattingly et al.,
2002) for a detailed study of the convergence properties of the Langevin diffusion (1).

Unfortunately, stability of the continuous time Langevin diffusion does not always trans-
late into good behaviour for its Euler-Maruyama discretization. For example, even if the
drift term points towards the right direction in the sense that 〈∇ log π(θ), θ〉 < 0 for every
parameter θ, it might happen that the magnitude of the drift term is too large so that
the Euler-Maruyama discretization overshoots and becomes unstable. In a one dimensional
setting, this would lead to a Markov chain that diverges in the sense that the sequence
(θm)m≥0 alternates between taking arbitrarily large positive and negative values. Lemma
6.3 of (Mattingly et al., 2002) gives such an example with a target density π(θ) ∝ exp{−θ4}.
See also Theorem 3.2 of (Roberts and Tweedie, 1996) for examples of the same flavours.

Guaranteeing stability of the Euler-Maruyama discretization requires stronger Lyapunov
type conditions. At a heuristic level, one must ensure that the drift term ∇ log π(θ) points
towards the centre of the state space. In addition, the previous discussion indicates that
one must also ensure that the magnitude of this drift term is not too large. The following
assumptions satisfy both heuristics, and we will show are enough to guarantee that the
SGLD algorithm is consistent, with asymptotically Gaussian fluctuations.

Assumption 4 The drift term θ 7→ 1
2 ∇ log π(θ) is continuous. There exists a Lyapunov

function V : Rd → [1,∞) that tends to infinity as ‖θ‖ → ∞, is twice differentiable with
bounded second derivatives, and satisfies the following conditions.

1. There exists an exponent pH ≥ 2 such that

E
[
‖H(θ,U)‖2pH

]
. V pH (θ). (10)

This implies that E
[
‖H(θ,U)‖2p

]
. V p(θ) for any exponent 0 ≤ p ≤ pH .
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2. For every θ ∈ Rd we have

‖∇V (θ)‖2 + ‖∇ log π(θ)‖2 . V (θ). (11)

3. There are constants α, β > 0 such that for every θ ∈ Rd we have

1

2
〈∇V (θ),∇ log π(θ)〉 ≤ −αV (θ) + β. (12)

Equation (12) ensures that on average the drift term ∇̂ log π(θ) points towards the cen-
tre of the state space, while equations (10) and (11) provide control on the magnitude of
the (stochastic) drift term. The drift condition (12) implies in particular that the Langevin
diffusion (1) converges exponentially quickly towards the equilibrium distribution π (Mat-
tingly et al., 2002; Roberts and Tweedie, 1996). The proof of the Law of Large Numbers
(LLN) and the Central Limit Theorem (CLT) both exploit the following Lemma.

Lemma 5 (Stability) Let the step-sizes (δm)m≥1 satisfy Assumption 1 and suppose that
the stability Assumptions 4 hold. For any exponent 0 ≤ p ≤ pH the following bounds hold
almost surely,

sup
m≥1

πm(V p/2) < ∞ and sup
m≥1

E [V p(θm)] < ∞. (13)

Moreover, for any exponent 0 ≤ p ≤ pH we have π(V p) < ∞. If the sequence of weights
(ωm)m≥1 satisfies Assumption 2 the following holds almost surely,

sup
m≥1

πωm(V p/2) < ∞ (14)

The technical proof can be found in Section B. The idea is to leverage condition (12) in order
to establish that the function V p satisfies both discrete and continuous drift conditions.

3.3 Scope of the Analysis

For a posterior density π of the form (4) and the usual unbiased estimate to∇ log π described
in Equation (5), to establish that Equations (10) and (11) hold it suffices to verify that the
prior density p0 is such that ‖∇ log p0(θ)‖2 . V (θ) and that for any index 1 ≤ i ≤ N the
likelihood term p (yi | θ) is such that

‖∇ log p (yi | θ)‖2 pH . V pH (θ).

Indeed, in these circumstances, we have ‖H(θ,U)‖2pH .
∑N

i=1 ‖∇ log p(yi | θ)‖2pH . Several
such examples are described in Section 7.

It is important to note that the drift Condition (12) typically does not hold for distribu-
tions with heavy tails such that ∇ log π(x)→ 0 as ‖x‖ → ∞ (Roberts and Tweedie, 1996).
For example, the standard MALA algorithm is not geometrically ergodic when ∇ log π(x)
converges to zero as ‖x‖ → ∞ (Theorem 4.3 of (Roberts and Tweedie, 1996)); indeed, the
analysis of standard local-move MCMC algorithms when applied to target densities with
heavy tails is delicate and typically necessitate other tools Stramer and Tweedie (1999b);
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Jarner and Roberts (2007); Kamatani (2014) than the approach based on drift conditions of
the type (12). The analysis of the properties of the SGLD algorithm when applied to such
heavy tail densities is out of the scope of this article. It is important to note that many
more complex scenarios involving high-dimensionality, multi-modality, non-parametric set-
tings where the complexity of the target distribution increases with the size of the data, or
combination thereof, are examples of interesting and relevant situations where our analysis
typically does not apply; analysing the SGLD algorithm when applied to these challenging
target distributions is well out of the scope of this article.

4. Consistency

The problem of estimating the invariant distribution of a stochastic differential equation by
using a diminishing step-size Euler discretization has been well explored in the literature
(Lamberton and Pages, 2002, 2003; Lemaire, 2007; Panloup, 2008; Pages and Panloup,
2012), while (Mattingly et al., 2002) studied the bias and variance of similar algorithms
when fixed step-sizes are used instead. We leverage some of these techniques and adapt it
to our setting where the drift term can only be unbiasedly estimated, and establish in this
section that the SGLD algorithm is consistent under Assumptions 1 and 4. More precisely,
we prove that almost surely the sequence (πm)m≥1 defined in Equation (8) converges weakly
towards π. Specifically, under growth assumptions on a test function ϕ : Rd → R, the
following strong law of large numbers holds almost surely,

lim
m→∞

δ1 ϕ(θ0) + . . .+ δm ϕ(θm)

Tm
=

∫
Rd

ϕ(θ)π(dθ),

with a similar result for ω-weighted empirical averages, under assumptions on the weight
sequence ω. The proofs of several results of this paper make use of the following elementary
lemma.

Lemma 6 Let (∆Mk)k≥0 and (Rk)k≥0 be two sequences of random variables adapted to a
filtration (Fk)k≥0 and let (Γk)k≥0 be an increasing sequence of positive real numbers. The
limit

lim
m→∞

∑m
k=0 ∆Mk +Rk

Tm
= 0 (15)

holds almost surely if the following two conditions are satisfied.

1. The process Mm =
∑

k≤m ∆Mk is a martingale, i.e. E [∆Mk | Fk] = 0 and

lim
k→∞

∑
k≥0

E [|∆Mk|]2

T 2
k

< ∞. (16)

2. The sequence (Rk)k≥0 is such that

lim
k→∞

∑
k≥0

E [|Rk|]
Tk

< ∞. (17)
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The above lemma, whose proof can be found in the appendix A, is standard; Lamberton
and Pages (2002) also follows this route to prove several of their results.

Theorem 7 (Consistency) Let the step-sizes satisfy Assumption (1) and suppose that the
stability Assumptions 4 hold for a Lyapunov function V : Rd → [1,∞). Let 0 ≤ p < pH/2
and ϕ : Rd → R be a test function such that |ϕ(θ)|/V p(θ) is globally bounded. Then the
following limit holds almost surely:

lim
m→∞

πm(ϕ) = π(ϕ). (18)

If in addition the sequence of weights {ωm}m≥1 satisfies Assumption (2), a similar result
holds almost surely for the ω-weighted ergodic average:

lim
m→∞

πωm(ϕ) = π(ϕ). (19)

Proof In the following, we write Ek [ · ] and Pk ( · ) to denote the conditional expec-
tation E [ · | θk] and conditional probability P ( · | θk) respectively. We use the notation

∆θk
def
= (θk+1 − θk). Finally, for notational convenience, we only present the proof in the

scalar case d = 1, the multidimensional case being entirely similar. We will give a detailed
proof of Equation (18) and then briefly describe how the more general Equation (19) can be
proven using similar arguments. To prove Equation (18), we first show that the sequence
(πm)m≥1 almost surely converges weakly to π. Equation (18) is then proved in a second
stage.

Weak convergence of (πm)m≥1. To prove that almost surely the sequence (πm)m≥1 converges
weakly towards π it suffices to prove that the sequence is almost surely weakly pre-compact
and that any weakly convergent subsequence of (πm)m≥0 necessarily (weakly) converges
towards π. By Prokhorov’s Theorem (Billingsley, 1995) and Equation (13), because the
Lyapunov function V goes to infinity as ‖θ‖ → ∞, the sequence (πm)m≥1 is almost surely
weakly pre-compact. It thus remains to show that if a subsequence converges weakly to a
probability measure π∞ then π∞ = π.

Since the Langevin diffusion (1) has a unique strong solution and its generator A is
uniformly elliptic, Theorem 9.17 of Chapter 4 of (Ethier and Kurtz, 1986) yields that it
suffices to verify that for any smooth and compactly supported test function ϕ : R → R
and any limiting distribution π∞ of the sequence (πm)m≥1 the following holds,

π∞(Aϕ) = 0. (20)

To prove Equation (20) we use the following decomposition of πm(Aϕ),{∑m
k=1 Ek−1[ϕ(θk)− ϕ(θk−1)]

Tm

}
−
{∑m

k=1 Ek−1[ϕ(θk)− ϕ(θk−1)]

Tm
− πm(Aϕ)

}
. (21)

• Let us prove that the first term of (21) converges almost surely to zero. The numerator
is equal to the sum of

∑m
k=1 Ek−1[ϕ(θk)]−ϕ(θk) and ϕ(θm)−ϕ(θ0). By boundedness

of ϕ, the term {ϕ(θm)− ϕ(θ0)}/Tm converges almost surely to zero. By Lemma 6, to

10
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conclude is suffices to show that the martingale difference terms Ek−1 [ϕ(θk)]− ϕ(θk)
are such that ∑

k≥1

E
[
|Ek−1 [ϕ(θk)]− ϕ(θk)|2

]
T 2
k

< ∞.

Because ϕ is Lipschitz, it suffices to prove that
∑

k≥1 E
(
‖θk+1 − θk‖2

)
/T 2

k is finite.

The stability Assumption 4 and Lemma 5 imply that the supremum supm E [V (θm)]

is finite. Since Ek

[
‖θk+1 − θk‖2

]
. δ2

k+1 V (θ)+δk+1, it follows that E
(
‖θk+1 − θk‖2

)
is less than a constant multiple of δk+1. Under Assumption 1, because the telescoping
sum

∑
k≥1 T

−1(k)−T−1(k+1) is finite, the sum
∑

k≥1 δk/T
2
k is finite. This concludes

the proof that the first term in (21) converges almost surely to zero.

• The second term of (21) equals
(
R0 + . . .+Rm−1

)
/Tm with

Rk
def
= Ek [ϕ(θk+1)− ϕ(θk)]−Aϕ(θk) δk+1. (22)

We now show that there exists a constant C such that the bound |Rk| ≤ C δ
3/2
k+1 holds

for any k ≥ 0. To do so, let K > 0 be such that the support of the test function ϕ is
included in the compact set Ω = [−K,K]. We examine two cases separately.

– If |θk| > K + 1 then ϕ(θk) = Aϕ(θk) = 0 so that |Rk| ≤ ‖ϕ‖∞ ×Pk(θk+1 ∈ Ω).
Since θk+1 − θk =

{
1
2∇ log π(θk) +H(θk,U)

}
δk+1 +

√
δk+1 η we have

Pk(θk+1 ∈ Ω) ≤ I
(∣∣∣∣12∇ log π(θk)

∣∣∣∣ ≥ dist(θk,Ω)

3 δk+1

)
+ Pk

(
|H(θk,U)| ≥ dist(θk,Ω)

3 δk+1

)
+ Pk

(
|η| ≥ dist(θk,Ω)

3
√
δk+1

)
.

We have used the notation I(A) for denoting the indicator function of the event
A. Under Assumption 4 we have |∇ log π(θ)| . V (θ)1/2 . 1 + ‖θ‖ so that the
quotient |∇ log π(θ)|/dist(θ,Ω) is bounded on the set {θ : |θ| > K}; this shows
that the first term equals zero for δk small enough. To prove that the second term
is bounded by a constant multiple of δ2

k+1, it suffices to use Markov’s inequality

and the fact that E[H(θk,U)2]/dist2(θ,Ω) is bounded on {θ : |θ| > K}; this is
because E[H(θk,U)2] is less than a constant multiple of V (θ) and V (θ) . 1+‖θ‖2
by Assumption 4. The third term is less than a constant multiple of δ2

k+1 by
Markov’s inequality and the fact that η has a finite moment of order four.

– If |θk| ≤ K+1, we decompose Rk into two terms. A second order Taylor formula
yields

Rk =
1

2
δ2
k+1 ϕ

′′
(θk)

{
[∇ log π(θk)]

2 + Ek
[
H2(θk,U)

]}
+ (1/2) Ek

[
(∆θk)

3

∫ 1

0
ϕ
′′′

(θk + u∆θk) (1− u)2 du

]
= Rk,1 +Rk,2.

11
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Under Assumption 4, the quantities [∇ log π(θk)]
2 and E[H2(θk,U)] are upper

bounded by a constant multiple of V (θk). Since the function θ 7→ ϕ
′′
(θ)V (θ)

is globally bounded (because continuous with compact support) this shows that
Rk,1 is less than a constant multiple of δ2

k+1. Since |θk| ≤ K + 1, the bounds

E[H3(θ,U)] . V 3/2(θ) and supk≥0 E[V 3/2(θk)] < ∞ (see Lemma 5) yield that

Ek |∆θk|3 ≤ 9C (δ3
k+1 + δ

3/2
k+1) . δ

3/2
k+1 with

C = 1 + sup
θ:|θ|<K+1

|∇ log π(θ)|3 + E
[
|H(θ,U)|3

]
.

Note that C is finite by Assumption 4 and Lemma 5.

We have thus proved that there is a constant C such |Rk| ≤ C δ
3/2
k+1 for k ≥ 0;

it follows that the sum (R0 + . . .+Rm−1)/Tm is less than a constant multiple of(
δ

3/2
1 + . . .+ δ

3/2
m

)
/Tm. Under Assumption 1, this upper bound converges to zero as

m→∞, hence the conclusion.

This ends the proof of the almost sure weak convergence of πm towards π.

Proof of Equation (18). By assumption we have |ϕ(θ)| ≤ Cp V
p(θ) for some constant

Cp > 0 and exponent p < pH/2. To show that πm(ϕ) → π(ϕ) almost surely, we will use
Lemma 5 and the almost sure weak convergence, which guarantees that πm(ϕ̃)→ π(ϕ̃) for
a continuous and bounded test function ϕ̃.

For any t > 0, the set Ωt
def
= {θ : V (θ) ≤ t} is compact and Tietze’s extension theorem

(Rudin, 1986, Theorem 20.4) yields that there exists a continuous function ϕ̃t with compact
support that agrees with ϕ on Ωt and such that ‖ϕ̃t‖∞ = sup{|ϕ(θ)| : θ ∈ Ωt}. We can
indeed also assume that |ϕ̃t(θ)| ≤ Cp V p(θ). Since Lemma 5 states that supm πm(V pH/2) is
almost surely finite, it follows that

|πm(ϕ)− πm(ϕ̃t)| ≤ 2Cp πm(V p
1V≥t) ≤ 2Cp

supm πm(V pH/2)

tpH/2−p
,

where the last inequality follows from the fact that for any probability measure µ, exponents
0 < p < q and scalar t > 0 we have µ(V p

1V≥t) ≤ µ(V q
1V≥t)/t

q−p. Similarly

|π(ϕ)− π(ϕ̃t)| ≤ 2Cp π(V pH/2)/tpH/2−p.

By the triangle inequality, we thus have,

|πm(ϕ)− π(ϕ)| ≤ 2Cp
supm πm(V pH/2)

tpH/2−p
+
∣∣πm(ϕ̃t)− π(ϕ̃t)

∣∣+ 2Cp
π(V pH/2)

tpH/2−p
.

On the right-hand-side, the term in the middle can be made arbitrarily small as m → ∞
since πm converges weakly towards π, while the other two terms converges to zero as t→∞.
This concludes the proof of Equation (18).

Proof of Equation (19). The approach is very similar to the proof of Equation (18) and
for this reason we only highlight the main differences. The same argument shows that the

12
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sequence πωm is tight and it suffices to show that πω∞(Aϕ) = 0 for any weak limit πω∞ of the
sequence (πωm)m≥0 for obtaining the almost sure weak convergences of (πωm)m≥0 towards π.
One can then upgrade this almost sure weak convergence to a Law of Large Numbers. To
prove (19), we thus concentrate on proving that πω∞(Aϕ) = 0. For a smooth and compactly
supported test function ϕ we use the decomposition πωm(Aϕ) = S1(m) + S2(m) + S3(m)
with 

S1(m) = 1
Ωm

∑m
k=1

ωk
δk

(
Ek−1[ϕ(θk)]− ϕ(θk)

)
S2(m) = 1

Ωm

∑m
k=1

ωk
δk

(
ϕ(θk)− ϕ(θk−1)

)
S3(m) = πωm(Aϕ)− 1

Ωm

∑m
k=1

ωk
δk

Ek−1[ϕ(θk)− ϕ(θk−1)]

and prove that each term converges to zero almost surely. For S1(m), by Lemma 6 it suffices

to show that
∑

k≥1(ωk/δk)
2 E

[
{Ek−1[ϕ(θk)]− ϕ(θk)}2

]
/Ω2

k is finite. This follows from the

bound E
[(

Ek−1[ϕ(θk)]− ϕ(θk)
)2]

. δk and the fact that
∑

m≥0 ω
2
m/(Ω

2
m δm) is finite. For

S2(m), we can write it as

S2(m) =
−ω1
δ1
ϕ(θ0) + ωm+1

δm+1
ϕ(θm)−

∑m
k=1 ϕ(θk) ∆(ωk/δk)

Ωm
.

Because Ωm →∞, (ωm+1/δm+1)/Ωm → 0 and ϕ is bounded, one can concentrate on prov-
ing that Ω−1

m

∑m
k=1 ϕ(θk) ∆(ωk/δk) converges almost surely to zero. By Lemma 6, it suffices

to verify that
∑

k≥1 E [|ϕ(θk) ∆(ωk/δk)|]/Ωk is finite; this directly follows from the bound-

edness of ϕ and Assumption 2. Finally, algebra shows that S3(m) = Ω−1
m

∑m
1 (ωk/δk)Rk−1

with the quantity Rk defined in Equation (22). It has been proved that there is a constant

C such that, almost surely, |Rk| ≤ C δ
3/2
k+1 for all k ≥ 0. Since δm → 0, the rescaled sum

Ω−1
m

∑
k≤m ωkδ

1/2
k converges to zero as m → ∞. It follows that S3(m) converges almost

surely to zero.

5. Fluctuations, Bias-Variance Analysis, and Central Limit Theorem

The previous section shows that, under suitable conditions, for a test function ϕ : Rd → R
the quantity πm(ϕ) converges almost surely to π(ϕ) as m → ∞. In this section, we inves-
tigate the fluctuations of πm(ϕ) around its asymptotic value π(ϕ). We establish that the
asymptotic bias-variance decomposition of the SGLD algorithm is dictated by the behaviour
of the sequence

Bm
def
= T−1/2

m

m−1∑
k=0

δ2
k+1. (23)

Indeed, the proof of Theorem 8 reveals that the fluctuations of πm(ϕ) are of order O
(
T
−1/2
m

)
and its bias is of order O

(
T−1
m

∑m−1
k=0 δ

2
k+1

)
; the quantity Bm is thus the ratio of the typical

scales of the bias and fluctuations. In the case where Bm → 0, the fluctuations dominate

13
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the bias and the rescaled difference T
1/2
m × (πm(ϕ)− π(ϕ)) converges weakly to a centred

Gaussian distribution. In the case where Bm → B∞ ∈ (0,∞), there is an exact balance

between the scale of the bias and the scale of the fluctuations; the rescaled quantity T
1/2
m ×

(πm(ϕ)− π(ϕ)) converges to a non-centred Gaussian distribution. Finally, in the case where

Bm →∞, the bias dominates and the rescaled quantity
(
T−1
m

∑m
k=1 δ

2
k

)−1× (πm(ϕ)− π(ϕ))
converges in probability to a quantity µ(ϕ) ∈ R whose exact value is described in the sequel.
The strategy of the proof is standard; the solution h of the Poisson equation

ϕ− π(ϕ) = Ah (24)

is introduced so that the additive functional πm(ϕ) of the trajectory of the Markov process
{θk}k≥0 can be expressed as the sum of a martingale and a remainder term. A central limit
for martingales can then be invoked to describe the asymptotic behaviour of the fluctuations

Theorem 8 (Fluctuations) Let the step-sizes (δm)m≥1 satisfy Assumption 1 and assume
that Assumption 4 holds for an exponent pH ≥ 5. Let ϕ : Rd → R be a test function and as-
sume that the unique solution h : Rd → R to the Poisson Equation (24) satisfies ‖∇nh(θ)‖ .
V pH (θ) for n ≤ 4 and has a bounded fifth derivative. Define σ2(ϕ) = π

(
‖∇h‖2

)
.

• In case the fluctuations dominate, i.e. Bm → 0, the following convergence in distribu-
tion holds,

lim
m→∞

T 1/2
m

{
πm(ϕ)− π(ϕ)

}
= N

(
0, σ2(ϕ)

)
. (25)

• In case the fluctuations and the bias are on the same scale, i.e. Bm → B∞ ∈ (0,∞),
the following convergence in distribution holds,

lim
m→∞

T 1/2
m

{
πm(ϕ)− π(ϕ)

}
= N

(
µ(ϕ), σ2(ϕ)

)
, (26)

with the asymptotic bias

µ(ϕ) = −B∞E

[
1

8
∇2h(Θ)∇̂ log π(Θ,U)2 +

1

4
∇3h(Θ)∇ log π(Θ) +

1

24
∇4h(Θ)

]
where the random variables Θ

D∼ π and U are independent.

• In case the bias dominates, i.e. Bm →∞, the following limit holds in probability,

lim
m→∞

πm(ϕ)− π(ϕ)

T−1
m
∑m

k=1 δ
2
k

= µ(ϕ). (27)

Proof The proof follows the strategy described in Lamberton and Pages (2002), with the
additional difficulty that only unbiased estimates of the drift term of the Langevin diffusion
are available. We use the decomposition

πm(ϕ)− π(ϕ) =

{∑m−1
k=0 δk+1Ah(θk)− (h(θk+1)− h(θk))

Tm

}
+

{
h(θm)− h(θ0)

Tm

}
. (28)

14
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A fifth order Taylor expansion and Equation (7) yields that

h(θk+1)− h(θk) =

4∑
n=1

{
n∑
i=0

C(k)
n,i δ

(n+i)/2
k+1

}
+∇5h(ξk) (θk+1 − θk)5/5!. (29)

In the above, we have defined C(k)
n,i ≡

(
2i i! (n− i)!

)−1∇nh(θk)∇̂ log π(θk,Uk+1)iηn−ik+1; the
quantity ξk lies between θk and θk+1. It follows from the expression (2) of the generator
of the A of the Langevin diffusion (1) and decomposition (28) that πm(ϕ)− π(ϕ) = Fm +
Bm + Rm where the fluctuation and bias terms are given by

Fm ≡ −
1

Tm

m−1∑
k=0

C(k)
1,0 δ

1/2
k+1 and Bm ≡ −

1

Tm

m−1∑
k=0

{
C(k)

2,2 + C(k)
3,1 + C(k)

4,0

}
δ2
k+1

while the remainder term reads

Rm ≡ −
1

Tm

m−1∑
k=0

{
1

2
H(θk,Uk+1)∇h(θk) +

1

2

(
η2
k+1 − 1

)
∇2h(θk)

}
δk+1

− 1

Tm

m−1∑
k=0

 ∑
(n,i)∈IR

C(k)
n,i δ

(n+i)/2
k+1

− 1

Tm

m−1∑
k=0

∇5h(ξk) (θk+1 − θk)5/5!

+

{
h(θm)− h(θ0)

Tm

}
(30)

for IR =
⋃
p∈{3,5,6,7,8} IR,p and IR,p ≡ {(n, i) ∈ [1 : 4]× [0 : 4] : i ≤ n, i+ n = p}. We will

show that the remainder term is negligible in the sense that each term on the R.H.S of

Equation (30), when multiplied by either T
1/2
m or Tm(

∑m−1
k=0 δ

2
k+1)−1, converges in probabil-

ity to zero; in other words, each one of these terms is dominated asymptotically by either
the fluctuations or the bias and is thus negligible. We then show that when multiplied

by T
1/2
m , the fluctuation term converges in distribution to N(0, σ2(ϕ)). Finally, we show

that the bias term converge to µ(ϕ) when rescaled by its typical scale, Tm(
∑m−1

k=0 δ
2
k+1)−1.

Putting these results together under the three cases of Bm → 0, Bm → B∞ ∈ (0,∞) and
Bm →∞ leads to the results of the Theorem.

Remainder Term

we start by proving that the term Rm is negligible. The term {h(θm)− h(θ0)}/T 1/2
m con-

verges to zero in probability because |h(θ)| . V pH (θ) and Lemma 5 shows that

sup
m≥0

E[V pH (θm)] <∞a.s..

Similarly, Assumptions 1 and 4 and Lemma 5 yield that

E
[
∇5h(ξk) (θk+1 − θk)5

]
. E

[
|ηk+1|5

]
δ

5/2
k+1 + E

[∣∣∣∇̂ log π(θk,Uk+1)
∣∣∣5] δ5

k+1 . δ
5/2
k+1

15
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from which it follows that
{∑m−1

k=0 ∇5h(ξk) (θk+1 − θk)5
}
/
{∑m−1

k=0 δ
2
k+1

}
converges to zero

in probability; we have exploited the fact that ∇5h is assumed to be globally bounded.
Essentially the same argument yield that the high-order terms are asymptotically negligible:
for (n, i) ∈ IR,p and p ∈ {5, 6, 7, 8} the limit

lim
m→∞

∑m−1
k=0 C

(k)
n,i δ

(n+i)/2
k+1∑m−1

k=0 δ
2
k+1

= 0

holds in probability because the coefficients C(k)
n,i are uniformly bounded in expectation and

the quantity
(∑m−1

k=0 δ
(n+i)/2
k+1

)
/
(∑m−1

k=0 δ
2
k+1

)
converges to zero since (n + i)/2 ≥ 5/2 and

δk → 0. To conclude, one needs to verify that the low order terms are also negligible in the
sense that the limit

lim
m→∞

∑m−1
k=0 X

(k)
n,i δ

(n+i)/2
k+1

T
1/2
m

= 0

holds in probability with X
(k)
1,1 = ∇h(θk)H(θk,Uk+1) and X

(k)
2,0 = ∇2h(θk)(η

2
k+1 − 1) and

X
(k)
2,1 = −C(k)

2,1 and X
(k)
3,0 = −C(k)

3,0 . Since E
[
X

(k)
n,i

∣∣∣Fk] = 0 where Fk = σ(θ0, . . . , θk) is the

natural filtration associated to the process (θk)k≥0 it follows that

E

(∑m−1
k=0 X

(k)
n,i δ

(n+i)/2
k+1

T
1/2
m

)2
 =

∑m−1
k=0 E

[
(X

(k)
n,i )

2
]
δn+i
k+1

Tm
.

∑m−1
k=0 δ

n+i
k+1

Tm
→ 0.

We made use of the fact that the expectations E
[
(X

(k)
n,i )

2
]

are uniformly bounded for all

k ≥ 0 by the same arguments as above, and that the final expression converges to 0 since
n+ i ≥ 2, δm → 0 and Tm →∞. This concludes the proof that the remainder term Rm is
asymptotically negligible.

Fluctuation Term

we now prove that the fluctuations term converges in distribution at Monte-Carlo rate
towards a Gaussian distribution,

T 1/2
m Fm ≡ −

∑m−1
k=0 ∇h(θk) δ

1/2
k+1 ηk+1

T
1/2
m

→ N
(
0, σ2(ϕ)

)
.

Using the standard martingale central limit theorem (e.g. Theorem 3.2, Chapter 3 of (Hall
and Heyde, 1980)), it suffices to verify that for any ε > 0 the following limits hold in
probability,

lim
m→∞

m−1∑
k=0

Ek
[
Z2
k I
(
Z2
k > Tmε

)]
Tm

= 0 and lim
m→∞

∑m−1
k=0 Ek

[
Z2
k

]
Tm

= σ2(ϕ)
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with Zk
def
= ∇h(θk) δ

1/2
k+1 ηk+1. Since Ek

[
Z2
k

]
= ∇h(θk)

2 δk+1 and the function θ 7→ ∇h(θ)2

satisfies the assumptions of Theorem 7, the second limit directly follows from Theorem 7.
For proving the first limit, note that the Cauchy-Schwarz’s inequality and the bounded-

ness of ∇h imply that Ek
[
Z2
k I
(
Z2
k > Tmε

)]
. δk+1×P

[
δk+1 ‖∇h‖2∞ η2

k+1 > Tm ε
]1/2

; the

Markov’s inequality thus yields that

m−1∑
k=0

Ek
[
Z2
k I
(
Z2
k > Tmε

)]
/Tm .

∑m−1
k=0 δ

2
k+1

T 2
m ε

.

Since T−2
m

∑m−1
k=0 δ

2
k+1 → 0, the conclusion follows.

Bias term: we conclude by proving that the bias term is such that the limit

lim
m→∞

Bm∑m
k=1 δ

2
k/Tm

= µ(ϕ)

holds in probability. The quantity Bm/
(∑m

k=1 δ
2
k/Tm

)−1
can also be expressed as∑m−1

k=0 Ψ(θk) δ
2
k+1∑m−1

k=0 δ
2
k+1

+

∑m−1
k=0 ∆Mk δ

2
k+1∑m−1

k=0 δ
2
k+1

(31)

for a martingale difference term ∆Mk ≡
(
C(k)

2,2 + C(k)
3,1 + C(k)

4,0

)
− Ψ(θk) where Ψ(θk) ≡

E
[
C(k)

2,2 + C(k)
3,1 + C(k)

4,0

∣∣∣Fk] and
(
C(k)

2,2 + C(k)
3,1 + C(k)

4,0

)
equals

1

8
∇2h(θk)∇̂ log π(θk,Uk+1)2 +

1

4
∇3h(θk)∇̂ log π(θk,Uk+1)η2

k+1 +
1

24
∇4h(θk)η

4
k+1.

Under the assumptions of Theorem 8, the function Ψ satisfies the hypothesis of Theorem
7 applied to the weight sequence {δ2

k}k≥0; it follows that the first term in Equation (31)
converge almost surely to µ(ϕ). It remains to prove that the second term in Equation (31)
also converges almost surely to zero. By Lemma 6, it suffices to prove that the martingale

m 7→
m∑
k=0

∆Mk δ
2
k+1∑k+1

j=1 δ
2
j+1

is bounded in L2. Under the Assumption of Theorem 8, Lemma 5 yields that the martingale
difference term ∆Mk is uniformly bounded in L2 from which the conclusion readily follows.

For the standard choice of step-sizes δm = (m0 + m)−α the statistical fluctuations
dominate in the range 1/3 < α ≤ 1, there is an exact balance between bias and fluctuations
for α = 1/3, and the bias dominates for 0 < α < 1/3. The optimal rate of convergence is
obtained for α = 1/3 and leads to an algorithm that converges at rate m−1/3.
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6. Diffusion Limit

In this section we show that, when observed on the right (inhomogeneous) time scale, the
sample path of the SGLD algorithm converges to the continuous time Langevin diffusion of
Equation (1), confirming the heuristic discussion in Welling and Teh (2011).

The result is based on the continuity properties of the Itô’s map I : C([0, T ],Rd) →
C([0, T ],Rd), which sends a continuous path w ∈ C([0, T ],Rd) to the unique solution v =
I(w) of the integral equation,

vt = θ0 +
1

2

∫ t

s=0
∇ log π(vs) ds+ wt for all t ∈ [0, T ].

If the drift function θ 7→ 1
2∇ log π(θ) is globally Lipschitz, then the Itô’s map I is well defined

and continuous. Further, the image I(W ) under the Itô map of a standard Brownian motion
W on [0, T ] can be seen to be described by Langevin diffusion (1).

The approach, inspired by ideas in Mattingly et al. (2012); Pillai et al. (2012), is to
construct a sequence of coupled Markov chains (θ(r))r≥1, each started at the same initial

state θ0 ∈ Rd and evolved according to the SGLD algorithm with step-sizes δ(r) def
= (δ

(r)
k )

m(r)
k=1

such that
m(r)∑
k=1

δ
(r)
k = T

and with increasingly fine mesh sizes mesh(δ(r))→ 0 with

mesh(δ(r))
def
= max

{
δ

(r)
k : 1 ≤ k ≤ m(r)

}
.

Define T
(r)
0 = 0 and T

(r)
k = δ

(r)
1 + · · ·+ δ

(r)
k for each k ≥ 1. The Markov chains are coupled

to W as follows: η
(r)
k = (δ

(r)
k )−1/2

(
W (T

(r)
k )−W (T

(r)
k−1)

)
θ

(r)
k = θ

(r)
k−1 + 1

2 δ
(r)
k

{
∇ log π(θ

(r)
k−1) +H(θ

(r)
k−1,U

(r)
k )

}
+ (δ

(r)
k )1/2 η

(r)
k ,

(32)

for an i.i.d. collection of auxiliary random variables (U (r)
k )r≥1,k≥1. Note that (η

(r)
k )k≥1 form

an i.i.d. sequence of N(0, 1) variables for each r. We can construct piecewise affine continuous
time sample paths (S(r))r≥1 by linearly interpolating the Markov chains,

S(r)
(
xT

(r)
k−1 + (1− x)T

(r)
k

)
= x θ

(r)
k−1 + (1− x) θ

(r)
k , (33)

for x ∈ [0, 1]. The approach then amounts to showing that each S(r) can be expressed as

I(W̃ (r)) + e(r), where W̃ (r) is a sequence of stochastic processes converging to W and e(r)

is asymptotically negligible, and making use of the continuity properties of the Itô map I.

Theorem 9 Let Assumption 4 holds and suppose that the drift function θ 7→ (1/2)∇ log π(θ)
is globally Lipschitz on Rd. If mesh(δ(r)) → 0 as r → ∞, then the sequence of continuous
time processes (S(r))r≥1 defined in Equation (33) converges weakly on

(
C([0, T ],Rd), ‖ · ‖∞

)
to the Langevin diffusion (1) started at S0 = θ0.

18



Consistency and Fluctuations for Stochastic Gradient Langevin Dynamics

Proof Since the drift term s 7→ (1/2)∇ log π(s) is globally Lipschitz on Rd, Lemma 3.7
of (Mattingly et al., 2012) shows that the Itô’s map I : C([0, T ],Rd) → C([0, T ],Rd) is
well-defined and continuous, under the topology over the space C([0, T ],Rd) induced by the
supremum norm ‖w‖∞ ≡ sup{|wt| : 0 ≤ t ≤ T}. By the Continuous Mapping Theorem,
because the Langevin diffusion (1) can be seen as the image under the Itô’s map I of a
standard Brownian motion on [0, T ] evolving in Rd, it suffices to verify that the process S(r)

can be expressed as I(W̃ (r)) + e(r) where W̃ (k) is a sequence of stochastic processes that
converge weakly in C([0, T ],Rd) to a standard Brownian motion W and e(r) is an error term
that is asymptotically negligible in the sense that ‖e(r)‖∞ converges to zero in probability.

For convenience, we define W̃ (r) as the continuous piecewise affine processes that satisfies

W̃ (r)(T
(r)
k ) = W (T

(r)
k ) for all 0 ≤ k ≤ m(r) and that is affine in between. It follows that for

any time T
(r)
k−1 ≤ t ≤ T

(r)
k we have

S(r)(t) = S(r)(T
(r)
k−1) +

(∫ t

T
(r)
k−1

1

2
∇ log π

(
S(r)(T

(r)
k−1)

)
du+ W̃ (r)(t)− W̃ (T

(r)
k−1)

)

+
1

2

∫ t

T
(r)
k−1

H
(
S(r)(T

(r)
k−1),U (r)

k

)
du

= θ0 +

(∫ t

0

1

2
∇ log π

(
S(r)(u)

)
du+ W̃ (r)(t)

)
︸ ︷︷ ︸

I(W̃ )(t)

+

∫ t

0

1

2

(
∇ log π

(
Ŝ(r)(u)

)
−∇ log π

(
S(r)(u)

))
du︸ ︷︷ ︸

e
(r)
1 (t)

+
1

2

∫ t

0
H
(
Ŝ(r)(u),U (r)

k

)
du︸ ︷︷ ︸

e
(r)
2 (t)

,

where Ŝ(r) is a piecewise constant (non-continuous) process, Ŝ(r)(t) = S(r)(T
(r)
k−1) = θ

(r)
k−1

for t ∈ [T
(r)
k−1, T

(r)
k ). The process S(r) can thus be expressed as the sum I(W (r))+e

(r)
1 +e

(r)
2 .

Since the mesh-size of the partition δ(r) converges to zero as r → ∞, standard properties
of Brownian motions yield that W̃ (r) converges weakly in

(
C([0, t],Rd), ‖ · ‖∞,[0,T ]

)
to W ,

a standard Brownian motion in Rd. To conclude the proof, we need to check that the

quantities ‖e(r)
1 ‖∞ and ‖e(r)

2 ‖∞ converge to zero in probability. To prove E
[
‖e(r)

2 ‖2∞
]
→ 0
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in probability, we have,

E
[
‖e(r)

2 ‖
2
∞

]
≤ 4 E

[
‖e(r)

2 (T )‖2
]

= 4

m(r)∑
k=1

(
δ

(r)
k

)2
E

[
H
(
θ

(r)
k−1,U

(r)
k

)2
]

.
m(r)∑
k=1

(
δ

(r)
k

)2
E
[
V (θ

(r)
k−1)

]
≤ mesh(δ(r))

m(r)∑
k=1

δ
(r)
k E

[
V (θ

(r)
k−1)

]
≤ mesh(δ(r))× T × sup

{
E
[
V (θ

(r)
k−1)

]
: r ≥ 1, 1 ≤ k ≤ m(r)

}
. mesh(δ(r)).

We have used Doob’s martingale inequality, Assumption 4 and Lemma 5. Since mesh(δ(r))

converges to zero, the conclusion follows. To prove E
[
‖e(r)

1 ‖∞
]
→ 0 in probability, we use

Equation (32) and note that since the drift function θ 7→ 1
2∇ log π(θ) is globally Lipschitz,

for each T
(r)
k−1 ≤ u ≤ T

(r)
k we have,∥∥∥∇ log
(
Ŝ(r)(u)

)
−∇ log

(
S(r)(u)

∥∥∥ .
∥∥∥θ(r)

k − θ
(r)
k−1

∥∥∥
. ‖∇ log π(θ

(r)
k−1)‖ δ(r)

k + ‖H
(
θ

(r)
k−1,U

(r)
k

)
‖ δ(r)

k +

√
δ

(r)
k ‖η

(r)
k ‖.

It follows that

E
[
‖e(r)

1 ‖∞
]
.

m(r)∑
k=1

δ
(r)
k

(
‖∇ log π(θ

(r)
k )‖ δ(r)

k + ‖H
(
θ

(r)
k ,Uk

)
‖ δ(r)

k +

√
δ

(r)
k ‖η

(r)
k ‖
)
.

Since mesh(δ(r)) converges to zero and by Assumption 4 and Lemma 5 the suprema sup
{
E
[
‖∇ log π(θ

(r)
k )‖

]
: r ≥ 1, 1 ≤ k ≤ m(r)

}
,

sup
{
E
[
‖H
(
θ

(r)
k ,Uk

)
‖
]

: r ≥ 1, 1 ≤ k ≤ m(r)
}

are finite, it readily follows that ‖e(r)
1 ‖∞ converges to zero in expectation.

7. Numerical Illustrations

In this section we illustrate the use of the SGLD method to a simple Gaussian toy model
and to a Bayesian logistic regression problem. We verify that both models satisfy As-
sumption 4, the main assumption needed for our asymptotic results to hold. Simulations
are then performed to empirically confirm our theory; for step-sizes sequences of the type
δm = (m0 +m)−α, both the rate of decay of the MSE and the impact of the sub-sampling
scheme are investigated. The main purpose of this article is to establish the missing the-
oretical foundation of stochastic gradient methods for the approximation of expectations.
For more exhaustive simulation studies we refer to Welling and Teh (2011); S. Ahn and
Welling (2012); Patterson and Teh (2013a); Chen et al. (2014). By considering a logistic
regression model, we demonstrate that the SGLD can be advantageous over the Metropolis-
Adjusted-Langevin (MALA) algorithm if the available computational budget only allows a
few iterations through the whole data set, see Section 7.2.2.
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7.1 Linear Gaussian model

Consider N independent and identically distributed observations (xi)
N
i=1 from the two pa-

rameters location model given by

xi | θ ∼ N(θ, σ2
x).

We use a Gaussian prior θ ∼ N(0, σ2
θ) and assume that the variance hyper-parameters σ2

θ

and σ2
x are both known. The posterior density π(θ) is normally distributed with mean µp

and variance σ2
p given by

µp = x̄
(

1 +
σ2
x

Nσ2
θ

)−1
and σ2

p =
σ2
x

N

(
1 +

σ2
x

Nσ2
θ

)−1

where x̄ = (x1 + . . . + xN )/N is the sample average of the observations. In this case, we
have

∇ log π(θ) = −θ − µp
σ2
p

and H(θ,U) =
{

(N/n)
∑

j∈In(U)

xj −
∑

1≤i≤N
xi

}
/σ2

x

for a random subset In(U) ⊂ [N ] of cardinal n.

7.1.1 Verification of Assumption 4

We verify in this section that Assumption (4) is satisfied for the following choice of Lyapunov
function,

V (θ) = 1 +
(θ − µp)2

2σ2
p

.

Since the error term H(θ,U) is globally bounded, the drift (1/2)∇ log π and the Lyapunov
function V are linear, Assumptions (4).1 and (4).2 are satisfied. Finally, to verify Assump-
tion (4).3, it suffices to note that since ∇ log π(θ) = −(θ − µp)/σ2

p we have〈
∇V (θ),

1

2
∇ log π(θ)

〉
= −(θ − µp)2

2σ4
p

=
1− V (θ)

σ2
p

.

In other words, Assumption (4).3 holds with α = β = 1/σ2
p.

7.1.2 Simulations

We chose σθ = 1, σx = 5 and created a data set consisting of N = 100 data points
simulated from the model. We used n = 10 as the size of subsets used to estimate the
gradients. We evaluated the convergence behaviour of SGLD using the test function Aϕ
where ϕ = sin (x− µp − 0.5σp).

We are interested in confirming the asymptotic convergence regimes of Theorem 8 by
running SGLD with a range of step sizes, and plotting the mean squared error (MSE)
achieved by the estimate πm(Aϕ) against the number of steps m of the algorithm to
determine the rates of convergence. We used step sizes δm = (m + m0(α))−α, for α ∈
{0.1, 0.2, 0.3, 0.33, 0.4, 0.5} where m0(α) is chosen such that δ1 is less than the posterior
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Figure 1: Decay of the MSE for step sizes δm � m−α, α ∈ {0.1, 0.2, 0.3, 0.33, 0.4, 0.5}. The
MSE decays algebraically for all step sizes, with fastest decay at approximately
α = 0.33.

Figure 2: Rates of decay of the MSE obtained from estimating the asymptotic slopes of
the plots in Figure 1, compared to theoretical findings of Theorem 8. The fastest
convergence rate is achieved at α = 1/3.
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Figure 3: Plots of the MSE multiplied by Tm against the number of steps m. The plots are
flat for α ≥ 0.33, demonstrating that the MSE scales as T−1

m in this regime, while
the plots diverge for α < 0.33, demonstrating that it decays at a slower rate here.

Figure 4: Behaviour of the mean squared error for different subsample sizes n.
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standard deviation. According to the Theorem, the MSE should scale as T−1
m for α > 1/3,

and
∑m

k=1 δ
2
k/Tm for α ≤ 1/3.

The observed MSE is plotted against m on a log-log plot in Figure 1. As predicted by
the theory, the optimal rate of decay is around α? = 1/3. To be more precise, we estimate
the rates of decay by estimating the slopes on the log-log plots. This is plotted in Figure 2,
which also shows a good match to the theoretical rates given in Theorem 8, where the best
rate of decay is 2/3 achieved at α = 1/3. Finally, to demonstrate that there are indeed two
distinct regimes of convergence, in Figure 3 we have plotted the MSE multiplied by Tm.
For α > 1/3, the plots remain flat, showing that the MSE does indeed decay as T−1

m . For
α < 1/3, the plots diverge, showing that the MSE decays at a slower rate than T−1

m .
For α = 0.33, Figure 4 depicts how the MSE decreases as a function of the number of

likelihood evaluations for subsample sizes n = 1, 5, 10, 50, 100.

7.2 Logistic Regression

We verify in this section that Assumption (4) is satisfied for the following logistic regression
model. Consider N independent and identically observations (yi)

N
i=1 distributed as

P(yi = 1 | xi, θ) = 1− P(yi = −1 | xi, θ) = logit
(
〈θ, xi〉

)
(34)

for covariate xi ∈ Rd, unknown parameter θ ∈ Rd and function logit(z) = ez/(1 + ez). We
assume a centred Gaussian prior on θ ∈ Rd with positive definite symmetric covariance
matrix C ∈ Rd×d. It follows that

∇ log π(θ) = −C−1θ +

N∑
i=1

logit
(
− yi〈θ, xi〉

)
yi xi

H(θ,U) = (N/n)
∑

j∈In(U)

logit
(
− yj〈θ, xj〉

)
yj xj −

∑
1≤i≤N

logit
(
− yi〈θ, xi〉

)
yi xi

for a random subset In(U) ⊂ [N ] of cardinal n.

7.2.1 Verification of Assumption 4

We verify in this section that Assumption (4) is satisfied for the Lyapunov function V (θ) =
1 + ‖θ‖2. Since H(θ,U) is globally bounded and ‖∇V (θ)‖2 = ‖θ‖2 and

‖∇ log π(θ)‖2 . 1 + ‖C−1θ‖2 . 1 + ‖θ‖2 = V (θ),

it is straightforward to see that Assumption (4).1 and (4).2 are satisfied. Finally,〈
∇V (θ),

1

2
∇ log π(θ)

〉
= −1

2

〈
θ, C−1θ

〉
+

1

2

N∑
i=1

logit
(
− yi〈θ, xi〉

)
yi 〈θ, xi〉

≤ −λmin

2
‖θ‖2 +

∑N
i=1 ‖xi‖

2
‖θ‖ ≤ −λmin

4
V (θ) + β

with λmin > 0 the smallest eigenvalue of C−1 and β ∈ (0,∞) the global maximum over

θ ∈ Rd of the function θ 7→ −λmin
4 ‖θ‖

2 +
∑N

i=1 ‖xi‖
2 ‖θ‖.
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Figure 5: Expected MSE of the SGLD-based estimate variance estimate of the first compo-
nent for n = 30 and step sizes δm = (a ·m+ b)−0.38 after 20 and 1000 iterations
through the data set

7.2.2 Comparison of the SGLD and the MALA for Logistic Regression

We consider a simulated dataset where d = 3 and N = 1000. We set the input covariates

xi = (xi,1, xi,2, 1) with xi,1, xi,2
i.i.d.∼ N(0, 1) for i = 1 . . . N , and use a Gaussian prior

θ ∼ N(0, I). We draw a θ0 ∼ N(0, I) and based on it we generate yi according to the
model probabilities (34). In the following we compare MALA in SGLD by comparing their
estimate for the variance of the first component.

The findings of this article show that SGLD-based expectation estimates converge at
a slower rate of at most n−

1
3 compared to the standard rate of n−

1
2 for standard MCMC

algorithms such as the MALA algorithm. In the following we demonstrate that in the
non-asymptotic regime (allowing only a few passes through the data set) the SGLD can be
advantageous. We start both algorithms at the MAP estimator and we ensure that this
study is not biased due to different speeds in finding the mode of the posterior. For a fair
comparison we tune the MALA to an acceptance rate of approximately 0.564 following the
findings of Roberts and Rosenthal (1998). For the SGLD-based variance estimate of the
first component for n = 30 we choose δm = (a ·m+ b)−0.38 as step sizes and optimise over
the choices of a and b. This is achieved by estimating the MSE for choices of a and b on a
log-scale grid based on 512 independent runs. The estimates based on 20 and 1000 effective
iterations through the data set the averages are visualised in the heat maps in Figure 5.
That means we limit the algorithm to 200 and 1000000 likelihood evaluations, respectively.
The figures indicate that the range of the good parameter choices seems to be the same in
both cases. Using the heat map for the estimated MSE after 20 iterations through the data
set, we pick a = 5.89 · 107 and b = 7.90 · 108 and compare the time behaviour of the SGLD
and the MALA algorithm in Figure 6. The figure is a simulation evidence that the SGLD
algorithm can be advantageous in the initial phase for the first few iterations through the
data set. This recommends further investigation as the initial phase can be quite different
from the asymptotic phase.
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Figure 6: Behaviour of the MSE of estimating the posterior variance of the first component
for 3-dimensional logistic regression of MALA and SGLD with tuned parameters

8. Conclusion

So far, the research on the SGLD algorithm has mainly been focused on extending the
methodology. In particular, a parallel version has been introduced in Ahn et al. (2014) and
it has been adapted to natural gradients in Patterson and Teh (2013b). This research has
been accompanied by promising simulations. In contrast, we have focused in this article on
providing rigorous mathematical foundations for the SGLD algorithm by showing that the
step-size weighted estimator πm(f) is consistent, satisfies a central limit theorem and its
asymptotic bias-variance decomposition can be characterised by an explicit functional Bm
of the step-sizes sequence (δm)m≥0. The consistency of the algorithm is mainly due to the
decreasing step-sizes procedure that asymptotically removes the bias from the discretization
and ultimately mitigates the use of an unbiased estimate of the gradient instead of the exact
value. Additionally, we have proved a diffusion limit result that establishes that, when
observed on the right (inhomogeneous) time scale, the sample paths of the SGLD can be
approximated by a Langevin diffusion.

The CLT and bias-variance decomposition can be leveraged to show that it is optimal
to choose a step-sizes sequences (δm)m≥0 that scales as δm � m−1/3; the resulting algorithm
converges at rate m−1/3. Note that this recommendation is different from the previously
suggested Welling and Teh (2011) choice of δm � m−1/2.

Our theory suggests that an optimally tuned SGLD method converges at rate O(m−1/3),
and is thus asymptotically less efficient than a standard MCMC procedure. We believe that
this result does not necessarily preclude SGLD to be more efficient in the initial transient
phase, a result hinted at in Figure 4; the detailed study of this (non-asymptotic) phe-
nomenon is an interesting venue of research. The asymptotic convergence rate of SGLD
depends crucially on the decreasing step sizes, which is required to reduce the effect of the
discretization bias due to the lack of a Metropolis-Hastings correction. Another avenue of
exploration is to determine more precisely the bias resulting from the discretization of the
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Langevin diffusion, and to study the effect of the choice of step sizes in terms of the trade-off
between bias, variance, and computation.
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Appendix A. Proof of Lemma 6

Recall Kronecker’s Lemma (Shiryaev, 1996, Lemma IV.3.2) that states that for a non-
decreasing and positive sequence bm →∞ and another real valued sequence (am)m≥0 such
that the series

∑
m≥0 am/bm converges the following limit holds,

lim
m→∞

∑m
k=0 ak
bm

= 0.

For proving Equation (15) it thus suffices to show that the sums
∑

k≥0 |∆Mk| /Tk and∑
k≥0 |Xk| /Tk are almost surely finite. This follows from Condition (16) (L2 martingale

convergence theorem) and Condition (17).

Appendix B. Proof of Lemma 5

For clarity, the proof is only presented in the scalar case d = 1; the multidimensional setting
is entirely similar. Before embarking on the proof, let us first mention some consequences
of Assumptions 4 that will be repeatedly used in the sequel. Since the second derivative V

′′

is globally bounded and (V ′)2 is upper bounded by a multiple of V , we have that∣∣(V p)
′′
(θ)
∣∣ . V p−1(θ) (35)

and that the function V 1/2 is globally Lipschitz. By expressing the quantity V p(θ + ε) as(
V 1/2(θ) + [V 1/2(θ + ε)− V 1/2(θ)]

)2p
, it then follows that

V p(θ + ε) . V p(θ) + |ε|2p. (36)

Similarly, Definition (7), the bound ‖∇ log p(θ)‖2 . V (θ) and Equation (10) yield that for
any exponent 0 ≤ p ≤ pH the following holds,

Em[ |θm+1 − θm|2p ] . δ2p
m+1 V

p(θ) + δpm+1. (37)

For clarity, the proof of Lemma (5) is separated into several steps. First, we establish that
the process m 7→ V p(θm) satisfies a Lyapunov type condition; see Equation (38) below. We
then describe how Equation (13) follows from this Lyapunov condition. The fact that π(V p)
is finite can be seen as a consequence of Theorem 2.2 of (Roberts and Tweedie, 1996).

• Discrete Lyapunov condition.
Let us prove that there exists an index m0 ≥ 0 and constants αp, βp > 0 such that for
any m ≥ m0 we have

Em
[
V p(θm+1)− V p(θm)

]
/δm+1 ≤ −αp V p(θm) + βp. (38)
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Since for any ε there exists Cε such that V p−1(θ) ≤ Cε + εV p(θ), for proving (38) it
actually suffices to verify that we have

Em
[
V p(θm+1)− V p(θm)

]
/δm+1 ≤ −α̃p V p(θm) + β̃p V

p−1(θm) (39)

for some constants α̃p, β̃p > 0 and index m ≥ 1 large enough. A second order Taylor
expansion yields that the left hand side of (39) is less than

Em
[
(V p)′(θm) (θm+1 − θm)

]
/δm+1 +

1

2
Em

[
(V p)

′′
(ξ) (θm+1 − θm)2

]
/δm+1 (40)

for a random quantity ξ lying between θm and θm+1. Since Em[θm+1 − θm] =
1
2 ∇ log p(θm), the drift condition (12) yields that the first term of (40) is less than

p V p−1(θm) (−αV (θm) + β) (41)

for α, β > 0 given by Equation (12). Consequently, for proving Equation (38), it
remains to bound the second term of (40). Equation (35) shows that |(V p)

′′
(ξ)| is

upper bounded by a multiple of |V p−1(ξ)|; the bound (36) then yields that |V p−1(ξ)|
is less than a constant multiple of |V p−1(θm)| + |θm+1 − θm|2(p−1). It follows from
the bound (37) on the difference (θm+1−θm) and the assumption E[ ‖H(θ,U)‖2pH ] .
V pH (θ) that for any ε > 0 one can find an index m0 ≥ 1 large enough such that for
any index m ≥ m0 the second term of (39) is less than a constant multiple of

ε V p(θm) + βp,ε V
p−1(θ) (42)

for a constant βp,ε > 0. Equations (41) and (42) directly yield to Equation (39), which
in turn implies to Equation (38).

• Proof that supm≥1 E[V p(θm)] < ∞ for any p ≤ pH .
Equations (36) and (37) show that if E[V p(θm)] is finite then so is E[V p(θm+1)]. Under
the conditions of Lemma 5, this shows that E[V p(θm)] is finite for any m ≥ 0. An
inductive argument based on the discrete Lyapunov Equation (38) then yields that
for any index m ≥ m0 the expectation E[V p(θm)] is less than

max
(
βp/αp,max

{
E[V p(θm)] : 0 ≤ m ≤ m0

})
. (43)

It follows that supm≥1 E[V p(θm)] is finite.

• Proof that supm≥1 πm(V p) < ∞ for any p ≤ pH/2.
One needs to prove that the sequence (1/Tm)

∑m
k=m0

δk+1V
p(θk) is almost surely

bounded. The discrete Lyapunov Equation (38) yields that δk+1V
p(θk) is less than

δk+1 βp/αp−Ek[V
p(θk+1)− V p(θk)]/αp; this yields that (1/Tm)

∑m
k=m0

δk+1V
p(θk) is

less than a constant multiple of

1 +
V p(θm0)

Tm
+

1

Tm

m∑
k=m0

{
V p(θk+1)−Ek[V

p(θk+1)]
}
.
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To conclude the proof, we prove that the last term in the above displayed Equation
almost surely converges to zero; by Lemma 6, it suffices to prove that the quantity

∑
k≥m0

E

[∣∣∣∣V p(θk+1)−Ek[V
p(θk+1)]

Tk

∣∣∣∣2
]

(44)

is almost surely finite. We have E
[
|V p(θk+1)−Ek[V

p(θk+1)]|2
]
≤ 2×E[|V p(θk+1)−

V p(θk) |2] and the mean value theorem yields that

|V p(θk+1)− V p(θk)| . V p−1(ξ)V ′(ξ) (θk+1 − θk)

for some ξ lying between θk and θk+1. The bound |V ′(θ)| . V 1/2(θ) and Equation

(36) then yield that |V p(θk+1)−V p(θk)| . V p−1/2(θk)
∣∣θk+1−θk

∣∣+∣∣θk+1−θk
∣∣2p. From

the bound (37) and the assumption that E[H(θ,U)2pH ] . V pH (θ) it follows that the
quantity in Equation (44) is less than a constant multiple of

∑
k≥m0

E
[
V 2p(θk)

]
× δk

T 2(k)
.

Since E
[
V 2p(θk)

]
is uniformly bounded for any p ≤ pH/2 and

∑
m≥m0

δm/T
2(m) <∞

(because the sum
∑

m T
−1(m+ 1)− T−1(m) is finite), the conclusion follows.

• Proof of π(V p) < ∞ for any p ≥ 0.
Since V (θ) . 1 + ‖θ‖2, the drift condition (12) yields that Theorem 2.1 of (Roberts
and Tweedie, 1996) holds. Moreover, the bound V p−1(θ) ≤ Cε + ε V p(θ) implies that
there are constants αp,∗.βp,∗ > 0 such that

AV p(θ) ≤ −αp,∗ V p(θ) + βp,∗ (45)

where A is the generator of the Langevin diffusion (1). Theorem 2.2 of (Roberts and
Tweedie, 1996) gives the conclusion.

Proof that supm≥1 πωm(V p) < ∞ for any p ≤ pH/2.
One needs to prove that the sequence [1/Ωm]×

∑m
k=m0

ωk+1V
p(θk) is almost surely bounded.

The bound δk+1V
p(θk) . δk+1 βp/αp−Ek[V

p(θk+1)−V p(θk)]/αp yields that πωm(V p) is less
than a constant multiple of

1 +
(ωm0/δm0)V p(θm0)

Tm
+Ω−1(m)

∑m
k=m0+1(ωk/δk)

{
V p(θk+1)−Ek[V

p(θk+1)]
}

+Ω−1(m)
∑m−1

k=m0
∆(ωk/δk)V

p(θk).

To conclude the proof, we establish that the following limits hold almost surely,

limm→∞ Ω−1(m)
∑m

k=m0+1(ωk/δk)
{
V p(θk+1)−Ek[V

p(θk+1)]
}

= 0 (46)

limm→∞ Ω−1(m)
∑m−1

k=m0
∆(ωk/δk)V

p(θk) = 0. (47)
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To prove Equation (46) it suffices to use the assumption that
∑

m≥0 ω
2
m/[δmΩ2

m] < ∞ and
then follow the same approach used to establish that the quantity (44) is finite. Lemma 6
shows that to prove Equation (47) it suffices to verify that

E
[∑
m≥0

∣∣∆(ωm/δm)
∣∣V p(θm)/Ωm

]
<∞.

This directly follows from the assumption that
∑

m≥0

∣∣∆(ωm/δm)
∣∣/Ωm < ∞ and the fact

that supm≥0 E[V p(θm)] is finite.
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N. S. Pillai, A. M. Stuart, and A. H. Thiéry. Optimal scaling and diffusion limits for
the Langevin algorithm in high dimensions. The Annals of Applied Probability, 22(6):
2320–2356, 2012.

H. Robbins and S. Monro. A stochastic approximation method. The Annals of Mathematical
Statistics, pages 400–407, 1951a.

H. Robbins and S. Monro. A Stochastic Approximation Method. The Annals of Mathe-
maitcal Statistics, 22:400–407, 1951b. ISSN 0003-4851.

G. O. Roberts and J. S. Rosenthal. Optimal Scaling of Discrete Approximations to Langevin
Diffusions. J. R. Stat. Soc. Ser. B Stat. Methodol., 60(1):255–268, 1998.

32



Consistency and Fluctuations for Stochastic Gradient Langevin Dynamics

G. O. Roberts and O. Stramer. Langevin diffusions and Metropolis-Hastings algorithms.
Methodology and computing in applied probability, 4(4):337–357, 2002.

G. O. Roberts and R. L. Tweedie. Exponential convergence of langevin distributions and
their discrete approximations. Bernoulli, pages 341–363, 1996.

Walter Rudin. Real and complex analysis (3rd). New York: McGraw-Hill Inc, 1986.

A. Koratticara S. Ahn and M. Welling. Bayesian posterior sampling via stochastic gradient
fisher scoring. In ICML, 2012.

M.-A. Sato. Online model selection based on the variational bayes. Neural Computation,
13(7):1649–1681, 2001.

Albert N Shiryaev. Probability. Graduate Texts in Mathematics, 1996.

Nathan Srebro and Ambuj Tewari. Stochastic optimization for machine learning. ICML
Tutorial, 2010.

O. Stramer and R.L. Tweedie. Langevin-type models I: Diffusions with given stationary dis-
tributions and their discretizations*. Methodology and Computing in Applied Probability,
1(3):283–306, 1999a.

O. Stramer and R.L. Tweedie. Langevin-type models II: Self-targeting candidates for
MCMC algorithms. Methodology and Computing in Applied Probability, 1(3):307–328,
1999b.

S. Thrun. Toward robotic cars. Communications of the ACM, 53(4):99–106, 2010.

W. Y.S. Wang, B. J. Barratt, D. G. Clayton, and J. A. Todd. Genome-wide association
studies: theoretical and practical concerns. Nature Reviews Genetics, 6(2):109–118, 2005.

M. Welling and Y. W. Teh. Bayesian learning via Stochastic Gradient Langevin Dynamics.
In Proceedings of the 28th International Conference on Machine Learning (ICML-11),
pages 681–688, 2011.

33


	Introduction
	Stochastic Gradient Langevin Dynamics
	Assumptions and Stability Analysis
	Basic Assumptions
	Stability
	Scope of the Analysis

	Consistency
	Fluctuations, Bias-Variance Analysis, and Central Limit Theorem
	Diffusion Limit
	Numerical Illustrations
	Linear Gaussian model
	Verification of Assumption 4
	Simulations

	Logistic Regression
	Verification of Assumption 4
	Comparison of the SGLD and the MALA for Logistic Regression


	Conclusion
	Proof of Lemma 6
	Proof of Lemma 5

